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Chapter 1: Introduction

1.1 Network Coding and Motivation

Since Internet appeared in the early 1960s, the number of users has been increasing

considerably. Every aspects of Internet such as the underlying infrastructure, protocols,

services, networks etc. also have been evolving continuously. Importantly, increasing the

capacity has been always been one of the primary aims of making the Internet better.

There have been many advances, from hardware and architecture to protocol design to

boost the Internet capacity. Notably, the past decade has witnessed a spurt of research

on using Network Coding (NC) to increase capacity, reliability, and security. The concept

of NC was first introduced in 2000 by R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung

[3]. In their work, NC is considered as a method of optimizing the digital data flow in a

network by transmitting digital evidence about messages. The robustness of NC in term

of bandwidth increase and attack resistance since then has been attracted many interests

from research community. As a result, NC has been applied in many practical network

systems and applications such as broadcast network, peer-to-peer network, distributed

system and data centers, etc.

1.2 Contribution of This Dissertation

In this thesis, we study network coding aspects in three different settings. First, we

propose efficient algorithms for data synchronization via a broadcast channel using ran-

dom network coding. Second, we study the resiliency of network coding based large

distributed systems via characterization of minimum rank recovery of random matri-

ces over finite fields. Third, we propose a novel Location Assisted Coding technique to

manage interference and increase capacity in Free Space Communication (FSO) systems.
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1.2.1 Data Synchronization via Network Coding

In the first problem, we investigate the problem of data synchronization in which a

sender has a set of packets to be distributed to all the receivers via a broadcast channel.

Initially, each receiver has some fraction of the packets. At each time slot, the sender

might broadcast a packet to all the receivers. The goal is to find a broadcast scheme

that minimizes the number of time slots until all the receivers successfully obtain all

the packets. We propose two probabilistic models on how the initial fractions of packets

at receivers are distributed. These models arise naturally in many large scale systems

such as Peer-to-Peer (P2P) networks, data centers, and distributed storage systems.

Based on these models, we establish probabilistic bounds and asymptotic results on the

minimum number of time slots to successfully transmit all the packets to all the receivers.

Such bounds can shed lights on the benefits and limitations of using NC-based broadcast

schemes in certain real-world settings. Next, we propose and analyze a number of random

network coding algorithms for finding the approximately optimal solution. Our analysis

provided quantitative performances in terms of expectation, variance, and tail probability

on the number of time slots required to complete the synchronization for the proposed

algorithms.

1.2.2 Data Recovery in Network Coding

In the second problem, NC technique is considered under attack and we show that the

security can be improved using Minimum Rank Problem. In the minimum rank decoding

problem, the goal is to recover the network coded packets from a malicious attacker who

randomly corrupts the header of the packets with limited magnitude errors. We cast

this problem as the problem of rank recovery of random matrices over finite field in

presence of noise. We present some initial asymptotic results on joint distribution of

weight and rank of random matrices for simple models which are useful for the rank

recovery problem. We show that limited magnitude noise is likely not to decrease the

rank of low-rank matrices with uniformly distributed weights.
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1.2.3 Network Coding technique in WiFO system

In the third problem, we describe the WiFO system that can provide up to one Gbps

per user while maintaining seamless mobility. While typical RF femtocells are non-

overlapped to minimize inter-cell interference, there are advantages of using overlapped

femtocells to increase mobility and throughput when the number of users is small. The

contribution will be a novel location assisted coding (LAC) technique (a specific NC

technique) used in the WiFO network that aims to increase the throughput and reduce

interference for multiple users in a dense array of femtocells. Our theoretical analysis

and numerical experiments show orders of magnitude increase in throughput using LAC

over traditional approach, which verifies the robustness of NC technique.

1.3 Organization of This Dissertation

The thesis is organized as follows. We first present the background and preliminaries of

our work in Chapter 2. In Chapter 3, we describe the problem of Data Synchronization

via Network Coding. In Chapter 4, the problem of Data Recovery in Network Coding is

introduced. Next, the novel WiFO systems and the use of Network Coding is described

in Chapter 5. Finally, we conclude the thesis and propose future research directions in

Chapter 6.
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Chapter 2: Background

In this section, we briefly describe the definitions and preliminaries that will be used in

this thesis. More details can be founded in [64], [88], [63], [36], [11].

2.1 Finite fields

Definition 1. A finite field F or GF (q) or F (q) is a field that contains a finite number

of elements (q) in which the four basic operations multiplication, addition, subtraction

and division (excluding division by zero) are defined.

The simplest type of finite fields is the prime fields.

Definition 2. For each prime number q, the field GF (q) can be presented by integers in

the range 0, . . . , q − 1 and can be constructed as the integers modulo q.

Example 1. When q = 2, the field GF (2) contains only two elements: 0 and 1. The

four operations are illustrated in the Table 2.1, Table 2.2, Table Table 2.3 (addition is

identical to subtraction).

∗ 0 1

0 0 1

1 1 0

Table 2.1: Multiplication in GF (2)

+|− 0 1

0 0 1

1 1 0

Table 2.2: Addition in GF (2)
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x/y 0 1

0 X 0

1 X 1

Table 2.3: Division in GF (2)

The non-prime fields GF (qn) can be constructed over prime fields GF (q).

Definition 3. The field GF (qn) is a finite field in which the elements are the polynomials

of degree less than n over GF (q).

The GF (qn) is constructed using an irreducible polynomial P in GF (q)[X] of degree

n.

Example 2. Let q = 2, n = 2, we construct GF (22) using P (X) = X2 + X + 1 and α

where α is the root of P as in Table 2.4.

GF (22) α 1

0 0 0

1 0 1

α 1 0

α2 1 1

Table 2.4: Construct GF (22)

The arithmetic operations for GF (22) are illustrated in Table 2.5, Table 2.6, Table

2.7 and the subtraction operation is identical to addition.

∗ 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

Table 2.5: Multiplication in GF (22)
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+|− 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

Table 2.6: Addition in GF (22)

x/y 0 1 α α2

0 X 0 0 0

1 X 1 1 + α α

α X α 1 α2

α2 X α2 α 1

Table 2.7: Division in GF (22)

2.2 Matrices and Rank

Definition 4. The rank of a matrix is defined as the maximum number of linearly

independent column (or row) vectors in the matrix.

In this thesis, we use following notations:

• rank(A): denote the rank of matrix A.

• Matrix A ∈ Fm×nq : denote that matrix A has m rows and n columns and all entries

in matrix A belong to field F (q) and we use 0, . . . , q − 1 to represent elements in

field F (q).

Definition 5. When all the column (or row) vectors in a matrix are linearly independent,

the matrix is said to be full rank .

2.3 Gaussian Elimination

Definition 6. For a non-zero row in a matrix, the left-most non-zero entry is called the

leading coefficient in this row.
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Definition 7. A matrix is said to be in row echelon form if for any non-zero rows, the

leading coefficient is to the right of the leading coefficient in the row above (if any).

Definition 8. A matrix is said to be in reduced row echelon form if it is in row echelon

form and every leading coefficient is equal to 1 and is the only non-zero entries in its

column.

Example 3.

A =

1 1 1

0 1 1

0 0 1


Matrix A is in row echelon form but not reduced row echelon form.

B =

1 0 0

0 1 0

0 0 1


Matrix B is in reduced row echelon form. All the leading coefficients are in red color.

Following are three types of row operations which can be applied to a matrix:

1. Swap the position of two rows.

2. Multiply a row by a scalar.

3. Multiple a row by a scalar then add to other row.

We note that perform row operations to matrix doesn’t change the rank of this matrix.

Definition 9. Gaussian elimination or row deduction is an algorithm or process using

row operations to change a matrix to the row echelon form.

Example 4. We show how to apply Gaussian elimination to change a matrix A to its
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row echelon form. 1 0 1

1 1 1

1 0 0



→

1 0 0

1 1 1

1 0 1

 (swap first row and third row)

→

1 0 0

0 1 0

1 0 1

 (subtract second row to third row)

→

1 0 0

0 1 0

0 0 1

 (subtract third row to first row)

One of most well-known application of Gaussian elimination is to solve system of

linear equations.

2.4 Linear Network Coding

To transmit a set of n packets P = {p1,p2, . . . ,pn}, we consider linear network coding

(LNC) in GF (qn).

Definition 10. A linear network coded (mixed) packet c is a linear combination of

packets and is constructed as:

c = v1p1 + v2p2 + · · ·+ vnpn

where coefficients vi ∈ GF (q) and the addition operation is performed in GF (qn).

When packet c is transmitted, both the value of c and the set of coefficients v1, . . . , vD

are forwarded. At the receivers, the original packets can be recovered when the matrix

of coefficients are full rank in GF (q).

The following data synchronization example is often used to describe the operation

of network coding.
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S
Synchronization

Figure 2.1: Network coding example

Example 5. The example are illustrated in Fig. 2.1 using GF (2). There are two

receivers R1 and R2 and both receivers want to obtain both packets p1,p2. At each

receiver already holds one of two packets. In this case, the coded packet c is generated

and transmitted to both receivers in a broadcast channel as follows.

c = p1 + p2

At receiver R1, the coefficient matrix

H1 =

[
1 0

1 1

]

and at receiver R2, the coefficient matrix

H2 =

[
0 1

1 1

]

Since rank(H1) = rank(H2) = 2 (full rank), both receivers can recover the original

packets using addition operation in GF (2).

Example 6. The classic example to illustrate Linear Network Coding operation is pre-

sented in Fig. 2.2.

In this network, source node S would like to transmit two packets a and b to sink

nodes Y and Z while T , U , W are relay nodes. The mixing technique is performed first
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Figure 2.2: Butterfly topology - XOR Network Coding example

at node W where XOR operation of packet a and b are completed. At the sink nodes,

XOR computations are applied again to retrieve packet b in node Y and packet a in node

Z.

We note that the XOR is a special case of linear network coding while the addition

are performed in GF (2).

The random linear network coding can be considered as an advanced of linear network

coding.

Definition 11. In random linear network coding (RLNC), a coded packet is a linear

combination of packets where the coefficients are generated randomly in a finite field.

To present an example of RLNC, we also consider the same network topology in Fig.

2.3

Example 7. In this example, some nodes produce random coded packets by generates

random coefficients such as α1, β1 from node S to node T , α2, β2 from node S to node

U and α3, β3 for node W to node X. At the sink nodes Y and Z. Now sink node Y
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Decode and Decode and 

Figure 2.3: Butterfly topology - Random Network Coding example

receives two coded packets α1a+ β1b and α3a+ β3b while sink node Z receives two coded

packets α2a+ β2b and α3a+ β3b. Those coded packets form a system of linear equations

and solving this give us packet a and b. The most significant advance of RLNC is that

it does not depend on the network topology. However, the probability that those set of

coefficients are independent need to be close to one so that at the sink nodes, the decoding

process can be completed.

Next, we show that RLNC can be applied for any general-topology networks [57].

Consider a general network presented by a directed graph G = (V,E). Assume that

node v is the only source and z is the only sink in the network. Here, the input process

of the source are presented as a vector x

x = [X(v, 1), X(v, 2), . . . ]

and the output process of the sink are presented as a vector z

z = [Z(v′, 1), Z(v′, 2), . . . ]

The relationship between input and output is represented by a transfer matrix M . The
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RLNC solution exists only if the equation z = xM has a solution. We show how to form

the transfer matrix M with the following example.

Figure 2.4: General topology - Random Network Coding example

Example 8. The network topology are illustrated in Fig. 2.4. We have the following

equations representing the random processes in the network:

Y (e1) = α1,e1X(v, 1) + α2,e1X(v, 2) + α3,e1X(v, 3)

Y (e2) = α1,e2X(v, 1) + α2,e2X(v, 2) + α3,e2X(v, 3)

Y (e3) = α1,e3X(v, 1) + α2,e3X(v, 2) + α3,e3X(v, 3)

Y (e4) = βe1,e4Y (e1) + βe2,e4Y (e2)

Y (e5) = βe1,e5Y (e1) + βe2,e5Y (e2)

Y (e6) = βe3,e6Y (e3) + βe4,e6Y (e4)

Y (e7) = βe3,e7Y (e3) + βe4,e7Y (e4)

Z(v′, 1) = εe5,1Y (e5) + εe6,1Y (e6) + εe7,1Y (e7)

Z(v′, 2) = εe5,2Y (e5) + εe6,2Y (e6) + εe7,2Y (e7)

Z(v′, 3) = εe5,3Y (e5) + εe6,3Y (e6) + εe7,3Y (e7)

Hence, the system matrix M can be computed as follows.

M = A

βe1,e5 βe1,e4βe4,e6 βe1,e4βe4,e7

βe2,e5 βe2,e4βe4,e6 βe2,e4βe4,e7

0 βe3,e6 βe3,e7

BT
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where

A =

α1,e1 α1,e2 α1,e3

α2,e1 α2,e2 α2,e3

α3,e1 α3,e2 α3,e3


and

B =

εe5,1 εe5,2 εe5,3

εe6,1 εe6,2 εe6,3

εe7,1 εe7,2 εe7,3


2.5 Convex Optimization

Definition 12. A set C is called a convex set if and only if the convex combination of

any two points in the set C also belongs to the set C:

θx1 + (1− θ)x2 ∈ C ∀x1, x2 ∈ C, ∀θ ∈ [0, 1]

Example 9. Following are examples of convex set:

• C = [a, b] where a, b ∈ R.

• C = R2.

• C = {x ∈ R2|‖x‖2 ≤ a} where a ∈ R++.

Definition 13. The domain of a function f : Rn → R is denoted as dom(f), and is

defined as the set of points where f is finite:

dom(f) = {x ∈ Rn|f(x) <∞}

Definition 14. A function f : Rn → R is convex if and only if ∀x1, x2 ∈ dom(f) ⊆ Rn

and ∀θ ∈ [0, 1], we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

Example 10. Following are examples of convex function:

• f(x) = ax+ b where x ∈ R and given a, b ∈ R.
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• f(x) = eax where x ∈ R and given a ∈ R.

• f(x) = x log(x) where x ∈ R++.

The standard form of convex optimization problem is written as

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

where:

• Objective function f(x) : Rn → R is a convex function

• Inequality constraints gi(x) ≤ 0 where gi are convex

• Equality constraints hi(x) = 0 where hi are affine.

2.6 Probability Theory

Definition 15. A random variable (RV) X : Ω→ E is a measurable function from the

set of possible outcome Ω to set E.

A RV X is called discrete RV or continuous RV depends on whether the set Ω is

finite (or countably infinite) or uncountably infinite, respectively. Mathematically, a RV

can be described by the probability distribution (or probability density function). Mean

E[X] (expected value) and variance Var(X) are some of well-known metrics that can be

used to describe a RV X.

Also, related to RV, Markov’s inequality and Chebyshev’s inequality are well-known

results in probability theory that can be stated as follows.

1. Markov’s inequality

If X is a non-negative RV and for any a > 0, then we have

P(X ≥ a) ≤ E(X)

a
.
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2. Chebyshev’s inequality

If X is a RV and for any a > 0, then we have

P
(
|X −E[X]| ≥ a

√
Var(X)

)
≤ 1

a2
.
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Chapter 3: Data Synchronization via Random Network Coding

3.1 Introduction

Data synchronization plays a critical role in the performances of many emerging large

scale distributed systems such as Peer-to-Peer (P2P) systems, distributed storage sys-

tems, and data centers. To provide high reliability in such systems, data are typically

duplicated across multiple nodes in a network. In addition, many systems allow data to

be updated asynchronously at individual nodes. As a result, potential data inconsisten-

cies might arise across multiple nodes. For example, during the peak time, a data center

[27], [46], [26] might allow data to be updated at individual servers autonomously for

better performance. These changes are then propagated to other servers at an appropri-

ate later time. During this interval, the data across the servers are inconsistent. In other

systems, data inconsistencies at different nodes are resulted in a far less controllable way.

Notably, in file sharing systems such as BitTorrent, peers might have different parts of

the same file due to the random exchange of data among peers. Wireless broadcast is

another example in which many users receive the same file broadcast from a base sta-

tion. However, due to packet losses, for some given time, users might have different

parts of the file. Thus, the aim of the data synchronization problem is to repair the data

inconsistencies by broadcasting additional data to the receivers.

The data synchronization problem is an instance of the index coding problem [6],

[18] that consists of a sender and a number of receivers sharing a common broadcast

channel. The sender has a set of packets A. Each receiver has a random subset of A. At

each time slot, the sender broadcast a packet that can be received by all the receivers.

The goal is to find a broadcast scheme that minimizes the number of time slots until

every receiver successfully receive the set A. An approach to this problem is to use

the Network Coding (NC) framework. NC framework treats each packet as an element

in a finite field. Each coded NC packet is a linear combination of other packets. It is

shown that when the finite field size is larger than or equal to the number of nodes, the

problem can be solved in polynomial time [58], [19]. However, for arbitrary field size,
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the synchronization problem as an instance of the index coding problem has been shown

to be NP-hard [77], [30], [59], [8]. As such a number of heuristic schemes have been

proposed [31], [17].

Contributions. In this chapter, we study the synchronization problem from a prob-

abilistic viewpoint. First, we describe two probabilistic models on how subsets of packets

at receivers are distributed. These models arise naturally in many large scale systems

such as Peer-to-Peer (P2P) networks, data centers, and distributed storage systems. For

these two models, we establish probabilistic bounds and asymptotic results on the mini-

mum number of time slots that the sender needs to successfully transmit all the packets

to all receivers. Such bounds can shed lights on the benefits and limitations of using NC-

based broadcast schemes in certain real-world settings. Second, while the probabilistic

upper and lower bounds for the optimal solution can be found, finding the algorithms

for achieving the optimal solution is not trivial. Therefore, we propose and analyze a

number of random network coding (RNC) algorithms for finding the optimal solutions.

Our analysis provides quantitative performances in terms of expectation, variance, and

tail probability on the number of time slots required to complete the synchronization for

the proposed algorithms.

Outline. We first discuss a few related work in Section 3.2, then present the problem

formulation and notations in Section 3.3. In Section 3.4, we describe two common models

in which data inconsistency can occur. Based on these models, we show the probabilistic

bounds on the optimal solutions of any broadcast scheme in Section 3.5. We then describe

three NC-based algorithms to perform synchronization and their theoretical performance

analysis in Section 3.6 and Section 3.7. In Section 3.8, we provide the simulation results

for the proposed algorithms and finally a few concluding remarks in Section 3.9.

3.2 Related Work

There exists rich literature on NC on which our work is built upon. Due to limited space,

we will discuss the similarities and differences between our work and a few representative

work. Our work is closely related to the index coding problem [6]. Both problems consists

of a number of receivers who want to receive an identical set of packets A from a sender.

All the receivers share the same broadcast channel, and have different subsets of A. The

goal of both problems is to minimize the number of broadcasts by the sender until all the



18

receivers successfully obtain the complete set A. On the other hand, our work differs in

the following ways. First, instead of assuming the subsets of packets at the receivers are

given as in most network coding literature [6], [43], we propose two probabilistic models

to characterize the distribution of the subsets of packets. Based on these two models, we

further study the asymptotic bounds on the optimal solution which, to our knowledge,

has not been investigated previously. Specifically, we study how the number of packets

varies as a function of the number of receivers as both become large, can affect the

solution. Second, instead of solving the problem in a deterministic manner, we propose

randomized NC algorithms to find the approximate optimal solution with probabilistic

guarantees.

We note that in many existing NC literature, the information about the partial sets

of packet at the receiver is assumed to be available at server. For many large scale

distributed systems consisting many users and large data, this assumption might be

impractical since the central server might need to store a substantial large amount of

information. This assumption is not required in our problem. Instead, we introduce three

different levels of information exchange between the sender and the receivers. That said,

our work is on the simplicity of randomized network coding techniques [20], [43], [21],

[54] that can be implemented in real world settings. In addition, our theoretical results

have probabilistic flavor as contrast to the work in [29].

Our work can also be viewed as an instance of the Direct Data Exchange (DDE)

problem that was first proposed by El Rouayheb et al. [81]. The DDE problem has

attracted much interest from the research community [87] [86] [24] [98]. While the goal of

both problems is to synchronize data in multiple receivers, there are essential differences.

In the the DDE problem, all the receivers have to participate in broadcasting their data

while in our problem, only one sender can broadcast. In addition, in the DDE problem,

the subset of packets at each receiver can only be original packets while in our setup,

we allow both mixed (network coded) and original packets in the subsets of the packets.

Furthermore, most existing solutions to the DDE problem take a deterministic approach

while ours has a probabilistic flavor.

That said, our work is very similar to the problem of wireless broadcast using network

coding via lossy channel. For example, in a single-hop wireless network, where commu-

nication channels are lossy, NC techniques are used to help the receivers to recover the

lost packets quickly [72], [91]. In wireless ad hoc network, NC techniques have been



19

also applied to increase bandwidth efficiency [66], [82]. In wireless mesh network, the

advantages of NC compared to traditional approach are presented [53], [4]. Majority of

these schemes use the XOR operation since it can be implemented efficiently in practice.

Our work extends the analysis and performance characterization of NC using a general

finite field. It is motivated by the well-developed theory of linear network code [62], [57]

and the robustness of applying random linear network coding into multicast application

[49], [50].

3.3 Problem Formulation

3.3.1 Problem Description and Notation

Consider the following broadcast scenario with one sender who wants to broadcast two

packets p1 and p2 to two receivers R1 and R2. We assume R1 has packet p1 while

R2 has packet p2. The goal is to minimize the number of broadcasts by the sender so

that each receiver will have both packets p1 and p2, hence their data is synchronized.

A straightforward way is for the sender to broadcast p1 first then p2. Assuming no

packet loss, R1 and R2 will have both packets in two time slots. However, a better way

is for the sender to broadcast only one packet c = p1 ⊕ p2 where ⊕ denotes bit-wise

exclusive OR of bits in the two packets. Upon receiving c, R1 and R2 will be able

to recover their missing packets, respectively as: c ⊕ p1 = p1 ⊕ p2 ⊕ p1 = p2, and

c ⊕ p2 = p1 ⊕ p2 ⊕ p2 = p1. This example illustrates the benefit of network coding,

i.e., mixing packets appropriately to reduce the number of broadcasts. In general, the

problem of finding a broadcast scheme, i.e., the right “coded” packets that minimizes

the number of transmissions for an arbitrary number of users with an arbitrary pattern

of packets is an NP-hard problem [29]. As such, we consider a probabilistic approach to

this problem as described shortly. We now use the following notations to describe the

problem.

• There is one sender with a set ofD original packets denoted as P = {p1,p2, . . . ,pD},
and N receivers denoted as R1, R2, . . . RN that want to obtain these D packets.

• Each receiver Ri has a “Has” set Hi consisting of exactly K ≤ D packets. Denote

Wi = P \Hi as the “Want” set of packets that the receiver Ri wants but does not
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have.

• A network coded (mixed) packet c is constructed as:

c = v1p1 + v2p2 + · · ·+ vDpD (3.1)

with vi ∈ GF (F). Each pi can be viewed as an element in GF (FD). Consequently,

we can view a packet as a row vector v = (v1, v2, . . . , vD), and the “Has” set Hi as

a matrix Hi whose rows are v’s. Also, for brevity, we denote F = |F|.

• At each time slot, the sender is allowed to broadcast exactly one mixed or orig-

inal packet to all the receivers. Furthermore, we assume no packet loss during

broadcast.

• Let Ti denote the number of time slots until the receiver Ri receives a sufficient

number of packets to be able to reconstruct all D original packets.

• Let T = max{T1, T2, . . . TN} denote the number of time slots until all the receivers

are able to decode all the D original packets.

Note that a receiver will be able to reconstruct all the D original packets if it collects

any D packets (mixed or original) that span a D dimensional space. Specifically, recall

that a packet can be represented as a row vector vi, then if the matrix

V =


v1

v2

...

vD


has rank D (full rank), then the original packets pi’s can be reconstructed via solving a

set of linearly independent equations.

For simplicity, the packet length as defined above is artificially constrained to length⌈
D logF

⌉
bits. In practice, a packet should be a vector of length n � D whose each

element is
⌈
D logF

⌉
bits long. Thus the number of bits to specify vi in the packet header

(necessary for the receivers to decode) is negligible. Finally, we note that the optimal

scheme is the one that minimizes T .
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3.3.2 Example

We now give an example to illustrate the notations and concepts. Let D = 4,K = 2,F =

{0, 1}, and thus GF (2) is used for all the finite field computations. A receiver R1 has

H1 = {p1 ⊕ p3,p2}, and its initial “Has” set H1 can be represented as a matrix:

H1 =

(
1 0 1 0

0 1 0 0

)

Note that since GF (2) is used, each entry in the matrix can only be 0 or 1. If the

sender broadcasts two packets (p2⊕p4) and p3 which collectively can be represented as

a matrix S below.

S =

(
0 1 0 1

0 0 1 0

)

Assuming no packet loss, then the new “Has” set Ĥ1 of receiver R1 would have two more

elements. Thus the corresponding new matrix Ĥ1 is:

Ĥ1 =

(
H1

S

)
=


1 0 1 0

0 1 0 0

0 1 0 1

0 0 1 0


Since the rank(H1) = 4 (full rank) in GF (24), R1 can reconstruct all original packets

{p1,p2,p3,p4}.
As described, an optimal broadcast scheme is one with the minimum number of

transmissions that enables all the receivers to obtain their corresponding full rank ma-

trices. Clearly, the minimum number of transmissions depends on the initial “Has” sets

of each receivers. In the next section, we will describe two models of the “Has” sets that

arise naturally from real-world settings. We then use these models to characterize the

optimality of the solutions for any broadcast scheme via probabilistic bounds in Section

3.5.
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3.4 Models of the “Has” Set

We consider two models for the “Has” sets at individual receivers. We call these the

“uncoded” and “coded” models of the “Has” set. These models aim to approximate the

real-world scenarios.

Uncoded Model. The first model can be used to approximate a wireless broadcast

scenarios in WiFi or cellular networks. Specifically, in the “Uncoded” model, each in-

dividual receivers has Ki original packets out of the D original packets p1,p2, . . . ,pD,

where Ki is random variable drawn from the Binomial distribution with parameters

(D,αi). This model arises from considering a scenario in which a sender broadcast D

original packets to N receivers. Due to different channel conditions, each receiver has a

different probability αi of receiving the packets. Assuming that the outcomes of the D

transmissions are independent across packets and receivers, then the number of packets

received at the receivers follow D independent Binomial distributions. Starting at this

point, the sender can employ an optimal transmission scheme that ensure all N receivers

can receive all the D original packets in minimum number of transmissions. The opti-

mal solution depends on the pattern of packets at the receivers, i.e., their “Has” sets.

While finding the optimal scheme is NP-hard, given the probability model of the “Has”

sets, it is possible to characterize the optimal solution, i.e., the minimum number of

transmissions via probabilistic bounds as will be shown in Section 3.5. These bounds

are useful in the sense that one can bound the optimal solution without knowing the

optimal transmission scheme. Furthermore, in some cases, it is possible to determine

whether network coding scheme is even useful.

Coded Model. In the “coded” model, each receiver is to assume to have S packets.

However, these packets are network coded packets, defined previously as:

c = v1p1 + v2p2 + · · ·+ vDpD.

Each coded packet is drawn randomly at uniform from FD − 1 possible coded packets

independently without replacement. The “Coded” model can be used to represent data

stored Peer-to-Peer (P2P) network. In this setting, a file is first broken into D packets,

then a number of coded packets are produced using coefficients vi drawn uniformly at

random. These coded packets are then distributed to the peers via some P2P transmis-

sion protocols. Each peer can also mix the packets it receives and forwards the mixed
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(coded) packets to another peers. As a result, the S packets stored at a peer can be

thought as S coded packets drawn randomly at uniform from the FD− 1 possible coded

packets.

3.5 Optimality Characterization of “Has” Set Models

In this section, we first discuss the trivial bound on the minimum number of transmissions

T ∗ needed for the N receivers to recover all D original packets with each receiver Ri

having its “Has” set Hi. We then derive the probability distribution of T ∗ when packets

in the set Hi are drawn according to the “Uncoded” and “Coded” models described in

the previous section. In some cases, it is sufficient and simple to use the probability

bounds, rather than a full distribution to characterize the optimality. We will provide

these probabilistic bounds as well.

3.5.1 Trivial Bound

The trivial bound does not assume a probability model on the “Has” set. Instead,

supposed there are N receivers R1, R2, . . . RN , each has a number of packets, i.e., “Has”

set Hi which can be represented as a matrix Hi. Let Ki be the rank of Hi, and let

K = min{Ki}. Then we have the following Proposition on the minimum number of

transmissions T ∗ needed for the N receivers to recover all D original packets:

Proposition 1.

D −K ≤ T ∗ ≤ D (3.2)

Denote the lower bound of T ∗: T ∗l = D − K, then the lower bound T ∗l can be

established quite easily by considering the fact in order for a receiver whose matrix Hi

with rank Ki to reconstruct all D packets, it needs to receive additional packets or rows

sent by the sender (the matrix S in the example) such that

[
Hi

S

]
is full rank (rank D).

Therefore, the minimum number of transmissions needed to be at least larger or equal

D−K that allows the receiver Ri with the lowest rank matrix Hi to recover the original

packets. The upper bound T ∗u = D is obvious since the sender can just send D original

packets and every receiver can receive D original packets since by assumption there is

no packet loss.
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The trivial bound, however does not take the advantage of probabilistic models, thus

can be quite loose. Next, we characterize the full probability distributions of T ∗l and give

probabilistic bounds on T ∗l . Notably, we use these bounds to determine the effectiveness

of any network coding scheme in the “Uncoded” model.

3.5.2 Analysis of the “Uncoded” Model

We will first determine the distribution of K, then the distribution of T ∗l can be com-

pletely characterized. However the closed-form distribution is a bit complicated that

prevents us from drawing a good intuition. Therefore, we also provide probabilistic

bounds for K that allows us to draw a better intuition.

3.5.2.1 Computing Distribution of K

To derive the distribution, we note that Ki is a Binomial random variable with D being

the number of trials and αi the probability of success. Thus, we have:
Rank(Hi) = Ki

P(Ki = k) = f(k,D, αi) =
(
D
k

)
αki (1− αi)D−k

P(Ki ≤ k) = F (k,D, αi) =
k∑
j=0

(
D
k

)
αji (1− αi)D−j

(3.3)

Now since K = min{Ki}, one can find the cumulative probability distribution of K as

follows.

FK(k) = P(K ≤ k) = 1−
N∏
i

(1−P(Ki ≤ k)) (3.4)
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Then the probability distribution of K can be computed from the cumulative function:

P(K = k) = FK(k)− FK(k − 1) (3.5)

=
N∏
i=1

(1− P (Ki ≤ k − 1))−
N∏
i=1

(1− P (Ki ≤ k))

=
N∏
i=1

1−
k−1∑
j=0

(
D

j

)
αji (1− αi)

D−j


−

N∏
i=1

1−
k∑
j=0

(
D

j

)
αji (1− αi)

D−j

 (3.6)

We can see that the closed-form distribution does not provide a good intuition. Hence,

we now provide some probabilistic bounds regarding K.

3.5.2.2 Probabilistic Bounds for K

Let αmin = min{αi} and αmax = max{αi}. We have following Proposition regarding the

tail bound for K.

Proposition 2. (Tail bound) For 0 < k < Dαmin, we have

P(K > k) ≥
(

1− exp (− 1

2αmin

(Dαmin − k)2

D
)

)N
(3.7)

Proof. We have:

P(K > k) =
N∏
i=1

P(Ki > k) (3.8)

=

N∏
i=1

(1−P(Ki ≤ k)) (3.9)

=
N∏
i=1

(1− F (k,D, αi)) (3.10)
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Also, F (k,D, αmin) ≥ F (k,D, αi). Hence,

P(K > k) = (1− F (k,D, αi))
N ≥ (1− F (k,D, αmin))N (3.11)

Also by Chernoff’s inequality, we have:

F (k,D, αmin) ≤ exp

(
− 1

2αmin

(Dαmin − k)2

D

)
Plug in (3.11), we complete the proof.

Since T ∗l = D − K, Proposition 2 indicates that minimum number of retransmis-

sion for the “Uncoded” model depends on the receiver with the smallest probability of

successful packet reception.

Next, we have the following proposition regarding the asymptotic behavior of D and

N .

Proposition 3. (Asymptotic) For N → ∞ and any k, αmin such that 0 < k < Dαmin,

we have: 
P(K > k)→ 0 for D = o(log(N))

P(K > k)→ c where c ∈ (0, 1) for D = Θ(log(N))

P(K > k)→ 1 for D = ω(log(N))

(3.12)

(Using Bachmann-Landau notations for o(),Θ(), ω()).

Proof. We first show the case when D = Θ(log(N)).

exp

(
− 1

2αmin

(Dαmin − k)2

D

)
= exp (−Θ(log(N))

= Θ

(
1

N

)
≤ c1

1

N

for some 0 < c1 <∞. Hence,(
1− exp

(
− 1

2αmin

(Dαmin − k)2

D

))N
≥
(

1− c1

N

)N
. (3.13)
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Now,

lim
N→∞

(
1− c1

N

)N
= e−c1 , (3.14)

and from (3.7), (3.13), and (3.14), when N →∞, we obtain

P(K > k) ≥ e−c1 > 0. (3.15)

We note that in (3.15), P(K > k) is strictly greater than 0.

On the other hand, using
(
D
l

)
≥ 1, we have

F (k,D, αmax) =
k∑
l=0

(
D

l

)
αlmax(1− αmax)D−l (3.16)

≥
k∑
l=0

αlmax(1− αmax)D−l (3.17)

= (1− αmax)D
k∑
l=0

(
αmax

1− αmax

)l
(3.18)

≥ (1− αmax)D. (3.19)

Since D = Θ(log(N)), and 0 < 1− αmax < 1, we have

(1− αmax)D = (1− αmax)Θ(log(N)) = Θ(
1

N
).

Hence, F (k,D, αmax) ≥ c2( 1
N ) for some ∞ > c2 > 0. Therefore,

(1− F (k,D, αmax))N ≤ (1− c2

N
)N = e−c2 < 1

for N →∞. Similar to (3.11), we have:

P(K > k) = (1− F (k,D, αi))
N ≤ (1− F (k,D, αmax))N (3.20)

Combine these two above equations, we have:

P(K > k) < 1. (3.21)
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Now, from (3.15) and (3.21), we have 0 < P(K > k) < 1. This completes the proof for

D = Θ(log(N)).

For the case D = ω(log(N)), similarly we have:

exp

(
− 1

2αmin

(Dαmin − k)2

D

)
= exp(−ω(log(N))

= ω(
1

N
) ≤ c3

1

N
.

for any ∞ > c3 > 0. Now,

P(K > k) ≥ (1− exp (− 1

2αmin

(Dαmin − k)2

D
))N

≥ (1− c3

N
)N → e−c3 → 1 (3.22)

for N →∞ and c3 → 0.

Also P(K > k) ≤ 1, then P(K > k)→ 1 for D = ω(log(N)).

Finally, for D = o(log(N)), similarly we have

F (k,D, αmax) ≥ (1− αmax)D = (1− αmax)o(log(N))

= o(
1

N
) ≥ c4

1

N

for any ∞ > c4 > 0. Hence,

P(K > k) ≤ (1− F (k,D, αmax))N ≤ (1− c4

N
)N → e−c4 → 0 (3.23)

for N →∞ and c4 →∞.

Also P(K > k) ≥ 0 then P(K > k)→ 0 for D = o(log(N)).

Using the parameters αmin = 0.3;αmax = 0.7; k = Dαmin
2 , Fig. 3.1 shows the empiri-

cal probability P(K > k) that is accurately predicted by Proposition 3.

There is an interesting point implied by Proposition 3. If the number of packets

sent (D) is on the order of log of the number of receivers (N), then the probability

P(K > k) does not approach 0 or 1 when N and D approach infinity. Rather, this

probability approaches a number between 0 and 1. On other the hand, probability

P(K > k) approaches 0 or 1 when the D = o(log(N)) and D = ω(log(N)), respectively.
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Figure 3.1: Empirical P[K > k] vs. N

Essentially, this implies that there is a phase transition that depends on on how large D

is, compared with N in the asymptotic sense.

Consider the special case where k = 0, we have:

P(K = 0) = 1−P(K > 0)

= 1−
N∏
i=1

(1− F (0, D, αi)

≥ 1− (1− (1− αmax)D)N .

From the above equation, we have the following corollary:

Corollary 4. For fixed the number of packets D, and the number of receivers N ≥
log[1−(1−αmax)D] ε,

P(K = 0) ≥ 1− ε

where ε > 0.

The corollary above can be interpreted as follows. When the number of receivers is

sufficiently large, there exists a receiver which hasn’t received any packet with almost

certainty. Therefore, the senders needs to re-send all packets. Also in this scenario, the

lower bound equals the upper bound T ∗l = D−K = D = T ∗u which implies that network

coding does not bring any benefit.
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3.5.3 Analysis of the “Coded” Model

In the “coded” model, each receiver stores S vectors and each vectors would be drawn

randomly in GF (FD) (including both original and combined packets). First, we need

to find the distribution of Ki = rank(Hi) and then one can compute the distribution of

K by using order statistics. Still, the formula is too complex. Hence, we also provide

upper bound for expectation of Ki. By these bounds, one can establish bound for K by

Markov’s inequality.

3.5.3.1 Computing Distribution of K

Consider any receiver Ri, we choose randomly S vectors in GF (FD) and there are

rank(Hi) = Ki linearly independent vectors. We can compute P(Ki = k) by a recursive

approach as follows.

Consider any node i, let f(k, s) be the probability that S = s and rank(Hi) = Ki = k.

Obviously, we can have (for simple cases):
f(0, 0) = 1

f(k, s) =
∏j=k
j=1 pj for 1 ≤ k = s ≤ S

f(k, s) = 0 for k > s.

(3.24)

The probability that we have k linearly independent vectors after picking up s random

vectors is equal to sum of two probability: first is the probability that we have k − 1

linearly independent vectors in s − 1 random vectors and the s-th vector is linearly

independent with existing vectors; second is the probability that we have k linearly

independent vectors in s − 1 random vectors and the s-th vector is dependent with

existing vectors.

We have the inductive step for 0 < k < s ≤ S as follows.

f(k, s) = f(k − 1, s− 1)pk + f(k, s− 1)(1− pk+1) (3.25)

where

pj = 1− F j−1 − 1

FD − 1
=
FD − F j−1

FD − 1
(3.26)
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We can rewrite the function f(k, s) as follows. In case s < k, f(k, s) = 0. In case

s ≥ k, we have

f(k, s) =
∑

∑k+1
j αj=s−k

 k∏
i=1

pi

k+1∏
j=2

(1− pj)αj

 (3.27)

=
k∏
i=1

pi
∑

∑k+1
j αj=s−k

k+1∏
j=2

(1− pj)αj

 (3.28)

where αj = 0, 1, . . . , s − k for 2 ≤ j ≤ k + 1. From the above formula, one can apply

order statistics for i.i.d discrete variables [28] to compute the distribution of K.

3.5.3.2 Probabilistic Bounds on K

Proposition 5. (Tail bound) For S ≤ D and any k > 0, we have:

P(Ki ≥ k) ≤ (βS − 1)

(β − 1)

1

k
(3.29)

where β = FD−F
FD−1

Proof. Let denote Ej = E[Ki|S = j] be the expected rank of matrix Hi given that Hi

has j rows (or the number of independent packets). Let qj be the probability that the

j-th row is linearly independent with the previous j − 1 rows.

Ej = qj(Ej−1 + 1) + (1− qj)Ej−1

= qj + Ej−1

= qj + qj−1 + Ej−2

. . .

=
i∑

j=1

qj

since E0 = 0.
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Now, in each receiver Ri, we have S packets. Hence,

ES =
S∑
j=1

qj (3.30)

Now, consider qj . The necessary condition for j-th row to be linearly independent

with previous j− 1 rows is that j-th row needs to be linearly independent with each row

in j − 1 rows.

qj ≤
(
FD − F
FD − 1

)j−1

(3.31)

for j ≥ 1.

Combine (3.30) and (3.31), we have:

S∑
j=1

(
FD − F
FD − 1

)j−1

≥ ES = E[Ki] (3.32)

Hence, we can have an uppper bound U for E[Ki]:

U =
S∑
j=1

(
FD − F
FD − 1

)j−1

=
βS − 1

β − 1

where β = FD−F
FD−1

.

One now can use Markov’s inequality to complete the proof.

Using the parameters S = 3;F = 2; k = 2, Fig. 3.2 shows the empirical probability

P(Ki > k) and the upper bound for different values of D that match the prediction of

the Proposition 5.

Since K = min{Ki}, we have: P (K ≥ k) ≤ P (Ki ≥ k). However, one can establish

a tighter bound for K by applying the inequality for N independent random variables

with identical mean and variance in [5].

Proposition 6. (Asymptotic) Consider where D → ∞ and T = D − S is a constant,
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Figure 3.2: Empirical P[K > k] vs. D

using the result given in [22, Theorem 1], we have:

lim
D→∞

P(Ki = k) =


∏∞
j=T+1 (1− ( 1

F )j) for k = 0∏∞
j=T+k+1 (1−( 1

F
)j)∏k

j=1 (1−( 1
F

)j)
( 1
F )k(T+k) for k ≥ 1

Hence, one can compute the probability distribution of K by using order statistics.

3.6 Algorithms

In the previous section, we characterize the optimal solution via asymptotic and prob-

abilistic results. In this section, we describe three random network coding algorithms

to approximate the optimal solution: the Simple Random Network Coding Algorithm

(SRNC), the Informed Random Network Coding Algorithm (IRNC), and the Refined

Random Network Coding Algorithm (RRNC). We start with the simplest one: SRNC

algorithm.

3.6.1 Simple Random Network Coding Algorithm (SRNC)

The SRNC algorithm is described as follows.

SRNC algorithm assumes that the sender has no knowledge about the subsets of

packets at the receivers at any given time. At every time slot, the sender broadcasts a
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Algorithm 1: SRNC Algorithm

Data: The sender has no knowledge about packets at receivers
1 while there exists one receiver that can’t recover the original packets do
2 Sender generates and broadcasts a mixed packet;
3 Each receiver Ri updates its “Has” set and corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends acknowledgment to the

sender;

6 end

7 end

mixed packet (line 2)

c = v1p1 + v2p2 + · · ·+ vDpD,

where vi’s are drawn uniformly at random from the finite field GF (F). The sender will

continue to broadcast these packets until it receives all the acknowledgments from each

receiver, indicating that all the receivers have successfully obtained all the packets.

At the receiver, upon receiving a mixed packet c, the “Has” set of a receiver Ri is

updated as:

Hi = Hi
⋃
{c},

and the corresponding matrix Hi is constructed (line 3). Next, the Gaussian elimination

algorithm is applied to Hi to find linearly independent columns and the missing original

packets. If Hi is full rank, then receiver Ri can recover the original packets. In this case,

the receiver sends an acknowledgment to the sender indicating that it has successfully

recovered all the original packets (line 5). Otherwise, it waits for the next packet from

the sender. The process repeats until the receiver is able to recover all the original

packets. The SRNC algorithm is simple since the sender does not require information

from the receivers. Rather, only one acknowledgement from each receiver is sufficient to

complete the synchronization process.

3.6.2 Informed Random Network Coding (IRNC)

The IRNC algorithm is described as follows.

The IRNC algorithm requires a bit more information. Specifically, all receivers send
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Algorithm 2: IRNC Algorithm

Data: The sender has knowledge about “Want” sets at receivers only in the
beginning

1 while there exists one receiver that cannot recover the original packets do
2 Sender generates and broadcasts a mixed packet based on the initial “Want”

sets at receivers;
3 Each receiver Ri updates its “Has” set and corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends an acknowledgment to the

sender;

6 end

7 end

the information on their “Want” sets to the sender only once in the beginning. The sender

uses this information to construct and broadcast the mixed packets without further

collaboration from the receivers except the final acknowledgements from each receiver

indicating that they have successfully obtained all the packets.

The “Want” set at each receiver Ri is constructed as follows. First, the Gaussian

elimination algorithm is applied to Hi to find the missing original packets. Next, Ri

sends this information to the sender. The sender then constructs a union setW =
⋃
i

Wi

where Wi consisting of the missing original packets for Ri. Let M = |W|, the sender

broadcasts a mixed packet constructed as:

c = v1p1 + v2p2 + · · ·+ vMpM ,

where p1,p2, . . . ,pM ∈ W, and vi’s are drawn uniformly at random from the finite field

GF (F). The only difference between IRNC and SRNC algorithms is that the IRNC

algorithm generates mixed packets fromW (line 2) while the SRNC algorithm generates

mixed packets from all the original packets in P.

As an example, consider a scenario with five original packets and two receivers R1

and R2. R1 has three packets, each is a linear combination of the five original packets.
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Thus, H1 is a 3× 5 matrix of the form:

H1 =

∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,

where * denotes values from GF (F). Assume that F = {0, 1}, then each row in H1

represents a packet of R1 which is a linear combination of the five original packets. Since

GF (25) is used, a 1 or a 0 in the i-th column and j-th row indicates that the original

packet pi is present or not in the j-th mixed packet, respectively. Now R1 applies the

Gaussian elimination algorithm, and suppose it produces the following upper diagonal

matrix:

H′1 =

1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 1

 ,

Based on H′1, the “Want” set of R1 includes p2 and p4. R1 then sends this infor-

mation to the sender. Similarly, if R2’s “Want” set contains only p3, it will send this

information to the sender. The sender will now generate the mixed packets that are

random linear combinations from the set W = {p2,p3,p4}.
Receivers in the IRNC algorithm also behaves similarly to those in the SRNC algo-

rithm. Since the IRNC algorithm generate packets based on the missing packets at the

receivers, the sender avoids sending redundant information to the receivers. Therefore,

the IRNC algorithm should perform better than the SRNC algorithm.

3.6.3 Refined Random Network Coding Algorithm (RRNC)

We now introduce the RRNC algorithm which can be shown theoretically better than

the SRNC and IRNC algorithms. The RRNC algorithm is described as follows.

Compare to the previous two algorithms, the RRNC algorithm requires a bit more

information exchange between the sender and receivers, but they all are very similar.

Specifically, the sender receives the information on the “Want” sets from each receiver

after transmitting each packet. It then constructs the union set W =
⋃
i

Wi, and gener-
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Algorithm 3: RRNC Algorithm

Data: The sender has knowledge about “Want” sets at receivers at each time slot
1 while there exists one receiver that cannot recover all the original packets do
2 Sender generates and broadcasts a mixed packet based on the “Want” sets;
3 Each receiver Ri updates its “Has” set and corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends acknowledgment to the

sender;

6 else
7 Ri computes and sends its “Want” set to the sender;
8 end

9 end

ates mixed packets based on W in the exact manner as the IRNC algorithm. The only

difference is that after receiving a new packet, each receiver recomputes its “Want” set

and sends its updated “Want” set to the sender (line 7). The sender then constructs

a new W and uses it to generate and broadcast the next packet (line 2). The process

repeats until all the receivers can successfully recover all the original packets.

Intuitively, the RRNC algorithm is better than the IRNC and SRNC algorithms

because at each time slot, the RRNC algorithm uses more information about the missing

packets at each receiver. As a result, a mixed packet generated by the RRNC algorithm

has a higher chance of adding more new information to the receivers than the others

two. We will show the theoretical analysis in the next section.

3.7 Theoretical Performance of the Proposed Algorithms

In this section, we provide a number of theoretical results on the performances for the

proposed SRNC, IRNC, and RRNC algorithms in terms of the number of time slots for

completing the data synchronization. First the performances of algorithms are considered

from the viewpoint of a single receiver Ri. Recall in Section 3.3 that a packet can be

represented as a vector v. Thus, a group of packets are considered as mutually linearly

independent if theirs vector representations are mutually linearly independent. We now

consider a receiver Ri who wants to recover all D = |P| original packets. Given that Ri

currently obtains K ≤ D linearly independent packets, we want to know on average how
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many time slots it takes for Ri to recover all D original packets using the SRNC, IRNC,

and RRNC algorithms.

3.7.1 Single User’s Perspective

Let T
(S)
i , T

(I)
i , and T

(R)
i be the random variables denoting the number of packets sent

out by the sender, i.e., the number of time slots required so that Ri is able to recover

all the original D packets using the SRNC, IRNC, and RRNC algorithms, respectively.

Let denote |F| = F and also L = D − K be the cardinality of the individual “Want”

set for each receiver Ri. Then, we have the following Propositions to characterize the

performances of the proposed algorithms.

Proposition 7. (Performance of the SRNC algorithm)

E[T
(S)
i ] =

L∑
j=1

FD − 1

FD − FK+j−1
(3.33)

Var[T
(S)
i ] =

L∑
j=1

(FK+j−1 − 1)(FD − 1)

(FD − FK+j−1)2
(3.34)

Let M = |W| be the cardinality of the combined “Want” set, then the performance

of the IRNC algorithm is characterized by the following Proposition.

Proposition 8. (Performance of the IRNC algorithm)

E[T
(I)
i ] =

L∑
j=1

FM − 1

FM − FM−L+j−1
(3.35)

Var[T
(I)
i ] =

L∑
j=1

(FM−L+j−1 − 1)(FM − 1)

(FM − FM−L+j−1)2
(3.36)

Next, the following Proposition characterizes the performance of the RRNC algo-

rithm.
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Proposition 9. (Performance of the RRNC algorithm)

E[T
(R)
i ] ≤

L∑
j=1

FM−j+1 − 1

FM−j+1 − FM−L
(3.37)

Var[T
(C)
i ] ≤

L∑
j=1

(FM−j+1 − 1)(FM−L − 1)

(FM−j+1 − FM−L)2
. (3.38)

The proofs of all these Propositions can be found in the Appendix.

The following Proposition supports our intuition that the RRNC algorithm is better

than the IRNC algorithm which in turn is better than the SRNC algorithm.

Proposition 10. (Performance Comparison)

E[T
(R)
i ] ≤ E[T

(I)
i ] ≤ E[T

(S)
i ] (3.39)

Var[T
(R)
i ] ≤ Var[T

(I)
i ] ≤ Var[T

(S)
i ]. (3.40)

Proof. For the expected value, let us consider the following function:

f(x) =
F x − 1

F x − F x−a
,

where 1 ≤ a ≤ L is a constant. We have:

f ′(x) =
lnF

F x − F x−a
> 0.

where x > a. Therefore, f(x) is a monotonically increasing function in x.

Now, from (3.33), (3.35), (3.37) the upper bound of E[T
(R)
i ], E[T

(I)
i ] and E[T

(S)
i ] is

the sum of functions of the form f(M − j + 1), f(M) and f(D), respectively. Also,

M − j + 1 ≤M ≤ D. Thus, we have E[T
(R)
i ] ≤ E[T

(I)
i ] ≤ E[T

(S)
i ].

For the variance, consider the following function:

g(x) =
(F x − 1)(F x−a − 1)

F x − F x−a
(3.41)
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where 1 ≤ a ≤ L is a constant. We have

g′(x) =
ln(F )(F 2x − F a)
F x(F a − 1)

> 0 (3.42)

where x > a. Hence, g(x) is a monotonically increasing function in x.

Now, from (3.34), (3.36), (3.38) the upper bound of Var[T
(R)
i ], Var[T

(I)
i ], and

Var[T
(S)
i ] is the sum of functions of the form g(M − j+1), g(M) and g(D), respectively.

Also, M − j + 1 ≤M ≤M . Thus, we have Var[T
(R)
i ] ≤ Var[T

(I)
i ] ≤ Var[T

(S)
i ].

3.7.2 Sender’s Perspective

We now consider the performance of the entire system, i.e., the sender’s perspective.

Let T
(S)
max, T

(I)
max, and T

(R)
max be the random variables denoting the numbers of time slots

until the sender receives all the acknowledgments from all N receivers using the SRNC,

IRNC, and RRNC algorithms, respectively. Then clearly,

T (S)
max = max

i
T

(S)
i (3.43)

T (I)
max = max

i
T

(I)
i (3.44)

T (R)
max = max

i
T

(R)
i , (3.45)

for i = 1, 2, . . . , N .

The performances of all three algorithms are characterized by the following Proposi-

tion.

Proposition 11. (Tail probability)

P(Tmax > a) ≤ 1− (1− σ2

(a− µ)2
)
N

(3.46)

for a > µ = E[Ti] and σ2 = Var[Ti] for each algorithm, respectively.

Alternatively, one can find the upper bound of E[Tmax] by applying the inequality
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for N independent random variables with identical mean and variance in [5] as follows.

E[Tmax] ≤ µ+ σ
√
N − 1. (3.47)

3.8 Performance Results

In this section, we present the performance evaluations of the proposed algorithms for

various settings, and verify the agreement between the theoretical and empirical results.

Fig. 3.3 shows the empirical E[T
(S)
i ], E[T

(I)
i ], E[T

(R)
i ], i.e., the average numbers of

time slots needed for a receiver to recover all N = 50 original packets using the SRNC,

IRNC, and RRNC algorithms, respectively, as a function of K, the number of packets

initially at a receiver. The value range for K is from 20 to 30. As seen, the value of

E[T
(S)
i ] and E[T

(I)
i ] are not much different to each other, while E[T

(R)
i ] is slightly smaller.

This complies with our intuition since the RRNC algorithm has more information than

the others two. Despite of a modest improvement in mean of time slots needed to recover

all the original packets for the RRNC algorithm, we note that the variance of T
(R)
i is

also smaller than those of the others two. This is quite important as we consider the

performance from the sender’s perspective as shown in Fig. 3.4.

Fig. 3.4 shows empirical E[T
(S)
max], E[T

(I)
max], E[T

(R)
max] as the numbers of time slots

needed for the sender to complete the synchronization process for the SRNC, IRNC, and

RRNC algorithms. Now, one can see that the RRNC algorithm achieves a much better

performance than those of the others two. We argue that this is due to smaller variance

produced by the RRNC algorithm. This can be seen from Eq. (3.47) that E[Tmax] for

all three algorithms depends on the square root of the number of the receivers times the

variance. Thus, a small change in variance can greatly affect E[Tmax] for a large number

of receivers.

Next, we verify our theoretical results with simulations for various parameters. Using

D = 100, F = 2,K = 30 → 70, Fig. 3.5 and Fig. 3.6 show the correctness of analytical

performance of the SRNC algorithm. As seen, the number of time slots decreases while

K increases. Intuitively, the more information a receiver has, the less information the

sender needs to broadcast to complete the synchronization process at this receiver.

Using N = 10, D = 10, F = 2,K = 5, Fig. 3.7 and Fig. 3.8 verify the agreement

between theoretical and simulated performance results of the IRNC algorithm as function
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Figure 3.3: Empirical E[Ti] vs. K

20 22 24 26 28 30
20

25

30

35

40

K

Ti
m

e 
sl

ot
s 

− 
E[

T m
ax

]

 

 
SRNC
IRNC
RRNC

Figure 3.4: Empirical E[Tmax] vs. K

of M (cardinality of the union set). As seen, the smaller cardinality of the union set is,

the better performance can be achieved.

Using N = 50, D = 30, F = 2,K = 10, the validity of the upper bound on the

expectation, and the variance of the RRNC algorithm are shown in Fig. 3.9 and Fig.

3.10.

Fig. 3.11 and Fig. 3.12 show the performance of three algorithms with different

value of F (the field size) using N = 30, D = 20,K = 10, F ∈ {2, 3, 5, 7, 11, 13}. As

seen, while F grows the performance of the proposed algorithms is improved substan-

tially. Intuitively, with a larger field size the probability that a new generated packet

is dependent with the packets in “Has” sets at receivers will decrease, leading to higher



43

30 40 50 60 70
20

30

40

50

60

70

80

K

Ti
m

e 
sl

ot
s 

− 
E

[T i(S
) ]

 

 
Theory
Empirical

Figure 3.5: Theoretical and empirical performance E[T
(S)
i ] vs. K for algorithm SRNC
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Figure 3.6: Theoretical and empirical performance Var[T
(S)
i ] vs. K for algorithm SRNC

chance recovering the all original packets faster.

The robustness of random network coding techniques can be verified in Fig. 3.12.

Here, we compare proposed algorithms with an efficient deterministic algorithm in which

the sender only broadcasts M original packets in union set W. Obviously, the number

of time slots to complete synchronization process for the deterministic algorithm is M .

It can be seen that the deterministic algorithm outperforms SRNC and IRNC for some

small values of F , however from the range where F ≥ 7, IRNC has better performance

and the performance of SRNC: E[T
(I)
max] is very close to M .
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Figure 3.7: Theoretical and empirical performance E[T
(I)
i ] vs. M for algorithm IRNC
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Figure 3.8: Theoretical and empirical performance Var[T
(I)
i ] vs. M for algorithm IRNC

3.9 Conclusion

In this chapter, we describe the problem of efficient data synchronization/ broadcast for a

large number of nodes with disparate data. The synchronization problem arises naturally

in many applications, including Peer-to-Peer networks, data centers, and distributed

storage systems with asynchronous updates. Two probabilistic models are considered on

how the initial fractions of packets at receivers are distributed and according to different

practical scenarios. Also, we propose and analyze a number of random network coding

algorithms and verify their performances via theoretical analysis and simulations.
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Figure 3.9: Theoretical upper bound and empirical performance E[T
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i ] of algorithm

RRNC
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Chapter 4: On Perturbation of Minimum Rank Matrices with

Application to Matrix Recovery

4.1 Motivation

In recent years, there have been a lot of interests in studying network coding (NC),

especially random network coding (RNC) [21], [65] in the context of network security.

As discussed in the previous chapter, the RNC technique mixes a number of “packets”

together, i.e., linearly combines a number of packets where the random coefficients are

drawn uniformly from a finite field, to produce a networked coded packet. To decode

the original information packets, the receivers need to know the random coefficients in

order to find the solution (information packets) to the system of linear equations. These

information is sent together with the packets in the header, or ahead of time.

Now, we consider an example of RNC setting in which sender nodes (R1, R2) send

the RNC packets to receiver nodes (R3) (illustrated in Fig. 4.1).

Sender

Sender

Receiver

Figure 4.1: Random Network Coding example

When a node (e.g. R1 or R2 in Fig. 4.1) is compromised, a malicious attacker can

change the random coefficients (v1, v2, v
′
1, v
′
2) in such a way that the linear system is no
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longer full-rank:

rank

([
v1 v2

v′1 v′2

])
< 2

and thus the original data cannot be recovered, even when the network coded packets

are successfully transmitted.

In this chapter, we cast the problem of information recovery using NC technique

under a malicious attack as the problem of minimum rank decoding of matrices over

finite fields.

4.2 Related Work

The miminum rank decoding problem in our work is based on the theory of matrix

rank which many research and applications have been built upon [74], [95]. In many

engineering applications, the model or design of a system can be represented in a matrix

form. The rank of this matrix can be used to express order, complexity, or dimension of

the system [33].

For this reason, there exists rich literature on the applications of rank matrix. We also

note that in most of the applications, rank of matrices are considered in the real/complex

fields. Due to limited space, we only disscuss a few. One of the most well-known ap-

plications of calculating the rank of a matrix is to solve a system of linear equations

[75], [48]. In the field of control theory, in order to determine whether a linear system is

controllable, or observable, the rank of system matrix can be used [35], [84], [69]. Also,

the rank of the communication matrix is an important factor in the field of communica-

tion complexity. It is used as a function gives bounds on the amount of communication

needed for two parties [83], [73]. In graph theory, the rank of matrix has been used

extensively as graph metrics, e.g., minimum rank of an undirected graph is the smallest

rank of any generalized adjacency matrix of the graph [32], [96]. Rank of matrices has

also been used in Coding Theory to define Rank Metric [85], [39] and then apply to

several applications [80], [40].

Our work is also similar to the Minimum Rank Problem (MRP) which have been

applied to Matrix Recovery/Completion research [14], [12]. The MRP has been known

to be NP-hard [79]. In real fields, the problem can be solved approximately using log-det

function or trace function of the matrix [34]. However, these heuristic approaches are
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not as efficient when the problem is considered in Finite Fields.

That said, the theory of MRP in Finite Fields is far from completion. Motivated by

the well-developed theory of MRP in real fields, our work extends the idea of using MRP

in Matrix Recovery to Finite Fields and apply to the problem of Information/Matrix

Recovery under malicious attack in NC-technique.

4.3 Min-rank Decoding Problem

Encoder Decoder

Figure 4.2: Channel model

The minimum rank decoding problem is illustrated in the Fig. 4.2. First, the sender

sends a packet through a noisy channel to the receiver. The noise models the random

changes that the attacker made to the packet header. Let X0 be the matrix representing

the header, N be the matrix representing noise, then a receiver receives a corrupted

header as Y = X0 +N . We study the conditions under which one can recover the rank

of matrix X0 or the original matrix X0 with high probability.

We use the following notations.

• All matrices are considered in Fn×nq

• ‖.‖ denotes the Hamming distance.

• X0 denotes the original matrix (uncorrupted header).

• N denotes the limited magnitude noise, ‖N‖ ≤ ε.

• Y = X0 +N denotes the observed matrix (corrupted header).

Our goal is to recover rank(X0) or X0 when possible.
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4.3.1 Min-Rank Properties and Decoder

The minimum rank decoding problem is formulated as:

Minimize rank(X)

subject to ‖X − Y ‖ ≤ ε (4.1)

Figure 4.3: Min-rank decoding problem

Let X∗ be the solution of (4.1) then we have

rank(X∗) ≤ rank(X0). (4.2)

Definition 16. The min-rank property

X0 satisfies the min-rank property if and only if that for any X such that

||X −X0|| ≤ 2ε
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then

rank(X) ≥ rank(X0)

The strictly min-rank property is an extension of the min-rank property which is

defined as follows.

Definition 17. The strictly min-rank property X0 satisfies the strictly min-rank

property if and only if that for any X such that

0 < ||X −X0|| ≤ 2ε

then

rank(X) > rank(X0)

We have the following Theorem related to the min-rank property.

Theorem 12. The (strictly) min-rank property can lead to matrix (rank) recovery using

the min-rank decoder in problem (4.1).

Proof. Assume that X0 satisfies the min-rank property then

||X∗ −X0|| ≤ ||X∗ − Y ||+ ||Y −X0|| = 2ε

then we have

rank(X∗) ≥ rank(X0) (4.3)

From (4.2) and (4.3), we can conclude that:

rank(X∗) = rank(X0)

In addition, the min-rank property is illustrated in Fig. 4.3. Now if matrix X0

satisfies the strictly min-rank property, which is:

rank(X0) < rank(X) ∀ X 6= X0 : ‖X −X0‖ ≤ 2ε

Then the solution matrix X∗ is in the within 2ε (in Hamming distance) from matrix X0

and has the same rank as X0. Hence, X∗ is exactly equal to X0. We can conclude that

the min-rank decoder in (4.1) can recover the rank of original matrix.
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Example 11. Let

X1 =


1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0


We have rank(X1) = 1 then changing one or two entries of X1 can only increase rank

of X1. Hence, X1 satisfies the strictly min-rank property for ε = 1.

Also, let

X2 =


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


Then we have rank(X2) = 2 and rank of matrix X2 can only be increased or remains

the same when we change one or two entries of X2. Hence, X2 satisfies the min-rank

property with ε = 1.

To exactly recover the original X0, X∗ must be unique. We also investigate these

conditions in probabilistic settings.

4.3.2 Min-rank property in Uniform Model

Let us denote:

• R(r, n) is the set of of matrices X ∈ Fn×nq such that rank(X) = r

• M(r, n, 2ε) is the set of matrices X ∈ R(r, n) such that X satisfies min-rank

property.

Now, we can establish a lower bound for the min-rank property in Uniform model as

follows.

Theorem 13. Suppose matrix X is drawn uniformly at random in the set of matrices

∈ R(r, n, 2ε) with condition that r(2ε+ 1) ≤ n then we have:

P (X ∈M(r, n, 2ε)) ≥ Aq(r, r)
(ε′+1)qr(n−r(ε

′+1))

Aq(n, r)
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where ε′ = 2ε and

Aq(n, k) = (qn − 1)(qn − q) . . . (qn − qk−1)

is the number of ordered k-tuples of linearly independent vectors in Fnq .

We also have the following asymptotic result where n is large.

Corollary 14. Define LB as the lower bound in the theorem (13), we have:

lim
n→∞

LB =
Aq(r, r)

(ε′+1)

qr2(ε′+1)

which means that the lower bound depends only on r, ε and q.

Proofs of Theorem 13 and Corollary 14 can be found in Appendix.

4.3.3 Complexity of min-rank decoder

Definition 18. Define the set SX(ε) = {Y : ||Y −X|| ≤ ε}. (the norm here is Hamming

distance). The complexity of min-rank decoder is defined as the size of the set SX(ε).

Let m = n2. The size of the set:

|SX(ε)| =
ε∑
i=0

(
m

i

)

Let ε = bαmc, and use bounds on the Binomial sum [37, pg 427], we have

ε∑
i=0

(
m

i

)
≤ 2H(α)m = 2H( ε

m)m

where entropy H(α) = −α log(α)− (1− α) log(1− α).

4.4 Random Matrix Model

4.4.1 Model Description

In this section, we introduce a random matrix model whose entries are i.i.d variables.

Specifically, let X be a n × n random matrix over GF (q) generated by a probability p
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such that:

Xi,j =

k with prob p
q−1 ∀k = 1, . . . , q − 1

0 with prob 1− p

Also, denote W (.) as the weight of a matrix, i.e., the number of non-zero entries and

R(.) as the rank of a matrix.

4.4.2 Previous Results

In this section, we present some previous results related to rank and weight of the random

matrix model.

• Relation between the probability p and the rank R(X) [9]:

E

[
1

qR(X)

]
=

1

qn

(
1 +

n∑
k=1

(
n

k

)
γk(1− γ)n−k

[
1 + (q − 1)(1− p/γ)k

]n)
(4.4)

where γ = 1−1/q. Fig. 4.4 shows the empirical rank vs probability p which follows

the Eq. 4.4.

p
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Figure 4.4: Empirical expected rank

• On the other hand, the expected weight given rank of matrix r, with the matrices

are drawn uniformly at random in the set of matrices with given rank r is given
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[70]:

E[W |R = r] =
m(1− 1/q)(1− 1/qr)

(1− 1/qn)2

where m = n2

• Expected weight in random matrix model:

E[W (X)] = p× n2

• Trivial relation:

‖X − Y ‖ ≤ ε ↔ W (X)− ε ≤W (Y ) ≤W (X) + ε (4.5)

→ R(X)− ε ≤ R(Y ) ≤ R(X) + ε (4.6)

To the best of our knowledge, there is no known results about the closed-form distribution

of rank, or the joint distribution of weight and rank for the described model, except for

case of the the elements are uniformly distributed. In the next section, we present our

initial results on the joint distribution between weight and rank of matrix and apply the

results to show the min-rank property of uniform noise model.

4.5 Main Results

4.5.1 Uniform Noise Model

Since the weight of N : W (N) ≤ ε then we have W (X0) − ε ≤ W (Y ) ≤ W (X0) + ε. In

this model, we assume that the noise matrix N behaves such that the received matrix

Y are uniformly random in the set of matrices with weight ∈ (W (X0) − ε,W (X0) + ε).

The model is illustrated in Fig. 4.5.

Theorem 15. (Number of matrices related to weight and rank) Denote C(W ≥
w,R = r) as the number of matrices in Fn×nq which have weight that is larger or equal

to w and rank is equal to r. Then

C(W ≥ w,R = r) ≤ m(q − 1)(qr − 1)q2n−r−1

w(qn − 1)2

∏r−1
i=0 (qn − qi)2∏r−1
i=0 (qr − qi)

(4.7)
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Rank

Weight

Figure 4.5: Uniform Noise Model

For the case q = 2 and p = 1
2 , we have:

C(W ≥ w,R = r) ≤ m

w

22n

2r+1

r−1∏
i=1

(2n − 2i)2

(2r − 2i)
(4.8)

The upper bound on the joint distribution for the case n = 10 is illustrated in Fig.

4.6.
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Figure 4.6: Upper bound for P (W,R) with n = 10
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Theorem 16. (Min-rank property in Uniform Model) Draw matrix Y uniformly

at random in the set of matrix with weight w ∈ (w0 − ε, w0 + ε) (all matrices have

equal probability). Then the probability P that Y have lower rank than matrix X0 with

w(X0) = w0 and rank(X0) = r0:

P(rank(Y ) < rank(X0)) ≤
m

w0−ε
∑r0−1

r=0
22n

2r+1

∏r−1
i=1

(2n−2i)2

(2r−2i)∑w0+ε
w=w0−ε

(
m
w

) (4.9)

= O
(
λ
n

an2

)
→ 0 (4.10)

as n→∞ with condition that

β, ζ, η ∈ (0, 1) (4.11)

η < ζ (4.12)

γ > 0 (4.13)

with following notation:

β =
r0

n
(4.14)

ζ =
w0

n2
(4.15)

η =
ε

n2
(4.16)

θ =

ζ − η if ζ < 1/2

ζ + η if ζ ≥ 1/2
(4.17)

α = H(θ) (4.18)

λ =
β

32(ζ − η)η
(4.19)

γ = α+ β2 − 2β (4.20)

a = 2γ (4.21)

Corollary 17. Denote b = a− 1. For any δ > 0 and n ≥ λ
bδ , we have

P (rank(Y ) < rank(X0)) = O(δ).
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Example 12. Suppose r0
n = 0.3; w0

n2 = 0.4; ε
n2 = 0.2, we illustrate Theorem 16 in Fig.

4.7. We can see that the event {rank(Y ) ≥ rank(X0)} occurs with almost certainty as

the size of matrix increases (min-rank property).

n
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lo
g(

Pr
)

-400

-300

-200

-100

0
Bound
Simplify

Figure 4.7: Bound and its simplified form on the min-rank property of uniform model

Theorem 18. Change uniformly at random ε entries of any matrix X ∈ Fn×nq with

small weight w < n and get matrix Y . We have:

P (rank(Y ) ≥ rank(X)) ≥
(

1− w2

m− ε+ 1

)ε
.

4.5.2 Other results

Definition 19. Define the set X ji = {X ∈ Fn×nq : rank(X) = i; rank(X + N) =

i+ j ∀w(N) = j}

We have the following theorem

Theorem 19. 
|X 1

1 | = (2n − n− 1)2

|X 1
2 | =

∑
t1+t2+t3+t4=n

n!
t1!t2!t3!t4!

(4.22)
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Theorem 20. Number of matrices of given rank and weight over Fn×nq

C(W = w,R = r) =


0 if w < r

a!
(
n
a

)2
if w = r = a

(n− 1)a× a!
(
n
a

)2
if w = a+ 1; r = a

(4.23)

4.6 Open Problem

Problem 1. Denote S ⊂ Fn×nq as the set of minimizers of min-rank decoder. If S

is a singleton set then min-rank decoder has unique optimal solution, otherwise we can

define the error event E that the min-rank decoder problem cannot recover exactly original

matrix as: E = {|S| > 1} ∪ {{|S| = 1} ∩ {X∗ 6= X}}. Find the asymptotic analysis of

P(E)?

Problem 2. Find the efficient algorithms to solve the min-rank decoder?

Following are three proposed algorithms to solve the min-rank optimization problem:

• Algorithm 1: Search through all the set SY (ε) and find the min-rank matrix.

• Algorithm 2: Sample in the set SY (ε) and record the minimum rank matrix.

• Algorithm 3: Use decomposition and enumerate basis

X =
r∑
l=1

ulv
T
l = UV T

where ul, vl ∈ Fnq and U, V ∈ Fn×nq .

Problem 3. Find the joint distribution of weight and rank in term of the defined random

matrix probability p?

P (W = w,R = r) = f(p)

Problem 4. Find the set of strictly min-rank matrices M∗ (r, n, 2ε) ? as defined below:

Definition 20. The set of strictly min-rank matrices is defined as M∗(r, n, 2ε) = {X ∈
Fn×nq : rank(X) = r; rank(X +N) > r ∀N ∈ Fn×nq : 0 < W (N) ≤ 2ε}
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Chapter 5: Location Assisted Coding (LAC) for WiFO: A Hybrid

WiFi and Free Space Optical High Speed WLAN of Femtocells

5.1 Introduction

In a report by Strategy Analytics, the numbers of homes with WiFi and public WiFi

hotspots have increased steadily as the price of broadband access service is becoming

more affordable. In fact, wireless service providers have taken advantage of the wide

spread WiFi deployments to carry their cellular traffic, alleviating the problem of limited

radio frequency (RF) spectrum. Cisco reported that 46 percent of the total cellular data

traffic was offloaded through WiFi or femtocells in 2014, and the monthly global mobile

data traffic will surpass 24.3 exabytes by 2019. That said, WiFi devices are projected to

continue their significant growth trend, fueled by the emerging markets for smart homes

and the Internet of Things (IoT). Consequently, the limited wireless capacities of the

current WiFi systems will not be able to support many wireless devices and bandwidth

intensive applications in the near future.

While much research has focused on 802.11a to increase the current WiFi capacity,

it is noted that such an approach typically requires complex circuitry power modula-

tors/demodulators due to sophisticated modulation schemes to obtain high bit rates.

On the other hand, recent advances in free space optical (FSO) technology promise a

complementary approach to increase wireless capacity with minimal changes to the ex-

isting wireless technologies and simpler designs. The solid state light sources such as

Lighting Emitting Diode (LED) and Vertical-cavity Surface-Emitting Laser (VCSEL)

are now sufficiently mature that it is possible to transmit data at high bit rates reliably

at low power consumption using simple modulation scheme such as ON-OFF Keying.

Importantly, the FSO technologies do not interfere with the RF transmissions. However,

such high data rates are currently achievable only with point-to-point transmissions and

not well integrated with existing WiFi systems. This drawback severely limits the mo-

bility of the free space optical wireless devices.

That said, our work provides the following contributions. First, we describe a hybrid
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Figure 5.1: Use Scenario

WiFi-FSO (WiFO) [94] WLAN that can provide orders of magnitude increase in through-

put over existing WiFi systems while maintaining seamless mobility. The proposed WiFO

architecture is based on the femtocell architecture [15], [16] in which transmissions take

place in confined areas (non-overlapped cells) to reduce interference. On the other hand,

using a dense deployment of overlapped femtocells can result in higher bandwidth and

greater mobility. In particular, our second contribution is a novel cooperative transmis-

sion scheme, known as Location Assisted Coding (LAC) technique that takes advantage

of the receiver’s location information to eliminate interference and achieve high bit rates.

LAC allows multiple receivers including ones in an overlapped areas to obtain data from

multiple transmitters simultaneously without interference. We also provide theoretical

and numerical results of LAC technique for random deployment topologies. Third, we

formulate the multi-user rate allocation problems and present the solutions together with

their optimality analyses.

We also note that the LAC technique in WiFO system is an advanced version of the

NC techniques (mentioned in Chapter 2) since the system is able to process different

data flows (the RF packets and FSO packets) simultaneously. Also, based on the loca-

tions of all receivers (topology), data at transmitters are coded (mixed). Hence, each

receiver need to decode the desired data from the coded packets, which is identical to

NC techniques.

The paper is organized as follows. In Section 5.2, we discuss related work on free

space optical communication and coding techniques. In Section 5.3, we provide an

overview of WiFO that serves as a background for the proposed LAC technique in Section

5.4. Section 5.5 provides the theoretical and numerical analysis of the proposed LAC

technique for a number of random topologies. In Section 5.6, we formulate and solve the

problem of efficient rate allocation for multiple receivers based on LAC coding scheme.

Finally, we provide a few concluding remarks in Section 5.7.
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5.2 Related Work

In this section, we first briefly discuss a few related work on hybrid RF-FSO communi-

cation systems then highlight the differences between our work on LAC and the popular

cooperative transmission techniques Multiple Input Multiple Output (MIMO) as well as

the classic results on multiuser communication theory.

Hybrid RF-FSO communication systems. There have been several studies on

RF-FSO hybrid systems. The majority of these studies, however are in the context of

outdoor point-to-point FSO transmission, using a powerful modulated laser beam. Due

to the instability of the FSO link over long distance transmission, an RF link is often used

as a back up link [97], [10], [55]. Usually, a low capacity RF link is used when the primary

FSO link fails or degrades significantly due to rain, fog or other environmental conditions.

[52] provided a routing framework that maximizes the fairness index, which defined as the

minimal ratio of data transmitted and data required among all traffic profiles. Backup RF

link is made more available when the traffic is more delay sensitive. There are also recent

literature on joint optimization of simultaneous transmissions on RF and FSO channels.

For example, in [1], [61], [2], [89], and [93], the authors considered a joint coding schemes

for both FSO and RF channels. [1] proposed a rateless coding scheme and the advantage

of rateless coding scheme is proved. In [61], the authors studied the outage probability

in a FSO/RF hybrid system and presented a power allocation scheme to minimize the

outage probability. [2] optimized a FSO/RF hybrid network with respect to the location

of the optical transceivers. A more comprehensive optimization problem is presented

in [89]. Many aforementioned FSO/RF systems are designed for outdoor environments

where attenuation/fading is due mainly to the weather conditions or scintillations. In

contrast, our work is focused on Wi-Fi and FSO system for indoor environments where

fading is due mainly to geometry of the cone beams.

Cooperative Transmissions. LAC is similar to Multiple-Input Multiple-Output

(MIMO) techniques that have been used widely in communications systems to achieve

significantly higher data rates than traditional single-input and single-output systems

[76], [7], [44]. In both LAC and MIMO, the spatial dimension is key to increase data

rate. On the other hand, due to the simplicity of On-Off Keying, or more generally,

the Pulse Amplitude Modulation (PAM) used in WiFO, LAC’s spatial dimension is

gained through the receiver’s information location. More importantly, majority of MIMO



63

Ethernet Router Interface: CML

Access Point Gigabits Ethernet cable

USB connector interface

Transmi!er (LED 

modulator)

GG

Figure 5.2: WiFO architecture

coding techniques are focused on multiple transmit and receive antennas for a single user

[38],[42], [90], [78]. On the other hand, LAC’s aim is to use multiple transmitters for

multiple receivers simultaneously.

Multiuser information theory. From the information theory perspective, LAC

is related to the well-known broadcast channel problem [25]. In this setting, single

data source tries to transmit a common message to all receivers at the same time. The

capacity for discrete memoryless channel is derived by Marton in [68] which generalizes

the results in [25]. The achievable throughput of Gaussian broadcast channel is shown

in [13] using dirty-paper coding technique. The idea behind dirty-paper coding [23] is

that if the interference is known, then by adapting to the interference, the transmitter

still can transmit at maximum rate despite of the interference. This result is extended

to multiple receivers in [56]. LAC technique is different from these classic techniques in

several ways. Specifically, LAC is designed for the proposed WiFO system [94] with short

distance transmissions under well-controlled environments. Additionally, LAC directly

relies on amplitude modulation and base band transmission which are not typically used

in high-rate RF transmissions. Finally and importantly, LAC makes use of explicit

location information of the receivers rather than channel information that are typically

used in other coding schemes.

5.3 WiFO architecture

The WiFO system architecture is based on the femtocell architecture consisting of an

array of triangular-lattice FSO transmitters deployed in the ceiling to provide FSO cov-

erage for the floor area directly below. The WiFO system is designed to overcome the
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capacity overload problem of the existing WiFi networks. The capacity overload problem

arises due to the competitions among many users for a limited shared wireless bandwidth.

Most often, the capacity overload problems are due to large down-link traffic since for

many wireless applications, the amount of downlink traffic is on orders of magnitude

larger than that of the uplink traffic. Although users can move around, they are often

stationary, e.g., sitting on terminal benches at airports or lounges in hotel lobbies (Fig.

5.1). As such, a network of LEDs/VCSELs with the high-speed Ethernet infrastructure

can be deployed directly above the appropriate spots to provide local high rate FSO

transmissions, in addition to the WiFi transmissions. The current FSO technologies are

inexpensive with the transmitters and receivers using LEDs/VCSELs and silicon pho-

todiodes (PDs) that cost less than $20. In addition, they operate around 20 mW with

good SNR and well within the eye safety (850 nm). Also, VCSEL-based transmitter can

theoretically provide up to 1 Gbps, without interfering with WiFi.

The operations of the WiFO system are simple as shown in Fig. 5.2. All the data

from the Internet to the devices in a WiFi network is first traversed through the Access

Point (AP). For an IP packet of a given flow, the AP will decide whether to send the data

on the WiFi or FSO channels. If it decides to send the data on the FSO channel for a

particular device, the data will be encoded appropriately, and broadcast on the Gigabit

Ethernet network with the appropriate information to allow the right FSO transmitter

to receive the data. Upon receiving the data, the FSO transmitter relays the data to the

intended device. If the AP decides to send the data on the WiFi channel, then it just

directly broadcasts the data through the usual WiFi protocol. Upon receiving the data

from the FSO channel, the receiver decodes the data, and sends a feedback/ACK to the

AP via the WiFi channel. Feedback/ACK will allow the system to adapt effectively to

the current network conditions.

We have successfully built a WiFO prototype from off-the-shelf components con-

sisting of a single sender and a few receivers with limited mobility. Each receiver is

capable of receiving data 50-100 Mbps simultaneously over both WiFi and FSO chan-

nels. The FSO transmitter used the LEDs (LED851L) to modulate light. For the FSO

receiver, we used the FDS-100 silicon pin photodiodes. A demo can be seen at http://

www.eecs.oregonstate.edu/∼ thinhq/WiFO.html. Additionally our work was highlighted

by NSF at http://news.science360.gov/archive/20150515.

In order to support seamless mobility as a device moves from one light cone to
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another, we design an association protocol in which a device is associated with one

or more FSO transmitters simultaneously when the user is in an overlapped coverage.

Multiple devices can also associate with a single light cone. The transmitter associated

with a mobile device is responsible for transmitting data for that device. When multiple

FSO transmitters associate with a single device, they can send data simultaneously to

the device. This contrasts with WiFi or cellular networks where each device can only

be associated with a primary AP at any point in time. This salient feature is unique

to the proposed WiFO network since as will be shown in Section 5.4, multiple WiFO

devices associated with multiple transmitters will be able to receive and decode their

data simultaneously from these FSO transmitters to increase the overall capacity using

the LAC technique.

To establish association, each FSO transmitter broadcasts a beacon signal consist-

ing of a unique ID periodically. A WiFO device automatically associates with one or

more transmitters that provide sufficient SNRs. Upon receiving a beacon signal from a

transmitter, the device sends back alive heartbeat messages that include the transmitter

ID and the MAC address to the AP using WiFi channel. The AP then updates a table

whose entries consist of the MAC address and the transmitter IDs which are used to for-

ward the packets of a device to the appropriate transmitters. If the AP did not receive

a heartbeat from a device for some period of time, it will disassociate that device, i.e.,

remove its MAC address from the table. We note that the association protocol requires

messages exchanged between the AP and the mobile device. Since the FSO channel is

a one-directional channel, the messages exchanged during the association protocol are

sent using the WiFi channel.

5.4 Location Assisted Coding (LAC)

To aid our discuss on LAC, we provide a brief background on free space optical trans-

missions.

5.4.1 Optical Transmission

Fig. 5.3(a) shows a topology of non-overlapped triangular-lattice FSO transmitter ar-

ray, i.e., FSO femtocells. The spacing between each transmitter is determined by:



66

Op�cal 

Transmi�er

Coverage 

range

d

Gaussian 

beam

h
θ

d

(a) (b)

Figure 5.3: (a) Configuration of the optical transmitter array; (b) coverage of optical
transmitters with a divergent angle of ϑ

d = 2h tanϑ, where h is the height of the ceiling, and ϑ is the divergent angle of the

transmitter. Using h = 5 meters (approximate height of ceilings in typical buildings)

and ϑ = 7.5 degrees, the coverage area for a single FSO transmitter is approximately

1.36 meter squares. The light from the optical transmitter is a Gaussian beam with a

divergent angle of ϑ as shown in Fig. 5.3 (b). A large ϑ will cover a larger floor area

and thus reduce the total number of FSO transmitters. However, the transmit power

and the minimum optical power required at the optical receivers set the upper limit of

ϑ. If two transmitters are co-located, then the received signal power for a user will be

doubled, and thus higher data rates can be achieved. However, such simple deployment

would increase the number of transmitters by two, without improving the mobility since

there are still gaps between the circles as seen in Fig. 5.3. Although WiFi transmission

can cover those gaps, the bit rates might be reduced in these areas.

One can use dense deployment of transmitter array to ensure no gaps. Using over-

lapped coverage will increase mobility and reduce bit error rate for a single receiver if

two or more transmitters are used to send data to the single receiver. On the other

hand, to avoid multi-user interference, transmitting data in overlapped areas may re-

quire TDMA or FDMA, which effectively reduces the overall capacity. This is typically

done in WiFi or cellular networks. We show that this limitation is not necessary when

the side information, specifically the user location, is used.

5.4.2 Problem Formulation

Assume that there are n FSO transmitters T1, T2, . . . Tn, each produces a light cone that

overlaps each other. We also assume that there are m receivers R1, R2, . . . Rm, located
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in the coverage areas. An FSO transmitter is assumed to use On-Off Keying (OOK)

modulation where high optical power represents “1” and low power represents “0” [47].

On the other hand, a receiver is assumed to be able to detect different levels of light

intensities. For example, if two transmitters send a “1” simultaneously to a receiver,

the receiver would be able to detect “2” as light intensities from two transmitters add

constructively. On the other hand, if one transmitter sends a “1” while the other sends

a “0”, the receiver would receive a “1”. As an example, Fig. 5.4(a) shows a topology

consisting of two FSO transmitters and two receivers. In this setting, the interference

will occur at receiver R2 if the transmitter T1 and T2 sends independent bits to R1 and

R2.

The goal is to design a cooperative transmission scheme that allows the AP to send

independent information to the receivers at the maximum rates. We begin with the

channel model. We note that our problem of characterizing the achievable region appears

to be similar to the well-known broadcast channels. Specifically, when the channel is a

Degraded Broadcast Channel (DBC), the capacity region has been established [25], [71],

[41]. However, we can show that WiFO channel is not a degraded broadcast channel,

thus the well-known results on DBC are not applicable.

5.4.3 Channel Model

We first consider the topology shown in Fig. 5.4(a). Receiver R2 is in the overlapped

area, and therefore, can receive signals from both transmitters while receiver R1 can

receive signal from only one transmitter. Cooperative transmission scheme uses both

(a) (b)

Figure 5.4: (a) Topology for two FSO transmitters and two receivers; (b) Broadcast
channels for two receivers.
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transmitters to send independent information to each receiver simultaneously. This

cooperative transmission scheme can be viewed as a broadcast channel in which the

sender can broadcast four possible symbols: “00”, “01”, “10”, and “11” with the left

and right bits are transmitted by T1 and T2, respectively. Thus, there is a different

channel associated with each receiver. Fig. 5.4(b) shows the broadcast channels for

the two receivers R1 and R2. There are only three possible symbols for R2 because it is

located in the overlapped coverage of two transmitters. Therefore, it cannot differentiate

the transmitted patterns “01” and “10” as both transmitted patterns result in a “1” at

the receiver due to additive interference. On the other hand, there are only two symbols

at receiver R1 because it is located in the light cone of a single transmitter.

It is straightforward to see that the channel matrices for R1 and R2 associated with

Fig. 5.4(b) are:

A1 =


1 0

0 1

1 0

0 1

 , A2 =


1 0 0

0 1 0

0 1 0

0 0 1

 .

We note that the entry A(i, j) of the channel matrix denotes probability that a

transmitted symbol i to turn a symbol j at the receiver. Since we assume all sources of

error are due to multi-user interference, A(i, j) is either 0 or 1.

We note that it is straightforward to construct the channel matrices for scenarios with

transmission errors. In particular, if we consider following simple i.i.d channel model.

The probability of that a transmitted bit is flipped at a receiver in its transmission cone

is α, and is identical for all transmitters. Furthermore, the transmissions are independent

across transmitters and time slots. Thus, for the scenario in Fig. 5.4(b), channel matrices

for R1 and R2 can be written as:

A1 =


1− α α

α 1− α
1− α α

α 1− α

 , A2 =


(1− α)2 2α(1− α) α2

α(1− α) (1− α)2 + α2 α(1− α)

α(1− α) (1− α)2 + α2 α(1− α)

α2 2α(1− α) (1− α)2

 .

The same method can be used to construct channel matrices for other topologies. We

note that due to the limited scope of the work and simplicity, we will not discuss the
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Figure 5.5: Achievable rate region for R1 and R2.

channels due to errors other than interference errors.

5.4.4 Achievable Rate Region

For the given channels in Fig. 5.4, Fig. 5.5 shows the three achievable rate regions

for R1 and R2: blue, green, and yellow with each one is larger than the previous one.

Each point (x, y) denotes the achievable rate, i.e., bits per transmission for R1 and R2,

respectively. The blue region is achievable by simply using TDMA. Specifically, (1,0)

is achievable by sending bits to R1 exclusively and zero bits to R2. Similarly, (0,1) is

achievable by sending all the bits to R2 and zero bits to R1. Therefore, using TDMA

and varying the fraction of time we use the strategy (0,1) and the remaining time we

use the strategy (1,0), the blue achievable region can be achieved.

Such a scheme can be further enlarged by noting that the point (0, log 3) can be

achieved. Indeed, log 3 bits per transmission is achievable for R2 if two transmitters

are used to transmit the bits to R2. Specifically, there are three distinct symbols at the

output forR2, namely: 0, 1, 2. Therefore, using the basic result in information theory, the

maximum achievable rate is log 3. Finally using TDMA between the strategies (0, log 3)

and (1, 0), the green region is achievable.

It is not obvious to see why one can further enlarge the achievable rate region as

shown in yellow. In fact, we develop the LAC technique for general topologies of mul-

tiple transmitters and receivers. The achievable point (1,1) in Fig. 5.5 responsible for

enlarging the rate region, is just a special case of the LAC technique to be discussed

next.
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Figure 5.6: Example of three cones with interference

5.4.5 Encoding/Decoding Algorithms

In this section, we show the LAC encoding algorithm that under some conditions allows

multiple receivers to receive independent bits simultaneously.

For simplicity, assume there are n transmitters and n receivers. Receiver Ri wants to

receive bits bi, i = 1, 2, . . . , n. The goal is for the transmitters T1, T2, . . . , Tn to transmit

bits t1, t2, . . . tn simultaneously, but yet all the receivers Ri’s will be able to recover their

intended bits bi’s from the received signals ri’s. By assumption, bi, ti ∈ {0, 1}. On the

other hand, ri ∈ {1, 2, . . . , n} since the received signals add constructively.

Definition 21. Let H be the matrix whose entry H(i, j) is equal to 1 if receiver i can

receive signal from transmitter j and 0 otherwise. H is called a topology matrix.

For example, the topology matrix associated with Fig. 5.6 is:

H3 =

1 1 1

0 1 1

1 0 1

 .
Definition 22. The system is said to achieve full rate if every receiver Ri can achieve

1 bit per transmission simultaneously.

Note that the Definition 22 is meant for On-Off Keying modulation in which, at most

one bit of information can be sent by any transmitter.

We have the following Proposition:
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Proposition 21. If the topology matrix H has full rank in GF(2), then it is possible for

the system to achieve full rate.

The proof for Proposition 21 is best presented via the following encoding and decoding

algorithm that achieve full rate.

5.4.5.1 Encoding Algorithm

Let b1, b2, . . . , bn ∈ {0, 1} be the bits wanted by receivers R1, R2, . . . , Rn, and H is a full

rank topology matrix.

Consider the following system of equations in GF(2):

H(1, 1)t1 ⊕H(1, 2)t2 ⊕ . . .⊕H(1, n)tn = b1

H(2, 1)t1 ⊕H(2, 2)t2 ⊕ . . .⊕H(2, n)tn = b2

. . .

H(n, 1)t1 ⊕H(n, 2)t2 ⊕ . . .⊕H(n, n)tn = bn

(5.1)

where ⊕ is addition in GF(2), i.e. a⊕ b = (a+ b) mod 2. Since H is a full-rank matrix

in GF(2), we can solve the system of equations (5.1) above for unique t1, t2, . . ., tn in

terms of b1, b2, . . ., bn. The solution for t1, t2, . . ., tn is a linear combination of b1, b2,

. . ., bn. We claim that if the transmitters T1, T2, . . . , Tn transmit the bits t1, t2, . . . , tn,

respectively, then all the receiver R1, R2, . . . , Rn will be able to receive their desired bits

b1, b2, . . . , bn, even if a receiver is in the overlapped area cover by multiple transmitters.

We note that in WiFO, the AP having access to all the flows of data, transmits t1, t2, . . . tn

to the transmitters T1, T2, . . . , Tn, respectively. Ti then transmits ti. Thus, the encoding

procedure involves solving a system of linear equations. One assumption is that the AP

knows which regions the receivers are in, and therefore it can construct the topology

matrix H. The AP obtains this information from the mobility protocol described briefly

in Section 5.3. If a receiver is associated with two given transmitters then the AP knows

that the receiver is in an overlapped region of those two transmitters. When all receivers

are in separate non-overlapped regions, the H matrix is an identity matrix, and therefore

full-rank. Thus, ti = bi.
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Table 5.1: Transmitted signals, received signals and recovered bits in GF(2) for three
cones in Fig. 5.6

b1 b2 b3 t1 t2 t3 r1 r2 r3 b̂1 b̂2 b̂3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 2 2 1 0 0 1
0 1 0 1 0 1 2 1 2 0 1 0
0 1 1 1 1 0 2 1 1 0 1 1
1 0 0 1 1 1 3 2 2 1 0 0
1 0 1 1 0 0 1 0 1 1 0 1
1 1 0 0 1 0 1 1 0 1 1 0
1 1 1 0 0 1 1 1 1 1 1 1

5.4.5.2 Decoding Algorithm

A receiver Ri needs to be able to recover the bit bi from the received signal ri which can

be represented as:

r1 = H(1, 1)t1 +H(1, 2)t2 + . . .+H(1, n)tn

r2 = H(2, 1)t1 +H(2, 2)t2 + . . .+H(2, n)tn

. . .

rn = H(n, 1)t1 +H(n, 2)t2 + . . .+H(n, n)tn

(5.2)

The receiver recovers bi by performing

ri mod 2 = b̂i. (5.3)

We claim that bi = b̂i. This can been seen by performing a mod 2 operation on both

sides of equations (5.2) which results in the equations (5.1). Or simply, if ri is even

then Ri decodes bit bi as “0”, and “1” otherwise. As a result, each receiver can decode

its bits correctly and independently in presence of interference. Furthermore, no other

information regarding other users is required. Therefore, the decoding procedure is very

simple.
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Example 1. Consider the overlapped regions as shown in Fig. 5.6. The topology

matrix for this case is:

H3 =

1 1 1

0 1 1

1 0 1


This matrix is also full-rank, therefore using LAC, one can transmit data at full rate.

Specifically, we solve the following system of equations for t1, t2, t3 in GF(2).
t1 ⊕ t2 ⊕ t3 = b1

t2 ⊕ t3 = b2

t1 ⊕ t3 = b3

(5.4)

or 
t1 = b1 ⊕ b2
t2 = b1 ⊕ b3
t3 = b1 ⊕ b2 ⊕ b3

(5.5)

Now, if the three transmitters transmit bits as shown in (5.5), then at the receivers, the

received signals are: 
r1 = t1 + t2 + t3

r2 = t2 + t3

r3 = t1 + t3

(5.6)

The received signals and the recovered bits using (5.3) for all cases are shown in Table

5.1. We can see that the recovered bits are exactly the intended bits.

5.4.6 Coding Scheme for GF(q)

The coding scheme shown in previous sections uses GF(2). This is based on the assump-

tion that the transmitters can only transmit “0” and “1” using OOK modulation. If the

transmitters can transmit with q levels from “0” to “q − 1” where q is a prime number,

we can extend the coding scheme to GF(q). Specifically,

1. At the transmitter, we still use the system of equations (5.1) except that the
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addition now is computed over GF(q), i.e. a⊕ b = (a+ b) mod q. Using Gaussian

elimination, solution for t1, t2, . . . , tn could be achieved if the matrix H is full-rank

in GF(q).

2. At the receiver, we still have the system of equations (5.2) which is now in GF(q).

By taking mod q operation on both sides of equations (5.2), we have ri mod q =

bi. Therefore, we can recover the transmitted bits by computing:

b̂i = ri mod q. (5.7)

Advantages of using multiple levels q are twofold. First, it increases the capacity with

fewer number of transmitters. Second, it is easier to have full-rank topology matrix. A

matrix that is not full-rank in GF(2) might be full-rank in GF(q) with q > 2. Therefore,

by letting the transmitters send signal with multiple levels, we might be able to transmit

at full rate. This could be seen in the following example.

��
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Figure 5.7: Example of three cones with rank 2 topology matrix

Example 2. Consider the following topology matrix

H ′3 =

1 1 0

0 1 1

1 0 1


This is the topology matrix for the case illustrated in Fig. 5.7. Clearly, H ′3 is not full-rank

in GF(2) since rank(H ′3) = 2. However, in GF(3), it is a full-rank matrix. Therefore,
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we can make use of the proposed coding scheme to achieve full rate. In this case, the

transmitters can transmit levels 0, 1 or 2.

The received signals and the recovered bits using for all cases are shown in Table 5.2.

We can see that the recovered bits are exactly the intended bits.

5.4.7 Extended LAC

The proposed coding schemes in Section 5.4.6 are for n transmitters and n receivers

with full-rank topology matrix. Now, we extend the coding schemes to the general case

where there are n transmitters and m receivers. The topology matrix H is now of size

m×n and has rank k (k ≤ min(m,n)). As a result, only k equivalent independent single

channels are used at any point of time [44]. Therefore, our goal is to derive a coding

scheme to achieve k/n of the full rate R. This is also the theoretical maximum rate.

Specifically, since the topology matrix has rank k in GF(q), we can pick k linearly

independent rows out of n rows in the matrix. Denote U as a set of k linearly indepen-

dent rows in GF(q): U = {u1, u2, . . . , uk} and V as the set of the other m − k rows:

V = {v1, v2, . . . , vm−k}. As a result, v1, v2, . . . , vm−k could be represented as linear com-

binations of u1, u2, . . . , uk in GF(2). We assume that the matrix H has no row with all

zero entries since if there is such a row, i.e., the corresponding receiver does not receive

any signal from any cone, we just remove that receiver/user from the system. Notice

that for each vi, there always exists a row uj such that if we swap the two rows, we

still have a set of k linearly independent rows {u1, u2, . . . , uj−1, vi, uj+1, . . . , uk}. This

property is proved in Proposition 22.

Proposition 22. Consider a m × n matrix H of rank k in GF(q) (k ≤ min(m,n)).

Assume that the matrix H has no row with all zero entries. Let u1, u2, . . . , uk be k

linearly independent row vectors and v1, v2, . . . , vm−k be the other m − k row vectors in

the matrix.

For each vi, there always exists a row vector uj such that if the two vectors are

swapped, u1, u2, . . . , uj−1, vi, uj+1, . . . , uk are still linearly independent.

Proof. See Appendix.

Using this property, we can derive a coding scheme to achieve rate of k
nR as follows.
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Table 5.2: Transmitted signals, received signals and recovered bits in GF(3) for three
cones in Fig. 5.7

b1 b2 b3 t1 t2 t3 r1 r2 r3 b̂1 b̂2 b̂3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 1 2 3 3 4 0 0 1
0 0 2 1 2 1 3 3 2 0 0 2
0 1 0 1 2 2 3 4 3 0 1 0
0 1 1 0 0 1 0 1 1 0 1 1
0 1 2 2 1 0 3 1 2 0 1 2
0 2 0 2 1 1 3 2 3 0 2 0
0 2 1 1 2 0 3 2 1 0 2 1
0 2 2 0 0 2 0 2 2 0 2 2
1 0 0 2 2 1 4 3 3 1 0 0
1 0 1 1 0 0 1 0 1 1 0 1
1 0 2 0 1 2 1 3 2 1 0 2
1 1 0 0 1 0 1 1 0 1 1 0
1 1 1 2 2 2 4 4 4 1 1 1
1 1 2 1 0 1 1 1 2 1 1 2
1 2 0 1 0 2 1 2 3 1 2 0
1 2 1 0 1 1 1 2 1 1 2 1
1 2 2 2 2 0 4 2 2 1 2 2
2 0 0 1 1 2 2 3 3 2 0 0
2 0 1 0 2 1 2 3 1 2 0 1
2 0 2 2 0 0 2 0 2 2 0 2
2 1 0 2 0 1 2 1 3 2 1 0
2 1 1 1 1 0 2 1 1 2 1 1
2 1 2 0 2 2 2 4 2 2 1 2
2 2 0 0 2 0 2 2 0 2 2 0
2 2 1 2 0 2 2 2 4 2 2 1
2 2 2 1 1 1 2 2 2 2 2 2
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Algorithm 4: k-bit Coding Algorithm

1. Find a set U of k linearly independent rows of H: U = {u1, u2, . . ., uk}.
Put the other m− k rows to a set V .

2. From the set of linearly independent rows X = U , create a k × n matrix H̃.

H̃ has rank k. Therefore, we can pick k columns from H̃ to create

k × k matrix H ′ that has rank k.

3. Deploy the proposed coding schemes (Section 5.4.6) for k transmitters and k

receivers corresponding to the full-rank matrix H ′.

4. Take a row vi out from V , search through the set U and find a row uj ∈ U
such that if we replace uj by vi in the set U , we obtain a set of linearly

independent rows U ′.

5. Go to step 2) with X = U ′.

6. Keep doing that until V is empty.

The result we obtain here is a sequence of m− k + 1 pairs. Each pair includes a set

of k transmitters and a set of k receivers with their full-rank k × k topology matrix H ′

from Step 3. They are the sets of active transmitters and receivers allowing k receivers

to decode its signal correctly in a time slot. By periodically using the pairs of active

transmitter set and receiver set in the sequence with the proposed coding schemes in

Section 5.4.6, we can achieve rate of k
nR and allow m receivers share the bandwidth.

After the algorithm terminates, each receiver appears in at least one pair of transmitter

and receiver sets and therefore has a chance to receive signal and decode it. Nevertheless,

this coding scheme does not guarantee the throughput fairness among all users in the

system.

5.5 Performance Analysis of LAC for Various Topologies

In this section, we present the performance analysis of LAC using OOK modulation. In

order to show the robustness of LAC, we compare it with a basic code (BC). BC can

only work under the condition that each receiver is located in a non-overlapped area.
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The number of pairs of receiver and cone that satisfies this condition is the maximum

number of bits that can be transmitted at a time.

5.5.1 Bernoulli Model

Suppose n receivers are located in n cones such that receiver i is belonged to cone j with

probability p for any i, j. Then the topology matrix H is an n×n matrix in GF(2) such

that:

Hij =

1 with probability p

0 with probability 1− p.

Let q be the size of the finite field, and γ = 1− 1/q. Denote

h =

n∑
k=1

(
n

k

)
γk(1− γ)n−k[1 + (q − 1)(1− p/γ)k]n.

We have the following proposition regarding the achievable rate.

Proposition 23. For the model above, the achievable rate R, defined as the average

number of bits can be received per time slot, can be approximated as :

RLAC ≈ n− logq (h+ 1) (5.8)

for sufficiently large n.

Proof. See Appendix.

5.5.2 Uniform Model

In this model, we set p = 1
2 so that each entry in the topology matrix H has equal

probabilities of having values 0 or 1.

Proposition 24. For sufficiently large number of transmitters and receivers in a small

area, the probability PLAC of achieving full rate, i.e. RLAC = n, approaches a constant.

Specifically,

PLAC = 0.289. (5.9)
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Furthermore, the average achievable rate is:

RLAC =
1

2n2

n∑
k=1

k

k−1∏
i=0

(2n − 2i)2

2k − 2i
. (5.10)

Proof. See Appendix.

We now consider the basic coding (BC) scheme that does not tolerate interference. In

other words, BC can only transmit at full rate if each receiver is strictly located in each

non-overlapped region. We have the following proposition regarding BC performance for

the Uniform model.

Proposition 25. The probability that the BC scheme is able to transmit a full rate (n)

is:

PBC =
n!

2n2 . (5.11)

Furthermore, the average rate R for the BC scheme is:

RBC =
1

2n2

n∑
k=1

k!

(
n

k

)2

2(n−k)2 . (5.12)

Proof. See Appendix.

To verify the theoretical analyses, Fig. 5.8 shows the probability of being able to send

bits at full rate for LAC and BC schemes as a function of n. As seen, this probability

decreases and approaches 0.289 for the LAC scheme as predicted. On the other hand,

the same probability decreases to zero quickly for the BC scheme.

Also, in Fig. 5.9, the average rate of the LAC scheme is much larger than that of BC.

In addition, the rate of LAC shows an roughly linear relation to the number of cones

while the rate of BC decreases as the number of cones increases.

5.6 Time Minimization and Rate Allocation

So far, we have demonstrated that LAC performs very well in term of bandwidth effi-

ciency since the system always operates at full rate using the k− bit Coding Algorithm.
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Figure 5.8: Full rate transmission probabilities versus different number of cones

However, it is not clear how LAC can be used in the scenarios where multiple receivers

request different transmission rates. We first begin with the time minimization problem.

5.6.1 Time Minimization

The time minimization problem can be described as follows.

• There are m receivers R1, R2, . . . , Rm. Each receiver requires a different number

of bits, i.e., receiver Ri needs bi bits.

• Let k be the rank of the topology matrix H. Therefore, in each round, the trans-

mitters can collectively transmit no more than k information bit to the receivers.

• Let N be the number of rounds required for the transmitters to send the requested

bits to all the receivers. The goal is to find the coding/scheduling scheme that

minimizes the number of rounds N .

To formulate the problem, let us denote the set U = {u1, u2, . . . , um} as the set of all

rows of matrix H. Furthermore, denote D = {V1,V2, . . . ,Vd} where |D| = d as the set

that contains all distinct non-empty subsets Vi ⊂ U such that all vectors in Vi are linearly

independent. Obviously, since rank(H) = k we have |Vi| ≤ k and 0 < d ≤
i=k∑
i=1

(
m

k

)
.
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Figure 5.9: Average rate versus different number of cones

We can construct any LAC-based coding scheme C as follows. At each round, we

choose a subset Vi for any 1 ≤ i ≤ d where |Vi| = l then l receivers corresponding

to l independent vectors in Vi will be served using LAC. The process repeats until all

receivers receive their desired number of bits (some receivers can receive more bits than

their desired number of bits).

Let A ∈ [0, 1]m×d be the matrix which represents the set D

Aij =

1 if Vj includes receiver Ri

0 otherwise

Define x = [x1, x2, . . . , xd]
T where xi ∈ Z+ denotes the number of rounds that we choose

subset Vi. The total number of rounds:

N =
m∑
i=1

xi
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Therefore, the number of bits that receiver Ri receives which requires to be no less than

bi can be written as the constraint:

d∑
j=1

xjAij ≥ bi ∀i (5.13)

↔ Ax � b (5.14)

where b = [b1, b2, . . . , bm]T is the vector representing the desired number of bits for each

receiver, and � represents element-wise comparsion.

Given this notation, the Integer Linear Program for the time minimization problem

can be formulated as follows.

Problem P1:

Minimize
∑
i
xi

Subject to

 x � 0

Ax � b
(5.15)

with variable x ∈ Z+d×1
and given A ∈ [0, 1]m×d, b ∈ Z+m×1

We illustrates the problem in the following example.

Example 13. We have m = 4, n = 3 and suppose (b1, b2, b3, b4) = (2, 2, 1, 1). Assume

that the topology matrix is

H =


1 0 0

0 1 0

0 0 1

0 1 1


Then rank(H) = 3.

• There are d = 12 feasible subsets in D: {(R1); (R2); (R3); (R4); (R1, R2); (R1, R3); (R1;R4)

(R2, R3); (R2, R4), (R3, R4), (R1, R2, R3), (R1, R2, R4)}.

• The optimal scheme C∗ would need 2 rounds: (R1, R2, R3), (R1, R2, R4).

• Compare to some other scheme C would need 3 rounds: (R1, R2), (R1, R2), (R3, R4).
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We note that (5.15) is the generalized form of the Covering Integer program [92] in

which bi = 1 ∀i. Furthermore, the Covering Integer program is shown to be equivalent

to Set Cover problem which has been shown to be NP-hard [51]. Thus, the Time Min-

imization problem is NP-hard, and many heuristic algorithms can be used to solve this

problem. Therefore, we will now focus on a proportional rate allocation problem in the

next section.

5.6.2 Proportional Rate Allocation

Recall that if rank(H) = k then by using the k − bit Coding algorithm in LAC, we

can serve k receivers in each round. Certainly, we would prefer to transmit k bits per

time slot in any round. That said, there are many coding schemes that can achieve the

maximum rate in which we would prefer a coding scheme that can also achieve target

rate of each receivers. To do so, we will use the randomized approach to design our

scheduling/coding schemes.

To illustrate our approach, suppose there are 3 receivers R1, R2, R3 and their associ-

ated topology matrix H, with rank(H) = 2 such that the systems can serve both R1 and

R2 or both R2 and R3 in a round. A coding scheme C can be implemented as follows. In

each round with probability of 0.5, we choose the subset V1 = (R1, R2) to serve and with

remaining probability of 0.5, we choose the subset V2 = (R2, R3) to serve. By applying

coding scheme C with probabilistic policy x = [0.5, 0.5], the resulted rate distribution

r of over three receivers R1, R2, R3 is [0.5, 1, 0.5] respectively or can be normalized as

[1
4 ,

1
2 ,

1
4 ].

Due to the weak law of large numbers, it is guaranteed that the average rate dis-

tribution achieved by a randomized policy/schedule x would converge to its true target

rate in probability, i.e, when the number of rounds n applying policy x is large enough,

the average rate distribution r̄ would be within ε close to the resulted rate distribution

r:

lim
n→∞

P (|r̄ − r| ≥ ε) = 0

Suppose the number of bits that three receivers R1, R2, R3 requires are [500, 1000, 500]

respectively then the desired rate distribution b can also be normalized as [1
4 ,

1
2 ,

1
4 ]. Hence,

this desired distribution can be achieved by applying the above coding scheme C(x).
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Now, let us formulate an optimization problem for this proportional rate allocation

problem. The notations are similar to the Time Minimization problem.

• In this case, the set D only includes subset Vi such that |Vi| = k. Also 0 < d ≤
(
m
k

)
• Matrix A is defined the same as previous section

Aij =

1 if the set Vi includes receiver Rj

0 otherwise

• Let x = [x1, x2, . . . , xd]
T where xi be the probability that Vi is chosen at each

round. Also, 
x ≥ 0∑
i
xi = 1.

• Hence, the resulted rate distribution r(x) = 1
kAx.

Our first goal is to find a randomized coding scheme that can operate in the maximum

rate (full rate) transmission while achieving as close as possible to a given target rate

allocation. The problem can be described as follows.

• Let b = [b1, b2, . . . , bm]T be the desired rate distribution over all m receivers. Also,

b is normalized such that
m∑
i=1

bi = 1.

• The goal of this problem is to find a coding scheme x such that target rate distri-

bution r(x) = b or as close as possible to b.

• The distance from the obtained rate allocation distribution r(x) to the target

distribution b is defined by using vector norm:

||r(x)− b|| = ||1
k
Ax− b||.

Thus, the problem can be formulated as a convex optimization form as:
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Problem P2:

Minimize || 1kAx− b||

Subject to

 x � 0

1Tx = 1
(5.16)

The Problem P2 is a non-negative least square problem (NNLS) which can be solved by

active set method [60].
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Figure 5.10: Average optimal value versus k (rank of topology matrix H)

Fig. 5.10 plots the average optimal values of the objective function in P2 vs. rank of

H’s. In this simulation, the number of transmitters is equal to the number of receivers

(m = n = 10). The topology matrices H are generated uniformly at random, and the

their ranks are noted. However, for any H, we require that any receiver is covered by at

least one transmitter. The desired rate allocation is a constant vector:

b =
[
0.19 0.21 0.18 0.02 0.1 0.05 0.07 0.08 0.01 0.09

]T
The small distance implies that the solution of the corresponding randomized policy

approximates the desired rate allocation well. As seen in Fig. 5.10, when the rank of

topology matrix H increases, the system can transmit at full rate which exactly equal

to the rank. However, all receivers need to participate in transmission in every time
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slot. Thus, the policy is not sufficiently flexible to achieve the propotional target rate

allocation. For example, when the matrix H is full rank, the only possible solution is

[0.1, 0.1, . . . , 0.1] (n = 10) which can be far way from the given target rate allocation.

On the other hand, when the topology matrix H has low rank, at each time slot, there

are several options of choosing which receivers to serve. Hence, the system would have

more flexibility to allocate the rate as desired.

When the systems operated in full-rate, it is possible that the desired rate allocation

cannot be reached. In the case, the desired rate allocation is required, it can be achieved

at the cost of reducing the overall transmission rate. In general, we would like to optimize

the operation such that the overall rate is as high as possible while the desired rate

allocation is obtained. We formulate this problem as follows.

• Denote D(k) ⊆ D as the set which only includes Vi such that |Vi| = k. Note that

when D(k) is used, the transmission rate would be k.

• Let A(k) be the matrix representing set D(k) (similar to previous A and D) and

A(k) ∈ [0, 1]m×d
(k)

where d(k) = |D(k)|.

• A policy can be represented by vector x = [x(1), x(2), . . . , x(k)] where x(i) is a d(i)-

vector corresponding to the probability that A(i) is chosen.

• The average rate of system is

R = kx(k) + (k − 1)x(k−1) + · · ·+ x(1) =
k∑
i=1

ix(i)

• The rate allocation distribution is

1

k
A(k)x(k) +

1

k − 1
A(k−1)x(k−1) + · · ·+A(1)x(1) =

k∑
i=1

1

i
A(i)x(i) = b

The problem can be formulated as follows.
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Problem P3:

Maximize
k∑
i=1

ix(i)

Subject to


x � 0

1Tx = 1
k∑
i=1

1
iA

(i)x(i) = b

(5.17)

The problem P3 can be efficienttly solved via convex optimization framework [45].
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Figure 5.11: Average rate versus k (rank of topology matrix H)

Fig. 5.11 shows the overall rate of the system vs. the rank of the topology matrix H.

The simulation setup/parameters are identical to that of Fig. 5.10. The proportional

rate is now guaranteed to be the exact target rate allocation. On the other hand, the

solution cannot achieve full rate. In fact, as the rank increases, hence the full rate

increases, the gap between the overall resulted rate and the full rate increases.

5.6.3 Analytic Solution and Relaxation Algorithm

The convex optimization framework can help us solve the problem (5.16) and (5.17) but

cannot give an analytic solution. We address this solution in the this section.
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Let Ā = 1
kA. Due to [88], the equation systems

Āx = b

would exist a solution if

ĀĀ+b = b (5.18)

where Ā+ ∈ Rd×m is the Moore-Penrose pseudoinverse of Ā. The solution (if exist)

would be in the form

x = Ā+b+ (I − Ā+Ā)w (5.19)

for any w ∈ Rd×1, which is the solution of optimization problem (5.16) if there is no

constraint. With the introduce of the non-negative constraints, we still able to find the

analytic solution for the NNLS problem in some special cases as follows.

Proposition 26. Suppose b ∈ Range(Ā) or there exist x∗ such that Āx∗ = b then

1Tx∗ = 1.

Proof. See Appendix.

Proposition 27. If (5.18) satisfies and there exists x∗ ≥ 0 in form of (5.19) then x∗

would be a solution of problem (5.16).

Proof. Since x∗ is a feasible point and also the objective function of problem (5.16) at

x∗ achieves the minimum value:

||1
k
Ax∗ − b|| = 0

then x∗ is the optimal solution.

Proposition 28. If m ≥ d and rank(A) = d and there exists x∗ such that Āx∗ = b then

x∗ = xLS = C−1ĀT b

where C = ĀT Ā ∈ Rd×d and rank(C) = d.
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Proof. Since

Āx∗ = b

We have

ĀTAx∗ = ĀT b

⇒ C−1Cx∗ = C−1ĀT b

⇒ x∗ = C−1ĀT b. (5.20)

Proposition 29. If m ≥ d, b ∈ Range(A) and rank(A) = d and xLS = C−1ĀT b � 0

then xLS is the solution of the optimization problem (5.16).

Proof. Obviously, since xLS = C−1ĀT b is a feasible point and also the objective function

of problem (5.16) at xLS achieves the minimum value:

||1
k
AxLS − b|| = 0

then xLS is the optimal solution.

Suppose x∗ is the optimal solution of problem (5.16) and

||1
k
Ax∗ − b|| > 0

meaning that the optimal policy x∗ can not achieve exactly the target distribution b.

With the assumption that there exists a solution for Āx = b, we can find a sub-optimal

policy x′ to achieve exactly the target distribution b (with a smaller number of transmis-

sion bits per round compared to k bits using policy x∗). The procedure to find a such

policy is described in the Relaxation Algorithm as follows.

Here are some notations that will be used in the algorithm:

• Denote ai as the column vector i in matrix A, we can see that each ai corresponds

to a subset Vi and also there are k one entries in ai:
∑m

j=1 ai(j) = k.
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• Denote ei ∈ [0, 1]m×1 as the unit vector

ei(j) =

1 where i = j

0 otherwise.

Proposition 30. If d =
(
m
k

)
then the system of linear equations Āx = b exists a solution.

Proof. See Appendix.

Note that: Proposition 30 only states one special condition to guarantee the existence

of solution to the equation Āx = b which is an important requirement that we can apply

the Relaxation Algorithm. In fact, the equation Āx = b can still have solution in other

cases as well.

Algorithm 5: Relaxation Algorithm

1. Find a solution of Āx = b, denote as x. Let N = {xi : xi < 0} be the subset

of negative entries and P = {xi : xi ≥ 0} be the subset of positive entries.

2. Find the smallest subsets S of P such that:

c =
∑
xi∈N

xiai +
∑
xi∈S

xiai ≥ 0

3. Decompose c by using the set of unit vectors {e1, e2, . . . , em}

c =
m∑
i=1

yiei

where yi ≥ 0 ∀i

4. Formulate the new policy by using yi and xi ∈ P \ S such that kyi is the

probability that ei is used (the systems only serve the service Ri) and

xi ∈ P \ S is the probability that subset Vi is used in a round.

Proposition 31. The policy formulated by the Relaxation Algorithm would achieve ex-

actly the target rate distribution b but the average transmission bits in each round would

decrease to a value that is smaller than k.
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Proof. See Appendix.

Example

Topology matrix where m = 4, n = 3.

H =


1 0 0

0 1 0

0 1 1

0 0 1


Then

A =


1 1 1

1 1 0

1 0 1

0 1 1


where rank(A) = 3. Suppose

b =
[
1/3 2/15 4/15 4/15

]T
Hence,

xLS = C−1ĀT b =
[
1/5 1/5 3/5

]T
� 0

Then xLS is the solution. However, if

b =
[
1/3 2/15 2/15 2/5

]T
Then

xLS = C−1AT b =
[
−1/3 3/5 3/5

]T
� 0

Hence, we need to solve the optimization problem. Now, we use convex solvers such as

CVX [45] and the solution is

x∗ =
[
0 1/2 1/2

]T
which produce ||Ax− b|| ≈ 0.0816.
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Since x∗ can not achieve exactly target rate distribution. We can use the above

procedure to find policy x′ from xLS . We have:

y =
[
1/3 2/15 2/15 2/5

]
The policy x′ using yi as the probability that ei is used would achieve exactly the target

rate distribution. However, the average rate of policy x′ in this case is 1 bit per round

instead of 3 bits per round (when using policy x∗).

5.7 Conclusions

In this work, we briefly introduce WiFO, a hybrid WiFi-FSO network for Gbps wire-

less local area network (WLAN) femtocells that can provide up to one Gbps per user

while maintaining seamless mobility. While typical RF femtocells are non-overlapped to

minimize inter-cell interference, there are advantages of using overlapped femtocells to

increase mobility and throughput when the number of users is small. We present LAC, a

novel coding technique used in the WiFO network that aims to increase bandwidth and

reduce interference for multiple users in a dense array of femtocells. Both theoretical

analysis and numerical experiments show orders of magnitude increase in throughput

using LAC over the basic code. In addition, we introduce Time Minimization and Rate

Allocation problem. Algorithms and solutions are also presented to verify the robustness

of LAC technique in practical scenario.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In the thesis, we study random matrices and their applications to network coding tech-

niques. In the scope of this work, network coding techniques are applied and investigated

in three different scenarios:

• Data synchronization problem. The problem of efficient data synchronization

for a large number of nodes with disparate data are introduced. We propose

two probabilistic models on how the initial fractions of packets at receivers are

distributed. These models arise naturally in many large scale systems such as Peer-

to-Peer networks, data centers, and distributed storage systems. Based on these

models, we establish probabilistic bounds and asymptotic results on the minimum

number of transmission to complete the data synchronization process. Next, we

propose and analyze a number of random network coding algorithms and verify

their performances via theoretical analysis and simulations.

• Data recovery problem. The problem of information recovery in network coding

systems is introduced. This problem arises when there is a node of the system under

malicious attack. We show that the security can be improved using Minimum Rank

Decoding Problem. In the minimum rank decoding problem, the goal is to recover

the network coded packets from a malicious attacker who randomly corrupts the

header of the packets with limited magnitude errors. We cast this problem as the

problem of rank recovery of random matrices over finite field in presence of noise.

We present some initial asymptotic results on joint distribution of weight and

rank of random matrices for simple models which are useful for the rank recovery

problem. We show that limited magnitude noise is likely not to decrease the rank

of low-rank matrices with uniformly distributed weights.

• Data transmission problem in WiFO systems. The WiFO system is intro-

duced as a hybrid WiFi-FSO network for Gbps wireless local area network (WLAN)
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femtocells that can provide up to one Gbps per user while maintaining seamless

mobility. While typical RF femtocells are non-overlapped to minimize inter-cell

interference, there are advantages of using overlapped femtocells to increase mo-

bility and throughput when the number of uses are small. We present LAC, an

instance of network coding technique used in WiFO network network that aims

to increase bandwidth and reduce interference for multiple users in a dense array

of femtocells. Both theoretical analysis and numerical experiments show orders of

magnitude increase in throughput using LAC over the basic code.

6.2 Future work

Network coding techniques and theory of random matrices will still be an attractive

topic for the research community. In this section, we would like to discuss a few research

directions that can be studied in the future:

• Random matrices While some results on the relation between rank and weight

of random matrices are introduced in our work, the research for this relation are far

from completion. The number of matrices with certain rank and certain weight or

the distribution of matrix with given rank and weight still remains an intractable

problem. Solving this problem will boost up a number of random matrices appli-

cations.

• Min rank decoding problem The min rank optimization problem in real fields

can be solved efficiently by several heuristic approaches. However, these approaches

do not perform well in the finite fields. Algorithms and solutions to the min rank

decoding problem therefore will be an interesting research problem.

• Network coding It is shown that the LAC coding can achieve the capacity of

1 bit per user which has not been proved to be the maximum capacity of WiFO

systems. Hence, we would like to extend and advance LAC coding or find other

coding techniques to increase the capacity.
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Appendix A: Proofs of Propositions and Theorems

A.1 Proof of Proposition 7

Proof. Let t
(S)
j be the random variable representing the number of time slots to collect

the j-th linearly independent packet after (j − 1) linearly independent packets has been

added to Hi (in addition to K linearly independent packets in Hi at initial). In Hi,
there are (K + j − 1) linearly independent packets so there are (FK+j−1− 1) dependent

vectors with Hi in total of (FD − 1) nonzero vectors in GF (FD).

Let p
(S)
j be the probability the j-th linearly independent packet is received at each

time slot. We have:

p
(S)
j = 1− FK+j−1 − 1

FD − 1
=
FD − FK+j−1

FD − 1

Then t
(S)
j has geometric distribution with expectation E[t

(S)
j ] = 1

p
(S)
j

and variance Var[t
(S)
j ] =

1−p(S)j

p
(S)
j

2 . Since Hi needs exactly L new linearly independent packets to be full rank, the

number of broadcasts T
(S)
i that receiver Ri can recover all D original packets is equal

the time it receives L-th new linearly independent packet:

E[T
(S)
i ] =

L∑
j=1

E[t
(S)
j ] =

L∑
j=1

1

p
(S)
j

→ E[T
(S)
i ] =

L∑
j=1

FD − 1

FD − FK+j−1
(A.1)

Also, for the variance of T
(S)
i :

Var[T
(S)
i ] =

L∑
j=1

Var[t
(S)
j ] =

L∑
j=1

1− p(S)
j

p
(S)
j

2
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→ Var[T
(S)
i ] =

L∑
j=1

(FK+j−1 − 1)(FD − 1)

(FD − FK+j−1)2
(A.2)

A.2 Proof of Proposition 8

Proof. Consider the behavior at receiver Ri, let Si be the intersection (share) set between

Hi and the union set W at the sender. We have

|Si| = |W ∩Hi| = |W|+ |Hi| − |P| = M +K −D = M − L.

We use the similar approach as in proof of Proposition 7 except that we randomly choose

non-zero vectors inW. Also in Hi, there are (M−L) packets that are linearly dependent

withW. Hence, the probability p
(I)
j that the j-th linearly independent packet is received

at Ri can be computed as follows.

p
(I)
j = 1− FM−L+j−1 − 1

FM − 1
=
FM − FM−L+j−1

FM − 1

Now, for the expectation and variance of T
(I)
i

E[T
(I)
i ] =

L∑
j=1

1

p
(I)
j

=

L∑
j=1

FM − 1

FM − FM−L+j−1
. (A.3)

Var[T
(I)
i ] =

L∑
j=1

Var[t
(I)
j ] =

L∑
j=1

1− p(I)
j

p
(I)
j

2

→ Var[T
(I)
j ] =

L∑
j=1

(FM−L+j−1 − 1)(FM − 1)

(FM − FM−L+j−1)2
. (A.4)
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A.3 Proof of Proposition 9

Proof. After each transmission, every receiver Ri recomputes its “Want” set Wi, and

then the sender recomputesW, so the cardinality M = |W| will decrease by at least one.

Let Wj be the updated union set at the sender after Ri receive the (j − 1)-th linearly

independent packets. We have |Wj | < |Wj−1| < · · · < |W1| = |W| and |Wj | = Mj ≤
M − (j − 1) = M − j + 1. Now, the intersection (share) set Si,j between Hi and the

union set Wj is Si,j . We have

|Si,j | = |Wj ∩Hi| = |Wj |+ |Wi| − |P|

= Mj +K −D = Mj − L.

Then the probability p
(R)
j such that the j-th new linearly independent packet is received

can be computed as follows.

p
(R)
j = 1− FMj−L+j−1 − 1

FMj − 1
=
FMj − FMj−(L−j+1)

FMj − 1

Consider the following function:

f(x) =
F x − F x−a

F x − 1

where a = L− j + 1 then 1 ≤ a ≤ L. We have:

f ′(x) = −(F a − 1) ln(F )F x−a

(F x − 1)2
≤ 0.

Hence, f(x) is monotonically decreasing. Since Mj ≤M − j + 1, we have:

p
(R)
j = f(Mj) ≥ f(M − j + 1) =

FM−j+1 − FM−L

FM−j+1 − 1
(A.5)

Therefore,

E[T
(R)
i ] =

L∑
j=1

1

p
(R)
j

≤
L∑
j=1

FM−j+1 − 1

FM−j+1 − FM−L
(A.6)



108

For the variance of T
(I)
i , we have

Var[T
(R)
i ] =

L∑
j=1

1− p(R)
j

p
(R)
j

2 (A.7)

Consider the following function

g(x) =
1− x
x2

We have

g′(x) =
x− 2

x3
< 0

where 0 ≤ x ≤ 1. Hence, g(x) is a monotonically decreasing function in 0 ≤ x ≤ 1.

Combine with (A.5), we have:

Var[T
(R)
i ] =

L∑
j=1

g(p
(R)
j ) ≤

L∑
j=1

(FM−j+1 − 1)(FM−L − 1)

(FM−j+1 − FM−L)2
.

A.4 Proof of Proposition 11

Proof. The proof approaches are similar for all three algorithms. Here, the general

notation Tmax can be applied to each algorithm, respectively. We have

P(Tmax > a) = 1−P(T ≤ a).

Also, P(Tmax ≤ a) = P(
⋂N
i=1 Ti ≤ a).
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Since a > µ, let a = bσ + µ where b > 0 then

P(T ≤ a) = P(
N⋂
i=1

Ti ≤ µ+ bσ)

= P(
N⋂
i=1

Ti − µ ≤ bσ)

≥ P(

N⋂
i=1

|Ti − µ| ≤ bσ)

Apply two-sided Chebyshev’s inequality withN independent random variables T1, T2, . . . , TN :

P(
N⋂
i=1

|Ti − µ| ≤ bσ) ≥
N∏
i=1

(1− 1

b2
) = (1− 1

b2
)
N

Note: the bound is only meaningful where b ≥ 1.

Hence,

P(T > a) ≤ 1− (1− 1

b2
)
N

Plug b = a−µ
σ back, we have:

P(T > a) ≤ 1− (1− σ2

(a− µ)2
)
N

(A.8)

A.5 Proof of theorem 13

Proof. Suppose row vectors of matrix X belongs to a given r-dimensional subspace W

in Fnq and these row vectors of X satisfy:

• There are ε′+1 bases of W where each base includes r linearly independent vectors

Fnq in W . Since we have the number of bases of any given subspace W is Aq(r, r),

then the number of choices is Aq(r, r)
ε′+1 [70].

• The rest (n − r(ε′ + 1)) vectors of X also belong to W and can be zero vector.

Hence, the number of choices for these vector is qn−r(ε
′+1).
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Also, the number of matrices of rank r formulated by a given subspace W is Aq(n, r).

We known that when ε′ entries of matrix X are perturbed, there exists a basis of W

that doesn’t change. Hence the rank of matrix is at least r. Therefore, we can complete

the proof.

A.6 Proof of Corollary 14

Proof. We have:

lim
n→∞

Aq(n, r)

qnr
=

i=r−1∏
i=0

(
qn − qi

qn
) (A.9)

=
i=r−1∏
i=0

(1− qi

qn
) (A.10)

= 1r (A.11)

= 1. (A.12)

This completes the proof.

A.7 Proof of Theorem 15

Proof. Suppose all the matrices have equal probability then due to [70], we have:

P(R = r) =
1

qm

∏r−1
i=0 (qn − qi)2∏r−1
i=0 (qr − qi)

Also, the expectation of weight with given rank [70]:

E[W |R = r] =
m(1− 1/q)(1− 1/qr)

(1− 1/qn)2
(A.13)

=
m(q − 1)(qr − 1)q2n−r−1

(qn − 1)2
(A.14)
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Use Markov inequality, we have:

P(W ≥ w,R = r) = P (W ≥ w|R = r)P (R = r) (A.15)

≤ E[W |R = r]

w
P (R = r) (A.16)

Plug in:

P(W ≥ w,R = r) ≤ m(q − 1)(qr − 1)q2n−r−1

w(qn − 1)2

1

qm

∏r−1
i=0 (qn − qi)2∏r−1
i=0 (qr − qi)

Hence,

C(W ≥ w,R = r) ≤ m(q − 1)(qr − 1)q2n−r−1

w(qn − 1)2

∏r−1
i=0 (qn − qi)2∏r−1
i=0 (qr − qi)

A.8 Proof of Theorem 16

Proof. Let denote P as P(rank(Y ) < rank(X0), we have

P = P(rank(Y ) < r0|w(Y ) ∈ {w0 − ε, w0 + ε}) (A.17)

=
P({rank(Y ) < r0} ∩ {w(Y ) ∈ {w0 − ε, w0 + ε})

P(w(Y ) ∈ {w0 − ε, w0 + ε})
(A.18)

=

∑w0+ε
w=w0−ε

∑r0−1
r=0 C(w, r)∑w0+ε

w0−εC(w)
(A.19)

≤
∑m

w=w0−ε
∑r0−1

r=0 C(w, r)∑w0+ε
w0−εC(w)

(A.20)

=

∑r0−1
r=0 C(W ≥ w0 − ε, r)∑w0+ε

w0−εC(w)
(A.21)

=

m
w0−ε

∑r0−1
r=0

22n

2r+1

∏r−1
i=1

(2n−2i)2

(2r−2i)∑w0+ε
w=w0−ε

(
m
w

) (A.22)
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Consider function f(x) = (2n−2x)2

(2r−2x) where n > r then we have f ′(x) > 0 for x ∈ (1, r− 1).

Then we have

A =

r−1∏
i=1

(2n − 2i)2

(2r − 2i)
(A.23)

≤ (
(2n − 2r−1)2

(2r − 2r−1)
)
r−1

(A.24)

= ((2n − 2r−1)(
2n − 2r−1

2r−1
))
r−1

(A.25)

= ((2n − 2r−1)(2n−r+1 − 1))
r−1

(A.26)

(leave 2r−1 and 1) (A.27)

< (2(2n−r+1))(r−1) (A.28)

= 22nr−r2+r−2n+r−1 (A.29)

= 22nr−2n−r2+2r−1 (A.30)

Consider:

B =

r0−1∑
r=0

22n

2r+1

r−1∏
i=1

(2n − 2i)2

(2r − 2i)
(A.31)

=

r0−1∑
r=0

22nr−r2+r−2 (A.32)

Let g(r) = 2nr − r2 + r − 2 then g′(r) = 2n− 2r + 1 > 0 for r < n, then:

B ≤ r022n(r0−1)−(r0−1)2+r0−1−2 (A.33)

= r022nr0−2n−r20+3r0−4 (A.34)

Let C =
∑w0+ε

w=w0−ε
(
m
w

)
, use the advanced Stirlings bound:

2mH(w/m)

m+ 1
≤
(
m

w

)
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Recall that:

θ =

w0−ε
m if w0 < m/2

w0+ε
m if w0 ≥ m/2

Then

C ≥ (2ε+ 1)
2mH(θ)

m+ 1

Now, we have:

P ≤ m

w0 − ε
r022nr0−2n−r20+3r0−4

(2ε+ 1)2mH(θ)

m+1

(A.35)

=
m(m+ 1)r0

32(w0 − ε)ε
1

2n
2H(θ)−2nr0+2n+r20−3r0

(A.36)

(Use: 2ε < 2ε+ 1).

Denote: α = H(θ), β = r0
n , ζ = w0

n2 , η = ε
n2 . Then α, β, ζ, η ∈ (0, 1). We have:

P ≤ 1

32(ζ − η)η

βn3(n2 + 1)

n42αn2−2nβn+2n+β2n2−3βn
(A.37)

=
β

32(ζ − η)η

n(1 + 1
n)

2(α+β2−2β)n2+(2−3β)n
(A.38)

Denote λ = β
32(ζ−η)η , γ = α+ β2 − 2β > 0, a = 2γ > 1. If then we have:

P
n→∞−−−→ λ

n

an2 (A.39)

n→∞−−−→ 0 (A.40)

A.9 Proof of Corollary 17

Proof. Since a > 1 then b > 0, we have:

an
2

= (1 + b)n
2
> bn2 (A.41)
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Then we have:

n ≥ λ

bδ
(A.42)

→ 1

bn
=

n

bn2
≤ δ

λ
(A.43)

→ n

(1 + b)n2 ≤
δ

λ
(A.44)

→ λ
n

an2 ≤ δ (A.45)

→ P = O(λ
n

an2 ) = O(δ). (A.46)

A.10 Proof of Theorem 18

Proof. X has w non-zero entries so there are at most w non-zero rows and w non-zero

columns. If we can choose all ε entries out of these non-zero rows and columns, then

matrix Y can only have greater rank than X. Hence, we have:

P (rank(Y ) ≥ rank(X)) ≥
(
m−w2

ε

)(
m
ε

) (A.47)

=
(m− w2)!(m− ε)!
m!(m− w2 − ε)!

(A.48)

=
(m− w2 − ε+ 1) . . . (m− w2)

(m− ε+ 1) . . .m
(A.49)

=
i=ε−1∏
i=0

m− w2 − i
m− i

(A.50)

=
i=ε−1∏
i=0

(1− w2

m− i
) (A.51)

≥ (1− w2

m− ε+ 1
)ε (A.52)

(A.53)

where m = n2.
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A.11 Proof of Theorem 19

Proof. For i = 1, j = 1:

Denote M1,M2, . . . ,Mn as row vector of length n of maxtrix M . These vectors Mi

need to satisfy:

• Have a non-zero vector, say Mk such that w(Mk) > 1.

• Have at least one vector Ml with l 6= k such that Ml = Mk.

• Any other vectors Mi with i /∈ {k, l} can be either zero vector or equal Mk.

For a fixed Mk, the number of n ordered vectors satisfying the above properties is

2n − n− 1.

The possible choices for Mk is: 2n − n− 1. (Total number of length n vectors minus

the number of vectors with weight of 0 and 1).

For i = 2, j = 1:

The vectors Mi need to satisfy:

• Have a pair of linearly independent vectors (M1,M2) as above.

• At least one vector M3 = M1 +M2 or another pair M3 = M1;M4 = M2

• The others can be either 0,M1,M2, (M1 +M2)

Now, let compute the number of matrices that we can formulate:

• Let t1 be the number of M1

• Let t2 be the number of M2

• Let t3 be the number of M3

• Let t4 be the number of 0

We require one of these two cases:t1 ≥ 1; t2 ≥ 1; t3 ≥ 1→
(
n
3

)
t1 ≥ 2; t2 ≥ 2; t3 = 0→

(
n−2

2

)



116

and we have:

|X 1
2 | =

∑
t1+t2+t3+t4=n

n!

t1!t2!t3!t4!

A.12 Proof of Theorem 20

Proof. In case w = r = a: we have a entries with different rows and different column. In

total, there are
(
n
a

)
possible choices of rows for a entries and another

(
n
a

)
possible choices

of columns. Also, to match row and column, there are a! possible choices. Hence, take

the product of them, we get the total number.

In case w = a+ 1; r = a: we have the same possible of choices for the first a entries.

Now, consider the last non-zero entry, it cannot have both different row and different

column as the first a entries. Hence, we have two small case.

• First, its rows and columns are both belong to the set of rows and columns of the

first a entries. Hence, we have a2 − a possible choices for this cases.

• Second, only rows or columns belong to the set of rows and columns of the first a

entries and columns or rows, respectively would be different than the first a entries.

Hence, we have 2(n− a)a possible choices. However, there would be overlapped to

choose the last entry in this area. Since the last entry can replace the entry with

the same row (or column) to form the first a entries. Hence, we need to divide the

possible choices in this case by two.

In total, the number of matrices is

(a2 − a+ (n− a)a)a!

(
n

a

)2

= (n− 1)a× a!

(
n

a

)2

A.13 Proof of Proposition 22

Proof. Since the matrix H is of rank k in GP(q) and rows u1, u2, . . . , uk are linearly

independent, the other m− k rows v1, v2, . . . , vm−k could be represented as linear com-
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binations of u1, u2, . . . , uk. In other words, for any row vi, we have:

vi =

k∑
q=1

csus, (A.54)

where cs ∈ {0, 1, 2, . . . , q − 1} and at least one of the coefficient cs’s is different from 0

since H contains no row with all zero entries. Let denote that non-zero coefficient as

cs′ . Now we just need to pick us′ to be replaced by vi and still obtain a set of linearly

independent rows. We will prove this by contradiction.

Indeed, suppose that u1, u2, . . ., us′−1, vi, us′+1, . . ., uk are not linearly independent.

As a result, since u1, u2, . . ., us′−1, us′+1, . . ., uk are linearly independent, vi could be

represented by a linear combination of u1, u2, . . ., us′−1, us′+1, . . ., uk. In other words,

vi =
∑
s 6=s′

c′sus. (A.55)

From (A.54) and (A.55), ∑k
s=1 csus =

∑
s 6=s′ c

′
sus,

⇔ cs′us′ =
∑

s 6=s′ (cs − c′s)us,

or u1, u2, . . . , uk are linearly dependent (contradiction).

A.14 Proof of Proposition 23

Proof. The average number of bits that the systems can transmit at a time (transmission

rate) using LAC is computed as follows.

E[RLAC ] = E[rank(H)] =

n∑
k=1

P(rank(H) = k)k

From [9], the expected number of linear dependencies of the rows of H in GF(q) is:

E[l(H)] =
n∑
k=1

(
n

k

)
γk(1− γ)n−k[1 + (q − 1)(1− p/γ)k]n
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where γ = 1 − 1/q with q = 2 in this case. Since l(H) = qn−rank(H) − 1 then one can

compute the approximation of expected rank of H which is the average transmission rate

(number of bits transmitted at a time) using LAC:

E[rank(H)] ≈ n− logq (E[l(H)] + 1)

A.15 Proof of Proposition 24

Proof. First, for LAC, we can transfer k bits at a time if the topology matrix H has

rank of k. Denote C(k) as the number of n × n matrix of rank k in GF(2). According

to [70], we have:

C(k) =
k−1∏
i=0

(2n − 2i)2

2k − 2i
(A.56)

Also, the total number of n× n matrix in GF(2) is 2n
2

then:

P(rank(H) = k) =
C(k)

2n2 =
1

2n2

k−1∏
i=0

(2n − 2i)2

2k − 2i
(A.57)

Therefore, the average rate (average number of bits transmitted at a time) for LAC is

shown as follows.

E[RLAC ] = E[rank(H)] =

n∑
k=1

k ×P(rank(H = k))

=
1

2n2

n∑
k=1

k

k−1∏
i=0

(2n − 2i)2

2k − 2i

Now, the probability that the matrix H is invertible [67] is:

P(rank(H) = n) = (1− 2−n) . . . (1− 2−2)(1− 2−1)

=

n∏
i=1

(1− 1

2i
) (A.58)
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Interestingly, in [67], one can show that

lim
n→∞

P(rank(H) = n) ≈ 0.289 (A.59)

A.16 Proof of Proposition 25

Proof. Now, we compute the average rate for BC. The system can transmit k bits if there

are k receivers located in k non-overlapped regions and in each of these k regions there

is only one receiver. As a result, the topology matrix H would have k “1” entries such

that each entry of these k entries is the only non-zero entry in its row and its column.

Denote D(k) as the number of n× n matrices in GF(2) that have at least k “1” entries

satisfying the condition. Hence, we have:

D(k) = k!

(
n

k

)2

2(n−k)2 (A.60)

for k = 1, . . . , n and D(n + 1) = 0. Then, the number of matrices in GF(2) that have

exactly k entries satisfying the condition is D(k)−D(k+ 1). Therefore, the average rate

could be computed as

E[RBC ] =
1

2n2

n∑
k=1

(D(k)−D(k + 1))k =
1

2n2

n∑
k=1

D(k) (A.61)
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A.17 Proof of Proposition 26

Proof. ∑
i

bi =
∑
i

(Āx)i (A.62)

=
1

k

∑
i

∑
j

xjAij (A.63)

=
1

k

∑
j

xj
∑
i

Aij (A.64)

=
∑
j

xj (A.65)

and since ∑
i

bi = 1

This completes the proof.

A.18 Proof of Proposition 30

Proof. We will prove that from the set of column in matrix Ā, we can formulate a vector

space of rank d.

First, based on the set {a1, a2, . . . , ad}, we can form the set of vector hi = ei −
ei+1 ∀i = 1, . . . , d − 1. Now, formulate a matrix B from the set of d − 1 vectors

{h1, h2, . . . , hd−1} and one vector al in the set {a1, a2, . . . , ad} such that al(m) = 1

as the row vectors of B, we have:

B =



1 −1 0 . . . . . . 0

0 1 −1 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 −1 0

0 . . . . . . 0 1 −1

1 . . . 0 . . . . . . 1


Using Gaussian elimination, all the entries of the last row can be zero out except for the
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last entry Bd,d. Now we have the new matrix:

B′ =



1 −1 0 . . . . . . 0

0 1 −1 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 −1 0

0 . . . . . . 0 1 −1

0 . . . . . . . . . 0 1


Since matrix B′ is in the upper triangular form, we can see that det(B) = 1 so B′ is

a full rank matrix or rank(B′) = d. On the other hand, matrix B′ will have the same

rank as matrix B since Gaussian elimination doesn’t change the rank of matrix. Hence,

rank(B) = d. Therefore, rank(Ā) = d.

Since d ≥ m and rank(Ā) = m, the systems of linear equations Āx = b always exists

a solution.

A.19 Proof of Proposition 31

Proof. Since

c =
∑
xi∈N

xiai +
∑
xi∈S

xiai

and

c =

m∑
i=1

yiei

Then
m∑
i=1

yiei +
∑

xi∈P\S

xi = b

Also the target rate distribution is achieved and the average transmission bits per round

is:
m∑
i=1

kyi + k
∑

xi∈P\S

xi = k(
1

k
(
∑
xi∈N

xi +
∑
xi∈S

xi) +
∑

xi∈P\S

xi) < k
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follows from ∑
xi∈N

xi +
∑
xi∈S

xi +
∑

xi∈P\S

xi = 1

and
m∑
i=1

yi =
1

k
(
∑
xi∈N

xi +
∑
xi∈S

xi).




