AN EXPERIMENTAL NONDESTRUCTIVE METHOD
FOR DETERMINING THE BUCKLING LOAD OF A COLUMN
WITH ARBITRARY END CONDITIONS
by

ROBERT LYLE BALCH, JH.

A THESIS
submitted to
OREGON STATE COLLEZE

in partial fulfillment of
the requirements for the
degree of
MASTER OF SCIENCE

June 1959



APPROVED:

Redacted for privacy

TInstructor of Aeronauticel Engilneering

In Charge of Major

Redacted for privacy

Chalrman of Department of Mechanlcal Eng.

Redacted for privacy

Chalrman of School Graduste Committee

Redacted for privacy

"Dean of _raduate School

Date thesis is presented |= [ e—ou ber <

Typed by Lilah N. Potter



TABLE

INTRODUCTION « » o o o o &

Object.......
’.}eneral.......

DESCRIPTION OF EQUIPMENT AND TiSTS ., .

OF CONTENTS

* * L] L] L] *

Description of Test Columms . . .
Description of Test Instrumentation
Description of Test Procedure . .

RESULTS AND DISCUSSION ., .

GCeneral Discussion .

L] L 4 s [ ] L ] L

L] ° ® L] L] L

Discussion of Pin-Ended Columns .
Discussion of Elastically Restrained Columns
Discussion of Fixed-inded Columns .

CONCLUSION & o ¢ o ¢ o o @
BIBLIOGRAPHY & ¢ o o o o o
APPENDIX o o o o o ¢ o o @

Notation .+« ¢« « o &

Derivation of the Euler

L) L e L ° L]

] L] L] L] . .

L L] L] L] [ ] .

.

Load Formuls

[ L] * * L

L] L]

® L] * Ld L]

L] L] . *

Derivation of Differentlal Equation of a

Vibrating Columm

Enerpgy Methods Analysis . . « « &
Computation of Critical Loads , .

LIST

Figure

OF FICURES

L] L] L L L]

L d . L d - L

l. Theoretical Plot of Frequency Squared Versus

Axial Load for & Pin-Ended Columm

2. Steel Bars Used to Construct the Test Columns

3. Details of the Basic

Colurmms , .

. . * L] L]

Page

Page

6
7



Figure Page
. Basic Column End Conditions « « o ¢ « ¢ « o o« &
S Details of the Elastic Restraint Jig .« ¢« .« & 9
6., Types of Columns Tested . « o ¢« o o o ¢« o » « 10
7« Column Testing Apparatus o+ « « « o ¢ o o o o 1l
8. Experimental Results for Pin-Ended Colums . 15
9. Experimental Results for Elastic Ended Columms 16

10, Experimental Results for Fix-Ended Columms . 17
11, Critical Loads for the Pin-Ended Columms . . 19

12, Critical Loads for the Elastically Restrained
COlumaouoo-.o-ooo-oooooot20

13, Critical Loads for the Fix-Ended Colurms . . 21



AN EXPERIMENTAL NONDESTRUCTIVE METHOD
FOR DETERMINING THE BUCKLING LOAD OF A COLUMN
WITH ARBITRARY END CONDITIONS

INTRODUCTION

Object

The computation of the critical load of an axially
loaded column has always been a difficult problem., The
classical method of approaching a stability problem of
this kind is to write the differential equation of the
problem, find the general solution, and solve for the
elgenvalues corresponding to the buckling loads by sub-
stitution of the boundary values. For several reasons,
which will be discussed later, this method does not give
satisfactory results., It becomes necessary, then, to
look for another method of determining the critical load
of a column.

- There appears to be a relationship between the
frequepcy of vibration of a column, the axial load on the
columm, and the critical load of the colurm. This relatime
ship is
w'= w; (/- 75) >
where w 18 the frequency of vibration, w,the natural fre-
quency of vibration, £ the axial load, and /A, the critical
load of the column. The application of this relationship
to the problem of finding the critical load of a column



will be the subject of this discussion, In general, the
columns under discussion will be limited to those that
carry an axlial compressive load only and have a slender-
ness ratio sufficiently large to classify as a "long
column." There are no restrictions on the end conditions
of the column, however, and it need not be of constant

cross section along 1ts length,
General

In 1757 Fuler considered the case of a pin-ended column
of uniform cross section, and found the critical load to be
represented by the equation

s TEL
The derivat;pn of this equation is given in the appendix,
as it represents the classical method of approaching a
column problem. ZXuler extended this equation to other
than pine-ended colurms by multiplying the right-hand side
by a constant which was a function of the end conditions.
One pgreat disadvantage of this equation, and of any other
theoretical equation, is that the end conditions of the
colum must be known. The difficulty arises from the fact
that in actual practice, these end conditions are extremely
difficult to determine. As every theoretical equation for
determinine the critical load of a column has this dis-

advantage, it would seem that a simple, non-destructive



experimental method for finding the critical load would
be quite valuable.

The relationship between frequency of vibration and
axial load can be found by first considerins the differ-
ential equation of a vibrating column. This equation is
derived in the appendix, assuming very small deflections
so that linear theory may be used, and 1s found to be

o £ Ly _ea oY
6x4 EL ox* T ET J7*

for a column of constant cross section, By the separation
of variables technique, the equation of X as a function

of x is

% p X, A
ax* Tz gxt T 7 wWX=0 -

It can be proven that sinfx i1s a solution to this
equation which meets the boundary values for a pin-ended
column, Substituting this solution into the differential
equation, the following relationship between load and

frequency of vibration is obtalned.

B~ L=

Rearransing, and substitutine the value of the natural
frequenecy, «, , for a pin-ended column, the final relation-

ship obtained 1is

2.: (_U,;(/'— /—é—f-—)
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It must be remembeored that this relationship was obtained
by considerins the simple case of a pin-ended column with
e constant cross sectlon,

The mathematics involved prohibit obtainin- this
relationship for more complex columns, A close invest=-
igation of the relationship between frequency of vibration
and axial load will indicate that & plot of frequency of
vibration squared versus axial load will be a straight
line with negative slope, as shown in fi~rure 1. It is
important to notice that the intercept of the straight
line on the abscissa is the critical load, and the inter-
cept on the ordinate 1s the square of the natural

frequency.

Figure 1

Theoretical Plot of Frequency “"quared Versus Axial Load
For a Pineinded Column
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In an effort to determine whether or not the above
relationship between frequency of vibration and axial
load 1s a relationship that is true in general, the
problem was attacked by means of the energy methods. The
results seemed to indicate that the relationship was gen-
eral, but as the energy methods will only yield approximate
solutions, the results were not conclusive. They were en=-
couraging, however, and three different steel bars were
built with five different end conditions available for
each, Out of this assortment, eleven columns were cone-
structed and tested., It is important to note at this point
that of the eleven columns tested, the experimental data
from every columm plotted in a stralght line simllar to
that shown in figure 1, This is quite significant, sas
meny of the columns had a cross section that varlied along
the column, and the end conditions covered the complete

range from the fixed-ended to the pin-ended conditions.

DESCRIPTION OF EQUIPMENT AND TukSTS

Description of Test Columms

The colurns that were used in the tests were made up
of steel bars with various end conditions affixed to them,
as was mentlioned previously. Figure 2 shows a picture of

these three bars, and they are drawn to scale in figure 3.



Figure 2

Steel Bars Used to Construct the Test Columns

All three bars are o? cold-rolled steel, with the ends
milled semi-circular and case~hardened to prevent local
crushing. Bar number one is a simple bar of constant cross
section, Bar number two has an abrupt change in its cross
section one-third of the way along 1ts length, while bar
number three tapers toward both ends from a maximum width
In the center. All three bars have approximately the same

overall dimenslons because of certain limltations of the
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test equipment available.
The three basic end‘conditions that were used in the

tests are shown in filgure L. End condition number one

Figure I

Basic Colurm End Conditions

represents a simple pin-ended conficuration, and was the
reason for milling and case~hardening the ends of the bars.
End condition number two represents a fixed-ended con-
dition. It 1s obtained by clamping small vises to both
ends of the bars, thus restrictins the ends of the bars
against rotation while they are loaded in compression in
a testing machine. This condition can be combined with

end condltion number one, giving a column with one end
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fixed and one end pinned. End condition number three is
used in the simulation of an elastically restralned
column, in which the moment on the end of the column is
proportional to the slope at that point for small de-
flections of the column. Two sets of sprinrs were used
in the jig, which cave two constants of proportionality
between the slope and moment., The jisg used for this
purpose is shown in detail in figure 5. The combinations
of steel bars and end conditions that were tested are

listed in fizure 6,

TYPE OF BAR END CONDITION

Uniform Cross Section Pinned
Pinned-Fixed
Fixed
Elastic (two spring constants)

Stepped Column Pinned
Fixed
Elastic (one spring constant)

Tapered Column Pinned
Fixed
Elastlic (one spring constant)

Ficure 6

Types of Columns Tested

Description of Test Instrumentation

In order to investicate the relationship between
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axial load and frequency of vibration, 1t is necessary to
measure in some manner both the axial compressive load on
the column and the frequency of vibration of the column.
These measurements should be as accurate as possible, and
should not interfere with the free vibration of the column,
The test apparatus that was used to accomplish this is

shown in Tisure 7.

Figure 7

Column Testing Apparatus
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The‘columns were loaded in compression on a Tinius
Olsen 30,000 pound testins machine, the compressive loads
being read directly from the machine. The Tinius Olsen
machine has three load ranges available, of which the
0-3000 pound and the 0-15000 pound ranges were used, de-
pending on the estimated critical load of the column being
tested. Calibration data on the testing machine indicates
that it 1s reliable to within about 2% of the dial reading
on the 3000 pound load ranze, and to within about 0.6% of
the dial readinc on the 15000 pound range.

The frequency of vibration of the column beings tested
was picked up by means of two Baldwin SRel, electric resis-
tance strain gages mounted on both sides of the column et
the midpoint of its length. The oscillating current out-
put of these gares was amplified by a Sanborn Strailn Gage
Amplifier, and then used to drive a Sanborn Recorder. As
the output speed of the recorder paper was known, the
frequency could be counted over a relatively longs period
of time. This mesns of measuring frequency can be con-

sidered accurate to within 0.75% of the readin-.

Description of Test Procedure

The actual test procedure used was quite simple. The
column under investication was placed in the Tinius Olsen

testing machine as shown in fisure 7, and the leads from
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the straln gages attached to the strain gage amplifier on
the strain gace recorder. The recorder was then turned

on and the colurm struck with a hammer. This gave & re-
cording of the vibration of the colurn for several seconds.
The axlal compressive load on the column was then ine
creased, and the procedure repeated. This series of steps
was repeated for each columm tested, the only variation
being in the setting up of the various end conditions.

The pin-ended columms were simply set in the testing
machine and given a slizht compressive load to hold them
in place., The semi-circular case-hardened ends minimized
any frictional resistance to rotation caused by the come
pressive load. All three steel bars were tested on the
3000 pound rance of the testins machine with this end
condition,

The fixed=ended condlitlion was simulated by clamping
small bench vises to the ends of the columns, as was
mentioned previously. For this series of tests, the 15000
pound range of the testin~ machine was utilized for all
three steel bars., In order to investigate the effects of
unsymmetrical end conditions, the steel bar with constant
cross section (#1) was tested with one end pinned and one
end fixed.

The simulatlion of an elastically restrained end in-

volved the construction of a simple jig, shown in detall
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in figure 5. This jig was first used in conjunction with
the constant cross section column with & spring constant
of 70 pounds per inch. It was found that this end con-
dition did not change the critical load of the column
appreciably from the pin-ended confiruration, and the
springs were replaced with a new set, which had a spring

constant of 160 pounds per inch,

RESULTS AND DISCUSSION

General Discussion

In an investigation of the relationship between fre-
quency of vibration and axial load the 1deal approach
would be to consider the differential equation of a
vibratinz column, and determine theoretically the relation-
ship between w’ and ~ without imposing end conditions.
The nature of differential equations prohibits this, how=-
ever, at least by ordinary mathematical procedures. By
utilizines the Rayleipgh Enercy Method, the relatlonship 1n
question may be approximated for several cases as shown
on pages 31-35 in the appendix. In an effort to sube-
stantiate and enlarge upon the results of the energy method,
the relationship between frequency of vibration and axial
load was experimentally determined for eleven colurms, and

the results plotted in figures 8, 9, and 10.
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A study of these fipures will lmmedlately show that
the columms that were tested did obey a linear relation-
ship between «’ and #, at least over part of the rance
of # . A further study will also show that the frequency
tends to increase at the hicher values of A, This
characteristic 1s especially noticeable in the case of
the column of uniform cross section. The experimental
data for this column elso seems to fall away from the
linear relationship at the hicher values of qu, a phen=
omenon that does not appesar in the data from the other
colums. In regard to the high values of wW’ at the higher
loads, two basic assumptions should be considered., The
column was assumed to be initlally stralght, and the
vibration was assumed to be In the fundamental mode, In
the normal range of loading the first assumption has very
little effect, and the second assumption 1s valid., As the
axial compressive load approaches the critical load, how=-
ever, the column may start to deform, due to a small
eccentricity, either in the column itself or in the manner
of loading, When this happens thg vibrating colurm no
longer has enough lnertia force along its lenzth to vibrate
in the fundamental mode, and thus becins to vibrate in a
higher mode to one side of the unloaded position.

It should also be mentloned at this point that although

all of the columns seem to obey the same linear
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relationship, the slope of the straight line 1s not the

same for 211 cases,

Discuseion of Pin-Ended Columns

The experimental eritical load for the pin-ended
columns teken from figure 8 compares favorably with theory.
The experimental and theoretical critical loads for the

pin~-ended case are shown in figure 1l.

Column Experimental £, (1Db) Theoretical Z- (1b)
Uniform 1580 1465
Stepped 1390 1320
Tapered 1310 1360
Figure 11

Critical Loads for the Pin-Ended Columns

Figure 11 indicates that there was some frictional
resistance to rotation at the ends of the columns allowing
the columns to sustain a slightly higher lcad than they
would in the ideally pin-ended case. This was also in-
dicated in the actual testing of the pin-ended columns,
Although the ends of the columns were case-hardened to
prevent crushing, the loa51ng surfaces on the testing
machine were not, and the columns actually pressed a very

slight groove in the loading surfaces. The presence of
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the grooves would certainly indicate that a small amount

of end-fixity 1s present.

Discussion of ilastically Restrained Colummns

The tests of the elastically restrained columns show
an increase of between 25% and 277 in the critical load
over the pin-ended case. The critical loads could not be
determined readily by theoretical means, but the experi-
mental results are certainly reasonable and consistent
with the pinned-ended and fixed=-ended cases. The experi-
mentel results for the elastically restrained columns are

shown in figure 12. It should be noted that there are

Column Experimental
Critical load (1b)
Uniform 1650
Uniform 1950
Stepped 1870
Tapered 1690
Fipure 12

Critical Loads for the Elastically
Restrained Columns

two curves for a uniform cross section columm at this end
condition., The lower curve 1s from the first test using

the elastic restraint jig, in which the springs in the jig



had a spring constant of 70 pounds per inch. It was found
that this did not raise the critical load from that ob-
tained for the pin-ended case by a significant amount, s0
a stiffer set of springs with a spring constant of 160
pounds per inch was substituted, The other three curves

were obtained using the stiff springs.

Discussion of Fixed-inded Columns

The test results for the fix-ended columns are shown
in figure 13. The uniform cross section column experi~
nentally shows a critical load of 6700 pounds, correspond-

ing to a theoretical critical load of 6640 pounds. This

Column Experimental A (1b) Theoretical A+ (1b)
Uniform 6300 6640
Stepped 5850 "
Tapered 5850 o
Figure 13

Critical Loads for the Fix-Inded Column

is reasonable, as the small bench vises that were used
certainly were not infinitely rigid, although they were
reasonably close. It is interesting to note that the

stepped and tapered columns have approximately the same

eritical load for this end condition Apparently fix-ended
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columns are not sensitive to changes in cross section
near the ends, as they are held rigid at that point, but
are quite sensitive to the amount of metal near the cen-
ter of the column. It is certainly obvious that in the
case of the fix-ended columns, the portion of the column
near the ends will be deflected only slightly, therefore
both the inertia force term and the Py term in the basic
differential equation will be small and that portion of
the column will contribute little to the stability of the
column.

There is an additional curve on figure 10 that is
not, strictly speaking, a fix-ended column, in that it
is fixed on one end and pinned on the other. This column
was made up, using the uniform cross section steel bar,
in order to investigate the effects of unsymmetrical end
conditions. The column exhibits in general the same
characteristics as the other test columns, and agrees
quite well with theory, the experimental critical load
being about 3150 pounds and the theoretical critical load
3215 pounds. Apparently the slight friction on the pinned
end compensates for the lack of complete rigidity at the
fixed end.
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CONCLUSION

The immediate conclusions that can be drawn from
this investigatlon are:

l. The critical load of a homozenous, long
slender column may be found by measurinz the frew-
quency of vibration of the column at two or more
values of axlal load. This data is then plotted in
the form @® versus F and a straizht line drawn
through the experimental points. The intercept of
this line on the P-axis 1s then the critical load
of the column.

2. This method will work for a column which is
elastically restralned at the ends, the dezree of
end-f1xity bein» anywhere from the completely pinned
to the completely fixed condition,

3., This method will work for columms of varye-
ing cross section as well as for columns of uniform
cross section.

L. It is possible to determine the critical
load of a column after it has been fastened to its
surroundins structure, by the use of strain gaces or
similar transducers to measure both the frequency of

vibration and the axial load,
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It 1s felt that the columns that were tested were
representative of the creat majority of colurms in actusl
engineering applications., The accuracy of the results
was somewhat limlited by the test equipment available, but

if this 1s kept in mind, the results are quite wvalid,
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Notation

The followines symbols and subscripts are used

throughout this thesils,

~

N oM R

V&

Axial compressive force

Length of a column

Bending moment

Modulus of elasticity

Least moment of inertia of cross section of
column

Distance measured &long centroid of cross section
of unloaded column

Distance from x-axis to centroild of cross section

of loaded column

e

Mass density of material in column
Cross sectional area of column

Frequency of vibration
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q Inertia force per unit length
4 Strain energy
VA Kinetic energy of vibration
I Bessel function of the first kind of order z
Y Bessel function of the second kind of order z
Subscripts
n Natural frequency
< Critical load
b Energy due to bending
Energy due to axial load
" Energy due to end moments

Derivation of the Euler Load Forrula

Consider a pine-ended column as shown.

Assuming small deflections, a homogenous material, and an
initially straight colurm, the moment differential

equation 1is
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Iy oM _ P
dx? ~ £71 T £

Substituting r*- ;g , the equation may be written

Z

dy - =
sz+/f"/ o

The solution to this equation is well known, and is
Y = A sinkx + G cos#x
The constants A and B must be determined from the end

conditions, which are

Y=o af x=cfL &

Substituting the first end condition,
O =ApsnetBcasel 4
therefore B = 0. Substituting the second end condition,
O= Al snkL
As setting A = O would lead to a trivial solution, sin#
must be zero. The only way for this to occur, however,

is for &< to equal a multiple of 7 .,
[L:VE—Q = hr

This may be written

which, for the critical load, reduces to

riEr
fer = —zz

It may be shown that for a column pinned on one end and
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fixed on the other,

z
Py = za}czv

7

eand for a column fixed at both ends,

1
pp= AL E2 3::52

Derivation of Differential Equation
of Vibrating Column
Assume & pln-ended, homogenous column of constant

cross section, with small deflectlons.

From elementary strength of materisals,

= —p .
EYJXZ Py

If the column is vibrating laterally, so that there is an

inertia force acting along its length,

f]‘j"‘xlz:‘/’y*m

where m 1s the moment caused by the inertia of the columm.

Differentiating twice,

& V-, d%
d EJ?%)—_J’Jﬂ hR4

where ¢ 1is the inertia force of the column per unit length,
2

Y
FA:—,—, -
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For a prismatic homogenous colurm, the equation reduces

to

\\U
Y
~

'y
2

£
& 50 B

Q/I

Derivation of the Critical Load-Frequency
Relationship

Assuming & solution to the above equation of the form
y=XwT7» ,
and assuming periodic vibrations, such that
Tw= sinwt ,
by substitution,

XSmcu?‘+£X sinawl = — ‘u.iﬂw’ .

Rewriting,

w
£ A
X"EIX'EI‘" o .

A solution to this equation is
X: Su'ﬁgx &
By substitution, elimineting sin terms,
174 V4 n‘ ‘FA
(T')+Ef(f =~ Ffz
Substituting the value of the natural frequency, w, , the

following 1s obtained.
wls w,f (/_ P/ﬁ')
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Energy Methods Analysis

The above relationship may be found by Rayleigh's
Approximation Method for a fixed-ended colurm &nd a canti-
lever column quite readily. The Rayleigh Method may also
be applied to the case of & column with elastically re=-
strained ends. The solution for a fixed-ended column 1s
given below.

Consider a homozenous columm bullt in at both ends,

and initielly perfectly straight,
AY

R e -
g "= . : '

>

Rayleigh's Method conslists basically of assuming a de-
flection curve for the columm, and then equatine the
potential and kinetlc energy of the column,

For the column 1llustrated above, the strain energy

of bending is

The strain enercy caused by the axial force is
_ Jdr\?
Vo=~ 7)) dx

and the kinetic energy of vibration is
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Equating the potential and kinetic energy,
L
Z
a Ji J,;:Q}L/}ﬂJx

Assuming

v=v[l- cosEx]

by substitution,

L L
73 ¢
£1 |y 75 cos'fx d - ffzzﬁ} S ¢ d
o

L
:(wz[);’z[/-ca.sizrx] Jdx .

This reduces to
2
w'= 2 E) faez(F)- P ]
or

ws (‘.??;I[ /’éfj ‘

The above expression 1s about 1.3% in error if the

relationship
A
W= il (1- Y, )

is true in pgeneral. As the Rayleigh Method 1s an approx-
imation method, 1.3% is well within the possible accuracy
of the analysis.

Using & procedure similar to that outlined above, the
relationship between frequency and critical load for a

cantilever column can be found to be within a few percent
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of
wh= w:(/'. P/loer) *

Again, the error 1s well within that which might be
expected of the approximation method.
Consider now the case of & column with elastic end

restreints, as shown below.

For an elastic restraint on the ends, the moment on the

ends of the column will be assumed to be

M‘-‘/”-‘{—]@/ 7

%=0
where , 1s an arbitrary constant, depending on the stiff-
ness of the end restraints, For this case, In addition to
the strain energy of bending and strain energy of come
pression, there will be an additional potential energy
term due to the moment on the ends of the column. This
term 1is

Vin =2MH¥) %{%[)x -

The energy balance equation for this case is then

L
d5 4
-;z](f) n— L[l e 27 E (L)

= Fz-ngyzdx .
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If the assumption is made that
Y= sinfx o
substitution in the energy balance equation yields

g’ p ot AN
r i i R R s s el

Rearranginc the equatlon,

W= E‘J(T/ _[ar} 6’[';;:(-2)1

or

w? (ﬂ(é’ﬂrr v 7)) - 1[”] p .

Rewriting,
Z
s HE)[ Earer) -]

This equation can be put in the form
Z_ 7)%E 2, O
i 2@iE T~ G ]

A close Investigation of this equation will show that 1t
is very similar to the previously derived relatlonships
between frequency of vibration and axial load., Un=
fortunately, the mathemetics involved prohibit the cal=-
culation of %+ for an elasticelly restrained column in
general,

The form

(¢77+ u?) %’

is of the form that A+ could be expected to be in., It
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should be noted that if the elastic restraint, /7 , 1s
allowed to approach zero, the term becomes the critical
load for a pin-ended column. As the elastic restraints
become stiffer, the term increases, as would be expected

of the critical load,.

Computation of Critical Loads

The calculation of critical loads in the case of a
column of constant cross section 1is quite simple if the
end conditions are known,

Colurm of uniform cross section:

Pinned-ended colurn?
[= 3;-8//

£7= 19./7x w0t w”

_Er _ (@ (19.1x00%)
fi= G o flllitingl]

/2 G5 5% = (4¢5 /4,

Pinned-fixed ended column:
= 7¢.¢ "
EZ= /%% 6

4
£y = L“if%z':‘@”qéﬁthﬁiiu= 32/5 16,

(39-&/*
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Fixed=ended colummt
L=33.7"
£FI=19.7x10 16"

R = 4’;?’ ={”¢(7éf)7()€l) = 6640 1b.

No attempt will be made here to "guess" the values of end-
fixity for the elastically restrained columns., It is
possible to compute the critical load directly from the
deflection equation, knowing the end conditions. It bee
comes quite tedious, however, and as the lencths of the
columns are not readily determined beceause of the elastic
restraint jig that was used, the calculated critical load
is not of great value.

Colurmn with stepped cross section:

The calculation of the critical load for the stepped
column becomes extremely complex mathematically for other
than the pin-ended case., The pin-ended case may be
handled in a fairly straightforward way, however, and 1s
a pood example of the approach that is necessary in the
more complex columm problems.

From the physical dimensions of the column, &8s shown
on pare 7, the stiffness of the wide portion of the columm

1s 3/2 the stiffness of the narrow portion, or £Z-Zrz, .
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Likewise, the length of the wider portion is 2/3 the total

length of the column.,

Li=% ¢
///_—- o
[ —
J
S~ ET,
( L - |
R
—< = = L —

The end conditions for the column are:

2
Y:ofa'_/;{:o al )’:o’L &

The moment curve of the column mey be represented by two

differential equatlions,

2.
o€ X< [: f]j’+Px=o

‘l

2
(€ X<SL: Ejj/;é*/oh“-o
The solutions to these equations are:
Y, = C, 5nkx+ Czcoshx 9

V2= C35 'wlix + C¢ coslx -

The arbitrary constants can be evaluated by substituting
the end conditions, and all but one eliminated. A4s y-%
at x=( , the equations may be set equal to each other,

and the final constant eliminated, leaving the following
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elgenfunction:

[i fdalﬁl/ _ _ Tan fi L B )
kel Tan [z L /] Jan (] + lan 4, 74/7//2[,]— o

This may be simplified to
Bn [la(t-1)] = }/@ Fomf? »

As the physical relationships between (/. and L {4 are
known, this equation may be solved graphically. The lowest
elgenvalue may be found to be [f4=Z2-777:

The critical load is then
£l

Fer = (2. 773)17— = (320 lP.

Column with tapered cross section:

The tapered column is extremely difficult to handle
theoretically, but the critical load for the pinned-eﬁded
case can be found in the following manner.

Consider a column as shown?

Z J
L) [ ﬁ(—f

Ly

N

¢ L” Ll s

The moment of inertia 1s a function of the distance along
the column, and is represented by

Jo—zl b T
7=2,- 2 =L -Lax

A4
where as ~77 -
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The differential equation of the column 1s then

EL (- a&) ~ff§

Making the variable change » the equation 1s

V4
dy . F
“dertazEm v =0 -

From (2,13), the solution to this equation is

Y= AvIx T () « pyYIR YL E)

Substituting the end conditions y-o at xs=o and.ﬁ&§=d
at x=L , the constants 4 and F may be evaluated.

Making the substitutions
- ﬁ-’&i; 2 F ‘lét.g,(L 'L) 7

The eigenfunction that is obtalned is

e o we)-ve

J(7) IR
Using the relationship
J == J (N 4
The eigenfunction takes the form
5 NE = -0 IE -

By graphiecal methods, the solution to this equation may be

found to be £ -7¢7-.
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Writing this equation in the form
7P
Vazzlat) =767 5

The critical load is found to be
Ay = 340 /6 .

This 1s the critical lozd for a tapered column pinned on
one end and fixed on the other. To find the critical load
for 2 c¢olumn pinned on both ends, an effective column

length may be used.
L7

It may be seen that Le=- 2L
The length of the column appears squared in the denom-
inator of the critic=l 1oad‘equation.

o &-z)?

= *Z; =

Substituting the new column length, (. , for (¢ , the
effect 18 to multiply the critical load by a factor of 4.
The critical 1oad for the pinned-ended column used in the

teste 1s then fov = (3CO 1b.



