
:4 

AN EXPRINENTAL NONDESTFUCTIVE FTHOD 
FOR DETEININ'r THE BUCKLIIfl LOAD OF A COLUI 

WITH ARBITRARY END CONDITICS 

by 

ROBiRT LThf BALCH, J. 

A TIfaSIS 

submitted to 

ORPflON STATL COLLEE 

in partial fulfillment of 
the requirements for the 

deçree of 

MASTÌR OI SCIENCE 

June 199 



APPROVED: 

Redacted for privacy 
Instructor of nautloil. inineering 

In Charre of Major 

Redacted for privacy 

Chairman of Department o! Mechanical Enn. 

Redacted for privacy 

Chairman of School Graduate Coriii1ttee 

Redacted for privacy 
Dean of 'raduate School 

Date thesis is presented 

Typed by Lilah N. Potter 



TABLE OF CONTENTS 

Pa g e 

INTRODUCTION . . . . . . . . . . . . . . . . . . . i 

Object . . . , . , . . . . . . . . . 

enoral . . . . . . . . . . . . 2 

DESCRIPTION OF UIPPi.NT AND TSTS . . . . . 

Description of Test Columns . . . . . . . . . 

Description of Test Instrumentation . . . a 10 
Description of Test Procedure . . . . . . . . 12 

RESULTS ANDDISCUSSION . . . . . . . . . . . . 

General Discussion . . , , . . a . . . . . . lL 

Discussion of Pin-L.nded Columns . a . . a i i 19 
Discussion of Elastically Restrained Columns 20 
Discussion of Fixed.-Ended Columns . . . . . . 21 

CONCLIJSION . . . . . . . . . . . . i . . i 23 

BIBLIO1RAPHY . . . . . . . . , a . . a , . . a 2 

APPENDIX. . . . . . . . a i . . . . . 26 

Notation . . . 

Derivation of the Luler 
Derivation of Different 

Vibratjn Column 
Lnerry Tetiods Analysis 
Computation of Critical 

i i i a i i i i i i . 26 
Load Formula i i . 27 
Lai iquation of a 

. i i q i i s i s e 29 
i i i i s i i a i a a 31 
Loads . i a i i a a 35 

LIST OF FflURES 

Fir'ure Pare 

1. Theoretical Plot of Frequency Squared Versus 
Axial Load for a Pin-Ended Column . . . 

2. Steel Bars Used to Construct the Test Columns 6 

3. Details of the Basic Columns . . . 7 



Fjrure Pare 

)4. Basic Column nd Conditions . . . . . . . . . O 

. Details of the Liastic iestraint Jiç . s 9 

6. Types of Columns Tested . . . . . . . . . . . 10 

7. Column Testjri - Apparatus a . a a a . s s a a 11 

f3. Experimental esu1t$ for Pln-Lnded Columns . 1 

9. i:xperimenta1 Fesu1ts for Elastic nded Columns 16 

10. Experimental Re8ults for Fix-nded Columns . 17 

11. CrItical Loads for the P1n-]nded Co1uins . . 19 

12. CrItical Loads for the Elastically restrained 
C oluTnns . . , . . . . . . . . . . a a a 20 

13. CrItical Loads for the Fix-Ended Colurins . . 21 



AN EXPERIMENTAL NONDLSTRUCTIV ?THOD 
FOR DETEI1INING THL BUCKLING LOAD OF A COLUNN 

WITH ARflITiAY END CONDITIONS 

INTRODUCTION 

Ob j e C t 

The computation of the critical load of an axially 
loaded column has always been a difficult problem. The 

classical method of approachinc a stability problem of 

this kind is to write the differential equation of the 

problem, find the general solution, and solve for the 

eirenvalues correapondinr to the buck1inr loads by sub- 

stitution of the boundary values. For several reasons, 

which will be discussed later, this method does not cive 

satisfactory results. It becomes necessary, then, to 

look for another method of determlninc' the critical load 

of a column. 

There appears to he a relationship between the 

frequency of vibration of a column, the axial load on the 

column, and the critical load of the column. This relatim- 

ship is zz(/_) 

where w is the frequency of vibration, Wthe natural fre- 

quency of vibration, P the aXial load, and ñ- the critical 

load of the column. The application of this relationship 

to the problem of findinr the critical load of a column 
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will be the subject of this discussion. In renerai, the 

columns under discussion will be limited to those that 

carry an axial compressive load only and have a slender- 

ness ratio sufficiently lar'e to classify as a "long 

column." There are no restrictions on the end conditions 

of the column, however, and it need not he of constant 

cross section a1on its lenrth. 

Ceneral 

In 177 Fuler considered the case of a pin-ended column 

of uniform cross sectIon, and found the critical load to be 

represented by the equation 

D _ zEI 
I_ct- 

The derivation of this equation is iveri in the appendix, 

as it represents the classical method of approaching a 

column problem. Juler extended this equation to other 

than pin-ended columns by rnultiplyinr the rit-ht-hand side 

by a constant which was a function of the end conditions. 

One rreat djsadvantae of this equation, and of any other 

theoretical equation, is that the end conditions of the 

column must be known. The difficulty arises from the fact 

that In actual praettee, these end conditions are extremely 

difficult to determine. As every theoretical equation for 

deterrnininr' the critical load of a column has this dig- 

advantae, it would seem that a simple, non-destructive 
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experimental iiiethod for findlnr the critical load would 

be quito valuable. 

The relatlonehip between frequency of' vibration and 

axial load can be found by first considerin the differ- 

ential equation of a vihratin column. This equation is 

derived in the appendix, assuinin' very small deflections 

so that linear theory may he used, and is found to be 

- EI 

for a column of constant cross section. By the separation 

of variables technique, the equation of X as a function 

of x is 

of X 
X o 

It can be proven that sinFx is a solution to this 

equation which meets the boundary values for a pin-.ended 

column. Substitutinç this solution into the differential 
equation, the fo1lowin relationship between load and 

frequency of vibration is obtained. 

zfl 4 
'L/ fl(h/ f1 

Rearran1ncr, and suhstitutin the value of the natural 

frequency, , for a pin-ended column, the final relation- 

ship obtained is 

2, lfj P 
ci_1 UJ,7(1p / ci- 



It must be rernombc.red that this relationship was obtained 

by considerin the simple case of a pin-ended column with 

a constant cross section. 

The mathematics involved prohibit obtainLn this 

relatiorìzhp for more complex columns. A close invest- 

iration of the relationship between frequency of vibration 

and axial load will indicate that a plot of frequency of 

vibration squared versus axial load will he a strairht 

line with necative slope, as shown in fiure 1. It is 

important to notice that the intercept of the straiht 

line on the abscissa is the crItical load, and the inter- 

cept on the ordinate is the square of the natural 

frequency. 

o 
I', 

Figure 1 

Theoretical Plot of Fretuency quared Versus Axial Load 
For a Pin-Ended Column 



In an effort to determine whether or not the abOVe 

relationship between frequencr of vibration and axial 

load is a roltiotship that is true in enora1, the 

prohleni wa attacked by means of the energy methods. The 

results 3eemed to indicate that the relationship was ren- 

erci, but as the enerry methods will only yield approximate 

solutiona, the resulte wore not conclusive. ThEy were en- 

courazinc, however, and three different steel barS were 

built with five different end conditions available for 

each. Out of this assortment, eleven columns were con- 

structed and tested. It is important to note at this poInt 

that of the eleven columns tested, the experimental date 

from every colurrnì plotted in a straicht line similar to 

that shown in fic7ure 1. T'ris is quite sinificant, as 

many of the coluris had a cross section that varied along 

the column, and the end conditions covered the complete 

range from the fixed-ended to the pin-ended conditions. 

DESCRIPTION OF EUI?I4E'NT AND ThSTS 

Description of Test Columns 

The columns that were used in the tests were made up 

of steel bars with various end conditIons affixed to then, 

as was mentioned previously. Figure 2 shows a picture of 

these three bars, and they are drawn to scale in fiure 3 



6 

¡2 3 

F1pre 2 

Steel Bars Used to Construct the Test Columns 

All three bars are of cold-rolled steel, with the ends 

milled cerril-circular and case-hardened to prevent local 

crushiric. Bar number one is a simple bar of constant cross 

section. Bar number two has an abrupt chanç-e in Its cross 

section one-third of the way aion its lenth, while bar 

number three tapers toward both ends from a maximum width 

in the center. All three bars have approximately the same 

overall dimensions because of certain limitations of the 
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test equipment available. 

The three basic end conditions that were used in the 

tests are shown in fiure Li.. End condition number one 

Fiç,ire L 

Basic Colurrni End Conditions 

represents a simple pin-ended confiuration, and was the 

reason för r' i1lin and case-hardeninc the ends of the bars. 

End condition nunihor two represents a fixed-ended con- 

dition, It is obtained by ciampinc' small VISØS to both 

ends of the bars, thus restrictin the ends of the bars 

arainst rotation while they are loaded in compression in 

a testjn machjnè, This condition can be con;bined with 

end condition number one, rivin;? a column with one end 
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Fnjre 5 

Detì tr nf' tE :; ìti J1p 
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fixed and one end pinned. End condition number three is 

used in the simulation of an elastically restrained 

column, in which the moment on the end of the column is 

proportional to the slope at that point for small de- 

flections of the column. Two sets of sprins were used 

in the jic, which cavo two constants of proportionality 

between the slope and moment. The ji used for this 

purpose is shown in detail in fi7uro . The combinations 

of steel bars and end conditions that were tested are 

listed in fi'ure 6, 

TYPE OF BAR END CONDITION 

Uniform Cross Section Pinned 
Pinned-Fixed 
Fixed 
Elastic (two sprint constants) 

Stopped Column Pinned 
Fixed 
Elastic (one sprinr constant) 

Tapered Column Pinned 
Fixed 
Elastic (one sprinc constant) 

Fj-ure 6 

Types of Columns Tested 

Description of Test Instrumentation 

In order to investiate the relationship between 
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axial load and frequencí of vibration, it is necessary to 

noasure in some manner both the axial compressive load on 

the column and the frequency of vibration of the column. 

These measurements should he as accurate as possible, and 

should not interfere with the free vibration of the column. 

The test apparatus that was used to accomplish this is 

shown in i'ure 7. 

Fi-ure 7 

Column Testin Apparatus 
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The co1urns were loaded In compression on a Tinius 

Olsen 30,000 pound testin' machine, the compressive loads 

belnrr read directly from the maciine. The Tinius Olsen 

machine has three load ranes available, of which the 

O-3000 pound and the 0-10O0 pound ranres wore used, de- 

pendinc on the estimated critical load of the column being 

testad. Calibration data on the testin- machine Indicates 

that it is reliable to within about 2 of the dial readinç 

on the 3000 pound load rano, and to within about 0.6 of 

the dial readir on the 1O00 pound ranre. 

The frequency of vibration of the column bein tested 

was picked up by means of two Baldwin 3d-14. electric reali- 

tance strain rares mounted on both sides of the colunri et 

the midpoint of its lencrth. The osol1latin current out- 

put of these aes was amplified by a Sanhorn Strain Oae 

Amplifier, and then used to drive a Sanhorn Recorder. As 

the output speed of the recorder paper was knowfl, th 

frequency could be counted over a relatively lon period 

of time. This means of measurinr frequency can ho con- 

sidered accurate to within 0.7v of the readin. 

Description of Test Procedure 

The actual test procedure used was quite siliple. The 

column under invostiation was placed in the Tinius Olsen 

testlníT machine as shown in fi'ure 7, and the leads from 
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the strain aes attached to the strain íace amplifier on 

the strain ao recorder. The recorder W8 thon turned 

on and the column struck with a harrer. This rave a re- 

cordin: of the vibration of the oo1urn for several seconds. 

Tue axial compreseive load on the column was then in- 

creased, and the procedure repeated. This series of steps 

was repeated for each column tested, the only variation 

beinr in the settinç up of the various end conditions, 

The pin-ended columns were simply set in the testing 

machine and 'iven a sliht compressive load to hold them 

in place. The semi-circular case-hardened ends minimized 

any frictional resistance to rotation causer by the cam- 

pressive load. ll three steel bars were tested on the 

3000 pound ran'e of the testth:. machine with this end 

condì t ion, 

The fixed-ended condition was simulated by ciampin 

small hencb vises to the ends of the colurns, as was 

mentioned previously. For this series of tests, the l000 

pound rance of the testin machine was utilized for all 

three steel bars, In order to investiate the effects of 

unsymmetrical end conditions, the steel bar with constant 

cross section (i) was tested with one end pinned and one 

end fixed. 

The simulation of an elastca1ly restrained end in- 

volved the construction of a sImple ji, shown in detail 
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in figure . This jig- was first used in conjunction with 

the constant cross section column with a sprin constant 

of 70 pounds per inch. It was found that this end con- 

dition did not change the critical load of the column 

appreciably from the pin-ended confiruration, and the 

sprin-s were replaced with a new set, which had a sprinc 

constant of 160 pounds per inch. 

FSULTS AND DISCUSSION 

General Discussion 

In an investi'ation of the relationship between fre- 

quency of vibration and axial load the ideal approach 

would he to consider the differential equation of a 

vibratin column, and determine theoretically the relation- 

ship between W2 and P without 1mposin end conditions. 

The nature of differential equations prohibits this, how- 

ever, at least by ordinary mathematical procedures. By 

utilizin the ìay1eigh Enercy Nethod, the relationship in 

question may he approximated for several cases as shown 

on paces 1-35 in the appendix. In an effort to sub- 

stantiate and enlaree upon the results of the encrr'y method, 

the relationship between frequency of vibration and axial 

load was experimontalir determined for eleven columns, and 

the results plotted in firures 8, 9, and 10. 
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A study of these firures will immediately show that 

the columns that were tested did obey a linear relation- 

ship between cii' and P , at least over part of the rano 

of P A further study will also show that the frequency 

tends to increase at the hiher values of P This 

characteristic is especially noticeable in the case of 

the colunn of uniform cross section. The experimental 

data for this coluru also seems to fall away from the 

linear relationship at tiie hiher values of W, a pheri- 

omenon that does not appear in the data fron the other 

colinrns. In re:ard to the hic'h values of W2at the hiher 

loads, two basic assumptions should be con8ldered. The 

column was assumed to he initially straiht, and the 

vibration was assumed to he in the fundamental node0 In 

the normal ranre of loadinr the first assuription has very 

little effect, and the second assumption is valid. As the 

axial corpressivo load approaches the critical load, how- 

ever, the colunin may start to deform, due to a small 

eccentricity, either in the colu!i n itself or in the manner 

of loadin When this happens the vibratin column no 

lancer has enou;Th inertia force alonc- its lenth to vibrate 

in the fundamental mode, and thus heins to vibrate in a 

higher mode to one side of the unloaded position. 

It should also he rientioned at this point that althourh 

all of the columns seem to obej the same linear 
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relationchip, the slope of the straight Une is not the 

sane for 11 cases. 

Discussion of Fin-Ended Columns 

The experiienta1 critica], load for the pin-ended 

columns taken fron figure 8 co-pares favorably with theory. 

The eerinental and theoretical critical loads for the 

pin-ended case are shown in iEure 11. 

Colu'n Eperirntal / (lb) Theoretica1J'-(lb) 

Uniform 15a0 165 
Stepped 1390 1320 
Tapered 1310 1360 

Figure li 

Critic'1 Loads for the iin-inded Columns 

Figure li indicatec that there s some frictional 

resistance to rotation at the ends of the columns a1lowin, 

the colu'ms to sustain .. s1ibtly hlrther 1od than they 

would in the ideally pin-ended case. This was also in- 

dlcated in the actual testinz of the pin-ended columns. 

Althourh the ends of the columns were case-hardened to 

prevent crushing, the loading surfaces on the testing 

machine were not, an the columns 'ctual1y pressed a very 

slirht groove in the 1oain surfaces. The presence of 



the grooves would certainly indicate that a small amount 

of end-fixity is present. 

Discussion of lastica11y Iestrained Columns 

The tests of the elastically restrained columns show 

an increase of between 2 and 27 in the crItical load 

over the pin-ended case. The critical loads could not be 

determined readily by theoretical means, ut the oxper- 

mental results are certainly reasonable and consistent 

with the pinned-ended and fixed-ended cases. The experi- 

mental results for the elastically restrained columns are 

shown in f i:uro 12. It should be noted that there are 

Column Experimental 
Critical load (lb) 

Uniform 16O 
Uniform 19O 
Stepped 1370 
Tapered 1690 

Firure 12 

Critical Loads for the Elastically 
Restrained Columns 

two curves for a uniform cross section co1urn at this end 

condition. The lower curve is from the first test using 

the elastic restraint ji, in whIch the sprinca in the jig 
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had. a spring constant of 70 pounds per inch4 It was found 

that this did not raise the critical load from ths.t ob- 

tained for the pin-ended case by a sinificent amount, so 

a stiffer set of springs with a spring constant of 160 

pounds per inch was substituted. The other three curves 

rere obtained using the stiff springs. 

Discussion of Fixed-Ended Columns 

The test results for the fix-ended columns are shown 

in Ligure 13. The uniform cross section column experi- 

mentally shows a critical 1oa3 of 600 pounds, correspond- 

Ing to a theoretical critical load of 66'-i-O pounds. This 

Column Experimental , (lb) Theoretical /- (lb) 

Uniform 6300 6640 
Stepped 5850 -- 
Tapered 850 -- 

Figure 13 

Critical Loads for the Fix-Ended Column 

is reasonable, as the small bench vises that were used 

certainly were not infinitely rigid, although they were 

reasonably close. It is interesting to note that the 

stepped and tapered columns have approximately the same 

critical load for this endcondition. Apparently fix-ended 
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colmrins are not sensitive to changes in cross section 

near the ends, as they are held rigid at that point, but 

are guite sensitive to the amount of metal near the cen- 

ter of the column. It is certainly obvious that in the 

case of the fix-ended columns, the portion of the column 

near the ends will be deflected only slightly, therefore 

both the inertia force term and the Py term in the basic 

differential equation will be snail and that portion of 

the column will contribute little to the stability of the 

column. 

There is an additional curve on figure 10 that is 

not, strictly speaking, a fix-ended column, in that it 

is fixed on one end. and pinned on the other. This column 

was made up, using the uniform cross section steel bar, 

in order to investigate the effects of unsymmetrical end. 

conditions. The column exhibits in general the same 

characteristics as the other test columns, and agrees 

quite well with theory, the experimental critical load 

being about 3150 pounds and the theoretical critical load 

3215 pounds. Apparentlythe slight friction on the pinned 

end compensates for the lack of complete rigidity at the 

fixed end. 
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CONCLUSION 

The immediate conclusions that can be drawn from 

this investipat1on are: 

1. The critical load of a homoenous, long 

slender column may be found by measurin. the fra.. 

quenoy of vibration of the column at two or more 

values of axial load. This data is then plotted in 

the form Go versus P and a straiht line drawn 

throuRh the experimental points. The intercept of 

this line on the Paxis is then the critical load 

of the column. 

2. This method will work for a column whIch is 

ela3tically restrained at the ends, the deree of 

end-f ixity hein' anywhere from the completely pinned 

to the completely fixed condition. 

3, This metb.od will work for columns of vary- 

Ing cross section as well as for columns of uniform 

cross section. 

¿. It is possible to determine the critical 

load of a column after it has been fastened to its 

surroundin" structure, by the use of strain FaTes or 

similar transducers to measure both the frequency of 

vibration and the axial load. 
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It is felt that the colurins that were tested were 

representative of the rreut ulajorlty of colurìns in ctua1 

enineerin applications. The accuracj of the results 
was somewhat 1iiited by the test equìpnent available, but 

if this is kept in mind, the results are quite valid. 



2 

BIBLIO IÁPHY 

1. Den Hartor, J. P. ?'iechanical vibrations. Lth od. 
New York, Ic}raw-IIil1, 191.7. L73 p. 

2. Erdelyi, Arthur al. Hichor transcendental 
functions. Vol, 2. New York, IcGraw-IIili, i93. 
381 p. 

3. Jahnke, Eugene and Fritz Emde. Tables of functions. 
Lth od. New York, Dover Publications, l9L. 29 p. 

11.. Lune, Harold. A note on t}ie bucklinc of struts, 
Journal of Royal Aeronautical Society :8l9. l9l. 

. Perry, David J. Aircraft structures. New York, 
craw..Hi11, l9O. 6o p. 

6. Popov, E. P. Mechanics of materials. Now York, 
Prentice-Hall, l93. L35 p. 

7. Sechier, Ernest E. ElastIcity in enineerinc'. 
Now York, Wiley, 192. 143 p. 

8. Tthoshonko, S. Theory of elastic stability. Now York, 
Mc3raw-Hill, 1936. p. 

9, Timoshonko, S. Vibration problems in enineering. 
3d ed. New York, Van Nostrand, l9. L6i p. 





26 

Notation 

The followin symbols and subscripts are used 

throughout this thesis. 

P Axial compressive force 
L Lencrth of a column 

M Bondjn moment 

E Ìodu1us of elasticity 

I Least moment of inertia of cross section of 

co lumrì 

x Distance measured alon centroid of cross section 

of unloaded column 

Y Distance from x-axis to centroid of cross section 

of loaded column 

Li 

-L a 

T Vaau,. 

k 

f' Mass density of material in column 

A Cross sectional sea of column 

w Frequency of vibration 
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Inertia force per unit length 

V Strain energy 

T Kinetic energy of vibration 

j Bessel function of t first kind of order z 

Bessel function of the second kind of order z 

Subscripts 

I? Natural frequ 

cI. Critical load 

Energy due to 

P Energy due to 

Energy due to 

ency 

hendin 

axial load 

end moments 

Derivation of the luler i.oad Formula 

Consider a pin-ended column as shown. 

Ï P 
!/ (I 

X 

i, 'rn 

f, 

Assuminp small deflections, a homogenous material, and an 

initially stralrht column, the moment differential 

equation is 



- 
dK2 

Substituting ft - , the equation may be written 

z 
- 

cl Kz 

The solution to this equation is well known, and. is 

A mkK - ¿5' cQst,k 

The constants A and B must be determined from the end 

conditions, which are 

Substituting the first end condition, 

Q ,4 5(a)1- 8 CojtJ 

therefore B = O. Substituting the second end condition, 

Q = /J s/nfl 

As setting A = O would lead to a trivial solution, sinkz 

must be zero. The only way for this to occur, however, 

is for ti to equal a multiple of lt 

ñLiÇÇ frj7T 

This may be written 

which, for the critical load, reduces to 

Z 

It may be shown that for a column pinned on one end and 



fixed on the other, 

and for a column fixed at both ends, 

¿2 

Derivation of Differential Equation 
of Vibrating Column 

Assume a pin-ended, homorenous column of constant 

cross section, with small deflections. 

j 

From elementary strenth of materials, 

If the column is vibratinc laterally, so that there is an 

inertia force actinr along its lonth, 

E1Lz=pr1 ,v 

where M is the moment caused by the inertia of the column. 

Differentiatinç twice, 

(EJLJ- a 
d2 c/Ka _/jl * 

where is the inertia force of the column per unit length, 

' n 
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For a prismatic homoenous column, the equation reduces 

to 
4 2 

p C)V_eA à2>' 

Derivation of the Critical Load-Frequency 
Relationship 

A3suxjnF a solution to the above equation of the form 

: Xcxflt , 

and assuminp periodic vibrations, such that 

by substitution, 

Rewritinp, 

T'= Siflwt 

xlF cjA suJ 
EZ 

À solution to this equation is 

E )Ç5.'frx - 

fly substitution, eliminatins. sin terms, 

(L) Ej 

Subst1tutinp the value of the natural frequency, w, , the 

following is obtained, 
'UI- lui_ Pj - 

¿r 
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Thery ethods Analysis 

The above relationship may be found by :ayleirh's 

Approximation }'ethod for a fixed-ended colum and a canti- 

lever column quite readily. The !aylei-h I1ethod may also 

be applied to the case of a column with elastically re- 

strained ends. The solution for a fixed-ended co1urn is 

'iven below. 

Consider a homoenous column built in at both ends, 

and initially perfectly atrai::ht. 

4:::Tc1:uiuiITTTTTT-:H 

Ray1eich's Method consists basically of assurriinr a de- 

flection curve for the column, and then equatin- the 

potential and kinetic energy of the column. 

For the column illustrated above, the strain ener'y 

of bendin is 
t 

=4f(/ì)2cI 

The strain enery caused by the axial force is 

V ,0 
21c11( 

dI 

and the kinetic enercy of vibration is 

T - 

(L2JZ 



Lquatinp the potential and kinetic enercy, 

L 

o D O 

Asgumjn 

yz[/_ (05JX] 

by substitution, 
¿ 

d 5h2 :í?; 

0 0 

(wzf2[( coxJ d 

This reduces to 

or 

3e 

iCéZr1 
L 

The above expression is about 1.3% in error if the 

relationship 

(i - 
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is true in enera1. As the ayleich Nethod is an approx- 

iniation method, 1.3 is well within the possible accuracy 

of the analysis. 

Usirv a prccedure similar to that outlined above, the 

relationship between frequency and critical load for a 

cantilever colurrn can he found to he within a few percen.t 
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of 

W1W2(I') 

Again, the error is well within that which micht be 

expected of the approximation method. 

Consider now the case of a colurn with alastic end 

restraints, as shown below. 

For an elastic restraint on the ends, the moment on the 

ends of the column will be assumed to be 

I 

where j-' is an arbitrary constant, depertdin on the stiff- 

ness of the end restraints, For this case, in addition to 

the strain enerry of hendin and strain enerry of corn- 

pres'ion, there will he ari additional potential onerry 

term due to the moment on the ends of the coluirn. This 

term is 

Vør çyi = 2P() u/ L 

The enorry balance equation for this case is then 

Zr'z(7 
2 j(z 2 

C Q 

: Zfyzd 



It the assumption is made that 

)' 
SihjL , 

substitution in the energy balance equation yields 

17 

2 - 
4114:7 

-. 
¿ 

Rearranth the equation, 

4 tr 

or 

Rewritinc, 

w 

'(J= 

This equation can he put in the form 

P W2 (J(ff)[f «ejq] e '- 

A close investiration of this equation will show that it 

is very similar to the previously derived relationships 

between frequency of vibration and axial load. TJn- 

fortunately, the matheatics involved prohibit the cal- 

culation of / for an elastically restrained column in 

Reneral. 

The form 

(8/7-t v-) 

is of the form that f could ho expected to he In. It 
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should be noted that if the elastic restraint, 1 , is 

allowed to approach zero, the tern becomes the critical 

load for a pin-ended column. As the elastic restraints 

become stiffer, the term increases, as would be expected 

of the critical load. 

Computation of Critical Loads 

The calculation of critical loads in the case of a 

column of constant cross section is quite simple if the 

end conditions are known, 

Column of uniform cross section: 

Finned-ended column: 

3ç.g 

/q / x /Ú 1g" 

- Tt'E,r (î)(/,,vo5 
Id. - 2 1 #(5 lé 

Pinned-fixed ended column: 

I= 

tZz- /''./X(Q4 
j/( 

2 PÈT - 32/i-/6. &_Jz 
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Fjxecl-ended column: 

L= 33.7" 

EI ¡q.i-ic / 

/b 4TJ .8&)EZ C4o Ib. ¿2 (337)Z 

No attempt will be made here to "ruess the values of end- 

fixity for the elasticallj restratned eolumn. It is 

possible to conipute the critical load directly from the 

deflection equation, knowin the end condItns. It be- 

comes quite tedious, however, and as the lenc.,ths of the 

columns are not readily determined because of the elastic 

restraint jir that was used, the calculated critical load 

is not of :reat value. 

Column with stepped cross section: 

The calculation of the critIcal load for the s bopped 

column becomes extremely complex mtheniatieally for other 

than the pin-ended case. The pin-ended case may be 

handled in a fairly straihtforwrd way, however, and is 

a ç ood example of the approacli that is necessarj in the 

more complex column problems. 

Fromthe physical dimenstons of i;he column, as shown 

on pa'e 7, the stiffness of the wide portion of the colur 

is 3/2 the stiffness of the narrow portion, or 
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Likewise, the lenFth of the wider pprtion is 2/3 the total 

lenr.th of the column. 

L, - ¿ 

E; 

h ------------- 
------ L 

The end conditions for the column are: 

Y:Q(ß0 zt'o,L - 

The roment curve of the column may he represented by two 

differential equations. 

oXL 
dir Z 

+py2 o 1Ç-L 

The solutions to these equations are: 

y, = C, 5ikc C2 CO5fri. 

Y2 (3 5,ii ¡IX + C 0.5/1% - 

The arbitrary constants can be evaluated by substitutinp. 

the end conditions, and all but one eliminated. Às -> 

at X=L , the equations may be set equal to each other, 

and the final constant eliminated, leavinr the following. 



eipenfunction: 

- /] - Tatt, T7//]o - 
/ui taM/fL Tn((i 

This may be simplified to 

As the physical relationships beteen/çn and /Z are 

known, this equation may be solved graphically. The lowest 

eienvalue may be found to be iVL =27? 

The critical load is thon 

ft (z. ?78) -/2C /k 7r- 

Column with tapered cross section: 
The tapered column la extremely difficult to handle 

theoretically, but the critical load for the pinned-ended 

case can be found in the following manner. 

Consider a column as shown: 

The moment of inertia is a function of the distance along 

the column, nnd is renresented by 

z=2,- Jo___= L Lx 
-'4 -/' 

where -TL 
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The differential equation of the column is then 

Making the variable ohane , the equation is 

¡2 

i + 
d2 zEZ0f - 

From (2,13), the solution to this equation is 

Y = A -Ii: Ji + ß 

5ubst1tutin the end conditions y= at o and 

at L , the constants .4 and. ¿9 may be evaluated. 
Making the substitutions 

T-1E 
7 

The eienfunction that is obtained Is 

J,(7T) 

UsinE the relationship 

j_1a:i - 7;ß/ 

The elgenfunction takes the form 

n)',) (r_y,(r)() - 

By raphica1 methods, the solution to this equation may be 

founi to be t'=t- 
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Writing this equation in the form 

= 7(, 

The critic9l lo is found to be 

= 340 / 

This is the critical load for a tapered column pinned on 

one end an fixed on the other, To find the critical load 

for column pinned on both ends, an effective column 

lonRth may be used. 

T__ 
¿C ,, 

It may be seen that Le 2L 

The length of the column appears scuared in the denom- 

inator of the criticl load eauation. 

z 

Subetitutin the new column lenpth, ¿ , for L , the 

effect is to multiply the critic .. 1 load by a factor of 4. 

The critical load for the pinned-ended column used in the 

tests is then 
/fr:: /3Q/4. 


