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within a group but possibly varies among groups.
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A BAYESIAN APPROACH TO NONRESPONSE
IN SAMPLE SURVEYS

I. INTRODUCTION

In this chapter we first introduce the fixed finite population

model of Godambe (1955). We then give the Bayesian approach to

finite population inference as proposed by Ericson (1969). Finally,

we consider a problem of nonresponse in sample surveys and mention

previous solutions.

1.1. Fixed Finite Population Model

According to Cassel, Sgrndal and Wretman (1977), "The

essence of survey sampling consists of the selection of a part of a

finite collection of units, followed by the making of statements about

the entire collection on the basis of the selected part. " Different

models, or frameworks of inference, have been proposed to aid in

the "making of statements" about a finite population based on observ-

ing a portion of that population. One of the most basic, a fixed finite

population model, is due essentially to Godambe (1955) with later

refinements by Godambe and others. This basic model has become a

point of departure for many writers; see, for example, review papers

by Basu (1971), J. N. K. Rao (1975) and Solomon and Zacks (1970). We

list in this section the basic features of this model.



Consider a finite collection (population), U, of N identi-

fiable units where N is known and finite. An identifiable unit is a

physical entity which can be located and uniquely labeled. This

identifiability is a feature which separates survey sampling from

traditional statistical inference. It allows us to choose our own

sampling design (described later). Without loss of generality,

assume the units in U are labeled so that U = {1, 2, ... , N}.

Assume there is a characteristic of interest associated with

each unit and that the value of this characteristic is denoted by y.

for j E U. Let y = (yi, y2, , yN)'. Then the vector y is

2

called a parameter of the finite population. We denote the parameter

space by O. Frequently, S2 = IRN, the N-dimensional Euclidean

space.

An important element of the fixed finite population model is the

sample design, (6, 4)( )), where 6 is the set of all possible

samples from U and where 4 : [0, 1] is such that

05) = 1. The value of 4(5) for 5 E 16 assigns the probability
5E6

of choosing the sample 5. The sample design plays a major role

in making and justifying inferences under this model. A particular

design is called noninformative if the function 4:( ) is independent

of y.
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A data point, d6, corresponding to a sample 6 E A is

given by d6 = {(j, j E 6). The sample space then is

{d6:6EL,yES2}.

The likelihood function for this fixed finite population model was

first considered by Godambe (1966). For a given sample 6 E

and a data point d
5, the value of the likelihood function at the

parameter value

where

Ld (y)
6

y E is

(HO, y E SZd

6

otherwise

d
= {y = (y . . . y )' E : y0 equals the

6 1
0 0 ON 0.

observed value . for all j E 6}.
yJ

Thus, the likelihood function is "flat." It is 4(6) over the region

S.-2d and is zero elsewhere. Some methods of traditional statistical
b

inference (e.g. maximum likelihood estimation) fail to give useful

results.

1 2. Superpopulation Models and the Bayesian Approach

In contrast to the fixed finite population model where the

parameter vector y is considered to be a fixed point in

superpopulation models assume that y = (y1, y2, , yN)1 is a
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realization of a vector random variable Y = (Y1 , Y2' . . . YN)°. The

joint probability distribution of Yi, Y2, in 3RN, YN is denoted

by .

The superpopulation concept has been the subject of much recent

discussion ranging from distrust of model-based inference (e.g.

Neyman (1971)) to the opinion that such inference is almost necessary

(e. g. Royall (1971)). While may reflect prior subjective belief

about Y as in the Bayesian approach, its interpretation can be

completely non-Bayesian (Royall (1971)). For example, the finite

population U may be thought of as being randomly drawn from some

larger universe (the " superpopulation") or might model some

random mechanism in the real world (e.g. econometric modeling).

We will now develop the Bayesian approach, following Ericson

(1969). Assuming a noninformative design, the resulting inference

will be independent of the design ( , ( )) used to select the sample.

Let f(Y) denote the prior density of Y with respect to

Lebesgue measure in IRN. The function f( ) is arrived at by

standard Bayesian methods of assessing prior subjective belief about

Y.

Note.. The notation, f(Y), will be used throughout this thesis

in place of the more common notation f . The collection of symbols,

f(Y), is the name of a function; the probability density of the random

vector Y. No symbol for an argument appears, even when f(Y)
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appears on the left hand side of an equation, and say,
1 2/2exp{- 2 Y } appears on the right. Also, whenever it is clear

from the context that a particular density is continuous or discrete,

explicit mention will not be made.

For any 5 E , let 5* := U\ 5 be the set complement of 5

in U. That is, 5* is the set of units in U not included in the

sample, 5.

Assume (A, 4( )) is noninformative. The likelihood for Y

is given by (1. 1.1). Thus, the posterior density for Y given d

is

05)f(Y), Y E Std

0, otherwise.

(1.2. 1)

Since (A , 0 )) is noninformative, the reciprocal of the omitted

proportionality constant is

5)f(Y)dY = cl)(5) .cf(Y)dY (1. 2. 2)

where YS* is the subvector of Y corresponding to units in

and where integration is over {Y5* : Yk E IR for k E 5*}. Then

5f(y)dY5* is simply the marginal density, f(Y5), of the subvector,

Yo, which corresponds to units in 6. Thus, (1.2.2) becomes

6*
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544.(6)f(y)dY5* (1)(5)f(X5) (1. 2. 3)

Expressions (1.2.1) and (1.2.3) combine to give

f (Y ,1/41Y8), Y E Std

f(Y I d )
5

(1. 2. 4)

otherwise

f(Y)
since f(Y

6
1 Y

5
) :=

f(Y )
. Notice that 41( ) does not play a role---*

--5
in Bayesian inference about Y, since that inference is based

entirely on the posterior distribution of Y given the data.

This lack of dependence on the particular random sampling plan

for selecting a sample 6 should not be mistaken to imply that the

Bayesian approach has no place for random sampling. Some form of

random sampling may indeed be employed to help insure the validity

of the superpopulation model being used. However, this randomiza-

tion does not play the direct role in inference that it plays under the

fixed finite population model.

Suppose we are interested in predicting the value of the popula-

tion total, T, where

j=1



As is well known, the Bayesian inference under squared error loss

simply involves finding the posterior mean of T given the data

and any known parameters; see, for example, Godambe (1969). The
ABayes predictor of T under squared error loss is thus T where

T := Y + E[ Yk dol .

E 8 k E 8*

1.3. Nonresponse Problem and Hansen-Hurwitz Sampling

7

(1.2.5)

A common method of administering a sample survey of a human

population makes use of a printed questionnaire that is mailed to

every unit (person) in the sample. Each sampled person is asked to

write his or her value of Hy 11 on the questionnaire and return the

completed questionnaire to the survey organization.

A growing problem in such surveys is that not all persons

sampled actually respond to the survey. Studies by statisticians and

non-statisticians alike have attempted to identify methods of eliciting

a high degree of response; see, for example, Kanuk and Berenson

(1975). However, in most postal surveys there is some portion of

the sample that does not respond. The problem is that an unknown

bias, a "nonresponse bias," may be involved if we assume that those

responding are representative of the combined total of respondents

and nonrespondents.
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A commonly used technique for obtaining information about

nonrespondents employs a Hansen-Hurwitz sampling plan; see Hansen

and Hurwitz (1946). The procedure is to mail questionnaires in

excess of the number expected to be returned and to follow up by sub-

sampling the nonrespondents by some more costly method (e. g.

telephone calls, personal interviews, use of rewards) which provides

complete response from the subsampled nonrespondents. Hansen-

Hurwitz sampling thus allows for the economy of a postal survey

while providing some information about possible nonresponse bias.

1.4. Previous Approaches

The literature contains many ideas for reducing, estimating and

adjusting for nonresponse bias in survey sampling. Two recent

review papers are those of Kanuk and Berenson (1975) and Armstrong

and Overton (1977). Most of these approaches have assumed a fixed

finite population model and have used the concepts of that model to

justify inferences. Some approaches have utilized a Hansen-Hurwitz

sampling plan; others have not.

One of the most basic approaches was proposed by Hansen and

Hurwitz (1946) themselves. They suggest estimation of the population

total after subsampling nonrespondents by multiplying the estimated

population mean by the population size, N. The population mean is

estimated by a weighted sum of the sample means for respondents and
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nonrespondents, the weights being the proportions of respondents and

nonrespondents in the original sample. This estimator is "design

unbiased"; that is, its expected value over all 8 E A is equal to the

true population total.

Ericson (19E7) has proposed a similar estimator in a Bayesian

setting using squared error loss. Instead of using the sample means

for respondents and nonrespondents, his method uses posterior esti-

mates of the population means for respondents and nonrespondents.

These estimates are often close to the sample means, but they adjust

for the effect of prior assumptions.

A more recent Bayesian approach by Singh and Sedransk (1975)

is similar to the vork presented in Chapters II and III in that auxiliary

information is used in a regression setting to improve the Bayes esti-

mates of unknown parameters in the model. However, Sedransk and

Singh concentrate on estimating regression coefficients and assume

that all members of a population respond with the same probability.

The present work has the goal of predicting the population total when

probabilities of response possibly vary.

Another Bayesian approach can be found in Rubin (1977). This

author also makes use of auxiliary information, but he does not make

inferences about the entire population. Instead, he provides subjec-

tive probability interval estimates for a statistic which would have

been calculated and used if there had been no nonresponse.
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1. 5. Preview of Thesis

This thesis presents a Bayesian approach to the nonresponse

problem of Section 1. 3. We will assume that useful auxiliary informa-

tion is available about every unit in the population and that response

probabilities possibly vary for different units. Our goal is to predict

the population total for some characteristic of interest.

We will develop models and derive Bayes predictors under

squared error loss in Chapters II and III. In Chapter II we assume

that the precisions (or, equivalently, the variances) of the response

variables for respondents and nonrespondents are known. In Chapter

III we relax this assumption. Chapter IV contains results for the

special case of regression through the origin. A simple simulation

example there suggests a convenient approximation to the posterior

density function of Chapter II.
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II. A BAYESIAN APPROACH: PRECISIONS KNOWN

In this chapter we will formally model the situation described

in Chapter I and then analyze the model from a Bayesian point of view.

2.1. Specification of Model and Prior Density Function

Consider a finite population, U, of N identifiable units

where N is a known positive integer. An identifiable unit is a

physical entity which can be uniquely identified and labeled. Some

common examples include the population of all 1979 Oregon annual

resident angling permit holders and the population consisting of all

United States counties having at least one public health clinic on

December 31, 1978. In the first example the physical entities are

humans while the units are geographic areas in the second example.

The listing of units and/or unit labels is often referred to as the

frame or sampling frame.

Suppose the units in U are grouped into g groups,

1 < g < N, so that there are n. units in group i, i = 1, 2, ... , g.

Without loss of generality we can assume the units in U are labeled

as

U = 1/11,21,22,...,2n
2
,..., gl, g2,...,gn }

where N =

i=1

and where the unit labeled ij is the jth unit in



12

the ith group; i = 1, 2, ... , g; j = 1, 2, ... , ni.

The basis for grouping may be arbitrary, but the grouping will

most often be due to some auxiliary information about the units in U

that is known at the time the frame is constructed. This information

will often be demographic (e.g. age, sex) when studying a human

population.

Suppose there is a numerical characteristic of interest

associated with each unit in U. Let the value of this characteristic

be denoted by Y.. for ij E U. Our goal is to make inference
13

about the value of the population total, T, where we define

T :=

i=1 j=1

Y..
13

In order to gain information about T we conduct a survey

using a Hansen-Hurwitz, non-informative sampling plan as described

in Sections 1.2 and 1.3. That is, we sample n units from U and

obtain the response Y.. for r of these n units. Call these r
13

survey respondents "SR's," and call the (n-r) nonrespondents

"NR's." We then subsample m, 0 < m < n-r, of these NR's

and obtain Y.. for each of the m subsampled NR's. The

sampling probabilities are assumed not to depend on the values of the

Y, 's.
13

The population U can now be partitioned as
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U = A _..) B v C v D

where A is the set of labels for the r SR's, B is the set of

labels for the m subsampled NR's, C is the set of labels for the

n-r-m NR's that are not subsampled, and where D = U\(A_,BvC)

is the set of labels for the N-n units that are never sampled. The

particular units comprising A, B, C and D are unknown before

the survey. Define 5 := A v B -.) C. Then 5 is the set of labels

for the n units originally sampled. Further, let a., b., c., di

and s. denote the numbers of units from group i in the sets A,

B, C, D and 5, respectively, for i = 1, 2, g.

We assume that every unit in U would be either an SR or

an NR (but not both) if sampled. We model this SR/NR status

by associating an indicator random variable, Z.., with eachij

ij E U where

Z.. =
1 if unit ij would be an SR

o if unit ij would be an NR, ij e U.

This SR /NR status is important, since we believe that SR's and

NR's might differ with respect to the characteristic of interest and

its relationship with auxiliary information.

While the values of Y.. and Z.., ij E U, are unknown
1J 13

before the survey, we assume that the characteristic of interest is
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linearly related to one or more auxiliary variables that is /are

known for every unit in U. We further assume that the value of any

h.tone of these auxiliary variables is the same for all units in the ].

group, i = 1, 2, , g. Indeed, it will often be the case that this

feature determines the grouping of units in U. Let X.,

i = 1,2, , g, denote the x X 1 column vector whose entries are

the values for the ith group of the x auxiliary variables. Note

that some entries in X. may be transformations of other entries as

in the case of polynomial regression.

Let h
1

and h
2

be specified constants. (They will be seen

to represent known precisions for SR's and NR's respectively. )

Define h := (111, ha). Let 131 and P2 be x X 1 vectors of

parameters, and denote

X :=

X'

X'
g

X'-

P := (Pi, P2) Define

where X' is the transpose of X.. Let

Z := (Z 11' Z 12' ,Z1n1
g

,...,Z
l

)I.gn



Given X, h, 13 and Z, assume that

y y
11' 12' 'Yln

1
Ygl' 'Ygn

g

variables such that

are independent random

1 ij 1 ijY13Y. - N(
1Z

Z..X.13
1
+(1-Z..)X.'13 ( ( )j 13 1 2' hi h

2

for i = 1, 2, g and j = 1, 2, is an
1

Thus, if ij SR,

Y.. has mean
13

X'13 and precision h if ij is an NR, Y..1 1 13

15

has mean X.'P2 and precision h2. Note that Y N(µ, V) means

that the random variable Y has a normal probability distribution in

IR with mean p. and precision V-1.

Assume that Z, 131 and 132 are independent random vectors.

Given the vector Tr := (Iry Tr2, , Tr )', assume that
g

Zii, Z12, , Z,
i

Z Z ,

nl
,

g

variables such that

That is,

Z Bernoulli (Tr ) E U
13 1

are independent random

E(Z..) = Pr {Z,. = 1} = Pr{unit ij is an SR} = Tr.
13 13 1

is the same for all units in group i; i = 1, 2, , g. Note that

0 < Tr. < 1 for i = 1, 2, g.
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Let X1 and X2 be specified x X 1 vectors of hyperparam-

eters. Let T1 and T2 be x X x positive definite matrices.

Given Al X2' h
2

T1 and T2' assume that p and 132 are' '

independent random vectors such that

and

R1 - N(X. -1T-1)l' 11
1 1

p
2

N(X2' 11-1T2
-1).

Note that we are assuming 131 and p
2

are independent of 7.

Finally, we complete the specification of the model by assuming

that, given p = (pi, p2, , pg)I and

Tr 72' '7g

That is,

q
(q1, q2, ' q

are independent random variables such that

Tr. Beta (p., q.), i = 1,2, , g.

.-1 -1qif ,(Tr
i

qi) cc 7. (1 -Tr. ) 0 < < 1,
1 1

for i = 1, 2, g with 71' ..., TT independent. Note that

Pi
E(Tri l p. , qi) = i = 1, 2, . . . , g.

Let I := {X, hl' h2' X l' X 2' T l' T
2

p" Let ZN := diag(Z..)
13



th..be an N x N diagonal matrix having ij diagonal element Z...

Let IN be an N x N identity matrix.

where

and

We are assuming that, conditional on Z, Tr, and I,

Y N(1-LN,VN)

X
(ZN (IN-ZN)) IX

= (Z X la -Z )X)
N N N (32

= Z
N

Xf3
1

+ (I
N

-Z
N

)Xp

-Z.. -(1-Z..)
VN := diag(h). 13112 11)

13

We have the following joint prior density function for Y, Z,

13 and Tr:

Z, p, = I z , (3, Tr, imz I R, TT, IM,E1 n, nf(Tri

cc ( )
-1 /2expf- 1

(Y
N

)IV
N

1
(Y

N

n.
g 1 Z. 1-Z.

X II II [Tr li( 1 -Tr. ) li]
i=1 j=1 1 1

X (1111-ril)1/2exp{- 1 ((31-X1)'(h1TIXRI

17



X ( I h2 T2I)1
/2exp{- 1

(p2-X 2 )I(h2 T
2 )(p 2 -X2)}

g p.-1 q.-1
X II [7.1 (1 -Tr.) ]

i=1

18

(2. 1. 1)

for Y E IR
N,

p
1

E MX, (3
2

E 1Rx, Z E [0, 1] x ...X [0, 1] and for

0 < 71, 72, Tr < 1 .

g

2. 2. Posterior Density Function

Let YA, YB, YC and YD be those subvectors of Y cor-

responding to units in A, B, C and D respectively. Similarly,

ZA, ZB, Z and ZD are subvectors of Z while X
A,

X B, X
C

and X
D

are submatrices of X. Further, let

Y :=

A

YB

Y

and let Z :=

ZA

ZB

C_

Define R := Y.. where, for any subset U* of U,
13

ij EC L)D

indicates the sum over all i E {1, 2, ... , g} and all such
E U*

that ij E U*. Thus R is the sum of all the values of Y.. which
13

are not observed in the survey.
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We observe YA, YB and Z in the survey. Z specifies

Al and B may depend on A. However, for any noninformative

design, B is ancillary, given ZS, since the probability of

observing a set B, given Zs, is independent of Y, Z Z
C D

and ,r. In the remainder of this thesis, we assume that A and

B are known after the survey, but we do not mention this explicitly

in the notation. Define II := I Li {Y YB' }. Then II is the set

of variable and parameter values known after the survey.

Our goal is to predict T, the population total for the charac-

teristic of interest. Section 1. 2 shows that the Bayes predictor of
A

T under squared error loss is T where

A AT := Y.. + R
13

ij E A ..)B

A
for R := E[R I II].

In this section we will find the posterior density f(13., III). We

will first find f(yc , YD, ZD,,E, Tr I II). This density will be transformed

to f(R,ZD,(3,,ILIII). Then ZD, p and Tr will be treated as nuisance

parameters, and the marginal density f(R.1II) will be found.

The following lemma will be used repeatedly. It is widely

known. A concise proof is given by Lindley and Smith (1972).



Lemma 2. 2. 1. Let Al and A2 be known matrices of

dimensions n* X p*
1

and pI X pI respectively. Let C and

20

C2 be known positive definite matrices of dimensions n* X n* and

p* X p* x 1 vector of param-respectively. Suppose, given a pi param-

eters, 01, that

Y ~ N(A 0 C1)
I l' 1

and that, given 02, a FP:2 X 1 vector of hyperparameters,

0
1

N(A202' C2) .

Then,

(1) the marginal distribution of Y given A1, ACC2' 1' 2'

(2)

0
2

is N(A
1

A
2

0
2
,C

1
+A

1
C

2 '
A' ) and

the distribution of 01 given Y = y, Al, A2, C1, C2, 02 is

N(Bb,B) where B-1 = /V1 C
1

1
A

1
+ C2 1

and

-b 1y + C 1 A202.

Note that Al need not have full column rank for B to exist,
-since C2 1 is positive definite while A IC

-
1

1
A

1
is nonnegative

definite.

Clearly,
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f , ry,D D,(11,,T,,r III) = , YD ZD, 13, Tr, II)f(ZD I p, Tr, II)

x f(Rtrr, II)f( Tr III) (2. 2. 2)

Lemma 2. 2. 3.

f(. c,x,D, I zp, p,Tr,II)= , Zc, ZD, p, Tr, I).

Proof.

f(Y Y Z D' (3 Tr II)

= f(y,c, fy,D I zc, ZD, p, Tr, I, YA, YB, ZA, ZB)

NA' NB I Zc, ZD, (3, Tr, I, ZA, ZB)

f(y,A,y,B Zc, ZD, p, Tr, 1, zA, ZB)

f(Xc, ND I ZC' ZD, (3, IT, I, ZA, ZB)f(X,A' NB I zC' ZD, 13, Tr, I, ZA ZB)

f(XA'r)LB I ZC' ZD, p, Tr, I, ZA, ZB)

YC Aby the conditional independence of (
Y

) and (
Y

) That is,
D B

f(Y I Z
'

Tr II)D'

= f(fy_c ,.-D zc, ZD, p, Tr, I, ZA, ZB)

,A' 4B I ZC, ZD, Pi n' I)

f(rA I ZC' ZD' IT' I)

f(Nc, ,1,1,D I Zc, ZD, p, Tr, I)f(ZA, ZB I Zc ZD' p' Tr
'
I)

f(Z B IZC' ZD' "P Tr I)



YC
by the conditional independence of

D
) and (

A
).

B

Lemma 2. 2. 4. f(Z 1 (3 Tr" II) = f(Z 1 Tr
'
I).

Proof.

f(ZD 1 P , Tr, = f ( Z I p, Tr , I, YA, YB' Zs)

= f(Z 1 Tr I)

since, conditional on Tr and I, ZD is independent of Zs, Y

YB and p .

Lemma 2.2. 5. f((3 kr, II) = f((3 1 II).

Proof.

f((31 Tr, II) = f(13
'

Y Y Z I)A' B' S'

f (,13,, NA, NB ZS, 1, Tr)

f(Y Y
B

1 Tr ZS' I)r-

q,,y,A,,y,B I Zs, I)

f(Y Y I Z I)

since, conditional on Z5

are independent of Tr.

and I, the vectors p, YA and YB

22
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Applying the results of Lemmas 2. 2.3, 2. 2. 4 and 2. 2. 5 to the

expression (2. 2. 2) shows that

f(Y Y Z 13,N = f(Y Y Z , ZD, (3 1Tr
C D' ' '

I)f(Z
'
I)

X f(pIII)f(rzlII). (2. 2. 6)

Let ZD := diagD(Zij) be an (N-n) X (N-n) diagonal matrix

having diagonal elements Z. for ij e D. Then, conditional on
iJ

Zc, ZD, p, Tr and I,

where

rycl
N(p. CD, V CD)

P,CD

and where

V CD

0

z x Ix -z x Pl)DDI D DD 2

-1
h

2
I
C

. 0
I

I V
1 D

for the (n-m-r) X (n-m-r) identity matrix lc and for

-Z.. -(1-Z..)
VD := diagD(h). ljhz

an (N-n) X (N-n) diagonal matrix having diagonal elements



-Z.. -(1-Z..)
h

1
'3h2 for ij E D. Thus,

f(Y Y I Z
C

, Z
D

, p, Tr, I)

24

(2. 2. 7)

1 YC
c c ( IV CD 1 )

-1
/2exP {- [( )-11 CD PV

-1
CD YD CD[(

C
)-11 ]2 YD

Clearly,

Z.. 1-Z..
f(Z

D
Tr, I) a ri [Tr. 13(1-Tr ) 13] .

es 1
ij ED

(2. 2. 8)

We have yet to find f(, III) and fe,r,r III). Now,

f(i II) = f(131YA, YB, Zs, I). Assume Zs and I are known. (After

the survey, we do know that ZA is a vector of 1's while ZB

and Z are vectors of 0's. ) Given

YAry N(A1f3, CI)

where

A =
i

1

A

I

0

B
and where `' 1

-1
h

1

0

I
A

1 0

I -1
I

h2 IB

for the r X r and m X m identity matrices IA and IB.

Further,



N(A (
x

1)
C2)2 X

2
2

where A2 is a (2x) X (2x) identity matrix and where

-h -1
T

1
I 0

1 1C2
I -1 -1

0 1 112 T2

By Lemma 2.2.1, f((31II) is a normal density with mean B b
P P

and variance
BP

where B-1 := A
1

C
1

1A
1

+ C
2

1
and

-1
YA -1 1b :=AIC ( )+C ( ).

13 1 YB 2 X2

Now,

T 0
-1 1

C2
0 11,T2

I

A C l =
XA : 0 111IA II 0 XA 1 0_

1 1
Al 0 15-(.: 0 -I h,I.: 0 I X,.,

I ° I " I JD

[hiXIAXA 0

6- h X2 B B

2 B

-1
Y

A
hiXAYA

A1 C
1

(
YB

) =
h

B
Y

and

25



Thus,

and

(Cl - =
2 1X2 h2T2X21

bR =

B
R

hi(X.Al YA+Tiki)

h
2 B

(Xl Y
B

+T
2

X )

h (X' X +T )
- 1

I 0
- -

1

1

A 1

0 I h
2

(X' X
B

+T
2

)
I B

The posterior density of p given II is now seen to be

-1 / 1 _1
fv,1 In cc (133p1) 2exp{- -2- (f3-Bpbp)113(3 (P-Bpbp)}

iThe Bayes estimate of p under squared error loss is r, where

R:= := (6A1) := B b =

(x '
MAI XA+T1)

p
2

p p
'

- 1 (X Y

A+71X1)

B
x

B
+T

2
) B

+7
2

X
2

)

We thus will write

1 /2exp{ (p_3)133131(P -6q )}.l II) CC ( I Bp I )-

We now turn to the task of finding f(Tr1II). Clearly,

26

(2. 2. 9)



f(Tr I II) =

er If (Tr Y A' Y ZS I I )dTr
1

dTr 2. . dTr

0

f(TT Y Y Z II)

But f(ir, Y Y ZI I) = f(Y Y I Tr Z S' I)f(ZS I Tr
'
I )f(Tr II) where

f(Y YB I Tr
'

ZS' I) is independent of Tr (conditional on Zs). That

is, f(Y Y I Tr ZS' I) is the same function for every value of the

vector Tr. This means that

Now

f(Tr III) =

f(Tr, Zs I I)dir 1dTr2.. . dTrg

13 0

f(Tr Z II)

f(Tr, Z II) = f(Z ITr
'
I)f(Tr II)

Z.. 1 -Z.. g p. -1 - 1

11 [Tr 1.3(1-Tr.) 3] 1 [Tr. 1 (1-Tr.) 1 ].
ij ES i

.
1

i
=1
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(2. 2. 10)

ZB
Since Z

A
is a vector of l's while ( ) is a vector of 0's,

C

Thus,

1-Z.. g a. s. -a.
ii(1_,T.) 13] io_Tr.) 1 1.

ij ESL i i
i=1

q.11 -1

arr. Z II) cc II [Tr. 1 (1-Tr.1 ) ]

i=1

where pi' := pi + ai and q.' := qi + si - ai. For Z known, the



integral in the denominator of (2. 2. 10) is a known constant. We can

now write

g pi'- 1 qi"-1
f(Tri II) cc II [IT. (1-Tr.) ] .

i=1

The constant of proportionality is easily seen to give

where

28

g r(p;+q;.) pi' -1 -1
f(TrIII) = II IT (1-Tr. ) 1 (2.2.11)

i=1
r(pi)r(g1) .1) i

00

r(u) tu-le-tdt for u > O.
0

We now apply the results in (2.2.7), (2.2.8), (2.2.9) and

(2.2.11) to (2.2.6) to obtain

f(Y Y Z 13 Tr III)

Y
cc ( IV

-1/2
exP

1
N

{ C ,

V
-1 r

( C) -µCD 2 YD CD] CD YD CD1/

Z. 1-
1 A - 1 A

X [Tr. 13(1 -Tri) liRIBp I) -
1 /2expf-

T(13-(3)13i3 (f3-13)}
iiED

g pi' -1 -1

i =1

X
Bpi

-1
(1-7T .) (2. 2. 12)
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The next step is to transform f(Yc YD, ZD, p, Tr III) toNNN

f(R, Z , (3, Tr III). Clearly,

where

f(R, ZD, (3, NI = fat I zp, p, TT, LI)f(ZD,,, n I 11)

f(zp, (3, Tr III) = f(ZD I 13,1r, MVP I,r, II)f(TT

(Compare (2. 2. 2). )

Now f(Ic , YD I ZD, (3, IT, is a multivariate normal density.

(
YC

)(See (2. 2. 7), and note that, conditional on I, Z
D

p and Tr, YD

is independent of YA, YB and ZS.) It follows that, conditional on

ZD, P, Tr and II,

But

Yc
(YC) N(p. , V

CD
).

D
CD

Yc
R := l'(, )

ID

where 1 is an (N-r-m) X (N-r-m) column vector of l's. It

follows from well known properties of sums of normally distributed

random variables that, conditional on ZD' p, Tr and II,

R a N(p.R,VR) where



and

Thus,

o xc
R

= 1 'p
CD

= 1

Z X x - z x
(

P2
)

DDI D D

-1h, IC
V

R
:= 1 'V

CD
1 = I 1.

0 I VD

-f(R ZD' "Tr II) cc VR1/2 exp{-
2V

2

R
}.

This means that

30

(2. 2. 13)

- 11/2 2
f(R, Z D' (3, Tr I II) cc V R exp{- (R pR) }

R

f(Z D,R.,;_iz I (2. 2. 14)

The results of Lemmas 2. 2.3, 2. 2.4 and 2. 2. 5 show that

f(ZD, 13, it III) = f(ZD I Tr,I)f((3 III) . (2. 2. 15)

Thus, by (2. 2. 8), (2. 2. 9), (2. 2. 11) and (2.2. 14),

- 1
f(R, ZD, p, 71. II) CC V R

1/2 exp{- (R-11R )2}2VR

i-z.
x n [Tr ii(i_Tr.) ij]

ij E D

X
2

(IB
a

)4/2expf- (r3-13)1B-1(13-)1 x



1

X II 1 Tr.

1=1
(1-Tr.)r(p1

1
)Ilq.) 1 1
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(2. 2. 16)

Before "integrating out" the nuisance parameters ZD, p and

Tr, we will make another transformation that will simplify the pre-

sentation. For i = 1, 2, ... , g define Si := Z... That is,
j:ijED

S. is the number of SR's from group i among that portion (D)

of the population that is never sampled.

We will now transform f(R Z (3 TrIII) to

f(R, S S , P Tr III). Note thatN N1 NO rs.)

f(R, Si, . , Sg , Tr III) = f(R I S . . . , Sg, (3, Tr, II) (2. 2. 17)

X f(S , S p, Tr, imp,' mfor I m
g

using Lemma 2. 2. 5.

By Lemma 2. 2.4, conditionally on Tr and I, ZD is inde-

pendent of p, YA, YB and Z. But S
'

S are functions of
g

ZD. Thus,

f(S 1' ' '
S I 13 Tr, = f(S . . . S I Tr, I). (2. 2. 18)

Suppose Tr and I are known. Then the elements of ZD are

independent random variables. This means that S S are

independent. So, for i = 1, 2, ... , g, Si is the sum of d.



independent random variables each having a Bernoulli err ) distri-i

bution. Thus S. has a Binomial (d., Ir.) distribution. The joint
1 1 1

density of S1, . . , Sg, given Tr and I, is the product

d. Sg . S. d. -S.
f(S, , ... 'S

-,, g
I Tr, I) =

r,
S

1 ,_
n i

1( 1 1]

i= 1 i

Now

1
f(R1ZD' 13, Tr,, ) cc V

- 1 /2exp{-
(R-11R )2}

2V
R

where

o i x c p
= if _ J____ i)

z
D
xDI

lx
D

-z
D

X
D

2

xc[ i3z

Z
D

X D131 +(XD-ZD
X

D
)(3

2

+ [z..x.3
].

]
2 3.3 1 2

i=1 ij ED

c.X.(3
1 2

i=1

and where

i=1

+(d -S i i2

32

(2. 2. 19)



i -1
I I 0

V
R

= 1' 2 C 1
1

0 I VD

= (n-m-r)h2

-1
+

-1
= (n-m-r)h

2
+

ij ED

ij ED

g
1

= (n-m-r)h
2

[S.( h
1

i
)+(d -S.)( )]

1
h1

i= 1

1 iiZ
1

1-Z
(IT) j(h ) iii

1 2

[Zi.()+(1-Z.)()]
j h1 i h1

Thus, f(R I Z
D

, (3, Tr, II) depends on ZD only through S1, .. . , Sg

and

f(12, 1 ZD' f3" 1
Tr II) = f(RIS ... s g' p, Tr, II).

,-...,-..
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(2. 2. 20)

If we now combine (2. 2. 17) with (2. 2. 20), (2. 2. 13), (2. 2. 18),

(2. 2. 19), (2. 2. 9) and (2. 2. 11) we see that

f(R, S1, ... Sg,(3, TT III)

g d. S. d. -S.
1

cc V
-1 /2exp{-

(R- µR)2} 11 [(
S

1 )Tr. 1( 1-Tr.) 1 1]
R 1 12VR i= 1 i

1/2ex 1 _A - 1 A
X (IB(31)- p{ (13 (3) Bp 1(R -p)}

g r(p;+qp p; - 1 q; -
X n Tr. (1-Tr.)

i=1 1-1/31 )11q 1) T. T.

(2. 2. 21)
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We are now ready to treat S . . . , Sg, P and Tr as nuisance

parameters in (2.2.21). Suppose S S , and II are known.1" g
Given p, R N(p.R,VR) while, given b

R'
p N(B

R
b

P
,B

P
). Note

that

c1X1R2 +

1=1

1=1

=

where

S =

Si

1=1

s.x3. .tp +(d.1 -s.1 )x!P
2

+(c +d -S )Xi'pic

s* o x I 0.Li__
I

I * Io s 0 X
1 1 *

sz
0

0 S
g

(c1 +d1 -S1) 0

S^` =
0 .(c

g
+d

g
-S

g
)

and

(2. 2. 22)
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x'

X'

X'
g

Lemma 2. 2. 1 shows that, conditional on S
'

,S IT and II, the
g

marginal density of R is normal with mean

* I i o
= 11

0 S* 0 X*

i= 1

[S. +(c
i

+d
i
-S i 1X i13 1xi

and with variance

X; ; 0

0 : X; 13

X; : 0_

0 I X'
I

S;_: 0

0 l(S*)'
I

1

(2. 2. 23)

=V + 1
R

[x;X - --1
0

S;X; I 0
____ ____ I

0 S*X*

s' I 0--* -
Ix' cer
I

1

h 11(XIAX +T
- 1

I 0- -
0 I ha 1(XB'XB+T2)

1
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-1= (n-m-r)h
2

g

i= 1

1S.+h2 1(d.
-S. )]

g
1+h S2 X.1(XI X +T ) + h- 1

iS XI(X X +T )
-1X

1 i A A 1 i 1 L, ki A A k
i=1 i= 1 k=1

+ hZ

g

i=1

c.+d )
2X'(Xl X +T )

- 1
X

1 B B 2 i

kii

+ h1
2

c.+d )(c
k

+d
k

-Ski))0(Xt
B

X
13

+-r
2

)
-1X

k
.

j=1 k=1
i

We now have

f(R S II) = f(R1S , Sg, Tr , II)

X f(S ,S I Tr, II) f(Tr III).

(2. 2. 24)

(2. 2. 25)

* *We have just shown that f(R I SI, ... Sg, Tr, II) is a N(uFt, VR)

density. We showed before that, conditional on Tr and I,

S
1

... S are independent of YA, YB and Z. Then, using
g

(2.2.19), we have that f(S . . . ,Sg I Tr, II) is a product of Binomial

densities. Finally, by (2.2.11) we see that



* -1/2 * 2
f(R, S .... S , TT III) = (2TTVR) exp{- 1 (R-p.R) }

. 2VR

g d. S. d. -S.
lx11 [( 1 )1r. 1( -Tr. ) 1]

= 1 Si 1

g r(p;+q;) /3; - cq-
x n TT. (1-.)r(p!)r(ciI) Tr

i=1 i

Next we "integrate out" S1, . , Sg to obtain

f(R,Tr I II) =

37

(2. 2. 26)

d
1

g r(pit+q:) d. (S. +13.1)- 1 (d. - S. +q')- 11

i=111PPl(cli)
(

si
(1-n. )

Sg=0 S
1=0

* -1/2 , 1 * 2x (2TrVR) exp{ (R-µR)2} }
2V
R

Finally, we observe that, for al, a2 > 0,

1 a -1 a2 -1 r (a
1
)r (a

2)a1 -1
t (1-t) dt r(a

1
+a

2)

This fact shows that

dg dl
g F(p;+q.')

f(R = ( 1)n r(p!)r(q!) s r(p.1-Fq.'+d. )
1=1 i

Sg =0 S1=0

X (21TV
*

)
- 1 /2exp{- 1*

(R-1-11t)
2

}

2V
R

(2. 2. 27)

(2. 2. 28)



This is the posterior density function used for making inferences

about R and hence about T.

2.3. Posterior Prediction

Section 1.2 showed that the Bayes predictor of T under

squared error loss is

A AT:= / Y.. + R
13

ij E A LIB
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(2.3. 1)

A
where R := E(RI II). In this section we will find E(R1II) as well

as Var(R1II), the posterior variance of R.

Recall from (2. 2. 11) that, given II, Tri,Tr2, ... ,71.
8

are inde-

pendent random variables such that

That is,

B
1

ir.
1.

eta(p.', q?), i = 1, 2, ... , g.

r (pi:+cii") pi- 1 .1- 1

f(Tri I II) = , ,, (1-Tri)clilip. )1-(q. ) 1
1 1

0 < Tr. < 1;
1

i = 1, 2, ... , g,

with -IT

1 '
. . . Tr independent. Under squared error loss, the Bayes

g
Aestimate of Tr. is Tr. where

1 1



13;

1
=TTA. : E(TriIII) = .

Note also that

and

A AVar(Tr ill') = TT. (1 -n.)( ,
1,

)
i 1 p.-f-q.-1-1

E(Tr.
2

= 11.[ ,1 , .

Pi qi1
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(2.3.2)

(2.3.3)

(2.3.4)

Recall from ( 2 . 2. 18) and ( 2 . 2 . 19) that, given it = (Tr , Trg)

and II, Si, Sz, , Sg are independent random variables such that

B
3.

Si. - inomial(d., Tr.), i = 1, 2, , g. That is,
1.

d. S. d. -S.
f (Si I Tr, II) = (51 )Tri 1(1 - Tri) 1 1 ;

1

with S
'
S

g
independent. Thus,

and

E(Si I Tr, II) = dilri

Si = 0, 1, 2, .
3.

,d. ,

i= 1, 2, , g,

Var(S. Trar,(S. I , = d.Tr. (1-tr.) = d.Tr. rlIr
z

;
1 1 1 i

E Tr, ,II) = d.Tr. + d.(d.-1)Tr. .

(2.3.5)

(2.3.6)

(2. 3. 7)

Recall that, for any random variable F and any random

vector G,



and
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E(F) = EG[E(F I G)] (2.3.8)

Var(F) = EG[Var(F1G)]+ VarG[E(F1G)] (2. 3. 9)

where EG[ ] and VarG[ ] are defined to be expectation and

variance operators with respect to the joint distribution of the ran-

dom variables that are the components of G. Note that E(FIG)

and Var(F1G) are both real-valued functions of the components

of G.

We will use (2. 3. 2) through (2. 3. 9) to find E(RI II) and

Var(R III). We have

E(Et. = EiT{E(R I Tr, II)}

= ETTIES [E(11 I S
1'

. . , Sg, Tr, II)] }.
g

In Section 2. 2 we showed that, given S
1'

. . . , S , w and II,
* *

R N(p.R' V R). (See (2. Z. 23) and (2. 2. 24).) Thus,

E(R I II) = E {E [11*
Tr S . .

'
S R

1 g

g

= E
Tr

{E
S . . . S

1

(S.xl +(c
i
+di -Si ))1i13

2
)1Tr I]

i =1

= ETr E51,
S

[S X 13 +(c +d -S
)Xi2

ITT II]]
i= I g



i=1

d.1 Tr.X1
1 1
+(c.+di -d.Tr.)X1 ]III1

1 1 1 1 a 2

d.C.X.IP +(c.+d.-d.l>.)X1
1 1 1 1 1 1 1 1 a 2 '

using (2. 3. 2) and (2. 3. 5).

By re-writing (2.3. 10) we see that

A
R E(RIII) =

i = 1

A
C X (3

1 1 2
i = 1
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(2.3.10)

d.rr\r.X. +(1-(ri..)X.13 ]. (2.3.11)
1 1 a 1 1 a 2

Similar arguments show that the Bayes predictor of Y.. is X.11
13 a 2

if ij E C or ai\-.X.I3 + (1-i.'r )X.1 if ij E D. If ij E C then we
a a 1 i a 2

know the unit is an NR, and the parameter vector (32 applies.
A

Not knowing 132, we use (32, the posterior mean of (32. If

ij E D, we do not know whether
P

or p2 applies, since we do

not know whether the unit is an SR or an NR. We thus use a
A A

weighted average of X1(31
a

and X.'P
2

. The weights are A
TT

i and

a
the posterior estimates of the probabilities that unit ij is

an SR or an NR respectively.

The posterior variance, Var(RIII), will be seen in Chapter

IV to be helpful in making interval estimates of R (hence of T).

By (2.3.9), Var(RIII) = {V a r (R I Tr + Varir{E(R1v,II)}. Again



by (2. 3. 9),

Var (R11-, II) E
S

'
S '

[Var(R IS S
'

II)]

By (2.3.8),

Thus,

+ Var [E(R. I , S Tr, II)].
S

1'
. . S

g

E(R I TT, II) =E5
. . .

'
5

. g"[E(R .. Tr II)].

Var(R I II) = E {E [Var(R S S ]}
11 Si, ...,Sg

+ ElCV
b

[E(RIS S g' Tr, MD
g

E): g[E
+ VariT{

S
(R I ,5g, Tr, II)] }.

42

(2. 3. 12)

Using (2. 2. 24), (2.3. 5), (2. 3. 7) and the conditional independence

of S ... 5 , we have
1 g

E"
°

_{E, [Var(R I S1" S
g

Tr IN}
1' '

"
= E__{E,

S
[V*

R
I Tr, II]}

g1
,

E (n-m- r)h
2

+ hl
g

i=1

g

i= 1

- 1
di -IT +h2

1
di (1 -ni )]

2
diTri +di (di 1)Tri + diTridok5ik +

iT

1=1 k=1
i



g
2

[(c +d. -2(c.+d.)d.Tr.+d.Tr.+d.(d.-1)Tr. 1E..+ h
1 1 11 11 1 1 1 11

1=1

+ h1
2

c i +di -d Tr )(ck+dk-d
kir k

)E
ij

i=1 k=1
kii

where, for 1, k = 1, 2, , g,

and

5 := Xt(X1 X +T )ik i A A 1 k

E

ik X 1(X I X
B

+T
2

) - 1X k .i B

Using (2.3.2), (2.3.4) and the conditional independence of

n n1" g' expression (2. 3. 13) simplifies to become

E
Tr

{E [Var (R1S , S, Tr, II)] }S1, . , Sg

1,- -1 A -1= (n-m-r)h
2

d.Tr.+h
2

d i (1-1r )]

+ hl
g

1=1

1=1

p.'+1
d.C.+d.(d.-1)4r.( '+ )]Sii h

1 1 1 1 p.+q.+1 ii 1
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(2.3.13)

(2.3. 14)

(2.3.15)

di dklriT%Elik

1=1 k=1
kii

g 1+1Pi
+ h

2 1.(c.+d.)2-2(c.+d.)d.Cr.+d.ir.+d.(d.-1)W.( )]E
1 1 ]. 1 1 1 1 /3. +q.I+1

1=1



+ h
2

c +di(lA* )lic
k

+d
k

(1-.1rrk)]Eik

1=1 k=1
kii.
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(2.3.16)

Using (2. 2. 23), (2.3.6) and the conditional independence of

S S , we have1" g
Var [E(RIS'Si, ,S 1

g

= Var
S

'
.,S [II I Tr II]

l

= Var

g{S

, . . . ,5
i=1

g{i=1= Var
iX (P 42)]

c .+d. )X .1113' +

i=1

Z A A 2
][X.(13 )]

1 1 1 1 2

i =1

Thus, using (2.3. 5),

En{Var, [E(RI S , , I I ) ] }n, ]}

{
2 A A 2

= En Cl.n. -d.Tr. ][X.1(131-132)]
1 1 1 1 1

i=1

n, ,



i = 1

-d.11.r.( )i[X?(13 -IP\ n2.
1 1 1 1 p;-Fq;+1 12
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(2. 3. 17)

Finally, using (2. 2. 23), (2.3. 5), (2. 3. 3) and the conditional

independence of Tr
1

, . , Tr , we have

V ar
Tr

{E
S , . , S

[E(RISi, ,S , 11.> II)]}

1

* ,
= Var kilt' Tr, II]}

g

g

= Var [E
Tr S , .

1
,

g[ =1

= Var c.+d.)x.ip
1 1 1

c i + d ) X .1 + S . X )
1

i=1

= VarTr{ d.Tr.X.I(f3
1

-(3 )
2

A

i =1

i = 1

i = 1

= 1

A A
d.Tr.X.1(p

1
-13 )

2

II

Var(d1.1T1.X1.(p1-2)111)

A
d2. TAr. (1 -Tr. X AX:(S -S )12

1 1 pit+q;+1 1

II

Tr,

(2.3. 18)

If we now combine (2.3. 16), (2.3. 17) and (2. 3. 18) with (2.3.12)

and simplify the resulting expression, we obtain



Var(RIII) = (n-m-r)h2-1

1=1

+ hl

g

-1 n -1
d1Tr

i +h d.(1-71*.1 )]

1=1

q1 .'+d.1 (p.1
-16. +h-1 E

i
A

d. Tr [ '++11 piq;T.

+ h
2

1
[c

i +di ( 1 -(r\r )][c
k

+d
k

( 1 --jrrk )]E
ik

1=1 k=1

i =1 k=1
kii

g
A A

d Tr.ir 6 +
h2 -2er. )Ei k ik 2 1 1 1 1 1 11

1=1

p.' +q.' +d.
d.f.?.(14.)[ 1, 1 1 i[X1(13% )i2+qi t+1 i 1 2

i=1
p.
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(2. 3. 19)

where, for i, k = 1, 2, . . . , g, bik and are given by (2. 3. 14)

and (2.3. 15) respectively.

2.4. Special Case: Tr Known

In this chapter we have assumed that the vector TT is random.

Given the g X 1 parameter vectors p = (p1, ,p and

q (q' q )'' we assume that Ti . . . 2 Tr are independent
1 1 g

random variables such that

Tii eta(p., q.), i = 1, 2, , g.



Then

and
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Pi
E (Tr I pi' q ) -

Piqi
Var(rTi. I pi, qi)

(p. +q. +1)(pi+qi )2

Suppose we prefer to treat Tr as a known vector of constants.

That is, suppose we assume that
1

= 4). for known e [0, 1],
1

i = 1, 2, g. We can incorporate this change in the model of this
pi

chapter by letting (pi+qi) approach +00 while keeping (1)3.

fixed. Then Var (Tr. I p., q.) becomes zero while E(Tri I pi, qi) =

The prior density f(N% I P., cF) becomes degenerate at

i = 1, 2, ... , g so that (2. 1. 1) becomes

fcy, Z, Tr II) cc (IVN )-
1 kexp{- 1

(Y (Y --1-LN)}

for Tr. = (1).,

g
x II ri [Tr. 13(1 -Tr i) 1.1]

j=1 j =1

i Z.. 1-Z..

for

1(lh1r1l)1/2exp{- i(131-V(hi-ri)((31-X1)}

1X (lh
2

T21 ) 1 /2expl- 2 032 -X 2
r(h2 T 2 )(p 24.2g

i = 1, 2, ... , g.

(2.4. 1)



Similarly,

g
f(ir I II) = II 1 Or )

fa)1 .} ij=1

is now a discrete density where

1 (rr ) =
{(I)i} i

, Tri y co
1

' Tr1 . = 4)1 .

Use of this fact in (2. 2. 25) and (2. 2. 26) leads to

f(R,S
1
, ... ,S , Tr III) = (27rV* )-

1 /2expf- 1
(R -µR R)

2/-, ,g r". R 2V*R

48

(2. 4. 2)

g d. S. d. -S, g
x II k 1)Tr 'o_Tri 1 i] n 1 or.).Si i 1 {4).} 1

j=1 1 j=i 1

To "integrate out" rr, we simply replace Ir. by (1)i,
1

i = 1,2, ... , g. Then

* *
f(13., S . . . , S III) = ( 2irVR) -1/2exp{- 1* (R-µR)2}}

g 2V R

g d. S. d.-S.
x H [(sl)coilotoi) 1 1 .

i=1 i

Finally,

(2. 4. 3)



f(RIII) =

S =0
g

g d. S. d.-S.
1 3.]

s. st').
i.= 1
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1 *
X (23TV* )-

/2exp{-
(R- [IR )

2
} (2. 4. 4)

2V

A slightly different approach is to examine f(RIII), given by
Pi

(2. 2. 28), in the case where pi -" +00 and q. +00 while
p.-I-q i

Pi 1 i
remains fixed. Note that .1). p.remains fixed while p +00

Pi+qi 1

and qi
+00

if and only if pi -' +00 and q. -' +00 while

qi 1-(1)1.

= remains fixed.
c)iPi

Now, for any i = 1, 2, g,

r(Pii+ciP
r(s. +p.i)r(d. -s.

1 1 1 1 1

r(P;)r(qP r(pil+qi'+dd

1 S. di-S. 11/3:+0
=Si t 1(1-t) 1[

r(P11 r(qi)
1, (1-t) 1 dt

S. d. -S.
= E[Tr 1(1-Tr.) 1 1]

where Beta(p.',Tr. - eta(p;, qi'). Suppose p. +00 and q. +00 while

1-qi 4)1. remains fixed. Consider the Beta(piI, qi') density. Its
.

mean is
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a.

P! p.+a..
). pi

p:+q:

which becomes

1
Pi

1+ aPi+cli
Pi

Its variance is

sqi
1+ +

P P.

1 I

Piqi P. qi 1

)2 p-1-q; pit -1-q; +q! +

which becomes zero. Thus the Beta(p.', q.') density becomes

degenerate at . so that
(I)).

S. d.-S. S. d.-S.
E[Tril(1-Tri) 1 1] = -41) 1 1

We have just shown that the case of Tr known leads to replacing

r(pi'-f-q; ) r(Si+ppr (di -Si+qp

r(ppr(q;) r(pild-q;+di)

S. d. -S.
by 4 1(1-40 1 1 for i = 1, 2, , g. Use of this fact in (2. 2. 28)

again gives (2. 4. 4).



A PiWe have also shown that 'ff. .- becomes when we
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A
know that Tr. = 4i, i = 1, 2, , g. If we now replace Tr. by (13i in

(2.3. 11), we obtain

A A
R = ciXi(i2 +

i= 1 i= 1

di [ ri)iX 1+ (1- cOi)Xili 2] . (2.4.5)

Similar changes occur in the expression for Var(RI II) given

by (2.3. 19). Note that

q;+di.(pii+1) qi+si-ai+di(pi+ai+1)

p!-1-q.1+1 pi+qi+si

qi
+

(s. -a.)
+ d. (1+ + )1

Pi Pi 1 pi pi

qi S.
1+ +

pi Pi

which becomes

qi + d.
q. .+d.p.

pi 1 1 1 (1-c0i) + dirOi .

qi
1+

Pi+qi

pi

Also note that
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p.+a.+cb+s.-a.+d
i

/3.1+q!+1 p.+a.+q.+s.-a.+1

a. q. (s. -a +d.)
1+ 1+ 1+ 1 i

pi 13. Pi

a. (s.-a.+1)
__I+

Pi Pi Pi

becomes

qi

Pi

= 1.

We thus have

Var(RIII) = (n-m-r)h21

1=1

g

h1d 1 1

2 -h2 )

i=1 i=1

diclq 1 -cp. +d.4)][h
1 6. +h- IE..]

i i 1 ii 2 n

i=1

c.+d.)(c.+d. -24:IA0(h- lE .)

dicy1-4)i)[X;(1V12)]2

i=1
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g

+ 2 didkrPirl)khi 1 -ik
i=1 k>1

(2.4.6)
g

+ 2 ci+di(1-0i)lick-Fdk(1-4k)Bh2- 1E ik) .

i=1 k>i

2. 5. Special Case: Population not Grouped

Suppose the population cannot be grouped on the basis of

auxiliary information; that is, suppose g = N. Then U can be

relabeled as U = {1, 2, ... , N }. Each a., b., c., d.
1

and s.,
3. 1 1

i = 1,2, ..., g, is either one or zero depending on whether or not the

.th .
1 unit U is in A, B, C, D and S respectively. We

relabel Y, Z, X, Tr, p and q to correspond to the relabeling of U,

N

and we write T = Y. .
1

i=1

The sums SI, ,S are now such that
g

S. =

Similarly,

0, unit i not in D

Z., unit i in D .
1

R = L Y. .

iC LJD
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The density f((31II) remains as given by (2. 2. 9),

13' = (Aand is still as in (2.2.9). Note, however, that X
A

and
13l

)

2
X

B
are relabeled as appropriate.

The posterior density, arr III), given by (2. 2. 11) now becomes

N r(p;+qi') - 1 ' 1qi-
}f(Trill)= r, Tr1 . (1-1T1 .)(p)r(q)i=1

where

= p. + a.
3.

and where

pi+1, unit i in A

pi,

_ + s. - a. =
qi

unit i not in A

qi+1, unit i in B v C

q1,
unit i not in B v C.

d.
Suppose i E A v B v C. Then d. = Si = 0, (

S.
i

1 1
) = 1, and

1

h.(S.) = 1 where, for i = 1, 2, .. , g,

r(p.' +q.') di r(pil+Si)F(cq+di-Si)
h.(S.) ( )hi (S1) 1-(ppr(qp Si

If i E D then d. = 1, p! = p3.., q3. ! = q. and
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F(pi+qi) 1 F(Si+pi)F(1-Si+qi)
h. (S.) ( )r(p.)r(q.) S. F(pi+qi+1)

OHS. = ,
1

h (S.) r(pdr(qi) (pi+qi)r(pi+qi)

r(p. +q.) r(s i+p.)r(1_s
i
+qi)

r(pdr(qi) F(pi+qi+1)

F(pi+qi) F(pi)qi1-(qi)

qi

+q.

= 1 - tr

S. 1-5.
1(1.../r\T.)

1

If S. = 1,
1

S. 1-S
h. (S. ) =

Pi
tr IT TT.Ai = (A) 1(1 - A ) .

1 1 p. .q.

The posterior density, f(R I II), given by (2. 2. 28) becomes

Z.
f(R1II) = [ H 1(1-i.) 11

Z. {E 0, 1}
i ED

i E D * / *
X [(2TrV )

-1 2
2V

exp{- 1*

(R' µR)2 }] 3

(2. 5. 1)
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since S. = Z. for i E D.
1 1

A Pi
For i E C, c. = 1 while, for i E D, d. = 1 and Tr. =

1 1 i. p+q.i '
1

the prior mean of Tr.. Thus, (2.3. 11) becomes
1

A
R =

and we have

A
T =

A A
1 i

1AX;(3 + 3 +0 -Trjx!p ]
1 2

i EC

i E A L.)13

i E D

AY. +R .
1

Similar changes can be made in Var(R III) given by (2. 3. 19).

(2. 5. 2)

(2. 5. 3)



57

III. A BAYESIAN APPROACH: PRECISIONS UNKNOWN

In Chapter II we explored a Bayesian approach to the non-

response problem of Section 1.3. We assumed that the precisions

hl and h
2

were known (see Section 2. 1). In this chapter we will

relax this assumption and present a Bayesian approach when h
1

and

h2 are random variables.

3. 1. Revision of Model and Prior Density Function

Recall the model of Section 2. 1 where the precisions h1 and

h
2

are known. We now consider a revised model that is the same as

the previous model except that, instead of assuming h
1

and h2 are

known, we assume that hl and h2 are random variables.

Specifically, we now assume that h1 and h
2

are independent

random variables having gamma prior distributions such that, for

known constants f 112, el and e2,

f(h h ,e 1 e2) = f(h e )f(b I 11 e2)
1 l' 2' 2 1 rs,2 2' 2

(e., /2)- 1 -(e 1h1) /211
cc {hl }

(e2
/2)- 1 (e

2
h

2)
/2712,

X {h
2

hl
).for hl, h2 > 0. We again write h = (

h2



Recall that I := {X, hi, h2, X.1, X2, T T2, p,q}.
*

I : = {X, X11, e2, Xi, X2, Ti, T2, p, q}

I v {hi, h2} = I L.) {111, e 1, 112, e2}.

The joint prior density of p and h is

Then

,

f(P hi' ) = f(131h,I )f(hli )
rs, r-fi

= el, 112, e2M,121I )

= QIIM,h111, e1,112, e2)

Let

since the prior density of (3, given I, does not involve el,
*

12 or e
2

and since the prior density of h depends on I only

through Ili, e 12, e2. Thus,

f(R,231?) cc (lh1r1l) 1/2expf-
i (131-x1)'(h1T1)(P1-y)
1

1
x ( I hz-r21 )

1/2
expf- -2- (132-X2)1(1121-2)(132-X2)}

(el/2)-1 -(eihi)/2111 (e2 /2)-1 -(e2h2)/2712
x [hl e ][h

2
e

h
x /2 1 /2 1

h1 1 T11 exp { --2-((31-X.1)1T1(131-X1)}

x2 1 /2 7hX h
2

I T
21

exp{- (P2-X2)71-2((32-3.2)}

(e1 /2)- 1 e
1

(e2 /2)-1 ez
X h

1
exp{-( .,--,-,-, )h,}exp{-( )h, }h2

411 I 4'12 ''

(x-Fei )/2- 1
1

e1
cc h1 exp { [+(i3 1-x1)1T1 (pl-x1)1h1}

2
11

X

58
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(x+e
2

) /2- 1
1

e
2X h

2
exp {-

2
[ +((3

2
-X

2
rr

2(132
-X2)1h21 .

Ti
2

(3. 1. 1)

The marginal prior density of p in this revised model is

00 co

f((3 hII )dh dhJr, 1 2
0 0

By noting that

00 a 1- 1 -alt -a1t e dt = (a 2) r(a 1)
0

for any a2 > 0, we have

1
el -(x+ei) /2 x+e

VP II
*)

{-2 [7.11-(Pi-XirTi(Pi-X1)1} )

1
e

2
-(x+e2) /2 x+e2

X {i +(P2-X2)'72(132-X2)11
2

x
-(x+ei)/2[i+cp (P

1 1 e 1 1 1
)]

1

-(x+e ) /2
x [1+(p T cp x )] 2

2 2 2 2 2

Clearly, f(pli ) = )f(p2II ) where ) is a

t(x, el, X1, 11T1) density and where f(132 II ) is a t(x, e2, X2, 12T2)

density (see Definition A.3).



60

The revised model thus implies that, conditional on the known

prior information contained in I , p
1

and p
2

have independent

multivariate-t distributions. The choice of prior parameters might
, *

be made simpler by noting that E(Pi II ) = X1, E(3211 ) = X2,

e
2 - -

Cov(P
1

II
e) =

e
1

2 1

1T- 1)
and Cov(P2 I I

*)
= (n2

1
T

2

1
)

l
e2-21

rs,

,x

(see A.3). Further, Fact A.7 shows that f(P
1

II ) tends to a multi-

variate normal density with mean X1 and covariance matrix
-1 -1

I 1 )11 71 as el +00 while f(P
2

tends to a multivariate nor-
- -

nor-

mal density with mean X2 and covariance matrix T12
1

+2
1

as

e2 - +00. Thus, "asymptotically," f(Pi II ) is the same density as

except that h1 is replaced by its prior mean, T. A
*

similar statement holds for VP2II ) and f(132II). Also note that

the prior variances, 2111
2 /e

1
and 2712

2 /e2' of h
1

and h2

approach zero as el +00 and e
2

--** +00.

We end this section by finding the joint prior density function,
*

f(Y, z, p, Tr, h I I ). Clearly, since 11, e1, 12 and e
2

are constants,

f(Y,Z,P,Trlh,I*) f(yj,Z,(3,,z1I,11, ri2, e2)
rt..1 r-+

PLZII)

This density is given by (2. 1. 1). Thus,
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, * , * ,

f(Y,Z, (3, Tr,h1I ) )f(131I )

cc
N

1 )-
1 /z exp{- 2 (Y

N
)IV

N
1

(Y -p.
N

)1

n.
g 1 1-Z..

X 11 ri [Tr. ii(l-Tri) 13]

i=1 j =1 1

X (1/1
1
T1 )1

kexpf-
(13 -X

2
T -x )).111111

1
1h

2
T21 )1

/z exp{- 2 (3
2

-X
2

)1(h
2

T )(3 2 -X
2

)}

g p.-1 q. -1
x H [Tr.' (1-Tr.) 1

1=1

(el /2) -1/2)-1 e2 h
2

exp(
lh 1

(e2 /2)- l
)][h2 exp( )]X [hl

2111
2

(3. 1. 2)

3. 2. Posterior Density Function

*
Define II := I v {Y A,

YB, }. Still treating h1 and h
2

as random variables, we will find the posterior density function,
*

Y
,

), in this section. In Section 2. 2 we were able to find
, ,

f(RIII). While we will not transform f(yc,x,Diii ) to vzin ),

we will still be able to make posterior inference about R under

squared error loss in Section 3.3.

Clearly,
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, * , *
f(Y Y Z 13 Tr hill ) = f(Y Y Z Tr Ih,II )f(hIII ) (3.2. 1)"JC

Now,

f ND, ) = ei, T12, e2)

= Trs;III) , (3.2.2)

since, conditional on II, the joint density of Yc, YD, ZD, p and

Tr does not involve the constants lir el, T12 and e2. This density

is given by (2.2.12).
*It remains to find f(hIII ). Note that

*
f (Li I ) = f(h I Y Y ZS)

".J A' B' S

f(h Y Y
13

I I ZS)
NA' A' r-,

f(Y ,Y II
* ,Z )

rs' A B S

*
'

*
f(h,

nJ

*
where f(h Y

A ' rs'
Y

B
I I Z

S rs,
) = f(Y

A '
II Z

S '
h)f(hi Z

S '
I ). But,

r-, r
Y

Bs, ' "..,

* *
given II , f(Y

A
, Y

B
I I , Z

S
) is a function of known value, since Y

ry r-i

and YB are known. Thus,

f(tI II *) cc f(Y A' Y
B

I I Z
S

, h)f(h I Z
S

, I
*)

.
rs, rs,

A

(3.2.3)

To find f(Y
A

, Y
B

II ZS' h), we argue conditionally on I , Zsry r.J

and h as follows: Given 1 (and I , Z
5

and h),



0 I,A, _2
YB 10 XB 0 h

1 2
I

and, given X (and I , Z and h),

h-il-r-il! o

p- N ( X, --- ---1 d_1 _1
[ 0 I h T2

Thus, by Lemma 2.2. 1, the marginal (conditional) distribution of
YA

( )

B
is normal with mean

I

0
AX11A I= =

0 x X
BX2B

and with variance

VAB

-
0 0 11 Ti

11
im10 0

I

1 1 1

0 ih I
B

0 X33_, 0 h2
F7
Tz X B'

- , 1h-11 (I
A

+X
AT1

1

X A)
I

0
, _ _ ___ _ ___ _

B )o 1 h (I +X T X I
i 2 B B 2

This means that

f(Y
rJA'
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Now h and Z are independent random vectors (condi -
,tional on I ^) so that f(hi ZS' I ) = f(hl I ). We thus have, from

(3. 2. 3),

, *
V, l ) cc I V

AB
I

-1 /2exp

IN+

Y
, -1 A1 A

(( AB) VAB (( YB )-11AB )i2 YB

-e
1

/2 el h1 -e'2 /2 e2 h
2X [h1exP{- 2,1 }]

[112 exp{- }]

2

A
-1/2

= ( I h la +X T 1X1)1 I h (I +X T Xt )1)1 A Al 2
1

B B 2
1

B

- ,expl- 2 [hi(YA-XAXinIA+XATI 1
XA)

-1 (YA-XAki)D

X exp{- 1
[112,(YB -XBX2)1(IB+XBrz

1XB), 1
(YB-XBX.2)ll

el h
1

(el /2)-1 (e
2

/2)-1 ezhz
X [h

1 211
exp { - }][h2 exp { - .

1
2112

Note that

1

I h (I +X T 1Xf )1 = h T
1 A AlA 1

r
II

A
+XA 2 1X1A 1

and that
-1ih
2

(I
B

+X
B

T
2

1X
B

)1 = h m II
B

+X
B

T
2 B

1XI I .

Then

64
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1
el -1 -1f(hIII ) cc h1

2
--(r+e

1)/2 -1
exp{- [1

A+(Y -XA X
1

)1(I
A

+X
A

T1
A

X1) (Y
A

-X
A

X
1 1

}

where

and

(m+e )/2-1
2 1

e2
X h

2
exp {

2

r

ri
+(Y

B
-X

B
X

2
)'(I

B
+X

B
T

2 B
1XI) 1(Y

B
-X

B
X

2
)]h

2
}

(r-fe
1

)/2- 1
1 el= h

1
exp{- ( )Q

1
h

1
}

2 11

(m+e2)/2-1
1 e2X h2 exp{- (-)Q_h2}

2
7

112

Q
1

1 + e
1

1(Y
A

-X
A

X
l
nil

1
)(I

A
+X

A
T

-1Xi ) -101
A

-X
A

X
1

)
l A

2

1:= 1+ e (Y
B

-X
B X

2 )'(112
)(IB

+X
B

T
-1X.

)
-1

B
-X

B 2)
.

B

(3. 2. 4)

We now use (2. 2. 12), (3. 2. 2) and (3. 2.4) in (3. 2. 1) to obtain

f(Y Y Z
D

, p, hill )ND,

-1/2 YC, YC
cc "CD ' exP

1 N
" YD'PCD'i CD" Y

D
/-11CD1

Z.. 1-Z..
X

1,-1 /2ex...{- l(3.-(3),
" I IIPI) 2 jj6 P ") 13)ijED

g F(pi"+qi") - 1 q'-
x n. (1-n.)

. r(p.')F(q., ) 1 1
1-1

(m+e 2) /2
(1-- 2 ) Q h }X h

2 2 ri
22}

2

(r+el)/2-1
1

el
1

exp{-
2

)40. hi}
1

(3. 2. 5)



In (3.2. 5) Z D"p and h are nuisance parameters. We

eliminate them as we did in Section 2. 2 by finding the marginal

density, f(Y IY II
*

).

where

Before doing so, it is interesting to note that

,

f(,13),r1a1II ) = fc.(31 h, ) f ( 1 1 1 II )

VP h, II ) = f(131 e e ) = f(P III) .l' 1' 2' 2

Thus, using (2. 2. 9) and (3. 2.4), we have

where

Note that

A /vp, *) cc (1B 1)
-1

/2exP{-
1

(P-PrB
1

(P-P)}

A
P

(r+el)/2-1
1 e1X h exp{- ()Q h }

1 2 II
1

1 1

X hexp{- 1(e2 )Q h }
2 2 /I 2 2

2
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(3. 2. 6)

IBp 1 = 11K1 (XI
A

X
.A

+T
1
)-11

2
1(X

BX
B+T2)-11 cc li1

2
xh-x

for II known. Also note that



where

A - A(p_prB (p_p) = h1B + h2B
P

1

1 1 2 2

^
B

1
:= (13 -13 )1(X? X

A
+T

1
)(13

1
-13

1
)

1 1

and where

B2 := (132-62)1(XB' XB+Tz)(13242)

Thus, (3. 2.6) becomes

* x /2 1 1
-if(13, hill ) cc h1x /2h2 exp{- i B ihi}exp{ B2h2}";

x h(r+e 1
)/2-1expl-

1 (
1 )Q h }

1 2 ri 1 1
1

(m+e 2)/2-1 1
e

2X h
2

exp{- ( )Q h
2

}
2 Ti

2
2

1
(x+r+e

1)
= h1

2
L

1 1 re 1
exp{- Q

1
+B

1
]li

1
}i

1

1
(x+m+e 2)-1 1 e2x h

2
2

exp { -i [Ti Q2 +B2]h2} .
2

67

(3.2.7)

We can now find the posterior density of p in this revised

model. Using (3. 2. 7) we obtain
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CO CO

f(P I II ) = $ f(f3, h I II )dhl dh
2

0 0

But, if we define

then

1
- (x+r+e

1
)

1 1
[ Q1 +B +B ] r( 2 1

(x+r+e ))
ri 1

1
e2 -

2
(x+m+e 2) 1x [

ri
Q +B

2 2
] r( (x+m+e

2
))

2

e
2 2

- (x+r+e
1

) e
2

- 1 (x+m+e
2)cc [ Ql+B 1] . [ Q +B

2
2 2

1

(3.2.8)

e
1

e
2

Q2
B [(

1 r+e )(

Q1
1

) ] B
1

and B2 [ ( ) ( ) }
-

1 B 2
1 1

na+e2 T12

1 (x+r+e
1

) el
1

- (x+r+e
1

), el -1 - 21 (x+r+e
1)[e 1 Q +B ] 2 2

7.7 Q1) 1+( Q ) B 1]
111

1 1
1

1

known scalar

e (x+r+e1 2 1

11 1 1

1
(x+r+e )

2= [1+(r+ei) 13'.1] 1

and, similarly,

e2 -
1

(x+m+e
2

)

)- 1
B*]

1

(x+m+e2)[ Q +B ] [1+(m+e
Ti2 2 2 2 2



This means that (3.2.8) may be re-written as

1 1

(x+f(P I 11 ) cc [ 1+(r+e 1)-
1 *

- 2 (+r+e 1)
[1+(m+e )- 1B*]rn+e2)

2 2

, *
IIIThus, it is clear that VP ) = f(13 III )f(I3 ) where f(plill )I ,2

f(R21u )and

ance matrices

and

69

are multivariate-t densities having means and covari-

A r+e
1

e
1

Q1(13 ()()( )(X X )-
1)

11 r+e -2 r+e '11 A A 1
1 1 1

A m+e 2 e
2

Q
2 )(X'

B
X

1
)(P2' ( m+e -2 )( m+e B

+T
2

2 2
)(

2

respectively. These posterior means may be interpreted as Bayes

estimates of pi and p2 under squared error loss. Note that they

are the same estimates obtained in the model of Chapter II.

We now return to the task of eliminating nuisance parameters
-from (3. 2. 5). Recall that IB cc h
1

x
h

2
-x

A A
(p_p),B (13-P) = h

1B 1
+ h

2
B2 . Also note that

IV CDI = 2 C I IV DI

and that

Z.. -(N-n-E.. Z
= h-(n-m-r) h_

1

zij
ED ij ijED ..)

2 2
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and that, for
1 13

+ (1-z..)x-.1(3
2

(ij E U),

-1 C((y
Yc

D
)-1-1CD )IVCD (( YD

= h
2

(Y
C

-X
C

(3
2

)1(Y
C

-X
C

(3
2

) +

h

ij EC

-X13 +ij i 2
ij ED

= h1 Z
ij

(Y ij -11
ij

)
2 + h

ij ED

We can rewrite (3. 2. 5) as

Z.. (1-Z..)
n113 h

2 (Yij
ij ED

Z h +(1-Z..)h p...)2ij 1 1313 13
2

f(Y Y Z (3 hl II )

1 1
E Z ((N-n)+(n-rn-r)-E.. Z..)

cc h
2 ij ED 13 2 ij EL) ij

h
21

X exp

X exp

12 Zii (Yii - p.ii[ )2 h I/
ij ED

-}W iii-X(32)2+[
JEc

13 13 3

21-Z..)(Y..
1

h

ij ED

Z 1 -Z1
1

H{X 1[7.ii(1-7.) j] X hi exp{- -i- B 1111}
i 1

ij ED

g 1-(pi!+q;) pi!- 1

h2 exp { - 1B h } X H 7 (1-Tr. )cliX
2 2 2 2 r(ppr(qii) i i

i= 1
X
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(r +e1)/2 -1
1

e1 (m+e 2)/2- 1
1 e2x [h

1 T i
exp{--(-1 ) Q

1 1
}][h

2
exp{- 2 (Ti

2

Q
2
h

2
.

(3.2.9)

We will first eliminate ZD. We will then eliminate (3, h and

finally Tr. The following lemma will be helpful.

Lemma 3.2. 10. Let 0 (ZD) be a real-valued function of ZD,

the subvector of Z corresponding to units in D. Then

0(Z D) =
E {0, l}

E D

Dwhere W := 2 , the set of all subsets of D,

W E W

0(Z =1 , Z
co*

= 0
co

)
w w *

w* := D\ w, nu) := number of elements in w,

nw* := number of elements in w* =

Zw := (nw X 1) subvector of ZD corresponding to units in w,

Zw := (nw* x 1) subvector of ZD corresponding to units in w*,

1 := (nw X 1) vector of ones and where

0
w

:= (nw* X 1) vector of zeros.*

The notation 0(Z = 1 , Z = 0 , ) means that the function 0( )
w W* co*

is evaluated for Z.. = 1, ij E w, and Z..
13

= 0, ij E W*,
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Proof. Note that W has 2
N-n members so that the sum

on the left hand side (1. h. s. ) and the sum on the right hand side

(r. h. s. ) both have 2N-n terms. Consider the sum on the 1. h. s.

In each term, Z.. is either 0 or 1 for every ij E D. In
13

fact, the 2N-n terms in the sum have a 1-1 correspondence with

the 2
N-n possible sequences, (Z.. :ij E D), where Z.. isij ij

either 0 or 1 for ij E D. For any one of these sequences, let

w be the set of subscripts corresponding to those Z.. Is taking theij

value 1. Then w*, as defined in the lemma, consists of those sub-

scripts for which the corresponding Z.. Is take the value 0. Nowij

w is clearly a subset of D. Further, there is a unique w for

each possible sequence, and the collection of these w's is obviously

W. But this establishes a 1-1 correspondence between terms in

the sum on the 1. h. s. and terms in the sum on the r. h. s. The lemma

follows immediately.

We have, by Lemma 3.2. 10,

f(Y Y 13 Tr
rs-)

h I II* )
r.JD' '

f(Y Y Z Vrr h I II )
rs, C rs-) D rs-)D '

z E {0, 1}
13

ij ED

CC



cc
E W
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1

2
n

w 2
(nw* +n-m-r)

1 2

X exp

X exp

Yii X;P 1)2

ij

(Y..-X.113 )2 h
13 2 2

[j E C LA4*

1

w*
x/2

1

x/2 1 1x II [rr.
1

(1-Tr.) 1] h
1 i

exp{- ih..} h
2

exp {-
2

B
2h 2}

1=1

g r (p;A-q.1) 1 qi"-
X II 1 Tr (1-Tr. )

r(Or(c11) j11 i

(r+e1)/2- 1
1

el (m+e2)/2-I
1 e2X [hi exp{ .7( -)Q h,}][112 exp{- ...7()Q_h2}]

4 11 1 1
112 Z

(3. 2. 11)

where w. := number of elements from group i in u.) and

:= number of elements from group i in w*, i = 1, 2, , g.

We next integrate (3. 2. 11) with respect to p and obtain

f(Y Y ,Tr,hIII*)

f(Y , Y , p, Tr, h I II )01 dP
2Sax SiRx

{g wi (r+e1)/2-1
{ [nil( 1-Tr.) ]} X [h1 exp{ -

1=1
W

1 (-e- 1 )Q h }]
2 ri

1
1 1



where

1
e

2
x {h011-1-e2)/2-lexpl- ( 42 h 1]

2
2

g r(pi"-Vcip 1

X II Tr1 (1-Tr.)
)
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X Int(w) (3. 2. 12)

1 1
n 2- (n *+n-m-r)

Int(w)
x x

[h1 h
2

u)

X exp

1X exp 2

YiJ
1

h1

iJ EC \ _IL)*

Recall that B
1

:
(R1

13
1 A
)?(X` X

A +T 1)(13 13\
1

)
1

B
2

= (3
2

13- )I(XI X
B

+T
2

)(3
2

13
2

- ).
B

To find Int(w) for any w E W, we will use Lemma 2. 2. 1 and

]2 h(Y. -X.113 )ij 1 2 2

and

argue conditionally on hl' h2' w and II . Let X
o.)

and X
co*

be

submatrices of X corresponding to units in w and w* respec-

tively. Let IL) and Iw* be identity matrices of sizes no) and

u.)*
respectively, and let Yw and Yo.)* be those subvectors of

YD corresponding to units in w and w* respectively. Given p,
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X
-

I 1 I

Yw
w 1

0 h I 0 0
1 w 1_ I_ _

Y
C

- N 0 I X c R, 0 I h
2

1I
C

I I 0

-I- -I- I-
214)*- _0 1 X(.04, 0 1 0 1 h

2
Ico*--

while, given II,

1

A
ci

h (X' X
A 1 A

T
11

R2 0 1

h- - (X X +T
I 2 B B 2

Lemma 2. 2. 1 shows that the marginal distribution of

Y

Yc

Yw*

is normal with mean

and with covariance matrix given by

A
Xw(31

XC32
Ax p(,)* 2-

1- II ' o 1

I o
1 w 1 __ h- 1(X X +T -

11 0
1 AA 1

0 0 +01Xc2 C
0 h2 (XBI XB+-r2)

I _1

0
1112 ic)* o 1 X(.0_

1
I-1

-
0,)1

ihi__i_ 0
0 I h-TH- i-

I 2 cogc

- -
where Hu.)

1
:= I + X

w
(X' X

A 1
+T ) 1X' and

A



where

and
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I +X (X X +T ) - 1X
'C X +T )

-
w

IX I-1 C C BB CI C B
(X I X

B 2 *
- I -X (X' X +T ) I I +X (X I X +T ) IXw* $ E C lw* B 2 W*

This means that

Int(w) cc Ohl
-1

Hw
-1 -1 /2 -

2
1
H 1)-1/2w*

X exp

X

X
1 A C C A

(Y0J-XWI3 ) (Y" X )P2)R2)']
W*

h1H L 0

0 1 h H
I 2 co):

1n hl
2 w 1= hl I Ho.

/2exp{- Qw*}

A
Y

w
-X

w
131

A
Y

C
-X

C
13

A
Y -X r3

4, 2

1 (n-m-r+nw*)
1 /2

h
2X h

2 Hoi* I exp { - R}

QWA A
:= (Yu, -X(4I31) IFlu)(Yco-X(413 1)

Yc X
C

x-C
A , r , C

QW* [( y
Wyk
" x )13 2] Hw* (y " X

co*
)132]

The constant of proportionality is clearly

1 12 n - 2 (n-m-r+nw)
(21r) (2n)



Thus,

1 1-2 (N-n+n-m-r) n
1 /2

h2 W 1 *Int(w) = (2n) hl 1H
(...)1

exp{-
2

Q(,) }

1

2
(n-m-r+n

w

) h2
*

*X h
2 I

Hco*11/2exp{- 2 Q
}

Expression (3. 2. 12) can now be written as

h1
*

IIY Tr h 1 )
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g
II

i=
E W

X

X

X

Next we

(q!-Fw* )- 11r(p!-Fq!) (p!-I-w. )- 1
1 1 1 1 1 i

h
1

and h2

(3. 2.

.

and

13)

Tr. (1-Tr. )1-(01-(0 1 1
1 i i

1
-

2
(N-n+n-m-r) 1 /2

(2Tr) H
1

/21
Hw*1WI

1
(n

w
1

+r+e )-1
h

2 1 e 1
exp{- [()Q +Q 1}1

1
111 1 w

1 (n-m- r+nw*+m+e2 )- 1

2
exp{ [(,)Q2+QuA]h2]

2

integrate (3. 2. 13) with respect to

obtain

f(Y

cc

g r(pi:+qi') (pi'+wi)- 1
)- 1

i= 1 r(Pi)r(q;)
W E W

- 1 (N-n+n-m-r)
2x (2Tr) 1H11

/21Hw*11 /2 (Ih)(Ih
l 2

3. 2. 14)



where

and

1
00

:= h1
2

2
(nw+r+e 1)- l

exp{- 1 [(In 1 )Q
1

+Q*(.,.) ]h.
1
}dh

1 0 1
h1

1

r 1 e 1 +r+e )

( Q r()] 2 c') 1 1

2 ri
1

1 rec (n
co
++ 1

))

1

(n
w*

+n-m-r+m+e2)-1 1 2I := h2
1

expl- 2 [( 7-Q2+Q
w*

111 }dhh
2 0 2 2

1e2 2 (n j*+n-m-r+m+e 2)
= [7( Q +Q )]ri

2
2 co*

x r(2 (n
co

+n-m-r+m+e
2)) .

*

If we define

Qw
A e

e

l 1 1
:= ()o-X(0P )f{( )( )F1 1] (Yo.)-X- 2 1)

l Ill

and

Y X
C C e2 Q2 1 -1 YC XC

Q := [( ) ( )13 )( )H [( )--(X )(3 2] ,

uj*
Y

co*
X

(.0*
m+e

2 12
co* Yw*

co*

then

e
1

+r+e )
1

I = (
2
--Q (.0 1 r

n + r +e )

1/ 1+(r+e r
(,)

2 w

1 1

(
1

X r(
2

(n
co

+r+e
1
))

and
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1e, -, (nul*+n-m-r+m.+e 2)
I = ( ' IQ ) 4'

h
2

2 112 2

1
(n +n-m-r+m+e )

1 , 2 co* 2
X [1+(m+e 2) Q

co*
J

X r( 1 (no)*+n-m-r+m+ez))

It is now clear that (3. 2. 14) can be written as

f(yC, y.3), j r I ii
*

)

W E W [
g r ( pi' +q; ) (pit -Fwi ) - 1 ( ci; +LI ) - 1

n
1

(1-Tr.)
ir(ppr(qp Tri i

=

1 1 1

-
2

nu) - 2% Q1 no.) -1 -1/2 1 el - (r+e )
2 1

X Tr e k ) 1/4,0 I] (iri Qi)
"1 1

1

X Tr

1
- 2 (n-m-r+no.)*)

e
2 (nm-r+no.)*)

[
Z

1

Q2 n-m-r+nw* -1 -1 /2 1
e

2 - 2 (m+e 2)
x [ (

712)

]
I H(,)* I 1 ( T 1

2
Q

2
)

1

-1 i. co(ri+r+el) 1X [1+(r+el) Q co] r(
2

(n
co 1
+r+e ))

1

x [1+(m+e )
-1

Q f
-2 (n-m-r+nw*+m+e2)

2 co*

X r(21 (n-m-r+n +m+e 2)) CC
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CC

E W

g r( l+ c" ) ( p'+w)- 1
.(cLk)- 1ii

1=1
F(p

i
)I- (u

1) ri ( 1-71 )

-
1 n Q2 w 1 -11-1/2 1

X (Trel) 171 Hw r(
2

(nw+r+e1))
1

(n +r+e
x [1+(r+eir 1Q,0] 2 w

(Tre2)

1 (n-m-r+nw )
Q2 1 2 11 H

(4)

1 r2 ((n-m-r+n +m+e2))*

1
(n-m-r+nw*+m+e2)

2-1X [1+(m+e
2) Q

e Q
-Let

1
r + e1,

2 v
I 1:= m + e2, V := H

I
W

and
1 1

2 2 -1
V :=

v
H . Then we can write (3.2. 15) as

co*
2 2

cc

f(Y Y II* )

W E W

g (piLl-wi)- 1
(1-n.)

.'

1= 1
r (p1)1' (q!) 11.1

X fw(Yw)fw*(YC, Y

80

(3. 2. 15)

(3. 2. 16)

A _

where f
W

(Y
W

) is a t(nW1,X Wp PvW
) density and f (YC Y

0.1
) isr-

a t(n-m-r+n v2' (
X

)0 2' V-1) density. (See A. 3. )
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Finally, let us find f(Yc, YD I II ) by integrating (3. 2. 16) with

respect to the vector Tr and finding the proportionality constant.

Recall that

P00 a2-1 F(al )r(a 2)
t (1-t) dt =

ID r(al+a2)

for al' a
2

> 0. Also note that f (Y
W

) and f
W*

(Y ,Y
(A)

) do not
*

involve the vector Tr. Thus,

g

f(Y Y ) cc r (13+wi )1- (q;+01

c 1-(01-(q!)i= 1 3. 3.
r(Pil-qi +d)

wEW
1

f (Y )f (y y )
co* . (3. 2. 17)

The constant of proportionality is one, since

i =1 1-(pil)r(q;) r(p1I-1-q1I+dd

r (pi"-Fwi )I'(qii+cl` )

{

X S f (Y )dY S f (Y Y )dY dY
. n w rw w n-m-r+nw* C w*

IR w IR

g r(pi+qi)
n
= 1

r(pi)r' ) r(p.I-Eq+d1 .')
1 1

(.4) E W

= 1

by Lemma (3. 2. 19), below.



The proportionality sign in (3. 2. 17) can thus be replaced by a

sign of equality so that

f(Y Y
D

) =
g F(pi-Fq;) 1-(piLl-codr(q;+0'i`. )

.n
1
r(p.)r(q) r(piI-Fqi +d i)

X f
w

(Y )f (Y
'
Y )
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(3. 2. 18)

Lemma 3. 2. 19. Let pi., p2, , pg, u2, , vg be any

positive constants. Then, using the notation of Lemma 3. 2. 10,

r(p.)1113-.) r(p.-Fcr.+d.)
3.--1

g r(p. +cr. ) 1-(p.+w.)1-(o- +w*
1 1 1 1 i

Proof. Using Lemma 3. 2. 10, we have

E W

g r(p.+0-.) r(p.+(.0.)r(cr.+w*.
1 1 1 1 1 1

1. =1 1
r(Pi)r(6i) r(p.+T.+d.)

g r(p.+0-.) r(p.+Z... +d. -Z.

n
1 1

r(pdr(0-i)
1 1:11 E lj 1 E D Zij)1

ZkQ
E{O, 1}

i =1 i
+d.)

k/ ED

g

i= 1
Zk E {0' 1}

k

d. d.
r(p.4-0-.) r(Pi+zk--i1 Zk)r(cri+di-Eksi-1 Zk)1 1

r(pdr(cri) r(p.-Fcr.+d.)
1 1 1 J
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n (

d. F(pi+o-i)
= 1)

F.L. r(P.)r(cr.) r(p.+0- +di=1
=0 1

1 1

= 1

by Lemma 3.2.20, following.

Lemma 3.2.20. For any b, c > 0 and any positive integer k,

k
k F(b+c) r(b +z)r(c +k -z)

= .( z
) r(b)r(c) F(b+c+k)

1

z=0

Proof.

k
k F(b+c) r(b +z)r(c +k -z)

( z ) F(b)F(c) F(b+c+k)
z=0

[k F(b+c)
( z ) F(b)F(c)

z=0

S 1

t(b+z)-1 (1-t)(c+k-z)-1dt
o

F(b+c)

0

0

1
tb- 1(1 ...t)c -1

1 b- 1 ,c -1t (1-t)

k

z=0

dt

F(b)F(c)

F(b+c)
F(b)F(c)

= 1 .0

k )tz( _ok-z

by the Binomial Formula
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3.3. Posterior Prediction

Section 1.2 showed that the Bayes predictor of the population

total, T, under squared error loss is

where

A
T := / Y.. +E(RIII )

R

ij E A1/4_)B

Y1.3.

ij E CVD

* *
In this section we will find E(RIII ) as well as Var(RIII ), the

posterior variance of R.

From (2.3. 11) we have

A
=

2

i=1 i =1

+(lirr\.)X.1
2

Note that this expression is independent of h = (h1, h2). Also note

that
,

E(R lh,II ) = E(RIII, el, 1 e2, 2
) = E(RIII) ,

since the constants el' ql e2 and r12 do not appear in E(RIII).

We now use (2.3. 8) to see that



,

) Eh[E(R1h,II
*

)]

Eh[E(RIII)]

A
c.X.113 +

2

1=1 1= 1

i 1 1 1
,

3. 2
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(3.3. 1)

since E(RIII) does not involve h
1

or h2. By comparing (3.3. 1)

with (2.3. 11) we see that, for predicting T under squared error

loss, it makes no difference whether the precision vector, h, is

fixed as in Chapter II or random as in this chapter.

Before finding V ar (R I II ), we note that, given II , h1 and

h
2 are independent random variables having gamma distributions.

In fact, using (3.2.4), we see that, given II , h
1

and h
2

are

independent random variables such that

and

1

1
e

1 2
(r+e

1)[2 (1
2

)Q
1

1 (r+e
1
)-1

exp{- 1 (
e 1 )(:) h }f(h ) hl

r[f(r+ei)] 2 11 1 1

f(h )

e2
1 "e 2)Q21-)[ (- 2- (m+ea)-

1 e2
h2 exP{ "Z( )Q2112}

T[Fm+e2)]



Thus,

*
h-1

lf(h
1

III )dh
1

1

e (r+e )
[

1

)(2
1

]
2 1

1

1

r[i(r+el)]
X

r[2(r+e1)-1]
1el
2

(r+e
1

)- 1
1

1
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1(r+e )- 1
1 e1 2 1[()Q 1 1

X S
0

Z ill 1
[

h1

2" (r+e 1) -2] 1 e 1
1

e xp{- -,L -()Q h i}dh
II (r+e1)-1] "1

1

1(:-- 1 )Q
1

(14e1) 1

[ 112(r+e 1) -1]
1

1

1
el Vr+e 1)- l

1r[-i(r+e 1)][i()Qi]

Now, for any a > 0, r(a +1) = ar(a). Thus,

1 1 1 1

r[-2 (r+e
1 2)] = r[(r+e

1
)- 1+1] = [-2 (r+e

1
)- i]r[-2 (r+e

1
)- 1]

1provided (r+e 1) > 1. In any practical situation, the number of
1

respondents, r, is larger than 2 so that (r+e 1) > 1. We

then have



e
1 -1/4 1

2
1 1 1E[h III' ] = ( )Q [

2
(r+e )- 1]--

1 ii 1 1
1

e
1
Q

1
_

11 1
(r+e

1
-2)

Similarly,

e
2

Q2

2
I

, l *,
El.h II I

12(m+e 2-2)
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(3.3.2)

(3.3.3)

The results of Chapter IV suggest that, for the purpose of

interval estimation of R, the posterior density f(RIII) can be
,-,

approximated by a normal density having mean E(R III) and vari-

ance Var(RIII) in the case where the precision vector,

fixed. Fact A.7 shows that, as v -.
1

h, is

-F00 and v2 +00, the

densities f w(Y w
) and f

w*
(Y C' Y

w*
)

'
0.) E W, may be approximated

by multivariate normal densities. This in turn suggests that
*

f(RIII ) may be approximated by a mixture of normal densities simi-

lar to f(RIII). It is reasonable then to think that the distribution of
,-,

R given II may, even for samples of moderate size, be well
, *

approximated by the normal distribution having mean E(R1II ) and

variance Var(R 1 II ).

*
E(R1II

*
) is given by (3.3. 1). To find Var(RIII ), we use

(2. 3. 9) as follows:

, * * , *
Var (R 1 II ) = Eh[Var (R1 h, II ).1 + Varh

[E(R 1 h, II )] .



We have already shown that E(R I h, II ) = E(R1II) does not involve

h. Thus Varh[E(R1 h, II)] = 0. Further,

Var(R I h, II ) = Var(R1II, el, 711, e2, 712) = Var(R III), since the con-

stants e
1,

711 e
2

and 712 do not appear in Var(RI II). (See

(2. 3. 19). ) Thus,

Var(R III ) = Eh[Var(R

and Var(RI II* ) is calculated by replacing h1 by
1 (r+e 1-2)1

- 1
el Q1

-1 e
2

Q2
and h2 by in (2. 3. 19). Note that

2
by -2)

and that

eEE(hi I UN- 1Q1
11 (r+e )

1 1

*
e Q

2 2
[E(h

11
II )]

- 1

11 (m +e )2 2
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IV. EXAMPLE: REGRESSION THROUGH THE ORIGIN

Previous chapters have presented a Bayesian approach to the

nonresponse problem of Section 1.3 for the case where the character-

istic of interest is linearly related to one or more auxiliary variables.

In this chapter we will confine our attention to the case where there is

one auxiliary variable and where the expected value of the character-

istic of interest is proportional to that auxiliary variable. We first

summarize the results of Chapters II and III for this special case then

present a hypothetical example to illustrate these results and to sug-

gest a computationally convenient approximation.

4. 1. Summary of Results

We now assume that there is one auxiliary variable available

for each unit in U. We assume that x = 1 and that X.
1

P l' P 2' X
1' X2, 1

T and T2 are scalars. The(i = 1, 2,

assumptions of Chapters II and III are modified accordingly. In

particular, given X, h, p and Z, we assume that Y 11' ' gn

are independent random variables such that

1 1 1j
Z. 1-Z.

N
1

Yl.j N(Z..X. +(1-Z..)X.P 2' h
(-1 j

h
) (-2 ) )

13 1 1 13

for i = 1,2, g and j = 1, 2, ... ni.

(4. 1. 1)



The posterior means for

become

and

1
and (32 found in (2. 2. 9)

1 A(X' A +T
1 A
)-1(X Y

A 1
+T X

1
)

(E.. X.Y.)++, X,
E 1 11 1 1

2
(E. )++

1=1 1 1 1

P B2
= (x' XB

+T
2

-
B

) 1(XBY
B

+T
2

X )
2

(E X.Y. )++ X
ij EB 1 j

(Zg
=1

b X 2)+T
i i

The posterior density, f(RI II), in (2.2. 28) remains
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(4. 1. 2)

(4. 1.3)

unchanged except that, from (2. 2. 23) and (2. 2. 24), we now have

for 6
1

A
= [S.X.1 +(c.+d.-SJX.1312

i=1

and 1132 given by (4. 1. 2) and (4. 1.3) and

-1 -1 -1
V = (n-m-r)h

2
S.+h

2
(d. -S.)1

i=1

+ hi
1

S2
2

Xi / [(
1

2
+T

1

- [ .]

i=1 i=1

(4. 1.4)



g g

+ hil [5i5
k
X.X

k
af2X1+T

i=1 k =1 / =1

+ h
2

1

g

i=1

k/i

c.1 +d.
1
-S. )2X2

1
b.X2 +T

21 1 `i 1
= 1

g g

+ h21 (c.+d.-5.)(c
k

+d
k

-S
k

)X.X (/ b X+T11( 1
2

2

i=1 k=1 / =1
k/i

The posterior means of
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(4. 1. 5)

Tr are again given by (2. 3. 2).
g

A
The expression for R in (2. 3. 11) is now

A A
R = p

i= 1

A
cUrT.X.

1 1 1
+ /1:2

i=1

c.+d.(1-Tr. )1X . (4. 1. 6)

The posterior variance, V(R1II), given by (2.3. 19) remains the

same with

and

8ik *= X
i
X

k
/ [E a

i i
X2) +T k = 1, 2, g,

1=1

eik := XiXk/ [(/ biXi2) +T21 , i, k = 1, 2, g

i=1
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and (X.' = X., i = 1, 2, ... , g).
1 1

4. 2. Simulation Example

In order to illustrate the ideas summarized in Section 4.1, a

population of size N = 120 was generated. It was assumed that

- 1
X

1
= 5

'
X

2
= 2, h

1

1
= h

2
= 25 and T

1
= T

2
= 125. The prior

precisions of pl and 132 were thus h
1

T
1

= 5 and h
2

T2 = 5

respectively. This produced Pi = 5.3214 and 132 = 1.5686. The

population had g = 3 groups with X1 = 35, X2 = 40 and X3 = 50.

It was assumed that Tr l' Tr
2

and Tr
3

had prior means 0. 6, 0.7 and

0. 8 and prior variances 0. 04, 0. 04 and 0. 04 respectively.

A systematic sample of size n = 105 was chosen, and it was

assumed that Tr, = 0. 6, Trz = O. 7 and Tr3 = 0. 8. As will be seen

later, n/N was chosen large for ease of calculation of f(RI II).

For this sample, we have the following relevant information:

i X.
1

n.
1

s.
1

a.
1

b.
1

c.
1

d.
1

1 35 40 35 23 6 6 5

2 40 40 35 27 4 4 5

3 50 40 35 31 2 2 5

N=120 n=105 r=81 m=12 12 15

X.Y.. = 789, 567
1 13

ij e A ij EB

X.Y.. = 28, 800
1 13
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a.X? = 148,875

i=1

A
13

1
= 5.3033

Y.. = 18,221.6

ij EA

b.X2 = 18,750

i=1

A
R2 = 1.5391

ij EB

= 720.5
13

A A A= 0.650, n- = 0.764, n3 = 0.879

A
Thus, from (4.1.6), we have R = 3,515.84 so that

A
T = 22,457.94. Note that T = 21,963.5.

Figure 1 shows the posterior density, f(RIII), for this

example as well as a normal density function having the same mean

and variance. The corresponding cumulative distribution functions

are plotted in Figure 2.

The Bayes point estimate of R in this example is
A
R = 3,515.84 as found by using (4.1.6). A corresponding interval

estimate is made by finding points R1 and R2 such that the

posterior probability of the event "R1 < R < R2" is, say, 0.95.

Typically, R1 and R2 are chosen with the further restriction

that R2 - R1 be as small as possible. A careful examination of

Figure 2 reveals that nearly the same intervals will be obtained by

approximating the actual cumulative distribution function by a normal

cumulative distribution function having the mean and variance found
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by using (4. 1. 6) and (2.3. 19) respectively. This approximation is

explored further in Section 4.3.

4. 3. Empirical Suggestion of Normal Approximation

The example of Section 4.2 suggests that, for the purpose of

making interval estimates of R, the actual posterior distribution

function can be approximated by a normal distribution function having

mean E(R1II) and variance Var(RI II). While this mean and vari-

ance are easily calculated, the actual distribution function is expen-

sive to calculate. The normal approximation is easy to use, since

tables of normal distribution function values are readily available.

The example of Section 4.2 is unusual, since N n -7- 15. In

most surveys, the difference between N and n will be at least

500 and more often 1000 or more. In order to see the effect of

increasing N - n, it was assumed that the sample of Section 4. 2

was actually drawn from a larger population. Figures 3 through 16

show the resulting density function and distribution function plots. In

each case, the odd numbered figure corresponds to Figure 1, while

the even numbered figure corresponds to Figure 2. The numbers of

nonsampled units in groups 1, 2 and 3 were assumed to be as follows:
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Figures dl d
2

d
3

N-n

3-4 8 5 5 18
5-6 10 8 7 25

7-8 10 10 10 30
9-10 0 0 30 30
11-12 0 30 0 30
13-14 15 0 15 30
15-16 0 50 0 50

The calculation of f(RIII) and the corresponding distribution,..

function is prohibitively expensive for N-n larger than 50.

Figures 3 through 16 suggest that the use of this normal

approximation is appropriate whenever the nonsampled units are not

clustered in one group (Figures 9 and 10). In most real situations,

this will not be a problem.
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Appendix: Multivariate-t Distributions

This appendix summarizes pertinent definitions, notation and

facts about multivariate-t distributions used in Chapter III. These

facts are adapted from a paper by Cornish (1954) and a book by

Johnson and Kotz (1972).

Definition A. 1. If L = (L l' L 2'
,... L

w
)1 is a w X 1 random

vector having a probability density function in IRW given by

f(L) =
_-1 (v+w)r(-1 (v+w))

1

2 [i+v -1 L'E -1L] 2

(Try)
2wr( v)IEI1 /2

2

where v> 2 and where E is a w X w positive definite matrix,

then L is said to have a w-dimensional multivariate-t distribution

with v degrees of freedom and with characterizing matrix E-1.

Fact A. 2. If L has the distribution of A. 1, then E(L) = 0,

v
a w X 1 vector of zero's, and Cov(L) := E(LL') = v-2 E .

Definition A.3. Let K := L+ 1.1. where t.I. is a w X 1

vector of constants and where L has the distribution of A. 1. Then

K has a density function in IRw given by
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r(1 (v+w)) _(v+w)

Tr

2 1 -1 2
f(K) = [1+v (K-p.rE

lw
r2 1

I
(v) (-

2 11/2E

Note that E(K) = E(L) + µ = 1.1. and that Cov(K) = Cov(L) = vv E.

We say that K has a w-dimensional multivariate -t distribution

with v degrees of freedom, with mean II and with characterizing

matrix E 1.

Notation: If K has the distribution of A. 3, we write
-1 -1

K t(w, v, E ). Thus, in A. 1, L t(w, v, 0, E ).

Fact A. 4. If L t(w, v, 0, E 1), then the characteristic func-

tion of L is given by

:= E(eit ) = [r(2 v)]- IS
12

v -1
u expt-u- vu .,EtEdu

where i := 47.1. If K t(w, v, E 1) then K = L + µ where

L t(w, v, 0,E-1). Thus, the characteristic function of K is given

by

(t) E(eit'K) = E(eiti(L+p.)) =

1

exp{-u+it vu- 1[t 'Et] }du .
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Fact A. 5. Let K - t(w, v, 1.1., E
1

) and let J := HK where

H is an h X w matrix of rank h (h < w). Then

J t(h, v, Fly., (HEH')1). In particular, the marginal distribution of

t(h, v, E- 1)the first h elements of the random vector K is h' h

where 11h
is an h x 1 vector consisting of the first h elements

of 11 and where Eh is the leading h X h submatrix of E.

X,
Fact A. 6. If L t(w, v, 0, E -1

), then L --> U where
v-- +co

U - N(0, E). That is, if { v1, v2, ... } in any sequence of real num-

bers tending to +00, and if {L
1,

L2, ..} is a sequence of random
-1vectors such that L. - t(w, v., 0, E ) for i = 1, 2, ... , then the

sequence {L1, L2, ...} converges in law to the random vector U

where U has a w-dimensional normal distribution with mean vector

0 and covariance matrix E.

Fact A. 7. Slutsky's theorem and Fact A. 6 show that, if

K - t(w, v, p., E I
), then K --> V where V - N(p., E).

v- +co


