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Chapter 1: Introduction

Energy cost has become a serious concern for most data centers today. Electricity

bill payments contribute to a pretty signi�cant portion of Data center annual op-

erational expenditures (op-ex). As reported by Natural Resources Defense Council

(NRDC), 91 billion Kilo-watt-hours of electricity were consumed by US Data cen-

ters alone in 2013 [1]. In the future, this amount is projected to increase to roughly

140 billion kilowatt-hours annually by 2020. The result of this increase is going to

cost American businesses 13 billion dollar annually in electricity bills.

According to [15], Google continuously draws 260 Mega Watt of power in order

to run its data centers. This amount of power is enough to power 200K homes and

translates into an electricity bill of millions of dollars per month. Thus there is

clearly a great �nancial incentive for IT companies to cut down their electricity bills

in every possible way in order to reduce their operational expenses and increase

their pro�ts.

Cloud data center is a repository that contains signi�cant amount of computing

resources, called physical machines (PMs). These PMs are put together forming

multiple groups. Each group is controlled by a management unit called cluster. A

cluster can be homogeneous (servers have the same amount of resources) or het-

erogeneous (servers have di�erent amounts of resources). Each cluster is located in

a certain geographical area and is designated a resource manager that orchestrates
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the operation of a �eet of thousands of servers. These computing resources are

o�ered as services to cloud clients and they will be charged based on their usage.

The resource manager receives Virtual Machine (VM) requests from clients, with

each requesting a certain amount of computing resources (e.g. CPU). The resource

manager decides which server in the cluster should provide the requested resources

for each VM request. Clients normally run some computing jobs on the requested

VMs and release the VMs once their jobs complete.

UPS batteries in data centers have two main power distribution topologies:

i) Centralized Topology, where a large room full of batteries is used to provide

power for the whole cluster. Charging those batteries requires converting the grid

power from AC to DC whereas discharging the stored energy to the cluster requires

converting the power back from DC to AC. The discharged power is then fed to

servers where the power supply unit (PSU) of each server converts the AC power

to DC to be used by the computing components. ii) Distributed Topology, where

each server in the cluster is supplied with an independent small UPS battery that is

placed internally in the server. The server's PSU converts the AC grid power into

DC and stores some amount of energy in the internal battery to be used directly

by the server's components when needed.

The distributed topology was more widely adapted by Google and Facebook

[17] than the centralized one as it does not su�er from the single-point-of-failure

problem, allows the energy storage capacity to grow automatically when adding

new servers, and reduces the conversion losses by eliminating two redundant con-

version stages.
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However, the main disadvantage of the distributed topology is the fact that it

limits the amount of energy that can be used for peak shaving as the energy stored

in each battery can supply power only to its dedicated server. More speci�cally,

while idle or lightly utilized servers in the cluster might have a good amount of

stored energy in their batteries, this energy may not be fully accessible for peak

shaving as the power demands of those servers is too low. On the other hand, other

active servers may have large power demands but not enough energy stored in their

batteries to provide the demanded power. This creates challenges for deciding how

to assign VMs to servers in the cluster and how to decide how to distribute the

stored energy among the distributed UPS batteries.

The bill that a cloud data center receives from the grid at the end of the billing

cycle (e.g. month) is normally made up of two major components [27]: i) Energy

Charge, which is proportional to the amount of consumed energy, measured in

KWh, within the entire cycle. ii) Peak Charge1, which is proportional to the

maximum power, measured in KW, drawn within the cycle. The maximum power

is usually calculated by �rst dividing the billing cycle into slots each of 15-minute

length, and then measuring the average demanded power for each slot separately.

The Peak Charge is then calculated based on the slot with the maximal average

demanded power.

1Peak Charge is also called Demand Charge.
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1.1 Related Work

Researchers have proposed several peak shaving techniques as a solution to re-

duce Electricity prices in data centers such as Dynamic Voltage Frequency Scaling

(DVFS)[14], virtual Machine-based power management [21], and online job migra-

tion [4, 31]. Although prior work techniques lead to energy savings, they all incur

some performance overhead, which is not desirable to cloud clients. The use of

batteries can be thought of as another peak shaving approach that reduces energy

costs in data centers [16, 19, 22, 28] if exploited properly. They are more practical

and they incur no performance overhead. Recently, a power capping technique

using heterogeneous battery environment was introduced by [18]. Another work

proposed by [30] to reduce power consumption using a power model that maps the

workload to its dissipated power. Although both approaches resulted in signi�-

cant power reduction, they did not consider per-server homogeneously distributed

batteries.

There have also been numerous cluster management techniques proposed to

minimize the Energy Charge of the electricity bill [3, 6, 8, 10, 12, 13, 24�26]. The

most common approach is to consolidate the VM requests on as few ON servers as

possible, thus allowing the switching of redundant servers to sleep to save energy [5,

8, 11, 20, 24]. The Best-Fit (BF) heuristic [3, 26] is the most popular VM placement

heuristic that tries to achieve this objective via VM placement and scheduling.

While the BF makes signi�cant Energy Charge reduction compared to random

VM placement strategies, it completely ignores minimizing the Peak Charge which
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contributes to more than 40% of the electricity bill [9].

There have been few approaches, referred to by Peak Shaving techniques, that

are proposed to minimize the Peak Charge of the electricity bill. One of the

main Peak Shaving approaches that does not cause service degradation is to store

energy in batteries during low demand periods so that this stored energy can be

used later to (partially) power the cloud data center during high power demand

periods. This results in reducing the power drawn from the grid during high power

demands, thereby resulting in minimizing the Peak Charge.

Two reasons make energy-storage peak shaving techniques practically applica-

ble in cloud data centers. First, data centers are already equipped with controllable

Uninterruptible Power Supply (UPS) batteries for fault-tolerance [29]. Second, the

amount of energy that needs to be stored in UPS batteries for fault tolerance is

very small compared to the energy storage capacity of those batteries [28]. This is

true since during power outages, batteries need to power the data center for only a

short duration (around a minute) until the diesel generator starts working. Their

remaining capacity can thus be used to store energy for peak shaving purposes

while always preserving a small amount of energy to power the data center during

the short transition period in case a power outage occurs.

1.2 Contribution

In this thesis, we propose a resource management framework for a cloud cluster

with distributive UPS topology. Our framework places the submitted VM requests
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in a way that reduces both the number of ON servers needed to host the VMs and

the amount of stored energy that is inaccessible for peak shaving, which leads

into signi�cant reductions in both the Energy Charge and the Peak Charge of

the electricity bill when compared to the traditional BF placement heuristic that

completely ignores the Peak Charge. To further reduce the amount of inaccessible

stored energy, our framework adapts a greedy power distribution strategy that

decides based on the power demands of the servers which distributed UPS battery

needs to charge (discharge) power and by how much. To summarize, our main

contributions are the following. We:

• Propose a placement strategy that aims at minimizing both the number of

ON server and the amount of inaccessible stored energy for clusters with

distributed UPS batteries.

• Propose a greedy power distribution strategy that decides which UPS battery

should charge/discharge power while minimizing the amount of inaccessible

locked energy.

• Show that a good portion of the cluster's total electricity bill can be reduced

by our techniques when compared to existing approaches.

The remainder is organized as follows. Chapter 2 introduces our notations. Chap-

ter 3 explains our proposed framework. Chapter 4 evaluates our framework based

on real Google traces. Finally chapter 5 concludes and provides directions for

future work.
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Chapter 2: System Model and Notation

2.1 Battery Model

We consider a cloud cluster with a distributed UPS topology where each server is

dedicated a UPS battery that can supply power only to the the server it is attached

to. Each server's battery has a maximal energy storage capacity Emax and a

maximal charging and discharging rate Cmax that can't be exceeded. Each battery

has also a conversion charging e�ciency ηc+ , a conversion discharging e�ciency

ηc− and a leakage e�ciency ηl where 0 ≤ ηc+ , ηc− , ηl ≤ 1. This means that when

a server's battery draws a power P from the gird then only ηc+P ends up being

stored in the battery where as the remaining power gets lost due to conversion

losses. Similarly when the battery discharges a power P to be used by the server

then only ηc−P gets delivered to the server's components whereas the remaining

power gets lost due path losses.

2.2 Power and Energy

We consider a time-slotted billing cycle where the billing cycle is divided into n

time slots where each slot has a duration of τ minutes. Let T be a constant

threshold value used to cap data center's power consumption. Let P be the set of

all servers in the cluster. Let Pon and Poff be the set of all ON and OFF servers
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in the cluster respectively where: P = Pon ∪ Poff . To simplify our notations, the

index i will be used to refer to one of the billing cycle's slots, whereas the index j

will be used to refer to one of the cluster's servers.

For a slot i, the following notations are used:

• di,j is the power demand for server j during the ith slot. This basically

represents the aggregate power demands of all the VMs hosted on server j

at time slot i.

• Di is the power demand of the whole cluster during the ithslot which can be

calculated as: Di =
∑

j∈P di,j.

• ei,j is the amount of energy stored in the battery attached to server j at the

beginning of the ith slot.

• pi,j is the amount of energy the battery attached to server j can possibly

have during the ith time slot, before reaching its maximum capacity, which

can be calculated as: pi,j = Emax − ei,j.

• c+i,j is the possible energy charge the Battery attached to server j can pos-

sibly have during the ith time slot. This possible charge is limited by the

maximal battery capacity pi,j, the data center's threshold ti,jand the server's

maximal charging rate Cmax as illustrated in the following relation: a+i,j =

min(pi,j, ti,j, Cmax).

• c−i,j is the accessible power that can be discharged from the battery attached

to server j at the beginning of the ith slot. This accessible power is limited
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by the server's power demand di,j, the server's stored energy ei,j and the

server's maximal discharging rate Cmax as illustrated in the following relation:

a−i,j = min(di,j, ei,j/τ, Cmax).

• C−i is the amount of power that our framework decides to discharge from all

the batteries in the cluster during the ith slot.

• C+
i is the amount of power that our framework decides to charge from all

the batteries in the cluster during the ith slot.
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Chapter 3: The Proposed Framework

As illustrated in Fig. 3.1, our proposed framework has a two level-control struc-

ture. First, a scheduler, residing at the top of the framework, that controls where

to place new VMs that arrive to the DC. Second, a UPS controller that controls

when to charge/discharge the batteries, and how much energy should each UPS

battery charge/discharge. We provide next a detailed description of our frame-

work's components:

3.1 Scheduler

The scheduler follows a Slack and Battery Aware placement strategy which is

referred to as (SBA) throughout the paper. The SBA strategy basically decides

which server a new VM request should be assigned to based on: i) the power

state of the servers (ON/OFF) within the cluster, ii) the resource utilization and

capacity of the servers in the cluster, and iii) the amount of energy stored on the

servers' batteries. These assignment decisions are made with two objectives in

mind: a) minimizing the number of ON servers and b) maximizing the amount of

accessible stored energy that can be used for peak shaving. In order to achieve

these two objectives, SBA operates as follows:

- SBA places a VM request on an OFF server only if no other ON server in
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12

the cluster can �t the VM request. The intuition here is to consolidate the VM

requests on fewer ON servers in order to minimize the consumed energy by turning

OFF as many redundant servers as possible.

- If the VM must be placed on an OFF server, SBA prefers servers with the

largest CPU capacity and with the largest UPS Stored Energy. The intuition

behind this preference is the following. First, servers with larger CPU capacity are

preferred as they can �t larger VMs in the future without requiring to turn ON

extra OFF servers. Second, servers with larger stored energy are preferred as the

larger the energy stored, the higher the accessible power that can be used to shave

the peak power demands in future. Now in order to consider both the capacity of

the servers and their amount of stored energy, SBA calculates a combining score for

each OFF server that can �t the VM request and then picks the OFF server with

the largest score. The score S(j) for the OFF server j is calculated as follows1:

S(j) = α× Scpu
Cap(j) + (1− α)× SUPS(j)

Where Scpu
Cap(j) and SUPS(j) are respectively the CPU capacity score and the UPS

stored Energy score and where α is a tunnable weight that lies within the range

[0,1].

The CPU Capacity score Scpu
Cap(j) is calculated as follows:

Scpu
Cap(j) = Ccpu

j /Ccpu
max

1In our formulation we considered only a single resource (CPU). However, our framework
can be easily extended to handle multiple resources (e.g. Memory and Hard Disk) by basically
introducing a weighted utilization score for each one of those resources.
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where Ccpu
j is the CPU capacity of the jth OFF server and Ccpu

max is the maximum

server's CPU capacity among the OFF servers in the cluster.

On the other hand, the UPS stored energy score is calculated as follow:

SUPS(j) = Ej/Emax (3.1)

where Ej is the energy stored in the battery attached to the jth OFF server and

Emax is the maximum amount of energy that is currently stored in the battery of

any OFF server within the cluster.

- If multiple ON server can provide the resource demands for the submitted

VM request, then SBA prefers the ON server with the larger CPU utilization and

with the larger amount of energy stored in the server's UPS. The intuition is as

follows. It is better to place the VM on an ON server with high utilization so

that larger slacks are left on the remaining servers that have low utilization. This

saves energy as it allows the cluster to host VMs with larger CPU demands in the

future without the need of switching extra servers from OFF to ON. On the other

hand, servers with larger amount of stored energy in their attached UPS battery

are preferred as they hold a larger amount of energy that can be used for peak

shaving in the future. In order to select the server with larger capacity and with

larger amount of stored energy in the attached UPS battery, SBA calculates a score

for each one of the ON servers that can provide the VM's requested computing

resources and picks the server with the highest score to host the submitted VM

request. For a server j that is ON and that can provide the VM's demands. the
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score S(j) is calculated as follows:

S(j) = α× Scpu
Util(j) + (1− α)× SUPS(j)

where Scpu
Util(j) and SUPS(j) are respectively the CPU utilization score and the

UPS stored energy score and where α is a tunnable weight that lies within the

range [0,1].

While SUPS(j) is calculated as was previously described in equation (3.1), the

CPU Utilization score Scpu
Util(j) is calculated as follows:

Scpu
Util(j) = U cpu

j /U cpu
max

where U cpu
j is the CPU utilization for server j and U cpu

max is the maximum CPU

utilization among all the servers in the cluster. This score basically gives higher

preference for the ON server with the higher CPU utilization.

3.2 UPS Controller

This module manages the UPS batteries that are attached to the servers in the

cluster and consists of two sub-modules:
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3.2.1 Decision Maker

Algorithm 1 Decision Maker(Di, T )

1: if Di > T then

2: C− ← Di − T

3: SelectDischargeBattery(C−)

4: else

5: C+ ← T −Di

6: SelectChargeBattery(C+)

7: end if

This sub-module decides when to charge/discharge batteries and by how much

and is launched at the beginning of each time slot i. The decisions maker is

illustrated as a pseudo code (Algorithm 1) and takes as input the DC's power

demand at the ith slot Di, and a prede�ned threshold T . The decision maker

compares the DC's power demand to a constant threshold T . If the demanded

power is below the threshold, then the di�erence is charged into the DC's batteries

(Line 2 and 3). Otherwise (if the demanded power is above the threshold), the

decision maker tries to discharge the di�erence from the DC's batteries (Line 5 and

6). The intuition of the Decision Maker algorithm is to charge batteries during

low demand periods (periods during which the DC's power demand is below the

threshold). This stored energy is latter used to power partially or fully the DC

during high demand periods (periods during which the DC's power demand is above

the threshold) which reduces the peak charge and hence minimizes the monthly
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electricity bill.

3.2.2 Battery Selector

This sub-module decides which batteries among those attached to the servers in

the cluster should be charged/discharged (Line 3 and Line 6 of Algorithm 1). We

explain next the discharging and charging policies that this sub-module follows:

Discharging Policy: as illustrated in Algorithm 2, the Battery Selector orders

the ON servers in an increasing order of their CPU utilization (Line 1) and iterates

over the ordered list trying to discharge energy from each server' battery. There is

a constraint on the amount of energy that the server's battery can discharge as it

is limited by the server's power demand, the current amount of stored energy, the

discharge rate and amount of power that the decisions maker requested to discharge

(Line 3). The intuition behind preferring to discharge energy from servers with

lowest CPU utilization as they are more likely to become vacant in the future as

they hold less workload. Once a server becomes vacant it is switched o� to save

energy and thus the amount of energy stored on this server becomes inaccessible

for peak shaving (this energy is referred to by locked-in energy). Thus in short,

the battery selector follows a greedy discharging strategy that aims at minimizing

the amount of inaccessible (locked-in) energy.

Charging Policy: as illustrated in Algorithm 3, the Battery Selector charges

batteries attached to ON servers with high CPU utilization �rst as they are less

likely to be switched o� soon since they have a high workload which reduces the
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amount of inaccessible stored energy in future. If all batteries attached to ON

servers get charged and the power consumption still bellow threshold then the

algorithm will start charging batteries attached to servers that are OFF where

higher preference is given to the OFF servers with high capacity. The idea behind

charging OFF server's is to prepare them for further discharge when they turned

ON. In line 5. the battery charge is limited by the amount of energy that the

battery can store (as no battery can store more than its capacity), the server's

maximal charging rate and the amount of power requested to be charged by the

Decision Maker.

Algorithm 2 SelectDischargeBattery(C−)

1: Sort Pon servers in increasing order of their utilization
2: for each server j in Pon do
3: c−i,j ← min(di,j, ei,j/τ, Cmax, C

−)
4: Discharge c−i,j
5: C− ← C− − c−i,j
6: if C− == 0 then
7: break
8: end if
9: end for



18

Algorithm 3 SelectChargeBattery(C+)

1: Sort Pon servers in decreasing order of their utilization

2: Sort Poff servers in decreasing order of their capacity

3: P← Pon ∪ Poff

4: for each server j in P do

5: c+i,j ← min(ri,j/τ, Cmax, C
+)

6: Charge c+i,j

7: C+ ← C+ − c+i,j

8: if C+ == 0 then

9: break

10: end if

11: end for
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Chapter 4: Performance Evaluation

In this chapter, the experiments and evaluations are conducted based on real

Google cluster traces [23] released in November 2011 and Lead Acide(LA) bat-

teries. Tables 4.1 and 4.2 summarize these traces.

Table 4.1: Description of Google Trace

Characterization of the trace value

Duration of Traces 29 days

Number of servers > 12K

Number of task requests > 50M

Compressed size of data 39GB

Table 4.2: Con�guration of PMs within the Google trace

Number of PMs Architecture CPU

11659 A 0.50

798 B 1.00

126 C 0.25

LA batteries are the most commonly used batteries in data centers due to their

ability to produce high current at lower cost. The following table summaries LA
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battery speci�cations:

Table 4.3: LA Battery Specs

Rated Capacity 30Ah

Charge losses 8%

Discharge losses 2%

Leakage per day 0.3%

To evaluate our framework e�ciency, we compare our proposed technique (re-

ferred to as SBA in the graphs) with the two following schemes:

• Best Fit (BF) Placement: BF makes placement decisions to task requests

in a way that reduces the number of ON servers in the cluster. It approaches

this reduction by placing a new task on a server that is ON, �ts the VM, and

has the least CPU slack. In cases where no ON servers can �t the VM, then

the OFF server with the maximum CPU capacity would be switched ON.

• Random Placement: This heuristic makes random placement decision

whenever a new VM request is submitted. It places the new VM randomly

on a server that is ON and can �t the VM. If no ON servers can �t the VM,

then the algorithm will place it randomly on one of the OFF servers that can

�t the new VM.

The results of our framework evaluation will be discussed in terms of energy cost,

power consumption and utilization gain.
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4.1 Active PMs

The total number of active PMs plays an important role in reducing electricity

bill. one way to minimize the number of ON PMs is to keep as much large CPU

capacity PMs ON as possible. We can observe that our framework in Figure 4.1

has the lowest number of ON PMs almost all the time. SBA achieves this reduction

because it keeps more large CPU capacity PMs ON than BF and Random.
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Figure 4.1: Number of PMs over time for the di�erent placement schemes

4.2 Power Demand

In this section we compare a cluster's power demand under the di�erent schemes.

This comparison evaluates the power demand without using UPS batteries to show

how e�cient the scheduler is for the three frameworks. Figure 4.2 shows the power

demand of three framework. We can see that our scheduling algorithm leads to
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the lowest power demand compared to BF and Random. It achieves this reduction

because of utilizing ON PMs that have large CPU capacity more than the other

schemes. Utilizing large CPU capacity PMs reduces the total number of ON PMs

in the cluster, hence reducing power demand. Next to show the e�ciency of the

frameworks in general, we evaluate the energy consumption using UPS batteries

to partially supply data center with power during high demand periods under the

di�erent schemes.
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Figure 4.2: Power demand over time for the di�erent placement schemes

4.3 Locked-in Power

Locked-in power is the amount of power that is not accessible for power supply

during peak periods due to the nature of UPS topology where a battery can only

supply power to it's attached server. When servers are OFF, there attached bat-



23

teries are not accessible (locked-in). Figure 4.3 shows the locked-in power over

time for the di�erent placement schemes. We can see that our heuristic (SBA) has

the maximum locked-in power during the �rst half of the month, however it has

a sharp decrease around the other half. The reason for this is that SBA has the

lowest number of active PMs which means more OFF servers and more locked-in

power, also during the �rst Fifteen days as depicted in Figure 4.2, the cluster power

demand is bellow the threshold where batteries are not yet used to supply data

center with power. Nevertheless when cluster demand exceeds the threshold, the

locked-in power is minimized signi�cantly by our heuristic compared to the other

scheme.
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Figure 4.3: Locked-in Power over time for the di�erent placement schemes
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4.4 Energy Consumption

Now we compare the Google DC's energy consumption under the di�erent schemes.

We follow the model in [2] where the consumed power of an individual server

depends on its utilization, U cpu, and it is calculated as follows:

Pc (U
cpu) = Pidle + U cpu (Ppeak − Pidle) (4.1)

where Pidle = 200, and Ppeak = 400 Watts. Also, switching a server from ON to

sleep and from sleep to ON incurs an energy consumption of 5510, and 4260 Jules

respectively [7]. OFF servers do not consume any power. Figure 4.4 illustrates

the energy consumption of the Google DC over time. Observer that that the SBA

framework has the lowest power consumption. This proves the e�ciency of our

framework and highlights how important it is to make e�cient placement algorithm

along with UPS management control for energy reduction in cloud centers.
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Figure 4.4: Data Center Power Consumption over time with di�erent placement
scheme

4.5 Electricity Bill

We evaluate next in Fig. 4.5 the electricity bill of Google DC under the di�er-

ent schemes. We use a real power prices [29], where the energy charge price is

0.05$/kWh whereas peak charge is 20$/kW . The results are normalized with re-

spect to the total electricity bill of the random placement scheme. Observe that our

framework achieves the lowest energy cost among other schemes where the total

bill is around 20% and 10% less than the random and the BF scheme respectively.

This reduction is achieved as our framework consumed less amount of energy and

also had a lower peak during the billing cycle.
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Figure 4.5: Total Energy Cost for the di�erent placement schemes normalized w.r.t
Random Placement

4.6 Utilization Gain

Our next comparison is going to be about utilization gain that our framework

achieves compared to others. CPU utilization of a server is the summation of its

CPU resources that been reserved for all of its hosted VMs divided by its total

capacity. Figure 4.6 shows the average CPU utilization over time for all of the

ON servers in the cluster under the three schemes. Observe that our framework

utilization is not better than BF because it has more large CPU capacity servers

ON than BF. That means even though BF has better utilization, Our framework

incur less energy consumption which leads to signi�cant money savings.
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Figure 4.6: Average Utilization over time for the di�erent placement schemes
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Chapter 5: Conclusion

We propose in this paper a framework that e�ciently controls UPS batteries to

maximize the total electricity cost savings. The results of evaluating our proposed

framework on a real Google cluster traces shows how e�cient our framework com-

pared to other schemes in terms of energy cost savings. For future work, we plan

to eliminate battery locked energy, that limits shaving long duration peaks, by

applying workload migration among servers.
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