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1 INTRODUCTION 

 Motivation 

With contemporary concerns over the carbon foot print and life cycle 

assessment of buildings and construction, wood composites are renewable 

structural materials that have regained relevance as possible alternatives for 

low and mid-rise commercial, residential, or mixed-use buildings. Shams, 

Mahmud, and Al-Amin (2011) showed that switching to lumber, glass, and 

bricks from steel and concrete in the construction of a five-story building 

reduced the embodied energy by 52 %. Products like cross laminated timber 

and laminated veneer lumber could provide the structural members of these 

buildings with possible net carbon capture over their lifetimes. These products 

could eventually become entirely renewable if soy-based adhesives replace 

fossil derived ones and metal connections and fasteners are replaced with 

adhesive connections. However, major challenges to widespread adoption of 

wood-based materials for large scale construction exist in three main areas: 

moisture durability, mechanical load transfer, and fire resistance. Of these three 

issues, moisture durability and mechanical load transfer are directly related to 

the properties of the wood adhesive bonds which hold these products together. 

The wood adhesive system which bonds together smaller pieces of wood 

into these larger engineered members is a key component of wood composite 

materials. However, the specifics of how these bonds function (the relative 

importance of various micro- and nano-scale adhesion mechanisms, for 

example) is uncertain, so developing reliable methods for studying how these 

systems behave is important for understanding how they fail and improving 

them for the future. 

One key tool for investigating wood adhesive bond performance in situ is 

the combination of micro x-ray computed tomography (XCT) and digital volume 

correlation (DVC). Since no one has applied digital volume correlation to 
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investigate the wood adhesive interface before, it is important to try and 

establish good practices, set realistic expectations about what types of 

information can be extracted, and seek new insights (when possible) about the 

performance of adhesive bonds in wood composites. 

 Goals and Scope 

The goal of this research was developing methodology and tools to 

study the effects of adhesive flow and morphology on wood adhesive bond 

performance using micro x-ray computed tomography (XCT) and digital volume 

correlation (DVC). In this context, methodology means the procedures followed 

to collect measurements and experimental setup, and tools means software 

tools developed to execute the procedures of the methodology or analyze and 

improve future methods. Adhesive flow means the micron-scale flow of 

adhesive across the surface of bond plane; into the lumens of tracheids, 

vessels, resin canals, and rays; and through pits and other openings. 

Morphology means the shape of the adhesive after curing as determined by 

adhesive flow and the formation of bubbles. Bond performance refers to two 

mechanisms: the shear load transfer across the bonded interface, and the way 

in which the interface responds to moisture-induced swelling. Neither of these 

two mechanisms have a quantitative descriptive metric. 

In summary, we want to know if XCT and DVC can be used to determine 

the effect of adhesive flow on the mechanical performance of wood adhesive 

bond lines, what are some best practices for utilizing XCT and DVC with wood 

materials, and how might we improve these practices? To achieve this goal, the 

following objectives were set: 

1. Determine the measurement uncertainty of digital volume correlation for 

micro x-ray computed tomography of wood adhesive bonds. 
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2. Determine the best data acquisition practices for x-ray computed 

tomography of wood adhesive bonds which is to be used for digital 

volume correlation. 

3. Measure the effects of micro scale adhesive flow on the load transfer 

performance of wood adhesive bonds. 

4. Measure the effects of micro scale adhesive flow on moisture swelling of 

wood adhesive bonds. 

 Dissertation Structure 

To achieve these objectives, a series of works were completed. First, in 

Chapter 2, the literature is reviewed. Then, in Chapter 3, “Methodology for 

comparing wood adhesive bondline load transfer using digital volume 

correlation”, the expected measurement uncertainty of DVC in wood textures is 

estimated for objective 1. Then there is discussion of some sources of 

uncertainty and error which may be reduced in future experiments to address 

objective 2. Finally, an attempt to quantify the load transfer performance and 

relate it to the adhesive morphology is made to address objective 3. 

Quantifying the load transfer performance of the adhesive bonds is also 

discussed in the appendix. Next, in Chapter 4, "X-ray computed tomography 

observations of Moisture swelling in wood adhesive bondlines", the effects of 

moisture swelling are discussed for objective 4.  

Chapters 5 and 6, “XDesign: an open-source software package for 

designing x-ray imaging phantoms" and "The effect of procedure coverage on 

tomographic reconstruction quality of scanning probe microscopy" describe the 

development and utilization of a computed tomography simulation tool which 

may lead to better choices of scanning and reconstruction parameters for x-ray 

computer tomography of wood composites; this is related to objective 2. 
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2 LITERATURE REVIEW 

 Wood Composite Structure 

2.1.1 Wood anatomy 

Wood is a hierarchical structure mostly composed of cellulose, 

hemicelluloses, and lignin. The present work concerns mechanisms involving 

micron scale structures and morphology which corresponds to the cellular and 

cell wall scales of Figure 2.1. At this scale, cells whose longitudinal (vertical axis 

of the tree) length is on the order of millimeters, whereas the radial and 

tangential dimensions are 10s of microns. Ray cells, which run perpendicular to 

the longitudinal direction (radial direction), and small micron-size openings 

called pits, connect neighboring cells to each other are visible in Figure 2.2. In 

softwood species, most of the longitudinal cells are tracheids, which are 3 to 4 

millimeters in length and have a layered cell wall. Tracheids are arranged into 

growth rings, which are groups of cells with either thick or thin cell walls 

caused by seasonal growing changes. Regions of thin-walled tracheids are 

called earlywood, and regions of thick-walled tracheids are called latewood. For 

a good resource on wood anatomy, the reader is referred to (Hoadley 1990).  

2.1.2 Adhesives 

Important adhesive systems for wood composite products include 

formaldehyde-based aqueous adhesives, such as urea-formaldehyde (UF), 

melamine-formaldehyde (MF), and phenol-formaldehyde (PF). An important 

nonpolar resin system is polymeric methylene-diphenyl-diisocyanate (pMDI), 

which is composed of 100% adhesive solids. Another common adhesive for 

bonding wood is a water-based emulsion of polyvinyl acetate (Stoeckel, 

Konnerth, and Gindl-Altmutter 2013). Each of these adhesives have unique fluid 

properties and interact physically and chemically with wood in distinctly 

different ways.   



 

5 

 

2.1.3 Adhesion mechanisms 

When two pieces of wood are adhered, the boundary may be any 

combination of earlywood and latewood. The adhesive may flow into the wood 

cell material flowing through pits or cut openings into cell lumens (empty space 

in the center of tracheids and ray cells) or it may diffuse directly into cell walls 

at the molecular level. These two mechanisms for penetration are called 

adhesive flow and adhesive infiltration, respectively. 

Three main adhesion mechanisms exist: mechanical interlocking, 

covalent bonding, and secondary electrostatic forces. Of these, secondary 

electrostatic forces are the dominant mechanism (Kamke and Lee 2007). 

Adhesive flow should influence all three main adhesion mechanisms because it 

determines the amount of bonding surface area and the mechanical 

interlocking of the bond.  

 X-ray computed tomography 

X-ray computed tomography (XCT) is a method by which an image volume 

is reconstructed from a series of two-dimensional projections through the 

volume. Briefly, by taking a series of x-ray images (radiographs) from different 

views around the outside of a specimen, the inside structure of the specimen 

can be estimated from the unique information that each view provides Figure 

2.3. In the case of XCT, this information is mainly x-ray attenuation information, 

but sometimes diffraction, scattering, and florescence information may also be 

used. 

For a detailed primer about the application of XCT to microstructural and 

mechanical studies, the reader is referred to (Ketcham and Carlson 2001; Sause 

2016). 

2.2.1 Preprocessing methods 

Image distortions (Figure 2.4) may appear in the reconstructed images 

because of various reasons (Boas and Fleischmann 2012). Ring removal and 
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phase reconstruction are two pre-reconstruction algorithms which are used to 

mitigate some of these distortions. 

A miscalibrated x-ray detector with pixels that are more sensitive or less 

sensitive than average may cause rings of incorrectly high and low brightness 

appearing in the reconstructed image around the rotation axis of the specimen. 

A popular ring removal algorithm uses wavelets to remove frequencies 

containing the rings from the Fourier transform of the sinogram (Münch et al. 

2009).  

Phase contrast x-ray imaging is a method which artificially improves 

image contrast between materials of different attenuations. Because light will 

change phase when crossing the interfaces of two materials with different 

refractive indices, the phase of x-rays becomes unsynchronized while passing 

through the specimen. If the x-ray detector is far enough from the specimen, 

then interference between x-rays will appear as periodic intensity variations on 

the detector. Either the detector can be moved closer to the specimen to 

prevent wave interference or the interference may be used to artificially boost 

the apparent contrast between materials in the reconstructed image. 

2.2.2 Reconstruction Methods 

Recently there have been two initiatives to enable researchers to easily 

use and modify various tomographic reconstruction algorithms and 

preprocessing methods. These include TomoPy (Gürsoy et al. 2014) and the 

ASTRA toolbox (Pelt et al. 2016). The reconstruction methods available in these 

tools fall into two categories: back projection and iterative methods.  

Filtered back projection (FBP) and gridrec (Marone and Stampanoni 2012) 

are two back projection methods. These methods reconstruct the image by 

adding the result of smearing all 2D projections back across the volume (Figure 

2.3). These algorithms are simpler and faster, but less accurate than iterative 

methods. Iterative reconstruction methods, such as algebraic reconstruction 
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technique (ART) (Gordon, Bender, and Herman 1970), simultaneous iterative 

reconstruction technique (SIRT) (Gilbert 1972), etc. use an internal model of the 

field of view and iterate through each 2D projection while updating the model 

so it agrees with the 2D projections. The disadvantage of iterative algorithms is 

that they are slower, but they have a reduced sensitivity to noise compared with 

back projection methods. 

The reader is referred to Chapter 25 of Strauss (2000) for a more detailed 

discussion of reconstruction methods. 

2.2.3 Simulated X-ray Computed Tomography 

Models and simulated experiments are useful tools for developing novel 

imaging techniques (e.g. the setup, properties, and movement of the detector 

and light source) at lower cost. Some open-source software tools for simulating 

non-X-ray imaging systems include GATE (Jan et al. 2004), STIR (Thielemans et 

al. 2012), and k-Wave (Treeby and Cox 2010). There are also open-source tools 

that focus on developing and making accessible new reconstruction methods: 

TXM wizard (Liu et al. 2012), MMX-I (Bergamaschi et al. 2016), ASTRA (van Aarle 

et al. 2015) and TomoPy (Gürsoy et al. 2014). 

2.2.4 Reconstruction Quality Measures 

There are three classes of image quality metrics: full reference, partial 

reference, and no reference. Full reference metrics measure the amount of 

shared information between a reference and distorted image. The importance 

of different types of information: edge intensity, color, contrast is weighted 

differently in various methods, and the result is only applicable to a particular 

image. Partial reference metrics are used when the full reference exists but is 

not reliably accessible. No reference methods often try to measure the highest 

resolvable frequency or noise content of an image capturing system by using a 
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standard test pattern; these quantities are believed to predict the quality of all 

images captured by a system. 

 No Reference Image Quality Metrics 

The current most-popular type of quality metrics for developers and users 

of x-ray computed tomography is no reference. This type of metric includes, 

noise power spectra, spatial frequency response, modulation transfer function, 

estimates of the signal to noise ratio, and subjective image quality. Sometimes 

a physical standard with a special pattern is used to help calculate these 

metrics. 

Noise power spectra (NPS) use a Fourier transform of uniform area in the 

reconstruction to give information about the frequency composition of the 

noise. This approach is better than signal to noise ratio (SNR) because NPS 

assesses the degree of coarse or fine noise. 2D images produce a 2D noise 

power spectrum, but the 2D spectrum can be reduced to a histogram by 

binning radially. Figure 2.6 shows the NPS for the reconstructed image in Figure 

2.5. 

Spatial frequency response (SFR) and modulation transfer function (MTF) 

commonly use a slanted edge or standard pattern of lines at increasingly 

smaller intervals to measure how the fidelity of an image decreases as the 

frequency of a signal increases. The ability of an imaging system to accurately 

capture high frequency signals is related to the sharpness of images it creates. 

Figure 2.8 shows the MTF curve for the image in Figure 2.5. 

2.2.5 Full and Partial Reference Image Quality Metrics 

Full and partial reference metrics are currently unused by developers and 

users of x-ray computed tomography because they require a ground truth for 

comparison. These metrics, developed by the computer vision community, are 

convolution-based metrics originally used for comparing images to their 
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originals after transmission or compression. Popular full reference metrics 

include MS-SSIM, FSIM, and VIF. For an example of a reference and distorted 

image pair qualified by a full reference metric, see Figure 2.7 and Figure 5.8.  

The multiscale structural similarity index (MS-SSIM) measures differences 

in “luminance, contrast, and structure” at multiple levels of detail (Wang, 

Simoncelli, and Bovik 2003). Each of these three qualities is calculated from a 

combination of the local mean, standard deviation, and covariance of images. 

Using local means and standard deviations calculated from Gaussian filters, it is 

possible to calculate a contour map of image quality at multiple resolution 

scales. Similarity overall is calculated by averaging the structural similarity 

index over the entire image and at each scale. 

The feature similarity index (FSIM) measures the similarity of images 

using gradient magnitude and Fourier phase congruency (Zhang et al. 2011).  

Because high phase congruency had been correlated with image features 

important to the human visual system (HVS), this method weights the 

importance of each gradient magnitude depending on phase congruency. Since 

the gradient magnitude is only a measure of edges, this method ignores 

whether luminance is correctly captured, but that might not be important for 

some users. 

The visual information fidelity in the pixel domain (VIFp) measures shared 

information between a reference and distorted image using a framework based 

on natural scene statistics (Sheikh and Bovik 2006). It uses Gaussian scale 

mixtures and wavelet analysis. It directly compares the intensity information in 

the images at different scales by separating it into levels using Gaussian filters 

of different sizes. Because it uses wavelets, the accuracy of this quality metric is 

dependent on the depth of the wavelet transform. 
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 Multi-phase segmentation 

Multi-phase segmentation seems to be a neglected topic because most 

algorithms only address two-phase segmentation. However, the soil sciences 

community has much experience segmenting multi-phase systems in the study 

of oil, water, soil, air systems. A comprehensive guide to segmented multi-

phase XCT was published by (Schlüter et al. 2014). They suggest a workflow for 

segmentation and use oil, water, and soil mixtures to show the effects of 

various segmentation methods on the topology of the segmented volumes. 

One of the preliminary steps of most image processing is noise 

reduction. The idea that median filtering is somehow exempt from the edge 

destroying effects that linear filters exhibit seems to plague the science 

community; however, as (Arias-Castro and Donoho 2009) show, this idea is 

false, and median filters are only comparatively more edge preserving than 

linear filters if they are used iteratively at multiple scales. 

2.3.1 Tagged-Adhesives 

Typical wood adhesives, e.g. phenol-formaldehyde and polymeric 

methylene-diphenyl-diisocyanate, do not provide enough x-ray attenuation 

contrast to be segmented from the main constituents of wood, cellulose and 

lignin, in x-ray images. Special adhesives tagged with iodine were developed by 

(Paris, Kamke, and Xiao 2015) to improve the contrast between the adhesive 

and the wood cells.  

2.3.2 Measuring Adhesive Penetration and Morphology 

Visible light microscopy and electron microscopy have been used for 

serial sectioning of adhesive bond planes; however, the disadvantage of serial 

sectioning is that it is destructive. Instead, X-ray computed tomography may be 

used for non-destructive imaging of adhesive bond planes in 3D. 
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Others have used x-ray computed tomography to investigate wood 

anatomy, but (Kamke et al. 2014) was the first to use two metrics, EP and WP, 

to quantify adhesive penetration. These two metrics are defined in Equations 

2-1 and 2-2. 

𝐸𝑃 =  
∑ 𝐴𝑖

𝑋𝑖𝑚𝑎𝑔𝑒
 2-1 

𝑊𝑃 = √
∑ 𝑌𝑖

2𝐴𝑖

∑ 𝐴𝑖
 2-2 

Where Ai is the volume of a given adhesive object, Ximage is the width of the 

image, and Yi is the perpendicular distance from the centroid of an adhesive 

object to the bond plane. EP is the local planar density of adhesive and should 

ideally match the applied density of adhesive if there is no cell wall penetration, 

squeeze out, or other source of adhesive volume loss. WP is a measure of how 

far the adhesive has travelled from the bond plane. Both EP and WP are applied 

to 2D images, where the bondline is oriented horizontally across the width of 

the image.  

(Kamke et al. 2014) showed statistical agreement between adhesive 

penetration measured with 2D cross- sections and 3D tomography. Their data 

showed the expected differences between PF and pMDI adhesive penetration 

and was also able to capture effects not visible in 2D, such as adhesive bubbles, 

adhesive traversing cell lumens and rays that intersect the bond plane, and 

adhesive cracking that occurred during curing. 

 Digital Volume Correlation 

First reported by (Bay et al. 1999), digital volume correlation (DVC) is the 

3D extension of digital image correlation (DIC). Originally developed for 

studying trabecular bone, it has since been adopted in other fields, in materials 

science such as geology and composite materials. In DVC and DIC, points in a 

reference image are matched with points in a deformed image by comparing 
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information in the correlation window, the region surrounding each point. 

Correlating points between images of the same object at different states of 

deformation shows how the object deformed. This displacement field can then 

be used to calculate strain fields and other quantitative measures of 

deformation. 

For a review of in-situ testing of materials using x-ray computed 

tomography (XCT), the reader is referred to (Sause 2016). 

2.4.1 Digital Volume Correlation Implementation Details 

Most DVC algorithms perform subvolume matching of some kind. 

Recommendations for optimizing this process can be found in the dissertation 

by (Gates, Lambros, and Heath 2011). However, there are two other methods 

which have also been developed. Fourier based DVC performs global 

optimization on the entire volume in Fourier space (Bar-Kochba et al. 2015). 

Finite element based DVC uses a finite element mesh to regularize the 

computed displacement field (Leclerc et al. 2011). 

2.4.2 Uncertainty Quantification 

Correlation between volumes (or images) requires features or texture i.e. 

varying colors across the volume that provides each point with a unique 

neighborhood. According to (Estrada and Franck 2015) “Denser, more gray-

valued speckle patterns generally correlate better, providing higher spatial 

displacement resolution and sensitivity compared to repeat patterns or large 

areas of constant intensity”. The precision of DVC is determined by the size of 

the features in the texture and the size of the correlation window. In the case of 

DIC, surfaces may be artificially patterned to meet these requirements, but for 

DVC, existing natural texture must be used for correlation. Larger correlation 

windows give lower uncertainty with lower spatial resolution and smaller 

correlation windows can resolve higher frequency displacements but with 
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higher uncertainty according to the well-known power law relationship between 

correlation window size and measurement uncertainty (Bornert et al. 2009; Reu 

et al. 2009; Leclerc et al. 2011). Previous works which have characterized the 

effects of texture and correlation parameters are summarized by (Roberts, 

Perilli, and Reynolds 2014). 

Ring artifacts, which cause false rotation to be measured, and thermal 

expansion of lab scale x-ray sources, which causes false translation and or 

expansion to be measured (Pan 2013; Limodin et al. 2011) are also sources of 

uncertainty. A method for mitigating reconstruction artifacts due to sample 

movement between projections of the same scan has also been suggested 

(Sasov, Liu, and Salmon 2008); though it does not tie back to image correlation. 

There have been no previous works about the effect of reconstruction method 

choice on correlation uncertainty. 

There are two popular techniques for quantifying the uncertainty 

associated with image correlation experiments. First, simulated deformations 

on actual or artificial textures are used for quantifying bias and uncertainty 

from the correlation algorithm itself. (Palanca et al. 2015) used this method to 

compare various DVC algorithms on XCT of bone and showed that coupling 

DVC with finite element methods reduces uncertainty by an order of magnitude 

compared to direct matching and FFT methods. (Pan 2013) used this method to 

show that low pass filtering can reduce interpolation bias. Second, a noise floor 

from multiple images of a static object or one that has been displaced by a 

known vector (Reu et al. 2009; Gillard et al. 2014) is used to quantify 

uncertainty from other sources such as detector and sample motion, detector 

noise, image artifacts, etc. (Bornert et al. 2009; Reu et al. 2009; Reu 2013). 

(Tozzi et al. 2017) used this method to show that local structural changes 

influence the measurement uncertainty for bone. 
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2.4.3 Previous studies of anisotropic, cellular, or composite materials 

There have been a few studies of cellular and composite materials using 

digital volume correlation, but none of them have been in tension along the 

fiber direction (Brault et al. 2013; Tran et al. 2013; Germaneau, Doumalin, and 

Dupré 2008). Two studies using digital volume correlation or affine registration 

to study wood are Forsberg et al. (2010) and Derome et al. (2011). Forsberg et 

al. (2010) showed that wood structures could be correlated perpendicular to the 

grain in a three-point bending experiment. They noted “anomalous deformation 

patterns [that] can be traced back to the wood structure.” Derome et al. (2011) 

also showed correlations perpendicular to the grain in hysteretic moisture 

swelling experiments. A summary of reported scanning resolutions and 

measurement uncertainties for these studies is shown in Table 2.1.  

(Zauner et al. 2012) developed a mechanical testing device (also used in 

this study) for step loading of wood in compression without blocking the 

detector in a beamline. However, the collected images were only used 

qualitatively. In a related study, (Zauner and Niemz 2014) investigated potential 

size effects on the strength of wood by compressing Picea abies specimens of 

four different sizes while making surface measurements using DIC. 

(Kamke et al. 2014) outlined a methodology for integrating 

computational modeling and experimental data for investigating the effect of 

adhesive penetration and morphology on bond strength. As part of this 

proposed methodology, (Matthew Schwarzkopf and Muszyński 2015) collected 

surface DIC data of lap shear specimens for validation of computational models 

based on static XCT images of the same bond planes. 

(Baensch 2015) has also conducted step loaded tensile tests of two-layer 

composites of Picea abies. However, quantitative measurement was conducted 

using acoustic emission and the focus of the study was crack propagation not 

the influence of adhesive morphology. 
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 Visualization of Multidimensional Data 

Visualizing tensor data in a two or three-dimensional space is extremely 

challenging, but there has been some work in recent years for medical and 

engineering visualization. 

2.5.1 Glyphs 

Glyphs are geometric tokens whose shape, color, scale, and/or 

orientation change according to variables in a data set. In Figure 2.9, and 

example is shown of colored elliptical glyphs. In this example, these glyphs 

could represent the relative magnitude and direction of the Eigenvalues of a 2 

by 2 matrix. Starting in the upper left, both values are positive, but one 

becomes decreases in magnitude. In the middle row, one value becomes 

negative. In the middle of the middle row, the eigenvalues are equal and 

opposite. At the bottom right, the values are both negative and have the same 

magnitude.  

Glyphs are useful because they can convey multiple parameters from a 

dataset simultaneously. (Ropinski, Oeltze, and Preim 2011) suggest six best 

practices when using glyphs: 

• Parameter mapping functions should visually emphasize important 

variables, incorporate the range of values, guide the user's focus of 

attention to encode relevance, incorporate semantics of the data, be 

mentally reconstructable based on visualization 

• Glyph placement should be well-balanced and avoid unwanted glyph 

aggregations in image space, e.g. by applying jittering or relaxation 

procedures 

• Glyph shapes should be unambiguously perceivable and independent of 

viewing direction 

• Glyph visualizations should support quantitative analysis in the attentive 

phase. 
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• Hybrid visualization should be exploited to provide anatomical context 

• When using glyph size to convey information, perspective projection 

should be avoided. 

Various glyph shapes have been proposed, so choosing the best one 

depends on the application. (Hashash, Yao, and Wotring 2003) summarize five 

different types of glyphs and discuss their advantages and weaknesses. 

2.5.2 Color Usage 

There are optimal color scales for representing data in color. According 

to (Levkowitz and Herman 1992) optimal color scales maximize the number of 

noticeably different colors. To do this, the color scale should have a constant 

saturation and progress from a given color to the color 180 degrees away in 

hue (complementary colors in the RGB model). While grayscale outperformed 

their optimal color scale, the authors suspect that may not have been true for 

different background colors. Additionally, viewers may have trouble 

distinguishing between green and red (color blindness), or they may be printing 

images in grayscale. Color scales which consider all these factors are called 

perceptually uniform. There are many free to use perceptually uniform color 

maps available through Matplotlib (Hunter 2007), and other sources. 
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 Tables 

Table 2.1 Reported measurement uncertainty and scanning resolutions for 

previous mechanical studies of cellular and anisotropic materials 

Author Material Uncertainty 

(voxels) 

Scanning 

Resolution 

(Brault et al. 2013) carbon fiber 

composite 

0.04 52 μm/voxel 

(Tran et al. 2013) wood 

fiberboard 

not given 18 μm/voxel 

(Germaneau, 

Doumalin, and Dupré 

2008) 

copper particles 

in polymer 

0.049, 0.037 60 μm/voxel 

(Derome et al. 2011) wood not given 0.7 μm/voxel 

(Forsberg et al. 2010) wood 0.0346, 0.0937  1.75 and 3.5 

μm/voxel 
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Figure 2.1 The hierarchical structure of wood from macroscale to nanoscale. 

Taken from Dufresne (2013) without permission. 
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Figure 2.2 Cross section of latewood-latewood Douglas-fir bond plane. 
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Figure 2.3 Figure from (Strauss 2000) showing how multiple views can 

reconstruct an image. 
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Figure 2.4 Figure showing various artifacts in XCT data of softwood species; 

illustration of phase contrast (a) and a ring artifact (b). 

 

Figure 2.5 A gridrec reconstruction of a single circle with additive noise. The 

quality of this image is quantified by the metrics in Figure 2.6 and Figure 

2.8. 

 



 

22 

 

 

 

 

Figure 2.6 The 2D noise power spectrum (top) and 1D radially binned noise 

power spectrum (bottom) of the unit circle in Figure 2.5. 



 

23 

 

 

 

 

Figure 2.7 The reference image, camera man, is distorted in various ways 

using crop, salt and pepper noise, Gaussian smoothing, and unsharp 

masking. 
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Figure 2.8 The modulation transfer function of the unit circle in Figure 2.5. 

 

 

Figure 2.9 Some examples of 2D glyphs for representing second order 

tensors from (Schultz and Kindlmann 2010). 
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3 METHODOLOGY FOR COMPARING WOOD ADHESIVE BONDLINE LOAD 

TRANSFER USING DIGITAL VOLUME CORRELATION 
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The steps followed to study the micromechanics of wood adhesive bond 

planes using x-ray computed tomography (XCT) and digital volume correlation 

(DVC) are described. A special adhesive was formulated to provide x-ray 

contrast between the wood cell material and the adhesive. Specimens were 

mechanically loaded and scanned in a step-loading procedure. DVC was applied 

to natural texture, and the accuracy and precision of DVC for wood texture was 

characterized. XCT imagery was segmented and the morphology of the 

adhesive was compared with the load transfer characteristics. Challenges to be 

addressed for performing in situ experiments with natural texture and digital 

volume correlation are discussed. The results show measurable effects of the 

microstructure on strain distributions, but determining whether there is a 

significant link between adhesive morphology and bond performance requires 

further study. 

This material is based upon work that is supported by the National 

Institute of Food and Agriculture, U.S. Department of Agriculture, under award 

number OREZ-WSE-589-U. This research used resources of the Advanced Photon 

Source, a U.S. Department of Energy (DOE) Office of Science User Facility 

operated for the DOE Office of Science by Argonne National Laboratory under 

Contract No. DE-AC02-06CH11357. 

 Introduction 

There is a lack of fundamental knowledge about the role which adhesive 

flow and infiltration plays in the micro-mechanical performance of wood 

adhesive bonds. Here, adhesive flow means the micron-scale flow of adhesive 

into opening in the cell wall, and adhesive infiltration means diffusion into the 

cell wall substance. With the spatial and temporal resolution of X-ray computed 

tomography (XCT) now reaching from the micron to the nanoscale and from 

tens of minutes to minutes, there is new opportunity to study this 

phenomenon. In this publication, for the first time, the combination of XCT, 
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image segmentation, and image correlation was used to study directly the 

relationship between adhesive flow and the micro-mechanics of wood adhesive 

bonds. 

3.1.1 Digital Volume Correlation 

First published by Bay et al. (1999) as a method to study the mechanics 

of bone, digital volume correlation (DVC) is the three-dimensional extension of 

the two-dimensional digital image correlation (DIC) method. In DVC and DIC, 

points in a reference image are matched with points in a deformed image by 

comparing information in the correlation window, a defined region surrounding 

each point. Correlating points between images of the same object at different 

states of deformation shows how the object deformed. This displacement field 

can then be used to calculate strain fields and other quantitative measures of 

deformation (Smith, Bay, and Rashid 2002). 

In a digital image, correlation between images requires texture, where 

texture is represented by patterns of pixel (or voxel) intensity within the 

correlation window. DIC and DVC require that each point is identified within a 

unique neighborhood (Bay 2008). The precision of computed displacement and 

strain values is mostly determined by the size of features in the texture and the 

size of the correlation window. According to Estrada and Franck (2015), 

“denser, more gray-valued [texture] generally correlate better, providing higher 

spatial displacement resolution and sensitivity compared to repeat[ing] patterns 

or large areas of constant intensity”. In the case of DIC, surfaces may be 

artificially patterned to meet these requirements, but for DVC, existing natural 

texture must be used for correlation. In the latter case, larger correlation 

windows will provide lower uncertainty at the cost of lower spatial resolution 

and smaller correlation windows may resolve higher frequency displacements at 

the cost of higher uncertainty according to a well-known power law relationship 
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between correlation window size and measurement uncertainty (Bornert et al. 

2009; Reu et al. 2009; Leclerc et al. 2011). 

There are two popular techniques for quantifying the uncertainty 

associated with image correlation experiments. First, simulated deformations 

on actual or artificial textures are used for quantifying bias and uncertainty 

from the correlation algorithm itself. Palanca et al. (2015) used this method to 

compare various DVC algorithms on XCT of bone and showed that coupling 

DVC with finite element methods reduces uncertainty by an order of magnitude 

compared to direct matching and FFT methods. Pan (2013) used this method to 

show that low pass filtering can reduce interpolation bias. Second, a noise floor 

from multiple images of a static object or one that has been displaced by a 

known vector (Reu et al. 2009; Gillard et al. 2014) is used to quantify 

uncertainty from other sources such as detector and specimen motion, detector 

noise, image artifacts, etc. (Bornert et al. 2009; Reu et al. 2009; Reu 2013). 

(Tozzi et al. 2017) used this method to show that local structural changes 

influence the measurement uncertainty for bone. 

3.1.2 Previous micromechanical studies of fiber composites 

There have been a few studies of anisotropic composite materials using 

DVC and XCT, but none of them have studied loading in tension along the fiber 

direction (Brault et al. 2013; Tran et al. 2013) or proposed a metric for 

measuring shear load transfer across adhesive bond planes. 

Two studies using DVC/DIC to study wood are Forsberg et al. (2010) and 

Derome et al. (2011). Forsberg et al. (2010) was the first to demonstrate DVC 

on natural wood texture with a three-point bending experiment. They noted 

that natural texture could cause anomalies in correlation results. Derome et al. 

(2011) performed correlations in the transverse plane (perpendicular to the 

grain) for hysteretic moisture swelling experiments. 
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Zauner et al. (2012) developed a mechanical testing device (also used in 

this study) for step-loading of wood in compression without blocking the 

detector in a beamline. However, the collected images were only used 

qualitatively. In a related study, Zauner and Niemz (2014)investigated potential 

size effects on the strength of wood by compressing Picea abies specimens of 

four different sizes while making surface measurements using DIC. 

Kamke et al. (2014) outlined a methodology for integrating 

computational modeling and experimental data for investigating the effect of 

adhesive penetration and morphology on bond strength. As part of this 

proposed methodology, Schwarzkopf and Muszyński (2015) collected surface 

DIC data of lap shear specimens for validation of computational models based 

on static XCT images of the same bond planes. 

Baensch (2015) has also conducted step loaded tensile tests of two-layer 

composites of Picea abies. However, quantitative measurement was conducted 

using acoustic emission and focus was crack propagation not the influence of 

adhesive morphology. 

3.1.3 Bond Quality Metrics 

There have been two previous works involving the measurement of shear 

strains in wood lap shear specimens of which the author is aware. The first 

(Gindl-Altmutter, Müller, and Konnerth 2012) investigated specimen size effects 

and adhesive stiffness on the measured shear strength of specimens and the 

stress concentration factor (SCF), the ratio between the peak stress and 

minimum stress inside the overlap (Equation 3-1). 

𝑆𝐶𝐹 =
max 𝜖𝑥𝑦

min 𝜖𝑥𝑦 
 3-1 

Gindl-Altmutter et al. assumed linear elastic behavior and used their strain 

measurements to directly compute the SCF. Their strain measurements were 

collected from the surface of their specimens using electronic speckle pattern 
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interferometry (ESPI) which is like image correlation, but the pattern is 

generated by using lasers to track the movement of surface roughness. The 

reasoning behind this metric may be that bonds with a lower SCF are better 

because concentrated stresses are likely to cause failure. 

Another work measuring the strain distribution at the notch of a single 

lap shear specimens using image correlation was conducted by Schwarzkopf 

and Muszyński (2015); this study proposed using the shear strain histogram 

around the notch as a metric for bond quality (Equation 3-2). 

∑(1 𝑖𝑓 𝜖𝑥𝑦 > 𝜖𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) 3-2 

Specimens whose distributions have less material with strains above some 

threshold are deemed more efficient. This reasoning is like that of Gindl-

Altmutter et al., by way of higher strains being bad, but in this case, the 

threshold is absolute instead of relative. 

 Materials and Methods 

Small single-lap shear specimens were prepared using adhesives specially 

designed to improve x-ray attenuation contrast. A custom mechanical testing 

device was used to step load the lap shear specimens in situ at the 2-BM 

beamline at the Advanced Photon Source (APS) at Argonne National Laboratory, 

Illinois, USA. X-ray tomography was reconstructed and segmented. DVC 

measurement uncertainty was estimated. Quantitative measurements of the 

deformation were calculated. Strain measurements were compared with a FEA 

model for a simplified homogeneous bonded system. 

3.2.1 Specimen Preparation 

Specimens in this study were comprised of different adhesives (phenol-

formaldehyde and poly-[methylene diisocyanate]), wood types (earlywood and 

latewood from softwood species, diffuse porous hardwood species), and 

different species (loblolly pine Pinus taeda, Douglas-fir Pseudotsuga menziesii, 
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and hybrid poplar Populus deltoides x Populus trichocarpa). Table 3.1 

summarizes the quantities of each type of specimen scanned at the APS. 

 Adhesive Synthesis 

Two adhesives were prepared according to methods developed by (Paris, 

Kamke, and Xiao 2015). These special adhesives were covalently bonded to 

iodophenol or triiodophenol in order to provide sufficient attenuation contrast 

between wood cell material and the adhesives. Without iodine, the polymers 

which make up the wood cell material have a similar X-ray attenuation to the 

polymer adhesives and cannot be segmented. 

Iodinated phenol-formaldehyde IPF was obtained from Arclin in 

Springfield, Oregon. The adhesive was formulated entirely from iodophenol and 

had a theoretical and measured iodine weight fraction of approximately 40 % 

(Paris et al. 2014). The adhesive was stored at −10
◦ 
C while not in use to 

minimize further polymerization before bonding. 

Iodinated poly methylene diphenyl diisocyanate IpMDI was synthesized 

according to (Paris, Kamke, and Xiao 2015) with triiodophenol. Commercially 

produced pMDI was reacted with triiodophenol to yield 24 % by weight iodine 

content. To maintain low viscosity, the IpMDI was mixed with anhydrous 

tetrahydrofuran (THF) before application to the wood. The adhesive was used 

within one week of synthesis and stored at 5
◦ 
C. 

 Substrate Preparation 

Production of the specimens required precise control over a bonded 

interface 2 mm by 5 mm in size, so planning began with the careful selection of 

wood planks for bonding. Wood blocks of the desired species were cut into 

planks to obtain a tangential surface, with grain parallel to the bonding 

surfaces. The size of the planks was approximately 10 cm by 15 cm. The planks 

were planed down to 4 mm thickness such that they were thin but still 
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workable. Planks were matched into pairs such that final specimens had the 

desired interfaces: earlywood-earlywood, earlywood-latewood, or latewood-

latewood. There was no distinction between earlywood and latewood with the 

hybrid poplar specimens. Planks with knots, cracks, or other irregularities were 

discarded. 

 Hot Pressing 

The hot press was preheated to 185
◦ 
C for phenol-formaldehyde 

adhesives and 50
◦ 
C for pMDI adhesives. Lower temperature was used for pMDI 

because of the presence of THF in the iodinated adhesive mix. Planks were 

freshly planed before applying adhesive. The mass and surface area of one half 

of each plank pair was measured. The adhesive was dropped from a pipette 

onto one of the bonding surfaces until the adhesive solids loading was 120 

gm
−2

. A steel roller was used to spread the adhesive. 

The plank was reweighed and more adhesive was added until the final 

desired weight was reached. This adhesive spreading was done quickly because 

volatiles in the adhesives evaporate at room temperature. Plank pairs were 

pushed together and wrapped with aluminum foil to catch the adhesive that 

squeezes out of the composite during hot pressing. The composite was pressed 

at 690 kPa for Douglas-fir and pine and 420 kPa for poplar. The press time was 

8 min for phenol-formaldehyde adhesives and 14 h for pMDI adhesives. 

 Composite Shaping 

After the large sandwich composites were pressed, they were sanded on 

both sides until they were approximately 2 mm thick. A small table saw was 

used to cut the composites into slivers of 30 mm length and 2 mm width. Then 

a small band saw was used to cut two notches on opposite sides of the bond 

plane 5 mm apart. Next, a sledge microtome was used to cut the specimens to 

a 2 mm by 2 mm cross section. Finally, the specimens were glued into threaded 
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metal holders using two-part epoxy (Devcon Home 5-min Epoxy, part number: 

21045, Hartford, Connecticut) and a jig to hold the specimens in alignment 

with the metal holders while the epoxy set over 12 h. A schematic of specimen 

geometry may be seen in Figure 3.1a. 

 Preliminary Mechanical Testing 

A small selection of specimens was used to predict the load and 

displacement performance of each specimen type prior to XCT scanning. The 

preliminary specimens were used to calculate the average engineering stress 

and strain for 30% of ultimate, 60% of ultimate, and ultimate load. These 

metrics were then used to determine the loading procedure during the XCT 

scans. 

3.2.2 Scanning for X-ray Computed Tomography 

The specimens were imaged at beam line 2-BM at the Advanced Photon 

Source, Argonne National Laboratory. A mechanical testing device developed by 

Zauner et al. (2012) was installed inside the experiment hutch and used to 

apply a tensile load to the specimens while they were scanned. Each specimen 

was ideally scanned five times: one reference scan, two scans in the elastic 

deformation regime, one scan in the plastic deformation regime, and one scan 

post-failure. 

 Mechanical Testing 

The mechanical testing device (Zauner et al. 2012) is a gear driven 

displacement controlled tensile machine with two threaded sockets. A 

transparent (to x-rays) tube is used to support the top socket while the bottom 

socket moves vertically in the base. The purpose of this geometry is to allow 

the testing device to rotate in the X-ray beam, with the specimen, without 

blocking the detector. Our specimens ( 



 

34 

 

Figure 3.1a) were designed to screw into the device such that they can be 

pulled in uniaxial tension. 

To collect the five scans, the specimen was first screwed into the 

mechanical testing device, preloaded with a few Newtons of force, and one 

reference scan was obtained. Next, with a crosshead movement of 5 µms
−1

, 

specimens were loaded to 30 % of their predicted ultimate load. Because the 

mechanical testing device exhibited stress relaxation, it was allowed to relax for 

a few minutes before beginning the scan. Next, with a crosshead movement of 

5 µms
−1

, the specimen was loaded to 60 % of predicted tensile load. Again, the 

mechanical testing device was allowed to relax for a few minutes before 

beginning the scan. Next, with a crosshead movement of 0.2 µms
−1

, the 

operator watched the load displacement curve for the elastic plastic transition 

and attempted to stop the mechanical testing device for the fourth scan. Again, 

the mechanical testing device was allowed to relax for a few minutes before 

beginning the scan. Finally, with a crosshead movement of 0.2 µms
−1

, the 

specimen was loaded until failure and scanned a final time. An example 

displacement and force vs time plot of this loading scheme may be seen in 

Figure 3.2. 

 Scanning Parameters 

The XCT scan consisted of 1500 projections taken over a 180° rotation. 

The scanning parameters were not the same as used by Paris et al. (2015) when 

the adhesive system was developed. The change of scanning parameters was 

implemented to improve image contrast between adhesive and cell wall and 

reduce scan time. Beam energy was increased and exposure time was reduced 

for the purpose of reducing overall scan time, thus reducing the potential for 

specimen motion during a scan. The specimen to scintillator distance was 

increased to accommodate the physical dimensions of the mechanical test 
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device and to enhance the effect of x-ray diffraction. A comparison of the 

scanning parameters is shown in Table 3.2. 

3.2.3 Image Reconstruction and Processing 

The 3D volumes were reconstructed from the 2D tomographic data 

collected at the APS. They were also segmented in order to perform 

morphological analysis of the adhesive bond planes. 

 Reconstruction with TomoPy 

The tomographic data was reconstructed using version 0.0.3 of TomoPy 

(Gürsoy et al. 2014). TomoPy is an open source Python module for tomographic 

reconstruction and artifact mitigation available through GitHub. The sinograms 

were first normalized to reduce artifacts due to detector irregularities and beam 

inconsistencies. Next, they were modified with the phase contrast method to 

boost contrast between the adhesive and cell wall. The regularization parameter 

used for phase contrast was 2 × 10
−4

. Some specimens had ring artifacts 

reduced using the ring removal tool. Finally, the gridrec reconstruction 

algorithm was used for reconstruction. 

 Segmentation 

The adhesive was segmented from the wood cell material using 

distribution fitting. The expectation maximization algorithm was used to fit a 

mixture of normal distributions to the color intensity histogram of the 

tomography. By assuming each peak belongs to one component of the 

specimen (cell wall, adhesive, air, etc.), each pixel in the image may be assigned 

to its most probable component based on color alone. 

 Morphological Quantification 

Two metrics, effective penetration (EP) and weighted penetration (WP), 

were used to describe the morphology of the adhesive in the bond planes. 

These metrics developed by (Sernek, Resnik, and Kamke 1999; Paris et al. 2014) 
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are summarized in Equations 3-3 and 3-4, where Vi is the volume of a given 

adhesive voxel, Abondplane is the area of the bond plane, and di  is the distance from 

the bond plane to the center of a given adhesive voxel. 

𝐸𝑃 =  
∑𝑉𝑖

𝐴𝑏𝑜𝑛𝑑𝑝𝑙𝑎𝑛𝑒
 3-3 

𝑊𝑃 =  √
∑𝑑𝑖

 2𝑉𝑖

∑𝑉𝑖
 3-4 

All the segmentation and morphological quantification of the specimens 

was performed using scripts written with MATLAB. These scripts are available 

on GitHub at carterbox/wpart. 

3.2.4 Digital Volume Correlation 

The reconstructed data was analyzed using Vic-Volume, a digital volume 

correlation software (Correlated Solutions, Inc., Colombia, SC). Two other DVC 

softwares were tried. All three have their drawbacks, but Vic-Volume was 

chosen because of its ease of use, speed, lower memory requirements, and 

most complete user interface. 

 Uncertainty Quantification 

To quantify the uncertainty of DVC measurements in natural wood 

texture, a single specimen was scanned twice without applying any 

deformation. Next, these two volumes were correlated using the parameters 

shown in Table 3.3. Correlation window size was found to be the dominating 

parameter. Figure 3.2 shows the uncertainty (one standard deviation) of the 

computed strains as a function of window size for all six strain components. 

The uncertainty for both is well behaved and decreases exponentially with 

increasing correlation window size. From these measurements, a correlation 

window size of 150µm was chosen. Slightly larger correlation volumes are 
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supported by Vic-Volume, but processing time is a cubic function of correlation 

window size. 

3.2.5 Load Transfer Analysis 

The strain fields were downsampled to a 50µm grid and reoriented such 

that the basis vectors aligned with the plane of the bond plane, where the radial 

direction, R, is perpendicular to the bond plane; the longitudinal direction, L, is 

the loading direction; and the tangential direction, T, is orthogonal to the other 

two directions. The smoothest strain field from the linear elastic region of each 

specimen was selected for comparison between specimens. As a consistency 

check, the shape of the strain fields were compared with a simple finite element 

model (Figure 3.3 Comparison of (a) finite element and (b) digital volume 

correlation strain fields.) of a homogeneous, single-lap shear specimen created 

using NairnFEA (John A. Nairn 2014). 

The two metrics, SCF and the strain threshold method of Schwarzkopf 

and Muszyński were implemented. For SCF, the results are shown in Figure 3.4. 

For the Schwarzkopf and Muszyński method, a region of interest up to 0.5 mm 

on both sides of the bondline, up to 1.5 mm from the notch, and averaged 

along the longitudinal direction was extracted. Then the strains were divided by 

the nominal tensile stress experianced by the specimen. These normalized 

shear strains ranged from 0 to 0.1 GPa
-1

. A threshold of 0.05 GPa
-1

 was selected 

for the results shown in Figure 3.5. 

𝜖𝑥𝑦 =  𝑎𝑥𝑘  +  𝑐 3-5 

A third metric, newly proposed here to measure the load transfer 

efficiency of each specimen was used also. The bond quality was parameterized 

by fitting a power function (Equation 3-5) to the mean shear strain within a 0.5 

mm region on either side of the bond line from the notch to the center of the 

specimen (Figure 3.6). A power law equation was chosen because it fit the 

shape of the curves well. Strains in the tangential direction were averaged. The 
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finite element model predicts that bonds which effectively transfer load from 

one adherend to another have a rapid drop in shear strain moving away from 

the notch. The exponent coefficient, k, in the power function describes this 

drop, and the leading coefficient, a, and trailing coefficient, c, scale the data to 

account for different loads applied to each specimen. The comparison of EP and 

WP with this metric is shown in Figure 3.7. 

 Results 

Figure 3.1, Figure 3.8, Figure 3.9 show a sampling of specimens analyzed 

with DVC. Part a shows the location of the analyzed region in the larger 

specimen. Part b shows two slices of the tomography in the RT and LR planes. 

Part c shows the maximum adhesive concentrations projected onto the RT and 

LR planes. Part d shows the average shear strain projected onto the RT and LR 

planes normalized to the largest magnitude strain. Strain fields mostly follow 

what is predicted by the FEA model for a single-lap shear specimen; there is a 

higher compliance at the notch and along the bond plane. Deviations may be 

explained by misalignment of specimens in the testing device resulting in a 

bending moment and the natural variation of the wood cellular structure. 

The relationships between shear strain drop coefficient, k, SCF, and 

fraction below threshold were compared with EP and WP for each of the 

specimens (Figure 3.7, Figure 3.4, Figure 3.5). None of metrics showed 

correlation with EP or WP. The data was also visually inspected for instances 

when the structure of the wood or adhesive overtly influenced the strain 

distribution during loading. Examples of this are seen in  

Figure 3.1, where an adhesive filled resin canal creates a depression in 

the strain field; Figure 3.8, where the high strain region is skewed left following 

the left skewed adhesive penetration; and Figure 3.9, where the high strain 

region moves left to follow a more compliant earlywood region adjacent to the 

latewood-latewood interface. 
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 Discussion 

3.4.1 Specimen Fabrication and Mechanical Testing 

Upon reviewing the reconstructed data sets it is clear that specimens 

should have been more thoroughly controlled. In some specimens, the edges 

were not cut parallel to the bond plane (Figure 3.10a). In some specimens, not 

all the notches were cut all the way through the bond plane (Figure 3.10b); if 

the adhesive region is not completely severed at the notch, then the behavior in 

the lap is more tensile than shear. Some specimen surfaces were contaminated 

with the two-part epoxy (Figure 3.10c), which was used to adhere the 

specimens to the mechanical testing device; the displacement fields of these 

specimens suggested that there was unexpected load transfer occurring 

because along the epoxy. Tape could have been used to protect the region of 

interest from contamination during assembly. Some specimens did not have the 

desired wood type along the entire bond plane (Figure 3.10d); this is impossible 

to see before scanning, but surplus specimens could have been mounted and 

rejected or accepted after the first scan. 

At the beamline, specimens should have been more carefully aligned with 

the field of view. On some specimens, the field of view did not contain as much 

of the region of interest as possible; sometimes this is due to specimen 

movement from its initial position, other times it was poor placement by the 

operator. If for each scan, the field of view were realigned with the notch, larger 

strain fields could have been calculated for all specimens. To help operators 

keep the area of interest inside the field of view for each scan, painting the 

outside of the specimen with references marks (e.g. dots of metallic paint) 

could be helpful. 

Alternatively, the field of view could be increased. The correlation window 

size of 150 microns leaves room for the pixel size to increase between two and 

three times without losing salient details in the wood texture that are important 
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to correlation. Some detail in the adhesive flow may be lost, but those details 

do not need to be tracked dynamically and could be captured at higher 

resolution in a pre-deformation scan. Additionally, collecting a larger field of 

view scan of each specimen could be helpful for generating boundary 

conditions in computational models of the specimen. Models starting with XCT 

of the entire specimen can implement accurate geometry of the specimen and 

account for differences in the behavior between earlywood and latewood. The 

only things that would be lost by increasing the pixel size are some of the 

details such as pits and small flows of adhesive through them. However, the 

ability of XCT to capture diffusion of the adhesive into the cell wall is not good 

anyways because of contrast issues. 

3.4.2 Attenuation Contrast 

The x-ray scanning parameters for this study were changed (Table 3.2) 

from those used by (Paris, Kamke, and Xiao 2015). Exposure time was 

decreased by increasing beam energy. This was favorable due to the time 

sensitive nature of the experiments; however, the phase contrast effect from 

additional specimen to detector distance did not make up for the loss in 

attenuation contrast which results from the wood cell and adhesive becoming 

more transparent to x-rays at higher beam energies. 

Figure 3.11 compares contrast between IpMDI and cell walls for the work 

done by (Paris, Kamke, and Xiao 2015) and the work of this study. The result 

was that segmentation of the adhesive from wood cell walls was made more 

difficult for IPF adhesives, and all IpMDI bonded specimens had poor contrast. 

Consequently, the IpMDI specimens were dropped from the study. An 

investigation was conducted to determine whether the IpMDI adhesives were 

formulated correctly and if the iodine remained covalently bonded to the cured 

adhesive. Energy dispersive X-ray spectroscopy (EDS) showed iodine present in 

appropriate regions of the IpMDI-bonded specimens (McKinley et al. 2016). 
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3.4.3 Uncertainty with Natural Texture 

Most image correlation research focuses on two-dimensional applications 

where textures may be customized and images are easily captured and 

processed in large quantity. In the case of DVC, however, researchers are now 

trying to use image correlation on natural textures from data collected from a 

limited number of synchrotron facilities where time is limited or expense is 

prohibitive. Thus, procedures are not well established, and sources of 

uncertainty are not well controlled. 

In the literature, DVC algorithms are tested on artificial textures or 

specially made standards whose properties mimic the applied ideal textures of 

DIC. For idealized materials, where texture is uniform and isotropic, these tests 

may also be applicable. However, they may not accurately represent the 

expected uncertainty for natural textures which are anisotropic, inconsistent, 

and/or corrupted with noise unique to computed tomography. (Forsberg et al. 

2010) and (Tozzi et al. 2017) noted these inconsistent measurements from 

natural texture, but made no mention of how to mitigate them. Because natural 

textures are not ideal and current options are limited for optimizing data 

acquisition and correlation parameters, quantifying expected measurement 

uncertainty by using a noise floor is imperative. 

The present study observed two mechanisms through which 

measurement uncertainty was affected. First, measurement uncertainty was 

shown to be orthotropic in the same way as the underlying texture. This is 

shown in Figure 3.2, where the measurement uncertainty in the longitudinal 

direction of wood is higher than the radial and tangential directions for all 

correlation window sizes. One might expect that if the measurement 

uncertainty of a texture is anisotropic for isotropic correlation windows, an 

anisotropic correlation window may provide an isotropic measurement 

uncertainty. The advantages could be a smaller correlation volume because only 
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some dimensions of the window are increased to lower measurement 

uncertainty. However, this is not presently an option in any commercially 

available DVC software. 

Second, orientation and scale changes in the natural texture of wood 

influenced the measurement uncertainty. This lead to local differences in the 

uncertainty from region to region in the specimen. Ideally, measurement 

uncertainty would be uniform across an area of interest, but natural textures 

change orientation and scale. For each region in Figure 3.12a the anisotropy 

and magnitude of the three-dimensional measurement uncertainty is shown as 

a glyph (Figure 3.12b). Each spoke of these glyphs represents the measurement 

uncertainty (σTT, σTR, σRR, σRL, σLL, and σLT) of the six unique strain tensor values. 

Although the measurement uncertainty in the longitudinal direction, σLL, is 

dominant for most of the texture, a region in the middle of the specimen has 

almost isotropic uncertainty. Since every specimen is unique, ideally, local 

uncertainties should be calculated for each specimen and correlation window 

dimensions should be chosen locally; however, in this study, one wood 

specimen, scanned after the primary data set was collected was used as a proxy 

to estimate correlation uncertainty and proper correlation settings for all 

specimens. Perhaps a method for locally adapting correlation window sizes to 

natural texture would provide uniform measurement uncertainty across the 

entire specimen. 

3.4.4 Computed Shear Strains 

Although structural elements of the adhesive do affect the strain 

distribution within the specimens, there were no observed correlations between 

EP, WP, and the three metrics of bond quality applied here. These methods may 

be inconclusive due to the variability of wood and small quantity of data. A 

larger number of specimens, with improved control over the geometry of the 

specimens, should be tested to determine whether there are actual relations 



 

43 

 

between micron-scale adhesive penetration and the load transfer characteristics 

of wood adhesive bonds, but also, it may be that bond quality cannot be 

reduced to a single parameter. Reducing the complexity of the experiment to 

one wood type would also improve the chances of observing a relationship 

between penetration and load transfer. 

 Conclusion 

Lap shear wood composite specimens were fabricated for three different 

wood species and two specially formulated adhesives. The specimens were step 

loaded and scanned using XCT at the Advanced Photon Source using a custom 

mechanical testing device. A change in the scanning parameters from previous 

works caused a decrease in image contrast, which made the resulting data sets 

difficult to segment. Datasets were reconstructed and correlated using digital 

volume correlation. Two challenges for image correlation methods were 

identified. First, the measurement uncertainty was found to be orthotropic for 

natural texture. Second, the measurement uncertainty was found to be 

inconsistent across the specimen. The effect of adhesive penetration on load 

transfer across the bonding interface is inconclusive. It is unclear if the results 

were inconclusive due to lack of a relationship between adhesive penetration 

and stress transfer, or if the natural variability of wood texture, less than 

optimum specimen preparation, and small number of specimens obscured a 

relationship. 
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 Tables 

Table 3.1 Summary of scanned specimens by type 

Species Adhesive Interface Quantity 

hybrid poplar IPF diffuse porous 3 

pine IPF earlywood-latewood 4 

Douglas-fir IPF earlywood-earlywood 2 

Douglas-fir IPF earlywood-latewood 5 

Douglas-fir IPF latewood-latewood 4 

Douglas-fir IpMDI earlywood-latewood 2 

 

Table 3.2 Comparison of scanning parameters used at beamline 2-BM in 

October 2014 and in previous studies by Paris et al. (2014) 

Scanning Parameter This Study Paris et al. 

beam energy 25keV 15.3keV 

exposure time 150ms 250ms 

number of images per scan 1504 1504 

approximate scan time 7min 20min 

specimen to scintillator distance 50mm 8mm 

total rotation 180 180
◦
 

image resolution 1.3µm/voxel 1.45µm/voxel 
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Table 3.3 Vic-Volume (Correlated Solutions, Colombia, SC) settings for digital 

volume correlation 

Strain filter size 9 

Step size 16 

Window size 115 

Interpolation Optimized 4-tap 

Window weights Uniform 

Correlation NSSD 

Consistency [pixels] 0.1 

Confidence [pixels] 0.02 

Matchiness [pixels] 0.01 

Strain calculation LaGrange 
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 Figures 

 

 

 

Figure 3.1 Segmentation and shear strain field of an earlywood-latewood 

southern yellow pine specimen. (a) Schematic of a lap shear specimen [mm] 

showing ROI (b) Tomographic cross section through the center of the ROI 

in the radial-longitudinal and tangential-radial planes. Correlation window 

size shown in lower left. (c) The maximum adhesive volume fraction 

through the cross section. (d) Shear strain at one time-step normalized to 

the range [-1, 1] and averaged through the cross section. The shear strain 

(d) is depressed in a region around a resin canal filled with adhesive (b). 
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Figure 3.2 (a) Example loading scheme for five scans during step-loading. 

Specimens were scanned at each of the three plateaus in the displacement 

curve (left) as well as before loading and after failure. Stress relaxation of 

the testing device is visible in the force curve (right) at each plateau in the 

displacement. (b) Measured uncertainty as a function of correlation window 

size. 

 

 

 

Figure 3.3 Comparison of (a) finite element and (b) digital volume correlation 

strain fields. 
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Figure 3.4 Figure Weighted penetration and effective penetration versus strain 

concentration factor for each specimen. 

 

 

 

Figure 3.5 Figure strain thresholding metric suggested by Lech versus 

weighted and effective penetration for the threshold of 0.05 strain GPa
-1

. 

Every step is shown for each specimen. It doesn't even matter because 

there is no trend. 
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Figure 3.6 (a) Measured shear strain for each longitudinal slice. Darker 

contours are closer to the notch and lighter contours are farther way. (b) 

The power law function is fit to the mean shear strain within 0.5mm of the 

bondline for each longitudinal slice. 

 

 

 

 

Figure 3.7 Weighted penetration and effective penetration versus shear strain 

drop, k, for each specimen. 
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Figure 3.8 Segmentation and shear strain field of an earlywood-latewood 

Douglas-fir specimen. (a) Schematic of a lap shear specimen [mm] showing 

the ROI. (b) Tomographic cross section through the center of the region of 

interest in the radial-longitudinal and tangential-radial planes. Correlation 

window size shown in lower left. (c) The maximum adhesive volume fraction 

through the cross section. (d) Shear strain at one time-step normalized to the 

range [-1, 1] and averaged through the cross section. The shear strain (d) 

skews to the left to follow the more compliant earlywood region (b). 
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Figure 3.9 Segmentation and shear strain field of a latewood-latewood Douglas-

fir specimen. (a) Schematic of a lap shear specimen [mm] showing the ROI. 

(b) Tomographic cross section through the center of the region of interest in 

the radial-longitudinal and tangential-radial planes. Correlation window size 

shown in lower left. (c) The maximum adhesive volume fraction through the 

cross section. (d) Shear strain at one time-step normalized to the range [-1, 1] 

and averaged through the cross section. The shear strain (d) skews to the left 

to follow the more compliant earlywood region (b). 
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Figure 3.10 Various manufacturing defects in lap shear specimens. (a) Bond 

plane misaligned with edges of specimen. (b) Notch does not cut through 

to the bond plane. (c) Two-part epoxy contamination of the region of 

interest. (d) Desired wood type does not cover the entire bond plane. 

 

 

 

 

 

Figure 3.11 Adhesive contrast for Douglas-fir and IpMDI specimens scanned 

by (Paris, Kamke, and Xiao 2015) (a, b), and by this study (c, d) (McKinley et 

al. 2016). 
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Figure 3.12 Regional changes in strain measurement uncertainty in a cross 

laminated Douglas-fir specimen; radial surface is at left and transverse 

surface at right. (a) Wood texture. (b) Glyphs representing the strain 

uncertainty anisotropy. 
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4 X-RAY COMPUTED TOMOGRAPHY OBSERVATIONS OF MOISTURE 

SWELLING IN WOOD ADHESIVE BONDLINES 

 

D. J. Ching · J. Jakes · F. A. Kamke · C. Frihart · C. Hunt · D. 

Yelle · L. Lorenz
 · W. Grigsby

 · X. Xiao 

Moisture swelling of wood adhesive bondlines is important because their 

behavior affects the moisture durability of all wood composite products: 

furniture, wood flooring, composite structural lumber, etc. It has been observed 

that water resistant adhesives, such as phenol-formaldehyde (PF), provide some 

resistance to moisture-induced swelling, and it is proposed that adhesive 

penetration may influence moisture resistance. However, in situ observations of 

swelling in bondlines are lacking. In this study the volume change in bonded 

specimens and one clear control specimen were examined using x-ray 

computed tomography and an in situ relative humidity chamber. Several PF 

adhesives, with varying degree of polymerization, were studied. The study 

measured local volume changes around the bondlines using digital volume 

correlation in each of the specimens at the 10-micron scale, characterized the 

wood cell geometry to explain the observed transverse swelling anisotropy, 

measured the volume change of the in situ segmented adhesive, and attempted 

to measure the local effects of ray cells on the swelling. The results suggest 

that the adhesive degree of polymerization is less important than adhesive flow 

distance for determining the influence of adhesive on moisture swelling. 

Adhesive suppression of moisture induced swelling was only observed in the 

radial direction near the bondline (direction perpendicular to the bondline) and 

in the tangential direction near adhesive filled rays (direction perpendicular to 

the adhesive filled rays). There is evidence that expansion mismatch between 

the wood and adhesive caused the adhesive to break inside ray cells; this may 

be the reason that swelling was only observed perpendicular to the rays. 
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 Introduction 

The growing forest products market depends on adhesives, and these 

products are exposed to changes in moisture content in route to their 

destination, during installation, and in service. Cyclic moisture-induced swelling 

is a cause of bond failure for improperly utilized wood products (Bucur 2011; 

Frihart and Wescott 2008), so determining how wood-adhesive interphases 

behave during moisture-induced swelling is important to the development of 

durable wood products, which will inevitably experience changes in moisture 

content over their service life (Ormarsson and Gíslason 2016). 

This manuscript is one of a series about multiscale characterization 

techniques for wood adhesive bondlines (Kamke et al. 2014; Jakes et al. 2015; 

McKinley et al. 2016; M. Schwarzkopf et al. 2016; Kamke et al. 2016; McKinley 

et al. 2018), with emphasis on characterizing moisture effects. In particular, 

this manuscript focuses on measuring the influence of the adhesive bondline 

on softwood latewood bonded with a Br-labeled phenol-formaldehyde (BrPF) 

adhesive of various molecular weight distributions. 

4.1.1 Moisture-induced swelling anisotropy in softwoods 

Boutelje (1962) gave an in-depth review of the anisotropy in moisture-

induced swelling and elasticity of softwoods. The author concluded that cellular 

geometry is responsible for the bulk anisotropy of moisture-induced swelling 

and elasticity of wood. This conclusion was based on large scale 2D models of 

an earlywood cross-section that was made from plexiglass. The plexiglass 

model was compressed along the radial and tangential directions to show that 
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it had elastic anisotropy. While this experiment shows that cellular geometry 

alone can be responsible for elastic anisotropy, Boutelje incorrectly conflated 

elasticity and moisture-induced swelling to draw the conclusion that because 

the elastic anisotropy exists, the same structure will have moisture swelling 

anisotropy. Any cellular structure made of isotropically expanding material will 

also expand isotropically. For a cellular structure to expand anisotropically, the 

cell wall substance must also expand anisotropically. 

Supporting this theory, Derome et al. (2011) and Patera et al. (2013) 

observed moisture-induced swelling in Norway spruce (Picea abies) with x-ray 

computed tomography. Based on this initial work, finite element models of 

cellular structures were created (Rafsanjani, Derome, and Carmeliet 2012; 

Rafsanjani et al. 2013). They showed that the anisotropic moisture-induced 

swelling in wood cells is caused by a combination factors, including anisotropic 

swelling of the cell wall substance in the parallel- and perpendicular-to-wall 

surface directions, and cell geometry parameters, such as ratios between radial 

and tangential wall lengths (ξ ), cell wall thickness (t), and angle between radial 

and tangential walls (θ ). Following this modeling, Rafsanjani et al. (2014) 

directly observed transverse anisotropy of the cell wall substance in sections 

cut from the S2 layer of Norway spruce using x-ray computed tomography. This 

is not to say that the S2 layer alone is responsible for parallel- and 

perpendicular-to-wall anisotropy; the S1 and S3 layers are also thought to 

contribute to the anisotropy (Schulgasser and Witztum 2015). The cause of 

swelling anisotropy within the layers of the cell wall substance is not the focus 

of this paper; rather, we are interested in the behavior on the 10-micron scale. 

4.1.2 The influence of ray cells on moisture-induced swelling anisotropy 

Boutelje (1962) also investigated whether ray cells had a measurable 

effect on the local moisture-induced swelling of softwoods. They concluded that 

uniseriate rays in softwoods most likely do not have a significant effect on the 
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swelling anisotropy of bulk wood because they are not large enough to 

influence the surrounding cells. This conclusion was based on an experiment 

where they cut small transverse (earlywood and latewood) sections of Scots pine 

(Pinus sylvestris), and using optical microscopy, measured swelling anisotropy 

with and without ray cells present. The results showed the same trend for the 

two types of specimens. 

However, recently Patera et al. (2017) used x-ray computed tomography 

to research earlywood-latewood interactions in moisture-induced swelling. They 

concluded that ray cells could have a measurable local restraint on moisture-

induced swelling in the tangential swelling of softwood earlywood. 

 Materials and methods 

4.2.1 Specimen Preparation 

One loblolly pine (Pinus taeda) latewood specimen and six brominated 

phenol-formaldehyde (BrPF) bonded specimens prepared for a previous study 

(Jakes et al. 2015) were used. For the wood substrates, pristine tangential–

longitudinal surfaces were prepared using a disposable microtome blade in a 

sledge microtome. In the adhesive formulation, phenol was replaced with 3-

bromophenol. Although not measured quantitatively, BrPF with different 

molecular weight distributions were obtained by removing aliquots 45, 85, 115, 

135, 155, or 175 minutes after the commencement of the condensation stage 

of the reaction; longer time in the condensation state was expected to create 

phenol formaldehyde (PF) with a shift toward a higher molecular weight 

distribution. Bondlines were made by applying enough BrPF adhesive to the 

pristine surfaces of two substrates to ensure abundant squeeze-out. After 5 min 

open assembly time, two substrates were clamped together using an office 

binder clip. After an addition 5 min, the assemblies were placed in a 155°C oven 

and cured for 45 min. The samples were then cut down to a 2 mm by 2 mm 

cross-section and a 10 mm length with the bondline centered in the cross-
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section for the bonded specimens. Specimens were selected to be latewood on 

both sides of the bondlines; however, the 45-min and 115-min specimen also 

contain some earlywood away from the bondline in order to maintain the 2 mm 

cross section. The earlywood section of the 45-min specimen was used for 

some analysis where noted. No other specimens contain earlywood. 

4.2.2 X-ray computed tomography 

All the specimens were taken to beamline 2-BM of the synchrotron facility 

in the Advanced Photon Source (APS) at Argonne National Laboratory, Lemont, 

IL, USA, where they were imaged by x-ray computer tomography (XCT) using the 

parameters in Table 4.1. The relative humidity (RH) of the specimen 

environment was controlled during imaging using a custom-built humidity 

chamber (Figure 4.1). The chamber consisted of 6.3 cm length of Kapton
©

 tube 

with 127 µm thick walls and 4.45 cm outside diameter (Precision Paper Tube 

Company, Wheeling, IL, USA) with machined aluminum caps at each end. The 

bottom cap had a ThorLabs
TM

 (Newton, NJ, USA) kinematic mount to attach the 

chamber to the rotation stage. The bottom cap also had an air inlet through 

which compressed air, humidified with an InstruQuest (Coconut Creek, FL, USA) 

HumiSys
TM

 HF humidity generator, flowed. The top cap had the air outlet. The 

RH inside of the chamber was continuously monitored by a Sensirion (Staefa, 

Switzerland) SHT1x sensor. 

 Dynamic absorption and desorption series 

Three time-series of specimens absorbing and desorbing moisture were 

collected. The first series captured the dynamic desorption behavior of the 

unbonded latewood loblolly pine specimen. The specimen was conditioned at 

96% relative humidity (RH) for 24 hr prior to imaging at 96% RH. Then the RH 

was decreased to 0% RH and consecutive sinograms were taken over the next 6 
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hr. Within 1 min of the RH decrease, the chamber RH decreased to less than 2% 

RH. 

The second and third series captured the dynamic sorption behavior of 

the 135 min BrPF bondline. The specimen was conditioned at 99% RH initially 

and then the RH was decreased to 0% and sinograms collected periodically over 

the next 6 hr. After the step change to 0% RH, it took about 2 min for the 

chamber RH to decrease to less than 2% RH. After the imaging at 0% RH for 6 

hr, the RH was increased to 99% and sinograms were taken over the next 3 hr. 

During the step change to 99% RH it took about 2 min for the chamber RH to 

reach 97% RH. 

 Non-dynamic absorption 

A BrPF bondline from each of the six aliquots were conditioned under 

ambient humidity (13%) for 24 hr and imaged at 13% RH in the XCT RH 

chamber. Then they were conditioned for about 16 hr at 96% RH in an external 

RH chamber before being imaged at 96% RH in the XCT RH chamber. 

4.2.3 Segmentation 

Images were reconstructed into tomograms using TomoPy (Gürsoy et al. 

2014), then segmented into 4 phases: air, wood, wood-adhesive mixture, and 

pure adhesive using the methods described by (McKinley et al. 2016). 

4.2.4 Digital Volume Correlation (DVC) 

Strains in specimens caused by moisture sorption were evaluated using 

digital volume correlation (DVC). The reconstructed XCT volumes were 

correlated using Vic-Volume by Correlated Solutions Inc. (Columbia, SC). The 

correlation parameters are shown in Table 4.2. Using two separate scans of the 

same unchanged specimen as a noise floor measurement, one standard 

deviation of the measurement uncertainty is expected to be below 0.4 x 10
-3
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strain for the transverse directions, and 0.85 x 10
-3

 strain for the longitudinal 

direction (Figure 4.2). 

 Results and Discussion 

4.3.1 Volume change in unmodified loblolly latewood 

The bulk measured swelling of all known softwood lumber is observed to 

be larger in the tangential direction than in the radial direction (Glass and 

Zelinka 2010), so it was unexpected to observe that the radial swelling was 

twice that of tangential swelling in both the unmodified latewood specimen 

(Figure 4.3) and the latewood in the adhered specimens (Figure 4.4 and Figure 

4.5). However, this swelling anisotropy is explained by the anisotropic cellular 

materials finite element model developed by (Rafsanjani et al. 2013); the results 

of this model are summarized in Figure 4.6. Because of the large angle between 

the radial and tangential walls (θ ) and the low aspect ratio (ξ ) for the 

specimens in this study, the model predicts a larger bulk radial expansion than 

tangential expansion in the latewood regions and the opposite trend in the 

earlywood region. To confirm that the observed behavior was predicted by this 

model, the cell wall geometry of our specimens was measured (radial lengths, 

tangential lengths, angles, cell wall thickness) in cross sections of the 

tomography. The only assumption of the model which was not confirmed in the 

present study is that the moisture-induced swelling of the cell wall is ten times 

larger in the perpendicular-to-cell-wall-surface than the parallel-to-cell-wall-

surface (and not longitudinal) directions. The reader is referred to Rafsanjani et 

al. (2013) for more details of the model. A comparison of the model predictions 

and measured bulk anisotropy of specimens from Derome et al. (2011) and the 

present study are shown in Table 4.3. 

The average radial and tangential strains along the longitudinal direction, 

shown in (Figure 4.7), revealed that the outside edges of the specimen shrink 

before the center. This was expected, and it occurs because the moisture 
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desorption is a diffusion limited mechanism. Below fiber saturation, moisture 

may travel through the wood either along the cell wall as bound water or along 

the lumens as a gas. For more information about moisture transport in wood, 

the reader is referred to (Time 1998). 

4.3.2 Local effect of ray cells on volume change 

Volume change from wet to dry was calculated from DVC strain results 

for first and last scan of the unbonded loblolly pine specimen. The measured 

effect of the presence of ray cells is show in Figure 4.8. Fitting a linear model to 

the data predicts there is an average of 0.0488 less contraction around the ray 

cells when compared with non-ray regions during drying. This effect is only 

visible when looking at the tangential strain component of large fusiform rays 

(Figure 4.9a). There was no visible effect of any type of ray on the radial 

swelling of the wood (Figure 4.10e,f ); this agrees with the findings of (Patera et 

al. 2017). For small rays, the effect is not large enough to be visible in the data 

(Figure 4.9b). The authors suggest the influence region of a uniseriate ray may 

be smaller than the sensitivity of digital image correlation because a correlation 

window size around 50 microns cannot resolve deformations only 10 microns 

wide when their magnitude is an order smaller than their surroundings. 

4.3.3 Volume change in BrPF bonded specimens 

The local strains in the radial, tangential, and longitudinal directions for 

the BrPF bonded specimens at each curing time are shown in Figure 4.4 and 

Figure 4.5. Like in the unbonded loblolly latewood specimen, the radial 

moisture-induced swelling is larger than the tangential moisture-induced 

swelling. 

While there is no evidence of condensation time dependence, Figure 4.4 

and Figure 4.5 show that the adhesive locally reduces the moisture-induced 

swelling. Interestingly, both tangential and radial strains show an effect of local 
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adhesive volume fraction, but the radial swelling is the only one strongly 

affected by bondline proximity. Radial expansion of the wood was greater than 

tangential expansion, so moisture expansion mismatch between the isotropic 

adhesive and the anisotropic wood may cause some of the effect. However, the 

shape of the strain fields in the bonded specimens suggest that the 

morphology of the adhesive has a significant effect on local moisture induced 

swelling.  

Figure 4.10a-d show sections of bondline from some of the bonded 

specimens. In Figure 4.10a,c, you can see that the area of low radial strain 

(these specimens are swelling) follows the contours of the adhesive. We can see 

that the low strain region bulges out with adhesive filled rays. Figure 4.10b,d 

show tangential strains around adhesive filled ray cells. The tangential strains 

are reduced along the entire length of the rays unlike the radial strains effect 

which only extends from the bondline along the rays part way. Notably, in most 

cases the radial strain effect along the ray terminates at a bubble in the 

adhesive. This leads the authors to believe that bubbles and swelling induced 

adhesive fracture may also limit the ability of the adhesive to restrain swelling 

over long distances. Evidence of cracks is shown in Figure 4.11 where the 

adhesive from an adhesive filled ray cell appears to develop cracks in three 

places during expansion. It seems that the adhesive is effective at depressing 

the swelling across its narrow dimension, but not along the length dimension. 

In rays, it effectively resists tangential swelling but not radial swelling, and at 

the bondline, it effectively resists radial swelling, but not tangential swelling. 

4.3.4 Adhesive volume change 

Measuring the swelling of the adhesive in situ has proven difficult; 

multiple methods were attempted, but none proved satisfactory to the authors. 

Digital image correlation cannot be used because the adhesive is structure is 
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too featureless and interwoven with the wood structure to be accurately 

correlated. 

𝑑𝑉 =
(𝑣𝑓𝑖𝑛𝑎𝑙 – 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 4-1 

Measuring volume change directly by using the total numbers of voxels 

tagged as adhesive only in the segmented before and after tomography also 

proved unsatisfactory. Using Equation 4-1, the volume change, dV, was 

calculated by using v_final, the number of voxels tagged as adhesive in the dry 

specimen, and v_initial, the number of voxels tagged as adhesive in the wet 

specimen. The results of this calculation are shown in Figure 4.12 as a function 

of condensation time for each of the BrPF specimens. Assuming isotropic 

expansion, the linear expansion of the adhesive, αl, can be estimated from the 

volumetric expansion, αv, of the adhesive using Equation 4-2. This conversion is 

shown on the right axis of Figure 4.12 for better comparison between other 

strain data in this paper. 

(1 + 𝛼𝑙)3 = 1 + 𝛼𝑣 

4-2 

𝛼𝑙 =  √1 + 𝛼𝑣
3 − 1 

Only the 300 microns of distance on either side of the bondline were 

used for the calculation because the volume change was shown to converge at 

this region size. Using this method, the magnitude of the volume change is 

opposite of expected. These specimens are undergoing absorption, so the 

volume of the adhesive is expected to increase along with the wood cell 

material.  

The authors suggest two possible explanations for this behavior. First, 

the changing density of all the materials as they uptake moisture causes a shift 

in their x-ray attenuation. This changes the attenuation threshold between the 

cell wall material and the adhesive. In particular, it shifts the histogram of the 

tomography to lower intensities; this is the expected behavior because wet cell 
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wall material is less dense than dry cell wall material (Siau 1984). Because of 

this shift, using the same threshold for both images would cause less adhesive 

voxels to be identified in the wet image, which would lead to a negative volume 

change of adhesive. However, even segmenting each before and after image 

independently leads to the unexpectedly opposite adhesive contraction, so it 

seems that segmentation uncertainty due to changing density is too high to 

make this measurement. 

Second, the adhesive in the lumens of tracheids and ray cells, which make 

up a majority of the segmented adhesive, could be under compression in the 

wet state. We already know that the cell wall material expands more 

perpendicular-to-cell-wall-surface than in the parallel-to-cell-wall-surface 

directions, and in a personal communication, Joseph Jakes stated that the 

lumen space of latewood loblolly pine shrinks as the cell uptakes water. 

However, for the wet cell wall to compress the wet adhesive, the modulus of the 

cell wall would need to be greater than the modulus of the adhesive. The elastic 

modulus for phenol-formaldehyde in the literature is approximately 3.5 GPa 

(“Phenol Formaldehyde (PF, Phenolic)” n.d.; EFunda 2018). Then, let’s assume 

that the radial and tangential moduli of the cell walls are approximately one 

half of the longitudinal moduli as Brandt et al. (2010) observed when they 

nanoindented Pinus sylvestris L. latewood. Jakes et al. (2015) measured the 

moduli of our specimens to be about 15 GPa in the longitudinal direction of 

wood at 78% relative humidity, so the moduli is 7 GPa or less in the tangential 

or radial directions. This means that plausibly, the wood cell material in our 

specimens could be compressing the adhesive in the cell lumens. 

The final attempt to measure the volume change of the adhesive was by 

directly measuring dimensional changes of specific objects of adhesive in the 

tomography. Two methods were utilized. First, adhesive objects in lumens and 

ray cells located between two bubbles were measured along their longitudinal 
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and radial lengths respectively. The results in Table 4.4 appear to show that 

linear measures of adhesive object dimensions follow closely with the 

dimensional changes of the bulk wood. However, unconstrained, the adhesive is 

expected to exhibit isotropic swelling, which is contrary to the measured result, 

so it appears that the adhesive in the rays and lumens is affected too highly by 

the adjacent cell walls to get a fair measurement of the adhesive alone. The 

dimensional change of the adhesive in these regions, measured using this 

method and the previous method, is biased by the dimensional change of the 

wood cell walls. Second, the change in volume of adhesive bubbles, which were 

located at the bondline between substrates, but not touching either, was 

measured. We expect that if these bubbles are located at the bondline, and are 

not touching the wood cell material, they will expand isotropically because they 

would be unaffected by compression stresses created by interaction with the 

wood. The 25 bubbles that were located at the bondlines and not touching 

wood cell material have a large variance, but their mean linear expansion of 23 

x 10
-3

 is a much more reasonable estimate of the adhesive expansion because it 

doesn’t closely match the bulk wood expansion. There are not enough bubbles 

in the specimens to measure the adhesive expansion more confidently, and 

even this method may be influenced by the surrounding wood cell material. A 

better method for measuring the adhesive moisture-induced swelling would be 

preferable. 

 Conclusions and future direction 

A method for measuring the effects of adhesive bondlines on moisture-

induced swelling of wood structure in situ has been demonstrated. 

The spatial limitations of current DVC methods prevented detection of any 

influence of uniseriate ray cells on the moisture-induced expansion of the wood 

structure. However, adhesive-filled rays, and large fusiform rays, clearly created 

local reductions of moisture-induced swelling in the tangential direction. 
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The results suggest that the condensation stage of the reaction (by proxy 

the molecular weight) of the PF adhesive used in this study does not affect the 

wood swelling because it was approximately the same for all specimens. 

Swelling reduction from the adhesive was observed only to occur radially 

near the bond plane and tangentially near adhesive-filled rays. The strain maps 

suggest that breaks in the adhesive due to bubbles and adhesive fracture 

prevent the adhesive from arresting swelling along its longest dimension. Also, 

the local effect of the adhesive bond on the wood was less than the effect of the 

earlywood-latewood transition. 

Depending on the method of measurement, moisture-induced swelling of 

adhesive was different than the wood cell wall. However, there appears to be 

interaction between the cell wall and the adhesive during swelling. 
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 Tables 

Table 4.1 A summary of XCT scanning parameters for specimens in this study. 

Scanning Parameters Value 

beam energy Polychromatic beam 

27 keV peak energy 

detector distance 110 mm 

exposure time 5 ms 

number of views 1500 

Resolution 1.1 µm 

 

Table 4.2 DVC parameters used to calculate strain in this study. 

Parameter Value 

Strain Filter Size 5 

Step Size 30 

Window Weights Uniform 

Interpolation Optimized 4-tap 

Correlation NSSD 

Consistency [pixels] 0.33 

Confidence [pixels] 0.02 

Matchiness [pixels] 0.01 

Strain Calculation LaGrange 
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Table 4.3 Summary of measured geometric parameters (Figure 4.6) and 

moisture-induced swelling coefficient (β) anisotropy for earlywood and 

latewood in Norway Spruce and Loblolly Pine. 

Specimen Angle (θ) Aspect Ratio 

(ξ) 
t/h Model Predicted 

anisotropy 

(βT ? βR) 

Observed 

anisotropy 

(βT / βR) 

Norway Spruce 

earlywood 

(Derome et al. 

2011) 

0 – 15 

degrees 

0.5 – 2.0 - βT > βR 2.53 

Norway Spruce 

Latewood 

(Derome et al. 

2011) 

23 +/- 10 

degrees 

0.79 0.39 βT > βR 

 

1.22 

Loblolly Pine 

earlywood 

20 +/- 9 

degrees 

0.85 0.14 βT > βR 3 

Loblolly Pine 

latewood 

30 – 45 

degrees 

0.62 – 0.69 0.70 βT < βR 0.6 

 

Table 4.4 Summary of manual measurements taken of adhesive features to 

determine in situ volume expansion of the adhesive. Direction refers to 

orientation of wood structure. 

Specimens Feature Direction Mean strain 

(linear) 

95% CI Sample size 

85 adhesive 

globule 

Longitudinal 0.002 0.003 5 

45 adhesive 

globule 

Radial 0.125 0.009 3 

85,115, 

135,155 

bubble 

volume 

- 0.023 0.021 25 
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 Figures 

 

 

 

 

Figure 4.1 Image of the RH chamber installed at the beamline for this study. 
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Figure 4.2 The measured strain uncertainty (one standard deviation of the 

error) and strain bias (mean error) of DVC at various correlation window 

sizes. 

 

 

 

Figure 4.3 DVC measured strains in the (a) latewood loblolly pine specimen 

and (b) BrPF bonded specimen with adhesive condensation time of 135 

min. Bars show ± one standard deviation. 
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Figure 4.4 Strains of BrPF bonded specimens for condensation times from 45 

to 175 min as a function of bondline distance. Radial strains of the 45-min 

specimen drop after 0.5 mm because it contains earlywood at the edge 

furthest from the bondline. Bars show ± one standard deviation. 
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Figure 4.5 Strains of BrPF bonded specimens for condensation times from 45 

to 175 min as a function of local adhesive volume fraction. Data from the 

earlywood region of the 45 min specimen is excluded. Bars show ± one 

standard deviation. 
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Figure 4.6 (a) Geometric parameters of cellular materials as defined by 

(Rafsanjani et al. 2013). (b) Summary of predicted swelling coefficient (β) 

anisotropy for specimens from two studies shown in Table 4.3. Dark 

shapes Norway spruce (Derome et al. 2011) and light shapes loblolly pine 

(Jakes et al. 2015). Earlywood circles and latewood squares. 
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Figure 4.7 Elliptical glyphs showing strain development during drying 

(illustrated 10x measured strain) of the unbonded loblolly pine specimen 

averaged along the longitudinal direction. Colors show the magnitude of 

the actual proportional volume change. 
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Figure 4.8 Dependence of DVC measured fractional volume change on the 

portion of correlation window filled with ray cell for loblolly pine specimen. 

 

 

 

Figure 4.9 (a) Local effect of fusiform ray on moisture induced tangential 

strains in unbonded loblolly pine. (b) No visible effect from small ray cells 

in the same specimen. 
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Figure 4.10 Radial strains (left) and tangential strains (right) in BrPF bonded 

specimens for (a, b) 45-min, (c, d) 85-min, and (e, f) 155-min specimens. 
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Figure 4.11 Dry and wet (left and right) 3D renderings of the same adhesive 

inside a ray cell. There are three visible breaks in the adhesive: one in the 

bubble closest to the bondline, one at the second bubble, and one two 

thirds of the way down the adhesive. 

 

  



 

78 

 

 

 

Figure 4.12 Volume change and equivalent linear strain of adhesive in BrPF 

bonded specimens as a function of condensation time of adhesive 

(increasing molecular weight). Results shown for calculations including only 

the region within 300 microns of the bondline. 
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The development of new methods or utilization of current X-ray 

computed tomography methods is impeded by the substantial amount of 

expertise required to design an X-ray computed tomography experiment from 

beginning to end. In an attempt to make material models, data acquisition 

schemes, and reconstruction algorithms more accessible to researchers lacking 

expertise in some of these areas, a software package is described here which 

can generate complex simulated phantoms and quantitatively evaluate new or 

existing data acquisition schemes and image reconstruction algorithms for 

targeted applications. 

This work is supported by the U.S. Department of Energy under Contract 

No. DE-AC02-06CH11357. 

 Introduction 

Historically, X-ray imaging techniques have been developed by and for 

the medical imaging community and then adapted for other uses. However, this 

may be the cause of three common problems in synchrotron X-ray computed 

tomography (XCT) community: (1) the Shepp-Logan phantom (Shepp and Logan 

1974) is still used as a standard phantom, but it does not represent the 

materials of a diverse synchrotron research community, (2) trying alternative 

acquisition schemes and experimental setups is difficult, especially for 

scanning probes, and (3) researchers are not quantitatively evaluating alternate 

reconstruction methods. These problems may still exist, in part, because 

developing the solution for each one requires developing solutions for the other 

two. However, since no one person is an expert materials scientist, physicist, 

and mathematician, these solutions have not been developed. 

In order to bridge the gap between materials scientists, physicists, and 

mathematicians, we have created a modular software toolbox/framework 

(Figure 5.1) written in Python to help users and developers of synchrotron-

based tomography to easily develop, validate, and share XCT experimental 
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methods. With XDesign, materials scientists can choose experimental methods 

based on phantoms they have created to resemble their actual materials of 

interest, physicists can optimize data acquisition methods using quantitative 

quality measures, and mathematicians can test their numerical algorithms on 

more diverse geometries and flexible input data. 

This publication is organized as follows. Section 5.2 describes custom 

phantom generation capability. Section 5.3 describes data acquisition 

simulation. Section 5.4 describes reconstruction methods. Section 5.5 describes 

the quality metrics implemented in our toolbox. Section 5.6 describes features 

that are not implemented in the initial release but are planned pending 

community interest. Source code, documentation, and information on how to 

contribute are freely available through GitHub at tomography/xdesign. 

All graphics are rendered using Matplotlib (Hunter 2007). 

5.1.1 Why custom phantoms? 

For many reconstruction studies, the simulated phantom of choice is the 

Shepp-Logan phantom, which is a piecewise constant model of a cross section 

of a human head, but for a majority of the materials community, this phantom 

does not represent the materials studied. For many of the same reasons that 

one acquisition setup does not fit all experiments, Shepp-Logan does not fit all 

simulations. 

Using physical phantoms for quantitative procedural evaluation is not 

good practice because the exact dimensions or composition of the object are 

not known; this precision is important because researchers are already trying to 

resolve features and estimate quantities of interest at the limits of the 

tomographic instrument resolution and sensitivity. 

Creating custom simulated phantoms is beneficial because it allows 

coupling of theoretical models with actual tomography. In fact, there are some 
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reconstruction methods which utilize an internal model material model as a key 

part of the reconstruction algorithm (Zanaga et al. 2016). 

5.1.2 Related Works 

There are open-source software tools for simulating data acquisition of 

non-X-ray systems: GATE (Jan et al. 2004), STIR (Thielemans et al. 2012), and k-

Wave (Treeby and Cox 2010), and there are open-source tools that focus on 

different reconstruction methods: TXM wizard (Liu et al. 2012), MMX-I 

(Bergamaschi et al. 2016), ASTRA (van Aarle et al. 2015) and TomoPy (Gürsoy et 

al. 2014). However, most of these tools are not set up for custom data 

acquisition schemes for simulating streaming reconstructions. Some support 

different detection geometries such as cone- and parallel-beam geometries, but 

none support generic geometries for scanning probes. Materials properties 

which change over space-time can affect optimal data acquisition methods 

(Hsieh et al. 2006; Holman et al. 2016), and uniform spatio-temporal sampling 

is becoming undesirable as data sets become larger. Researchers are already 

developing streaming reconstruction systems with feedback to acquisition 

systems (Marchesini et al. 2016; Vogelgesang et al. 2016) because one 

acquisition setup may not fit the needs of all experiments or even a single 

experiment. 

 Phantom Generation 

In XDesign, each phantom is a collection of multiple features. Features 

are represented by a geometry and some property functions which are valid 

within that geometry. A geometry is any sub-region of the phantom’s ambient 

space. A property is what a probe measures in that geometry. It is best to think 

of a phantom as a piecewise property function in an N-dimensional (ND) space, 

and because in that way, features’ properties such as density, attenuation, 

position, shape can be represented continuously in spacetime. 
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5.2.1 Building a Phantom 

In the first release, XDesign supports 2D geometries including circles, 

triangles, and triangular meshes. It is possible to easily construct phantoms 

from the ground up by assembling geometry objects into features and then 

assigning them properties. The code below generates the phantom in Figure 

5.3 and the structural hierarchy in Figure 5.2. 

5.2.2 Phantom Parameterization 

You can parameterize phantom construction easily by defining a 

superclass of the Phantom class. For example, Figure 5.4 shows various outputs 

from the parameterized function below. This class randomly generates a foam-

like phantom using void size range, gap, and target porosity as parameters. 

 

# Create head 

head = Feature(Circle(Point([0.5, 0.5]), radius=0.5)) 

head.mass_atten = 1 

# Create left eye 

eyeL = Feature(Circle(Point([0.3, 0.5]), radius=0.1)) 

eyeL.mass_atten = 1 

# Create right eye 

eyeR = Feature(Circle(Point([0.7, 0.5]), radius=0.1)) 

eyeR.mass_atten = 1 

# Create mouth 

mouth = Feature(Triangle(Point([0.2, 0.7]), Point([0.5, 0.8]), Point([0.8, 0.7]))) 

mouth.mass_atten = -1 

# Assembly features to have a face phantom 

face = Phantom() face.append([head, eyeL, eyeR, mouth]) 

# Create a foam-like phantom from application specific parameters 

foam_like_phantom = Foam(size_range, gap, porosity) 
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5.2.3 Structurally Complex Phantoms 

The geometry module of XDesign has three main kinds of entities: simple 

entities (points and lines), curves (defined by a single equation), and polytopes 

(defined by multiple equations). We use the polytope library (Filippidis et al. 

2016) for computational geometry because it made adding polygonal 

intersections and expansion into ND space easy. Curves and polytope meshes 

may be combined in the same phantom (Figure 5.5) in order to simulate 

complex structures like liquids wetting soils (Schlüter et al. 2014). Any number 

of properties can be added to the features in a phantom because Python allows 

for dynamic assignment of attributes to objects. Properties could be anything: 

attenuation, density, grain orientation, crystal structure, etc. 

 Data Acquisition Simulation 

The XDesign data acquisition currently has one type of probe object. It 

takes measurements by integrating a property (e.g. linear attenuation) of the 

phantom over the space contained by probe. A single beam probe can simulate 

both scanning probes and area detectors because it can be moved and rotated 

to any position. 

5.3.1 Generating a Sinogram 

To simulate data acquisition, create a probe object and then code it 

through a procedure. The probe records data when the measure method is 

called, and it moves when translated or rotated. The example below simulates 

raster-scanning of the phantom from Section 5.2.1 with standard parallel beam 

over 180° rotation. 
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5.3.2 Implementation Details 

Because scattering and other effects to the beam are not modeled at this 

time, there is no detector object. Equivalent sinograms can be generated by 

moving the phantom or the probe because all positions and movements are 

# Define raster-scan parameters 

sx, sy = 100, 100 

# Step size of the probe for raster scanning 

step = 1. / sy 

# Initial probe creation 

probe = Probe(Point([step / 2., -10]), Point([step / 2., 10]), 0.01) 

# Step size of uniformly spaced projection angles 

theta = np.pi / sx 

# Initialize sinogram array 

sinogram = np.zeros(sx * sy) 

# Collect data 

a = 0 

for m in range(sx): 

for n in range(sy): 

# Calculate simulated data for measurement 

sinogram[a] = probe.measure(face) 

a += 1 

# Translate probe by step size 

probe.translate(step) 

# Translate probe back to original position 

probe.translate(-1) 

# Rotate probe by the angle step size around origin 

probe.rotate(theta, Point([0.5, 0.5])) 
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described from a global reference frame. Streaming reconstruction can easily be 

simulated because simulated data is available as soon as it is calculated. 

 Reconstruction Algorithms 

XDesign includes several unoptimized reconstruction algorithms for 

tinkering: ART, SIRT, and MLEM, but we expect for non-simulated experiments 

researchers will use more efficient implementations. 

5.4.1 Reconstructing data 

In XDesign, the Probe captures a snapshot of its geometry when it 

measures data and appends it in a list to be used for reconstruction. The 

example script below shows the use of built-in reconstruction methods in the 

package. Figure 5.6 demonstrates image reconstructions of the Soil phantom 

(Figure 5.7) on a uniformly spaced grid using Gridrec, PML, and SIRT 

algorithms. 

 Image Quality Metrics 

There are three classes of image quality metrics: full reference, partial 

reference, and no reference. Full reference metrics generally measure the 

amount of shared information between a reference and distorted image. The 

importance of different types of information: edge intensity, color, contrast is 

weighted differently in various methods, and the result is only applicable to a 

particular image. Partial reference metrics are used when the full reference 

# Reconstruction grid size 

rx, ry = 100, 100 

# Number of iterations 

niter = 20 

# Initial phantom estimate 

init = np.zeros((rx, ry)) 

# Reconstruct using SIRT algorithm 

recon = sirt(probe, sinogram, init, niter) 
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exists but is not reliably accessible. No-reference methods often try to measure 

the highest resolvable frequency or noise content of an image capturing system 

by using a standard test pattern; these quantities are believed to predict the 

quality of all images captured by a system. Our tool includes full reference and 

no reference metrics. 

5.5.1 Full Reference Image Quality Metrics 

This section briefly describes each of the available full-reference image 

quality metrics. For each of these metrics, scores closer to one are better. For 

full technical descriptions, the reader should refer to each method’s original 

publication. 

 MS-SSIM 

The multiscale structural similarity index (MS-SSIM) measures differences 

in “luminance, contrast, and structure” at multiple levels of detail (Wang, 

Simoncelli, and Bovik 2003). Each of these three qualities is calculated from a 

combination of the local mean, standard deviation, and covariance of images. 

Using local means and standard deviations calculated from Gaussian filters is 

possible to calculate a contour map of image quality at multiple resolution 

scales. Similarity overall is calculated by averaging the structural similarity 

index over the entire image and at each scale. 

 FSIM 

The feature similarity index (FSIM) measures the similarity of images 

using gradient magnitude and Fourier phase congruency (Zhang et al. 2011). 

Because high phase congruency had been correlated with image features 

important to the human visual system (HVS), this method weights the 

importance of each gradient magnitude depending on phase congruency. Since 

the gradient magnitude is only a measure of edges, this method ignores 
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whether luminance is correctly captured, but that might not be important for 

some users. 

 VIFp 

The visual information fidelity in the pixel domain (VIFp) measures shared 

information between a reference and distorted image using a framework based 

on natural scene statistics (Sheikh and Bovik 2006). It uses Gaussian scale 

mixtures and wavelet analysis. It directly compares the intensity information in 

the images at different scales by separating it into levels using Gaussian filters 

of different sizes. Because it uses wavelets, the accuracy of this quality metric is 

dependent on the depth of the wavelet transform. 

5.5.2 No Reference Image Quality Metrics 

These metrics use predetermined phantom geometries to estimate the 

noise characteristics and minimum resolvable spatial frequencies of a system 

(Hsieh and others 2009). 

 NPS 

Noise power spectra (NPS) use a Fourier transform of uniform area in the 

reconstruction to give information about the frequency composition of the 

noise. This is better than SNR because it shows how coarse or fine the noise is. 

2D images produce a 2D noise power spectrum, but the 2D spectrum can be 

reduced to a histogram by binning radially. 

 SFR and MTF 

Spatial frequency response (SFR) and modulation transfer function (MTF) 

use commonly use a slanted edge or standard pattern of lines at increasingly 

smaller intervals to measure how the fidelity of an image decreases as the 

frequency of a signal increases. The ability of an imaging system to accurately 

capture high frequency signals is related to the sharpness of images it creates. 

We have implemented the MTF calculation described in (Friedman et al. 2013) 
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which does not normalize the zero frequency to unity in order to prevent 

artificially inflating responses at other frequencies. 

5.5.3 Using Image Quality Metrics 

In order to use the full reference quality metrics in XDesign you need to 

generate a reconstructed phantom, discretize the source phantom on a uniform 

grid to the same size, and choose a method for comparison. The compute 

quality function will generate average and local quality for a series of images. 

For full-reference comparison, local quality information is calculated at 

multiple scales. Scale is the standard deviation of the filter size used to 

compute the local quality metric. In other words, the quality at scale = 5, tells 

you how well objects on the order of 10 pixels are represented. Figure 5.8 

shows the result of compute_quality with the MS-SSIM metric applied to the 

“cameraman” test image which has been deformed in 4 different ways. The 

distorted image is plotted in the upper left and a sequence of contour plots of 

the quality metric are plotted for each scale. Larger plots show information 

about smaller scales and smaller plots show information about larger scales. 

The combination of quality metrics at multiple scales and parameterized 

functions allows us to generate informative plots about an XCT experimental 

method. If we wanted to evaluate whether ART, SIRT, or MLEM, is optimal for 

reconstructing the Soil phantom (Figure 5.7), we can try each of the methods at 

different numbers of iterations and plot the results. Optimal tuning of 

configuration parameters of any iterative reconstruction algorithm (e.g. 

# Create a discrete phantom of size 100 

ref = discrete_phantom(a_phantom, 100) 

# Compare true phantom with reconstructed values using MS-SSIM metric 

metrics = compute_quality(ref, [rec_art, rec_sirt, rec_mlem], method="MSSSIM") 

# Plot analysis results 

plot_metrics(metrics) 
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regularization parameter, number of iterations, different updating schemes) can 

also be quantified by calculating this set of metrics. 

In Figure 5.9, we can see that ART only scores best on smaller scales with 

few iterations. Beyond that, it creates its best reconstruction around 50 

iterations before decreasing in quality again. MLEM is the best algorithm for 

this phantom because the quality reconstruction rapidly increases at all scales 

faster than ART and SIRT. The SIRT contour looks like the MLEM contour but the 

quality improves at a slower pace. SIRT might be a better option if its time per 

iteration is much smaller than that of MLEM. 

We can also calculate no reference metrics using standard phantoms. In 

Figure 5.11, we have calculated the MTF for ART, SIRT, and MLEM at various 

numbers of iterations. In this comparison, it once again seems that MLEM is the 

best reconstruction method at higher numbers of iterations because the MTF 

most rapidly approaches unity. 

 Future Works and Proposed Features 

5.6.1 Future Works 

Here are some features which we are currently working on to add to 

XDesign. 

 Wave Propagation 

 XDesign only simulates beam attenuation, and it does not have a 

Detector object. Therefore, phase contrast and other reconstruction methods 

which use beam scattering or wave interference cannot be simulated at this 

time. In a future release, we are planning to simulate Fresnel multislice wave 

propagation. 

 Geometric flexibility 

As a pre-release, XDesign only supports 2D geometries. We are currently 

working to enable the definition of higher dimensional Phantoms which will 
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enable freedom of problem definition and allow for more flexible data 

acquisition. e.g. 3D objects can be used to model 3D objects, but they can also 

be used for modeling a dynamic 2D object. We also plan to add a Component 

class to the phantom hierarchy. Components will spatially attach Features of 

different properties together to allow for easier geometric manipulation. 

 Performance 

 Python is slower than compiled languages. We are working to optimize 

computationally intensive portions of the data acquisition module for faster 

run-times. We plan to implement bottleneck functions in compiled languages 

such as C or Fortran and explore use of Graphical Processing Units for 

vectorizing and further speeding-up calculation of slow processes if needed. 

5.6.2 Proposed Features 

Here are some features which have been suggested but are not yet 

assigned to anyone for development. Features in this section are not currently 

planned because they either require greater involvement from the community 

or more man-hours. For additional feature suggestions or to participate in our 

development process, please head to our GitHub page and create an issue. 

 Distortions  

Some processing methods are targeted at reducing a specific type of 

noise e.g. motion blur or beam drift. At this time, simulated distortions like 

these are not implemented, but they could be simulated by adding random 

noise to methods in the data acquisition module. 

 Materials definitions  

Currently, Feature properties must be defined manually. We could define 

a materials superclass of Feature for common compounds such that materials 

properties of these compounds are auto populated from tabulated data of the 
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National Institute of Standards and Technology (Berger and Hubbell 1987) or 

the Center for X-ray Optics (Henke, Gullikson, and Davis 1993). 

 Interfaces  

Import and export of experimentation acquisition systems for better 

determining collection parameters is important. We could implement import 

and export interfaces to common file formats like stl for 3D meshes and svg for 

2D phantoms. This would improve portability of phantoms and acquisition 

geometry between researchers. It could also allow for the visualization of 

experimental setups by using third party commercial tools and make 

integration with existing tools easier. 

 Improved Quality measures  

Some algorithms are specialized for reconstructing the shape only, and 

thus, the dynamic range of the phantom may not match the dynamic range of 

the reconstruction. Full reference quality metrics that can compare images of 

different dynamic ranges will be useful if they can be implemented. We could 

expand metrics library to evaluate special reconstructing methods based on 

community interest. 

 Community Repository  

A collection of free to use materials phantoms generated by the 

community would help algorithms developers test their methods more robustly. 

We are working with synchrotron users to build up a parametrized phantoms 

library and encourage anyone to contribute their custom parameterized 

phantoms to the XDesign GitHub repository. 
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 Figures 

 

Figure 5.1 Modular schematic of XDesign. Implemented modules are drawn in 

solid boxes and proposed modules are drawn in dotted lines. 

 

Figure 5.2 Example phantom data structure for phantom described in Section 

2.1 and Figure 5.3. 
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Figure 5.3 Geometry (left) attenuation property (right) of a simple phantom 

described in Figure 5.2 and Section 5.2.1. 

 

Figure 5.4 Four different foam-like phantoms generated from the parameterized 

function in section 2.2. (a) size range=[0.05, 0.01], gap=0, porosity=1; (b) 

size range=[0.07, 0.01], gap=0, porosity=0.75; (c) size range=[0.1, 0.01], 

gap=0, porosity=0.5; (a) size range=[0.1, 0.01], gap=0.015, porosity=1. 

Foams based on appearance of tomography collected by (Patterson et al. 

2016). 
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Figure 5.5 Soil-like phantom (a, c) with wetting phase constructed from 

triangular mesh (b) and two other phases constructed from circles to 

resemble a source image (d) as seen in (Narter and Brusseau 2010). The 

circles were extracted from the source image using canny edges and a Hough 

transform. The wetting phase was extracted from the source using simple 

thresholding, converted to a contour using the marching squares algorithm, 

and then converted to a triangular mesh using Python Triangle (Rufat 2013). 
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Figure 5.6 Image reconstructions of the soil phantom on a uniformly spaced 

grid using Gridrec, PML and SIRT algorithms. We employed TomoPy for 

obtaining Gridrec and PML reconstructions, and XDesign for obtaining SIRT 

reconstruction. 

 

 

 

Figure 5.7 The Soil phantom geometry (left) and its discretization (right) are 

shown. 
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Figure 5.8 Example output from compute quality using MS-SSIM quality metric. 

The source image is the “camera man” image which has been distorted in 4 

ways: crop, salt and pepper, Gaussian smoothing, and unsharp masking. 
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Figure 5.9 MS-SSIM quality contours for the reconstruction of the Soil phantom 

in Figure 5.7 using ART, MLEM, and SIRT reconstruction. 1.0 is the best 

score. 
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Figure 5.10 Other parameterized phantoms: (a) Latin square of different sizes, 

(b) random circles of varying levels of attenuation, (c) a unit circle, (d) lines of 

increasingly smaller width, (e) slanted squares, (f) Siemens star. (a, b, e) 

could be used for studying the effects of reconstruction on objects of 

different sizes and attenuation. (c) could be used for noise reduction studies. 

(d, f) could all be used to calculate the modulation transfer function (MTF). 
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Figure 5.11 Modulation transfer function (MTF) quality contours from the unit 

circle phantom in Figure 5.10 using ART, MLEM, and SIRT reconstruction. 

MTF values at zero-frequency are not normalized to unity according to 

(Friedman et al. 2013). 1.0 is the best score. 
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A tool was developed for visualizing the planar coverage of an arbitrary 

two-dimensional scanning probe procedure. The tool was used to compare the 

coverage maps of a conventional raster scanning procedure and two modified 

methods: meta-raster and random meta-raster. Using XDesign, a tool for 

benchmarking tomographic image reconstruction, the reconstruction quality of 

a simulated x-ray phantom was compared for the three scanning paradigms. 

The results show that for steps sizes much larger than the probe size, not only 

does conventional raster scan have blind spots on its coverage map which are 

never probed, but increasing the number of viewing angles does not improve 

the reconstruction quality. However, for the proposed meta-raster scanning 

procedure, increasing the number of viewing angles always increases the 

coverage uniformity and increases the reconstruction quality. 

This work was based upon work supported by the U.S. Department of 

Energy, Office of Science, under Contract DE-AC02-06CH11357. 

 Introduction 

X-ray microscopy techniques based on scanning a sample with a finite 

extent beam have been used extensively at synchrotron facilities and are 

becoming increasingly important in a growing number of research applications 

in the biological, environmental, and materials sciences. For example, X-ray 

fluorescence (XRF) microscopy can provide mappings of transition elements 

such as iron, copper, zinc, or other trace elements in specimens at high 

resolution: ranging from few microns down to tens of nanometers (de Jonge 

and Vogt 2010; Suhonen et al. 2012; Chen et al. 2014). Another scanning-

based technique, X-ray ptychography, can provide the detailed morphology of 

specimens at diffraction-limited resolution (Dierolf et al. 2010). Scanning-probe 

systems that can simultaneously acquire fluorescence and diffraction signals 

have also been used for matching the elemental specificity with the underlying 

materials structure (Vine et al. 2012; Deng et al. 2015; Jones et al. 2016). 
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Despite their differences in acquisition speed and image contrast mechanisms, 

these techniques share the same sample scanning principle; typically, the 

specimen is raster-scanned with a finite extent probe while collecting 

measurements serially at discrete steps. 

The step size for the probe is usually selected to be equal to the probe 

size such that all structural details in the specimen can be captured and 

conveyed in a planar image. Extension to tomography is possible by rotating 

the specimen around an axis perpendicular to optical axis. However, when the 

step size is equal to the probe size, imaging large samples with a small probe is 

challenging because, within a fixed time, obtaining full detail in the planar scan 

dominates data collection and leaves only a limited number of projections 

(rotations of the object) to be collected. In other words, the ratio of lateral shifts 

of the probe to the number of object rotations is usually high, and although 

each detail is captured on individual projections, the reconstruction quality of 

the object suffers from undersampling of the rotational axis. The dose 

fractionation theorem states that the total dose required to achieve statistical 

significance for each voxel of a computed three-dimensional (3D) 

reconstruction is the same as that required to obtain a single 2D image of that 

isolated voxel with the same level of statistical significance (Hegerl and Hoppe 

1976). However, if the ratio of object rotations to lateral shifts of the probe is 

increased by adding gaps between probe positions, it is not clear whether all 

voxels of the sample would be recorded at desired level of 

significance. 

This publication is an investigation of the effects of scanning procedure 

coverage on reconstruction quality. We define the term “coverage” as the 

expected number of times the probe touches an arbitrary point during the 

procedure. E.g., if the left half of a pixel is touched once, then the pixel 

coverage is 0.5. If the left half of a pixel is touched twice, then the pixel 
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coverage is 1. We are also interested in the effects of directional coverage 

anisotropy, e.g. if a pixel is covered four times, but always from the same view, 

how does this compare with a pixel that is covered from four different views? 

To the authors’ knowledge, the literature contains no studies related to 

quantifying the effects of procedure coverage on the quality of tomographic 

reconstruction. Probably, the most similar discussion is (Hsieh et al. 2006), 

which proposes the reintroduction of step and shoot acquisition for helical 

scanning medical CT scanners in order to synchronize exposure times with the 

heart beats of living people while minimizing dose and not missing slices in the 

longitudinal direction. Any discussion of the point spread function and 

resolution is tangentially related, but it is not the same. Discussion about 

resolution asks about the smallest resolvable feature, whereas this discussion is 

about the degree to which each feature is exposed to the probe. 

 Methods 

We used XDesign v0.4 (Ching and Gürsoy 2017) to simulate data 

acquisition of artificial 2D phantoms and calculate scanning procedure 

coverage. The procedure coverage is defined as the expected number of times 

the probe passes through an arbitrary voxel in the object during the scanning 

procedure. Two new raster-scanning procedures were proposed and compared 

with the conventional raster-scanning procedure for different step sizes, and 

numbers of projection angles. The data was reconstructed using simultaneous 

iterative reconstruction method (SIRT) as implemented in TomoPy v1.0 (Gürsoy 

et al. 2014; Pelt et al. 2016). Finally, the reconstructed data was graded using 

the multi-scale structural similarity index (MS-SSIM) (Wang, Simoncelli, and 

Bovik 2003), implemented in XDesign. 

6.2.1 Validating the coverage function 

In order to efficiently approximate and compute the intersection of the 

probe and each pixel on the coverage map, we used an approximation 
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commonly used for back-projection reconstruction methods (Kak and Slaney 

2001). This approximation of intersection area between the probe and each 

pixel uses a sum of n Riemann rectangles as illustrated in Figure 6.1. However, 

since our coverage function in not exact, we needed to calibrate the parameters 

of the function and estimate the approximation error. 

The uniformly covered area of a conventional raster scanning procedure 

is a circle in the center of the field of view; this region of the field of view has a 

constant coverage equal to the number of projection angles when the step size 

equals the probe size. We divided the largest inscribed square of this circle into 

a 23×23 grid, which provides 529 pixels for calculating statistics. 

Using 127 projection angles around 360
◦
, we characterized the accuracy 

(mean error) and precision (standard deviation of error) for our coverage 

approximation function for Rp and Bp, the ratio of the Riemann rectangle width 

to the pixel size, and the ratio of the probe size to the pixel size, respectively. 

The results in Figure 6.1 show that the approximation is insensitive to the 

probe size, and if the Riemann rectangles are less than 1/16 of the pixel size, 

then the expected error drops below 0.01%. Therefore, we used Riemann 

rectangles of size 1/16 of the pixel size for calculating the coverage maps and 

performing the analysis through the rest of the paper. 

6.2.2 Three rastering procedures 

In the conventional raster scan, the translation step size is a full probe 

width such that there is no overlap and no space between probes. Then the 

specimen or probe rotates to a different view and repeats the raster. This 

procedure uniformly samples a circular field of view where the measurements 

from all viewing angles overlap. 

For this study, we were interested in the effects of choosing a step size 

larger than the probe size (for the purpose of scanning faster or reducing 

radiation dose). This larger step size creates a gap in the translation space and 
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destroys the measurement uniformity of the circular field of view, so we 

investigated two modified rastering procedures to combat the effects of this 

gap. The first is called meta-raster; in this paradigm, after each rotation, the 

starting position of the first scan is bumped by a preselected width. This 

scanning paradigm was recently proposed as a way to reduce scanning times 

for X-ray fluorescence tomography (de Jonge et al. 2017) and as a way to 

alleviate the overlapping probe constraints in 3D ptychography (Gürsoy 2017). 

The second, random meta-raster, is the same except the starting offsets of each 

raster are randomly ordered. The layout of each of these scanning procedures 

in the angle-raster space is shown in Figure 6.2. 

6.2.3 Coverage maps 

First, we calculated probe coverage maps to compare which pixels each 

paradigm favors as data collection becomes sparser (Figure 6.3). For each 

procedure, the probe took views of a circular region of diameter 1cm from 101 

angles around 360
◦
. The probe size and pixel size were 1/256cm while the step 

size varied from twice the probe size to 16 times the probe size. The coverage 

maps only show the 0.25cm
2 

area in the center of the field of view. 

Next, we created a series of maps (Figure 6.4) to show how many angles 

are needed to regain uniform coverage for procedures with a gap between 

probes. Again, the field of view is limited to the center most 0.25cm
2

. The step 

size was 8 times the probe size, and the probe size was 1/256cm. The number 

of rotations ranged from 11 to 1009. We chose prime numbers of rotation 

angles to avoid redundant probe trajectories. We also used elliptical tensor 

glyphs (Schultz and Kindlmann 2010) to visualize the directional anisotropy of 

each scanning paradigm (Figure 6.5). Each glyph represents from which 

directions the given pixel has been probed. If the glyph is very round, then it 

has been equally probed from many directions. If the glyph is very anisotropic, 

then it has been probed only from one direction. 
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Finally, we simulated the data acquisition of a phantom for each of the 

three paradigms for step sizes 2 through 16 and numbers of rotation angles 11 

through 

1009. The pixel size was 1/256cm. The phantom was reconstructed with 

SIRT using 50 iterations, and the quality of the reconstructions was measured 

with the MS-SSIM index at 6 levels. The mean SSIM index for each 

reconstruction at each combination of step size and rotation angles was 

combined into a contour plot (Figure 6.6) to show how each parameter affected 

the reconstruction quality. 

 Results 

As step-to-probe-size increases, the quality drops for all three procedures 

(Figure 6.7). However, meta and random meta-raster paradigms provide more 

uniform coverage than the conventional raster scan (Figure 6.3), so for them, 

the quality loss can be compensated by increasing the number of rotations 

(Figure 6.8). For conventional raster the quality does not improve (Figure 6.6) 

by increasing the number of projection angles. 

The conventional raster scan leaves a hole in the middle of the field of 

view and unsampled periodic concentric rings around this hole; anything inside 

this hole is never probed. In contrast, meta-raster and random meta-raster 

provide, at higher numbers of angles, provide a region of near uniform 

coverage. For meta-raster, this region spreads out from the center of the field 

of view, and for random meta, coverage uniformity increases slowly everywhere 

at the same time (Figure 6.4). At more than 100 angles, meta and random 

perform better than conventional raster at all combinations and especially at 

large step sizes (Figure 6.6) with meta-raster being marginally better. 

Notably, for sparse probing, the regions of high coverage in the 

conventional raster scan are biased towards tangential scanning directions, 
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whereas for meta-raster, the regions of high coverage are more directionally 

isotropic (Figure 6.5). 

The coverage standard deviation and MS-SSIM index of the simulated 

reconstructions appear to be correlated. This implies the standard deviation of 

the coverage could be can be used directly to assess any acquisition protocol 

instead of performing a complete reconstruction quality analysis. 

 Conclusions 

Meta-raster outperforms both conventional raster scan and random meta-

raster in reconstruction quality tests for large step sizes and especially when 

many projection angles are used. However, even without analyzing 

reconstruction quality, we could have predicted that meta-raster would perform 

better by looking at the coverage maps of each of the three scanning 

procedures. The coverage of meta-raster is the most uniform, and it does not 

have any blind spots. 

The relative importance of the quantity of projection angles for the meta-

raster procedure is also fortuitous because continuous stage rotation is very 

fast compared to the motion of a sliding raster. In fact, the meta-raster 

procedure is the only one of the three proposed methods which may be 

collected with a continuous motion from both rotation stage and sliding stage. 

 Figures 
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Figure 6.1 An illustration of probe approximation using Riemann rectangles 

(left). Percentage absolute mean error and uncertainty of coverage 

approximation for 127 projection angles (right). 

 

 

Figure 6.2 Comparison of spatial sampling for three scanning procedures: 

raster, meta-raster, and random. 
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Figure 6.3 Procedure coverage for 101 projection angles and different step-to-

probe-sizes. Each coverage map here is normalized to the most covered pixel 

of all maps. One standard deviation of coverage is shown in the lower corner 

of each panel. 
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Figure 6.4 Procedure coverage for step-to-probe-size 8 and different numbers 

of projection angles. Each map is normalized to its own maximum coverage 

value. One standard deviation of coverage is shown in the lower corner of 

each panel. 
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Figure 6.5 Coverage anisotropy comparison between three proposed scanning 

paradigms. The shape of the glyph shows the coverage anisotropy, the color 

shows the coverage. The same parameters are used for Figure 6.4 except the 

field of view here is reduced to  of the former. Maps of the same number of 

projection angles are normalized to the same values. 
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Figure 6.6 MS-SSIM index for tomographic reconstructions as a function of step-

to-probe size ratio and number of rotations for each acquisition procedure. 
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Figure 6.7 Reconstructions of DogaCircles using the acquisition procedures in 

Figure 6.3. MSSSIM index shown in the lower right of each panel. 
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Figure 6.8 Reconstructions of simulated x-ray phantom using the acquisition 

procedures in Figure 6.4. MS-SSIM index shown in the lower right of each 

panel. 
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7 GENERAL CONCLUSIONS 

 Measurement uncertainty of digital volume correlation for micro x-ray 

computed tomography of wood adhesive bonds 

Figure 3.2b shows the strain measurement uncertainty as a function of 

square correlation window size and measurement direction. This data was 

calculated by correlating two clear wood volumes of the same undeformed 

softwood specimen. 

Two key observations of the measurement uncertainty are that first, the 

measurement uncertainty was found to be orthotropic because the natural 

wood texture is orthotropic and second, the measurement uncertainty was 

found to be inconsistent across the specimen. These obstacles might be 

mitigated by employing correlation windows whose shape adapts to the 

anisotropy of the texture to both decrease measurement anisotropy and 

improve consistency across a specimen as the texture changes in earlywood, 

latewood, bondline, and interphase regions. 

Sources of measurement uncertainty for digital volume correlation have 

not been studied extensively, so there may be ways to generally decrease 

measurement uncertainty during scanning by reducing motion or improving 

reconstruction methods. Simulation of XCT experiments could provide 

estimates of the contributions of each sources of error to the total error and 

provide a way to compare different data collection and reconstruction methods 

with the aim of reducing DVC measurement uncertainty. Preliminary simulation 

results suggest that iterative methods, such as SIRT and MLEM, may be 

quantitatively better reconstruction methods; however, the trade-offs of longer 

reconstruction time versus any actual impact on DVC measurement uncertainty 

are not yet quantified. Ultimately, even with reductions in measurement 

uncertainty, the spatial resolution of the measurements is still limited by the 
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texture of the wood which is larger in scale (20 μm) than the desired spatial 

resolution (1 μm). 

 Best data acquisition practices for x-ray computed tomography of 

wood adhesive bonds which is to be used for digital volume 

correlation 

Several sources of error for characterizing wood adhesive bonds were 

identified in this work. 

First, specimens should have been more thoroughly controlled. The 

quality of studied specimens may be improved by meticulously screening 

specimens to ensure that edges are cut parallel to the bond and, notches sever 

the bond plane. Specimens may be protected from contamination by wrapping 

them in tape before they are mounted. Final screening may take place at the 

beamline by looking at specimens with the live x-rays projections before 

scanning them. 

 Second, specimens could have been better positioned in the field of view. 

On some specimens, the field of view did not contain as much of the region of 

interest as possible; sometimes this is due to specimen movement from its 

initial position, other times it was poor placement by the operator. Painting the 

outside of the specimen with references marks (e.g. dots of metallic paint) 

could be helpful. 

Third, collecting a low-resolution wide-view scan of each specimen before 

focusing on a smaller region of interest or collecting a lower resolution scan 

with an overall larger field of view could be helpful for generating boundary 

conditions in a finite element model of the specimen. Models starting with XCT 

of the entire specimen can implement accurate geometry of the specimen and 

account for differences in the behavior between earlywood and latewood. 

Reducing the scan resolution to increase the field of view by 2-3 times would 
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likely not affect the DVC results because the features being correlated are very 

large compared to the 1.3 micron voxels size of the present study. 

Fourth, the phase contrast effect from additional specimen to detector 

distance did not make up for the loss in attenuation contrast which results from 

the wood cell and adhesive becoming more transparent to x-rays at higher 

beam energies. 

Fifth, specimens in changing relative humidity conditions should be 

paired with similar specimens to collect average moisture content. 

 The effect of macro adhesive penetration on the load transfer 

performance of wood adhesive bonds 

The effect of adhesive penetration on load transfer across the bonding 

interface is inconclusive. It is unclear if the results were inconclusive due to lack 

of a relationship between adhesive penetration and stress transfer, or if the 

natural variability of wood texture, less than optimum specimen preparation, 

and small number of specimens obscured a relationship. 

Also, the proposed metrics in Section 3.2.5 for measuring stress transfer 

are questionable. The appendix contains a preliminary a simulative study 

comparing different methods of quantifying the load transfer from only strain 

observations. However, it may be that this approach of trying to parameterize 

bond quality as a single value is flawed, and multi-parameter mechanical 

models, such as MPM, will provide better insights into the relationship between 

adhesive flow penetration and bond quality. 

 

 The effect of macro adhesive penetration on moisture swelling of 

wood adhesive bonds 

The effect of adhesive bond lines on the local moisture-induced swelling of 

latewood loblolly pine was observed. Specifically, the Br-doped PF-based 

adhesives used to bond the specimens suppressed radial swelling near the 
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bond line and tangentially away from the bond line in ray cells filled with 

adhesive. Regardless of adhesive content, large fusiform ray cells were 

observed to have a tangential suppression effect on the surrounding wood. The 

tomography and strain fields suggest that the reason that radial suppression of 

swelling was limited was due to bubbles and swelling induced breaks of the 

adhesive, which prevented the adhesive from suppressing swelling away from 

the bonded interface. 
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9 APPENDICES 

 Statistical sample size analysis for single laps shear study 

One of the questions in Chapter 3, was whether there is no effect of the 

adhesive penetration on the bond performance or if it was just overshadowed 

by the variability of the wood. Assuming that the shear drop metric is a valid 

measure of bond performance, G*Power (Faul et al. 2007) was used to compute 

a priori the necessary sample size to observe the measured multiple linear 

regression effect of both EP and WP together on the shear drop for each wood 

species and also the group of 14 specimens with 95% confidence. This 

computation is shown in Figure 9.1, and the estimated required sample size is 

39. However, the minimum detectable effect for k, the shear drop coefficient, 

as a function of EP or WP separately is also plotted as a function of number of 

samples in Figure 9.2 and Figure 9.3. 
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9.1.1 Figures 

 

Figure 9.1 Panel showing computation of possibly required sample size for lap-

shear experiment to observe an effect. 
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Figure 9.2 Minimum detectable effect vs sample size calculated by G*Power for 

WP. 
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Figure 9.3 Minimum detectable effect vs sample size calculated by G*Power for 

EP. 
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 Comparing methods for quantifying the load transfer performance of 

the adhesive bonds 

9.2.1 Introduction 

We are interested in rating the interfacial properties of the single lap 

shear specimen from specimen geometry and strain measurements of the 

specimen alone. The stress inside a specimen and the interfacial properties 

cannot be directly measured; only the strain distribution in response to an 

applied load can be measured. Three methods were proposed for evaluating the 

bond performance in Section 3.2.5, but they were given without proof of their 

efficacy. However, by modeling specimens with known interfacial properties, a 

more meaningful link between the observed strain distribution in a single lap 

shear specimen and the properties of the interface may be established. 

In this appendix, some preliminary material point method (MPM) 

simulations were conducted to compare the proposed metrics for rating the 

interfacial properties of single lap shear specimens using only measured 

strains. 

 Single-lap shear bond performance metrics 

Gindl-Altmutter, Müller, and Konnerth (2012) investigated specimen size 

effects and adhesive stiffness on the measured shear strength of specimens 

using the stress concentration factor (SCF), the ratio between the peak stress 

and minimum stress inside the overlap (Equation 3-1). They assumed linear 

elastic behavior and used their strain measurements to directly compute the 

SCF. Their strain measurements were collected from the surface of their 

specimens using electronic speckle pattern interferometry (ESPI) which is like 

image correlation, but the pattern is generated by using lasers to track the 

movement of surface roughness. The reasoning behind this metric may be that 

bonds with a lower stress concentration factor are better because distributed 
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stresses instead of concentrated stresses are less likely to cause failure. For this 

modeling work, the distance between the peak and minimum strain between 

the notches will also be used as metric; this metric will be referred to as the 

period. 

Another work measuring the strain distribution at the notch of a single 

lap shear specimens using image correlation was conducted by Schwarzkopf 

and Muszyński (2015); this study proposed using the shear strain histogram 

around the notch as a metric for bond quality (Equation 3-2). Specimens whose 

distributions have less material with strains above some threshold are deemed 

more efficient. This reasoning is like that of Gindl-Altumutter et al. (2012), in 

that higher strains are bad, but in this case, the threshold is absolute instead of 

relative. 

The metric proposed in this dissertation is the exponential coefficient 

from a power law equation, k, fitting the shear strain, εxy, drop from the notch 

in a single lap shear to the center of the lap (Equation 3-5). The power law was 

fit to the mean of the shear strains within 0.5 mm of the bond plane. Although 

this parameter enables a comparison between specimens of the same 

dimensions, it hasn't been calibrated, compared against any meaningful 

parameters of bond cohesion, or proven to be a good metric. Thus, it is 

impossible to say what size of change in k is meaningful if at all. 

 Previous computational models of single-lap wood composites 

Previous work has modeled single laps of wood using finite elements 

(Gereke, Hering, and Niemz 2016). In this work, variations of the annual ring 

angle, the fiber angle, and the elasticity and thickness of the interface zone 

were tested to see if they influenced the stresses occurring in the adhesive 

bond line. Most relevant to this study is that they made changes to the elasticity 

of the adhesive and interface (interphase) zone; however, the finite element 

model they used was not capable of modeling imperfect interfaces. Instead, 
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they had perfect interfaces with a discrete adhesive region. In the present 

model, the interphase is not modeled, but the adherence of the interface is 

imperfect. 

9.2.2 Material Point Method Model Description 

MPM was chosen as a model because it provides opportunity for 

imperfect interface modeling and, arguably, better damage mechanics than 

FEA. MPM also offer plastic yielding. The ability to model an imperfect interface 

is important because this property is essentially what we are trying to measure 

in the real bonds. Also, MPM offers the ability, in the future, to increase the 

complexity of the model from uniform solid materials to cellular structure. 

The measurement spacing for digital image correlation used in Chapter 3 

for data was 0.02 mm, and the correlation window size was about 0.15 mm. 

Therefore, a grid size of 0.1 mm for the MPM model seems to be an appropriate 

match for the scale of the MPM model and the image correlation measurements. 

The simulations were conducted on a 1.5 GHz AMD A6-3420M APU with Radeon 

HD Graphics and 6GB RAM. Grid sizes smaller than 0.1 mm would overrun the 

java heap during visualization and take longer than 30 minutes to complete. A 

grid size vs computation time analysis for this laptop computer is shown in 

Figure 9.4. 

The present model (Figure 9.5) approximates the single lap shear 

specimens used for the study in Chapter 3. The virtual specimen has 1 mm 

thick adherends and a 5 mm overlap. The adherend total length is 12 mm. Each 

notch is 0.5 mm wide. The lap is off center by 1 mm because that is how 

specimens were mounted in the specimen holders for the real experiment 

described in Chapter 3. In this 2D model, the x-axis runs along the bondline, 

and the origin is in the center of specimen. However, the origin is not in the 

center of the lap because of the offset. Material parameters for the wood are 
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shown in Table 1. Values were estimated from the Wood Handbook values for 

coastal Douglas-fir. 

The analysis mode is plane strain MPM with GIMP and USAVG. Motion is 

damped to prevent oscillation because the experiment is supposed to be quasi-

static. The right clamp moves at 0.5 m/s until it reaches a maximum 

displacement of 0.05 mm. This motion in the simulation is orders of magnitude 

faster than the real experiment because shortening the simulation shortens 

computation time. Regardless of the unreal loading speed, the model still may 

be effectively quasi-static the material properties of the Douglas-fir. The clamps 

are modeled as rigid materials. The model uses contact material mode between 

the two wood adherends to simulate the imperfect interface. The interface is 

characterized by two interface parameters, normal traction, Dn and tangential 

traction, Dt. These can range from zero, a debonded interface with no tractions, 

to infinity, a perfect interface (J. A. Nairn 2013). The interface in these models 

has a perfect normal traction, but tangential traction varies between models. 

Simulations were conducted with Dt ranging from 10
3

 to 10
18

, then the resulting 

strain fields were analyzed. 

9.2.3 Results and Discussion 

The average shear strain within ± 0.1 mm of the bondline for different 

magnitudes of Dt is shown in Figure 9.6 as a function of position along the x-

axis. The left edge of the chart is the center of the overlap; the right notch is at 

2 mm. The simulations show a different behavior of strain at the interface for 

low and high tangential traction and a transition between the two behaviors 

around 10
11

. Similar plots from the real specimens (Figure 3.6b), mostly have 

strain distributions like those where Dt ≥10
11

. Models where Dt is less than 10
11

 

show the shear strain dipping below zero near the notch before rising again 

towards the center of the overlap. This difference in behavior between low and 

high tangential traction interfaces was unexpected as was the non-differentiable 
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shape of the strain distribution; however, it is not impossible. Because the sign 

of the shear strain flips on opposite sides of the interface and the sample is 

non-symmetric, the negative shear areas may comprise most of the ± 0.1 mm 

region of interest immediately before the notch. Clearly the region of interest 

choice is influential, and perhaps, a larger region of interest may provide a 

better metric.  

Each of the proposed metrics was applied to the data of the modeled 

specimens. The power law shear drop metric, k, is shown in Figure 9.7. This 

metric picks up the transition of the interface traction from low to high, so it is 

possibly useful for separating specimens into low and high traction categories. 

In this case, low traction specimens would have a k of around 10
4

 and high 

traction specimens would have a k of around 10. However, there is ambiguity in 

the transition region since k does not increase or decrease monotonically with 

the traction parameter of the interface. Assuming this metric can be used to 

sort specimens into high and low traction, then all the specimens in Figure 3.7 

would be high traction. 

The stress concentration factor (SCF) and period are shown in Figure 9.8; 

we will define the period as the distance between the minimum strain and peak 

strain used to calculate the SCF. The SCF also does not correlate well with the 

traction because it doesn’t monotonically increase or decrease. The period 

seems to be monotonically increasing with the tangential traction because the 

minimum strain point moves from the notch to the center of the lap as the 

traction increases, but it also has a sharp transition from the low to high 

traction behavior. Like the power law metric, the SCF divides the models into 

two regimes: low and high traction. However, in this case, it is even harder to 

divide the specimens because the SCF ratings are all within the same 

magnitude. 
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 The third proposed metric (Matthew Schwarzkopf and Muszyński 2015) 

requires counting the fraction of points in histograms above a threshold. This 

metric was reformatted as a cumulative density function (CDF). Because 

choosing a threshold is arbitrary, we can look at all possible thresholds by 

looking at the CDF instead. Figure 9.9 shows that this method may be the most 

promising one; if you choose a high enough threshold, the models may be 

ordered by interface traction. Additionally, the behavior of the two CDFs is 

unique between the high and low traction. There are some caveats however: 

because this method uses absolute strains, all the specimens must be 

measured at the same displacement or load and the shape of the CDF depends 

on the size of the region of strains that are included. 

9.2.4 Conclusions 

 Simulations of single lap shear specimens with different tangential 

interface traction parameters were run. The shape of the shear strain 

distribution was unexpected. It consists of two regimes of behavior: low and 

high traction. Low traction characterized by a non-differentiable minimum in 

the shear strain adjacent to the maximum shear strain at the notch. 

Next, three types of metrics were applied to the data to determine 

whether they can predict the interface traction. Although all the metrics can 

show the difference between ‘low’ and ‘high’ traction interfaces, only the CDF 

based metric appeared to be a good predictor of the traction parameter 

because it could be used to plausibly order specimens according to their 

interface traction. 

Further research is needed to determine how to best apply the CDF based 

metric including what area of the specimens should be included in the analysis 

and whether it applies in 2D. One caveat is that these metrics were tested on a 

simulation of equivalent crosshead displacements. They should be tested on 

simulations with the equivalent loads as well. 
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9.2.5 Future Work 

The interface could also be modeled with a crack. In personal 

correspondence with John Nairn in 2017 he said that sometimes his cracks 

model does normal contact better because it uses a different method than was 

used here. 

Single lap shears specimens experience peel stresses (stress 

perpendicular to the bond) in addition to shear stresses at the interface because 

the non-symmetric loading causes a moment. Thus, an logical extension would 

be to make Dn imperfect in tension but perfect in compression (i.e., nonlinear). 

Peel stress might affect bond performance and could be important for these 

metrics. 
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9.2.6 Tables 

Table 9.1 Material properties used for Douglas-fir in this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Douglas-fir 

Properties 

 

Ex [Pa] 1.08E+10 

Ey [Pa] 7.34E+08 

Ez [Pa] 5.40E+08 

Gxy [Pa] 6.91E+08 

Gxz [Pa] 8.42E+08 

Gyz [Pa] 7.56E+07 

yieldxx [Pa] 3.45E+07 

yieldyy [Pa] 1.73E+07 

yieldzz [Pa] 1.73E+07 

nuxy 0.292 

nuxz 0.449 

nuyz 0.39 

rho [kg/m^3] 530 
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9.2.7 Figures 

 

Figure 9.4 The computational cost of running the MPM model in Figure 9.5 on 

four 1.5 GHz cores at different grid sizes. 
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Figure 9.5 The MPM model of the single lap shear specimens. Two adherends 

(blue, green) are connected by an imperfect interface. Two rigid materials 

(yellow, red) pull on the adherends in tension. Position x = 0 matches with 

the position in Figure 9.6. 

 

Figure 9.6 Plot of the shear strain, εxy, along the interface between the 

adherends at different magnitudes of the tangential traction, Dt. Magnitudes 

are powers of 10. 
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Figure 9.7 Components of the power law shear drop fit to the MPM model at 

different magnitudes of tangential traction. 

 

Figure 9.8 Stress concentration factor and the period (distance) between the 

minimum and maximum shear strain in the MPM model as a function of 

interface traction. 
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Figure 9.9 Cumulative distribution of strain between -2 mm and 3 mm along 

the interface for various orders of magnitude of interface traction. 
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