

1

 Machine Learning for Activity Recognition

 Jianqiang Shen

Dearborn102, School of EECS
OSU, Corvallis, OR97331

shenj@cs.orst.edu

Abstract

This paper surveys the activity recognition task
from a machine learning perspective. I give a
definition of this problem, and I classify different
activity recognition problems into two categories.
I show the activities can be hierarchical, and
based on such hierarchies I synthesize a language
to describe activities. I give a general criteria set
to evaluate activity recognition methods. I
summarize some off-the-shelf machine learning
methods for activity recognition and evaluate
them based on this criteria set. Finally, I discuss
some methods that I believe can improve the
activity recognition performance.

1 Introduction
The need for personal cognitive assistants is continuously
increasing. In the United States, the number of people
over the age of 65 will double between now and 2030 to
69.4 million [24]. Historically, 43% of people over the
age of 65 enter a nursing home for at least one year.
Automatic caregivers will help them both physically and
psychologically.
At the same time, as the computer and Internet become
more and more popular, computer crimes have become a
serious problem [21]. To make important systems safer,
log data must be monitored all the time. Because manual
monitoring is tedious, monitors may become distracted
and miss significant events. We therefore need some
automatic monitoring systems.
All these applications involve activity recognition: they
observe a sequence of measurements, try to guess the goal
of the subjects, and respond to it. Activity recognition will
play an important role in our lives.
In Computer Science, perhaps the earliest research related
to activity recognition is plan recognition [50, 39]. The
problem of plan recognition is to induce the plan of action
driving an agent’s behavior, based on partial observation
of its behavior up to the current time [51]. Deriving the
underlying plan can be useful for many purposes –
predicting the agent’s future behavior, and enhancing

intelligent user interfaces.
In medical domains, devices have been used to assist
people with cognitive disabilities (such as learning
disabilities and traumatic brain injury) in accomplishing
Activity of Daily Living (ADL) for close to 20 years. Most
often these devices have most often been referred to as
cognitive orthoses or cognitive prostheses [42]. However,
one drawback of these devices is that they require the
user’s explicit feedback to indicate which step has been
finished, such as pressing a button. Sometimes, it’s
impossible to achieve this requirement.
People didn’t begin to integrate machine learning into
activity recognition until recently. Some commercial
applications have been developed based on machine
learning methods. The Office Assistant in Microsoft Office
[27] is perhaps the most famous one among them. Also,
some important workshops were held: the AAAI-02
Workshop “Automation as Caregiver”, the NIPS-03
Workshop “Machine Learning Meets the User Interface”,
and the ICML-04 Workshop “Physiological Data
Modeling – A Competition”. An important conference is
called International Conference on Ubiquitous Computing.
Ubiquitous computing tries to help people with computer
technology in the physical world. The Sixth UbiComp
(UbiComp2004) was held September 7-10, 2004. This
annual conference provides the premier forum in which to
present research results in all areas relating to the design,
implementation, application, and evaluation of ubiquitous
computing technologies.
For a detailed survey about machine learning in activity
recognition, please refer to [33, 42, 24].
In this paper, I formalize the task of activity recognition
and give a criteria set. I summarize off-the-shelf learning
methods in activity recognition and evaluate their
performance. In the end of this paper, I will discuss some
possible methods that could improve the performance of
activity recognition.

2 Formalizing Activity Recognition
Normally, activity recognition will observe a sequence of
measurements (e.g. physical measurements, user-interface
interactions). It tries to guess the goals of the subjects,
responds to them accurately and promptly. According to

2

its goals, we can classify the problem into two categories:
activity monitoring and activity prediction.
Activity monitoring tries to ensure that a normal activity
sequence is being executed. The goal of activity
monitoring is to issue alarms when abnormal things
happen. A typical example is intrusion detection [3]. The
computer system continuously observes the user’s
commands and analyzes them. If it believes some unusual
pattern happens, it will report an alarm to administrators.
Other examples include cell phone fraud detection [21]
and driving monitoring [51]. Let D = (dt-k ,…, dt-1 , dt) be
an ordered set of observed data, where k is 0 if we ignore
the temporal relationship and only consider current
observation; the goal of learning in activity monitoring is
to give a mapping:

 (dt-k ,…, dt-1 , dt) → St
Where St is a binary variable, indicating whether an
abnormal activity is happening. In probabilistic models, it
should give the probability that an abnormal activity is
happening.
Activity prediction tries to guess the goal of users and
predict which action will be executed next. Most of the
time, it will try to assist users by doing some repetitive
jobs or giving some clues. Such assistance is based on
predictions of users’ future actions. A typical example is a
programming assistant, which tries to understand what
users are doing [53]. If it believes users are going to do
some repetitive things, it will tell users that these
repetitive things can be done automatically. If users
accept such an option, it will successively perform these
actions. Other examples include the Office Assistant [27]
and automatic caregivers [42]. Instead of simply
answering with yes or no in activity monitoring, it should
figure out what will be the most likely sequence of future
actions. Formally, the goal is to give a mapping:

 (dt-k ,…, dt-1 , dt) → (dt+1 , dt+2 ,..., dt+m)
Depending on the application, m will range from 1 (only
predicting the next action) to ∞ (predicting the entire
future situation). Of course, in probabilistic models,
activity prediction should give the probability for
different future action sequence.

2.1 Hierarchy of Activities
A complex activity may consist of several simple
activities. For example [9], the activity washing-hands
consists of turning-on-water, using-soap, rinsing-hands,
turning-off-water, etc. At the same time, turning-on-water
is also an activity, consisting of holding-faucet,
moving-clockwise, leaving-faucet, etc.
Generally, we can consider the activity in three levels:
cognitive level, functional level and executive level.
Activities in the cognitive level reflect the mental status
of the user (e.g., is the user interruptible?) Such activities
may include some functional activities. At the same time,
in order to do a functional activity, the user should
execute some physical activities, which we will call

executive activities. For example, if the activity of the
user is interruptible, maybe he is programming or
sleeping. Also, as a functional activity, programming may
consist of some executive activities, such as typing and
mouse moving. An example is given in Figure 1.

Figure 1: An example of Activity Hierarchy.

Most of the time, the observations of sub-activities are
called events. For the sake of clarity, I will use this
terminology in the following.
Typically, systems will observe the sub-activities and
guess which sup-activity the user is doing. Based on this
guess, systems can figure out the user’s goal or plan, and
thus can predict what sub-activities will possibly be
executed next. For example, if we observe that a person
picks up a phone and begins speaking, we will say he is
answering a phone call. Thus, we will predict he will hang
up the phone next.
It is very important to decide the level of activity based on
which you make inferences. It belongs to the big problem
– feature design. Considering the answering-phone
example, we can conclude that people make inferences
based on high level observations, such as picking up
phone. Actually, picking up phone also consists of
hand-move-down, grasping, hand-move-up, etc. But
people don’t make inference based on such primitive
observation. Instead, they will abstract such observations
into some high level activities, and then make inferences.
Another example is the Lumière project [27]. In this
project, the direct observations are atomic events, such as
mouse and keyboard actions, the status of data structures
in Excel files, etc. Instead of inferring directly based on
these atomic events, Lumière transforms them into higher
level events, such as “menu surfing”, “mouse
meandering”, and “menu jitter”. Lumière built a Bayesian
user model based on these modeled events.
This gives us a hint: it will be very helpful if we can
abstract the activities into some higher level activities. For
example, when we model the problem with a Bayesian
Networks, the variable node will be reduced greatly if we
use the abstracted activities. Also, such variables are more
natural and contain more meaningful information. We can
imagine the inference accuracy will also be much better.
In the training or learning period, we transfer the
observations into higher activities (most of the time, we

3

only need to do some pattern search, which is fast). Based
on this abstracted information, the computation
complexity will be reduced even exponentially.

2.2 A Language to Describe Activities
Because of the benefits previously discussed, there have
been some efforts to describe activities [27, 31, 53, 56]. If
we can define an activity clearly (what sub-activities it
includes, in what order, etc.), we can convert low level
activities into high level activities.
Based on the work of Horvitz [27] and Weiss [56], I
proposed a language to describe activities. With this
language, we can describe high level activities easily.
This language provides the following primitives:

 “?” is a single-match primitive, which matches any
single event value. So A?D matches ACD.

 “*” is an all-match primitive, which matches any
number of events. So A*D matches ABCD.

 “/” is an “OR” primitive, which allows one of the
events to occur. So A/B matches A or B.

 “+” is an addition primitive, which means one or
more such event occurs. So A+ matches A, AA,
AAA, and so on.

 “|” is an unordered primitive, which allows events in
any order. Also, it is commutative, so A|B|C will
match ACB, BAC, CBA, etc.

 “(“ and “)” are constraint primitives, which mean the
content between them should be considered together.
So (AB)/C match AB or C, while AB/C match AB
or AC.

 “:” is a time duration primitive, which means the
events occur in a definite time interval. So, (AB):5
means events A and B occur in 5 minutes.

This language enables flexible definition to be
constructed. For example, “3 or more A events occur, then
C or D event occurs in one hour” can be represented by
AAA+(C/D):60. We can also represent “besides other
events, at least 3 A and 2 B events happen in 10 minutes”
by (A*|A*|A*|B*|B*):10.
We can define the activity manually. This can encode rich
expert knowledge in the learning process. It will
definitely improve the inference accuracy. Another
method is applying the generic algorithm to learn the
activity pattern [56], which will be discussed in the
following section.

2.3 A Criteria Set
Activity recognition consists of observing a sequence of
measurements (e.g., transactions, physical measurements,
user-interface interactions) and recognizing when a
particular activity takes place. There have been many
applications in this domain. To evaluate their result, we
need some criteria. As in other domains, computation
speed and prediction accuracy will be considered. But
there will be some specific requirements.

First, about the speed, we should pay more attention in
inference speeds. As we know, most of these applications
take observations, guess the user’s goal, and predict the
user’s next action. The inference should be on-line and
promptly. Otherwise, the result will be less meaningful,
even meaningless. For example, considering the
automatic caregiver problem, let’s assume ordinary
inferences will take more than 1 minute (because of the
huge number of observations that are possible). Then, this
caregiver may be useless: after it figures out the user is
washing hands, the user may have finished washing and
began another activity.
As we know, Bayesian networks are expressive learning
models. They can naturally model uncertainty. This is the
reason they are popular in activity modeling. But, because
exact inference in Bayesian networks is NP-hard [52],
people have to put a lot of efforts into simplifying the BN
structures in order to speed inferences. It’s also true for
dynamic Bayesian networks. Sometimes, people even
have to give them up. For example, the Office Assistant
gave up using dynamic Bayesian networks to infer users’
activity [27, 26]. Rather, the system employed a small
event queue and considered only the most recent events.
In the meantime, training speeds may not be crucial: most
of these applications are idle during specific times. We
can accumulate the data and do batch training. For
example, at night we will not use the automatic caregiver,
so the system can do some training at night even if it’s
time consuming.
Second, about the accuracy, we should take into account
the goal of activity recognition: its overall goal is to take
automated actions to optimize the user’s expected utility
based on their recognitions. Let’s introduce two
definitions: the expected cost of delayed action (ECDA) is
the difference in the expected utility of taking immediate
ideal action, and delaying the ideal action until some
future time; the expected cost of annoyance (ECA) is the
expected cost when the systems try to help users while the
prediction is wrong [28]. A good activity recognition
system should minimize the sum:

ECDA+ ECA (1)
Let TP= the number of true positive examples, TN= the
number of true negative examples, FP= the number of
false positive examples, FN= the number of false negative
examples, FPR be false positive rate, and FNR be false
negative rate, we will have:

 FPR =

FNR =
In most cases, ECDA corresponds to false negative rate,
and ECA corresponds to false positive rate. Then,
formula(1) will be equal to:

FNR+λ·FPR (2)
where λ is the parameter that controls the costs of FPR
relative to the costs of FNR. Poor “help” could be quite
costly to users, so λ may be greater than 1 in most cases.

TNFP
FP
+

TPFN
FN
+

4

Then, the Receiver Operating Characteristic (ROC) curve
will be a good solution here. The standard ROC curve
plots the false positive rate on the X axis and the 1-false
negative rate on the Y axis [5].
I give a simple example of the ROC curve here: we
sample 100 data points (xi, yi) where xi =i/100, and yi is
the class label which is 1 with probability xi , -1 with
probability 1-xi . We consider a simple threshold classifier

),(θxf here: if θ>x , we classify x as positive,
otherwise negative. We change θ from 0.01 to 1,
increasing by 0.01 each time. Repeating this experiment
for 100 times, we plotted the average error rate and the
ROC curve in Figure 2.

(a)

(b)
Figure 2: (a) is the ROC curve, which plots (1–false
negative rate) against the false positive rate; (b) plots the
overall error rate against thresholdθ.

If the cost of false positive and false negative errors are
the same, we will figure out the optimalθ is 0.5 from the
error rate curve. But, if they are not the same, saying,
cost=FNR+R·FPR, then the error rate curve can’t help us
at all. In this situation, the ROC curve is important: the
best point is the point on the ROC curve tangent to the

line with slope R that has the smallest intercept on the
FNR axis.
Thus, a practical activity recognizer should make
inferences in time, and have a low value of ECDA+ECA
(this can be evaluated as FNR+λ·FPR sometimes). In the
following section, we will evaluate methods based on
these two evaluation functions.

3 Machine Learning Methods for Activity
Recognition

As we mentioned before, there have been many
applications for activity recognition. A lot machine
learning methods have been tried, including decision trees
[32, 53, 7], neural networks [12, 42, 7], genetic
algorithms [56, 8], probabilistic models [27, 26, 25, 28, 3,
45, 47, 51], SVMs [11], etc. In most of the problems, the
observations are uncertain. Because of this, probabilistic
models are the most popular. People have tried naïve
Bayesian models [25], Bayesian networks [27, 51],
dynamic Bayesian networks [3, 28, 45] and other
variations [13, 26, 27].

3.1 Data Preprocessing
Most of the time, the direct observations are not suitable
for learning. They may contain some obvious outliers, the
different attributes may be in different scales, and there
may be too many unimportant attributes. To get a
reasonable learning result, we should deal with noise,
normalize the attributes and design learning features.
Among these procedures, designing learning features is
the most important. Much of the success of machine
learning applications can be traced to careful engineering
of the input features [18]. By designing features, we can
even transform a temporal problem into an ordinary
problem, thus we can simplify the learning task greatly.
Data preprocessing is especially important to tasks related
to physical measurements, such as BodyMedia [7, 8].
Reducing noise and normalizing attributes are trivial
problems. There are mature methods to deal with them,
but we lack automatic methodology for handling feature
design. To make systems effective, the data analyst must
carefully design the set of features. This is a
time-consuming process, and there are relatively few data
analysts who can do it. There are also very few software
tools available to support this activity. Existing
off-the-shelf machine learning systems do not provide any
way to incorporate background knowledge except through
defining the input features [18]. We’ll focus on feature
design here.
To get features more suitable for learning, we should
apply the domain knowledge. Some existing attributes
may make excellent features, but it is typical in machine
learning applications to construct new features by a)
aggregating existing attributes (e.g., over temporal and
spatial scales) to reduce noise and improve statistical
power, or b) transforming attributes (e.g., by Fourier or
wavelet transforms and principal component analysis) to

5

enhance pattern detection [18].
An example is the Lumière project [27]. In this project,
Horvitz et al. built an events system to establish a fluid
link between low-level, atomic events and the
higher-level semantics of user action, which they
employed in user models. These modeled events, such as
“menu surfing”, are more suitable for learning than
atomic events (e.g., mouse clicking, keyboard inputting,
etc).
Another example is BodyMedia [7, 8]. In this problem,
the armband could be worn or removed at the subject’s
discretion, and each wearing of the armband produced a
session of sensor data. This problem is essentially
temporal, since the observation is a sequence of
measurements which are temporally correlated. But most
of the attendees applied some feature design methods to
get an ordinary supervised learning problem. We should
notice the characteristics are the same across a session, so
a naïve method uses the mean sensor values across the
session as the features. A more sophisticated method is
called the histogram approach [7]: the value range of
every sensor in the session is divided into 50 buckets. For
each sensor, they then devise 53 features: minimum of the
sensor value, max value, mean value, and the number of
data points falling into each of the 50 buckets.

3.2 Decision Trees
A decision tree is a hierarchical model implementing the
divide-and-conquer strategy [52]. A decision tree is
composed of internal decision nodes and terminal leaves.
Each decision node n implements a test function fn(x) with
discrete outcomes labeling the branches. Given an input,
each node applies a test and one of the branches is taken
depending on the outcome. This process starts at the root
and is repeated recursively until a leaf node is reached.
A decision tree can be translated into a logical formula for
each class. If you take a single path down the tree, it can
be translated into a conjunction of conditions, and the
conjunctions for paths to leaves of the same class can be
combined disjunctively. Decision trees can represent any
logical formula.
Because decision trees are fast and have good expression
power, they have been tried in activity recognition [32, 53,
7]. We will show how to use decision trees by the work at
Carnegie Mellon University [32].
In Carnegie Mellon, a team has recently performed a
Wizard of OZ study in an attempt to predict whether the
users’ activities are interruptible. In the study, the users’
actions are recorded by a camera. Also, the users are
intermittently asked feedback about the interruptibility.
Researchers coded features by hand. In this way, each
video interval was turned into a coded event, such as
“speaking”, “writing”, “sitting”, “interacting with
keyboard”, etc.
Based on this coded information, they also derived a
number of variant sensors that captured recency and
density effects. Some derived features are:

 Event occurred in the 15 second interval
immediately around the self-report sample (Imm)

 Event occurred in every 15 second interval for 1
minute prior to the sample (All-1)

 Event occurred in at least one interval in the 1
minute prior to sample (Any-1)

 Event occurred in every interval in the five minutes
prior to the sample (All-5)

 Event occurred in at least one interval in the 5
minutes prior to the sample (Any-5)

 The number of intervals in which the event occurred
in the five minutes prior to the sample (Count-5)

Overall, they obtained observation values corresponding
to a set of 128 direct or derived simulated sensors. In this
way, they also change a temporal problem into an
ordinary supervised learning problem.
They tried several learning methods and reported that
decision trees have the best result. They believe it’s
because there is a strong and unambiguous feature
(talking) that provides a very good initial split.
Decision trees are one of the fastest learning methods,
thus, inference speed will be very satisfying. But, their
accuracy will be a problem. First, they are not suitable for
modeling the uncertainty of the problem. For example,
when we are watching a person near a car, we are not sure
he is locking the car or opening the car. Instead, we say:
with a probability 0.6 he is opening the car, and with a
probability 0.4 he is locking the car. If we watch he leaves
the car later, we can be sure he was locking the car at that
time. To model such problems, decision trees have to
store probabilities in leaves. This is unnatural and can’t
reflect the causal relationships between variables.
Another problem comes from decision trees’ inductive
bias, a preference for the most general hypotheses [53].
Assuming we have data (X=a, Y=b, +), (X=a, Y=c, +),
(X=b, Y=d, -), the learned tree will be like:

This tree will treat any point with X=a as a positive
example. This is too general considering the small
number of training examples.
Too general hypotheses will match too many situations
and raise too much positive predictions. For example, “if
users are static, give him a clue” will always try to give
users clues. As we mentioned, poor “help” could be quite
costly to users. Decision trees lack a good mechanism to
control generality and specialty. Thus, the expected cost
of annoyance (ECA) will be very large.
For the above reasons, seldom decision trees are not very
popular in real world applications.

X

+ -

a b

6

3.3 Neural Networks
Neural networks attempt to model the operation of the
brain using mathematics [52]. Each node, or neuron, in
the network does a simple arithmetic operation, and gives
the result to all of its successor nodes. When arranged in
the appropriate network topology, arbitrary functions
from the input to the output can be learned.
The simplest neural network consists of some input nodes
and one output node, with all the input nodes connected
directly to the output nodes. These are known as
perceptrons, and have limited representational power, due
to their simplicity. In a perceptron, the output is usually
some function of the weighted sum of the inputs. That is,
the output node computes over j inputs
and weights. g is the activation unction, e.g. a step or sign
function.
For representing complex relations, it is common to see
networks with one or more hidden layers, which are
neither inputs nor outputs, but intermediaries between
them. It has been shown that with one layer of a large
enough number of hidden units, any continuous function
of the inputs can be represented, and with two hidden
layers, discrete functions can be realized as well. Each
node in a hidden layer can be seen as a perceptron, and
computes the above equation over its own inputs, with its
own weights.
The robust ability to classify new data makes NN very
popular in real domains, especially computer vision. We
will show how to use NN in activity recognition by an
intelligent caregiver for handwashing [42].

Figure 3: Acceptable sequences of steps required to
complete the handwashing. Note wetting hands is
considered optional in the prototype as liquid soap is used

In their prototype, they use color-based tracking software
to follow the user’s hand position through a camera
mounted over the sink as the user performed handwashing
activity. Figure 3 depicts six steps of handwashing and the
various alternative pathways the user could correctly
wash their hands.

A NN is used to learn which steps correspond with the
various inputs from the environment. The inputs are
abstracted from the camera information. The network
classifies these inputs into step identification numbers.
In this way, they change the temporal problem into an
ordinary supervised learning problem. Thus, it produces
an ambiguous result: the position of the user’s hand may
not be uniquely related to a specific step. For example, the
steps of turning the water on and turning it off have the
same spatial coordinates. The only thing that
distinguished these steps from each other is their positions
in the overall plan. The system applies these rules by
using prerequisites for each ambiguous step. For the
example of turning the water off, a rule can be
programmed that basically says “in order for the step
being completed to be interpreted as turning the water off,
the step of turning the water on must have already been
completed”. Using this rule, the system then searches a
vector that keeps track of all of the completed correct
steps by the user and sees if this prerequisite exists. If the
prerequisite has not been completed, the system changes
the initial step identification number to the one that is
causing the ambiguity, in this case, turning the water on.
In most cases, neural networks can guarantee the
inference speed. We can control the complexity of
networks easily, thus tune the inference speed.
The problem is its accuracy. It will have high values of
both the expected cost of delayed action (ECDA) and the
expected cost of annoyance (ECA). First, neural networks
are very sensitive to irrelevant inputs. This means we
should be very careful about the feature design.
Second, neural networks are bad at handling with missing
values, while we can’t guarantee everything is observed
in real domains. This may be the worst part of neural
networks. In the handwashing project, they have to
assume full observability of its washroom environment.
This simplification does not account for inherent
uncertainty in step identification introduced through
factors such as instrumentation noise and obscured views.
This is exactly the reason they are trying to upgrade the
system to a partial observable Markov decision process
(POMDP) based system [9].

3.4 Genetic Algorithms
Genetic algorithms depend on randomness to take decent
solutions and make better ones [52]. This is done by
combining solutions in such a way that the resulting
solution may be better than the initial ones. Once a new
set of solutions are created, the best are taken, and the
process is repeated. This is analogous to Darwinian
evolution, or survival of the fittest. In each generation, the
best solutions survive, and reproduce, to make the new
generation, which is once again tested for survival. After
a pre-set number of generations, the algorithm terminates,
and the best solution is returned.
Genetic algorithms include four key elements: the fitness
function, individual representation, selection strategy and

)(∑ ∗
j jj xwg

Activity started

Use soap Turn on water

Use soapTurn on water

Wet hands

Rinse hands

Turn off water Dry hands

Dry hands Turn off water

Activity finished

7

reproduction strategy.
The fitness function depends on the problem, but in any
case, it is a function that takes an individual as input and
returns a real number as output. In the “classic” genetic
algorithm approach, an individual is represented as a
string over a finite alphabet. The selection strategy is
usually randomized, with the probability of selection
proportional to fitness. That is, if the individual X scores
twice as high as Y on the fitness function, then X is twice
as likely to be selected for reproduction as is Y.
Reproduction is accomplished by cross-over and mutation.
Cross-over means that offspring will get some parts from
one parent, and the rest from another parent. Mutation
means the offspring may get altered value with some
probability. We will show how to use genetic algorithms
in activity recognition by a rare activity predictor [56].
In this project, the data is a time-ordered sequence of
events. Each target event, Xt, occurs at time t. The
problem is to learn a prediction procedure P that correctly
predicts the target events. Thus, P is a function that maps
an event sequence to a Boolean prediction value.
They combined Recall (the percentage of target events
correctly predicted) and Precision (the percentage of
predictions that are correct) as the fitness function.
Essentially, it’s a derivative of ROC analysis.
The trick is how to represent pattern individuals. Here,
they used a language similar to what we described in
Section2.2. A prediction pattern is a sequence of events
connected by ordering primitives that define sequential or
temporal constraints between consecutive events. A
prediction pattern matches a sequence of events within an
event sequence if a) the events within the prediction
pattern match events within the events sequence, b) the
ordering constraints expressed in the prediction pattern
are obeyed, and c) the events involved in the match occur
within the pattern time duration. For example, if the
prediction pattern is “A*C” and the sequence to be
estimated is “ABC”, we will say a target activity is
happening.
They use a steady-state GA, where only a few individuals
are modified in each “iteration”, because such a GA is
believed to be more computationally efficient than a
generational GA when the time to evaluate an individual
is large. With the above fitness function and individual
representation, they applied GA to the problem.
According to their report, GA has a fast converge speed,
and the overall performance is much better than C4.5,
FOIL, etc.
The inference speed is not a problem here: most of the
time, the learned classifier only needs to do some simple
computation. For example, in this project, the learned
classifier compared the learned pattern with the estimated
sequence. This is a string comparative operation, which
has a fast solution.
With a suitable fitness function, we can get a promising
classifier. Both false negative rate and false positive rate
can be controlled. Furthermore, since the GA is stochastic,

we can extract distinct hypotheses along independent runs.
Then, we can combine these hypotheses in a bagging-like
mode, to form a bagged hypothesis, such as [8]:

BH(x) = Median{hi(x), i=1,…,k}
The key problem lies in the prior requirement: in classic
GA, an individual is represented as a string over a finite
alphabet. But most of the time, the number of observed
events are huge, even infinite. For example, it’s difficult
for us to enumerate a person’s actions in an office,
because it’s very likely he will do some unpredictable,
though rational things. He may kneel down and pick up
something, etc. In this case, the state space is too huge, so
GA has difficulty to converge.
Another problem of GA is: it lacks a mechanism to deal
with the uncertain nature of observations

3.5 Bayesian Networks
Bayesian networks (BN), also called belief networks or
probabilistic networks, are graphical models to represent
the interaction between variables visually [52]. A
Bayesian network is composed of nodes and arcs between
the nodes. Each node corresponds to a random variable, X,
and has a value corresponding to the probability of the
random variable, P(X). If there is a directed arc from node
X to node Y, this indicates that X has a direct influence on
Y. This influence is specified by the conditional
probability P(Y |X). The network is a directed acyclic
graph (DAG), i.e., there are no cycles. The nodes and the
arcs between the nodes define the structure of the network,
and the conditional probabilities are the parameters given
the structure.
Bayesian networks have been used in various applications
which initially were static, i.e., the nodes and links do not
change over time. These applications involve determining
the structure of the network; supplying the prior
probabilities for root nodes and conditional probabilities
for other nodes; adding or retracting evidence about nodes;
and repeating the belief updating algorithm for each
change in evidence.
Bayesian networks have become a popular representation
for reasoning under uncertainty. Because of the uncertain
nature of observations in activity recognition, Bayesian
networks are very suitable for this domain. We will show
how to use Bayesian networks in activity recognition by
the Lumière project [27].
The Lumière project centers on harnessing probability
and utility to provide assistance to computer users. They
worked on Bayesian user models that can be employed to
infer a user’s needs by considering a user’s background,
actions, and queries. They tackled several problems: a)
the construction of Bayesian models for reasoning about
the time-varying goals of computer users from their
observed actions and queries, b) gaining access to a
stream of events from software applications, c)
developing a language for transforming system events
into observational variable. A derivative of Lumiè re
project was embedded into Microsoft Office’97 as the

8

Office Assistant.
In this project, they constructed several models for
different problem, including a BN to infer whether a user
needs assistance, a BN to infer what a user’s need is in
Excel. They also tried to catch the temporal relationship
by a dynamic BN in inferring what a user’s need is. To
speed the inference, they tried some strategies to
simplifying the structures of models. Here, I will focus on
the BN to infer whether a user needs assistance.
They constructed a small Bayesian network for this
problem. The structure of this BN is shown in Figure 4. It
represents the dependency between a pause after activity
and the likelihood that a user would welcome assistance.
According to the model, a user being in the state of
welcoming assistance would shift the probability
distribution of observing pauses in activity. The state of
desiring assistance also influences the probability of
detecting a recent search through multiple menus. They
also considered the influence of a user’s expertise and the
difficulty of a task on the likelihood that a user will need
assistance. We also note that a user will pause if he or she
is distracted by events unrelated to the user’s task. The
difficulty of a task also directly influences the likelihood
that a user will become distracted by other events.

Figure 4: A Bayesian user model for inferring the
likelihood that a user needs assistance, considering profile
information as well as observations of recent activity.

They also created a special version of Excel that yielded
information about subsets of mouse and keyboard actions,
as well as information about the status of data structures
in Excel files. The events included access to menus being
visited and dialog boxes being opened and closed. In
addition, they also gained information on the selection of
specific objects, including drawing objects, charts, cells,
row, and columns.
Then, they applied a language similar to what we
discussed in Section2.2. These low-level, atomic events
were transformed to the higher-level semantic events they
employed in the above model. Based on these abstracted
events, they did learning and inference.
Most of the time, the accuracy of Bayesian networks is
promising. Activity modeling problems typically are
dominated by uncertainty. Bayesian networks naturally
model this nature and can encode rich expert knowledge.
Another advantage of this approach is that at run time, the
expert can specify a cost matrix C(ŷ, y) which specifies
the cost of classifying the data as ŷ when the true label of

the data is y. This allows us to say, for example, that a
false negative prediction is 10 times more serious than a
false positive prediction [17]. With this utility information,
the system can choose the classification that minimizes
the expected cost:

∑=
yk

ykCxyPy),()|(minargˆ
Here, the sum over y considers each of the possible
classifications, computes the probability that this
classification is true (according to P(y|x)), and then
weights this by the cost of making decision k when the
true label is y. This can perfectly model our request to
minimize ECDA+ ECA.
The problem is the inference speed of BN. As we have
mentioned, exact inference in Bayesian networks is
NP-hard. To overcome the speed problem, researchers
have to simplify the structures of complex BN. Polytree
structures will be the nice structures, which mean there is
at most one undirected path between any two nodes in the
network. They have a particularly nice property: the time
and space complexity of exact inference in polytrees is
linear in the size of the network.
Another problem is: BN is not good at modeling dynamic
problems. For example, in the Lumière model, if the user
surfs the menu twice, how can we reflect this in the model?
We have to give up the early menu-surfing event. As
we’ll discuss, this problem will be mitigated by dynamic
Bayesian networks.

3.6 Dynamic Bayesian Networks
Dynamic Bayesian networks (DBN) are an extension to
standard Bayesian networks. First-order DBN work by
maintaining two copies of a standard Bayesian Networks:
one representing the beliefs at the current time t, and the
other representing beliefs about the “next time” t+1.
These two copies are referred to as time slices. A time
slice in a DBN does not necessarily represent a fixed
duration of time: rather, a transition between time slices
occurs whenever a new piece of evidence arises. In the
monitoring setting, this corresponds to the occurrence of
an action, or the observation of such via the sensors [52].
To handle the potentially infinite number of parents, DBN
make a Markov assumption – that is, the current state
depends on only a finite history of previous states. The
simplest one is the first-order Markov process, in which
the current state depends only on the previous state and
not on any earlier states. In other words, you need to
make the future independent of past given the state. Using
our notation, the corresponding conditional independence
assertion states that, for all t,

P(Xt|X0:t-1) = P(Xt|Xt-1)
Hence, in a first-order Markov process, the laws
describing how the state evolves over time are contained
entirely within the conditional distribution P(Xt|Xt-1),
which is called the transition model for first-order
processes. The transition model for a second-order
process is the conditional distribution P(Xt|Xt-1, Xt-2).

9

In addition to restricting the parents of the state variables
Xt, we must restrict the parents of the evidence variables
Et. Typically, we will assume that the evidence variable at
time t depends only on the current state:

P(Et|X0:t , E0:t-1) = P(Et|Xt)
The conditional distribution P(Et|Xt) is called the
observation model (or, the sensor model). Notice the
direction of the dependence: the “arrow” goes from state
to observation values because the state of the world
causes the sensors to take on particular values.
DBN include hidden Markov models and Kalman filters
as special cases. Like BN, there are mature training and
inference methods for DBN. We will show how to use
dynamic Bayesian networks in activity recognition by an
activity recognition system in MUD [3].
In this project, the domain is the “Shattered Worlds”
Multi-User Dungeon (MUD), an adventure game which
resembles the real world. It is a text-based virtual reality
game where players compete for limited resources in an
attempt to achieve various goals. The MUD has over 4700
locations, more than 7200 actions, and 20 different quests
(goals). The objective of the project is to determine, as
early as possible, which quest a player is attempting, and
to predict which action a player will perform in the next
move and which location a player will go to next.
To achieve the above object, the system must first learn
which actions and positions (or, sequences of actions and
positions) tend to lead to a particular quest. This
information is obtained from previous instances of
completed quests during a training phase and modeled by
means of a DBN. During the inference phase, the DBN is
used to predict a player’s quest, next action and next
location. To achieve this effect, every time a player
performs an action, the system updates the probability
that the player is trying to achieve each of the quests,
perform each of the actions and move to each of the
locations.
The dynamic BN is shown in Figure 5:

Figure 5: the dynamic Bayesian network for the MUD.

The domain variables are represented as nodes in the
belief networks:
Action (A): This variable represents the possible actions a
player may take in the MUD, which they took to be the

first string of non-blank characters entered by a user, plus
the special other action, which includes all previously
unseen actions. For the results given in that paper, the
state space size, |A|, is 7259.
Location (L): This variable represents the possible
locations of a player, plus the special other location,
which includes all previously unseen locations. For the
results given in that paper, the state space size, |L|, is
4722.
Quest (Q): This variable represents the 22 different quests
a player may undertake, including the other quest, which
includes all previously unseen quests, and the null quest.
The variable representing the previous quest achieved is
set to null if the user has just started a session.
Actually, this network is not a pure dynamic Bayesian
networks: the action and location may change over time,
but it is assumed that a player’s current quest does not
change.
They collected 4981 runs. Among them, 80% are for
training, 20% are for testing. The result show the system
can correctly predict more than 80% quests.
Dynamic Bayesian networks can capture the temporal
natures of activity recognition. The structures can be
much simpler than Bayesian networks. Since they can
naturally reflect the temporal correlation between events,
the accuracy is promising. As Bayesian networks, they
can also easily model our request to minimize ECDA+
ECA.
The problem is still the inference speed. The structure of
the networks can be fairly simple, but the number of
possible values of each node makes its training and
inference a computationally complex task. It is proved
that in almost all cases, the per-update time is exponential
in the number of state variables.
Another problem lies in its representation power: because
of their Markov assumptions, although DBN can model
change in fluent values over time, they are inadequate for
monitoring activities with quantitative temporal
constraints [13]. For example, a DBN can’t model the
belief that lunch normally occurs 3-4 hours after breakfast.
One conceivable way to incorporate such constraints
would be to assign clock times and durations to each time
slice and construct networks with many slices. However,
assigning appropriate times and interval sizes to each time
slice is very difficult. Large intervals result in a too coarse
model, making it impossible to represent constraints that
are smaller than the interval size; on the other hand, small
intervals increase the size of the network and make
inferences intractable.
In the following section, we will introduce some methods,
trying to mitigating these problems.

3.7 Variations of Bayesian Models
A lot of variations were designed based on Bayesian
networks. Generally speaking, there are two trends: one is
trying to make models more complex in order to improve

10

the accuracy. Often, complex models can encode more
expert knowledge. Some more complex models have been
proposed, such as Object Oriented Bayesian Networks,
Probabilistic Relational Model, Quantitative Temporal
Bayesian Networks, Conditional Random Fields,
Averaged Perceptron, Hidden Markov SVMs, Max
Margin Markov Nets, etc. Another trend is trying to
simplify models in order to speed the inference, since
most real applications are on-line and need fast inference.
The ordinary methods are a) remove dependent
relationship, and b) cluster similar variables nodes into
one node. In this way, they may get a simpler structure,
even a polytree sometimes. This approach depends on the
knowledge of experts and lacks of special theories.
There have been too many discussions about OOBN,
PRM and discriminative methods. Instead of this, I’d like
to introduce some efforts about how to encode
quantitative temporal constraints in DBN, and how to
simplify Bayesian models.
Colbry proposed Quantitative Temporal Bayesian
Networks (QTBN), intending to combine the benefit of
both BN and DBN [13]. This model includes two
components: an auxiliary BN and a main DBN.
The BN is used to encode the likelihood of events
occurring during particular intervals. It is automatically
constructed by building a single node for every action in
the plan and an arc between the nodes for every Temporal
Constraint associated with the plan. One additional node,
the TimeReferencePoint, indicates an arbitrary starting
time to ground quantitative temporal references. The time
intervals are sized based on the granularity that the action
requires. The values assigned to each node represent a
belief distribution over time. From these belief
distributions, we can extract information about what has
happened in the past and predict what will happen in the
future. We can also extract information about the current
time slice for use in the DBN component.
At any time, the information in the DBN represents and
reasons about a small interval of time, called the
CurrentTimeInterval. The DBN retrieves information
about the CurrentTimeInterval from the BN and then
operates like a standard DBN. In the DBN, there is a
special node influencing the action, which is called the
Temporal Influence Node (ATIN). ATIN summarizes all of
the quantitative temporal beliefs about action A for the
CurrentTimeInterval.
Figure 6 shows an example of QTBN: how to withdraw
money from ATM. Usually, you will input number about
3 seconds after you slide the card, and you will take the
money about 15 seconds after you input the number.
Node FinishedActions is a persistent variable. It contains
a hash table, recording our cumulative belief that each
action has occurred or is occurring. The Current Action is
influenced by FinishedActions and ActionTIN, and
influences the hand position.
As stated earlier, a TIN can be considered a summary of
all temporal information related to the action it influences

and to the CurrentTimeInterval. A TIN contains a hash
table whose entries are each action. And the values of the
hash table cell are determined by querying the BN. The
result of the query, “What is the probability that action Ai
will occur in the CurrentTimeInterval?” is set to the Ai
cell in the hash table of the TIN. This query is performed
by probing the associated action node in the BN and
extracting the portion of the returned probability
distribution that corresponds to the current time interval.

(a)

(b)
Figure 6: a Quantitative Temporal Bayesian Network. (a)
is the BN component to represent the temporal
dependencies of actions; (b) is the DBN component.

Also, the BN/DBN Interface provides an information
channel between the DBN and BN through the various
action nodes. This interface has two functions: a)
UpdatePredictions, which extracts the summary temporal
data from the BN to be used to influence reasoning in the
DBN. b) RecordHistory, which extracts data from the
DBN for use as historical data in the BN; this will update
the BN’s CPTs to reflect beliefs about what has occurred
since the last time change.
This is an interesting attempt to combine the benefit of
BN and DBN, though they didn’t report accuracies in the
paper. For the detail, please refer to [13].
Meanwhile, there have been some works on represent BN
in compact way, such as decision trees and decision graph
[26, 27].
In an autominder project [26], the task was to infer
whether the desktop user is interruptible according to
windows events, visual & acoustical analyses, and online
calendars. This needs fast inference, so they tried
Bayesian networks instead of dynamic Bayesian networks.
But this is not enough: since the only unobserved and
interested variable is Interruptible, they used a decision
graph representing the compact encoding of the
probability distribution underlying the Interruptible
variable of the Bayesian network. Part of the decision
graph is shown in Figure 7.

Hand position

Action

Finished Actions

Sensed postion

Hand position

Action

Finished Actions

Sensed postion

t t+1

ActionTIN ActionTIN

11

The bar graphs at the leaves of the tree represent
probability distributions over high, medium, and low
costs of interruptability (ordered, top to bottom, from high
to low) for sets of observations represented by the paths
leading to the leaves. The paths to the leaves identify
important combinations of events to decide the
probability distribution over costs of interruptability. The
paths branch on key observations drawn from the user’s
calendar and from the real-time activity event stream,
including patterns of presence, application usage, and
perceptual events.

Figure 7: part of decision graph encoding probability
distribution for the Interruptible variable.

In this way, a Bayesian network is transferred into a
decision tree. Thus, it speeds the inference greatly.
In Lumière project [27], Horvitz et al tried another way to
speed inferences: modeling a temporal problem as a naïve
Bayesian model. The task is: they tried to infer the user’s
goal according to the user’s actions. They approximated
this temporal problem based on direct assessment of
parameters of functions that specify the probabilities of
observations conditioned on goals. Inputs of the function
are the amount of time that has transpired between the
observation and the present moment. The intuition behind
the approach is that observations seen at increasingly
earlier times in the past have decreasing relevance to the
current goals of the user.

Figure 8: Formulation of the temporal reasoning problem
as naïve Bayesian model. They directly assess conditional
probabilities of actions as a function of the time that has
passed since actions occurred.

Ei,t is the observation of variable i at time t. They made
the assumption that the rates of likelihood are independent
of one another, conditioned on goals.
This is essentially a naïve Bayesian model, which can
guarantee the inference speed.

4 Possible Improvement for Activity
Recognition

In real applications, people prefer to the off-the-shelf
learning methods, because a) most applications should be
developed in definite time, off-the-shelf methods can
guarantee the application is completed in time; b) the
performance of a novel method is usually unpredictable,
the developer tend to make their products more stable.
Thus, they seldom try new ideas, unless there is a very
urgent need for accuracy.
In this section, I’d like to explore some feasible ideas.
There are two goals here: one is to make the development
process easier, the other is to make the prediction more
accurate.

4.1 Applying Expert Knowledge
State-of-the-art methods for constructing knowledge
based systems can capture the domain knowledge, but
they can’t learn from training data. Furthermore,
knowledge engineering is labor intensive and not well
suited for some of the kinds of knowledge needed for
effective performance. State-of-the-art methods for
machine learning can learn from training data, but they
provide no way to exploit domain knowledge.
Furthermore, they generally require very large amounts of
training data in order to achieve high performance levels
[18]. If we can combine more expert knowledge into
learning system, it may reduce the needed number of
training data.
Currently, the main way to make use of expert knowledge
is for the data analyst to study the domain knowledge and
design a special-purpose learning system that incorporates
this knowledge [18]. In probabilistic model problem, this
is mainly done by deciding the structures of probabilistic
models (especially BN). Though we can learn the
structures of probabilistic models from the training data,
the result is generally worse than those with handcraft
structures. I’ll discuss some methods to learn the
structures of probabilistic models from knowledge,
instead of data. In this way, we mimic the process that
experts construct the structures of probabilistic models by
hand.
Huber proposed a method to construct Bayesian networks
from descriptions of plans [31]. These descriptions are
organized into Knowledge Areas, or KAs. KAs specify
how plans are selected given the current goal (its purpose)
and situation (its context). KAs also specify a procedure,
called the KA body, which it follows while attempting to
accomplish its intended goal. Experts use KA to describe
how plans are executed. Then based on these descriptions,
Bayesian networks are constructed automatically.
Basically, the construction process can be summarized as
the following:

 Create a variable representing the goal to be
achieved by the KA.

Ei, t-n Ei, t0

P(Ei, t-1|Goalto) P(Ei, t0|Goalto)

Ei, t-1

P(Ei, t-n|Goalto)

Goalto

. . . .

12

 Create a new variable for each action in the KA.
Each of these new variables depends on the goal
variable.

 To model the temporal relationship, create an arc
between sequential-happening actions

 Add observation variables, associate them with the
corresponding actions.

 Add the context variables, which depends on the
goal variable

 Using an “inhibitory link” mechanism to process
multiple goals, multiple plans

A simple example is given in Figure 9:

Figure 9: (a) is a simple KA; (b) is the corresponding
Bayesian network.

This KA says that in order to achieve the goal of
accomplishing a “bound” goal, the operations of moving
to the next location (the via point) and finding a place of
concealment must be accomplished. Knowing this, if an
observer were to see an agent moving toward a grove of
trees, the observer might predict that the observed agent
was about to enter the grove. As we can see, the
constructed Bayesian network is quite reasonable: it
reflects our thought.
Intel Research developed a toolkit called Probabilistic
Activity Toolkit (PROACT) [47]. In this project, they tried
to infer the user’s activity from the objects involved in the
activity. Two interesting tings were explored: a) convert
natural-language-like knowledge into probabilistic models,
and b) mine probabilities from Internet. In this approach,
they didn’t need any training data at all.
PROACT’s activity model is restricted to linear
sequences of sub-activities which are annotated object
information. Figure 10 gives an example of how to model
the activity “making tea.” The activity consists of three

consecutive sub-activities, drawn as circles, including a)
boiling water, b) steeping, and c) flavoring the tea.
The dotted arrow denotes the probability that an object is
involved in an activity. In Figure 10, for instance, we
expect to see a kettle 70% of the time that we are boiling
water, whereas sugar is involved in the mixing phase 40%
of the time.

Figure 10: PROACT Model for Making Tea.

To model activities more easily, PROACT allows
activities to be specified as text documents that are
structurally very similar to recipes. Figure 11 provides an
example. Each document has a title, an optional list of
objects involved, and a step-by-step description of how to
perform the activity. The mining engine then converts the
document into an activity model by interpreting the steps
as sub-activities and the objects mentioned in each step as
the set of objects involved. They identified the objects
mentioned in each step (highlighted in bold in the figure)
using natural language processing technology.

PROACT determines the object involvement probabilities
p in a novel manner. The method relies on a “Mirror
Assumption”: if the name of an activity an co-occurs with
the name of an object on in human discourse, then activity
an is likely to involve object on in the physical world.
They postulated on this basis that if an occurs on n1 pages
on the web (which they treated as a compendium of
human discourse), and there are n2 pages containing both
an and on, then Pr(on| an) ≈ n2/ n1. They obtain these
numbers via the Google programming API.
They tested the toolkit in Activity of Daily Living. The
overall precision rate is 88% and recall rate is 73%, which
is promising.

4.2 Applying Hierarchical Information of Events
As we’ve mentioned, events (the observations of
sub-activities) can be fitted into a hierarchy. Applying this
hierarchical information may improve the performance of
activity recognition in three ways: a) reduce the needed

Making Tea:

1. Fill a kettle from the faucet. Place kettle on the stove and
boil.

2. Pour hot water into a cup, filling ¾ of the cup. Immerse
teabag in cup for two minutes and dispose of teabag.

3. Add milk and sugar to taste.

Figure 11: Steps for Making Tea.

Move_to_next
via_point

Enemy-in
vicinity

Find_cover

Perform_bound

1

3

2

Move_to_next
via_point_evidence

Find_cover
evidence

(a)

(b)

Move to next via point

Find cover

Name: perform bound
Purpose: bound is performed
Context: enemy is in vicinity

13

number of training data, b) reduce the inference time, and
c) improve the inference accuracy.
Many important military and civilian problems have the
property that there is relatively little data available. For
example, considering the development of cognitive
assistants for human-computer systems, normally it will
require the human user to provide many hours of labeled
training data to the learning system [18]. If we can reduce
the required data, we can make such application more
pratical.
In all forms of learning, the primary way to reduce the
need for training data is to incorporate some kind of prior
knowledge [16], such as the hierarchical information.
Several kinds of methods have been explored. The naïve
method is to abstract atomic events to some high-level
events, and then make learning and inference based on
these high-level events. We can use the activity language
mentioned in Section2.2 to do this job. Actually, this is
what the Lumière project did. In the Lumière project [27],
the hierarchy also did some disambiguation things:
obviously it is useful to include an efficient means for
abstracting sets of low-events into event classed specified
as disjunctions of events (e.g., they specified that a user
saving a file via a toolbar icon or keyboard action is to be
generalized to file saved). A carefully designed hierarchy
can do this job.
Another method is called shrinkage [40]. The essential
idea is to “borrow” information from its neighbors.
Shrinkage smoothes parameter estimates of a data-sparse
child with its parent in order to obtain more robust
parameter estimates. It is a statistical technique to reduce
the variance of an estimate by averaging it with estimates
for larger populations that include the target one.
We can think shrinkage as a mixture model:

where A(x) represents the set of x’s ancestors. Also

Shrinkage is especially efficient when hierarchy is large
or training data for each class is sparse. It has been proven
that shrinkage improves parameter estimation and reduces
classification error greatly. McCallum also showed that a
class hierarchy can be used to exponentially reduce the
amount of computation required to classify documents
without sacrificing significant classification accuracy
[40].
Anderson applied shrinkage to adapt web navigation [1],
which is a very similar task to activity recognition. The
main goal here is to predict which webpage the user wants
to browse next.
Some webpages are very similar, and will link to other
similar webpages. So they applied shrinkage here, namely
Relation Markov Model (RMM).
RMM groups pages of the same type into relations, with
each relation described by its own set of variables. For
example, in Figure 12, one relation might be “product

description page”, with a variable “product” representing
the product the page describes, and “stock_level”
representing whether the product is in stock. Additionally,
these variables themselves are grouped together, forming
a hierarchy of values.
Provided with a hierarchy, RMM does learning and
inference using shrinkage method. RMM can make useful
prediction possible in very large state spaces, where many
(or most) of the states are never observed in the training
data.

Figure 12: State abstraction for the relational Markov
model. The abstractions are depicted as square boxes,
labeled with their relations and arguments, and
surrounding their ground states.

4.3 Applying State-of-the-art Learning Models
Some more complex and more accurate models have been
proposed for sequential problems, such as Conditional
Random Fields [38], Averaged Perceptrons [14], Hidden
Markov SVMs [6], Max Margin Markov Nets [54], etc.
These models should be able to improve the accuracy of
activity recognition, since activity recognition has a
temporal nature.
These models have been tried in several domains, such as
Optical Character Recognition, Name Entity Recognition,
Protein Secondary Structure Prediction, etc. In most of
these applications, the training set is small
(thousand-magnitude), and the computation time is not
critical.
Until now, none of these models have been tried in
activity recognition. Actually, these models have all the
preferred characteristics according to our criteria set: the
accuracies are promising, and the inference speeds are
fast. This time, the problem will be training speed because
the training processes of all these models are
time-consuming. Compared with them, even the training
of HMM becomes very “efficient”!
As we can imagine, most of the activity recognition
applications should update their inference engine
frequently. There are two reasons: a) the users of these
applications may change, e.g., the may sell their cognitive
assistants to other people; b) the users’ habits may change
from time to time. Thus we need retrain the inference
engine after we accumulate the data for some time. This
can be done by incremental learning or total renewal of
the engine. The accumulated data will be huge. Thus, if
the training time is too long, saying more than 12 hours, it
will affect our use of the applications.
We can try these state-of-the-art models in some general
situations, which don’t need retraining according to

)()(
)(

αλ
α

α∑
∈

=
xA

PxP

0 & 1 ≥=∑ αα λλ

14

different users and different periods. When faster training
methods and faster computers are developed, we can
apply these models in more specific problems.

5 Summary and Conclusions
In this paper, I made a survey of existing methods for
activity recognition. Activity recognition observes a
sequence of measurements, tries to guess the status of the
subjects, and responds to it accurately and timely.
Depending on its goal, it can be classified into activity
monitoring or activity prediction.
I showed we can describe activities with a hierarchy. Such
a hierarchy can help me in many aspects. For example, we
can use these hierarchies to do feature designs by
abstracting atomic events into high-level events. To
facilitate feature designs, I synthesized a language to
describe activities. This language can also be used to do
Genetic Algorithms.
To evaluate different activity recognition methods, I used
two criteria. One is the inference time, since most activity
recognition is on-line. Another is the sum of the expected
cost of delayed action and the expected cost of annoyance.
An optimal recognition method should minimize these
two values.
I discussed the special methods of data preprocessing in
activity recognition. Then, I summarized 5 off-the-shelf
learning methods in activity recognition: decisions trees,
neural networks, generic algorithms, Bayesian networks
and dynamic Bayesian networks. Among them,
probabilistic models are the most popular, so I discussed
some variations of probabilistic models furthermore.
Finally, I discussed some methods that possibly improve
the performance of activity recognition. There are two
goals: one is to make the development process easier, and
the other is to make the prediction more accurate. I
investigated how to construct probabilistic models
automatically from expert knowledge, and how to apply
hierarchical information in learning. I also discussed the
possibility that we apply state-of-the-art learning models
in activity recognition.

References
[1] C.R. Anderson, P. Domingos, D.S. Weld. Relational

Markov Models and their application to adaptive
web navigation. In SIGKDD02, 2002.

[2] C. R. Anderson and E. Horvitz. Web Montage: A
Dynamic Personalized Start Page. The 11th
International World Wide Web Conference,
Honolulu, Hawaii, May 2002

[3] D. Albrecht, I. Zukerman, et al. Towards a Bayesian
model for keyhole plan recognition in large domains.
In Proc. Of the 6th International Conference on
User-Modeling, 1997.

[4] J. Allan, R. Papka and V. Lavrenko. Online new
event detection and tracking. In Proc of 21st
ACM-SIGIR, 1998.

[5] E. Alpaydin. Introduction to Machine Learning. To
be published by MIT Press, 2004.

[6] Y. Altun, I. Tsochantaridis and T. Hofmann. Hidden
Markov Support Vector Machines. In Proc. of
ICML2003, 2003.

[7] S. Andrews, L. Cai, et al. Astrology: the study of
Astro Teller. ICML04 Workshop “Physiological
Data Modeling - A Competition”, 2004.

[8] J. Azé, N. Lucas and M. Sebag. PDMC: a genetic
ROC-based classifier. ICML04 Workshop
“Physiological Data Modeling - A Competition”,
2004.

[9] J. Boger, G. Fernie, P. Poupart and A. Mihailidis.
Using a POMDP controller to guide persons with
dementia through Activities of Daily Living. In Proc
of UbiComp03, Seattle, WA, 2003.

[10] E. Camp and M.Chan. Detecting Abnormal
Behavior by Real-tiem Monitoring of Patients. AAAI
workshop on “Automation as Caregiver”, 2002.

[11] C. Campbell and K. Bennett. A linear programming
approach to novelty detection. In Proc. of NIPS2001,
2001.

[12] M. Chan, C. Hariton, P. Ringeard and E. Campo.
Smart house automation system for the elderly and
the disable. In IEEE international Conference on
Systems, Man and Cybernetics, pages 1586-1589,
1995.

[13] D. Colbry, B. Peintner and M. Pollack. Execution
monitoring with Quantitative Temporal Bayesian
Networks. In 6th International Conference on AI
Planning and Scheduling, April 2002.

[14] M. Collins. Discriminative training methods for
Hidden Markov Models: theory and experiments
with perceptron algorithms. In Proc. of EMNLP02,
2002

[15] N. Cristianini and J. Shawe-Taylor. Support vector
machines and other kernel-based learning methods.
Cambridge Press, 2000.

[16] T.G. Dietterich, D. Busquets, R.L. Mantaras, C.
Sierra. Action Refinement in Reinforcement
Learning by Probability Smoothing. In Proc of
ICML2002, 2002.

[17] T.G. Dietterich. Learning and Reasoning. Technical
report, School of Electrical Engineering and
Computer Science, Oregon State University, 2003.

[18] T.G. Dietterich. Proposal for KI-LEARN project.
School of Electrical Engineering and Computer
Science, Oregon State University, 2003.

[19] T.G. Dietterich, A. Ashenfelter and Y. Bulatov.
Training conditional random fields via gradient tree
boosting. In Proc. of ICML2004, 2004.

[20] J. Eisenstein and A. Puerta. Adaptation in automated
User-Interface design. In IUI2002, 2002.

[21] T. Fawcett and F. Provost. Activity monitoring:

15

notice interesting changes in behavior. In KDD99,
1999.

[22] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In
Relational Data Mining. Springer-Verlag, 2001.

[23] A. Guralnik and K. Haigh. Learning models of
human behaviour with sequential patterns. AAAI
workshop on “Automation as Caregiver”, 2002.

[24] K. Haigh and H.A. Yanco. Automation as caregiver:
a survey of issues and technologies. AAAI workshop
on “Automation as Caregiver”, 2002.

[25] D. Heckerman and E. Horvitz. Inferring
informational goals from free-text queries: a
Bayesian approach. In Proc UAI98, Morgan
Kaufmann, 1998

[26] E. Horvitz and J. Apacible. Learning and reasoning
about interruption. In Proc. of ICMI03, 2003.

[27] E. Horvitz, J. Breese, D. Heckerman, D. Hovel and
K. Rommelse. The Lumière Project: Bayesian user
modeling for inferring the goals and needs of
software users. In Proc. UAI98, 1998

[28] E. Horvitz, A. Jacobs, D Hovel. Attention-Sensitive
Alerting. In Proc. UAI99, 1999.

[29] E. Horvitz, C.M. Kadie, T. Paek, D. Hovel. Models
of Attention in Computing and Communications:
From Principles to Applications. Communications of
the ACM 46(3):52-59, March 2003.

[30] E. Horvitz, P. Koch, et al. Coordinate: Probabilistic
Forecasting of Presence and Availability. In Proc. of
UAI02, 2002.

[31] M.J. Huber, E.H. Durfee and M.P. Wellman. The
automated mapping of plans for plan recognition. In
Proc. of UAI94, 1994.

[32] S.E. Hudson, J. Fogarty, et al. Predicting human
interruptibility with sensors: a Wizard of Oz
feasibility study. In Proc. of CHI2003, 2003.

[33] A. Jameson. Numerical uncertainty management in
user and student modeling: an overview of systems
and issues. User Modeling and User-Adapted
interaction, 5:193-251, 1996.

[34] L.P. Kaelbling, M.L. Littman and A.R. Cassandra.
Planning and action in partially observable
stochastic domains. AI Magazine, 101:99-134, 1998.

[35] H. Kautz, O. Etzioni, D. Fox and D. Weld.
Foundations of Assisted Cognition Systems. UW
CSE Technical Report, March 2003

[36] E. Keogh, S. Lonardi and B. Chiu. Finding
surprising patterns in a time series database in line
time and space. In SIGKDD02, 2002.

[37] K. Koile, K. Tollmar, et al. Activity Zones for
Context-Aware Computing. In UbiComp2003, 2003.

[38] J. Laferty, A. McCallum and F. Pereira. Conditional
random fields: probabilistic models for segmenting
and labeling sequence data. In Proc. of ICML2001,
2001.

[39] N. Lesh and O. Etzioni. A sound and fast goal
recognizer. In Proc. of IJCAI95, 1704-1710, 1995.

[40] A. McCallum, R. Rosenfeld, T. Mitchell and A.Y.
Ng. Improving text classification by shrinkage in a
hierarchy of classes. In Proc. of ICML98, 1998.

[41] A. Mihailidis and G.R. Fernie. Context-aware
assistive devices for older adults with dementia.
Gerontechnology, 2(2):173-189, 2002.

[42] A. Mihailidis, G.R. Fernie and J.C. Barbenel. The
use of artificial intelligence in the design of an
intelligent cognitive orthosis for people with
dementia. Assistive Technology, 13: 23-39, 2001.

[43] T.M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[44] N. Oliver and E. Horvitz. Selective Perception
Policies for Guiding Sensing and Computation in
Multimodal Systems: A Comparative Analysis.
Proceedings of the 5th International Conference on
Multimodal Interfaces, 2003.

[45] D.J. Patterson, L. Liao, D. Fox and H. Kautz.
Inferring high-level behavior form low-level sensors.
In Proc of UbiComp03, Seattle, WA, 2003.

[46] J. Petzold, F. Bagci, W. Trumler, and T. Ungerer.
Global and Local State Context Prediction. Artificial
Intelligence in Mobile System 2003, in conjunction
with Ubicomp2003, 2003.

[47] M. Philipos, K.P. Fishkin, et al. The probabilistic
activity toolkit: towards enabling activity-aware
computer interfaces. Intel Research Seattle
Technical Memo IRS-TR-03-013, December 2003.

[48] W.Pohl. Learning about the user – user modeling
and machine learning. ICML96 Workshop “Machine
Learning meets Human-computer Interaction”,
1996.

[49] M.E. Pollack, C.E. McCarthy, et al. Autominder: a
planning, monitoring and reminding assistive agent.
In 7th International Conference on Intelligent
autonomous Systems, 2002.

[50] M. Pollack. Plans as Complex Mental Attitudes.
MIT Press, 1990.

[51] D.V. Pynadath and M.P. Wellmann. Accounting for
context in plan recognition, with application to
traffic monitoring. In Proc. of UAI95, 1995.

[52] S. Russell and P. Norvig. Artificial intelligence: a
modern approach (2nd version). Prentice Hall, 2002.

[53] J. Ruvini and C. Dony. Learning users habits: the
APE project. AAAI workshop on “Automation as
Caregiver”, 2002.

[54] B. Taskar, C. Guestrin and D. Koller. Max-margin
Markov networks. In Proc. of NIPS2003, 2003.

[55] Ubiquitous Computing. http://www.ubiq.com/
hypertext / weiser/UbiHome.html

[56] G. Weiss and H. Hirsh. Learning to predict rare
events in event sequences. In KDD98, 1998.

