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Abstract 
 
This paper surveys the activity recognition task 
from a machine learning perspective. I give a 
definition of this problem, and I classify different 
activity recognition problems into two categories. 
I show the activities can be hierarchical, and 
based on such hierarchies I synthesize a language 
to describe activities. I give a general criteria set 
to evaluate activity recognition methods. I 
summarize some off-the-shelf machine learning 
methods for activity recognition and evaluate 
them based on this criteria set. Finally, I discuss 
some methods that I believe can improve the 
activity recognition performance.  

1 Introduction 
The need for personal cognitive assistants is continuously 
increasing. In the United States, the number of people 
over the age of 65 will double between now and 2030 to 
69.4 million [24]. Historically, 43% of people over the 
age of 65 enter a nursing home for at least one year. 
Automatic caregivers will help them both physically and 
psychologically. 
At the same time, as the computer and Internet become 
more and more popular, computer crimes have become a 
serious problem [21]. To make important systems safer, 
log data must be monitored all the time. Because manual 
monitoring is tedious, monitors may become distracted 
and miss significant events. We therefore need some 
automatic monitoring systems. 
All these applications involve activity recognition: they 
observe a sequence of measurements, try to guess the goal 
of the subjects, and respond to it. Activity recognition will 
play an important role in our lives. 
In Computer Science, perhaps the earliest research related 
to activity recognition is plan recognition [50, 39]. The 
problem of plan recognition is to induce the plan of action 
driving an agent’s behavior, based on partial observation 
of its behavior up to the current time [51]. Deriving the 
underlying plan can be useful for many purposes – 
predicting the agent’s future behavior, and enhancing 

intelligent user interfaces.  
In medical domains, devices have been used to assist 
people with cognitive disabilities (such as learning 
disabilities and traumatic brain injury) in accomplishing 
Activity of Daily Living (ADL) for close to 20 years. Most 
often these devices have most often been referred to as 
cognitive orthoses or cognitive prostheses [42]. However, 
one drawback of these devices is that they require the 
user’s explicit feedback to indicate which step has been 
finished, such as pressing a button. Sometimes, it’s 
impossible to achieve this requirement. 
People didn’t begin to integrate machine learning into 
activity recognition until recently. Some commercial 
applications have been developed based on machine 
learning methods. The Office Assistant in Microsoft Office 
[27] is perhaps the most famous one among them. Also, 
some important workshops were held: the AAAI-02 
Workshop “Automation as Caregiver”, the NIPS-03 
Workshop “Machine Learning Meets the User Interface”, 
and the ICML-04 Workshop “Physiological Data 
Modeling – A Competition”. An important conference is 
called International Conference on Ubiquitous Computing. 
Ubiquitous computing tries to help people with computer 
technology in the physical world. The Sixth UbiComp 
(UbiComp2004) was held September 7-10, 2004. This 
annual conference provides the premier forum in which to 
present research results in all areas relating to the design, 
implementation, application, and evaluation of ubiquitous 
computing technologies.  
For a detailed survey about machine learning in activity 
recognition, please refer to [33, 42, 24].  
In this paper, I formalize the task of activity recognition 
and give a criteria set. I summarize off-the-shelf learning 
methods in activity recognition and evaluate their 
performance. In the end of this paper, I will discuss some 
possible methods that could improve the performance of 
activity recognition. 

2 Formalizing Activity Recognition  
Normally, activity recognition will observe a sequence of 
measurements (e.g. physical measurements, user-interface 
interactions). It tries to guess the goals of the subjects, 
responds to them accurately and promptly. According to 
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its goals, we can classify the problem into two categories: 
activity monitoring and activity prediction. 
Activity monitoring tries to ensure that a normal activity 
sequence is being executed. The goal of activity 
monitoring is to issue alarms when abnormal things 
happen. A typical example is intrusion detection [3]. The 
computer system continuously observes the user’s 
commands and analyzes them. If it believes some unusual 
pattern happens, it will report an alarm to administrators. 
Other examples include cell phone fraud detection [21] 
and driving monitoring [51]. Let D = (dt-k ,…, dt-1 , dt) be 
an ordered set of observed data, where k is 0 if we ignore 
the temporal relationship and only consider current 
observation; the goal of learning in activity monitoring is 
to give a mapping: 

 (dt-k ,…, dt-1 , dt) → St 
Where St is a binary variable, indicating whether an 
abnormal activity is happening. In probabilistic models, it 
should give the probability that an abnormal activity is 
happening.  
Activity prediction tries to guess the goal of users and 
predict which action will be executed next. Most of the 
time, it will try to assist users by doing some repetitive 
jobs or giving some clues. Such assistance is based on 
predictions of users’ future actions. A typical example is a 
programming assistant, which tries to understand what 
users are doing [53]. If it believes users are going to do 
some repetitive things, it will tell users that these 
repetitive things can be done automatically. If users 
accept such an option, it will successively perform these 
actions. Other examples include the Office Assistant [27] 
and automatic caregivers [42]. Instead of simply 
answering with yes or no in activity monitoring, it should 
figure out what will be the most likely sequence of future 
actions. Formally, the goal is to give a mapping: 

 (dt-k ,…, dt-1 , dt) → (dt+1 , dt+2 ,..., dt+m) 
Depending on the application, m will range from 1 (only 
predicting the next action) to ∞ (predicting the entire 
future situation). Of course, in probabilistic models, 
activity prediction should give the probability for 
different future action sequence.  

2.1 Hierarchy of Activities 
A complex activity may consist of several simple 
activities. For example [9], the activity washing-hands 
consists of turning-on-water, using-soap, rinsing-hands, 
turning-off-water, etc. At the same time, turning-on-water 
is also an activity, consisting of holding-faucet, 
moving-clockwise, leaving-faucet, etc.  
Generally, we can consider the activity in three levels: 
cognitive level, functional level and executive level. 
Activities in the cognitive level reflect the mental status 
of the user (e.g., is the user interruptible?) Such activities 
may include some functional activities. At the same time, 
in order to do a functional activity, the user should 
execute some physical activities, which we will call 

executive activities. For example, if the activity of the 
user is interruptible, maybe he is programming or 
sleeping. Also, as a functional activity, programming may 
consist of some executive activities, such as typing and 
mouse moving. An example is given in Figure 1.        
 
 
 
 
 
 
 
 
Figure 1: An example of Activity Hierarchy. 
 
Most of the time, the observations of sub-activities are 
called events. For the sake of clarity, I will use this 
terminology in the following. 
Typically, systems will observe the sub-activities and 
guess which sup-activity the user is doing. Based on this 
guess, systems can figure out the user’s goal or plan, and 
thus can predict what sub-activities will possibly be 
executed next. For example, if we observe that a person 
picks up a phone and begins speaking, we will say he is 
answering a phone call. Thus, we will predict he will hang 
up the phone next. 
It is very important to decide the level of activity based on 
which you make inferences. It belongs to the big problem 
– feature design. Considering the answering-phone 
example, we can conclude that people make inferences 
based on high level observations, such as picking up 
phone. Actually, picking up phone also consists of 
hand-move-down, grasping, hand-move-up, etc. But 
people don’t make inference based on such primitive 
observation. Instead, they will abstract such observations 
into some high level activities, and then make inferences.  
Another example is the Lumière project [27]. In this 
project, the direct observations are atomic events, such as 
mouse and keyboard actions, the status of data structures 
in Excel files, etc. Instead of inferring directly based on 
these atomic events, Lumière transforms them into higher 
level events, such as “menu surfing”, “mouse 
meandering”, and “menu jitter”. Lumière built a Bayesian 
user model based on these modeled events. 
This gives us a hint: it will be very helpful if we can 
abstract the activities into some higher level activities. For 
example, when we model the problem with a Bayesian 
Networks, the variable node will be reduced greatly if we 
use the abstracted activities. Also, such variables are more 
natural and contain more meaningful information. We can 
imagine the inference accuracy will also be much better. 
In the training or learning period, we transfer the 
observations into higher activities (most of the time, we 
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only need to do some pattern search, which is fast). Based 
on this abstracted information, the computation 
complexity will be reduced even exponentially.  

2.2 A Language to Describe Activities 
Because of the benefits previously discussed, there have 
been some efforts to describe activities [27, 31, 53, 56]. If 
we can define an activity clearly (what sub-activities it 
includes, in what order, etc.), we can convert low level 
activities into high level activities.  
Based on the work of Horvitz [27] and Weiss [56], I 
proposed a language to describe activities. With this 
language, we can describe high level activities easily. 
This language provides the following primitives: 

 “?” is a single-match primitive, which matches any 
single event value. So A?D matches ACD. 

 “*” is an all-match primitive, which matches any 
number of events. So A*D matches ABCD. 

 “/” is an “OR” primitive, which allows one of the 
events to occur. So A/B matches A or B. 

 “+” is an addition primitive, which means one or 
more such event occurs. So A+ matches A, AA, 
AAA, and so on. 

 “|” is an unordered primitive, which allows events in 
any order. Also, it is commutative, so A|B|C will 
match ACB, BAC, CBA, etc. 

 “(“ and “)” are constraint primitives, which mean the 
content between them should be considered together. 
So (AB)/C match AB or C, while AB/C match AB 
or AC. 

 “:” is a time duration primitive, which means the 
events occur in a definite time interval. So, (AB):5 
means events A and B occur in 5 minutes.  

This language enables flexible definition to be 
constructed. For example, “3 or more A events occur, then 
C or D event occurs in one hour” can be represented by 
AAA+(C/D):60. We can also represent “besides other 
events, at least 3 A and 2 B events happen in 10 minutes” 
by (A*|A*|A*|B*|B*):10.  
We can define the activity manually. This can encode rich 
expert knowledge in the learning process. It will 
definitely improve the inference accuracy. Another 
method is applying the generic algorithm to learn the 
activity pattern [56], which will be discussed in the 
following section. 

2.3 A Criteria Set 
Activity recognition consists of observing a sequence of 
measurements (e.g., transactions, physical measurements, 
user-interface interactions) and recognizing when a 
particular activity takes place. There have been many 
applications in this domain. To evaluate their result, we 
need some criteria. As in other domains, computation 
speed and prediction accuracy will be considered. But 
there will be some specific requirements. 

First, about the speed, we should pay more attention in 
inference speeds. As we know, most of these applications 
take observations, guess the user’s goal, and predict the 
user’s next action. The inference should be on-line and 
promptly. Otherwise, the result will be less meaningful, 
even meaningless. For example, considering the 
automatic caregiver problem, let’s assume ordinary 
inferences will take more than 1 minute (because of the 
huge number of observations that are possible). Then, this 
caregiver may be useless: after it figures out the user is 
washing hands, the user may have finished washing and 
began another activity.  
As we know, Bayesian networks are expressive learning 
models. They can naturally model uncertainty. This is the 
reason they are popular in activity modeling. But, because 
exact inference in Bayesian networks is NP-hard [52], 
people have to put a lot of efforts into simplifying the BN 
structures in order to speed inferences. It’s also true for 
dynamic Bayesian networks. Sometimes, people even 
have to give them up. For example, the Office Assistant 
gave up using dynamic Bayesian networks to infer users’ 
activity [27, 26]. Rather, the system employed a small 
event queue and considered only the most recent events.  
In the meantime, training speeds may not be crucial: most 
of these applications are idle during specific times. We 
can accumulate the data and do batch training. For 
example, at night we will not use the automatic caregiver, 
so the system can do some training at night even if it’s 
time consuming.  
Second, about the accuracy, we should take into account 
the goal of activity recognition: its overall goal is to take 
automated actions to optimize the user’s expected utility 
based on their recognitions. Let’s introduce two 
definitions: the expected cost of delayed action (ECDA) is 
the difference in the expected utility of taking immediate 
ideal action, and delaying the ideal action until some 
future time; the expected cost of annoyance (ECA) is the 
expected cost when the systems try to help users while the 
prediction is wrong [28]. A good activity recognition 
system should minimize the sum: 

ECDA+ ECA                   (1) 
Let TP= the number of true positive examples, TN= the 
number of true negative examples, FP= the number of 
false positive examples, FN= the number of false negative 
examples, FPR be false positive rate, and FNR be false 
negative rate, we will have:  

 FPR  =  

FNR  = 
In most cases, ECDA corresponds to false negative rate, 
and ECA corresponds to false positive rate. Then, 
formula(1) will be equal to: 

FNR+λ·FPR                 (2) 
where λ is the parameter that controls the costs of FPR 
relative to the costs of FNR. Poor “help” could be quite 
costly to users, so λ may be greater than 1 in most cases. 

TNFP
FP
+

TPFN
FN
+



 
4

Then, the Receiver Operating Characteristic (ROC) curve 
will be a good solution here. The standard ROC curve 
plots the false positive rate on the X axis and the 1-false 
negative rate on the Y axis [5]. 
I give a simple example of the ROC curve here: we 
sample 100 data points (xi, yi) where xi =i/100, and yi is 
the class label which is 1 with probability xi , -1 with 
probability 1-xi . We consider a simple threshold classifier 

),( θxf  here: if θ>x , we classify x as positive, 
otherwise negative. We change θ from 0.01 to 1, 
increasing by 0.01 each time. Repeating this experiment 
for 100 times, we plotted the average error rate and the 
ROC curve in Figure 2.  

(a) 

(b) 
Figure 2: (a) is the ROC curve, which plots (1–false 
negative rate) against the false positive rate; (b) plots the 
overall error rate against thresholdθ. 

 
If the cost of false positive and false negative errors are 
the same, we will figure out the optimalθ is 0.5 from the 
error rate curve. But, if they are not the same, saying, 
cost=FNR+R·FPR, then the error rate curve can’t help us 
at all. In this situation, the ROC curve is important: the 
best point is the point on the ROC curve tangent to the 

line with slope R that has the smallest intercept on the 
FNR axis. 
Thus, a practical activity recognizer should make 
inferences in time, and have a low value of ECDA+ECA 
(this can be evaluated as FNR+λ·FPR sometimes). In the 
following section, we will evaluate methods based on 
these two evaluation functions. 

3 Machine Learning Methods for Activity 
Recognition 

As we mentioned before, there have been many 
applications for activity recognition. A lot machine 
learning methods have been tried, including decision trees 
[32, 53, 7], neural networks [12, 42, 7], genetic 
algorithms [56, 8], probabilistic models [27, 26, 25, 28, 3, 
45, 47, 51], SVMs [11], etc. In most of the problems, the 
observations are uncertain. Because of this, probabilistic 
models are the most popular. People have tried naïve 
Bayesian models [25], Bayesian networks [27, 51], 
dynamic Bayesian networks [3, 28, 45] and other 
variations [13, 26, 27].  

3.1 Data Preprocessing 
Most of the time, the direct observations are not suitable 
for learning. They may contain some obvious outliers, the 
different attributes may be in different scales, and there 
may be too many unimportant attributes. To get a 
reasonable learning result, we should deal with noise, 
normalize the attributes and design learning features. 
Among these procedures, designing learning features is 
the most important. Much of the success of machine 
learning applications can be traced to careful engineering 
of the input features [18]. By designing features, we can 
even transform a temporal problem into an ordinary 
problem, thus we can simplify the learning task greatly. 
Data preprocessing is especially important to tasks related 
to physical measurements, such as BodyMedia [7, 8]. 
Reducing noise and normalizing attributes are trivial 
problems. There are mature methods to deal with them, 
but we lack automatic methodology for handling feature 
design. To make systems effective, the data analyst must 
carefully design the set of features. This is a 
time-consuming process, and there are relatively few data 
analysts who can do it. There are also very few software 
tools available to support this activity. Existing 
off-the-shelf machine learning systems do not provide any 
way to incorporate background knowledge except through 
defining the input features [18]. We’ll focus on feature 
design here. 
To get features more suitable for learning, we should 
apply the domain knowledge. Some existing attributes 
may make excellent features, but it is typical in machine 
learning applications to construct new features by a) 
aggregating existing attributes (e.g., over temporal and 
spatial scales) to reduce noise and improve statistical 
power, or b) transforming attributes (e.g., by Fourier or 
wavelet transforms and principal component analysis) to 
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enhance pattern detection [18].  
An example is the Lumière project [27]. In this project, 
Horvitz et al. built an events system to establish a fluid 
link between low-level, atomic events and the 
higher-level semantics of user action, which they 
employed in user models. These modeled events, such as 
“menu surfing”, are more suitable for learning than 
atomic events (e.g., mouse clicking, keyboard inputting, 
etc). 
Another example is BodyMedia [7, 8]. In this problem, 
the armband could be worn or removed at the subject’s 
discretion, and each wearing of the armband produced a 
session of sensor data. This problem is essentially 
temporal, since the observation is a sequence of 
measurements which are temporally correlated. But most 
of the attendees applied some feature design methods to 
get an ordinary supervised learning problem. We should 
notice the characteristics are the same across a session, so 
a naïve method uses the mean sensor values across the 
session as the features. A more sophisticated method is 
called the histogram approach [7]: the value range of 
every sensor in the session is divided into 50 buckets. For 
each sensor, they then devise 53 features: minimum of the 
sensor value, max value, mean value, and the number of 
data points falling into each of the 50 buckets.  

3.2 Decision Trees 
A decision tree is a hierarchical model implementing the 
divide-and-conquer strategy [52]. A decision tree is 
composed of internal decision nodes and terminal leaves. 
Each decision node n implements a test function fn(x) with 
discrete outcomes labeling the branches. Given an input, 
each node applies a test and one of the branches is taken 
depending on the outcome. This process starts at the root 
and is repeated recursively until a leaf node is reached.  
A decision tree can be translated into a logical formula for 
each class. If you take a single path down the tree, it can 
be translated into a conjunction of conditions, and the 
conjunctions for paths to leaves of the same class can be 
combined disjunctively. Decision trees can represent any 
logical formula. 
Because decision trees are fast and have good expression 
power, they have been tried in activity recognition [32, 53, 
7]. We will show how to use decision trees by the work at 
Carnegie Mellon University [32]. 
In Carnegie Mellon, a team has recently performed a 
Wizard of OZ study in an attempt to predict whether the 
users’ activities are interruptible. In the study, the users’ 
actions are recorded by a camera. Also, the users are 
intermittently asked feedback about the interruptibility. 
Researchers coded features by hand. In this way, each 
video interval was turned into a coded event, such as 
“speaking”, “writing”, “sitting”, “interacting with 
keyboard”, etc.  
Based on this coded information, they also derived a 
number of variant sensors that captured recency and 
density effects. Some derived features are: 

 Event occurred in the 15 second interval 
immediately around the self-report sample (Imm) 

 Event occurred in every 15 second interval for 1 
minute prior to the sample (All-1) 

 Event occurred in at least one interval in the 1 
minute prior to sample (Any-1) 

 Event occurred in every interval in the five minutes 
prior to the sample (All-5) 

 Event occurred in at least one interval in the 5 
minutes prior to the sample (Any-5) 

 The number of intervals in which the event occurred 
in the five minutes prior to the sample (Count-5) 

Overall, they obtained observation values corresponding 
to a set of 128 direct or derived simulated sensors. In this 
way, they also change a temporal problem into an 
ordinary supervised learning problem.  
They tried several learning methods and reported that 
decision trees have the best result. They believe it’s 
because there is a strong and unambiguous feature 
(talking) that provides a very good initial split.  
Decision trees are one of the fastest learning methods, 
thus, inference speed will be very satisfying. But, their 
accuracy will be a problem. First, they are not suitable for 
modeling the uncertainty of the problem. For example, 
when we are watching a person near a car, we are not sure 
he is locking the car or opening the car. Instead, we say: 
with a probability 0.6 he is opening the car, and with a 
probability 0.4 he is locking the car. If we watch he leaves 
the car later, we can be sure he was locking the car at that 
time. To model such problems, decision trees have to 
store probabilities in leaves. This is unnatural and can’t 
reflect the causal relationships between variables. 
Another problem comes from decision trees’ inductive 
bias, a preference for the most general hypotheses [53]. 
Assuming we have data (X=a, Y=b, +), (X=a, Y=c, +), 
(X=b, Y=d, -), the learned tree will be like: 
 
 
 
 
This tree will treat any point with X=a as a positive 
example. This is too general considering the small 
number of training examples. 
Too general hypotheses will match too many situations 
and raise too much positive predictions. For example, “if 
users are static, give him a clue” will always try to give 
users clues. As we mentioned, poor “help” could be quite 
costly to users. Decision trees lack a good mechanism to 
control generality and specialty. Thus, the expected cost 
of annoyance (ECA) will be very large. 
For the above reasons, seldom decision trees are not very 
popular in real world applications. 

X

+ -

a b
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3.3 Neural Networks 
Neural networks attempt to model the operation of the 
brain using mathematics [52]. Each node, or neuron, in 
the network does a simple arithmetic operation, and gives 
the result to all of its successor nodes. When arranged in 
the appropriate network topology, arbitrary functions 
from the input to the output can be learned.  
The simplest neural network consists of some input nodes 
and one output node, with all the input nodes connected 
directly to the output nodes. These are known as 
perceptrons, and have limited representational power, due 
to their simplicity. In a perceptron, the output is usually 
some function of the weighted sum of the inputs. That is, 
the output node computes             over j inputs 
and weights. g is the activation unction, e.g. a step or sign 
function. 
For representing complex relations, it is common to see 
networks with one or more hidden layers, which are 
neither inputs nor outputs, but intermediaries between 
them. It has been shown that with one layer of a large 
enough number of hidden units, any continuous function 
of the inputs can be represented, and with two hidden 
layers, discrete functions can be realized as well. Each 
node in a hidden layer can be seen as a perceptron, and 
computes the above equation over its own inputs, with its 
own weights. 
The robust ability to classify new data makes NN very 
popular in real domains, especially computer vision. We 
will show how to use NN in activity recognition by an 
intelligent caregiver for handwashing [42]. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Acceptable sequences of steps required to 
complete the handwashing. Note wetting hands is 
considered optional in the prototype as liquid soap is used 
 
In their prototype, they use color-based tracking software 
to follow the user’s hand position through a camera 
mounted over the sink as the user performed handwashing 
activity. Figure 3 depicts six steps of handwashing and the 
various alternative pathways the user could correctly 
wash their hands. 

A NN is used to learn which steps correspond with the 
various inputs from the environment. The inputs are 
abstracted from the camera information. The network 
classifies these inputs into step identification numbers. 
In this way, they change the temporal problem into an 
ordinary supervised learning problem. Thus, it produces 
an ambiguous result: the position of the user’s hand may 
not be uniquely related to a specific step. For example, the 
steps of turning the water on and turning it off have the 
same spatial coordinates. The only thing that 
distinguished these steps from each other is their positions 
in the overall plan. The system applies these rules by 
using prerequisites for each ambiguous step. For the 
example of turning the water off, a rule can be 
programmed that basically says “in order for the step 
being completed to be interpreted as turning the water off, 
the step of turning the water on must have already been 
completed”. Using this rule, the system then searches a 
vector that keeps track of all of the completed correct 
steps by the user and sees if this prerequisite exists. If the 
prerequisite has not been completed, the system changes 
the initial step identification number to the one that is 
causing the ambiguity, in this case, turning the water on. 
In most cases, neural networks can guarantee the 
inference speed. We can control the complexity of 
networks easily, thus tune the inference speed. 
The problem is its accuracy. It will have high values of 
both the expected cost of delayed action (ECDA) and the 
expected cost of annoyance (ECA). First, neural networks 
are very sensitive to irrelevant inputs. This means we 
should be very careful about the feature design.  
Second, neural networks are bad at handling with missing 
values, while we can’t guarantee everything is observed 
in real domains. This may be the worst part of neural 
networks. In the handwashing project, they have to 
assume full observability of its washroom environment. 
This simplification does not account for inherent 
uncertainty in step identification introduced through 
factors such as instrumentation noise and obscured views. 
This is exactly the reason they are trying to upgrade the 
system to a partial observable Markov decision process 
(POMDP) based system [9]. 

3.4 Genetic Algorithms 
Genetic algorithms depend on randomness to take decent 
solutions and make better ones [52]. This is done by 
combining solutions in such a way that the resulting 
solution may be better than the initial ones. Once a new 
set of solutions are created, the best are taken, and the 
process is repeated. This is analogous to Darwinian 
evolution, or survival of the fittest. In each generation, the 
best solutions survive, and reproduce, to make the new 
generation, which is once again tested for survival. After 
a pre-set number of generations, the algorithm terminates, 
and the best solution is returned. 
Genetic algorithms include four key elements: the fitness 
function, individual representation, selection strategy and 

)(∑ ∗
j jj xwg

Activity started

Use soap Turn on water

Use soapTurn on water

Wet hands

Rinse hands

Turn off water Dry hands

Dry hands Turn off water

Activity finished
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reproduction strategy.  
The fitness function depends on the problem, but in any 
case, it is a function that takes an individual as input and 
returns a real number as output. In the “classic” genetic 
algorithm approach, an individual is represented as a 
string over a finite alphabet. The selection strategy is 
usually randomized, with the probability of selection 
proportional to fitness. That is, if the individual X scores 
twice as high as Y on the fitness function, then X is twice 
as likely to be selected for reproduction as is Y. 
Reproduction is accomplished by cross-over and mutation. 
Cross-over means that offspring will get some parts from 
one parent, and the rest from another parent. Mutation 
means the offspring may get altered value with some 
probability. We will show how to use genetic algorithms 
in activity recognition by a rare activity predictor [56]. 
In this project, the data is a time-ordered sequence of 
events. Each target event, Xt, occurs at time t. The 
problem is to learn a prediction procedure P that correctly 
predicts the target events. Thus, P is a function that maps 
an event sequence to a Boolean prediction value.  
They combined Recall (the percentage of target events 
correctly predicted) and Precision (the percentage of 
predictions that are correct) as the fitness function. 
Essentially, it’s a derivative of ROC analysis.  
The trick is how to represent pattern individuals. Here, 
they used a language similar to what we described in 
Section2.2. A prediction pattern is a sequence of events 
connected by ordering primitives that define sequential or 
temporal constraints between consecutive events. A 
prediction pattern matches a sequence of events within an 
event sequence if a) the events within the prediction 
pattern match events within the events sequence, b) the 
ordering constraints expressed in the prediction pattern 
are obeyed, and c) the events involved in the match occur 
within the pattern time duration. For example, if the 
prediction pattern is “A*C” and the sequence to be 
estimated is “ABC”, we will say a target activity is 
happening. 
They use a steady-state GA, where only a few individuals 
are modified in each “iteration”, because such a GA is 
believed to be more computationally efficient than a 
generational GA when the time to evaluate an individual 
is large. With the above fitness function and individual 
representation, they applied GA to the problem. 
According to their report, GA has a fast converge speed, 
and the overall performance is much better than C4.5, 
FOIL, etc. 
The inference speed is not a problem here: most of the 
time, the learned classifier only needs to do some simple 
computation. For example, in this project, the learned 
classifier compared the learned pattern with the estimated 
sequence. This is a string comparative operation, which 
has a fast solution.  
With a suitable fitness function, we can get a promising 
classifier. Both false negative rate and false positive rate 
can be controlled. Furthermore, since the GA is stochastic, 

we can extract distinct hypotheses along independent runs. 
Then, we can combine these hypotheses in a bagging-like 
mode, to form a bagged hypothesis, such as [8]: 

BH(x) = Median{hi(x), i=1,…,k} 
The key problem lies in the prior requirement: in classic 
GA, an individual is represented as a string over a finite 
alphabet. But most of the time, the number of observed 
events are huge, even infinite. For example, it’s difficult 
for us to enumerate a person’s actions in an office, 
because it’s very likely he will do some unpredictable, 
though rational things. He may kneel down and pick up 
something, etc. In this case, the state space is too huge, so 
GA has difficulty to converge.  
Another problem of GA is: it lacks a mechanism to deal 
with the uncertain nature of observations 

3.5 Bayesian Networks 
Bayesian networks (BN), also called belief networks or 
probabilistic networks, are graphical models to represent 
the interaction between variables visually [52]. A 
Bayesian network is composed of nodes and arcs between 
the nodes. Each node corresponds to a random variable, X, 
and has a value corresponding to the probability of the 
random variable, P(X). If there is a directed arc from node 
X to node Y, this indicates that X has a direct influence on 
Y. This influence is specified by the conditional 
probability P(Y |X). The network is a directed acyclic 
graph (DAG), i.e., there are no cycles. The nodes and the 
arcs between the nodes define the structure of the network, 
and the conditional probabilities are the parameters given 
the structure. 
Bayesian networks have been used in various applications 
which initially were static, i.e., the nodes and links do not 
change over time. These applications involve determining 
the structure of the network; supplying the prior 
probabilities for root nodes and conditional probabilities 
for other nodes; adding or retracting evidence about nodes; 
and repeating the belief updating algorithm for each 
change in evidence. 
Bayesian networks have become a popular representation 
for reasoning under uncertainty. Because of the uncertain 
nature of observations in activity recognition, Bayesian 
networks are very suitable for this domain. We will show 
how to use Bayesian networks in activity recognition by 
the Lumière project [27]. 
The Lumière project centers on harnessing probability 
and utility to provide assistance to computer users. They 
worked on Bayesian user models that can be employed to 
infer a user’s needs by considering a user’s background, 
actions, and queries. They tackled several problems: a) 
the construction of Bayesian models for reasoning about 
the time-varying goals of computer users from their 
observed actions and queries, b) gaining access to a 
stream of events from software applications, c) 
developing a language for transforming system events 
into observational variable. A derivative of Lumiè re 
project was embedded into Microsoft Office’97 as the 
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Office Assistant. 
In this project, they constructed several models for 
different problem, including a BN to infer whether a user 
needs assistance, a BN to infer what a user’s need is in 
Excel. They also tried to catch the temporal relationship 
by a dynamic BN in inferring what a user’s need is. To 
speed the inference, they tried some strategies to 
simplifying the structures of models. Here, I will focus on 
the BN to infer whether a user needs assistance. 
They constructed a small Bayesian network for this 
problem. The structure of this BN is shown in Figure 4. It 
represents the dependency between a pause after activity 
and the likelihood that a user would welcome assistance. 
According to the model, a user being in the state of 
welcoming assistance would shift the probability 
distribution of observing pauses in activity. The state of 
desiring assistance also influences the probability of 
detecting a recent search through multiple menus. They 
also considered the influence of a user’s expertise and the 
difficulty of a task on the likelihood that a user will need 
assistance. We also note that a user will pause if he or she 
is distracted by events unrelated to the user’s task. The 
difficulty of a task also directly influences the likelihood 
that a user will become distracted by other events. 
 
 
 
 
 
 
Figure 4: A Bayesian user model for inferring the 
likelihood that a user needs assistance, considering profile 
information as well as observations of recent activity. 
 
They also created a special version of Excel that yielded 
information about subsets of mouse and keyboard actions, 
as well as information about the status of data structures 
in Excel files. The events included access to menus being 
visited and dialog boxes being opened and closed. In 
addition, they also gained information on the selection of 
specific objects, including drawing objects, charts, cells, 
row, and columns.  
Then, they applied a language similar to what we 
discussed in Section2.2. These low-level, atomic events 
were transformed to the higher-level semantic events they 
employed in the above model. Based on these abstracted 
events, they did learning and inference. 
Most of the time, the accuracy of Bayesian networks is 
promising. Activity modeling problems typically are 
dominated by uncertainty. Bayesian networks naturally 
model this nature and can encode rich expert knowledge.  
Another advantage of this approach is that at run time, the 
expert can specify a cost matrix C(ŷ, y) which specifies 
the cost of classifying the data as ŷ when the true label of 

the data is y. This allows us to say, for example, that a 
false negative prediction is 10 times more serious than a 
false positive prediction [17]. With this utility information, 
the system can choose the classification that minimizes 
the expected cost: 

∑=
yk

ykCxyPy ),()|(minargˆ  
Here, the sum over y considers each of the possible 
classifications, computes the probability that this 
classification is true (according to P(y|x)), and then 
weights this by the cost of making decision k when the 
true label is y. This can perfectly model our request to 
minimize ECDA+ ECA. 
The problem is the inference speed of BN. As we have 
mentioned, exact inference in Bayesian networks is 
NP-hard. To overcome the speed problem, researchers 
have to simplify the structures of complex BN. Polytree 
structures will be the nice structures, which mean there is 
at most one undirected path between any two nodes in the 
network. They have a particularly nice property: the time 
and space complexity of exact inference in polytrees is 
linear in the size of the network. 
Another problem is: BN is not good at modeling dynamic 
problems. For example, in the Lumière model, if the user 
surfs the menu twice, how can we reflect this in the model? 
We have to give up the early menu-surfing event. As 
we’ll discuss, this problem will be mitigated by dynamic 
Bayesian networks. 

3.6 Dynamic Bayesian Networks 
Dynamic Bayesian networks (DBN) are an extension to 
standard Bayesian networks. First-order DBN work by 
maintaining two copies of a standard Bayesian Networks: 
one representing the beliefs at the current time t, and the 
other representing beliefs about the “next time” t+1. 
These two copies are referred to as time slices. A time 
slice in a DBN does not necessarily represent a fixed 
duration of time: rather, a transition between time slices 
occurs whenever a new piece of evidence arises. In the 
monitoring setting, this corresponds to the occurrence of 
an action, or the observation of such via the sensors [52]. 
To handle the potentially infinite number of parents, DBN 
make a Markov assumption – that is, the current state 
depends on only a finite history of previous states. The 
simplest one is the first-order Markov process, in which 
the current state depends only on the previous state and 
not on any earlier states. In other words, you need to 
make the future independent of past given the state. Using 
our notation, the corresponding conditional independence 
assertion states that, for all t,  

P(Xt|X0:t-1) = P(Xt|Xt-1) 
Hence, in a first-order Markov process, the laws 
describing how the state evolves over time are contained 
entirely within the conditional distribution P(Xt|Xt-1), 
which is called the transition model for first-order 
processes. The transition model for a second-order 
process is the conditional distribution P(Xt|Xt-1, Xt-2). 



 
9

In addition to restricting the parents of the state variables 
Xt, we must restrict the parents of the evidence variables 
Et. Typically, we will assume that the evidence variable at 
time t depends only on the current state: 

P(Et|X0:t , E0:t-1 ) = P(Et|Xt) 
The conditional distribution P(Et|Xt) is called the 
observation model (or, the sensor model). Notice the 
direction of the dependence: the “arrow” goes from state 
to observation values because the state of the world 
causes the sensors to take on particular values. 
DBN include hidden Markov models and Kalman filters 
as special cases. Like BN, there are mature training and 
inference methods for DBN. We will show how to use 
dynamic Bayesian networks in activity recognition by an 
activity recognition system in MUD [3]. 
In this project, the domain is the “Shattered Worlds” 
Multi-User Dungeon (MUD), an adventure game which 
resembles the real world. It is a text-based virtual reality 
game where players compete for limited resources in an 
attempt to achieve various goals. The MUD has over 4700 
locations, more than 7200 actions, and 20 different quests 
(goals). The objective of the project is to determine, as 
early as possible, which quest a player is attempting, and 
to predict which action a player will perform in the next 
move and which location a player will go to next.  
To achieve the above object, the system must first learn 
which actions and positions (or, sequences of actions and 
positions) tend to lead to a particular quest. This 
information is obtained from previous instances of 
completed quests during a training phase and modeled by 
means of a DBN. During the inference phase, the DBN is 
used to predict a player’s quest, next action and next 
location. To achieve this effect, every time a player 
performs an action, the system updates the probability 
that the player is trying to achieve each of the quests, 
perform each of the actions and move to each of the 
locations.  
The dynamic BN is shown in Figure 5: 
 
 
 
 
 
 
 
 
Figure 5: the dynamic Bayesian network for the MUD. 
 
The domain variables are represented as nodes in the 
belief networks: 
Action (A): This variable represents the possible actions a 
player may take in the MUD, which they took to be the 

first string of non-blank characters entered by a user, plus 
the special other action, which includes all previously 
unseen actions. For the results given in that paper, the 
state space size, |A|, is 7259.  
Location (L): This variable represents the possible 
locations of a player, plus the special other location, 
which includes all previously unseen locations. For the 
results given in that paper, the state space size, |L|, is 
4722. 
Quest (Q): This variable represents the 22 different quests 
a player may undertake, including the other quest, which 
includes all previously unseen quests, and the null quest. 
The variable representing the previous quest achieved is 
set to null if the user has just started a session. 
Actually, this network is not a pure dynamic Bayesian 
networks: the action and location may change over time, 
but it is assumed that a player’s current quest does not 
change.  
They collected 4981 runs. Among them, 80% are for 
training, 20% are for testing. The result show the system 
can correctly predict more than 80% quests.  
Dynamic Bayesian networks can capture the temporal 
natures of activity recognition. The structures can be 
much simpler than Bayesian networks. Since they can 
naturally reflect the temporal correlation between events, 
the accuracy is promising. As Bayesian networks, they 
can also easily model our request to minimize ECDA+ 
ECA. 
The problem is still the inference speed. The structure of 
the networks can be fairly simple, but the number of 
possible values of each node makes its training and 
inference a computationally complex task. It is proved 
that in almost all cases, the per-update time is exponential 
in the number of state variables.  
Another problem lies in its representation power: because 
of their Markov assumptions, although DBN can model 
change in fluent values over time, they are inadequate for 
monitoring activities with quantitative temporal 
constraints [13]. For example, a DBN can’t model the 
belief that lunch normally occurs 3-4 hours after breakfast. 
One conceivable way to incorporate such constraints 
would be to assign clock times and durations to each time 
slice and construct networks with many slices. However, 
assigning appropriate times and interval sizes to each time 
slice is very difficult. Large intervals result in a too coarse 
model, making it impossible to represent constraints that 
are smaller than the interval size; on the other hand, small 
intervals increase the size of the network and make 
inferences intractable. 
In the following section, we will introduce some methods, 
trying to mitigating these problems. 

3.7 Variations of Bayesian Models 
A lot of variations were designed based on Bayesian 
networks. Generally speaking, there are two trends: one is 
trying to make models more complex in order to improve 
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the accuracy. Often, complex models can encode more 
expert knowledge. Some more complex models have been 
proposed, such as Object Oriented Bayesian Networks, 
Probabilistic Relational Model, Quantitative Temporal 
Bayesian Networks, Conditional Random Fields, 
Averaged Perceptron, Hidden Markov SVMs, Max 
Margin Markov Nets, etc. Another trend is trying to 
simplify models in order to speed the inference, since 
most real applications are on-line and need fast inference. 
The ordinary methods are a) remove dependent 
relationship, and b) cluster similar variables nodes into 
one node. In this way, they may get a simpler structure, 
even a polytree sometimes. This approach depends on the 
knowledge of experts and lacks of special theories. 
There have been too many discussions about OOBN, 
PRM and discriminative methods. Instead of this, I’d like 
to introduce some efforts about how to encode 
quantitative temporal constraints in DBN, and how to 
simplify Bayesian models. 
Colbry proposed Quantitative Temporal Bayesian 
Networks (QTBN), intending to combine the benefit of 
both BN and DBN [13]. This model includes two 
components: an auxiliary BN and a main DBN.  
The BN is used to encode the likelihood of events 
occurring during particular intervals. It is automatically 
constructed by building a single node for every action in 
the plan and an arc between the nodes for every Temporal 
Constraint associated with the plan. One additional node, 
the TimeReferencePoint, indicates an arbitrary starting 
time to ground quantitative temporal references. The time 
intervals are sized based on the granularity that the action 
requires. The values assigned to each node represent a 
belief distribution over time. From these belief 
distributions, we can extract information about what has 
happened in the past and predict what will happen in the 
future. We can also extract information about the current 
time slice for use in the DBN component. 
At any time, the information in the DBN represents and 
reasons about a small interval of time, called the 
CurrentTimeInterval. The DBN retrieves information 
about the CurrentTimeInterval from the BN and then 
operates like a standard DBN. In the DBN, there is a 
special node influencing the action, which is called the 
Temporal Influence Node (ATIN). ATIN summarizes all of 
the quantitative temporal beliefs about action A for the 
CurrentTimeInterval.  
Figure 6 shows an example of QTBN: how to withdraw 
money from ATM. Usually, you will input number about 
3 seconds after you slide the card, and you will take the 
money about 15 seconds after you input the number. 
Node FinishedActions is a persistent variable. It contains 
a hash table, recording our cumulative belief that each 
action has occurred or is occurring. The Current Action is 
influenced by FinishedActions and ActionTIN, and 
influences the hand position.  
As stated earlier, a TIN can be considered a summary of 
all temporal information related to the action it influences 

and to the CurrentTimeInterval. A TIN contains a hash 
table whose entries are each action. And the values of the 
hash table cell are determined by querying the BN. The 
result of the query, “What is the probability that action Ai 
will occur in the CurrentTimeInterval?” is set to the Ai 
cell in the hash table of the TIN. This query is performed 
by probing the associated action node in the BN and 
extracting the portion of the returned probability 
distribution that corresponds to the current time interval.  
 
 

(a) 
 
 
 
 
 
 
 
 

(b) 
Figure 6: a Quantitative Temporal Bayesian Network. (a) 
is the BN component to represent the temporal 
dependencies of actions; (b) is the DBN component. 
 
Also, the BN/DBN Interface provides an information 
channel between the DBN and BN through the various 
action nodes. This interface has two functions: a) 
UpdatePredictions, which extracts the summary temporal 
data from the BN to be used to influence reasoning in the 
DBN. b) RecordHistory, which extracts data from the 
DBN for use as historical data in the BN; this will update 
the BN’s CPTs to reflect beliefs about what has occurred 
since the last time change.  
This is an interesting attempt to combine the benefit of 
BN and DBN, though they didn’t report accuracies in the 
paper. For the detail, please refer to [13]. 
Meanwhile, there have been some works on represent BN 
in compact way, such as decision trees and decision graph 
[26, 27].  
In an autominder project [26], the task was to infer 
whether the desktop user is interruptible according to 
windows events, visual & acoustical analyses, and online 
calendars. This needs fast inference, so they tried 
Bayesian networks instead of dynamic Bayesian networks. 
But this is not enough: since the only unobserved and 
interested variable is Interruptible, they used a decision 
graph representing the compact encoding of the 
probability distribution underlying the Interruptible 
variable of the Bayesian network. Part of the decision 
graph is shown in Figure 7.  

Hand position

Action

Finished Actions

Sensed postion

Hand position

Action

Finished Actions

Sensed postion

t t+1

ActionTIN ActionTIN
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The bar graphs at the leaves of the tree represent 
probability distributions over high, medium, and low 
costs of interruptability (ordered, top to bottom, from high 
to low) for sets of observations represented by the paths 
leading to the leaves. The paths to the leaves identify 
important combinations of events to decide the 
probability distribution over costs of interruptability. The 
paths branch on key observations drawn from the user’s 
calendar and from the real-time activity event stream, 
including patterns of presence, application usage, and 
perceptual events.  
 
 
 
 
 
 
 
Figure 7: part of decision graph encoding probability 
distribution for the Interruptible variable.  
 
In this way, a Bayesian network is transferred into a 
decision tree. Thus, it speeds the inference greatly. 
In Lumière project [27], Horvitz et al tried another way to 
speed inferences: modeling a temporal problem as a naïve 
Bayesian model. The task is: they tried to infer the user’s 
goal according to the user’s actions. They approximated 
this temporal problem based on direct assessment of 
parameters of functions that specify the probabilities of 
observations conditioned on goals. Inputs of the function 
are the amount of time that has transpired between the 
observation and the present moment. The intuition behind 
the approach is that observations seen at increasingly 
earlier times in the past have decreasing relevance to the 
current goals of the user.  
 
 
 
 
 
 
Figure 8: Formulation of the temporal reasoning problem 
as naïve Bayesian model. They directly assess conditional 
probabilities of actions as a function of the time that has 
passed since actions occurred. 
 
Ei,t is the observation of variable i at time t. They made 
the assumption that the rates of likelihood are independent 
of one another, conditioned on goals. 
This is essentially a naïve Bayesian model, which can 
guarantee the inference speed. 

4 Possible Improvement for Activity 
Recognition 

In real applications, people prefer to the off-the-shelf 
learning methods, because a) most applications should be 
developed in definite time, off-the-shelf methods can 
guarantee the application is completed in time; b) the 
performance of a novel method is usually unpredictable, 
the developer tend to make their products more stable. 
Thus, they seldom try new ideas, unless there is a very 
urgent need for accuracy. 
In this section, I’d like to explore some feasible ideas. 
There are two goals here: one is to make the development 
process easier, the other is to make the prediction more 
accurate. 

4.1 Applying Expert Knowledge 
State-of-the-art methods for constructing knowledge 
based systems can capture the domain knowledge, but 
they can’t learn from training data. Furthermore, 
knowledge engineering is labor intensive and not well 
suited for some of the kinds of knowledge needed for 
effective performance. State-of-the-art methods for 
machine learning can learn from training data, but they 
provide no way to exploit domain knowledge. 
Furthermore, they generally require very large amounts of 
training data in order to achieve high performance levels 
[18]. If we can combine more expert knowledge into 
learning system, it may reduce the needed number of 
training data. 
Currently, the main way to make use of expert knowledge 
is for the data analyst to study the domain knowledge and 
design a special-purpose learning system that incorporates 
this knowledge [18]. In probabilistic model problem, this 
is mainly done by deciding the structures of probabilistic 
models (especially BN). Though we can learn the 
structures of probabilistic models from the training data, 
the result is generally worse than those with handcraft 
structures. I’ll discuss some methods to learn the 
structures of probabilistic models from knowledge, 
instead of data. In this way, we mimic the process that 
experts construct the structures of probabilistic models by 
hand. 
Huber proposed a method to construct Bayesian networks 
from descriptions of plans [31]. These descriptions are 
organized into Knowledge Areas, or KAs. KAs specify 
how plans are selected given the current goal (its purpose) 
and situation (its context). KAs also specify a procedure, 
called the KA body, which it follows while attempting to 
accomplish its intended goal. Experts use KA to describe 
how plans are executed. Then based on these descriptions, 
Bayesian networks are constructed automatically.  
Basically, the construction process can be summarized as 
the following: 

 Create a variable representing the goal to be 
achieved by the KA. 

Ei, t-n Ei, t0

P(Ei, t-1|Goalto) P(Ei, t0|Goalto)

Ei, t-1

P(Ei, t-n|Goalto)

Goalto

. . . .
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 Create a new variable for each action in the KA. 
Each of these new variables depends on the goal 
variable.  

 To model the temporal relationship, create an arc 
between sequential-happening actions 

 Add observation variables, associate them with the 
corresponding actions. 

 Add the context variables, which depends on the 
goal variable 

 Using an “inhibitory link” mechanism to process 
multiple goals, multiple plans 

A simple example is given in Figure 9: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: (a) is a simple KA; (b) is the corresponding 
Bayesian network. 
 
This KA says that in order to achieve the goal of 
accomplishing a “bound” goal, the operations of moving 
to the next location (the via point) and finding a place of 
concealment must be accomplished. Knowing this, if an 
observer were to see an agent moving toward a grove of 
trees, the observer might predict that the observed agent 
was about to enter the grove. As we can see, the 
constructed Bayesian network is quite reasonable: it 
reflects our thought. 
Intel Research developed a toolkit called Probabilistic 
Activity Toolkit (PROACT) [47]. In this project, they tried 
to infer the user’s activity from the objects involved in the 
activity. Two interesting tings were explored: a) convert 
natural-language-like knowledge into probabilistic models, 
and b) mine probabilities from Internet. In this approach, 
they didn’t need any training data at all. 
PROACT’s activity model is restricted to linear 
sequences of sub-activities which are annotated object 
information. Figure 10 gives an example of how to model 
the activity “making tea.” The activity consists of three 

consecutive sub-activities, drawn as circles, including a) 
boiling water, b) steeping, and c) flavoring the tea.  
The dotted arrow denotes the probability that an object is 
involved in an activity. In Figure 10, for instance, we 
expect to see a kettle 70% of the time that we are boiling 
water, whereas sugar is involved in the mixing phase 40% 
of the time.  
 
 
 
 
 
Figure 10: PROACT Model for Making Tea. 
 
To model activities more easily, PROACT allows 
activities to be specified as text documents that are 
structurally very similar to recipes. Figure 11 provides an 
example. Each document has a title, an optional list of 
objects involved, and a step-by-step description of how to 
perform the activity. The mining engine then converts the 
document into an activity model by interpreting the steps 
as sub-activities and the objects mentioned in each step as 
the set of objects involved. They identified the objects 
mentioned in each step (highlighted in bold in the figure) 
using natural language processing technology. 
 
 
 
 
 
 

 
PROACT determines the object involvement probabilities 
p in a novel manner. The method relies on a “Mirror 
Assumption”: if the name of an activity an co-occurs with 
the name of an object on in human discourse, then activity 
an is likely to involve object on in the physical world. 
They postulated on this basis that if an occurs on n1 pages 
on the web (which they treated as a compendium of 
human discourse), and there are n2 pages containing both 
an and on, then Pr(on| an) ≈ n2/ n1.  They obtain these 
numbers via the Google programming API.  
They tested the toolkit in Activity of Daily Living. The 
overall precision rate is 88% and recall rate is 73%, which 
is promising. 

4.2 Applying Hierarchical Information of Events 
As we’ve mentioned, events (the observations of 
sub-activities) can be fitted into a hierarchy. Applying this 
hierarchical information may improve the performance of 
activity recognition in three ways: a) reduce the needed 

Making Tea: 

1. Fill a kettle from the faucet. Place kettle on the stove and 
boil. 

2. Pour hot water into a cup, filling ¾ of the cup. Immerse 
teabag in cup for two minutes and dispose of teabag.  

3. Add milk and sugar to taste.  

Figure 11: Steps for Making Tea. 
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number of training data, b) reduce the inference time, and 
c) improve the inference accuracy. 
Many important military and civilian problems have the 
property that there is relatively little data available. For 
example, considering the development of cognitive 
assistants for human-computer systems, normally it will 
require the human user to provide many hours of labeled 
training data to the learning system [18]. If we can reduce 
the required data, we can make such application more 
pratical. 
In all forms of learning, the primary way to reduce the 
need for training data is to incorporate some kind of prior 
knowledge [16], such as the hierarchical information.  
Several kinds of methods have been explored. The naïve 
method is to abstract atomic events to some high-level 
events, and then make learning and inference based on 
these high-level events. We can use the activity language 
mentioned in Section2.2 to do this job. Actually, this is 
what the Lumière project did. In the Lumière project [27], 
the hierarchy also did some disambiguation things: 
obviously it is useful to include an efficient means for 
abstracting sets of low-events into event classed specified 
as disjunctions of events (e.g., they specified that a user 
saving a file via a toolbar icon or keyboard action is to be 
generalized to file saved). A carefully designed hierarchy 
can do this job. 
Another method is called shrinkage [40]. The essential 
idea is to “borrow” information from its neighbors. 
Shrinkage smoothes parameter estimates of a data-sparse 
child with its parent in order to obtain more robust 
parameter estimates. It is a statistical technique to reduce 
the variance of an estimate by averaging it with estimates 
for larger populations that include the target one. 
We can think shrinkage as a mixture model: 
 
where A(x) represents the set of x’s ancestors. Also  
 
Shrinkage is especially efficient when hierarchy is large 
or training data for each class is sparse. It has been proven 
that shrinkage improves parameter estimation and reduces 
classification error greatly. McCallum also showed that a 
class hierarchy can be used to exponentially reduce the 
amount of computation required to classify documents 
without sacrificing significant classification accuracy 
[40].  
Anderson applied shrinkage to adapt web navigation [1], 
which is a very similar task to activity recognition. The 
main goal here is to predict which webpage the user wants 
to browse next.  
Some webpages are very similar, and will link to other 
similar webpages. So they applied shrinkage here, namely 
Relation Markov Model (RMM).  
RMM groups pages of the same type into relations, with 
each relation described by its own set of variables. For 
example, in Figure 12, one relation might be “product 

description page”, with a variable “product” representing 
the product the page describes, and “stock_level” 
representing whether the product is in stock. Additionally, 
these variables themselves are grouped together, forming 
a hierarchy of values.  
Provided with a hierarchy, RMM does learning and 
inference using shrinkage method. RMM can make useful 
prediction possible in very large state spaces, where many 
(or most) of the states are never observed in the training 
data. 
 
 
 
 
 
Figure 12: State abstraction for the relational Markov 
model. The abstractions are depicted as square boxes, 
labeled with their relations and arguments, and 
surrounding their ground states. 

4.3 Applying State-of-the-art Learning Models 
Some more complex and more accurate models have been 
proposed for sequential problems, such as Conditional 
Random Fields [38], Averaged Perceptrons [14], Hidden 
Markov SVMs [6], Max Margin Markov Nets [54], etc. 
These models should be able to improve the accuracy of 
activity recognition, since activity recognition has a 
temporal nature.  
These models have been tried in several domains, such as 
Optical Character Recognition, Name Entity Recognition, 
Protein Secondary Structure Prediction, etc. In most of 
these applications, the training set is small 
(thousand-magnitude), and the computation time is not 
critical.  
Until now, none of these models have been tried in 
activity recognition. Actually, these models have all the 
preferred characteristics according to our criteria set: the 
accuracies are promising, and the inference speeds are 
fast. This time, the problem will be training speed because 
the training processes of all these models are 
time-consuming. Compared with them, even the training 
of HMM becomes very “efficient”! 
As we can imagine, most of the activity recognition 
applications should update their inference engine 
frequently. There are two reasons: a) the users of these 
applications may change, e.g., the may sell their cognitive 
assistants to other people; b) the users’ habits may change 
from time to time. Thus we need retrain the inference 
engine after we accumulate the data for some time. This 
can be done by incremental learning or total renewal of 
the engine. The accumulated data will be huge. Thus, if 
the training time is too long, saying more than 12 hours, it 
will affect our use of the applications. 
We can try these state-of-the-art models in some general 
situations, which don’t need retraining according to 
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different users and different periods. When faster training 
methods and faster computers are developed, we can 
apply these models in more specific problems. 

5 Summary and Conclusions 
In this paper, I made a survey of existing methods for 
activity recognition. Activity recognition observes a 
sequence of measurements, tries to guess the status of the 
subjects, and responds to it accurately and timely. 
Depending on its goal, it can be classified into activity 
monitoring or activity prediction.  
I showed we can describe activities with a hierarchy. Such 
a hierarchy can help me in many aspects. For example, we 
can use these hierarchies to do feature designs by 
abstracting atomic events into high-level events. To 
facilitate feature designs, I synthesized a language to 
describe activities. This language can also be used to do 
Genetic Algorithms. 
To evaluate different activity recognition methods, I used 
two criteria. One is the inference time, since most activity 
recognition is on-line. Another is the sum of the expected 
cost of delayed action and the expected cost of annoyance. 
An optimal recognition method should minimize these 
two values. 
I discussed the special methods of data preprocessing in 
activity recognition. Then, I summarized 5 off-the-shelf 
learning methods in activity recognition: decisions trees, 
neural networks, generic algorithms, Bayesian networks 
and dynamic Bayesian networks. Among them, 
probabilistic models are the most popular, so I discussed 
some variations of probabilistic models furthermore. 
Finally, I discussed some methods that possibly improve 
the performance of activity recognition. There are two 
goals: one is to make the development process easier, and 
the other is to make the prediction more accurate. I 
investigated how to construct probabilistic models 
automatically from expert knowledge, and how to apply 
hierarchical information in learning. I also discussed the 
possibility that we apply state-of-the-art learning models 
in activity recognition.  
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