#### PRELIMINARY CRUISE REPORT. W0107A R/V WECOMA, 6-8 July 2001 GLOBEC/ENSO Long-Term Observations off Oregon

Submitted by Jane Fleischbein College of Oceanic & Atmospheric Sciences Oregon State University Corvallis, Oregon 97331-5503 flei@oce.orst.edu, 541.737.5698

FILING DATE: 27 July 2001

CONTRACT/GRANT NUMBER: NOAA Awards NA86OP0589 and NA67RJ0151, and NSF Grants OCE-9732386 and OCE-0000733.

PRINCIPAL INVESTIGATOR(S): GLOBEC: Adriana Huyer, Robert L. Smith, P. Michael Kosro, P. A. Wheeler, W. T. Peterson, Evelyn and Barry Sherr, and Jack A. Barth

PURPOSE: To determine physical, plankton and nutrient/chemical conditions over the continental margin for climate change studies in NE Pacific. In particular, to make CTD and CTD/rosette and net tow stations along the Newport Hydro line, to make continuous bio-acoustic observations between the 50-500m. isobath, and to make continuous observations of currents using ADCP and of surfacelayer temperature, salinity and fluorescence by means of ship's thru-flo system. Figure 1 shows the location of the CTD stations. Table 1 shows the CTD station positions, and Table 2 shows the biochemical sampling depths.

SAMPLING PLAN:

1. Use ship's intake continuously for Temperature, Salinity, and Fluorescence

2. Continuous ADCP Profiling (150 kHz transducer) for water velocity and backscattering for bioacoustics.

3. Standard CTD Stations using SBE 9/11 plus CTD system for Temperature, Salinity, Fluorescence, Light Transmission, Oxygen, PAR.

4. Rosette sampling: 5 liter bottles for nutrients, and chlorophyll.

5. Deploy surface drifters at selected NH-line stations.

6. Vertical net tows: 1/2 meter nets 100 m to surface; Horizontal net tows with 1 m<sup>2</sup> MOCNESS.

7. Continuous bio-acoustic observations between the 50-500m isobath along 5 sections using a Hydroacoustics Technology, Inc., system towed alongside the ship.

#### **CRUISE NARRATIVE**

A brief overview of the cruise is presented here. An event log is provided in Table 3, and the participating personnel are listed in Table 4. We coma departed Newport at 1000 PST on 6 July 2001. CTD sampling started at NH-1. At NH-3, the HTI (bio-acoustic system) was deployed, and MOCNESS tows were started. The winds were between 15 - 23 kts. from N-NW, and the seas remained moderate for most of the Newport line. After completing 12 CTD's and net tows along the Newport Line at 1212 PST, 7 July, we began the transit to the FM line. At about 1400 PST, the ship had a breakdown in the main drive shaft that was unrepairable at sea. At 1445 PST the ship began to make its way slowly to Newport using the bow thruster. Arrangements were made to have the tugboat, Terri L. Brusco, come from Astoria and meet us on the way in. At 1720 PST on 8 July, the tug met the Wecoma and a towline was rigged. We arrived alongside the pier at Newport at 1730 PST on 9 July 2001. 1



Figure 1. Location of CTD stations during W0107A.

#### PRELIMINARY RESULTS

Vertical sections of the parameters measured by the SBE CTD system (temperature, salinity, density, fluorescence voltage, percent light transmission and dissolved oxygen concentration) are presented at the end of this report. Also included is a vertical section of the alongshore currents measured by the shipborne Acoustic Doppler Current Profiler (ADCP).

Winds during most of the cruise were upwelling favorable at 15-23 knots, and out of the NW. The low temperatures and high salinities observed at inshore stations showed that coastal upwelling was occurring. The surface temperature of 8°C at the most inshore station, NH-1, was the coolest surface temperature off Newport that we have observed since the revival of sampling of the Newport hydrographic line in July 1997. The winds had been continuously favorable for upwelling for a week prior to the cruise, so the observations reflect conditions during a sustained upwelling event rather than an 'anomalously' cool ocean. The ADCP section shows a weak poleward flow undercurrent over the outer shelf. The attached zooplankton report was provided by Dr. Wm. Peterson, and the attached microzooplankton report was provided by the Drs. Evelyn and Barry Sherr.

| Stati | on  | Distance   | Lat.  | Long.   | Bottom | Cast  | Sampling |
|-------|-----|------------|-------|---------|--------|-------|----------|
| Name  | No. | from shore | ۹N    | ٥W      | Depth  | Depth | Туре     |
| NH-1  | 1   | 3.0        | 44.65 | -124.10 | 29     | 23    | N        |
| NH-3  | 2   | 5.4        | 44.65 | -124.13 | 48     | 43    | Р        |
| NH-5  | 3   | 9.3        | 44.65 | -124.18 | 61     | 56    | C,N,M    |
| NH-10 | 4   | 18.3       | 44.65 | -124.29 | 82     | 77    | P,N      |
| NH-15 | 5   | 27.6       | 44.65 | -124.41 | 93     | 86    | C,N,M    |
| NH-20 | 6   | 37.0       | 44.65 | -124.53 | 143    | 135   | P,N      |
| NH-25 | 7   | 46.5       | 44.65 | -124.65 | 291    | 286   | C,N,M    |
| NH-35 | 8   | 65.0       | 44.65 | -124.88 | 440    | 435   | C,N,M    |
| NH-45 | 9   | 83.3       | 44.65 | -125.12 | 706    | 700   | C,N,M    |
| NH-55 | 10  | 103.2      | 44.65 | -125.37 | 2863   | 1005  | Р        |
| NH-65 | 11  | 121.5      | 44.65 | -125.60 | 2859   | 1006  | C,N      |
| NH-85 | 12  | 157.2      | 44.65 | -126.05 | 2883   | 1006  | C,O2     |

Table 1. CTD station positions during W0107A, and sampling at each station (C: Bio/Chem bottle sampling, N:half-meter vertical net tows, M:Mocness, P:Pigment, O:Oxygen samples).

Table 4. Names, affiliations, and responsibilities of scientific personnel participating on W0107A.

| Adriana Huyer    | Chief Scientist       | OSU  | CTD              |
|------------------|-----------------------|------|------------------|
| Robert L. Smith  | Co-Chief Scientist    | OSU  | CTD              |
| Jane Fleischbein | Technician            | OSU  | CTD              |
| Dale Hubbard     | Technician            | OSU  | CTD, oxygen      |
| Margaret Sparrow | Technician            | OSU  | CTD              |
| Julie Arrington  | Technician            | OSU  | nuts, chl        |
| Woody Moses      | Graduate Student      | OSU  | nuts, chl        |
| Sylvie Larock    | Graduate Student      | OSU  | nuts, chl        |
| Jennifer Harman  | Undergraduate Student | OSU  | nuts, chl        |
| Carlos López     | Technician            | OSU  | microzooplankton |
| Jesse Lamb       | Technician            | HMSC | zooplankton      |
| Julie Keister    | Technician            | HMSC | zooplankton      |
| Leah Feinberg    | Technician            | HMSC | zooplankton      |
| Anders Roestad   | Technician            | ODFW | zooplankton      |
| Linda Fayler     | Technician            | OSU  | martec           |
| Daryl Swensen    | Technician            | OSU  | martec           |

| Station, Depth,         | Sample Collection Depths (m)        | Type of Sample Collected                                   |
|-------------------------|-------------------------------------|------------------------------------------------------------|
| <b>Dist. From Shore</b> |                                     |                                                            |
| NH-03, 48m, 6km         | 43, 11, 1.6, 1.8                    | Slide Samples, Nutrients, POC/PON and Chl at               |
|                         |                                     | 11 and 1.6 m                                               |
| NH-05, 58m, 9km         | 56, 50, 40, 30, 25, 20, 15, 5, 1    | TOC (all depths), Nutrients, TN (all depths), Chl, POC/PON |
| NH-10, 82m, 18km        | 57, 13, 4, 1                        | Slide Samples, Nutrients, POC/PON and Chl                  |
|                         |                                     | at 13 and 1 m                                              |
| NH-15, 94m, 28km        | 86, 69, 60, 50, 40, 30, 24, 20, 12, | TOC (all depths), Nutrients, TN (all depths), Chl, POC/PON |
|                         | 10, 5, 1                            |                                                            |
| NH-20, 144m,            | 121, 26, 1                          | Slide Samples, Nutrients, POC/PON and Chl                  |
| 37km                    |                                     | at 26 and 1 m                                              |
| NH-25, 295m,            | 285, 200, 150, 100, 70, 50, 40, 30, | TOC (all depths), Nutrients, TN (all depths), Chl, POC/PON |
| 46km                    | 20, 15, 10, 2                       |                                                            |
| NH-35, 441m,            | 435, 220, 150, 100, 70, 55, 50, 40, | TOC (surface), Nutrients, TN (surface), both Chl,          |
| 65km                    | 30, 20, 10, 1                       | POC/PON (except 435, 220 and 150 m)                        |
| NH-45, 693m,            | 643, 500, 150, 100, 70, 55, 49, 40, | TOC (surface), Nutrients, TN (surface), both Chl,          |
| 83km                    | 30, 20, 10, 2.5                     | POC/PON (except 643, 500 and 150m)                         |
| NH-55, 2865m,           | 1005, 785, 645, 409, 45, 1          | Slide Samples, Nutrients, POC/PON and Chl                  |
| 103km                   |                                     | at 45 and 1 m                                              |
| NH-65, 2860m,           | 1000, 230, 150, 100, 71, 56, 50,    | TOC (surface), Nutrients, TN (surface), both Chl,          |
| 121km                   | 40, 30, 20, 10, 1.7                 | POC/PON (except 1000, 230 and 150m)                        |
| NH-85, 2884m,           | 1004, 366, 150, 101, 70, 59, 50,    | TOC (all depths), Nutrients, TN (all depths), both Chl and |
| 157km                   | 40, 30, 20, 10, 2                   | POC/PON (except 1004, 366 and 150 m)                       |

Table 2: Actual sample depths and types of subsamples for biochemical sampling during the Jul.-'01 LTOP GLOBEC cruise.

| Subsample | Replicates |
|-----------|------------|
| TOC       | 3          |
| Nutrients | 1          |
| TN        | 3          |
| Chl       | 2          |
| POC/PON   | 1          |
| Slides    | 2          |

#### Table 2. R/V WECOMA Cruise W0107A

|       | Start | End  | Sta. | Sta.  | Latitu | de    | Longit | ude   | Bottom | Atmos  | Wind    | Wind  | Event                              | Event ID   |
|-------|-------|------|------|-------|--------|-------|--------|-------|--------|--------|---------|-------|------------------------------------|------------|
| (UT)  | Time  | Time | No.  | Name  | (deg)  | (min) | (deg)  | (min) | Depth  | Press  | Dir.    | Speed |                                    |            |
|       | (UT)  | (UT) |      |       |        |       |        |       | (m)    | (mbar) | (deg T) | (kts) |                                    |            |
|       |       |      |      |       |        |       |        |       |        |        |         |       |                                    |            |
|       |       |      |      |       |        |       |        |       |        |        |         |       |                                    |            |
| 6-Jul | 1700  |      |      |       |        |       |        |       |        |        |         |       | Depart Newport                     |            |
|       | 1702  |      |      |       |        |       |        |       |        |        |         |       | Start echosounder                  |            |
|       | 1707  |      |      |       |        |       |        |       |        |        |         |       | Start ADCP                         |            |
|       | 1708  |      |      |       |        |       |        |       |        |        |         |       | Start DAS                          |            |
|       | 1820  |      |      |       |        |       |        |       |        |        |         |       | air calibration of transmissometer |            |
|       | 1855  |      | 1    | NH-1  | 44     | 39.1  | -124   | 06.0  | 29     | 1023.3 | 305     | 16    | CTD                                | WE18701.01 |
|       | 1909  |      |      |       | 44     | 39.1  | -124   | 06.0  |        |        |         |       | vertical net tow                   | WE18701.02 |
|       | 1936  |      | 2    | NH-3  | 44     | 39.1  | -124   | 07.8  | 48     | 1022.1 | 340     | 15    | CTD with pigments at 1m, 11m       | WE18701.03 |
|       | 1950  |      |      |       | 44     | 39.1  | -124   | 07.8  |        |        |         |       | HTI deployed                       | WE18701.04 |
|       | 2012  |      |      |       | 44     | 39.1  | -124   | 06.1  |        |        |         |       | secchi disk                        | WE18701.05 |
|       | 2021  |      | 3    | NH-5  | 44     | 39.0  | -124   | 10.8  | 61     | 1023.1 | 340     | 17    | CTD with biochem, mzp              | WE18701.06 |
|       | 2038  | 2044 |      |       | 44     | 38.9  | -124   | 11.0  |        |        |         |       | vertical net tow, 58 m             | WE18701.07 |
|       | 2053  |      |      |       |        |       |        |       |        |        |         |       | Start flo-thru                     |            |
|       | 2054  |      |      |       | 44     | 38.0  | -124   | 11.3  |        |        |         |       | Mocness deployed                   | WE18701.09 |
|       | 2130  |      |      |       | 44     | 39.0  | -124   | 11.4  |        |        |         |       | Mocness aboard                     | WE18701.10 |
|       | 2218  |      | 4    | NH-10 | 44     | 39.1  | -124   | 17.7  | 82     | 1022.0 | 330     | 14    | CTD with pigments at 1m, 13m       | WE18701.11 |
|       | 2233  |      |      |       | 44     | 39.1  | -124   | 17.7  |        |        |         |       | vertical net tow, 75 m             | WE18701.12 |
|       | 2243  |      |      |       | 44     | 39.10 | -124   | 17.98 |        |        |         |       | drifter 27438                      | WE18701.13 |
|       | 2333  |      | 5    | NH-15 | 44     | 39.1  | -124   | 24.7  | 93     | 1021.9 | 340     | 23    | CTD with biochem, mzp              | WE18701.14 |
|       | 2355  |      |      |       | 44     | 39.0  | -124   | 24.9  |        |        |         |       | secchi disk                        | WE18701.15 |
|       | 2357  | 0002 |      |       | 44     | 39.0  | -124   | 24.9  |        |        |         |       | vertical net tow to 86 m           | WE18701.16 |
| 7-Jul | 0006  | 0016 |      |       | 44     | 38.9  | -124   | 24.9  |        |        |         |       | 1 m surface tow                    | WE18801.01 |
|       | 0017  | 0025 |      |       | 44     | 39.0  | -124   | 25.1  |        |        |         |       | vertical net tow to 86 m           | WE18801.02 |
|       | 0031  |      |      |       | 44     | 39.1  | -124   | 25.4  |        |        |         |       | Mocness deployed                   | WE18801.03 |
|       | 0101  |      |      |       | 44     | 39.9  | -124   | 26.4  |        |        |         |       | Mocness aboard                     | WE18801.04 |
|       | 0110  |      |      |       | 44     | 39.97 | -124   | 26.57 |        |        |         |       | drifter 27439                      | WE18801.05 |
|       | 0117  |      |      |       |        |       |        |       |        |        |         |       | Cleaned flo-thru filters           |            |
|       | 0149  |      | 6    | NH-20 | 44     | 39.1  | -124   | 31.8  | 143    | 1021.0 | 348     | 21    | CTD with pigments at 1m, 26 m      | WE18801.06 |
|       | 0207  | 0213 |      |       | 44     | 38.9  | -124   | 32.0  |        |        |         |       | vertical net tow, 100m             | WE18801.07 |
|       | 0309  |      | 7    | NH-25 | 44     | 39.1  | -124   | 39.1  | 291    | 1020.4 | 350     | 21    | CTD with biochem, mzp              | WE18801.08 |
|       | 0337  | 2042 |      |       | 44     | 39.0  | -124   | 39.2  |        |        |         |       | vertical net tow, 100 m            | WE18801.09 |
|       | 0351  |      |      |       | 44     | 39.1  | -124   | 39.2  |        |        |         |       | Mocness deployed                   | WE18801.10 |
|       | 0448  |      |      |       | 44     | 41.0  | -124   | 39.2  |        |        |         |       | Mocness aboard                     | WE18801.11 |
|       | 0458  |      |      |       | 44     | 41.05 | -124   | 39.33 |        |        |         |       | drifter 27440                      | WE18801.12 |
|       | 0634  |      | 8    | NH-35 | 44     | 39.1  | -124   | 53.0  | 440    | 1020.9 | 345     | 20    | CTD with biochem, mzp              | WE18801.13 |
|       | 0708  | 0715 |      |       | 44     | 39.0  | -124   | 53.0  |        |        |         |       | vertical net tow, 100 m            | WE18801.14 |

|       | Start | End  | Sta. | Sta.  | Latitud | de    | Longit | ude   | Bottom | Atmos  | Wind    | Wind  | Event                                   | Event ID   |
|-------|-------|------|------|-------|---------|-------|--------|-------|--------|--------|---------|-------|-----------------------------------------|------------|
| (UT)  | Time  | Time | No.  | Name  | (deg)   | (min) | (deg)  | (min) | Depth  | Press  | Dir.    | Speed |                                         |            |
|       | (UT)  | (UT) |      |       |         |       |        |       | (m)    | (mbar) | (deg T) | (kts) |                                         |            |
|       |       |      |      |       |         |       |        |       |        |        |         |       |                                         |            |
| 7-Jul | 0723  |      |      |       | 44      | 39.2  | -124   | 53.1  |        |        |         |       | Mocness deployed                        | WE18801.15 |
|       | 0825  |      |      |       | 44      | 41.2  | -124   | 53.2  |        |        |         |       | Mocness aboard                          | WE18801.16 |
|       | 1000  |      | 9    | NH-45 | 44      | 39.1  | -125   | 07.0  | 706    | 1020.0 | 350     | 20    | CTD with biochem, mzp                   | WE18801.17 |
|       | 1044  | 1050 |      |       | 44      | 39.1  | -125   | 07.0  |        |        |         |       | vertical net tow, 100m                  | WE18801.18 |
|       | 1058  |      |      |       | 44      | 39.2  | -125   | 07.1  |        |        |         |       | Mocness deployed                        | WE18801.19 |
|       |       |      |      |       | 44      | 41.1  | -125   | 09.0  |        |        |         |       | Mocness aboard                          | WE18801.20 |
|       | 1215  |      |      |       | 44      | 41.06 | -125   | 09.31 |        |        |         |       | drifter 27441                           | WE18801.21 |
|       | 1335  |      |      | NH-55 | 44      | 39.2  | -125   | 22.0  |        |        |         |       | HTI recovered                           | WE18801.22 |
|       | 1444  |      | 10   | NH-55 | 44      | 39.2  | -125   | 22.0  | 2863   | 1021.2 |         | 15    | CTD with pigments at 1m, 45 m           | WE18801.23 |
|       | 1532  |      | 11   | NH-65 | 44      | 39.1  | -125   | 36.0  | 2859   | 1021.6 | 345     | 12    | CTD with biochem, mzp                   | WE18801.24 |
|       |       |      |      |       | 44      |       | -125   |       |        |        |         |       | vertical net tow, 100 m                 | WE18801.25 |
|       | 1637  |      |      |       | 44      | 39.06 | -125   | 36.14 |        |        |         |       | drifter 27442                           | WE18801.26 |
|       | 1819  |      | 12   | NH-85 | 44      | 39.1  | -126   | 03.0  | 2883   | 1022.2 | 340     | 7     | CTD with biochem, oxygen                | WE18801.27 |
|       | 1912  |      |      |       |         |       |        |       |        |        |         |       | begin transit to FM-9                   |            |
|       | 2031  |      |      |       |         |       |        |       |        |        |         |       | air calibration of transmissometer      |            |
|       | ~2100 |      |      |       |         |       |        |       |        |        |         |       | breakdown in ship's main drive shaft    |            |
|       | 2145  |      |      |       |         |       |        |       |        |        |         |       | begin transit to Newport (bow-thruster) |            |
| 8-Jul | 1312  |      |      |       |         |       |        |       |        |        |         |       | Cleaned flo-thru filters                |            |
|       | ~1720 |      |      |       |         |       |        |       |        |        |         |       | Tug arrives to tow ship to Newport      |            |
|       | 2309  |      |      |       |         |       |        |       |        |        |         |       | shut down flow through system           |            |
|       | 2327  |      |      |       |         |       |        |       |        |        |         |       | shut down echosounder                   |            |
|       | 2331  |      |      |       |         |       |        |       |        |        |         |       | shut down ADCP                          |            |
|       | 2337  |      |      |       |         |       |        |       |        |        |         |       | shut down DAS                           |            |
| 9-Jul | 0030  |      |      |       |         |       |        |       |        |        |         |       | arrive at pier in Newport               |            |

## Newport Hydro Line 44° 39'N



## Newport Hydro Line 44° 39'N



#### Newport Hydrographic Line 44.6°N

#### 6-7 July 2001

#### ADCP: Northward current (cm/s)





**Zooplankton Report** (Submitted by Dr. Wm. Peterson and Julie Keister, NOAA)

### MOCNESS DESCRIPTIONS

| NH5                                                                            | 1400 h                                                                                                                                                                                            | water depth=60m                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50-20 m<br>20-10 m<br>10-0 m                                                   | small copepods, jellio<br>small copepods, <i>Pleu</i><br>~20 <i>Pleurobrachia</i> ,                                                                                                               | es, amphipods, <i>Pleurobrachia</i><br><i>robrachia</i> , euphausiid furcilia, jellies<br>small copepods                                                                                                                                                                                                                                                 |
| NH15                                                                           | 1730 h                                                                                                                                                                                            | water depth=90m                                                                                                                                                                                                                                                                                                                                          |
| 80-50<br>50-20<br>20-10<br>10-0<br>surface                                     | Furcilia, small copep<br>Furcilia, small copep<br>small copepods, furci<br>small copepods, furci<br>large copepods, furci                                                                         | ods, algae<br>ods, algae, amphipods<br>ilia, large copepods, algae<br>ilia, amphipods, algae<br>lia, 1 adult euphausiid                                                                                                                                                                                                                                  |
| NH25                                                                           | 2050 h                                                                                                                                                                                            | water depth=300m                                                                                                                                                                                                                                                                                                                                         |
| 280-250<br>250-200<br>200-150<br>150-100<br>100-50<br>50-20<br>20-10<br>10-0   | 1 phronemid amphipe<br>1 squid, chaetognaths<br>4 shrimp, 8 squid, 1 c<br>5 sergestid shrimp, ~<br>~150 euphausiids, 6 s<br>many euphausiids, ar<br>euphausiids, small co<br>small copepods, euph | od, 100 chaetognaths, 10 <i>Pleurobrachia</i> , fish larvae<br>s, few euphausiids, amphipods, copepods, <i>Neocalanus</i><br>crab megalope, chaetognaths, copepods<br>10 squid, megalope, copepods<br>sergestids, 1 myctophid, copepods, small squid<br>nphipods, few gastropods<br>opepods, amphipods, chaetognaths<br>nausiids eggs, a few euphausiids |
| NH35                                                                           | 0020 h                                                                                                                                                                                            | water depth=480m                                                                                                                                                                                                                                                                                                                                         |
| 350-300<br>300-200<br>200-150<br>150-100<br>100-50<br>copept<br>50-20<br>20-10 | chaetognaths, amphip<br>small copepods, 1 squ<br>50 euphausiids, 2 squ<br>~100 adult euphausii<br>5 sergestid shrimp, 1<br>ods, chaetognaths<br>~5000 euphausiids, 6<br>pteropods, small cop      | oods, 2 sergestids, copepods, jellies<br>uid, chaetognaths, ~25 euphausiids<br>uid, 4 sergestids<br>ds, small copepods, 4 sergestids<br>myctophid, larval fish, ~1000 juvy euphausiids,<br>myctophids, ~200 fish larvae, amphipods<br>epods, furcilia, 1 jelly, 1 Pleurobrachia                                                                          |
| 10-0                                                                           | small amphipods, 2 c                                                                                                                                                                              | rab megalope                                                                                                                                                                                                                                                                                                                                             |
| NH45                                                                           | 0400 h                                                                                                                                                                                            | water depth=660m                                                                                                                                                                                                                                                                                                                                         |
| 350-200<br>200-150                                                             | 1 Praya, 2 myctophid<br>~100 euphausiids ~2                                                                                                                                                       | ls, euphausiids, shrimp<br>0 Muggiaea - 3 sergestids                                                                                                                                                                                                                                                                                                     |

200-150 ~100 euphausiids, ~20 Muggiaea, 3 sergestids
150-100 1 jelly, small euphausiids, amphipods, 4 sergestids, copepods, Muggiaea

- 100-50 euphausiid furcilia, amphipods, fish larvae, jellies
- 50-30 1 Corolla, 100s of juvy euphausiids, amphipods, copepods, fish larvae
- 30-20 salp city
- 20-10 2 Corolla, jelly ooze, amphipods
- 10-0 small amphipods, 2 crab megalope

Other zooplankton sampling:

Vertical tows ( $200\mu m$  mesh) from 100m to the surface completed at stations NH1, NH5, NH10, NH15, NH20, NH25, NH35, NH45, and NH65.

Euphausiids from station NH25 were incubated for molting rates. Euphausiids from station NH25 were preserved for gut-content evaluation.

#### **Microzooplankton Sampling**

(submitted by Drs. E. And B. Sherr, Oregon State University)

# Primary goal: MICROZOOPLANKTON ABUNDANCE, BIOMASS, AND GENERAL TAXONOMIC COMPOSITION:

#### MICROPROTIST (10 – 200 µm sized) BIOMASS -

A) Epifluorescence samples: preserve with Lugol's +Na thiosulfate+ formalin, filter 100 ml subsamples onto 3  $\mu$ m black filters, stain with DAPI, mount on labeled slide, freeze in slide box.

B) Settling samples: Add 23 ml acid Lugol solution to 240 ml (8 oz) labeled amber bottle, add 207 ml seawater sample, gently mix, cap tightly, store in boxes.

#### Secondary goal: ABUNDANCE OF PICOEUKARYOTES AND BACTERIA

Flow cytometry samples: pipette 3 ml of sample into 4 ml labeled cryovial, add 120 µl of unfrozen, 25% glutaraldehyde (0.5% final conc), cap & mix using vortex mixer, store in liquid nitrogen shipper.

#### **SAMPLING STRATEGY:**

Focus on upper 100 m, with emphasis on 0-50 m depth zone, including chlorophyll-a maximum.

Depths to sample: 6 depths per cast

- Depth of Chlorophyll-a maximum (will vary from cast to cast)
- 70 m depth
- 4 other depths in upper 50 m, <u>don't sample</u> the 1 m depth, more or less evenly spaced; may want to sample the depth nearest the chlorophyll maximum depth

Transect lines: top priority is the NH line, second priorities are the FM and CR lines, tertiary priority for the HH and RR lines

#### PROTOCOL FOR EPIFLUORESCENCE SAMPLES

1) Preserve the sample: to each 230 ml seawater sample :

- add 3 drops of alkaline Lugol solution, gently mix by capping & inverting bottle
- add 6 drops of 3% sodium thiosulfate, gently mix (sample color should go from pale golden to clear)

- add 6 ml of formalin (2 squirts from the 3-ml Oxford dispensor
- refrigerate for 6-12 hours before filtration to harden and shrink cells (probably can let the samples sit 24+ hours, but its best to stain, settle on filters, mount & freeze as soon after ~ 6 hours as possible
- 2) Filter and stain with DAPI: Prepare filtration bases with 0.45 µm backing filters, wetted, lay on top a 3.0 µm black membrane filter, and clamp tower over the filters on the base. (Note: *If the filtration clamp isn't on securely, the sample will leak out of the tower down the side of the base check for leaks after pouring the sample into the tower*). Filter appropriate volume of preserved sample (usually 100 ml). *Filter down to about 5 ml* of sample, relieve the vacuum by turning the manifold valve to the off position, quickly taking off and then replacing the filtration unit (including the stopper) on, the manifold, (if you don't do this, there will be enough residual vacuum for the sample to keep dripping into the manifold during the staining procedure). Turn off pump and relieve all vacuum when last sample is down to 5 ml.

**Note:** A problem with filtration of multiple samples at a time is that usually some samples filter more quickly than others. You'll have to keep a sharp watch on the samples, and when each sample in turn reaches the 5 ml mark on the tower, turn the valve for the filtration unit to the off position and then remove & replace the stopper to ensure all the vacuum in that filtration unit is relieved. When all of the samples have gone down to 5 ml, then turn off the pump and relieve all the vacuum in the system by taking off & replacing one of the tower stoppers, or the stopper on the first vacuum trap.

# 2) Add 30 $\mu$ l of 500 $\mu$ g/ml DAPI to each of the samples in the towers, let sit ~ 7 minutes (longer is OK).

**3) Prepare labeled slides**: While waiting for the samples to incubate with the DAPI stain, prepare the glass slides for mounting the samples. Use consecutive slide numbers with number codes listed in log sheets with sample information. Mount two replicate filters onto each slide. Put a drop of immersion oil onto the slide and smear flat with the edge of a cover slip.

**4)** Filter samples down, mount onto glass slides and freeze: Turn on the pump, open all the manifold valves, and filter down the stained samples to dryness. *Remove the filters while vacuum is still on.* Lay duplicate filters side by side on the glass slide, put a drop of immersion oil on each, put a glass cover slip on top of each filter, put in a labeled slide box and store in -20oC freezer until returned to COAS (on ice to keep cold).

#### PROTOCOL for Utermohl inverted microscopy method

Settle 50 mls of acid Lugol's preserved sample in a graduate cylinder for 24 hrs. Pipette off the top 30 mls and then pour the rest into an Utermohl settling chamber followed by 5 mls of acid Lugol's containing filtered seawater used to rinse the graduate cylinder. Let the sample settle for another 12 hrs. Then prepare the bottom portion of the chamber for enumerating ciliates using DIC or brightfield inverted microscopy.

#### Station and Depths sampled are listed in Table 1 below:

**Table 1**: Actual sample depths for microzooplankton samples (epifluorescence slide preparations and acid Lugol-fixed samples) during the July-'01 LTOP GLOBEC cruise. W0107a.

| Station, Depth,         | Sample Collection Depths (m) |  |  |  |  |  |  |
|-------------------------|------------------------------|--|--|--|--|--|--|
| <b>Dist. From Shore</b> |                              |  |  |  |  |  |  |
| NH-05, 61m, 10km        | 50, 40, 30, 20, 15, 5        |  |  |  |  |  |  |
| NH-15, 83m, 28km        | 60, 40, 24, 12, 10, 5        |  |  |  |  |  |  |
| NH-25, 296m, 46km       | 70, 50, 30, 20, 15, 10       |  |  |  |  |  |  |
| NH-35, 450m, 65km       | 70, 55, 40, 30, 20, 10       |  |  |  |  |  |  |
| NH-45, 694m, 83km       | 100, 70, 55, 40, 20, 10      |  |  |  |  |  |  |
| NH-65, 2861m, 121km     | 70, 56, 40, 30, 20, 10       |  |  |  |  |  |  |
| NH-85, 2883m, 157km     | 101, 70, 58, 40, 20, 10      |  |  |  |  |  |  |