
AN ABSTRACT OF THE THESIS OF 

Gerald William Silke for the M. S. :!_n Mechanical Engineering 
(Name) (Degree) (Major) 

Date thesis is presented 

Title FORCED VIBRATION OF A BEAM -PENDULUM SYSTEM 

Abstract approved 
(Major professor) 

These studies are concerned with the forced motion of a two - 

degree-of- freedom system consisting of a "flexible beam" supported 

by pendulum type hangers. 

Using an asymptotic method, an approximate solution to the 

nonlinear equations of motion was found. The solution takes the form 

of a series in powers of the amplitude of vibration ratio µ. 

A mechanical model was built and data were taken for purposes 

of verifying the analytical steady state solution. 

The results are presented in the form of maximum amplitude 

of pendulum swing and maximum "beam" deflection curves plotted as 

functions of the forcing frequency ratio. 

Experimental results were found to compare quite favorably 

with the analytically predicted solution except for several resonant 

peaks thought to be a part of the higher order approximations not 

analyzed here. As µ was made smaller, agreement was better. 

As a result of this work, some important phenomena have been 



been discovered which do not appear in the solution to the linearized 

equations of motion. 



FORCED VIBRATION OF A BEAM -PENDULUM SYSTEM 

by 

GERALD WILLIAM SILKE 

A THESIS 

submitted to 

OREGON STATE UNIVERSITY 

in partial fulfillment of 
the requirements for the 

degree of 

MASTER OF SCIENCE 

June 1966 



APPROVED: 

Associate Professor of Mechanical Engineering 

In Charge of Major 

Head of Department of Mechanical Engineering 

Dean of Graduate School 

Date thesis is presented 

Typed by Carol Baker 

C\ ` t. L , j ( \(\ -3 r. 



ACKNOWLEDGMENT 

My sincere thanks to C.E. Smith whose encouragement and 

advice helped greatly in these studies. 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1 

II. FREE VIBRATION 3 

III. ANALYSIS OF FORCED VIBRATION 7 

Idealized Model 
Equations of Motion 
Method of Solution 
Steady State Solution 

IV. EXPERIMENTATION 

Apparatus 
Instrumentation 
Procedure 

V. RESULTS 

VI. DISCUSSION AND CONCLUSION 

VII. SUMMARY AND RECOMMENDATIONS 

BIBLIOGRAPHY 

APPENDIX 

7 

8 

11 

18 

20 

20 
20 
22 

24 

31 

34 

36 

37 



LIST OF FIGURES 

Figure 

1. Idealized model of a beam - pendulum system. 

2. Beam deflection (z) and angle of pendulum swing (0) 
as functions of time for various initial conditions 
when 0 = 2. 

3. Forced beam - pendulum model. 

4. System used for experimentation. 

5. Typical instrumentation circuit. 

6. Maximum 
ratio 5.2 . 

7. Maximum 
ratio S2 . 

8. Maximum 
ratio S2 . 

9. Maximum 
frequency 

10. Maximum 
ratio 52. 

amplitudes (Am, z m 
) as 

amplitudes (0 , z m 
) as 

Page 

functions of frequency 

functions of frequency 

3 

21 

22 

25 

26 

amplitudes (8m,z rn 
) as functions of frequency 

27 

amplitudes (IA (, zm j) as functions of 
ratio S2 . 28 

amplitudes (0 ,z ) as functions of frequency 
29 

5 

7 

m 

m 

m 

m m 

m m 



A 

B 

C 

D 

LIST OF SYMBOLS 

A(a, b), coefficient in the series exapnsion of a' 

B(a,b), coefficient in the series expansion of b' 

C(a,b), coefficient in the series expansion of LP' 

D(a,b), coefficient in the series expansion of 95' 

F(T, x, x', y, y') Function defined in equation (8b) 

M Mass of rigid beam 

T Kinetic energy 

U X /(a2 -1) 

V 5/(1 -ß2) 

V* Potential energy 

a,b Variational parameters (See equations (9)) 

f(T, x, x', y, y') Function defined in equation (8a) 

f0 f 0(a, b, q, 0,'T), Function defined in equation (14a) 

fn s(a,b) Coefficients in the Fourier series expansion of u 
p (See equation (15a)) 

f (0) (a, b) nps Coefficients in the Fourier series expansion of f0 
(See equations (18)) 

Acceleration due to gravity 

g (T, x, x', y, y') Function defined in equation (8c) 

g0(a, b4 , ', T), Function defined in equation (14b) 
g0 

g nps (a, b) 

bnp)s(a,b) 

Coefficients in the Fourier series expansion of w 

(See equation (15b)) 

Coefficients in the Fourier series expansion of g0 
(See equations (18)) 

g 



h (1 -ii) sin 

Length of pendulum 

m Sprung mass 

n, p, s Integers 

t Time 

u u(a, b, 4, 5b ,T), Function defined in equation (15a) 

w w(a, b,4 , ç ,T ), Function defined in equation (15b) 

x, y See equations (6) 

z Deflection of sprung mass from equilibrium 

z Maximum value of z for a given frequency of vibra- 
tion 

z 

T Steady state solution for z ss 

ß/a 

S2 Forcing frequency ratio w / "Jg /.Q 

a Pendulum frequency ratio co 

L 

Sprung mass frequency ratio Nk /m w 
2 

S µ sink 

e Amplitude of support vibration 

Angle of support vibration 

Mass ratio m /(M +m) 

8 Angle of pendulum swing 

A Maximum value of O for given frequency of vibra- 
171 tion 

riz/ .Q 

ß 

m 

q - 



A Steady state solution for A ss 

8 nps nT +pq +s95 

rrri cos 

Amplitude ratio E/ .Q 

T wt 

Variational parameters (see equations (9)) 

Forcing frequency 

Dots denote differentiation with respect to t. 

Primes denote differentiation with respect to T. 

Partial differentiation is indicated by subscripts. 

o Nrrie 

N. r 

µ 

0, LP 

w 



FORCED VIBRATION OF A BEAM- PENDULUM SYSTEM 

I. INTRODUCTION 

The work presented in this paper is concerned with the study 

of forced motion of a beam - pendulum system. The system is an 

idealized model of a certain vibration absorber incorporating a flex- 

ible beam supported at each end by pendulum -type hangers. Accord- 

ing to Sevin (Z, p. 330), absorbers of this type "... appear to be 

gaining increased application... . The platform (or beam) may be 

viewed either as accommodating a single piece of equipment, or as an 

entire floor system supporting numerous pieces of equipment. " 

Analysis of free vibration of this system has been the object of 

studies undertaken by Sevin (2) and Struble and Heinbockel (3, 4). The 

primary interest in these investigations has been a peculiar type of 

"resonance" which occurs when the natural frequency of the beam is 

twice that of the pendulum action of the hangers. This "resonance" 

occurs only when the nonlinear effects are taken into account. 

Since this system finds application as a vibration absorber, it 

is felt that its response to forced vibration would be of interest. No 

exact solution to this nonlinear, two- degree -of- freedom system 

exists, so an approximate method of solution is used in the analysis. 

Results taken from the response of an actual mechanical model 

of the beam -pendulum absorber is used as a check on the approximate 
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solution obtained. It is felt that the results obtained, analytically and 

experimentally, will provide both indications as to the type of response 

to expect and ideas for further study of this interesting system. 
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II. FREE VIBRATION 

The beam - pendulum system introduced by Sevin (2) consists of 

a flexible beam supported by hangers at each end as illustrated in Fig- 

ure 1. In his analysis Sevin considers massless hangers and a beam 

deflection which can be described as a finite sum of sine terms satis- 

fying the end conditions of the beam and having coefficients which are 

functions of time. 

Figure 1. Idealized model of a beam -pendulum system. 

Assuming small angular displacements, no damping and only 

the first model of beam vibration, he arrives at the nonlinear equa- 

tions of motion for the system. Considering several possible initial 

conditions it was found that a type of "instability" occurs when the 

1 First mode refers to beam deflection described only by a half sine 
wave, 
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natural frequency of the beam is twice that of the pendulum action of 

the hangers (A = 2). By numerical integration of the equations of mo- 

tion, this "instability" was found to be a periodic energy transfer be 

tween beam vibrations and pendulum vibrations while the total energy 

of the system remained constant. This energy transfer, known as 

autoparametric excitation, does not appear as a solution when studying 

the linearized equations of motion. 

Struble and Heinbockel (4, 5) used an asymptotic method (3, p. 

220 -262) in their analysis of the same system investigated by Sevin. 

The results give a more descriptive picture of the type of " instability" 

which occurs when 0 = 2. According to their work, the motion may 

vary from no energy transfer, to periodic energy transfer, to total 

energy transfer, depending upon initial conditions. An approximate 

solution to the equations of motion for the "nonresonant" case and a 

procedure for carrying out higher approximations for both "resonant" 

and "nonresonant" cases are also presented by Struble and Heinbockel 

(5). 

Although forced vibration is the main interest of this paper, 

free oscillations of an actual system might be of interest at this point 

Using a mechanical model which is a slightly modified form of the 

idealized model introduced by Sevin and is described later in the text, 

some free vibration oscillations were observed. Only the qualitative 

results will be reproduced here since the primary interest of this 



5 

(a) z0=0 

(c) 

e 

z 

'VWi 

I I 

1 1 

1I 

(I 

I1/1 

IYyËíÿgtËËlÏïiiËilliüílY11i1 

I 

time 

111111°" 1011 
1t19 5"4.+1911 1t.. 

111 

1 
1 

Í,1\II/mm+111 

1 

aÁ11111111111Á0111000 4 

Y6Ë11îË1itliiiYtlliilËAY711Y 

!If :.e.!!!,..;.p 

ïi1..i..il.nYv 

¡e01 
i11V1" 

time -- 

Ipl19!l.;:@O^EIIII!!1l 1 1S 
I E 1 1 !,ß 

1 1:. aYA,.. r.:. .Y:S .I. .1.1t. éi 1 !1 
1AN.1., . . Ye. A:I., 11. pe .1 

' . .: 9 AY. . ..ayr ...,,.. 

. . '1¡lfYiËlnIIYIYËYi4Y,i11gn1¡11.ili.l.+./ü.YU..iYYU¡.p¡/.,a....F^ 
,IiIÏiIÏ11I1Ë111r 

^11111,...i...../ 
Il 

1111111l.111,1 

time 

Figure 2. Beam deflection (z) and angle of pendulum swing 
(e) as functions of time for various initial condi- 
tions when 0 = 2 . 

(b) 60 =0 

!IOW' ,;1, 
oiIIII 

4Y1 

jI 
ì7 

fll IIII 
dI4tII1111il4NIYllI U'I,+/111 

If;' iIl 

Iliit' 

Y 

1t `rYy`t 

-- 

r 

'r 
1 ' h) 4'f d 1i11y,.! 

j'' 1 II 

. 

sErlos 

11 

1li°' n p'¡iilir 
I'IllÌiiiï9íUi11,1 

Ìii ÌiiÍ1Í i 

,I 
6 sIVW"`II,. 

r 

z' 

- 



6 

paper is to study the forced vibrations. By adjusting the parameters 

of the mechanical system such that A = 2, the condition of no energy 

transfer and periodic energy transfer were recorded and are shown in 

Figure 2. Case (a) respresents beamdeflection (z) and angle of pen- 

dulum swing (0) as functions of time when the initial beam deflection 

(z0) is zero and the pendulum is given an initial displacement. Initial 

conditions in (b) are such that the beam has an initial displacement 

when the pendulum deflection is initially zero (00 = 0). The third case 

represents motion when the beam and pendulum displacements are 

"synchronized" such that no energy transfer occurs. Unavoidable 

damping in the system caused oscillations to gradually die out. 



7 

III. ANALYSIS OF FORCED VIBRATION 

Idealized Model 

A modified version of the system studied by Sevin (2) will be 

used in this analysis. The idealized model consists of a rigid beam 

supported by pendulum -type hangers at each end. A mass which is 

constrained to move vertically is suspended from the beam by means 

of a linear spring as shown in Figure 3. The same equations of mo- 

tion govern both the flexible beam system and the spring mass system, 

provided only the first mode of beam vibration is considered. The 

latter was chosen because it lends itself to the building of a mechani- 

cal model with parameters that are easily varied. 

E cos Wt 

Figure 3. Forced beam -pendulum model. 

Forced motion is introduced by means of a harmonically vary- 

ing displacement applied at each support and moving at a fixed angle 

1 



with the horizontal. Damping is neglected. 

Equations of Motion 

The kinetic energy (T) and the potential energy (V *) of the 

system in Figure 3 are given by the equations: 

T = (M +m)/2[1282- 2ew,Q8 sin cot cos (9- )+e 2w2sin2wt] 

+ m /2[ z2 -2i Az sin 0+ 2e wz sin cot sin ] 
(1) 

V* = (M +m)g[ E cos wt sin + ;Q (1 - cos 8)] + k z2/2 . 

Applying Lagrange's equations for time varying constraints, the equa 

tions of motion are found to be: 

. 
e + g/i sin = /.Q z sin 8 + E/Q w cos 2 

wt cos (8 - (2a) 

.. 2 2 
z +k /m z = /U sin 8 + )Q A cos A - E CO cos wt sin (2b) 

where 'i = m/ (M+ m) 

Using (2b) to eliminate z from (2a), and (2a) to eliminate 

from (2b), the following are obtained: 

8 

li 

O 
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15(1- Ti sin2e) +g /i sin() = r1A2sin0 cos 0 -krimi z sine 

+E w2 /e cos wt[cos 0 cos +(1- 7-1)sin °sin f ] 
(3) 

z (1-rsin20)+1s/mz = :262cosA-gsin20 

+E w2cos wt cos O[sin O cos -cos 0 sin ] 

If small angular displacements are assumed such that 02«1, 

sine "-" O and cos 0 `_` 1 (note i1 < 1) equations (3) reduce to: 

+g/20 = 71020-krbm.Q ZO + Ew2/I COS wt[cos +(1-1)0 sin] 
(4) 

z+k/mz= .Qe2-ge2+Ew2 cos wt [ecos - sin0 

Now if the following nondimensional terms are introduced: 

= e, z= r1z:2, T = wt, µ= E/Q, a2=gw2Q, ß2=kw2m 

d 
2( 

cos , h = (1-11) sin , S = rsin dT - ( )' , 

d 
2 ) ( )n 

the equations of motion become: 

e" + a20 = e'20 - ß2ze + µ 0 h cos T+ µX cos T 

(5) 

z" + (3 
2- 

z = O' 
2-a2 

02 + µ AX cos T- µ S cos T 

For later convenience the following substitution is made into equations 

(5). 

t 

X 

ÿ 

= ÿ, _ 



8=µx+µU cos T 

z =µy+µVcos T 

This results in: 

x" + a2 = µf(T,x,x',y,y') + µ2F(T,x,x',y,y') 

y" +ß2y = µg(`r,x,x',y,y'), 

where 

f(T, x, x', y, y') = [(Uh-ß2UVj/2 - ß2xy+ (xh-ß2Uy-ß2Vx)cos T 

+ 

10 

(6) 

(7) 

UVy/2 cos 2T] , (8a) 

F(T, x, x', y, y')=[xx'2+xU2/2-2xx'U sin T- x' U2sin 2T+(x'2U+U3/4)cos T 

-xU2 /2 cos 2T - U3/4 cos 3T] 

g(T,x,x', y, y') = [(x' 2-a -a x 2 )-2x'UsinT+ (xA-2a 
2 xU)cosT 

and where 

+ (UX- a2Ú2 -U2)/2 cos 2T] , 

U =A/(a2-1), V ñ 6/(1-R2) 

(8b) 

(8c) 

2 
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Method of Solution 

The results obtained by Struble and Heinbockel suggest using 

an asymptotic method of analysis of the forced vibration equations. 

Minorsky (1, p. 356 -367) presents a general asymptotic method for 

nonautonomous sytems. The method used here is extended to two 

degrees of freedom but the procedure will in general be the same. 

Equations (7) are of the form discussed by Minorsky. A solu- 

tion in the form of a power series in the small parameter µ, is 

sought: 

x = a. cos + µ u(a, b, LIJ,95,T) + µ 

y = b cos 

2 

5b+µw(a,b,gi,95,T)+ 11 2 

(9) 

where a, b, , cß, are variational parameters which are expected to 

vary slowly with time. 

a' = µA(a, b) + 112 [ ] + 

b' = µB(a,b) + µ2 [ ] + 

= a+11C(a,b)+1.1. 2 [ ] + 

cß' = ß+µD(a,b 
z 

[ ] + 

(10) 

(11) 

2 
The left side of equations (7) can then be expanded in powers of µ 

2 2u/ax2) Subscripts denote partial differentiation (e. g. u xx 

+ [ ] 

] + 

qi' 

. 

= 

" 
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2 +ax 22 au+au+ß x" = µ 2u+u,+2aß u+2auT+2ß uT 
S60 TT 

-2aAsini -2aaC cos ]+ µ [ ] + 
(12) 

y" +ß 2Y =11 [P 2w+ß 2w 
o 
+a2w+w,.r,T+2aß wo+2ß w0,r 2aw,r 

-2ß B sin¢ - 2ß bD cos 0] + µ [ 2 ] +. 

The right side of the same equations take the form: 

µf(T, y'F(T,x,x',y,y') N-µ = µf(a,b,,T)+µ2 , [ ] + ... 
(13) 

µg(T,x,x',y,ÿ') = µg(a,b,ki, 95,T) + µ2 [ ] + ... 

where 

fo(a, b,4i , T) = (Uh- ß 2UV)/2-13 2ab cos cos +(ha cos4i-ß 2Ub cos 95 

(14a) 

-ß 2Va cosq)cos T + (Uh -ß 2UV) /2 cos 2T 

gQ(a, b,4i , 95, T) = (-a2a2 cos 24,)+(2Uaa sinOsinT+(aAcosqi- 2a2aUcosLji)cosT 

(14b) 

+ ( - U2 - U a )/2 cos 2T. 

If u(a, b,4i , T) and w(a, b,i , 95, T) are expressed in triple 

Fourier series:3 

3 All summations are taken from -a to +°G . 

, 

0, 



u = 

n p s 

fnps(a,b) exp (i8nps) 

w gnps(a, 
b) exp (i Onps) 

n p s 

8 
nps 

= nT + :p 4) + SO 

13 

(15a) 

(15b) 

and are substituted into (12) which together with equations (13) are 

inserted into (7), the result is: 

/ fnps(a,b)[a2-(pa + sß + n)2] 

n p s 

n p s 

exp (i 
Anps ) 

= f0 + 2a aCcos 4J+ 2aA sinLIJ 

gnps(a, b)[132 - ( + sß + n)2] exp (i nps 

= g0+ cos 95+ 2ß B sin . 

Only terms of the first order of µ have been retained after substi- 

tution. 

The periodic functions f0 and g0 can also be expressed 

in triple Fourier series. 

L / 

L 

= 

L 



where 

f 0 ^ nps 
(a, b) exp (i enp5) 

n p s 

g0 
= grips (a, b) exp (i enps) 

n p s 

2r ('2Tr 2r 2Tr 

fnps (a, b) 18 r3 J f0exp (-i enps)dTdd 
0 0 0 

f 
2Tr 2Tr 

gPs (a, b) = 1/8Tr3 J 
0 0 

Hence equations (16) become: 

g0 exp (-i en s)dTdd 
P 

/fnps (a, b)[ a 
2 

(pa +sß+n)2] exp 

n p s 

= 2a aC cos 4J+ 2a A sin41+ ) f(0) (a, b) exp (i 6 ) 

L LL nps nps 

n p s 

/gnps(a'b)[ß2- (pa +sß +n)2] exp 

n p s 

= 2ß bD cos + 213 B sin + /g(0) nps 
n p s 

14 

(17) 

(18) 

(19) 

a, b) exp (i 6n s) P 

J 
0 

L 

L 

- J 

2n 

Li L 

LLLLLLrrr 



If in equations (19) f nps (a, b) and g nps (a, b) are chosen 

such that 

fnps (a, b) = fnp)s (a, b)/[ a 2- (pa + sß + n)2] 

2 - (pa sß+n)2 a + 0 

gn (a, b) = gri0s (a, b)/[ß 2 - (pa + sß + n)2] 
p p 

pa+sß+n)2 , 

then to eliminate resonant terms in (19), A, B, C, and D are 

chosen such that 

2aa C cos qi+ 2a A sin = (0) (a, b) exp (i A nps ) nps 
n p s 

a - (pa + sß + n)2 = 0 

2ßbD cos tp+ 2ß B sin st) 

15 

(20) 

(2la) 

»(0) 
nP s 

(a, 
b) 

exp 
(1 

6n 
p s ) 

n p s 

(21b) 

ß 2 - (pa+ sß + n)2 = 0. 

= 

Equation (21a), with p = 1, s = n = 0, is satisfied when 

A = C = O. Equation (21b), letting s = 1, p = n = 0, is satisfied 

132 - 0 

Li) - ) If L 

2 

- y 
p 
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when B = D = 0. Using (15a,b), (20), (18), and (14a,b) to solve for 

u and w, after considerable manipulation, yields: 

u = [ (Uh - ß2UV)/2a2] + [(Uh - ß2UV)/2(a2-4)] cos 2T 

- [ (ha -ß2Va)/2(2a +1)] cos (T +i) +[(ha- ß2Va )/2(2a -1)] cos (T -4) 

- [ß2ub/2(a2-(1+ß)2)] cos (T+95)-[ß2u14/2(a2-(1-ß)2)]cos (T- ) 

+[ß ab/2(2a +ß)] cos (LP+ [ß ab /2(2a -ß)] cos (4)-0) (22a) 

w = [ (UX -U2(1 +a2))/2(ß2 -4)] cos 2T +[(aX -.2a aU(a +1))/2(ß2- (1 +02)]` 

2 2 
cos(T+) + [ (aA-2a aU(a- -(1-a) )] 

-[a2a2 /(3 2 -4a2)] cos 2Lp 

cos(T 

(22b) 

Equations (22) should be valid provided that parameters are such that 

a near resonance condition does not occur. If P = 2a, the resonant 

terms in (22) can be removed by going back to equations (21) and 

solving once again for A, B, C, and D, by including terms with 

p= 1, s = -1, n =0 in21a and terms with p =2, n = s =0 in 

21b. Doing this results in a set of equations almost identical to those 

solved by Struble and Heinbockel (5) and would yield similar results 

for the variational parameters. 

Combining (22) with (9), (10), and (11) gives a solution for 

. 
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x and y to the first order of µ . If this result and equations (6) 

are combined, the nondimensional parameters 9 and z , which 

are of primary interest, follow as: 

= cosV(a2-1)] cos T+ µ acos {[ßr1 sin 2t((1-10-32)/4a2(a2-1K1-32)] 

+[ NFsin 4((l-1)-132)/4(a2-1)(a2-4)(1-ß2)] cos 2T 

+[a sin t((1-r0-ß2)/2(2a+1)(ß2-1)] cos(T 4) 

+[ a sin t((1 -1) -ß 2Y2(2a- l)(ß 2 -1)] cos (T -4) 

-[bß 2NFcos t/2(a2-1)(a2.(l+(3) 2)] cos(T+ ) 

-[b13 2NF cos 1)(a2- cos(T- 

+[ ß ab/2(2a+13)] cos (4J+15)-[13 ab/2(2a-13)] cos ($ -p)} yb)} 

(23a) 

z =µ[ri sint /(1 -ß2)] cosT+ µb cos 95+µ2 {[icos2Oa2- 1)2(443 )]cos2T 

where 

+ [aArncos t(a+1)2/2(1-a2) W2-0+02)] cos(T+LP) 

+ [aA cos t (a- 1)2(1- ,a2)(3 2- (1 -a)2)] cos (T -4) 

+ [ a2a2/ (4a2 -(3 2)] cos 21} + µ { } + 

a' = b' = 0 

L%' = a 

R. 

(23b) 

(24) 

3 + µ { } + 

9s1 

B 
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Steady State Solution 

When µ = 0 in equations (7), the "zero" order solution (9) 

is given by: 

x=a cos 

y=bcos95 . 

These are complementary solutions, where a and b are con- 

stants depending upon initial conditions. With a small amount of 

damping present this motion would gradually die out. According to 

the results obtained for the first order solution in µ, the varia- 

tional parameters (a and b) are still constants provided a near 

resonance condition does not exist. It might be expected then, and 

will be assumed here, that damping in the system will cause terms 

containing a factor a or b to gradually die out. On this basis 

a steady state solution is constructed and will be compared later 

with experimental work. The simplified equations (23a, b) as a -0 

and b 0 become: -- 
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0 = p.[Nrn cos 522(1-522)] cos T ss 

µ 
2{ sin 2,(A2 +(r)- 1)S22)S24/2(1- S22)(Ó 422)(1- 4522)] (cos2T -2522) 

(25) 

z = µ [rl sin 22/ -A2)] cos T +p. cos2 S26(1-S22)2(4522- )]cos2T, 

where the substitution S2 = 1 /a, and A = ß /a, have been used. 

ss 

5 
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IV. EXPERIMENTATION 

Apparatus 

A logical means of checking analytical results is to construct 

a mechanical model and observe the motion. As a part of this study, 

a model was built in such a manner that harmonic amplitude variation 

could be applied to the supports. The mechanical model was pat- 

terned after the idealized model pictured in Figure 3. A variable 

speed motor supplied motion to the supports. 

Such parameters as amplitude of vibration (E ), angle of vi- 

bration (j, pendulum natural frequency ('fig /1 ), and spring mass 

natural frequency (.k /m), were made adjustable so that various 

combinations of these could be tested. 

The completed apparatus is pictured in Figure 4. A straight 

line linkage constrained the sprung mass to move vertically. Small, 

lightly oiled ball bearings were incorporated at all moving joints to 

minimize friction and damping. 

Instrumentation 

It was decided upon to measure amplitude of pendulum swing 

(0 ), and spring mass deflection (z) to verify analytical results. 

Photocells provided a simple and economical means of 
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Figure 4. System used for experimentation. 

instrumentation for this project. A shield fastened to the moving part, 

of which the motion is to be measured, was used to intercept light 

passing from a spotlight to a selenium photocell. As the shield varied 

in position the variation of illumination on the photocell caused the out- 

put current to change. By masking the area of the photocell, the out- 

put current could be made nearly proportional to deflection. A typi- 

cal schematic of the circuit involved is shown in Figure 5. 
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photocells .moving shield light source 

Figure 5. Typical instrumentation circuit. 

The variable resistor provides a means of adjusting the cur- 

rent for scale purposes. Bausch and Lomb V. O. M. -5 strip chart 

recorders were used to make a permanent record of the sinusoidally 

varying output current. Both the pendulum and the sprung mass mo- 

tions were later analyzed and measured from these records. 

Procedure 

Maximum amplitude as a function of frequency will be of main 

interest here. Frequency of vibration was variable from 0 to 6. 7 

cycles per second. For a given set of parameters (fixing µ,:Q,A,1) 

the frequency was varied and the maximum amplitudes (0 , z m m 
were measured. The resulting amplitude frequency curves are shown 

in Chapter V. 
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Pendulum swing was limited to f 20 degrees with an accuracy 

of about ±1 degree. The sprung mass deflection range was ±1 inch 

with an accuracy of about ±0. 03 inch. 
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V. RESULTS 

Experimental work was done to verify the steady -state solution 

presented in equations (25). Since maximum amplitude of vibration is 

usually of primary importance, a comparison is made of maximum 

amplitude results obtained by analytical and experimental procedure. 

Equations (25), along with the procedure described in the appendix, 

were used to calculate maximum positive and maximum negative 

values of 0 and z as functions of the nondimensional frequency 

ratio SZ . 

The most interesting cases of forced vibration occur when 

n7r /2, n = 0, 1, 2, , since all terms of equations (25) are re- 

tained. Choosing = rrr4 and fixing parameters k = 2. 85 inches, 

= 1.56, and r) = 0. 53, curves were plotted for the three different 

values of µ shown in Figures 6, 7, and 8. These parameters are 

within the limits of the mechanical system and will give some idea of 

the effect of the size of µ on the results. The analytical curves 

along with points of experimental data are shown in these figures. 

Next choosing = 0, only the second order µ term in the 

expression for z remains. With .Q = 2. 85 inches, A = 1. 56, 
ss 

and r] = 0. 53, curves were plotted and data were taken as shown in 

Figure 9. The analytical curves are symmetric about the abscissa 

so the absolute values of O and z are presented. m m 
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Because the case when 0 = 2 is of so much interest in free 

vibration, it was chosen for investigation of forced vibration. With 

f = 4. 68 inches, d = 2, ri = 0. 53, and µ = 0. 0668, curves and data 

are shown in Figure 10. 

Experimental values, represented as large dots, and experi- 

mental resonance, indicated by arrows, are shown superimposed on 

the analytical curves for the various parameters. In some instances 

the steady state amplitudes of vibration appeared in the form of 

"beats. " This periodic variation in amplitude is represented on the 

curves as two dots connected by a solid line. 
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VI. DISCUSSION AND CONCLUSION 

The experimental results presented in Chapter V compare 

quite favorably with those predicted by the steady state solution (25). 

The photocell instrumentation used was sensitive but difficult to keep 

calibrated in some cases. Results, however, are fairly well within 

the limits of instrument error mentioned in Chapter IV. 

As can be seen from the experimental results presented, res- 

onance did not occur everywhere predicted; and instability occurred 

sometimes where it was not predicted. According to equations (25), 

resonance should occur when S2 = 1/2 and S2= A/2. In Figures 8 

and 9 an unstable condition was observed when S2= A/2. As µ is 

decreased this instability becomes a large amplitude as in Figure 7 

and nearly unnoticeable in Figure 6. 

No resonance was observed when S2= 1/2 in any of the cases 

studied. A slight amount of distortion of harmonic motion was pres- 

ent, but there was little effect on the amplitude. The absence of these 

resonance effects might be explained by the fact that the resonant 

peaks are extremely narrow and the small amount of damping would 

cancel their effect. 

Experimental results indicate resonance occurring where it 

was not expected according to equations (25). In particular, Figure 

10 shows resonance at S2= 3, 4; Figure 9 at S2= 1 + A; Figure 8 at 
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S2= 2, 1 + .; and Figure 7 at 5-2= 2, 1 + A. These peaks decrease in 

effect as µ is made smaller, which is to be expected. They are 

probably predictable by higher order µ terms if the approximate 

solution were carried out retaining these terms. If p. is kept small 

enough, these effects appear to be negligible when a slight amount of 

damping is present, as was the case in the experimental model used 

here. 

It is interesting to note that the second term on the right side 

of top equation (25) indicates that A becomes a very large nega- 
ss 

tive number as S2 becomes large, provided 1. If i1 = 1 this 

term converges. This phenomenon seems reasonable since 1 

indicates the presence of mass (M) in the rigid beam of the ideal- 

ized system. For large frequencies of oscillation the acceleration 

of this mass becomes very large thus giving rise to large displace- 

ments. When = 1 the only mass in the system appears as the 

mass isolated by the spring and the action of the hangers so that large 

accelerations are not present. 

Large enough frequencies of oscillation were not available for 

doing extensive studies of this behavior; however, in Figure 7 and 8 

a noticeable shift in this direction is observed. The effect could be 

made more apparent by either increasing the frequency ratio or de- 

creasing 

It would be difficult here to give a specific range of p. where 

11 

11 

it 

1 . 

# 
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the analytical and experimental results are in good agreement since 

only a few examples were tried. The results obtained, however, do 

show good agreement except near the unpredicted resonant peaks. For 

the smaller values of µ chosen, the agreement is even better, as 

would be expected. 
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VII. SUMMARY AND RECOMMENDATIONS 

Using an asypmtotic method described in Minorsky (1, p. 356- 

367) an approximate solution to the equations of motion has been ob- 

tained for the beam -pendulum system. Damping was neglected and 

small angular deflections assumed. The approximation, involving 

only first and second order terms in the series development in powers 

of the amplitude ratio µ, was reduced to a steady state solution. 

With the aid of a mechanical model, maximum amplitude of 

pendulum swing and mass deflection data were plotted as functions of 

frequency ratio O. Comparison of the experimental results with the 

analytical results showed good agreement except for what are thought 

to be higher order resonant effects. These resonant peaks occurred 

at forcing frequency ratios of S2= 2, 1+ A, 2A . As µ was made 

smaller these effects diminished in intensity. 

Further analytical work might be carried out to obtain higher 

order approximations. A stability analysis would also be interesting. 

In the experimental area pendulum deflection at higher frequency 

might prove interesting when 1. If more experimental work is 

carried out, it is recommended that a more accurate method of in- 

strumentation be used. 

A beam -pendulum natural frequency ratio (A) greater than 

two might have more practical interest than those ratios studied here. 

q # 
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It seems that the natural frequency of a beam would be much greater 

than that of the pendulum type hangers. 
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APPENDIX 

The maximum positive and negative values of the following 

functions of T are listed below. 

A cos T + B cos 2T 

Maximum 
positive 

Maximum 
negative 

IAI> 4IBI IAI + B B - IAI 

IAI < 4IBI 
B > 0 IAI + B - (A2 +8B2)/8B 

B < 0 - (A2 +8B2)/8B B - IA 

C cos T+ D(cos 2T - 2512) 

Maximum 
positive 

Maximum 
negative 

ICI > 2IDI ICI +D(1 -2522) D(1.- 2522) -ICI 

Ici <2IDI 
D > 0 ICI +D(1 -2522) -(C2 +8DS22V4D 

D < 0 -(C2 +8DS22)/4D D(1 -2522) - ICI 

- 


