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The link between aboveground net primary productivity (ANPP) and resource gradients 

generated by complex terrain (solar radiation, nutrients, and moisture) has been 

established in the literature. Belowground ecosystem stocks and functions, such as soil 

organic carbon (SOC), dissolved organic carbon (DOC), and belowground productivity 

have also been related to the same topography and resource distributions, and therefore it 

is expected that they share spatial and temporal patterns with ANPP. However, stand 

structure on complex terrain is a function of multiple trajectories of forest development 

that interact with existing resource gradients, creating feedbacks that complicate the 

relationships between resource availability and ANPP. On a 96 ha forested watershed in 

the H.J. Andrews Experimental Forest in the Western Cascades range of Oregon, 

spatiotemporal heterogeneity in the secondary succession of a replanted Pseudotsuga-

menziesii stand following harvest results from the interaction of stand composition and 

abiotic drivers and may create unique “hot spots” and “hot moments” that complicate 



gradient relationships. In this dissertation, I tested the hypotheses that (chapter 3) 

multiple successional trajectories exist and can be predicted from a general linear model 

using specific topographic, historical, and biological parameters and that an estimated 

"maximum ANPP" may better represent stand characteristics than ANPP measured at a 

particular moment in time. I also test that (chapter 4) the distribution of light fraction 

carbon (LFC; C with a density of less than 1.85 g/cm3) is spatially variable, elevated on 

hardwood-initiated sites (hardwood biomass > 50% of biomass), and positively correlated 

with litter fall and ANPP. Chapter 4 also tests  that heavy fraction carbon (HFC; C with a 

density of greater than 1.85 g/cm3) is a function of both soil mineralogy, stand 

composition, and ANPP, such that edges observed spatially in site mineralogy (changes in 

soil type) are reflected in sharp changes in the composition of the forest community and 

the magnitude of HFC stores. Finally, I hypothesized (chapter 5) that in complex terrain, 

dissolved organic carbon (DOC) export can be predicted from landform characteristics, 

relates to ANPP, and may be measured by several methods which are well-correlated with 

one another. In chapter 6, I discuss how litter fall measurements can be extrapolated to a 

watershed extent, and use litter fall as an example of the error that can occur in scaling up 

measurements taken at a small scale, within a heterogeneous stand on complex terrain, to 

a landscape scale extent.  
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CHAPTER 1 

A REVIEW OF THE RELEVANT LITERATURE REGARDING 
INTERACTIONS BETWEEN STAND STRUCTURE, SITE HISTORY, AND 

ENVIRONMENTAL DRIVERS IN COMPLEX TERRAIN 

1.1 Introduction and Literature Review 

The  primary objectives of this dissertation are to qualify how the complex interactions 

between aboveground stand structure, site history, and environmental conditions impact 

belowground resource distributions and availability, and in turn how heterogeneity in 

these belowground resource distributions affect how we understand ecosystem processes 

and outputs at the landscape scale. The specific aboveground variables assessed are 

biomass (Mg/ha), aboveground net primary productivity (ANPP) (Mg/ha/yr), litter fall 

(Mg/ha/yr) and species composition (hardwood or conifer dominance). The specific 

belowground variables assessed are soil type, soil moisture capacity, soil depth, percent 

rock, carbon in the light (<1.85 Mg/ha) and heavy (>1.85 Mg/ha) fractions, dissolved 

organic carbon (DOC) concentration, and potential nitrogen mineralization (measured 

through ammonium and ammonium nitrate assays). In this opening chapter of this 

dissertation, I summarize the relevant literature on the (1) stand structure spatially, 

temporally, and developmentally, (2) forest soil carbon (both in aggregates and 

dissolved), and (3) forest soil nitrogen. In the second chapter, I detail the history of the 

site of “Watershed 1” (WS1) where this study takes place. In the third chapter, I question 

how stand structure evolved successionally over time on this watershed, looking at 

variability, peaks in development, and species composition, as well as questioning the 
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metric of productivity. In the fourth chapter, I ask the question of how belowground 

carbon relates to productivity, biomass, species composition, potential nitrogen 

mineralization and litter fall. In the fifth chapter, I ask how concentrations of dissolved 

organic carbon relate to productivity, biomass, species composition, and litter fall. In the 

sixth chapter, I use litter fall as an example of a spatially heterogeneous C store and 

explore uncertainty in extrapolation. In all of the primary chapter topics—ANPP, C stores 

in the soil, DOC, and litter fall—I find that distributions of resources are heterogeneous 

spatially and that this spatial heterogeneity manifests itself in stand structure, which in 

turn complicates our interpretation of drivers and responses in the forest ecosystem. 

Heterogeneity is not new or unfamiliar in ecology, but has not been well documented at a 

within-watershed scale, especially on complex terrain. If the ecosystem processes 

occurring in WS1 are indicative of the behaviors of similar landscapes in the Western 

Cascades or of complex terrains in general, then process based models, which ultimately 

function across differential grids of empirical functions, may not be accurate in the 

estimations they make for large-scale carbon stores an fluxes. Thus, in the final chapter, I 

summarize the findings and discuss the inherent uncertainty in qualifying these findings 

at a landscape scale, especially with regards to feedback loops and site history. The goal 

of this dissertation is not to divulge any “one size fits all” equations about forest 

ecosystems but rather to ask the small-scale questions that may lead to large error when 

extrapolated up to large scale models in order to validate ( or disprove) assumptions of 

homogeneity for plant-soil relationships in the complex terrain of the Western Cascades.   
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1.2 Succession, Nutrient Balance, and Stand Structure 
 

1.2.1. The history of successional theory 
 

The possibility that multiple successional trajectories exist, and the implications of their 

existence on a deeply incised forested watershed, forms the theoretical foundation of this 

dissertation. When succession proceeds along multiple trajectories, correlations between 

stand structure and belowground resource stores differ across the landscape. However, 

although I employ succession as a mechanism for spatial differences, the initial 

conceptualization of succession was built on ecological determinism (Christensen and 

Peet, 1991). When Clements theorized that the temporal development of all plant 

communities was predictable, he suggested that a forest ecosystem would ultimate 

converging on a final equilibrium state (Clements in Christensen and Peet, 1991). His 

argument centered around the view that development of a local plant community is 

analogous to the development of an organismal life form, with the prime driver of the 

“life history” of the plant community as regional climate. As a consequence of the five 

ecological processes he identified as creation, arrival, development, interaction, and 

modification, a plant community reaches this permanent equilibrium (“stabilization”) 

with its local conditions that inhibit the re-encroachment of early-seral species (Clements, 

1916). 

Setting the stage for trajectory-based views of succession, Clementian theory was 

strongly criticized by Gleason (1917, 1926, 1927, 1939) and Tansley (1935). Gleason 

renounced the holistic mindset of the plant science community and emphasized that 
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stochasticity was inherent in the development of individual plant organisms and species. 

Tansley argued that topography was also a forcing factor driving the successional 

trajectory to its stable state, theorizing that under the same climatic conditions, 

topographic position (on a rocky ridge or not, for example) would influence the final 

plant community living in a place. Unifying theories of succession that incorporated both 

deterministic and stochastic components were proposed nearly thirty years later by 

Whittaker (1953), Margalef (1958, 1963, 1968), and Odum (1969). Whittaker advised 

that a stable state was actually just an image taken from a stable continuum across a 

landscape; Margalef applied information theory to successional theory to suggest that 

ecological and trophic complexity that develops over time is the manifestation of 

accumulating ecological information, and Odum proposed that these trophic levels each 

represented a set of ecosystem properties following its own trajectory towards a 

homeostasis of maximum biomass and diversity. 

Obtaining experimental support for these more complex successional theories was 

difficult due to lack of long term experiments, leading scientists to perceive ecological 

succession in the context of local scale observations and experiments, and potentially 

inspiring theory towards reductionist and non-equilibrium paradigms that can be 

observed on the small scale (Pickett, 1976). This acceptance of non-equilibrium allowed 

for the incorporation of feedbacks (reactive patterns) between plants and the 

environments, rather than suggesting lop-sided environmental control over plant 

composition and form (Connell and Slayter, 1977;  Drury and Nisbet, 1973; Noble and 

Slayter, 1980;  Peet and Christensen, 1980). Horn (1975, 1976) summarized the holistic 
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and reductionist approached by suggesting that successional trajectories for a plant 

community exist and reflect spatiotemporal resource gradients influenced by stochasticity. 

However, creating a mechanistic model that encompasses all possible trajectories for all 

possible sites is impossible; the most ameliorative perspective is that each successional 

trajectory represents one of many possible interplays between population and landscape. 

This perspective is useful for both scientific and managerial understanding of forest 

ecosystems because it employs observation of a specific plant community in the context 

of theoretical relationships between plant and landscape, such that extrapolations can be 

made to scales and times beyond current spatiotemporal capacity (Glenn-Lewin and van 

der Maarel, 1992; Miles, 1987).  

1.2.2. End goals of the multiple pathways and their implications 
 

It has been suggested that succession in many ecosystems is not entirely deterministic, 

but also rooted in stochasticity (Botkin, 1992; Glenn-Lewin, 1980; Gleason, 1927; Peet, 

1988). Succession nominally implies a forwards-moving, entropic process, so a 

traditional view of succession is developmental, a series of stages from an initial or 

pioneer community to a mature or stable community (or communities, in the case of 

divergence). However, neither convergence to a steady state or divergence to fragmented 

communities is ecological truism, nor have consistent pathways been observed on the 

same type of site, or even the same site (Glenn-Lewin, 1980; D’Angela, 1990; Inouye 

and Tilman, 1988). Multiple pathways in primary succession have been shown in various 

ecosystems including dunes, glacial landscapes, gravel pits, and salt marshes by 
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Bradshaw (1982), Borgegard(1990), Londo (1974), and Matthews (1979). Abrams et al. 

(1985) and Miles (1987) documented multiple pathways in secondary succession in 

varieties of Pinus forests recovering from fire events.  

In experimental studies, vascular plant diversity is shown to increase with decreasing soil 

fertility and productivity. An early argument for this behavior was that as soil fertility 

declines, diversity is promoted by greater spatial heterogeneity in residual resources. 

Tilman (1988, 1900) showed that divergence between pathways with respect to species 

dominance resulted in landscape modification, reducing the presence of other species by 

preventing establishment. In this case, the prevention mechanism was related to changes 

in nutrient stores, rather than in microbial communities, which can be tracked by their 

signature lipid outputs . However, this finding and its support in Carney, Matson, and 

Bohannon (2004) differed from experimental works by Cordell (2001), DeDeyn et al. 

(2004), Scherber et al. (2010).  Ecosystem retrogression reduces biomass, NPP, and 

biodiversity at a small scale, but across a large extent the existence of patches may 

suggest a diversity increase that can be attributed to microbial or topographic reactions to 

change in stand composition and structure.  

1.2.3. Nutrient Balances 

Apart from the discussion of succession, it is known that the structure of vegetation 

influences light, water, and nutrient balances in a forested ecosystem.  For example, 

water balance is affected by the spatial arrangement of plants, both vertically and 

horizontally, through the mechanisms interception, transpiration, and evaporation (Calder, 
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1990). Succession promotes changes in this plant structure and therefore changes in 

ecosystem stocks. Greenwood (1992) showed that conversion from a non-woody to a 

forested ecosystem causes change in ecosystem balances by affecting the plants’ 

relationship with the soil. Since succession does not necessarily proceed uniformly across 

a single landscape, belowground resources may be affected in different ways by different 

aboveground trajectories. In Northern Europe, it was shown that the planting of Pinus 

sylvestris L. and Picea abies coupled with the onset of secondary succession in deciduous 

broad-leaved forest changed the fundamental hydrology of the ecosystem by promoting 

two alternate states: acceleration towards late successional communities and return to 

pioneer species (Griese, 1997; Leushner 1994, 2001). 

So far this document has discussed succession through a description of the relationships 

between biomass, productivity, and diversity, and how these change and diverge over 

time and space. When dealing with nutrient balances, it is essential to focus on species 

composition and vegetative structure; studies of primary and secondary plant 

communities are evaluated based on these variables (biomass, productivity, etc.) 

responses’ to resource availability (Bormann and Sidle, 1990; Christensen and Peet, 1991; 

Emmer, 1995; Gerlauch et al., 1994; Leuscher et al., 1993; Miles, 1979; Tilman, 1988; 

Vierick, 1970; Vitousek and Reiners, 1975; Walker et al., 1981). In such a view, 

competition for water, nutrients and light is the driving factor in succession, although it 

has been noted that studies specifically focused on net primary production (NPP) 

generally assess light and nitrogen availability at the loss of assessment of water and 

belowground resources (Bazzaz and Snipe, 1987; Leuscher and Rode, 1999). For 
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example, Tilman’s (1988) work on resource ratios deals only with the light to nitrogen 

relationship and its effect on NPP.  Likewise, Chapin et al. (1994) attributed primary 

successional pathways at Glacier Bay to availability of aboveground resources. The 

blossoming of ecohydrology in the early 2000’s incited the idea that vegetation and soil 

were interactively and dynamically connected by means of water (Bond, 2003; Porporato 

and Rodriguez-Iturbe, 2000; Zalewski, 2000).  Soil water stores, assessed as functions of 

the plant and topographical features that influence them, may be used as a simple proxy 

for belowground resource availability, and hypotheses regarding ecosystem balances 

developed. 

The relationships between plants structure and soil water stores can be characterized by 

two primary types of influence: transpirational (direct) and non-transpirational (indirect). 

The direct influences are (1) marginal rate, (2) duration, and (3) quality of transpiration, 

which are determined by stand structure. Marginal rate is related to canopy architecture- a 

greater surface area increases transpiration rate; duration is related to plant phrenology 

and responses to the growing season; transpiration quantity is related to vertical root 

extension- more roots can access more water. Non-transpirational (indirect) influences on 

the soil water include interception loss, net primary productivity, litter fall, and leaf area 

index (LAI). As examples, interception loss directly influences the amount of water that 

reaches the soil; plant productivity and litter fall influence the accumulation of forest 

floor, mitigating rainwater entry into the soil water pool, and LAI controls the radiation 

reaching the forest floor, moderating the direct evaporation of soil water. Belowground 

resources, then, through the means of structure and soil water distributions, should be 
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considered as a function of plant biomass (including biomass in various components such 

as leaves), productivity (aboveground), and species (for the phenological and 

phenotypical effects).  

1.2.4. Feedbacks- it's complicated 

Interactions between soil and plant structure exist and are complicated by species’ 

preferences. Anthropromorphism for specific soil conditions apply across resource 

gradients such that conditions that are favorable for some voraciously growing species 

such as yellow-poplar may be deadly for more conservative organisms such as long-leaf 

pine. For example, in a multi-year study by Dohrenbusch (1992), when acidic soil 

conditions were ameliorated through liming or fertilization with 120 kg P2O5 or bitter 

spar, losses of trees of 70-90% were seen in a mixed spruce-beech-Douglas-fir stands in 

all species except for Sorbus americana (mountain ash).The rich soil attracted new pests 

and only mountain ash could resist them. Additionally, in the same study, nitrogen uptake 

as an indicator of health was not homogeneous between species; fir, spruce, and Douglas-

fir thrived in areas that were poorly supplied with nitrogen; beech, alder, and birch 

thrived in areas of very high nitrogen. Over time, this study also showed no significant 

change in the nitrogen concentrations of the Douglas-firs, suggesting that nutrient 

deficiencies in a site persisted even with stand development and may relate to both 

species and site (Hurlbert, 1984; Ulrich 1970 and 1971; Ulrich, 1975).  

In summary, multiple pathways of succession lead to divergence at an ecosystem scale 

that may increase or decrease biodiversity, often depending on nutrient needs and 
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availability. Losses of soil nutrients as a result of reduced biodiversity at the small scale 

are coupled with increases due to species preferences on the large scale. In addition, site 

history, topography, and resource gradients generate heterogeneous backgrounds on 

which this multi-scaled nutrient flux occurs. Separating out any direct interactions 

between structure and nutrient balances is, mechanistically, impossible. However, I 

attempt attempt to use long-term ecological data to improve how we conceive of biomass, 

productivity, biodiversity, and nutrient balances at multiple scales, and to show how 

spatiotemporal patterns exist and developed in one watershed. This work is a case study 

intended at improving methods for future analyses. With adequate treatment of the 

included variables, management and scientific regimes can be designed that achieve 

objectives and increase human understanding of the forest ecosystem.  
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1.3 Carbon 

1.3.1 The Carbon Cycle 

It has been estimated that globally forests store 86% of the planet’s aboveground carbon 

and 73% of the carbon belowground (Sedjo, 1993). This carbon is exchanged between a 

series of “stores” or “pools” (such as leaves, forest floor, bole, and soil aggregates) 

through various processes (here called “fluxes” or “flows”). I define the system of carbon 

cycling in this system to the terrestrial stocks and fluxes that remain onsite (thus 

excluding atmospheric stocks or carbon removed for wood products or fuel). The 

following flow chart describes, roughly, the important pools in the forest carbon cycle 

and the flows of carbon through those pools. These flows are named roughly in order to 

fit the included space and the names should not be taken as the scientific norm. 
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Figure 1. Flow Chart of the Carbon Cycle 

In this analysis, I largely focus on the left side of the chart, studying the carbon pools in 

the tree biomass and soil fractions, to some degree categorizing the microbial pools, and 

largely ignoring the archived pool. The scope of our analysis is understanding how stand 

structure affect the inputs to and storage in soil carbon the implications of these patterns 

across space and time. 

1.3.2. Storage and Allocation in Aboveground Biomass, Productivity 

The allocation of carbon within living tree biomass is a significant carbon store in many 

forests that changes with stand development (Comeau and Kimmins, 1989; Gower et al., 

1992; Lutz, 2005; Sedjo, 1992). For example, during establishment, trees allocate a large 
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amount of carbon to photosynthetic tissue; once the stand structure has been established, 

the bole receives more carbon to build vascular tissue for water conductance (Franklin et 

al., 2002; Lutz, 2005; Oliver and Larson, 1996).  Gower et al. (1992) showed that 

experimentally changing nutrient and water balances on a site affected biomass allocation, 

particularly in understory trees, where foliar biomass had not yet reached a plateau. 

Changes in carbon allocation can be related to both site and species (Valentini et al., 

1996).  Attribution of structural changes to soil quality in forests has been well studied, 

but the effects of structural complexity as a function of both stand development and 

composition on soil carbon in particular is not well known (Franklin et al., 2002; Gower 

et al., 1992; Lutz, 2005; Kramer et al., 2001; Spies and Franklin, 1999; Tappeiner et al., 

1997). 

ANPP has been often considered as a metric of vegetative function, biogeochemical 

cycling, and the availability of ecosystem services (Ito, 2011). I define ANPP as the 

change in biomass plus mortality plus ingrowth on an annual basis (Acker et al., 1998). 

Aboveground biomass must be considered as functionally related to, but not equivalent to 

ANPP. Although increases in aboveground biomass cause by definition increases in 

ANPP, rapid turnover of plants or their components also may cause increases in 

productivity by increasing the mortality component. Land-use arguments in favor of short 

turnover crops, for example, suggest that the increased turnover of grasslands may 

provide more carbon sequestration (as an ecosystem service) than a fully developed forest 

(Franklin and Debell, 1988; Fung et al., 2005; White et al., 2011). Global models have 

shown that ANPP is not spatially homogeneous; at an ecosystem scale heterogeneity also 
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applies. Given that this heterogeneity is related to structure, and structure to successional 

state, the question of when to measure ANPP in order to correlate it with vegetative 

function, biogeochemical cycles, and services need be asked. In this document I approach 

that question, with particular interest to how ANPP is related to stores of carbon in the 

soil.  I largely focus on the left side of the chart, studying the carbon pools in the tree 

biomass and soil fractions, to some degree categorizing the microbial pools, and largely 

ignoring the archived pool (carbon stored in buried wood that may be milennia old). The 

scope of this analysis is understanding how stand structure affect the inputs to and storage 

in soil carbon the implications of these patterns across space and time. 

1.3.3. Mortality and Litter Fall 

Mortality contributes carbon to the soil through the decomposition of coarse woody 

debris (CWD). Vogt (1991) estimated that 60 percent of a mixed forest’s detrital biomass 

is composed of residues from coarse woody debris. In forest ecosystems, the drivers and 

patterns of mortality are well-known; in the Pacific Northwest Douglas-fir forest in this 

study, mortality is associated with density-dependent death resulting from canopy closure. 

The physical mechanisms causing death are suppression and mechanical failure (Harmon, 

1991; Christensen and Peet, 1981; Bormann et al., 1995; Lutz, 2005). Mortality as a part 

of stand development is driver of successional change, particularly affecting species 

composition, as new intolerant species may form in the gaps left behind by downed trees. 

In this case, the quantity and quality of carbon supplied via mortality has both short and 

long-term effects on the soil. Directly, carbon is supplied to the soil by the downed tree’s 
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biomass and the quality of that carbon depends on the species and the microbial 

community present. Indirectly, the loss of a tree changes the stand structure, so that new 

species may form and change the deposition of litter and the community of microbes in a 

particular area (Harmon, 1991). 

Litter deposition (litter fall) is a critical component in this analysis, as it represents a 

consistent contribution of carbon from the aboveground biomass to the soil carbon store. 

It has been estimated that at a global level, litter fluxes may be 10 times that of human 

emissions (Adair et al., 1996).  A large litter fall flux, then, represents increased ANPP, 

but not necessarily increased biomass. Litter fall is species-specific both in terms of rate 

and the litter stock supplied. Jensen (1984) found that non-leaf inputs (nuts, etc.) account 

for 20% of litter supply in deciduous forests and up to 40% in coniferous forests; Millar 

(1974) determined that litter inputs from herbaceous vegetation was negligible in 

comparison to tree inputs. The differences between hardwood, evergreen, and coniferous 

tree litter fall rates are relatively straightforward; the quantity and quality of litter 

supplied more nebulous. Leaf characteristics, particularly surface area and chemistry, 

affect the ability of the leaf to be decomposed by the fungal and microbial communities. 

If decomposition is less than fall, litter accumulations on the forest floor may proliferate, 

and this increase affects how carbon stores in the upper horizon of the soil is quantified 

(Balddock and Skjemstad, 2000; Hassink, 1996; Six et al., 2002). 

1.3.4. Decomposition 
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Decomposition supplies nutrients to the soil by recycling plant residues. The process of 

soil formation through decomposition is related to the local decomposer community 

(fauna and microbes) (Degens, 1997; Lynch and Bragg, 1985; Oades, 1993; Sanderman 

et al., 2004). Studies have found varying degrees of correlation between decomposer 

biomass and soil carbon, depending on constitution of soil carbon, decomposer 

community, and the mineralogy of the soil (Oades, 1993).  Chapin (1991) found that the 

majority of inputs, around 89%, into local decomposition were from the local vegetation 

(as opposed to atmospherically deposited inputs). The sources of input to decomposition 

are litter fall, root turnover, and coarse woody debris (CWD). Litter fall and root turnover 

occur on the decadal time scale, whereas coarse woody debris decomposition occurs over 

centuries.   Just how much of each of these materials contributes to soil C versus being 

respired is unknown, and is a key question for ecosystem ecologists. 

As input material is decomposed, the decomposer community shifts from organisms who 

can consume labile components to those who are better at breaking down recalcitrant 

organic matter (Sanderman, 2004). Organic inputs of nitrogen can be decomposed into 

inorganic forms (mineralization), but organic inputs of carbon cannot be mineralized and 

instead are respired to the atmospheric pool or stored as or organic aggregates 

(humification). Most forest floor litter is respired; Schlesinger (1990) estimates that only 

0.7% of aboveground input material becomes organic humus.  Numerous studies 

(Broadbent and Nakashima, 1974; Campbell et al., 1991; Rasmussen et al., 1980) have 

suggested that the importance of litter C is less than expected. Rasse et al. (2005) propose 

that a greater portion of soil C is derived from the decomposition of roots rather than of 
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litter. Because roots provide the soil with structure and enhance mycorrhizal networks, 

root C has greater quality and residence time in the soil than litter does.       

The shifts in decomposer community correspond with shifts in decomposition processes; 

first, fauna cause bioturbation, mixing the old soil with new inputs. Second, microbes and 

fungi consume roots, leaves, and exudates (including amino acids, sugars, lysates, 

mucilages, and organic acids). In fact, the presence of complex decomposers, specifically 

fungi, serve a dual purpose here by both manually aggregating the soil on a large scale 

with their hyphae, and secreting their own enzymes and polysaccharides for digestion on 

a smaller scale (Bossuyt et al., 2001; Oades, 1993). Third, soluble organic compounds are 

leached from the soil (Sanderman, 2004).  This includes dissolved organic carbon (DOC) 

and dissolved organic nitrogen (DON). 

Soil minerology affects decomposition by providing appropriate materials and conditions 

for decomposer communities and organic matter stability. Many papers have shown that 

the N, P, or Ca concentrations in the soil affect decomposition rates (Aerts and De 

Caluwe, 1997; Berg, 1984, 1987; Meentemeyer, 1978, Melillo and Aber, 1982, Silver 

and Miya, 2001; Tian et al., 1992; Vitousek et al., 1994). The degree to which 

mineralogy drives decomposition is also related to structure; Quideau et al. (1998) found 

that decomposition beneath oaks on the San Dimas National Forest was more driven by 

concentrations of labile aromatics and alkyls whereas beneath pines recalcitrant aromatic 

and alkyl decomposition was favored.  Soil texture also affects decomposition. Loamy 

soils decompose 15% faster than clayey soils (McInerey and Bolger, 2000), but some 
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types of clay are derived from minerals that foster decomposition (Motavalli et al., 1994; 

Thompson et al., 1999). Denef and Six (2003) showed that a rich mollisol with 2:1 

minerals if be more resistant to decomposition than an oxisol, but that over time, the 

direct effects of mineralogy on decomposition become less important as compared to 

biotic factors.  
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1.4 Soil Carbon 

1.4.1. Introduction to Soil carbon 

Understanding the spatial and temporal dynamics of soil organic carbon (SOC) is 

essential for the management of forest ecosystems with a goal of long-term nutritive 

sustainability. Interactions between the soil matrix, the inhabiting biota, and the aquatic 

flow affect the stocks and fluxes of belowground carbon. Because of these complexities, 

methods of using “soil aggregates” as surrogate measurements of the soil matrix structure 

are common (Six et al., 2004). Soil aggregates are clusters of soil organic material held 

together with a variety of bindings that slow or prevent slaking, decomposition, and the 

release of carbon through respiration or leaching (Six et al., 2000). Ecosystem functions 

of soil aggregate include physical protection of organic matter (Tisdale and Oades, 1982), 

influencing the structure of the soil biota (Hattori, 1988), changing the aerobic state of the 

soil (Sexstone et al., 1985), regulating the flow of water (Barthes and Roose, 2002; 

Kostiakov, 1932; Ostiachev, 1936; Philip, 1957; Prove et al., 1990;) and altering nutrient 

profiles (Linquist et al., 1997; Wang et al., 2001). When deriving information about the 

soil matrix through the lens of aggregation, it is important to recognize that the functions 

of aggregates are interactive and furthermore affect and are affected by aboveground 

flora and fauna, weaving a complex structural-functional web. 
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1.4.2. History of Aggregate Research 

Soil aggregates have been studied since the 1950’s when the relationships between 

organic residue, microbes, soil fertilizers, and exchangeable cations were recognized and 

implicated as controls for soil fertility (Henin et al., 1958; Kemper and Koch, 1966; 

Martin et al., 1955). The foundational study for development of a theoretical model of a 

soil particle was Emerson’s 1959 work that claimed that soil was composed of aligned 

bio-active clays and quartz particles. When slaking occurred, bonds at the quartz level 

were broken by swelling at the clay level, and it was proposed that this meant the surface 

area of the clay level is the critical feature for determining the ability of a soil matrix to 

stabilize soil organic carbon (SOC). Edwards and Brenner (1967) believed that a solid-

phase reaction that included three key components (1) clays, (2) organic inputs and (3) 

polyvalent metal cations (Fe, Al, Ca) was the main process driving the formation of 

microaggregates (20 to 250 µm), and quartzes were not involved in aggregate formation. 

Because of this tight binding structure, organic matter in microaggregates was considered 

inaccessible to microorganisms and completely protected. Tisdale and Oades (1982) 

proposed that the mechanisms controlling aggregate formation were scale-dependent. 

Transient and temporary aggregates could form at a large scale through organic 

interactions (fungi, root hyphae, polysaccharides etc.), while persistent aggregates (bound 

together by oxides, metal compounds, and alluminosilicates) formed at a smaller one. 

This theory lead into the work of Oades (1984), who modified it to suggest that 

microaggregates can form within macroaggregates (250 to 2000 µm).  

1.4.3. Changes in Soil Organic Carbon 



21 
 

There are three general ways that SOC content can change: (1) the rate of organic matter 

input may change, (2) decomposability of organic matter could change if climatic or 

species change also occurs and (3) the physical protection of SOC may change if inputs 

of C are purposefully placed at deeper or shallower positions in the soil (Paustian et al., 

1997; Six et al., 2000). In a developing forest landscape, these changes may proceed 

naturally, or be the result of management objectives past or present. For example, Six et 

al. (1998, 1999, 2004) found that soil organic matter moved from macroaggregates to 

microaggregates following tillage, and that during this removal a large amount of soil 

carbon was lost to respiration. The upsetting of the soil during the tillage regime not only 

changed the aggregate distribution of the SOC, but reduced its gross mass on the site. If 

surface disturbance reduces SOC stocks, depth placement is adventitious for SOC storage 

because less disturbance occurs sub-surface. In short, is has been suggested that there is 

an exponential decline in SOC quantity with intensive management or disturbance 

(Paustian et al., 1997; Six et al., 2004). 

When stand structure is taken into account, studies showed conflicting results with the 

experimental findings of SOC decline as a result of disturbance due to changes in organic 

matter quality. Post and Kwon (2000) found that the replacement of low-quality savanna 

grasses with exotic, high-productivity grasses resulted in significant increases in SOC for 

three to six years following community conversion. They concluded that under ideal 

circumstances, it would be possible to increase SOC even when converting from poorly-

established forest communities to highly-productive pastures, at least in the short run.  
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1.4.4. Soil Organic Carbon Saturation? 

The question of how much SOC can be held in a particular soil remains unanswered 

(Stewart et al., 2008, 2009). The saturation of soil C describes the maximum quantity of 

soil carbon that can be held in a soil, in both the labile fraction and the stabile fraction, 

and whether or not the mechanisms of stabilization and capacity are the same in 

both.Early analyses suggested that SOC could not saturate, and thus linear models were 

used to predict soil stores based on inputs from litter. Conflicting data is presented in 

Burkins et al. (2001) where it is revealed that large stores of C are present in Antarctic 

Dry Valleys, despite the absence of any current organic matter inputs (past glaciation 

moved organic matter into the area). Later analyses of the same Antarctic site suggested 

that saturation exists, at least in the heavy fraction (> 1.85 g/cm3), following Michealis-

Menten kinetics where SOC storage is limited by the availability of mineral-associated 

binding sites (Stewart et al., 2009).  However, storage in the light fraction may still be 

unlimited.  This data is better aligned with the Antarctic conclusions, which suggest that 

SOC in this ecosystem is a complex of both ancient glacial deposits in the heavy fraction 

and lacustrine and Aeolian deposits in the light (Benninghoff and Benninghoff, 1985; 

Burkins et al., 2000; Nienow and Friedmann, 1993). Preliminary conclusions drawn 

across multiple studies suggest that SOC saturation is a function of site and management 

type, rather than a universal principle (Paustian et al., 1997; Huggins et al., 1998; 

Reicosky et al., 2002).  
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The allocation of carbon between the aggregate pools (light or heavy fraction) when 

approaching saturation is also a point of debate. Stewart et al. (2009) found that as soil 

approaches a hypothesized C saturation it decreases in stability.  This finding is due to the 

fact that more and more soil is being stored in the light fraction, which is less limited, and 

is therefore less stabile (Balddock and Skjemstad, 2000; Hassink, 1996; Six et al., 2002). 

However, this finding did not take into effect the acts of management, nor did it compare 

cross-site climatic, mineralogic, or decompositional effects.  
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1.5 Particulate Organic Matter and Dissolved Organic Carbon 

1.5.1. Particulate Organic Matter 

Particulate organic matter (POM) is the substrate from which soil organic carbon is 

initially formed. Sanderman et al. (2004) distinguish POM from litter, roots, and exudates 

by suggesting that POM is material that has already entered the decompositional process.  

Zsolnay (2003) sets the smaller limit on POM as greater in size than 0.45 micrometers 

and not associated with organic resins or residues from drastic pH changes. The 

availability of POM has been shown to be a key factor in site productivity and POM 

quality in  terms of nutrient composition and age affects its ability to positively impact 

the soil (Weil, 1992; Sanderman, 2004) Six et al. (2000) found that the fineness of POM 

was proportionate to its age in non-treated ecosystems, but doubly proportionate to age in 

managed (tilled) ones, suggesting that disturbance (in this case human) increases the rate 

of carbon decomposition and macroaggregate formation. Encrustment of the 

macroaggregates with microbes and clay particles leads to interior degradation, such that 

microaggregates are formed within them (Oades, 1984; Elliott and Coleman, 1988; Gale 

et al.,2000). The formation of these microaggregates promotes carbon sequestration, 

especially in undisturbed systems, where free surfaces on the microaggregates may sorb 

plant C readily and without rapid turnover (Six et al., 1998; 2000).  

1.5.2. Dissolved Organic Carbon (DOC) 

Dissolved organic carbon (DOC) is by mass only a small component of soil C, yet it 

affects and predicts many terrestrial and aquatic processes and is often used as an 
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indicator for changes on both local and global scales (Kalbitz and Kaiser, 2003). DOC 

can be described by a size limit based on the capacity of glass filters to capture it in a 

given study; in some cases, larger particles containing artifacts of POM or organic resins 

may be considered (Lajtha, personal communication; Zsolnay, 2003). Available pore 

space, other inputs (both organic and inorganic) (Leenheer, 1981), and topography 

(Laane, 1982) have been shown to impact the quality and quantity of leached DOC in 

terrestrial ecosystems (Zsolnay, 2003). These quality changes are largely due to structural 

variation created by the addition or removal or charged particles, which affect the polarity, 

weight, and tertiary structure of DOC or colloids associated with DOC (Gustafsson and 

Gschwend, 1997). Changes in quantity are a reflection of both the ecosystem itself and 

how changes in quality are defined by laboratory studies; filters designed for one size of 

DOC may be inappropriate for some sites (Zsolnay, 2003).  

The biodegradability of DOC is its ability to be respired, and this is controlled by DOC 

quality, as well as soil texture and climactic factors (Marschner and Kalbitz, 2003). When 

DOC is high in carbohydrates, organic acids, and proteins, its biodegradability is 

enhanced; when it is found with water high in heavy metals or electrolytes, its 

biodegradability is reduced. This is expected given the solution potential of these 

additional chemical structures. Likewise, in certain soils, for example, where the cation 

exchange capacity is high, where pore size is small, or where water saturation is low, 

DOC biodegradability is also low, whereas in moist soils, DOC can be biodegraded 

quickly; however, this is not a truism for all soils (Lajtha, personal communication). The 

climatic impacts of warmer temperatures, longer wet seasons, and phenology 
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correspondingly affect soil moisture and therefore DOC concentrations (Marschner and 

Kalbitz, 2003; Neff et al., 2001; Zsolnay, 1997; Zsolnay et al., 2000). Neff et al. (2001) 

showed that DOC has a positive feedback on the soil C in a given area, with up to 30% of 

microbial energy provided by internal DOC fluxes. Additionally, their model revealed 

that DOC was exactly dependent on the hydrologic flux that resulted from the climactic 

and topographic conditions specific to a certain microsite. At least in the results of the 

Neff study, the productivity of a given site is related at least to some degree to the amount 

of DOC exiting it. This principle is one I will test in my analyses.  
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1.6 Nitrogen 

1.6.1. The Nitrogen Cycle 

Many studies have suggested that ANPP is limited by biologically-available nitrogen 

(Aber et al 1995; Berendse et al, 1983; Schimel et al., 1995; Tilman, 1987). An increase 

in ecosystem nitrogen stores causes increases in ANPP, plant biomass, and respired C, 

while often reducing biodiversity through the mechanism of species optimization 

(Hurlbert, 1984; Ulrich 1970 and 1971; Ulrich, 1975). In recent years, humans have 

doubled inputs to the terrestrial nitrogen cycle, with measured results of increasing 

greenhouse gas N2O, facilitating a loss of soil nutrients including calcium and potassium, 

acidifying soils and soil water stores, and expediting biodiversity reduction (Galloway, 

1995; Vitousek, 1997). For nitrogen to be incorporated into the forest ecosystem, it must 

be “fixed” from the atmospherically unavailable gas N2 into biologically available N by 

microbes, added as fertilizer, or input as “acid rain.” Estimates of annually fixed nitrogen 

in forests without including the effects of human inputs such as fertilizer generally range 

from 90 – 150 Tg N/year on the global scale (Soderland and Rosswall, 1982; Paul and 

Clark, 1989; Schlesinger, 1991, in Vitousek et al., 1997).  
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Figure 2. Flow Chart of the nitrogen cycle 

The spatial distribution of atmospheric N2 that has been converted to biologically-

available stocks is heterogeneous. Human alterations that directly contribute to 

biologically available nitrogen include biomass burning, land conversion, and wetland 

drainage. These activities are important because they foster increased concentrations of 

NOx, which is biologically available to plants with the aid of microbial activities and 

lightning fixation, as opposed to the 78% of the atmosphere that is dinitrogen, and is not 

available.  Thus, a combination of microbial activity and both natural and man-made 

inputs of N are necessary to change the N dynamics for a particular area or stand. 
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(Vitousek et al., 1997). On the global level, areas such as northern Europe and 

northeastern United States have “profoundly” high nitrogen due to substantial direct 

inputs, while the Pacific Northwest is considered “nitrogen-limited” (Galloway et al., 

1982; Berendse et al, 1993; Wright and van Breeman, 1995). Nitrogen availability 

ultimately dictates not only growth rates based on nitrogen limits, but also is connected to 

the allocation of carbon within the plant; a plant in nitrogen deprivation may be unable to 

allocate mass to nitrogen-rich photosynthetic tissue and instead use its carbon as storage 

structures in roots and stems (Lajtha, personal communication). In soil, nitrogen may be 

found in the forms of ammonium, nitrite (very rarely), nitrate, or ammonium nitrate, 

although generally the pools of ammonium and nitrate are considered the most important. 

In highly unaltered soils in South America, it was found that biologically available 

nitrogen was held in a ratio of 40% nitrate to 60% ammonium. A substantial portion of 

nitrogen fixation in forests, between 32 and 53 tg N/ year, is due to N-fixing plants in the 

legume families who support symbiotic relationships with nitrogen-fixing micro-

organisms (Galloway et al., 1995). 

Wardle et al. (2012) conducted an “island experiment” to test whether or not 

fragmentation and time since disturbance caused a decrease in available nitrogen as a 

result of ecosystem simplification (Wardle et al. 2012). They found that both nitrogen 

and phosphorus were inversely correlated with  ecosystem complexity; that is, a more 

developed ecosystem should have less N and P than a young, growing forest, but that the 

total N concentration did not always decline; for example, N in humus increased with 

increasing ecosystem age,  but plant available N, DON, and mineral N in the soil 
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decreased. Changes in P that were concurrent with those in N were also extant; NaOH-

extractable P increased with increasing retrogression, while membrane available P 

decreased. It is suggested that low available P and N therefore fosters the development of 

species (such as Picea abies) that are N averse. These species often have highly 

developed defense mechanisms and therefore have highly phenolic leaves, such that their 

litter fall then causes a positive feedback for their further development at the expense of 

diversity (Hattenschwiler and Vitousek, 2000; Schimel and Bennett, 2004). 

1.6.2. Nitrogen availability and assimilation 

The balance of soil nutrients is as important as the amount of any given nutrient (with an 

emphasis in this case on N) in a forest ecosystem (Schleisinger, 1991). Ingestad’s 1979 

research showed that the mineral and nutrient requirements of Pinus silvestris and Picea 

abies var Karst for optimal  growth were proportionally similar to the requirements 

forVaccinium spp., although they were not similar to those in all mesic hardwoods. 

Additionally, Ingestad found that ammonium uptake was greater than nitrate uptake in 

non-limited laboratory condition; however, in natural environments ammonium uptake is 

often limited by the immobility of ammonium ions in highly exchangeable soils. 

Therefore preferential relationships for plant uptake of ammonium are not necessarily 

present in all natural environments. However, abundant ammonium and nitrate is not 

always available; environmental conditions as well as microbial processing govern the 

availability of each. In anaerobic conditions, ammonium is more frequently encountered 

since oxygen is depleted; however, in forests and deserts, nitrate may be found 
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prevalently (Nadelhoffer et al., 1984).  Nadelhoffer et al. (1984) suggest that since the 

energetic costs of reducing nitrogen are high, ammonium formation precedes nitrate 

formation in mineralization, and that nitrate is more easily leached from soil, ammonium 

will always be the preferred source of N when it is available. An important effect of the 

physiological preference for either ammonium or nitrate in plants in their natural 

environment is that the pH of the root zone is preferentially altered; when ammonium 

uptake is permitted, the root zone becomes acidic, whereas when nitrate is preferred, 

plants release of organic acids balance the negative charge (Hedley et al., 1982). 

Ultimately, this affects soil nutrient availability and potential “soil fertility” at a local 

scale. 

Regardless of source, in plants, N is assimilated into amino groups; however, whether 

this assimilation occurs at the point of uptake (roots) or in the leaf tissue depends on 

species (Hedley et al., 1982). Physiological location of conversion affects the C:N ratio in 

leaves and roots, and therefore in time the return inputs of plants into the soil in the forms 

of litter fall or root die off. Additionally, in some species prior to abscission, nutrients 

from leaves are reabsorbed into the plant, so that the C:N ratio of live foliage differs from 

that of the litter input. The form of N in leaves could therefore have an effect on the C:N 

input from litter fall indirectly due to nutrient concentration in the foliage as well as 

directly based on quantity of litter fall. This dissertation quantifies the amount of litter 

fall and discusses litter quality in terms of two basic stand groups: deciduous trees (high 

“quality” litter rich in N with lower C content and less lignin, facilitating break down) 

and coniferous trees (lower “quality” litter with more hard-to-decompose C based 
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compounds).  

1.6.3. Nitrogen mineralization and Microbial Communities 

N fixation refers to the conversion of atmospheric N2 into ammonium. This process is 

conducted by bacteria (and in some cases cyanobacteria) via the enzyme nitrogenase 

(Schleissinger, 1991). Although some plants such as Alnus rubra and Ceanothus spp. on 

WS1 have symbiotic nitrogen fixation, most do not, and they rely on ammonium in the 

soil already fixed by the heterotrophic microbial community. The rate of N fixation in the 

soil has been positively with the presence of SOM in studies of litter and coarse woody 

debris (Granhall, 1981; Granhall, 1987; Roskoski 1980, Silvester et al. 1982) as well as 

with appropriate nutrient concentrations for fostering microbial growth (Schleissinger et 

al., 1991). In short, the presence of the microbial community, whether or not it is 

symbiotic with the plant, and available C substrate for energy appear to be key factors in 

N fixation in forest soils. 

Decomposition links the C and N cycles in forest soils; microbes and fungi consume C 

for energy while mineralizing, and in some cases converting forms of, N. What factors 

create variability in N concentrations and N forms in the soil? Six and Paustian (2000) 

and Theit et al. (2006) suggest that there is a relationship between SOM and decomposer 

community efficiency, but that this difference does not differ between fungal or microbial 

communities. In many temperate forests, nitrogen inputs to a nitrogen-limited forest 

results in increased ANPP, which in turn may increase forest carbon storage and carbon 

sequestration (Nadelhoffer et al., 1999). The impact of nitrogen on forest carbon storage 
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is directly related to the stand structure and soil quality of the forest; however, this 

relationship varies with species and site history (Houghton et al., 1988; Nadelhoffer et al., 

1999;  Rastetter et al. 1992). Kolling (1993) found that clearcutting of a spruce stand 

caused an increase in the nitrate concentration of drainage solutions (Meiwes, 1992; 

Roloff and Linke, 2002).  Nykvist (1977) showed that higher N uptake results from 

greater biomass; however, with regards to the concentrations of N in the soil, noted that it 

is statistically impossible to distinguish between the changes in soil N content that are 

due to changes in content from increased nitrogen as a function of litter and changes in 

the mineral soil. In short, it is difficult if not impossible to detrend N patterns from 

decompositional, topographical, biometric and historical influences; however, it is very 

possible to quantify and qualify these patterns in the context of the community, site, stand, 

and history and analyze empirical relationships that may currently exist. This dissertation 

works from that premise; understanding correlations in one watershed now is a step 

towards better understanding of the forest ecosystem in a complex terrain.  

 

 

 

 

 

CHAPTER 2 
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A BRIEF HISTORY OF WATERSHED 1 

2.1 Introduction 

2.1.1. Overview of WS1 

Watershed one (WS1) is an exemplary first-order catchment in the western Cascades 

range in Oregon, a region characterized by steeply-incised topography that houses 

productive Pseudotsuga menziesii and Tsuga heterophylla forests (Figure 3).  

 

Figure 3. Lookout Creek 

Early documentation of regional history related to forest ecosystems begins in 1840, with 

record of burning of the Lookout Creek watershed and later parts of the Mack Creek 

watershed.  These events exemplify some of the powerful disturbance events (fire, flood, 

windthrow, debris flow) which overlay cataclysmic events and slower geomorphic 

changes (volcanic events, glacial periods, and on a shorter time scale, slow-moving earth 
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flows) that shape the complex topography of the region. The juxtaposition of productivity 

and disturbance fosters key questions for scientists. How do such productive forests grow 

on this dynamic, complex landscape?  How do they differ from those on more stable 

landscapes or those under particular management regimes? What are the implications of 

managing the western Cascades forests for timber? What are the implications of timber 

harvesting on these terrains on stream flow or biodiversity? 

 

In the beginning of research in the region, the relationships between forest management 

and hydrology were questioned. In 1948, research began at the H.J. Andrews 

Experimental Forest (HJA, formerly Blue River Experimental Forest, designated for 

research from the Willamette National Forest) that initially focused on hypotheses about 

watershed responses to harvest activities: what effect would various harvest intensities 

have on water quality, channel stability, riparian ecosystems, sediment load, and nutrient 

losses? (Grant and Wolfe, 1967; Rothacher, 1967; Swanson, 2002). Hydrologists also had 

a set of similar questions: could logging increase annual water yields? Does logging 

affect flood impacts? Can logging be used as a tool to address stream flow management? 

As the experimental forest grew, so did the breadth of the fundamental questions; forest 

scientists moved from addressing direct impacts of forest management to exploring 

ecosystem processes across a variety of scales and diverse biotic communities. These 

questions were and are continually facilitated at the HJA by world-class long-term 

monitoring, supported through interactions with universities and federal agencies, 

particularly Oregon State University and the USDA's Forest Service. A growing data 
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legacy provides the necessary structure for understanding the rich environment of the 

western Cascadian forest. Within the HJA, WS1 might be seen as both a microcosm of 

both research history and environmental complexity. It has been heavily studied over the 

past sixty years and significant data has accumulated on topics ranging from 

microatmospheric dynamics to isotopic measurements to avian inventory. Holistic 

understanding of WS1's coupled natural and human history would be an invaluable case 

study for exploring how forests develop and respond to both natural and 

anthropogenically induced changes. However, despite the available knowledge about 

WS1, little recent attention has been paid to the consolidation of the growing scientific 

legacy of the forest with its human history. It is the fundamental objective of this 

document to provide that clean synopsis of both the natural and human history of WS1, 

providing the necessary connections between natural history and scientific progress. This 

document will address nine arbitrarily divided "research periods" in WS1, each of which 

is described in detail and significant results are presented, particularly those that might be 

obscured from a casual search for WS1 information. In many cases, there is some overlap 

between the periods, and there is certainly overlap between research, so the divisions are 

purely informative. I divide watershed 1 research into nine parts: (1) Pre-harvest, (2) 

Harvest, (3) Regeneration, (4) Notable early research, (5) Forest Inventory, (6) Floods, (7) 

Watershed 1 as a "Cyber Forest", (8) Data Management, and (9) LiDAR Reconnaissance.  

The history of WS1 is inexplicably tied to that of the H.J. Andrews as a whole, and, as 

will be described, particularly to its "sister watersheds", watersheds 2 and 3 (WS2, WS3). 

Thus, some research pertaining to these will be mentioned in conjunction with WS1, but 
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this research will be noted as a support to, rather than a direct outcome from, WS1 

science.  

 

2.1.2 Early Purpose of WS1 

 

WS1 is one of the many small catchments of the HJA's original 6070 ha (15,000 acre) 

drainage to Lookout Creek. It was originally designated as the clear-cut treatment for 

paired watershed experiments with its neighboring watersheds, WS2 (old-growth) and 

WS3 (25% clear-cut). These experiments were proposed in the early 1950's as a response 

to growing concern about the effects of old-growth harvest on the forested environment, 

particularly stream dynamics, but with the conscious recognition that harvesting forests to 

some degree was necessary.  The goal of the paired watershed experiments was to 

"provide the most efficient utilization of old-growth forests without detriment to other 

forest values that [would] lead to the establishment of young growth with a minimum 

delay" (Berntsen and Rotchacher, 1967). 

Loggers who had previously worked on similar sites near the Columbia River were wary 

of the lack of comparable regeneration in the western Cascades (Geier, 2008). Research 

by the U.S. Army Corps of Engineers on stream and snow dynamics in proximal areas 

had increased federal interest in the science of predicting peak flow responses to natural 

and human events (Dyrness, 1967). Prior to the paired watershed experiment, local 

experiments were conducted to test the effects of road cuts and yarder patterns on the 

forest ecosystem. Nearly thirty miles of forest roads were built, allowing loggers and 
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researchers to approach the paired watersheds. These watersheds were ideal for 

comparative analysis because of their accessibility and similarity (tributaries have nearly 

confluences with Lookout Creek, similar forest communities inhabited them prior to 

harvest, and the watersheds have similar upslope areas). As interest in forest management 

and ecosystem response grew, so did hydrological interest in watershed processes, which 

provided the impetus for the construction of infrastructure for research on stream quality 

and quantity. Stream measurement stations, including flumes and sieves, were placed at 

stream outputs in 1952 to monitor peak flows, suspended silt, and stream bedload. Stream 

discharge records began in 1953, stream chemistry in 1962, and bedload records in 1967 

(Geier, 2008).   

The historical union between forest science and watershed science has always been 

strong at H.J. Andrews. Like several other early watershed study/ areas, including the 

Coweeta, Hubbard Brook, and Fernow Experimental Forests, HJA laid foundational 

ground for ecosystem studies at the catchment scale. Initially part of the U.S. 

International Biome Program (IBP) and now affiliated with the National Science 

Foundation (NSF) Long Term Ecological Research program (LTER), the HJA is enabled 

by federal aid in its assessment of the relationships between forest harvest and the 

hydrologic, geologic, and ecological processes to be pursued over a long-time scale with 

broad goals and meaningful objectives. Findings directly related to the paired-watershed 

research's initial goals of assessing stream response to forest management are numerous, 

so only a few early and outstanding results are detailed here. Rothacher found that annual 

water yield following clear-cut harvest increased by 40-50 cm, with a tendency towards 
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increased flux in the winter rainy season, attributed to decreased evapotranspiration (a 

natural consequence of vegetation loss) and consequent increases in soil water stores 

(Swanson, 2002; Rothacher, 1969). Grant and Wolfe (1991) found that the export of 

sediment following clear-cuts was nearly 5100 tons per year, double that of patch clear 

cut, and ten times that of the control. Jones and Grant found that harvesting increased 

peak stream flow discharge by 50 percent in small basins due to increased drainage 

efficiency that results from the integration of road and stream networks following 

management.  

2.1.3. Current Environmental Conditions  

Watershed 1 epitomizes the steep, V-shaped topography found in the western Cascades 

ranges, Parent material consists of volcanoclastic tufts and breccias derived from andesite 

and basalt formed in the late Oligocene to early Miocene period (Swanson and Jones, 

2002). The parent materials are derived from the Little Butte Formation, which is 

characteristically overlain with ash and basaltic-andesite flows of the Miocene Sardine 

Formation (Swanson and Jones, 2002). Large, "bouldery deposits" of parent material are 

present on WS1, but their origin is ambiguous; they have been potentially attributed to 

glacial, volcanic, or mass-movement processes. Geomorphic processes, both rapid (such 

as sudden debris slides, alluvial and colluvial events) and slow (slumps and earthflows) 

shape the landscape into a complex surface. Mean slope gradient in WS1 is 63.2 percent; 

mean channel gradient, 27.8 percent; these gradients are fairly consistent with those of 

the other two paired watersheds (WS2 at 61.1, 36.4 and WS3 at 52.6, 27.2, respectively). 

A distinct north-facing and south-facing aspect dynamic exists on WS1, especially in the 
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deeply incised lower elevations of the watershed, and was recognized as an important 

ecosystem feature first in 1963 (Dyrness, 1967). Lee calcualted that the average  

intercepting surface of solar radiation on WS1 receives light at a 41.9 degree angle (as 

compared to a 33.2 for WS2 and a 36.5 for WS3) (1974). Now using ray-tracing 

algorithms solar insolation can be accurately measured in space and time. Annual 

precipitation on the site is around 2300 mm per year. Very little of this precipitation falls 

as snow (Franklin et al., 1971). The average minimum temperature is 5.5 C in January 

and 23.3 C in August. Extreme wind storms are rare (5-10 years) and concurrent with 

heavy rain. 
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2.2 Pre-Harvest 

Forest cover prior to harvest consisted of 300 to 500 year old Psuedotsuga menziesii  and 

Tsuga heterophylla. A strong cohort of Pseudotsuga menziesii at age 125 was also 

present. Understory communities included Taxus brevifolia, Thuja plicata, Acer 

macrophyllum, Alnus rubra, Castanopsis chrysophylla, and Cornus nutallii. Six classes 

of herbaceous vegetation were also identified prior to harvest, and were aligned with a 

moisture gradient ranging from very "dry" communities dominated by Gaultheria shallon. 

to moderately dry communities with Acer circinatum and Rhododendron macrophyllum, 

moderate communities with Coptis lacinata, and moist communities with Polystichum 

munatum. The Gaultheria shallon community was the most abundant and covered 

approximately thirty percent of the watershed. Estimated DBH of pre-harvested trees was 

120 to 136 cm, estimated height pre-harvest was 60 m. This corresponds to the 

approximate current height of the old-growth Pseudostuga menziesii in the H.J. Andrews 

as measured with LiDAR to between 60 and 70 meters in 2008.  
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Figure 4. Soil Series Profiles on WS1 

Soil classification of WS1 was initially grouped into three groups by parent material or 

movement, These groups were “soils from green breccia,” “soils from colluvium,” and 

“soils from red breccia and basalts.” Although most of WS1’s soils are shallow due to 

steep terrain, they are not prone to overland flow.  A clay layer exists on steep slopes and 

ridges that is formed from andesites and basalts. Deeper soil layers have been noted to 

have low permeability and high storage capacities, and it has been suggested that the 

deep layers have more than 50 percent pore space. Stephens (in Rothacher, 1969) named 

the original soil groups as Limberlost, Budworm, Slipout, and also identified both mixed 

and andesitic colluvium. Maximum soil depth was measured at 48 inches (120 cm), with 

the exception of the mixed colluvium, where depths are hypothesized to extend for up to 

fifty feet. All the soils have been noted to be highly acidic. Following harvest, most 
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nutrient concentrations decreased to below pre-harvest levels. Soil Surveys on WS1 

recently include Padilla’s 2005 survey and Keebler’s 2007 survey (Appendix 1). 

The stability of these soils has been related to their clay minerology and rockiness. The 

clay layer in some areas (high elevations) consists of slick montmorillionite and kaolinite 

clays, as well as chloritic integrades. The colluvial soils have deposits of rocks and have 

also been noted for instability. One early (1956) survey intended to summarize the 

findings on soil plasticity for a single pit named “3-a” provides insight into the pre-

harvest soil composition. Clay from this pit is greatest between 5 and 8 feet belowground 

(Table 1). 

Table 1. 1952 soil pit  

Source depth water % liquid% composition plasticity 
3-a 2 52 54 19 clay/27 

silt/51 gravel 
10 

3-a 4 28 40 15 clay/24 
silt/53 gravel 

4 

3-a 5 31 50 22 clay/33 
silt/45 gravel 

8 

3-a 6 56 70 25 clay/38 
silt/32 gravel 

13 

3-a 8 62 61 34 clay/25 
silt/45 gravel 

9 

3-a 10 50 37 17 clay/25 
silt/52 gravel 

5 

 

Presence of caprocks, talus slopes, and exposed bedrock is also a potential characteristic 

of WS1, both pre-harvest and following regeneration. Dyrness noted that the prevalence 

of “several nearly vertical rocky outcrops” with “steep, downward trending ridges and 
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drainages” that had soils that were shallow and stony. He named these soils into the 

group “Frissell,” a regosol derived from reddish tufts and breccias. Following harvest 

these caprocks, taluses, and outcroppings were exposed, especially on the south-facing 

slope of the watershed. Their presence is apparent even in the bare-earth LiDAR 

derivatives (Lefsky, 2002).  

 

Figure 5. Large boulder on WS1 

Prior to harvest, streamflow was compared between WS1, WS2, and WS3. On WS1, 

streamflow prior to harvest was documented between 1952 and 1962. The lag between 

gaging station establishment in 1952 and measurements in 1957 was due to a leak in the 
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weir. Early hydrographs show streamflow peaks in December and lows in August, with a 

maximum flow of 60 cm and a minimum flow of 1 cm. Correlation between 

instantaneous stream flows in WS1 and WS2 were documented at 0.90 prior to harvest 

verifying measurement precision for the purpose of deriving water yield equations and 

establishing the suitability of the paired study. However, total annual flow on WS1 prior 

to clear-cutting was significantly less than on WS2, a difference attributed to insolation 

by Rothacher (1969).  

Watershed 1 is aligned along a distinct north-south gradient and as such receives 

significant insolation on its south-facing slope throughout much of the year. Pre-harvest 

hydrographs from WS1 were known to be particularly response to storm conditions. For 

example, in Decemeber of 1957, a particularly large rainstorm with 37 cm of rainfall fell 

in 3 days and run off reached its peak of 83 percent of this rain event. Stream chemistry 

pre-harvest also reflected the seasonality of precipitation in this region. Highest 

concentrations of suspended bedload were measured in December and January and were 

on average more than 90 ppm. Lowest concentrations were in August, and measured 

barely more than 0 ppm. Stream flow was found to be linearly correlated with suspended 

sediment during the autumnal season, but exponentially related to it mid-winter. Very 

large storm events were found to generate uniquely large sediment concentrations. No 

matter the initial sediment concentration, normalization to less than 10 ppm never 

exceeded 5 days. However, when precipitation was frequent (as in 1961-1962), high 

suspended sediment was also found.  
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2.3 Harvest 

 

Watershed 1 was clear-cut between 1962 and 1966 primarily using a skyline yarding 

system, although a few exceptional areas in the southwest corner of the watershed were 

harvested via high-lead logging. Skyline yarding was designed to lift the log in its 

entirety off the ground via a carriage attached to a lead line, with the intent of reducing 

surface damage. However, it is not necessarily an optimal technique for landscapes such 

as WS1 where deep, canyon-like ravines and large trees often preclude adequate ground 

clearance.  

Figure 6. Schematic of skyline logging system 

The combination of non-optimal techniques, extremely large trees, and lack of quality 

spur trees caused delays in the logging of WS1 such that the harvest lasted nearly four 
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years. Logging work, initially under the direction of Balsinger Logging, was later 

contracted to the Swiss company Wyssen logging, such that a proper carriage and skyline 

system could be developed and employed. 

On the docket of sale, the purposes of the harvest of WS1 are listed as: 

1. [to] study the effects of skyline logging on the quality and quantity of water 

produced from a small watershed 

2. [to] demonstrate the type of equipment that can be used on steep terrains where 

roads are expensive or destructive. 

3. [to] study the economic feasibility of using skyline equipment on steep terrain. 

Due to the skyline method, less operational infrastructure (roads, skids, and trails) was 

built on WS1 than WS3, which had 25% of its area clear cut and lightly burned, resulting 

in less measured deep-soil disturbances (Dyrness, 1967). This was also an invaluable 

comparison between skyline and high lead methods. High lead methods allowed the butt 

of the logs to drag along the ground, potentially disturbing the soil. Dyrness surveyed the 

disturbance following the harvest of WS1 and WS3 and observed four classes of 

disturbance which he called “undisturbed” (litter in place with no compaction), “lightly 

disturbed” (litter removed and mineral soil exposed, or a mixture of litter and mineral, or 

an inversion of litter and mineral mixed with slash), “deeply disturbed” (soil removed 

entirely and subsoil exposed) and compacted (existence of skid, spur, or logging road). 

Attributed to difficulties in logging WS1, bare mineral soil was exposed on 12.1 percent 

of the watershed, greater than typical damage for a skyline system. Additionally, prior to 
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burning, he also measured the density of slash as heavy (greater than 25 cm), light (10 

percent of plot greater than 25 cm) and absent (less than 10% of slash present). A pre-

burn comparison of the slash on WS1 and WS3 produced expected results- on WS1 there 

was less heavy slash on the ground, so this potentiated damage from erosion. This 

damage was concentrated on the steep slopes and ridgelines, nearest the skyline structure. 

Dyrness also noted an abnormal amount of cull logs, particularly near the skyline 

structure. Mersereau and Dyrness reported that a change to soil bulk density occurred 

following the harvest in disturbed zones; bulk density increased slightly. In moderately 

disturbed zones, bulk density of soil only increased where high lead harvesting was used, 

suggesting that compaction and soil damage occurred exclusively. 
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Figure 7. Harvest Units on WS1 

However, the skyline method on WS1 did not completely preclude road use. Three roads 

were constructed adjacent to WS1. Road 16706 runs to the ridgeline at the top of the 

watershed (now road 2206), and it connects the harvest area to the permanent Mill Creek 

Road. Road 1553 A runs along the top of WS1 and is now closed. It was originally of the 

same construction as the 16706. Road 1553 G approaches unit 14B from the opposite 

side of the watershed.  

Midway through the harvest, 2 large storms (100 year events) occurred, which initiated 

four debris slides. Although no remarks of immediate damage to WS1 were recorded, the 

events generated landscape instability, which over the course of a few years propagated 

to introduced several smaller slides between 1968 and 1972. Protection from regenerating 

tree cover as well as downed wood and woody debris on up-basin sites, coupled with the 

absence of compaction from roads, mitigated the effects of this event as compared to 

WS3. However, although downed wood and debris was not released from the watershed, 

a significant portion of debris was moved into the stream channel. This debris cluster 

remains today on the watershed near the confluence of the upper tributaries. 

Sub unit 17a4, on the north facing slope at a low elevation, was logged first in the fall of 

1963 by Ballsinger logging and Wyssen Logging, and 3.3 M board-feet were removed. 

On this unit, yarding began on the west side of the watershed. Soils were noted as 

“unstable.” On the boundary of unit 17a4 and 16a4, along the tributary, three smaller 

instrument sites were located (named 29a4, 30a4, and 31a4). These sites were not 



50 
 

considered harvest units. Sub-unit 18b4 (the southern-most tip of the watershed located 

nearest the current vegetation plots on the sixth transect) included a sub-unit 33a4 and 

was logged in the fall of 1964 by Ballsinger Logging. These units were not included in 

the original harvest diagrams. Unit 18b4 was logged with the high-lead method due to the 

“gentle slope” that was deemed unsuitable for skyline logging. 

Sub unit 63a4 (near the confluence of the tributary and Lookout Creek, on the south-

facing slope) was logged in the fall of 1966. This unit was also bated and seeded in 1968 

for protection against rodent herbivory, which was noted to prohibit the regeneration of 

the young Psuedotsuga menziesii. Foresters eventually concluded that this area was 80 

percent bare rock and was “unplantable.” Sub unit 70a4 (south facing slope at high 

elevations) was logged in the spring of 1966 along with unit 16a4. It was a smaller unit at 

a size of only 18 acres. Management on this unit exercised “restriction” due to highly 

unstable soils. 
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Figure 8. Watershed 1 mid-harvest 

Sub unit 16a4 (south facing slope at low elevations) was logged in the spring of 1966. It 

was the final area to be yarded. The soils were noted for being “unstable”. Subunit 14b4 

is the unit which contains the landing in the harvest diagrams. In some drawings it falls 

within the boundaries of units 18b4 and 35a4. There was no harvest designated in the site 

history for the north-western tip of the watershed. It has been noted that the watershed 

was “burned as a whole” although a current plethora of moderately degraded logs 

suggests that burning in this area was lighter than others, and the road itself may have 

been used as a firebreak. 
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Slash was broadcast burned in a "hot and very satisfactory" burn in 1966. Foresters noted 

that the burn was not ideal due to “advanced reproduction on many of the north facing 

slopes," presumably referring to the Psuedotsuga menziesii seedlings. The initial burn 

removed all slash and minor debris from the stream channel to a degree that was noted to 

be "satisfactory in view of the difficulties imposed by the steep slopes." Debris from the 

lower one-third of the watershed was then manually removed. Following burning, four 

re-plantings on the site were attempted. In 1967, aerial seeding was conducted. In 1968, a 

second, localized seeding was conducted in areas that did not initially take. In 1969, the 

entire watershed was planted with 2:1 Psuedotsuga menziesii, and in 1971, select 

locations were planted with three year old seedlings. Successive re-plantings were not 

always successful, particularly in the rocky areas on the south-facing slopes. Nor were 

the operations to remove channel debris successful. The streams did not stay clean due to 

after-events from the floods of 1964-1965, which released debris from the upslope to 

contribute to the channel again. The estimated influx of sediment and debris to the 

channel was 67 percent one year after the burn (1967) and 28 percent in subsequent years 

(1968).  

In 1986, a thinning treatment was considered by several researchers. At this point the first 

seeding would have been nearly 20 years of age and prime for the first thinning. 

Reviewers dated the standing Psuedotsuga menziesii and found that it varied in age 

between 12 and 18 years, which was to be expected due to multiple regeneration 

procedures and natural regeneration. They also noticed that the north-facing slope was 

particularly well stocked; specifically they noticed that older trees that existed top and 
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bottom (of the slope) with the middle one-half of average height. In short, height growth 

was favored at high elevations and near the stream, but not on the mid-slope. On the 

south-facing slope, notes indicate that it was very rocky and stocking was patchy, 

although trees of greater DBH and height were present. A very high level of brush was 

noted, with emphasis on the presence of Acer circinatum. Another reviewer noticed that 

many of Psuedotsuga menziesii  at the time were shorter than the Ceanothus plants (some 

up to seven feet in height) that were located on the watershed. Brush removal was 

considered by determined uneconomical. Ultimately, thinning was not selected for 

ecological and experimental reasons (or, as one forester noted snidely, "because it's H.J."), 

although another noted that "the unit is ready for thinning and may soon be too old." 

 

  



54 
 

2.4 Regeneration 

Burning and subsequent landscape degradation had significant impacts on regeneration of 

a new forest community in WS1. In the first years after harvest, erosion and surface flow 

(450 tons per square kilometer) degraded the soils upper layers. For hardy early-

successional plant communities, however, this was the opportunity to thrive in a newly 

available sunlight. In the first year after burning, 16 percent of the watershed was covered 

by brush and herbaceous species. Eleven species groups were reported to have 

established in WS1 within only two years after harvest. These plant communities 

included Corylus cornulata- Gaultheria shallon, Acer circinatum- Gaultheria shallon, 

Rhododendron macrophyllum-Gaultheria Shallon, Acer circinatum- Berberis nervosa, 

Coptis lacinata, and Polystichum muntium (Adams et al., 1991).  
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Figure 9. Acer circinatum – Berberis nervosa understory, 2011 

This re-vegetation was also observed and studied on the clear-cut areas of WS3, where it 

was determined that immediately after harvest (1 year) soil moisture was 12% higher 

than on control WS2 due to lack of interception loss, but after 1 year the soil moisture 

had declined to 2 cm less than WS2, changes which were attributed to site re-vegetation 

(Adams et al., 1991). These changes in soil moisture following harvest give rise to the 

establishment of drought-tolerant herbs and shrubs, sometimes at the initial expense of 

trees. Dyrness (1967) found that following the harvest of WS1, percent cover by 

overstory species decreased from 21.7 percent to 0.5 percent, and after burning this figure 
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rose to 2.8 percent; however, initially shrub biomass decreased from 43.7 percent to only 

7.1 percent, and then rebounded after fire to 41.9 percent.  

On WS1, Halpern (1989) found that early regeneration was related to landscape position, 

aspect, disturbance severity, and elevation. For example, the Acer circinatum community 

was found predominantly on undisturbed sites or disturbed but unburned sites, which 

were all located on shallow slopes along the ridgetops at high elevations. Immediately 

following harvest, residual (from buried seeds not damaged by fire), herbaceous 

communities of Rubus ursinus  and Trientalis latifola- Whipplea modesta- Hieracium 

albiflorium as well as the invading Senecio sylvaticus- Epilobium paniculatum – Conyza 

canadensis  were found to have major (defined as more than 5 percent) regeneration 

cover on the remeasurement plots. Over five years, these communities retained their 

gross abundance, but additionally the shrub/understory layer of Acer circinatum- 

Polystichum munitum-Gaultheria shallon- Rhododendron macrophyllum- Berberis 

nervosa- Corylus cornulata-Tsuga heterophylla appeared and increased in abundance and 

cover. Two important conclusions from inventory and abundance analysis of early 

regeneration communities on WS1 were that (1) 82 percent of the understory species 

persisted through the logging and slash burning and that (2) the invasion by new species 

was prolific two to five years following the harvest, and the cessation of which was due 

to the development of the initial canopy of very young Tsuga heterophylla that precluded 

further herbaceous establishment. 
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The duration of WS1 harvest may have also provided opportunities for early invaders and 

regenerating local herbs. Available sites for seeding, particularly for the wind-dispersed 

and shade-intolerant Senecio sylvaticus during the four years of harvest activity, may 

have allowed for its germination and establishment. The same was noted for the naturally 

burn-adapted Epilobium angustifolium, which was able to sprout from undisturbed 

rhizomes. Mersereau and Dyrness noted that this plant invaded the watershed one year 

after harvest, and became 35 percent of the cover over one year. Ceanothus also “invaded” 

the watershed from underground seedbanks soon after harvest. Halpern (1989) 

determined that the initial regeneration of WS1 followed two main trends: (1) there was 

persistent proportionality between original cover and initial cover or (2) there was inverse 

proportionality between long-term regeneration and disturbance intensity. Rothacher 

noted a distinct relationship between the lack of timber tree growth and the presence of 

rhododendron, which persists where canopy is sparse. 
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2.5 Notable Early Research 

Understanding the relationship between the magnitude and timing of water yield and 

clear-cut management was an initial goal of WS1 and early research on stream dynamics 

quantified the relationship from multiple perspectives. The most straightforward 

approach was simple time-series regression of the water yield for the post-harvest years. 

Post-harvest water yield was shown to be moderately autoregressive following the 

function of  

Y = 52.2 + 2.05 T 

where Y is the water yield and T is the years after the logging. And, if precipitation is 

included,  

Y = 31.41 – 2.08T + 0.091P, where P is the precipitation, annually. It was also shown 

that annual increases in water yield from WS1 were seasonal (October to May) due to 

precipitation patterns and the subsequent higher soil water yields as a result of reduced 

interception and transpiration. Hydrologic responsiveness of the soils is increased after 

harvest and removal because less precipitation is required to recharge the soil water. 

Additionally, substantial increases in low flows were documented by Rothacher and Harr. 

It was concluded that sub-surface flow, not overland flow, delivers water from the 

streams in recently logged watersheds, although overland flow is increased. Due to 

variable sourcing, stream concentrations reflect heterogeneous upslope areas, and winter 

contributing areas are much larger than summer, facilitating increased stream flow and 

responsiveness. Increases in mass movements after logging, coupled with seasonal 
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precipitation, drive hydrologic patterns observed in logged watersheds immediately after 

harvest.  

Stream temperatures were also affected by the clear cut. Levno and Rothacher (1969) 

found that the combination of burning and removing of logs in the lower one third of the 

channel of WS1 resulted in an increase in stream temperatures to above 65 degrees 

Fahrenheit for 17 hours, a record for the area. Mesereau and Dyrness (1972) noted that 

the loss of channel wood also decreases the stream stability, such as the erosion of banks 

and, due to the displacement of kinetic energy from the debris dams to the bed surface, 

stream beds.  

Following the clear-cut, but not burn in 1967, concentrations of NO3-N, Na, Ca, NC)3-C 

and PO4-P increased in stream flow; however, after burn concentrations of K, Ca, Mg, 

and NCO3 decreased. In short, the clear cut increased the release of cations, but this 

release was decreased following the burn.  

Geomorphological findings from WS1 united the hydrological changes ensuing after the 

harvest with the landscape dynamics potentially associated with the same. Following tree 

removal, reduced interception and transpiration leads to increased soil moisture, which 

can reactivate creeps and flows. Gray (1973) noted that loss of trees also increases slope 

instability mechanically by reduced the tensile reinforcement normally surcharged by tree 

weight. Dyrness (1967) found that land movements were more frequent in areas of 

pyroclastic rocks versus basalts and andesites; Rothacher (1970) determined that 

subsurface soil moisture remained unnaturally high following clear cut; in the summer 
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after harvest, one area remained above field capacity for sub-surface moisture throughout 

the summer. Additionally, greenish tufts and breccias were more unstable than reddish 

ones. The rate of post-harvest creep was measured at 0.25 cm per year by Gray. 

Mersereau and Dyrness (1972) conducted an intensive survey of the rates of soil 

movement based on slope, regeneration of herbaceous and shrub plants, and disturbance. 

Both the aspect and the gradient of slopes correlated with slope movement; in 1967, 

south-facing slopes lost 6.11 cubic meters of soil per hectare versus a loss of 1.405 cubic 

meters per hectare on north-facing slopes, a difference attributed to drying and loss of 

slope cohesion. Rain thereby reduced movement on the south facing slopes, a finding 

which contrasts the suggestion of increased movement in rainy conditions proposed by 

Dyrness. It was estimated that 75 percent of slope movement was due to the large-scale 

movement of Talus slopes, which were noted by both the loggers and early researchers to 

be “highly unstable” and as Dyrness commented, “reforesting these areas will be a slow 

process.”  

Table 2. Volume of Soil and Rock Debris caught on vegetative slopes (80 and 60% South 
and North facing slopes) of WS1  

Collection Date 80 SF 80NF 60 SF 60Nf 
5/3/67 33.5 5.0 0 2.1 
9/13/67 54.4 11.7 0 2.1 
10/26/67 71.2 11.7 0 2.1 
2/15/68 113.7 13.3 0.7 3.2 
4/10/68 144.2 14.9 0.7 3.2 
5/8/68 148.3 16.2 0.7 3.2 
6/19/68 152.4 16.2 0.7 3.2 
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2.6. Forest Inventory 

Forest vegetation is a key component of WS1 that has been seen as an integral of the total 

ecosystem. To study the vegetation, 131 “permanent” re-measurement plots were 

established on WS1 immediately following the harvest of the forest. The plot have been 

in existence since 1962, initially established to examine the effects of harvest on 

vegetative cover, and they exist in multiple locales in HJA, but are particularly dense in 

WS1. Classification for forest communities by vegetation plot is generally based on 

understory composition.  

The plots are arranged along six transects spanning the watershed from north to south, 

with between 10 and 27 plots on each transect. Plot radii are 8.92 m, so that the ground-

measured area equivalents to 250 m2. Plot centers are 30 m apart. Due to steep slopes, 

aerial images of the plots are elliptical. In general, the forest inventories of WS1 can be 

split into the pre-1980 and post 1980 periods. In the pre-1980 period, only shrub and 

understory vegetation was measured. Plots were intensively subsampled within 4 m2 

staking and the locations of these plots were determined randomly. Following 1980, the 

overstory vegetation was measured as well. 

2.6.1 Pre-1980 Inventory 

Pre-1980 inventory measurements visually estimated projected canopy cover in percent, 

assessing vascular plants less than 6 m tall. Halpern (1989) studied pre-1980 forest 

inventory on WS1 using detrended correspondence analysis and found that post-harvest 

regeneration quickly returned to pre-havest conditions, but these conditions differed 

depending on moisture conditions. He noted that on dry sites, flora was diverse but 
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successionally transient, whereas on moist sites, flora followed unique pathways 

reflecting a special set of residual plants and invasive colonizers. Thus, when the site was 

favorable, re-establishment by flora was more permanent than when it was unfavorable. 

Additionally, he noted that the divergence from residual species was proportional to 

harvest intensity. DCA revealed that early succession generally corresponded to a 

gradient in available moisture, but after a few years, compositional change stabilized and 

the development of overstory vegetation began.  

2.6.2 Post-1980 inventory         

 

As expected, the dominant tree on most plots on WS1 is Pseudotsuga menziesii; however, 

the most reproductive tree is Tsuga heterophylla. Seven inventories were conducted on 

WS1 between 1980 and 2007 (1980, 1984, 1988, 1991, 1995, 2001, and 2007). During 

each inventory, DBH was measured for all trees with a DBH greater than 1 cm, and DBA 

(diameter at basal area) was measured for all trees smaller. Conversion factors for DBA 

to DBH can be found in Lutz. To assess the biomass of these trees, Halpern's 

aboveground biomass equations are commonly used (Halpern and Means, 2004). Using a 

Schumacher based log-form, DBH is related to biomass by allometric scaling. These 

equations are designed to be accurate for the western Cascades sites and young forests on 

which they have been validated. The availability of forest inventory data for post-harvest 

years enables researchers to study the effects of various environmental factors on plant 

growth with explicitly. 
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Using forest inventory data, Lutz (2005) concluded that the role of mortality in early 

successional forests was related more to species than density. Of the 75000 trees tracked 

by Lutz, there were more than 7000 mortalities, many of which were related to 

suppression; however, a loss of biomass due to mechanical damage (crushing, windthrow, 

etc.) was significantly greater than that due to suppression. The rate of mortality in 

hardwoods was the highest, at 9.7% per year, but where the hardwoods were well 

established, biomass was capable of increasing as stems remained resilient. In conifers, 

which had greater biomass initially, more loss occurred due to crushing, especially the 

nearby 26% loss of Thuja plicata. Lutz concluded that spatially condensed loss of trees 

due to mechanical damage fostered spatial heterogeneity and the establishment of a more 

diverse forest community. This analysis is directly linked to the gap dynamics studies of 

Spies et al. (2012), who quantify  spatial heterogeneity within and between canopy gaps. 

In fact, multiple studies from the forest inventory data indicate that mortality, or at least 

the decline of surviving trees, is more indicative of plant productivity on developing 

stands than is biomass.  

Acker (2002) compared inventory from WS1 with that from WS3 and found that the 

accumulation of bole biomass was greater in young WS1 than in older WS3, a support for 

his hypothesis that bole biomass accumulation rates decline with age. Bredensteiner(1998) 

determined that the role of  overstory biomass in the water cycle becomes more 

significant in the third decade following harvest than prior years. Lindh suggested that the 

decline in forest biomass accumulation following harvest is a response to local areas 

failing to regenerate or the increased cover by hardwoods as opposed to conifers. Overall, 
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forest inventory data from post-1980 showed the importance of forest composition in 

WS1.  
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2.7. Floods 

Just as forests affect streams, streams also affect forests. WS1's post-harvest sediment 

yield was considerably higher than its old growth counterpart WS2 (Hall, 1978). This 

increased yield has been attributed to both increased particulate over time, as well as to 

seven significant landslide events between 1964 and 1972 that affected the clear-cut 

watershed more than the old-growth. Hydrological events have also impacted stream 

sediment and watershed dynamics. In particular, floods of 1964 and 1996 are of interest. 

Rothacher and Fredrickson (1967) reported damage from the 1964 and 1965 “Christmas 

storms.” Preceding the events, a period of very low temperatures was observed. A drop in 

the snow line coupled with warming temperatures caused extensive rain on snow events, 

melting excessive water. Stream flow rose quickly and exceeded the 50 maximum-8.25 

inches in two days. Snow declined from 18 solid inches to only a patchy distribution in 

24 hours. The most intense rainfall ever recorded in the region accompanied the storm – 

0.47 inches in an hour. With this event came multiple debris slides, including a three-

pulse slide which destroyed the stream gage in WS3. On WS1, no direct debris events 

occurred, however, an “aftershock” of the event caused a debris slide in 1965 which 

deposited several tons of material in the stream channel. 

In 1996, unusual weather patterns were noted again- low snowlines and a rapid increase 

in snow. Intense cold weather was noted including many freezing rain events. 

Immediately after the freezing rain event, a warm, southwestern jet brought a subtropical 

storm into the region between February 6 and February 10, and warm temperatures 

caused the melting of the snow. Streams rose and quickly reached flood stage. Although 
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the event was of less magnitude than that in the 1960's, it was still important in the 

development of WS1 (Rothacher and Fredrickson, 1967; Hall, 1978). 
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2.8 Watershed 1 as a Cyber Forest 

With the rest of the world, WS1 entered the new millennium as a center of new 

technology, and became a “cyber forest.” “Cyber forest” is defined by Henshaw as 

possessing a “high performance wireless communication enhancing connectivity among 

remote field research locations, station headquarters, and beyond to the university and 

outside world.” This data connectivity exists in spite of rugged terrain, thick overstory, 

and lack of pre-established networks (the only connection into H.J. Andrews is a 56 kB 

phone line!) One particular asset of WS1 is the telemetry transect, 11 plots on WS1 that 

are nearest the gaging station and road access. An “almost real-time” sensor array 

transmits streaming data across high bandwidth to Oregon State University were it is 

automatically compiled, stored, and checked for quality. Access to this data is nearly 

immediate for College of Forestry researchers at Oregon State University (Henshaw et al., 

2008).  

2.8.1 The Telemetry Transect 

 

A primary goal of the telemetry transect, although not the only goal, is to provide the 

necessary infrastructure for the H.J. Andrews Airshed project. An airshed is a flow of air 

superimposed onto a watershed which is formed by rapidly cooing near-surface air, 

denser than the surrounding air, which tumbles down basin on the same paths as water 

flows. Monitoring the respiration of CO2 from plants and soil along the transect, as well 

as at various heights on the tower at the gaging station allow researchers to visualize 

these paths and test hypotheses about sources of air in the watershed. Preliminary 
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research indicates that air “pools” like water, and that these pools may be both deep and 

turbulent (Pypker et al., 2007).  

2.8.2 The FEEL database 

Information about the wind-speed and direction is available online for any user to 

download and can be accessed as a time series through the program GLITCH (the 

generalized linear integrator for time series changing). GLITCH allows the aggregated 

download of wind speeds over the course of minutes or hours, rather than high resolution 

data. This is useful for long-term datasets at resolutions coarser than those recorded 

directly by the tower.  

Spatially explicit temperature measurements are also taken within the stream of 

watershed 1 using a 0.66 mile long fiber optic cable that tracks heat gradients. The same 

technology has also been implemented aerially in WS1 using cross-ways aerial cables set 

at predefined heights. This information is all recorded in the Forest Ecophysiology and 

Ecohydrology Telemetry Transect database (FEEL), which is available online for all 

researchers. A hierarchy of data options allows proprietary content to be protected until 

quality assured while other content is presented immediately. Open source descriptive 

data exists.  The FEEL data base is unique in that it funtions at both the lab-level as well 

as the dynamic level; as probes and sensors are changed and set up, they are 

automatically updated in the database. The data model for FEEL is considered advanced 

due to tab-based navigation and on-the-fly alterability.  
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Figure 10. Telemetry Transect and tower deployment 
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2.9. LiDAR reconnaissance 

 

LiDAR (light detection and ranging) reconnaissance is a method of remote sensing that 

captures high-resolution, large-extent biophysical measurements in three dimensions 

(Lefsky et al., 2002). Although LiDAR in itself is not new, its use in ecosystem studies is. 

LiDAR is fundamentally “laser altimetry”- the difference between return times for light 

pulses sent to the ground from an airplane mounted sensor is used to detect heights of 

trees and cover percent. In 2008, LiDAR reconnaissance was flown on WS1 as well as 

the rest of HJ Andrews. The SLICER method was used, which uses a scanning beam to 

return a digitized signal that can be analyzed for backscatter, allowing a more detailed 

identification of canopy components (Andersen et al., 2004). Cover is calculated using a 

unique formula: 

Cover = 1- Scaling constant * Ground Return / Canopy Return + Scaling Constant * 

Ground Return. 

On the H.J. Andrews, LiDAR has been used to map the bare earth as well as vertical 

complexity. The bare earth maps reveal the underlying geology of the site and emphasize 

the forest/floor interactions. They are validated with on the ground inventory. Likewise, 

trees identified as uniquely tall in the LiDAR reconnaissance can be verified by climbing. 

For WS1, LiDAR revealed heterogeneity in forest cover, particularly clustering of 

biomass. LiDAR metrics were used to classify the watershed for sampling. Much of the 

research here in is based on the fundamental assumptions of cover classes provided by 

the LiDAR reconnaissance.  
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Overall, WS1 as a case study for an ecosystem has provided significant information on 

topics from management to informatics to biology, and may be unprecedented as one of 

the most studied ecosystems in the world.  

 

Figure 11. LiDAR Cover Map; Using LiDAR to Predict Interception Loss 
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CHAPTER 3 

DO PROMINENT DRIVERS OF ANPP CHANGE DEPENDING ON WHEN 

ANPP IS MEASURED? A COMPARISON OF METHODS ON A CLEAR-CUT 

WATERSHED IN THE WESTERN CASCADES, OREGON 

 

F.S. Peterson, G.J. Peterson, T. Spies, and K. Lajtha 

Submitted to: Ecology 

Springer-Verlag 

Amsterdam, Netherlands 

3.1 Introduction 

 

Aboveground net primary productivity (ANPP) has been linked to resource gradients 

such as solar radiation, nutrients, and moisture that are generated by complex terrain 

(Knapp and Smith, 2001; Pypker, 2007; Raich et al.,1991; Turner, 2005). It has also been 

suggested that belowground ecosystem stocks and functions, such as soil organic carbon 

(SOC), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and 

belowground productivity are also related to the same topographically-affiliated resource 

gradients, and therefore share spatial patterns with ANPP (Antos et al., 2003; Burke et al., 

1990; Chapin et al., 1994; Burke et al., 1995; Finzi et al., 1998). What is less clear is the 

degree to which aboveground processes reflect belowground conditions and resources. 
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For example, the distributions of both soil organic matter (SOM) and leaf litter vary 

spatially over complex terrain influence ANPP and are also positively correlated with one 

another (Bazzazz and Sipe, 1987; Leuscher et al., 1993; Miles, 1979; Tilman, 1985; 

Vierick, 1970; Vitousek and Reiners, 1975). In addition, itis important to take into 

account the fact that since ANPP varies over time, one time measurements are not 

necessarily the best metric for studying soil-ANPP relationships. Differences in the rate 

of stand development due to species composition mean that some parts of a site may 

appear more productive than others simply because they are at a different developmental 

stage. Additionally, declines in productivity at the stand level may indicate rapid early 

growth and a fair site, rather than a poor site.  Although young stands grow more rapidly 

than older stands, this initial growth depends on species. To avoid the conflating the 

different drivers, for example low productivity due to site quality, and  low productivity 

due to rapid early growth and subsequent age-related decline, it is important to recognize 

ANPP as a complex and possibly emergent process that is affected by multiple, non-

linear ecosystem factors. Consequently, ANPP with respect to time as a complex and 

possibly emergent process that is affected by multiple, non-linear ecosystem factors and 

that may not be adequately represented by a single observation or imputed productivity 

from a site index curve. We suggest that the optimal method for exploring structural-

functional relationships in forest ecosystems may be better expressed by estimating 

maximum productivity (mANPP) within the context of site history, stand composition, 

and stand development. This method of estimating of mANPP is novel to this research; 

unlike traditional measurements of site quality (such as site index or inferring quality 
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from remotely sensed color spectra) (Bailey et al., 1998; Drew and Flewelling, 1979; 

Raich et al., 1999; Tappeiner et al., 1997), the method we propose to use requires long-

term stand data and statistical extrapolation to select or predict maximum productivity for 

a unique stand and location. 

 

Disturbance, whether natural or human, initiates vegetation development that often 

follows multiple pathways. Within a disturbed area, these developmental pathways are 

typically not homogeneous (Abrams et al.,1985; Bradshaw, 1982; Borgegard, 1990; 

Londo, 1974; Matthews, 1979; Miles, 1987). The existence of multiple successional 

pathways following disturbance has been observed by del Moral et al. (1995), Swanson et 

al. (1986), Wood and de Moral (1987, 1988), most notably on Mount St. Helens 

following its 1980 eruption. They found that these pathways were associated with 

measurable topographic variables. In other locations, the existence of multiple pathways 

has been related to disturbance intensity (Cattelino et al., 1979; Belsky, 1986; Halpern 

and Franklin, 1990), seed composition (Abrams et al., 1985; McCune and Allen, 1985), 

pre-disturbance vegetation (Collins and Adams, 1983; Christensen and Peet, 1984; 

Halpern and Franklin, 1990), microclimate and climatic responses (Archer, 1995; Likens, 

1996). Naturally occurring resource distributions resulting from landform structure 

(Bormann and Sidle, 1990; Chapin, 1993; Ewing, 2002) may also lead to multiple 

pathways. Additionally, the designation of successional pathways may also be a function 

of analytical time range. Divergence between successional pathways was documented by 
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Fastie (1995) over a short time range while Pickett (1989) documented convergence 

between pathways over a longer time range over the same forest chronosequences in 

Glacier Bay, Alaska. The argument that topography drives both nutrient and plant 

distributions is a “chicken-and-egg” matter, since the allocations of belowground 

resources cannot be separated from their effects on the aboveground growth, and the time 

range over which trajectories are designated, as well as the time in stand development at 

which growth is measured makes it difficult to detrend the effects of a particular site’s 

history from those of the topography at large. Since multiple pathways of forest 

development play an important role in both stand structure and belowground resource 

distributions, it is important to characterize both the stand, its history, and the site in a 

way that explains observable patterns (Bardgett and Wardle, 2010; Bezemer et al.2010, 

Eisenhaur et al., 2010; Porazinska et al, 2003; Wardle al.1999; Wardle et al, 2004).  

 

Belowground resource distributions are often characterized as being relatively stable in 

both space and time. For example, soil attributes such as the protection of stable C 

aggregates (Six et al., 2004; Marin-Spiotta, 2011), N mineralization (Nadelhoffer et al., 

1991), soil texture (Burke et al., 1995), or microbial decomposition (Mathes et al., 1985; 

Flanagan, 1986; Epstein, 2002) are often measured at one point in space. When 

significant error can be accepted, such as in the case of large-scale modeling, few, 

infrequent points provide enough data to create predictive equations; however, for 

understanding processes in complex terrain or mountains, limited sampling not 
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appropriate because it does not address why observed heterogeneous distributions of 

belowground resources develop and what effect this heterogeneity may have on 

landscape-scale estimates of ecosystem stores (McEhinny et al., 2005). Knowledge of 

fine scale heterogeneity of soil resources and vegetation composition is needed to 

adequately characterize ecosystem processes at landscape and watershed scales. However, 

measuring these belowground resources is difficult, and they are often autocorrelated 

with one another. In many cases, topographic indices may be used as proxies for 

belowground resources, although it has been noted that ecological processes and patterns 

that exist at one scale, for example, the plot scale, may not be reflected at another, such as 

the landscape scale (Allen and Hoekstra, 1990; Berdanier and Klein, 2011; Currie, 2011; 

Turner, 2005). This lack of integrity across scales further complicates our understanding 

of the drivers of ANPP in complex terrain; it is critical to quantify to what extent the 

topography influences belowground resources, and to what extent they are the function of 

biotic drivers.  

 

It might be expected that a forest plantation established after clear-cutting would be an 

ideal case for assessing how stand structure is related to biogeochemical function; 

however, despite management objectives, this management method does not necessarily 

create an even-aged or uniformly-structured cohort (Christensen and Peet, 1984; Franklin 

and Forman, 1987). We expected that ANPP patterns would vary across space but remain 

constant across time because we presumed that a uniformly treated landscape should 
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produce uniform vegetation. However, heterogeneity in both vegetation and terrain affect 

ANPP and we surmise that it is also entirely possible and quite likely in mountainous 

terrain that multiple successional pathways exist even on a uniformly treated site, and the 

trajectories of ANPP of different successional pathways will be driven by different 

abiotic and biotic forces. In this study, we aim to quantify existing patterns of ANPP by 

emphasizing when and where topography and soil may control succession and stand 

development. We used long-term vegetation plot data, high-resolution spatial data and 

light detection and ranging (LiDAR) imaging, spatially-intensive soil sampling, and 

mathematical modeling to address our questions.  I had three primary objectives for this 

research.  

First, I characterized the spatio-temporal patterns of aboveground net primary 

productivity (ANPP) by stand history, topography, and species composition. Under this 

this objective, we tested the hypothesis that "current" ANPP (calculated from the most 

recent 2001-2007 re-measurement period) is best explained by topographic features 

rather than by stand composition. To test this hypothesis, I used linear modeling to 

compare all individual correlations between ANPP and topographic features as well as 

tested four multiple linear models to evaluate the relationship between ANPP and (1) 

radiation, (2) soil moisture, (3) stand history and composition and (4) a combination of 

the above, supplemented by information criteria, and random forests analysis. Our second 

objective, was to assessproductivity potential by modeling “maximum ANPP” (mANPP) 

using maximum likelihood estimation (MLE); we hypothesized that mANPP would be 

better explained by biotic factors than current ANPP.  The third objective was to 
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characterize the spatial shifts in high productivity over time based on the hypothesis that 

forest composition at establishment can generate multiple successional trajectories and 

that ANPP in the initial re-measurement (1980-1984) may influence current ANPP. To 

quantify the trajectories, we tested the hypothesis that sites initiated by conifers ( > 50% 

of biomass)  and sites initiated by hardwoods follow different successional pathways over 

time and have significantly different basal area and ANPP values today.   
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3.2 Materials and Methods 

 

Study area: Watershed 1 (WS1) is a 96 ha catchment on the H.J. Andrews Experimental 

Forest in the Western Cascades range in Oregon. Originally part of a “paired watershed” 

experiment to understand the effects of forest harvest on stream flow dynamics, WS1 was 

clear-cut (1962-1966), burned (1967), and replanted (1968-1971) with Psuedotsuga 

menziesii (Douglas-fir) seed and seedlings (Halpern and Franklin, 1989; Halpern and 

Franklin, 1990). The harvest of WS1 was conducted using a small area of skidder-based 

logging (near the landing at the stream outlet) and a large extent of skyline logging. Due 

to the immense size of the individual trees and the instability of the slopes, the logging 

progressed slowly over four years and seven spatially distinct harvest units as new 

technology was implemented, and it has been documented that early regeneration, 

particularly of shrub-trees Acer circinatum (vine maple) and Rhododendron maximum 

(Rhododendron) had established on some of the early harvested units prior to whole-

landscape burning in 1967. Burning was “hot and satisfactory” and large stems not 

removed in logging but downed by burning were removed from the lower one-third of the 

watershed to clear the stream pathway.  Four attempts at regeneration were made; the 

first attempt was an aerial re-seeding over the whole landscape; the second through fourth 

were manual replanting on the south-facing slope, with maximum planting attempts 

devoted to an “unplantable” area in harvest documentation. The plantings in such areas 

were ultimately not successful in generating as much biomass as other parts of the site. 
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Mean annual precipitation on site is approximately 2300 mm with a mean temperature of 

2 C in January and 18 C in August, with a two to six degree average daily range, as is 

typical of the region. WS1 is near the confluence of Lookout Creek with the McKenzie 

River, at a relatively low elevation (410 m – 1080 m). Parent material is largely andesite 

and breccia, with both green and red breccias present, as well as blackish andesitic scree 

and large, potentially glacially-deposited boulders (Swanson and Jones, 2002). Four 

series of andisols exist on the site: Frissell, Budworm, Limberlost, and Andesite 

Colluvium, as well as a distinct “rock” area (Rothacher, 1967; Dyrness, 1969). 

Topography controls the microclimate, which differs distinctly by north- and south- 

facing aspects due to cumulative annual insolation, aspect-oriented day length, and 

growing season. Diurnal fluctuations in temperature due to adiabatic cooling on steep 

slopes yield nocturnal cold air drainages on approximately eighty percent of summer 

nights (Pypker et al., 2007). Nutrient concentrations of WS1 have not been studied in 

depth, but it has been shown that the site is limited primarily by N, which is typical of the 

region as a whole (Vitousek and Howarth, 1991). 

 

The current vegetation  is dominated by 55 year old, 20 to 30 m height cohort of 

Pseudotsuga menziesii (Douglas-fir), most of which was developed from planted 

seedlings. However, other species such as Tsuga heterophylla, Alnus rubra, Thuja plicata, 

Castanopsis chrysophylla, Acer macrophyllum and Prunus emarginata have naturally 

seeded in from nearby old-growth stands and alder-dominated riparian areas. Acer 
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circinatum and Rhododendron macrophyllum exist as tall shrubs. Ground vegetation is 

primarily Polystichium munitum, Gaultheria shallon and Mahonia aquifolium. These 

species have been present on site since establishment.  

Long Term Data Pre-processing: Long-term data for the site was available in the form 

of forest inventory flat-files consisting of diameter at breast height (DBH) measurements 

for each individual tree on 131 circular plot with an 8.92 m radius. The inventories were 

taken seven times over the past twenty-seven years with an average interval of five years. 

DBH was measured on all trees greater than one cm DBH; diameter at base (DBA) was 

used as a proxy for all trees less than 1 cm, and conversion equations were calculated by 

Lutz (2005). To determine the biomass of individual trees, DBH was used in allometric 

equations (Pacific Northwest Biomass Component Equation Library, Halpern and Means, 

2004) using the methods of Lutz (2005) and Lutz and Halpern (2006). Because the plots 

were initially laid out using slope distances rather than horizontal distance, we calculated 

horizontal plot area using an elliptical adjustment based on slope gradient.  We calculated 

ANPP based on the Acker et al. (1998) method, also precedent in Lutz (2005) and Lutz 

and Halpern (2006). We mapped the aboveground biomass and ANPP for the 131 re-

measurement plots and used spherical kriging to extrapolate across the spatial extent 

(ArcGIS 9.3.1. “Geostatistical Analyst” Toolkit, ESRI 2009). We created a time series of 

these maps to observe shifts in spatial patterns. We constructed time series of ANPP to 

quantify the productivity of each plot and visualize trends in curve shapes; we classified 

the curve shapes by maximum (peak value), maximum slope (fastest growth), normalized 
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maximum based on initial biomass (in 1980), and normalized slope based on initial 

biomass (in 1980) 

 Sampling (soil depth): In the summer of 2011 we visited the 131 long-term re-

measurement plots, which are arrayed systematically along six transect lines which bisect 

WS1 perpendicular to a “y-shaped” tributary and span the one square kilometer site at an 

angle of approximately 220 degrees SSW to 40 degrees NNE (Acker et al., 1998; Lutz, 

2005) (Figure 12).   

 

Figure 12. Distribution of vegetation plots and topography in watershed 1. 
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Initially, we measured soil depth between February to April of 2011 (wet season) using 

the knocking pole method (see below). This period was selected because of the soil 

penetrability afforded by moist conditions. To reduce variability due to researcher 

strength, all measurements were conducted by the same researcher (F.S. Peterson).   The 

knocking pole was penetrated into the soil perpendicular to the surface to a maximum 

depth of 120 centimeters to account for 90-95 percent of roots (Gasson and Cutler, 1990; 

Gilman, 1990; Coutts, 1999).  The six measurements taken were averaged to a plot-scale 

mean that was used to estimate soil depth.  

Sampling (soil rockiness): Soil rockiness (percent by volume) was measured from 

excavations of sixteen sets of two soil pits with a 600 cm3 volume on the same subset of 

plots. Soils were removed from the site manually and returned to the laboratory where 

they were separated by depth (0-10 cm and 10-20 cm) and sieved by particle size (<2 mm, 

2-5 mm, and > 5 mm). Rock bulk density was calculated using the submersion method 

for each plot individually because volcanic rocks are often lighter than the traditional 

2.65 g/cm3 value. Soil rockiness was computed on a volume-of-rock to volume-of-soil 

basis facilitated by the individual density calculations. We developed a metric of 

effective soil depth (ESD) similar to that which is used in agriculture to imply the soil 

volume available for moisture storage (Wolf, 1995; Verseghy, 2007).  ESD was 

calculated as 

ESD (cm)  =  TOTAL DEPTH(cm) – PERCENT ROCKINESS (cm3)* TOTAL DEPTH 

(cm)  
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ESD was our primary metric for quantifying potential belowground moisture holding 

capacity.  

Bulk Density Eight soil cores of 10 cm depth (approximately 17 cm3 volume) were 

removed from each plot using the Oakfield Soil Core apparatus, placed in plastic baggies, 

stored at 4 C, and returned to the laboratory for analysis. The cores were weighed wet, 

and then a 1 g wet sub- sample was taken from each core and oven-dried at 60 C for 3 

days. The oven dried sub-sample was then reweighed and a wet-dry conversion factor 

was established for each sample. For each sample, bulk density was calculated as: 

Bulk Density (g/cm3) = oven dry weight (g) / volume (cm3) 

The samples were then averaged at the plot scale to determine a representative bulk 

density for each plot. 

Computational analysis (MLE estimation): On this site, current ANPP has been 

calculated as the change in biomass (Mg/ha) over a time interval (years), plus mortality 

and ingrowth (Mg/ha) (Acker et al., 1998; Lutz, 2005; Lutz and Halpern, 2006). An 

empirically-based approach to predicting maximum productivity as a continuation of 

current time series data was selected in order to retain statistical separation between our 

dependent variable of interest (ANPP) and the topographic and edaphic metrics against 

which it was being compared. As a comparison, a regression-based approach to 

predicting maximum or future productivity as a function of topography and soil structure 

would have double-counted the predictive power of the independent variables and 

implied that relationships between landscape and vegetation were fixed over time. We fit 
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a logistic function to the biomass data (B(t)) in a time series based on the general logistic 

model of biomass development and their variations (e.g. biomass levels off and then 

declines somewhat)  described in Glenn-Lewin et al. (1992). This model has been shown 

to fit other similar temperate coniferous forest ecosystems.  (Whittaker and Marks, 1975; 

Ketterings et al., 2001). On 21 of the 133 sites, the mANPP predicted for the site 

occurred in the future and was therefore extrapolated beyond the temporal extent of the 

data. To reduce error in the extrapolation, we conducted our fits using maximum 

likelihood estimation, which has been shown in multiple fields of study to be the 

appropriate error reduction strategy when historical trajectories are well-known (since 

future trajectories are not known) and the model form has been shown to be appropriate 

in validation (Jones, 1989; Kreckelburg and Lappe, 1999; Thieme, 2003). mANPP is 

determined as the slope at the inflection point on the function B(t) (Figure 13; 

mathematical derivation in Appendix 2). The curves in Figure 13 are reproduced from 

Christensen and Peet (1982). Only about 15% of plots on the watershed required this 

method to determine their mANPP; to validate the estimates, the method was used to 

calculate a predicted trajectory for all stands, even those that had already reached 

mANPP, and fits of predicted versus actual were assessed using the R2 criterion. It was 

found on the validation set that all R2 values ranged between 0.5 and 0.98.  
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Figure 13. Three potential scenarios for biomass (Mg/ha) and derivative ANPP 

(Mg/ha/yr). The dotted line is initially a highly productive stand with high 
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biomass, the solid line a slower growing stand also with high biomass, and the 

slash-dotted line an initially suppressed stand with less biomass. 

Computational analysis (Fitting the general model) a script was written in the 

programming language "R" to test the fit of four general models versus ANPP. 

Specifically, the metrics we tested within the models were solar radiation, slope, 

elevation, horizon angle, soil depth, moisture capacity, soil type, number of re-plantings, 

disturbance history, percent hardwood (at various points in time) and diversity (calculated 

using the Shannon-Weaver index).These models are highlighted in table 1.  

The Akaike's Information Criterion (AIC) was determined for each model and used to 

rank the models.  Additionally, residual analysis was conducted to determine if spatial 

trends were extant at the scale of interest. We also conducted a non-censored random 

forests analysis using the R-package "party" which removes weights that might be 

associated with potential bias or autocorrelation in the data. The purpose of the random 

forests analysis was to validate the criteria selected by the AIC approach and our GLM's. 

Topography We developed a set of 12 topographic metrics within ArcGIS 9.3.1 (ESRI, 

2009) using a digital elevation model (DEM, 10 m resolution) and a LiDAR bare-earth 

map (1 m resolution, reconnaissance flown in 2008). LiDAR was flown with a minimum 

of nine returns per square meter to approximate vertical protrusions within 13 cm 

accuracy and horizontal cover within 1 m accuracy. For 1 m topography, the final returns 

for each of the voxels were averaged to determine bare-earth altitude (Lefsky et al., 1999). 

To address the influence of topography on stand structure, we derived metrics from the 
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DEM or LiDAR bare-earth map using ArcGIS’s “Spatial Analyst toolkit” or the 

downloadable “Topography toolkit” (available from ESRI, 2010) topographic metrics 

such as aspect, slope, elevation, maximum solar insolation, upslope contributing area, 

angle to the horizon, wind exposure, topographic wetness index (defined as the natural 

log of the contributing area divided by the slope angle) and Jenning’s landform 

classifications (Dyrness, 1969; Rothacher, 1974; Swanson and Jones, 2002; Sorenson et 

al., 2006). These topographic metrics we selected serve as remotely- sensed proxies for 

belowground resource distributions or ecosystem forces that could affect them.   

Soil and landscape history We additionally developed a set of 12 soil and landscape 

history metrics from existing data and field measurements found in (1) intensive site 

analysis, (2) historical site data available online at the Forest Service Data Bank’s H.J. 

Andrews Website (http://andrewsforest.oregonstate.edu/lter/), or (3) developed manually 

from archived harvest documents. Disturbance history and soil type classification 

accounted for many of these metrics as binary classifications; five  soil groups and four 

disturbance groups had been previously identified (Dyrness, 1969; Swanson and Jones, 

2002). Additionally, the field measurements of effective soil depth and bulk density were 

used.  

Descriptions of soil series can be found online through the H.J. Andrews website; 

however, a brief description of the four main groups is presented here: Budworm and 

Limberlost soils are loamy soils derived from greenish breccia; Budworm is found in 

lower elevations than Limberlost is. Andesite colluvium describes accumulative soils 
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from earth movements. Frissell soils are derived from reddish breccias and are found at 

low elevations. Rock is the fifth “soil group” on the site; however, no vegetation is found 

on rock.  
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3.3 Results 

 

To quantify relationships between abiotic factors and ANPP, I employed several 

statistical techniques. First, I tested individual correlations between ANPP and 

topographic and soil features, as well as multiple linear regressions. When I tested 

individual correlations between ANPP (over the entire watershed) and the topographic 

and soil metrics, we found no significant relationships.  Next, I created four multilinear 

models based on drivers (radiation, moisture, species composition, or a combination of 

these) we associated with ANPP.  I ranked the quality of each model based on Akaike's 

Information Criterion (AIC). I found that  the comprehensive model captured the most 

variability in the predicted data, and that percent hardwood in 1980, Shannon Weaver's 

diversity index in 1980, horizon angle, and soil type were the most important factors in 

determining ANPP in 2007 (Table 3).  
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Table 3. Linear model results for "current" ANPP (calculated from the 2001-2007 re-

measurement interval).  

model AIC parameters 
included 

significant 
parameters 

Fitting 
Statistics 

comprehensive 
model 

577.18 soil type, 
percent 
hardwood 1980, 
Shannon 
weaver 2007, 
horizon angle, 
elevation 

percent 
hardwood 1980, 
Shannon 1980, 
horizon angle, 
soil type 
(Frissell) 

R2 =0.30, F = 
6.37, ∆ AIC = 
0.00 

water model 590.59 bulk density, 
soil depth, 
upslope area, 
slope, 
topographic 
wetness index, 
soil type 

soil type 
(Frissell, 
Limberlost) 

R2 =0.17, F = 
3.21, ∆ AIC = 
13.01 

biotic model 593.18 percent 
hardwood 
(1980, 2007), 
number of trees 
(1980, 2007), 
Shannon 
weaver's 
diversity index 
(1980, 2007) 

percent 
hardwood 1980, 
Shannon 
weaver 1980 

R2 = 0.21, F = 
3.22, ∆ AIC = 
16.00 

solar model 595.15 solar insolation, 
aspect, horizon 
angle, elevation  

solar insolation, 
horizon angle  

R2 =0.14, F = 
3.56, ∆ AIC = 
17.97 
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The random forests analysis also had similar results, and found that Shannon Weaver's 

diversity index in 1980, number of re-plantings, topographic wetness index (TWI), 

percent hardwood in 1980, and horizon angle were the most explanatory classifying 

variables (Table 4). We only display the top five variables here, as the Party package 

used for the analysis only shows the top variables which explain the majority of the 

variance.  

Table 4. Results from Random Forests Analysis for current "ANPP" from the 2001-2007 

re-measurement interval. Branching criterion indicates at what value of the 

variable the tree "split". The variance explained is relative to the best predictor, in 

this case, Shannon Weaver's Diversity Index as measured in 1980.  

 

Variable Branching Criterion Variance Explained 

Shannon Weaver's Index < 0.988 0.99 

Regeneration Attempts > 1 0.95 

Percent Hardwood 1980 < 4.48 0.82 

Topographic Wetness 
Index 

<6 0.73 

Horizon Angle < 22.5 0.44 
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A chi-squared test was performed within the "party" package to compare predicted ANPP 

values based on the random forests criteria to calculated values and the prediction was 

not significantly different than the actual values (p = 0.24). 

Theoretically, ANPP could be calculated for any re-measurement interval and that value 

taken as "productivity," which would vary with the time period selected. To avoid this 

problem\, we developed the mANPP metric which compares maximum values of ANPP 

over a stand's lifespan. mANPP was modeled by fitting a logistic function to biomass 

data. To evaluate the goodness of fit, we compared predicted and actual values of 

biomass for each plot (Figure 14).  

 

Figure 14. Goodness of Fit tests between biomass (Mg/ha) predicted from logistic 

function fit using maximum likelihood estimation (MLE) and actual biomass (Mg/ha) 
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calculated from allometric equations on DBH data for five randomly selected plots. 

Each point represents one re-measurement interval, 7 re-measurement intervals exist 

in total. Lines represent the goodness of fit. Color bar displays the R2 statistic for the 

goodness of fit for the corresponding line, as well as the current ANPP (2001-2007 

re-measurement interval) that corresponds with that plot 

Our fits were robust, with correlation coefficients (R2) ranging from 0.56 to 0.99. The 

fitting curves shown in Figure 14 represent only a small subset of the validation set for 

the purpose of visualization. The mean error for all plots' biomass fits was 14.68 Mg/ha, 

roughly 8% of average biomass as measured in 2007.  For the majority of the plots (102 

of 124 calculated), mANPP occurred during a measured interval; the mean year for 

mANPP on all plots WS1 was 1999, or 19 years after the first re-measurement (standard 

deviation = 10.91 years). As further validation of the appropriateness of the estimations, I 

summarized the predicted year of mANPP for each plot. For the 22 plots on which 

mANPP was predicted using a fit to the biomass function, the  mean year for mANPP 

was 51 years after establishment (standard deviation = 7.34 years). The longest time for a 

modeled plot to achieve mANPP was 62 years following establishment; however, this 

plot began with extremely low biomass and is located on a poor site (rock soil type). 

We tested whether or not current ANPP from the 2001-2007 re-measurement interval and 

mANPP had the same drivers by comparing the AIC results of the ANPP models with 

those of the same models regressed onto mANPP (Table 5, 6).  

Table 5.  Linear model results for  mANPP (modeled maximum ANPP). 
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Model AIC parameters 
included 

significant 
parameters 

fitting 

statistics 

biotic model  529.48  percent hardwood 
(1980, 2007), 
number of trees 
(1980, 2007), 
Shannon weaver's 
diversity index 
(1980, 2007) 

Shannon weaver's 
diversity index 
1980, percent 
hardwood 1980, 
percent hardwood 
2007 

 

R2= 0.48, F = 
10.83, ∆ AIC 
= 0.00 

comprehensive 
model 

 

582.37 

 

soil type, percent 
hardwood 1980, 
Shannon weaver 
2007, horizon 
angle, elevation 

percent hardwood 
1980, soil type 
(Frissell, 
Limberlost) 

R2= 0.15, F = 
2.66, ∆ AIC = 
52.49 

 

solar model 589.89 solar insolation, 
aspect, horizon 
angle, elevation 

aspect (south) R2= 0.06, F = 
1.35, ∆ AIC = 
60.41 

water model 593.13 bulk density, soil 
depth, upslope 
area, slope, 
topographic 
wetness index, 
soil type 

soil type 
(Limberlost) 

 

R2= 0.13, F = 
1.37, ∆ AIC = 
63.65 

 

 

Table 6. Summary of results comparing the current ANPP calculated from the 2001-2007 

re-measurement interval linear models to the mANPP as predicted from MLE 

linear models. R2 values indicate the fit of the predicted values to the actual; 

shared parameters are those selected in both models. 
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Model name ANPP R2 mANPP R2 shared parameters 

solar model 0.14 0.06  

water model 0.17 0.13 soil type 

biotic model 0.21 0.48 Shannon Weaver 
1980, percent 
hardwood 1980 

comprehensive 
model 

0.30 0.15 percent hardwood 
1980, soil type 

 

We found that for mANPP, the biotic model captured the most variability in the predictor 

data. Between the two models, the parameters of soil type, Shannon Weaver's Index in 

1980, and percent hardwood in 1980 were shared. As an example of one of these 

parameters on WS1, Figure 15 shows the distribution of percent hardwood in 1980. 
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Figure 15. Percent hardwood (in terms of biomass, Mg/ha) by plot in 1980. 

The initial condition of the stand, particularly its composition at establishment, may 

influence its composition and  productivity in the future. To test whether or not the initial 

composition and ANPP (calculated from the 1980-1984 re-measurement interval) 

influenced the current (2001-2007) ANPP, we hypothesized that sites established by 

conifers would follow different successional pathways than those established by 

hardwoods, and we quantified those pathways in terms of BA/ha and ANPP. Although  

ANPP for both hardwood and conifer initiated plots was not significantly different during 

the first re-measurement interval, BA/ha was, but we found that during the current re-

measurement interval, both ANPP and BA/ha were significantly different, and that 
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conifer initiated plots had higher values of both. However, we found that mANPP was 

not significantly different between conifer and hardwood initiated plots (Table 7).   

Table 7. Summary statistics for the test of the influence of initial conditions on current 

ANPP (2001-2007) classified by hardwood initiated (> 50% of biomass) and 

conifer initiated (> 50% of biomass) plots.  

 Hardwood-
Initiated (n=22) 

Conifer-
Initiated (n= 
102) 

All Plots Different  

initial 
ANPP 
(1980-1984) 

5.55 ±2.29 6.09±3.31 5.94±2.44 no, p = 
0.4429 

 

initial 
BA/ha 
(1980-1984) 

0.48 ± 0.36 1.60±1.69 3.88±1.59 yes, p < 
0.001 

 

current 
ANPP 
(2001-2007) 

3.67±3.44 7.58±3.32 7.54±3.46 yes, p < 
0.001 

 

current 
BA/ha 
(2001-2007) 

29.29 ± 11.03 39.72 ±17.15 37.71 
±13.38 

yes, p < 
0.001 

 

mANPP 9.54±3.44 10.98±2.98 10.01±3.3
2 

no, p = 
0.1834 

 

mANPP 
interval 

1984-1988 1995-2001 1995-2001 yes  
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Although BA/ha of both conifers and hardwoods generally increased over time, the 

BA/ha of hardwoods increased only slightly and actually declined in the most recent re-

measurement (Figure 16). 
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Figure 16. Basal area per hectare (m2/ha) and ANPP (Mg/ha/yr) trajectories for plots that 

contained > 50% hardwood (blue) or > 50% conifer (black) in the 1980-1984 re-

measurement interval. Thick lines indicate a mean trajectory for each species group. 

Each individual line represents one plot. The final graph shows the mANPP trajectory 

for hardwoods (red) and conifers (blue). 

ANPP, on the other hand, was much more variable, particularly for conifers.  ANPP of 

most conifer initiated stands  is greater than that of hardwood initiated stands in 2007, but 

the differences between the average ANPP values is relatively less than the differences 

between  BA/ha.   
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3.4 Discussion 

The current ANPP on WS1 was explained in our analyses best by a combination of 

physical and biotic parameters. Both a topographic metric (horizon angle) and soil type, 

which integrates multiple physical and chemical properties of the soil, were important for 

explaining current ANPP. Biologically, measurements of initial diversity, specifically 

percent hardwood in 1980 and Shannon-Weaver's diversity index in 1980, were the most 

important. Unlike current ANPP, mANPP was best explained by biotic parameters alone, 

specifically Shannon-Weaver's diversity index in 1980, percent hardwood in 1980, and 

percent hardwood in 2007. From the analyses of ANPP at the current (2001-2007) and 

maximum value, initial composition unambiguously comes out as a strong driver. 

Our results indicate  that initial stand structure, as quantified by basal area, species 

composition, and initial ANPP should influence the current stand structure and ANPP. 

We divided WS1 into hardwood-initiated and conifer-initiated groups to further 

investigate this hypothesis. Because WS1 is currently dominated (85% of total trees by 

mass) by conifers, we expected to find consistency in the curve shape of ANPP 

trajectories indicating, as we suspected, that initial conditions predict current ANPP 

(Knapp & Smith, 2001; Laurance et  al.,  1999; Malhi et  al., 2006; Raich et al., 2006; 

Ryan et al., 2006). Since the vegetation of the watershed was initiated from a clear-cut 

harvest, we expected and found that initial BA/ha and ANPP amongst conifers and 

amongst hardwoods were not significantly different. Additionally, we expected and also 

found that current (2001-2007) ANPP and 2007 BA/Ha were significantly different; this 
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corresponded with the results of our first analysis, that species composition at 

establishment influenced current ANPP. However, there was greater variability in ANPP 

trajectories than we expected, and most importantly, it was not expected that mANPP for 

hardwood and conifer initiated stands was not significantly different, despite the fact that 

compositional parameters came out as the most explanatory predictors of mANPP.   

It is not clear why  initial composition should drive mANPP, yet there is no difference 

between mANPP on compositionally dissimilar sites.  The answer may lie in different 

pathways of development.  The developmental patterns of hardwoods and conifers in the 

Pacific Northwest differ because hardwoods (such as Castanopsis chrysophylla, Prunus 

emarginata, Rhamnus purshiana and Acer circinatum) are generally smaller and some 

are more drought-tolerant, although others, such as Alnus rubra and Acer macrophyllum 

are better integrated with coniferous trees. Following the harvest of WS1, it was 

documented that sprouting evergreen hardwood establishment occurred prolifically on 

disturbed soils despite multiple attempts at replanting Pseudotsuga menziesii (Rothacher, 

1969). If hardwoods initially established rapidly and were then overtopped by a 

coniferous overstory that initially had slower growth, then it is possible that hardwood-

initiated sites achieved their maximum ANPP during the early succession of the 

watershed and conifer-initiated sites achieved an equal value of mANPP later in time 

(Figure 17). 
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Figure 17. Schematic of hardwood and conifer initiated ANPP trajectories. Although 

mANPP is statistically not different for both (~10 Mg / Ha / Yr), mANPP occurs 

between years 1984 and 1988 for hardwood initiated plots and between years 

1995 and 2001 for conifer initiated plots 

 

Because within the species groups individual species may have very different 

environmental needs and growth patterns (for example, Castanopsis chyrosphylla  can 

regenerate from stumps and is more inclined to drier sites, whereas Alnus rubra does 

better under moister, mid-slope conditions), to clarify our expectations about stand 
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development, we visualized ANPP trajectories by individual species (Appendix 3). In the 

species’ trajectories, we observed three important behaviors: (1) 74 % of plots’ 

populations of Psuedotsuga menziesii follow the expected parabolic ANPP trajectory that 

peaks between 1995 and 2001 (refer to Figure 13), (2) most Prunus emarginata have 

peaks during the 1984-1988 time period, and (3) during the 1995-2001 interval 65 % of 

plots’ populations of Tsuga heterophylla reach the inflection point in their ANPP 

trajectories.  Point (1) explains why most plots on WS1 have their maximum ANPP in the 

1995-2001 time interval; Psuedotsuga menziesii was the desired species for the site and it 

is both in number and biomass the most prolific. Point (2) is an example of early 

hardwood proliferation followed by subsequent slowed growth; Prunus emarginata can 

be easily overtopped. As far as behavior (3) is concerned , Tsuga heterophylla often 

establish on nurse logs or in canopy gaps, and if productivity of Pseudotsuga menziesii 

has just maxed, canopy closure may be occurring and Tsuga heterophylla experiencing 

beneficial site conditions, particularly in terms of increased radiation and nutrients. 

We did find in our analyses that current ANPP (2001-2007) was influenced by site 

characteristics, particularly the solar parameter of horizon angle and the classification of 

soil type. In fact, when ANPP trajectories are graphed by soil type similarities in curve 

shape are evident (Figure 18). 
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Figure 18. ANPP  (Mg/ha/Yr) Trajectories by Soil Type: Andesite Colluvium, Frissell, 

Budworm, Limberlost. Each thin line represents one plot.  

 

 For example, two distinct patterns occur on Budworm soils. On 44 % of these plots, 

ANPP increases since the first re-measurement, whereas the other 56 % of Budworm 

plots all have peaks in ANPP in the 1995-2001 time interval. These two patterns are 

consistent with the trajectories we expected. Additionally, we are aware that some soils 

on WS1 are extremely poor quality due to rockiness, and have extremely low 
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productivity and slow growth rates. We noted in LiDAR images canopy cover in 2008 

that spatially areas of extremely low ANPP (near or equal to zero) in all time periods 

corresponded with a cap-rock that represents a shift in lithography from the reddish 

breccias of the Little Butte Formation to the greenish breccias of the Sardine Formation 

and volcanic ash flows that overlay it (Swanson and Jones, 2002; Figure 19).   
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Figure 19. Biomass (Mg/ha) in 2007 and ANPP (Mg/ha/yr) calculated from the 2001-

2007 re-measurement interval show different spatial patterns and distinct delineations 

along topographic features. 
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To quantify the dearth of biomass on rocky soils, we calculated the probability density 

function (PDF) for biomass in 2007 and found that on soils classified as "rock" it was less 

than 41 Mg/ha as compared to a watershed average of 218 Mg/ha; 15 % of watershed 

surface area contained less than 1 % of biomass, and correspondingly have low ANPP. 

We suggest that on WS1, the forest composition and the soil type interact to affect ANPP.  

Although species composition shows most prominently in our analyses as an explanatory 

factor, it may be in fact a manifestation of site characteristics, particularly in the case of 

the mANPP.  It is likely that during early stand establishment, high radiation, low soil 

moisture, and exposed surfaces have a positive effect on ANPP because these factors are 

beneficial for shade-intolerant hardwoods. During the current re-measurement interval, it 

is more likely that lower radiation, high soil moisture, and deep protected surfaces have a 

positive effect on ANPP because these factors contribute to the growth of coniferous 

stands. Since both site and species influence ANPP in all re-measurement intervals, and 

their influences are intertwined; mANPP occurs at different times and under different 

conditions depending on stand composition, the site attributes that are best for one stand 

type may not be best for others (for example, some species may be shade intolerant or 

drought tolerant whereas others may prefer shaded or droughty conditions), and thus site 

may not appear to be influential, despite the fact that it actually is. Our study is novel in 

that it explores several options for how to characterize  ANPP (currently, at its maximum, 

or in reflection of its initial state) and reveals how this choice may lead to particular, and 

potentially incorrect, conclusions about ANPP drivers if assessed in isolation. Comparing 

between the three methods allows us to see the influence of both abiotic and biotic 
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drivers on ANPP, even when those drivers are not apparent in statistical analyses 

generated for a selected time.  
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CHAPTER 4 

HETEROGENEITY IN BELOWGROUND PROCESSING: LITTER FALL 

INCREASES WITH ANPP, BUT NEITHER PREDICTS SOIL C 

F. Peterson and K. Lajtha 

Submitted to: JGR- Biogeosciences 

American Geophysical Union 

San Francisco, CA 

4.1 Introduction 

Soil is the largest store terrestrial carbon (C) store, holding a global estimate of 

approximately 2100 Gt C when quantified by geospatial models (Ruesch and Gibbs, 

2008; Post and Kwon, 2000; West and Post, 2002). World-wide, the majority of soil C is 

stored in tropical-subtropical forest, where vegetation inputs are largest, and boreal-

tundra grassland soils, where decomposition is slowest (Amundson, 2001; Cambardella 

and Elliott, 1992; de Deyn et al., 2008; Mahli et al., 1999, 2006; Post and Kwon, 2000). 

Factors influencing soil storage at the global scale include temperature (Prior et al., 2005; 

Torbert et al., 2003; West and Post, 2000), forest community (Six et al., 2004), 

mineralogy (Six and Paustian 2000; Six et al.. 2003, 2004;), and available moisture (Prior 

et al., 2005; Torbert et al., 2003). However, little is known about the extent to which these 

factors influence spatial patterns in soil C storage at a significantly smaller, “watershed 

scale” (< 1 km2) and whether or not site history and stand development has a 
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recognizable impact on current soil C stores. In this study, the relationships among ANPP 

and stand composition and soil C dynamics were explored, specifically whether or not 

soil organic carbon (SOC) is related to the ecosystem processes of aboveground net 

primary productivity (ANPP), litter fall, and N-mineralization (Stewart et al., 2008, 

2009). Recent analyses have suggested that processes governing soil C storage may 

display emergent “hot spot” or “hot moment” patterns; that is, specific locations or times 

C storage is unexpectedly augmented due to a synergistic intersection of ecosystem 

patterns and processes. For example, where certain topographic conditions (“hot spots”) 

exist during certain developmental stages (“hot moments”) of the forest, soil C may be 

preferentially stored either relatively labile, partially decomposed organic matter (light 

fraction sensu Sollins et al. 2006) or else in more stable forms, associated and protected 

by mineral matter (heavy fraction) and relationships with ecosystem processes may 

emerge, despite being hidden during other developmental stages or at other locations. For 

example, areas where litter might accumulate may have greater C in the light fraction; 

where clays might be high and rockiness low, we may find more C in the heavy fraction.  

Likewise, we expect to see increased C incorporation into the light fraction on cool, moist 

slopes with high mortality from canopy closure and thus high detrital inputs (Boone, 

1994; McClain et al., 2003; Peterson and Lajtha, 2012). We suggest that these hot spots 

and moments may be related to aboveground net primary productivity (ANPP), which is 

a function of stand structure and available resources (Acker et al., 2002).   Our objective 

is to better understand the relationships between soil C and ANPP in complex terrain.  
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ANPP has been correlated with litter fall, which is an important short term contributor to 

soil C (Gentile et al., 2011; Heal et al., 1997; Hongve et al., 2000; Palm and Sanchez, 

1991; Paustian et al., 1997, but see Rasse et al., 2005). In a mixed stand, litter fall is 

known to vary in both quantity and quality over a spatial extent, but the average rate of C 

contribution attributed to litter fall as well as the C stored in litter has been estimated in 

the literature (Adair et al., 1996; Gentile et al., 2011; Hongve et al., 2000). Looking 

across multiple stand types, Post and Kwon (2000) quantified the contribution of litter 

fall in terms of an average rate of carbon additions in all forest soil to 33 g C / m2 / year. 

Potter et al. (1993) estimated the mass of C in litter stores for  both leaf and coarse woody 

debris globally to 175 Pt C, with leaf litter contributing to slightly more than half of this 

mass. Several environmental drivers and ecosystem components have been shown to 

influence C inputs into soil from litter fall, including temperature, microbial 

communities, and stand composition (Cambardella and Elliot,1992). The quality of litter, 

specifically N content and form of organic C, as well as microbial processing are also 

important in determining litter decomposition (Gentile et al. 2011;  Gleixner et al., 2002; 

Kiem and Kogel-Knaber, 2003; Kogel-Knabler, 2002). Spatiotemporal variability in 

decomposition also affects the rate that litter contributes C to the soil (Schlesinger, 1990; 

Sanderman, 2004). 

 

Stability of soil C depends on soil properties, such as physical protection and mineral 

association, and in turn affects belowground processes such as microbial respiration and 

leaching (Six et al, 2000, 2002, 2004). A technique of carbon "fractionation" is used to 
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partition soil C based on density into "light" and "heavy" fractions. (Buyanovski, 1994; 

Cambardella and Elliot, 1991;  Christensen 1992, 1996; Oades, 1993; Six et al., 2004). 

The light fraction (LFC), which has a density of less than 1.85 g/cm3, is based on the 

density of litter (1.65 g/cm3) plus mineral contamination. The heavy fraction (HFC) 

reflects the organic coating that often forms on primary and secondary minerals, which 

comes out in solution due to mass. The soil matrix structure, biota, and moisture affect 

soil C recalcitrance and in turn ecosystem processes such as the leaching of dissolved 

organic carbon (DOC) (Tisdale and Oades, 1992), aerobic capacity (Sexstone et al., 

1985), nutrient capacity (Wang et al., 2001) and water flow (Prove et al., 1990), all of 

which feedback to the stand's ANPP. This analysis focuses particularly on links between 

soil C and ANPP.  The primary objective of this research is to determine how the different 

pools of soil C on a mountainous watershed relate to stand structure, ecosystem 

processes, and topography, and to determine if these relationships emerge conditionally 

during particular hot moments (critical stages in stand development) or at particular hot 

spots (areas of hydrologic aggregation, abrupt changes in stand composition, etc.). 

 

Because LFC is ephemeral, it responds quickly to biotic interferences such as 

productivity and land use change; while HFC is also related to biotic factors, it has been 

shown to have important relationships to abiotic factors as well (Hongve et al., 2000; 

Qualls et al., 1991). For example, the presence of C in the heavy fraction has been shown 

to be limited by available pore space, as Stewart et al. (2008, 2009) suggested, so that 

heavy fraction C can be modeled as only a function of soil texture and mineralogy. Or, as 
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Sollins et al. (2006) suggested C protection in LFC pool is a function of both mineralogy 

and organic composition, particularly protein structure and ligand-exchange carboxylic 

compounds. In particular, this research addresses the variability of the light and heavy C 

fractions across the space of a mountainous watershed and whether or not these fractions 

correlate with a set of (1) topographic factors and (2) measureable ecosystem processes: 

litter fall, N-mineralization, and ANPP. Spatial fluctuations in litter fall have been 

observed and correlated with variability in soil C (Boone 1994; Hongve et al., 2000; Post 

and Kwon, 2000).  

However, studies documenting this variability have largely been limited to experimental 

manipulations of controlled sites using cropping and tillage rather than the natural 

variability in complex terrain (Beare et al., 1994; Biederback et al., 1994; Bremer et al., 

1994).  To address the spatial variability in the light fraction C’s relationship to ecosystem 

processes, I tested the hypothesis that (1) the strength of the relationship between 

aboveground net primary productivity (ANPP) and LFC varies spatially because the LFC 

is a balance between litter fall and woody inputs versus decomposition outputs, and 

decomposition rates and processes are both variable and not well known and that (2) on 

warmer, drier sites, ANPP is inversely related to LFC because highly-productive 

deciduous hardwoods establish preferably on these sites facilitating leaf litter 

accumulation due to bad conditions for microbial decomposition and leading to lack of 

incorporation into the soil. To address the distribution of heavy fraction C, I hypothesized 

that (3) HFC is a function of soil mineralogy, stand composition, and ANPP, and that 

edges observed spatially in site mineralogy (changes in soil type) are reflected in sharp 
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changes in the composition of the forest community and the magnitude of HFC.  
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4.2 Materials and Methods 

 

Site: Watershed 1 (WS1) is a 96 hectare catchment in the H.J. Andrews Experimental 

Forest (HJA) in the western Cascades Range of Oregon. The HJA is part of the National 

Science Foundation's Long Term Ecological Research (LTER) program and provides a 

wealth of data and resources for spatially and temporally explicit studies of ecosystems 

(Robertson et al., 2012). WS1 was originally part of an experiment regarding the effect of 

regeneration cuts on stream flow and sediment fluxes. Between 1962 and 1966, the stand 

was clear-cut, burned, and replanted with four attempts at seeding (one aerial and three 

row re-plantings of Pseudotsuga menziesii. The forest community on the site is currently 

dominated (70-80 percent) by Pseudotsuga menziesii and Tsuga heterophylla of 

approximately 50 years of age. This site has steep (greater than 100% slopes) and distinct 

north-south aspects that result in both diurnal and seasonal patterns in radiation. Forest 

climate is moderate (mean annual temperature of about 9.7 C) and variability in 

temperature is greater on ridges than in valleys due to temperature inversions and 

downslope movement of cool air in the evenings. Mean annual precipitation is 2300 mm. 

Soils on WS1 are derived from basaltic and andesitic parent material; volcanoclastic and 

glacial rocky features are prominent. Soil moisture gradients have also been identified on 

this watershed, and as a general rule south-facing slopes are drier with shallower soils 

than north-facing slopes due to both radiation differences and greater surface damage 

following harvest fifty years ago. 
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Long-term re-measurement plots: 133 long-term re-measurement plots are arrayed in six 

transects spanning the 96 ha watershed perpendicular to the stream. Each re-measurement 

plot has a radius of 8.92 m2 as measured from the ground and areas (from the air) range 

from 125 to 250 m2. Approximately every six years, all trees within the plot are measured 

using standard forest inventory analysis (FIA) techniques for diameter at breast height 

(DBH), diameter at base (DBA), condition (live, dead, broken leaders, pests, etc.), and 

trees within a three meter radius of plot center are tagged for tracking. The Pacific 

Northwest Biomass Component Equation Library (Halpern and Means, 2011) is 

considered the standard allometry for calculating the biomass and productivity of these 

long-term re-measurement plots and is based on empirically designed equations for this 

specific eco-geo-region. After biomass was calculated, ANPP was determined using the 

methods described in Acker et al. (2002) as the difference in biomass over the 

measurement interval, plus the mortality and ingrowth during the measurement interval. 

To assess structural differences between hardwood, conifer, and evergreen dominated 

areas specifically, a custom script was written in Python to organize and compile 

calculated biomasses (Mg/ha) and ANPPs (Mg/ha/Yr) by plot into species groups. 

 

Field Sampling techniques for litter fall: We collected litter from sixteen of the long-

term plots on WS1. These plots were selected to represent the distribution of biomass on 

the watershed based on an imputed measurement of percent cover and tree height 

determined in LiDAR reconnaissance in 2008. Litter collections were conducted for the 

years of 2009-2011, from August to August in each year. The litter traps were located just 
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outside the perimeter of the plots in order to avoid interaction with  other vegetative 

studies on the plots. Each litter trap is square with edges of 43 cm by 43 cm (0.1849 m2). 

The ground-truthed plot sizes are 250 m2; the aerial plot sizes range to 125 m2 due to 

steep slopes. Five collections of wet litter from the traps were made in the first year and 

four in the second. Trap status, as well as any anomalies in trap content (bark, debris, 

etc.) were recorded. For most collection periods, both fine and coarse litter were brought 

back to the lab and separated with a 12 inch hardware cloth with 12.5 cm openings. To 

sieve the materials in this manner, a sample was dumped onto the cloth screen, then 

gently shaken and lightly rubbed to pass the small pieces through the screen. After the 

separation, twigs which slipped through the screen were returned to the coarse fraction 

and the needles stuck to the coarse objects were rubbed free and placed in the fine 

fraction. After the separation wet weight was recorded, the sample was placed in a 

labeled paper bag and oven-dried. Upon reaching a stable weight in the oven, the dry 

weight is recorded. A paper bag stapled and labeled like the sample bags is used to tare 

the bag weight out of the gross weight. Three traps were damaged between collections, so 

litter mass accumulated for these plots was only recorded prior to damage and a note was 

taken on the number and extent of damage. 

To calculate dry mass of leaves (in Mg) per hectare per period (interval between 

collections), three conversion factors were created following the form of : 

 

Mass per Hectare = 0.1849 m2 * Number of Traps * Dried Mass of Leaves/ 100000000 
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The rationale for creating multiple conversion factors was to account for the set of plots 

on which only three or four samples were valid due to the damage. For the first year, leaf 

collections were precise to 365 days for almost all plots. Thus, the sum of the collected 

masses per hectare over the course of that year represented the annual collection. When 

plots were collected on subsequent days, extending the annual length, one additional day 

was included in the annual collection period, and the influence of that period on the sum 

was weighted by a conversion factor of 0.9696.   When a trap was damaged, mean values 

from the other collection periods (early summer and winter) were weighted to the 

appropriate amount of days and used as a proxy for the missing measurements. When 

extremely coarse materials such as large chunks of bark and rotted log were found in the 

sample during one re-measurement, the data was not removed from the set. 

 

Field Sampling Techniques for soil: In the summer of 2011, we visited 128 of the 133 

plots (access was prohibited by unstable slopes to the remainder) and took eight soil cores 

using the Oakfield soil corer. The soil corer was penetrated lightly to a depth of 10 cm 

with care not to cause compaction of the sample.  Soil core locations on each plot were 

chosen in part based on accessibility and with a goal of maximizing conditional 

variability to obtain an adequate representation of the plot as a whole. Samples were 

placed into individual baggies and stored at 4 C, then returned to the laboratory where 

they were weighed. Following weighing of each sample, the core were bulked and 

allowed to settle to room temperature. 
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Soil Bulk Density: We calculated soil bulk density for all 128 visited plots once in the 

summer of 2011.  

 

Soil porosity: Porosity was calculated under the assumption of total particle density of 

2.65 g/cm3 for mineral soil. Porosity is calculated as: 

 

Porosity (%) = (1- bulk density/ particle density) x100. 

 

Percent moisture of soil: We calculated percent moisture in soil for two subsamples for 

each of the 128 visited plots in the summer (between May and August) of 2011. Percent 

moisture was calculated immediately after bringing samples back from the field. 

 

Moisture holding capacity (MHC): MHC chambers were created by placing 10 grams of 

air-dried soil and 25 grams of water atop glass wool seated in a funnel in the aperture of a 

pre-weighed cup. The water was allowed to drip through the soil and funnel for 24 hours 

in a sealed, dark cabinet. After 48 hours, the cup contained water that had dripped 

through the funnel apparatus. The cup was re-weighed and the amount of water that had 

passed through determined.  

If the total moisture following the analysis was less than 25 mL, percent difference lost to 

evaporation was also calculated. This percent was taken into account when calculating 

MHC. 
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Density Fractionation: From each of the plot samples collected and air-dried, one 25 

gram sub-sample was assessed. Organic materials greater than 2000 micrometers were 

removed.  Sub-samples were  mixed and shaken with sodium polytungstenate (SPT) 

solution with a density of 1.85 g/cm3  for 2 hours and centrifuged for 20 minutes (Sollins 

et al., 2006). Vacuum aspirated light fraction was then washed of residual SPT solution. 

Washed light fraction was then transferred to pie tins and dried at 60 C for 48 hours. 

Heavy fraction remaining in the centrifuge tubes was then washed using DDI water. 

Dried soils were then ground and analyzed for carbon in a Leco True Spec Micro.  

 

Nitrogen Mineralization: Measurements of N-mineralization potentials were conducted 

following the protocols in the LTER Soil Methods handbook (Robertson et al., 1999) by 

incubating  soil aliquots for 28 days at 60% moisture capacity in a dark chamber. Control 

and incubated soil was extracted with 1 molar KCl, and NH4-N and NO3-N content of 

each extract were assessed using a Lachat Autoanalyzer.  

 

Topographic Indices: Topographic indices were calculated in ArcGIS (ESRI, 2010). 

Slope and elevation were determined from the input LiDAR returns. TPI (topographic 

position index) was determined using the Topography toolbox. TPI is an index between 1 

and 10 that describes the relative shape of a landform at a particular point, creating a 

quantifiable metric for characteristics of concavity and slope position. The method used 

to quantify the effects of radiation and aspect was the Beer's Index. Beer's Index was 

calculated following the method described in McCune and Keon (2002), which takes into 
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account the fact that potential direct radiation is not symmetrical about a north-south 

access, but that in the northern hemisphere slopes in the afternoon sun wil have 

temperatures greater than slopes exposed to a morning sun (Stage and Salas, 2007). This 

method “rotates” the response surface by 45 degrees such that there is an index peak in 

the SW. We calculated Beer’s Index using the free GIS software package Whitebox GAT 

(University of Guelph, 2012). An ASCII grid of the Beer’s Index map was then exported 

from Whitebox GAT into ArcGIS where it was clipped and averaged to a plot scale. 

 

Spatial analysis: WS1 was divided into spatial zones based on two criteria: soil type and 

species type. Soil types on WS1 are Frissell (a skeletal Eutocrept derived from basaltic 

reddish breccia), Budworm (a well-drained Haplumbrept derived from basalt as greenish 

tufts and breccias), Limberlost (a monmorillionitic Haplumbrept consisting of basaltic 

colluvium from greenish tufts and breccias), unclassified Andesitic colluvium, and “rock” 

(a basic igneous rock). Two of the 133 plots also fall on “rock” and were excluded due to 

small sample size and lack of vegetation. Species types were separated into hardwoods 

(Acer macrophyllum, Castanea chrysophylla, Alnus rubra, Prunus emarginata, Rhamnus 

purshiana) and conifers (Tsuga heterophylla, Pseudotsuga menziesii, Taxus brevifolia, 

Thuja plicata), as well as a few other species that occurred very infrequently. We also 

looked at correlations between individual species ANPP and C fractions for some of the 

most prominent species, namely Pseudotsuga menziesii, Tsuga heterophylla, Acer 

macrophyllum and Alnus rubra. 
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General Linear Model (GLM) Fitting: A script was written in MatLab to determine all 

pair-wise correlations between the soil fractions and ANPP, litter fall, topographic 

indices, and nitrogen mineralization. The same analysis was repeated for the species 

groups. Non-linear comparisons were also tested using the Matlab “nlmefit” tool. The 

whole set of data was also divided by soil type and the script run again to compare 

average values of carbon fractions between different soil types and to test whether or not 

any of the ecosystem functions (litter fall, ANPP, or N-mineralization) behaved 

specifically when parsed into a particular soil or species group. 

 

Maximum Likelihood Estimation of Maximum ANPP: Maximum ANPP was computed 

using a conditional algorithm based on maximum likelihood. If maximum ANPP occured 

in a past remeasurement or current remeasurement, then this value was used. Else, if the 

ANPP time trajectory was monotonically increasing, maximum likelihood was calculated 

using a maximum likelihood estimate. The derivation of the estimate is described in 

Peterson et al., 2012.  
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4.3 Results 

I first tested the hypothesis that relationships between ANPP and LFC vary spatially 

because of interdependencies between ANPP, litter fall, and decomposition rates using 

regression analyses were first performed at the whole watershed scale. The purpose of 

this analysis was to evaluate the strength of both linear and non-linear correlations 

between the dependent variables of ANPP, litter fall, and N-mineralization and second 

versus the Kg C / m2  in the light and heavy fractions, as well as the % C in the heavy 

fraction.  ANPP, as calculated from the 2001-2007 re-measurement interval, was 

positively correlated with litter fall (R2 = 0.65), but not N-mineralization (R2 = 0.12), and 

N-mineralization was not correlated with litter fall (R2 = 0.05) (Figure 20).    

 

Figure 20. Litter Fall (Mg/ha/Yr) averages by plot for 2010-2012 versus ANPP for the 
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most recent re-measurement interval of 2001-2007. (R2 = 0.65). 

Although ANPP was correlated with litter fall, at the watershed extent neither litter fall 

nor N-mineralization were independently correlated with light fraction C (Kg C/ m2) (R2 

< 0.001 and R2 = 0.02, respectively). There was also not a correlation between heavy 

fraction C and ANPP (R2 = 0.18) nor between light fraction C and ANPP (R2 = 0.01) 

(Figure 21). Two outlier plots with exceptionally high Kg C/ m2 in the light fraction were 

plots 105 and 107, both of which are located near the outlet of the watershed. 

 

Figure 21. Poor correlation between light fraction C (Kg C/ m2) and ANPP as calculated 

from the 2001-2007 re-measurement interval; mild correlation between heavy 

fraction C (Kg C/ m2) and ANPP as calculated from the 2001-2007 re-

measurement interval (R2 = 0.18).  
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Nor did I find correlations between % C in the heavy fraction and ANPP (R2 = 0.04), N-

mineralization (R2 = 0.01) or litter fall (R2=0.17). Litter fall is shown as an example of 

the lack of correlation between % C and the ecosystem processes assessed (Figure 22).  
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Figure 22. No relationship between % C in the heavy fraction and litter fall (Mg/ Ha/ Yr) 

from the averages from 2010-2012 collection period (R2 = 0.17).  

A general linear model including ANPP from the 2001-2007 re-measurement period, 

litter fall as calculated from the 2010-2012 collections, and N-mineralization from 

incubations of 2011 soils was created to look for any possible combination of the 

expected processes that might function as predictors for either (a) the % C of the heavy 

fraction or (b) the Kg C / m2  in the light or heavy fractions at the watershed scale but no 

relationships were found that were significantly better than the individual correlations. 

To further analyze the first hypothesis on a sub-watershed scale, I classified the plots on 

WS1 by aspect, soil type, and dominant species group (hardwood, conifer). When 
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classified by aspect or soil type, I did not find any linear patterns between ANPP, litter 

fall, and N-mineralization and Kg C/ m2 in the light fraction that were stronger than those 

at the whole watershed scale. Because litter outputs and decompositional processes might 

differ by species composition, and species composition can change throughout stand 

development, I looked at the percent of conifers in the earliest inventory (taken in 1980) 

and denoted the conifer group as having greater than 50% conifers by biomass. 

Conveniently, on the particular set of plots selected for intensive sampling, this 

coniferous dominance also exists in the most recent re-measurement (2007). All plots not 

conifer-dominated were called hardwood-dominated.  Kg C/ m2 in the light fraction was 

compared to the current ANPP (2001-2007), litter fall, and N-mineralization. When 

classified by dominant species group, I did not find that correlations between ANPP,  

litter fall and N-mineralization versus light fraction C were improved beyond those at the 

watershed extent.  

 

Dominant vegetation groups may be a reaction to site characteristics, and these site 

characteristics may directly influence soil C. The hypothesis was tested that on warmer, 

drier sites, ANPP is inversely related to LFC. Physical conditions were also expected to 

influence HFC; it was hypothesized that HFC would be a function of both soil 

mineralogy, stand composition, and ANPP, such that edges observed spatially in site 

mineralogy are reflected in sharp changes in the composition of the forest community and 

the magnitude of HFC stores. Warmer, drier sites are found on this watershed are found at 

(a) high elevations with (b) steep slopes and (c) an exposed surface (a convex 
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topographic position), the combination of which may be represented by an elevated value 

of the (d) Beer’s Heat Index (Beer's Aspect), which represents the potential heat to any 

location on a watershed based on surface shape and radiation angles (Stage and Salas, 

1991; Pypker, 2007). Correlations were tested between both mg C / g in the heavy 

fraction and mg C/ g in the light fraction and elevation, slope, topographic position, and 

Beer's Heat Index. The best correlation we discovered was that mg C/ g in the light 

fraction  correlated with the Beers Heat Index variable over the whole watershed as well 

as within soil type divisions (Table 8). 
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Table 8. Summary of Linear Correlation Coefficients (R2) between four topographic 

factors (elevation, slope, Beer's Heat Index (Beer's Index), and topographic 

position index (Topographic Position) and mg C / m 3 in the light fraction and 

heavy fraction by soil type.   

 

 

Although a very strong correlation was found between the Beer's Index on the andesite 

colluvium soil type and mg C / g in the light fraction  (R2 = 0.95, n = 13), the sample size 

was small (n = 13). However, the correlation for mg C / g in the light fraction on all soil 

types versus Beer's Index  showed a very strong positive linear trend (R2 = 0.86) when 

measured across all samples (N = 96). mg C / g  in the heavy fraction also showed a few  

substantive  linear trends; elevation was the strongest topographic correlate with HFC; as 

elevation increases, mg C / g in the heavy fraction also increases for the watershed as a 

whole (R2 = 0.43). In particular, there is a strong positive correlation between mg C/ g in 

ALL SOILS elevation slope Beer's Index Topographic Position sample size
mg C / m3 96
heavy fraction 0.43 0.05 0.4 0.04
light fraction 0.22 0.09 0.86 0.62

FRISSELL SOIL sample size
heavy fraction 0.41 0.38 0.09 0.02 53
light fraction 0.83 0.61 0.12 0.73

sample size
LIMBERLOST SOIL 21
heavy fraction 0.39 0.68 0.88 0.17
light fraction 0.2 0.15 0.58 0.09

sample size
BUDWORM SOIL 8
heavy fraction 0.79 0.03 0.08 0.86
light fraction 0.01 0.61 0.05 0.01

sample size
ANDESITE COLLUVIUM SOIL 13
heavy fraction 0.34 0.17 0.06 0.46
light fraction 0.01 0.23 0.95 0.53
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the heavy fraction on Budworm soils (R2 = 0.43). Slope is negatively correlated with mg 

C / g in the heavy fraction in the Limberlost (R2 = 0.68). and Frissell (R2 = 0.38) soil 

types, but is only weakly associated with mg C / g in the heavy fraction in the Andesite 

colluvium, Budworm, and over the watershed as a whole.   

 

% of C in the heavy fraction as well as kg C /  m2 in the heavy fraction  were compared to 

ANPP after dividing the watershed by aspects and into the hardwood-dominated and 

conifer-dominated species groups. % C in the heavy fraction was not correlated with 

ANPP at the whole watershed extent, nor was it correlated with ANPP when the site was 

classified into conifers and hardwoods (Figure 23). 

 

Figure 23. % C in the heavy fraction calculated from samples taken in 2011 v. ANPP for 

the current re-measurement interval (2001-2007) shows no correlation (R2 = 0.04). 

Classifying WS1 by species groups did not improve the correlation.  
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However, when the watershed was classified by aspect, kg C / m2 in the heavy fraction 

was negatively correlated with ANPP (R2 = 0.51) (Figure 24).  

 

 

Figure 24. Negative correlation (R2 = 0.51) between Kg C/ m2 in the heavy fraction and 

ANPP as measured in the 2001-2007 re-measurement interval on north facing 

slopes..  

 

Although Kg C/ m2  in the heavy fraction was not correlated with ANPP at the watershed extent 

or when divided into species groups, a strong negative correlation existed between ANPP and Kg 

C/ m2 in the heavy fraction on north facing slopes.  
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4.4 Discussion 

In complex terrain, relationships between ecosystem processes and their influence on the 

environment may be highly variable even on a small extent. I expected to find positive 

relationships between ANPP, litter fall, and N-mineralization, but only found a positive 

relationship between ANPP and litter fall.  This was expected on first principles; more 

aboveground productivity should lead to more litter fall.. Lack of relationship between 

ANPP and N-mineralization or litter fall and N-mineralization suggests that the drivers of 

N-mineralization may differ from those of ANPP and litter fall. Generally, this supported 

our initial assumption that microbial processes, including N-mineralization, were both 

spatially variable and their drivers not well known.  

 

I expected that, although they might be driven by different forces, both the Kg C / m2 in 

the light and heavy fractions and  Kg C / m2 in the heavy fraction % of C in the heavy 

fraction would be positively correlated with ANPP, N-mineralization, and litter fall over 

the whole watershed extent.  The literature supports this expectation; relationships 

between soil C and ANPP should be positive; increased C inputs should lead to the 

incorporation of more C in the soil. For example, McGill (1996) and Paustian et al. 

(1994) found that soil C increases without limit as a response to increasing inputs. Others 

(i.e. Six et al., 2002) suggest that soil C in a forest ecosystem should increase following a 

saturation curve, with the saturation level being greater for the light fraction than the 

heavy. I expected that this young forest ecosystem might manifest a linear pattern of C 

storage in the soil for both fractions and percent % C in the heavy fraction when 
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compared to increased inputs (in this case, litter fall (Mg/ha/yr) and by proxy ANPP 

(Mg/ha/yr) because it was still low in C storage and inputs, so that soil C reflects only the 

beginning of the C saturation curve (Figure 25).  

 

Figure 25. The expectation was that a positive "linear" relationship between C inputs 

(litter or ANPP) and Kg C/ m2 in the light and heavy fractions, as well as % C in 

the heavy fraction (diagrammed) would exist because this forest is not yet near 

the point of C saturation. However, I found no correlations between any of these. 

However, there were no correlations between the fractions of C or % C in heavy fraction 

at a watershed extent. I did find a moderate negative correlation between Kg C / m2 and 

ANPP on the north-facing aspect. No existing models suggest a negative relationship.  

However, since no relationships were found between soil C and C inputs, this suggests 

that the other component of soil C incorporation, decomposition, as well as a mechanism 



137 
 

for C losses from the soil, respiration, neither of which were measured in this study, may 

have stronger and more variable affects than were expected.  

 

Because it was expected that variability would exist at the sub-watershed scale, the 

watershed was classified into two groups: aspects and species groups. On this landscape, 

it was expected that these two classifications might be similar because that the north-

facing slope and south-facing slope were established by different species group.  Harvest 

documentation notes that after harvest, the north-facing slope took well to the replanting 

of Psuedotsuga menziesii, while the south-facing slope did not (Chapter 2). 

Establishment on the south facing slope was dominated by drought-tolerant hardwoods 

that better tolerate steeper slopes and shallow soils. Species specific ANPP trajectories 

(Appendix 3) confirm this; for example, that the majority of Prunus emarginata and 

Castanopsis chrysophylla are found on the south-facing slope, and have very high 

productivity at a young age; they experience maximum ANPP in the first re-measurement 

interval between 1984 and 1988 (Chapter 3). North-facing slopes, on which conifers 

initially and currently dominate, reached their maximum in the 1995-2001 re-

measurement (Table 7). Although the north facing slope is currently undergoing canopy 

closure, its ANPP is still much greater than that on the south-facing slope (Lutz, 2005, 

2006; Peterson et al., 2012).  

 

The hypotheses based on these classifications suggested that multiple mechanisms may 

drive soil C storage depending on the location and forest community at a within-
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watershed scale. I hypothesized that where soil conditions were poor—warm, dry sites—

ANPP and light fraction C would be negatively correlated. When the mg of C per gram of 

soil was compared to these geographic conditions, it was found that warm, dry conditions 

were negatively correlated with mg C/ g soil. Because I only had a limited number of soil 

pits, we could not use the kg C / square meter observations robustly at the watershed 

extent and we did not conduct direct comparisons between mg soil C per unit area and 

topography; instead the broad aspect classes were used. When the kg C/ square meter in 

the heavy fraction was classified by aspects, with the expectation that the south facing 

slope would be negatively related to ANPP; where soils were moist and deep, heavy 

fraction C was negatively correlated with ANPP.  On WS1, sites with poor soil conditions 

(on the south face slope) also tend to correspond to sites in my “hardwood” classification; 

they have hardwood species with low biomass but produce the most litter (chapter 6). 

These sites, however, do not have the most ANPP; high ANPP sites are generally found 

in the coniferous stands, which simply have far greater biomass than the hardwood 

stands, despite having less turnover. Ultimately, then the difficulty in relating ANPP to 

soil C is a problem of within watershed variability, specifically pertaining to unmeasured 

variables in the belowground C cycle that reflect microbial processing, as well as high 

variability in the productivity of hardwoods and their resource needs. First (1), the forest 

community is far more diverse that my classifications captured, and second (2) the 

processes that I did not measure in this analysis, decomposition and respiration, affect the 

C balance in the soil, and are highly variable. 
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 (1) Because ANPP looks at the accumulation of all aboveground biomass, not just that 

which is rapidly turned over, the relationship between litter fall and ANPP may differ by 

stand type. Although relationships between DBH (as sapwood area) and leaf surface area 

(LAI) are positive and well-known for many species in both the hardwood and conifer 

groups (Shinozaki 1964, 1965; Grier and Waring, 1974; Meadows and Hodges, 2002), it 

is also accepted that the relationship between tree height and leaf biomass is not constant 

across species or across tree heights, and on WS1 tree heights are highly variable even 

amongst the Psuedotsuga menziesii alone; on the poorly lit north facing slopes taller trees 

predominate, DBH is smaller, number of trees per plot is greater and biomass is greater 

than on south facing slopes (Menucucci and Magnani 2000, McDowell et al., 2002; 

Pypker et al., 2007). On  the north-facing slope, relationships between litter fall and 

ANPP on WS1 may be due to greater amounts of litter, as well as woody turnover, 

coming from high biomass coniferous stands versus smaller amounts of litter with 

quicker turnover coming from deciduous ones. Further evidence of this is that recent 

suppression and windthrow (Lutz, 2005; Lutz et al., 2006) on the north facing slope and 

productive coniferous stands of WS1 suggest that at least some of the litter collected on 

the traps may be dead branches, bark, or twigs. 

 

 As an example of differences between the conifer and hardwood classifications of ANPP 

and how it could be negatively related to soil C in a different ecosystem, Alexander et al. 

(2012) found that in boreal forests in Alaska transitioning to spruce after fire, ANPP 

increased while belowground C decreased.  They attributed this to the notion that 
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biomass accumulation was largely in aboveground woody components of the spruce 

trees, rather than in other components of the early establishing aspens. This situation is 

paralleled on WS1; current ANPP is highest on conifer dominated plots with significantly 

greater basal area (Figure 9) than hardwood dominated plots. Thus, increasing ANPP may 

increase litter fall in both hardwood and coniferous stands, but while hardwoods stands 

may have more rapid turnover of quickly decomposing leaves; coniferous stands may 

have greater amounts of slowly recycling needles and woody components. Together, both 

of these mechanisms would cause increases in ANPP to correlate with increases in litter, 

but would have vastly different influences on belowground C because different 

decomposition regimes would be operating. 

 

(2) On WS1, although we did not measure them, we would expect that both 

decomposition and respiration rates are highly variable, and at the moment this variability 

is not well known. The literature suggests further that it is difficult to attribute either 

belowground C directly or decomposition and respiration rates to easily measureable 

ecosystem parameters, such as those derived from topography, because different 

microbial communities respond to different environmental stimuli. For example, Song et 

al. (2012) found that in temperate steppe ecosystems, increased temperature and species 

composition affected the amount of carbon in the light fraction, but soil moisture did not 

have an effect. However, Li et al. (2006) found in tropical ecosystems that soil moisture 

did affect the amount of C in the light fraction. On complex terrain, heterogeneity in 

decomposition and respiration at a fine scale may preclude relationships between light 
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fraction C and ANPP to be drawn, even when large classifying groups, such as aspect and 

species group dominance, are used to reduce variability at a sub-watershed scale. 

 

On watershed 1, species group was defined as majority conifer or hardwoods. Within 

these groups variability exists, particularly for hardwoods. Alnus rubra, for example, is a 

nitrogen-fixing hardwood that establishes from seed mid-slope, whereas Castanopsis 

chrysophylla is a sprouting hardwood that establishes very well on dry, rocky soils at 

elevation (Halpern and Means, 2004; Lutz, 2005). Thus the lack of correlation in the 

hardwoods group between the ecosystem processes and both fractions of C and for the % 

C may be due to a lack of ecological similarity within species groups, which also may be 

coupled with differences in decomposer communities related to the species. Future 

research would benefit from species specific analysis. Topography proved to be a more 

valuable in determining correlations, although still inadequate, metric for predicting soil 

C on complex terrain. It is also important to note that topography cannot be fully 

detrended from species, and in fact, stand composition is a manifestation of both 

developmental stage of the forest and topographic attributes.  For example, in chapter 3 

(Peterson et al. (2012)), I attributed the flourishing of hardwoods during early 

establishment to poor soil conditions (depth, rockiness, etc.) due to disturbances from the 

harvest and topographic location.  Although the sample size was very small, the 

topographic analysis also revealed that changes in soil type, as well as some topographic 

features such as elevation, were reflected in the mg C / g soil in the heavy fraction, 

supporting our hypothesis that mineralogy and topography impact the heavy fraction. Six 
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et al. (2002) suggested that soil mineralogy affected its C saturation potential, and 

suggested that the heavy fraction saturates at a lower C content than the light fraction. 

However, we did not find that the soil type distinctions had significant P-values, 

suggesting that although relationships between soil mineralogy and C may exist, our soil 

type classifications may not reflect them.  The most notable classification that reduced 

variability within watershed was the moderate negative relationship between Kg C/ m2 in 

the heavy fraction and ANPP on north-facing slopes. Unlike the hardwoods group, the 

conifer group is relatively homogeneous in composition, with the majority of the biomass 

(86%) attributed to Psuedotsuga menziesii, and a lesser amount to Tsuga heterophylla, 

Thuja plicata, and Taxus brevifolia. Although we expected that because heavy fraction C 

is the "high density organo-mineral fraction... containing more processed SOM" (Tan et 

al., 2006) and if WS1 is similar to other mixed-coniferous  ecosystems such as that 

studied by Mudrick et al. (2012), than the incorporation of C into the heavy fraction 

should be high on productive stands on the moist north facing slopes, we found this was 

not the case, again suggesting that rates of decomposition or respiration may be 

influencing soil C incorporation. I propose that on WS1, multiple mechanisms for litter 

accumulation exist, as a result of variability in soil decomposition.  

 

On both the north and south facing slopes of WS1, under both hardwood and coniferous 

overstories, litter accumulation occurs, but may be driven by different mechanisms. For 

example, in Figure (9), litter mats that appear in parts of the watershed with large 

populations of Acer circinatum are displayed. These mats correspond with the dry, rocky, 
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soils of the south facing slope, where decomposition may be limited by heat and lack of 

moisture. On the north facing slopes of WS1, soils are moist and deep, and 

decompositional rates should be high. However, the vegetation this slope is coniferous 

and recently underwent canopy closure, and contains large amounts of decay-resistant 

coarse woody debris, as well as lignin-rich coniferous needles. Gholz et al. (1985) found 

that Pinus elliotii stands that established successfully experienced reduced 

decompositional rates with age and attributed this to litter chemistry and use of limited 

soil nutrients. It is also possible that decomposition on the north-facing slope of WS1 

under the coniferous overstory may be limited by nutrient availability, therefore 

inhibiting microbial ability to break down coniferous litter, or that the presence of very 

slowly decomposing Tsuga heterophylla litter on the north-facing slope is significant. 

Because we did not measure rates of decomposition, or those of respiration, in this study 

we cannot verify if any of these hypotheses are true, but in both the case of hardwood-

dominated and conifer-dominated sites, it is possible to suggest that variability in 

decomposition rates and respiration drives variability in litter accumulation, which then 

complicates the relationship between HFC and ANPP or litter fall.  

 

It is well accepted that the % C in the light fraction should be greater than that in the 

heavy fraction (Tan et al., 2006; Golchin et al., 1994, 1995). We expected that there might 

be positive relationships between % C in the heavy fraction and the measured ecosystem 

processes, but heavy fraction % C was not related to ANPP, litter fall, or N-mineralization 

on the watershed as a whole, or when we classified it into groups at a sub-watershed 
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scale. A very weak positive directionality (R2 = 0.17) existed between % C in the heavy 

fraction and litter fall, but the P-value was not significant and the trend was 

heteroscaedastic at higher values of litter fall. Thus, I conclude that for % C in the heavy 

fraction on WS1, it is not related to the topographic resources or biotic groups I 

characterized.  

 

Ultimately, this study highlights two key principles similar to those in Peterson et al. 

(2012). First, that selection of a time for ANPP—in this case both the re-measurement 

interval selected and the length of that re-measurement interval—affects how ANPP is 

interpreted. ANPP values from a stage in stand development where coniferous species are 

dominant and hardwoods are experiencing during declining productivity will reflect 

largely ANPP dynamics for mid-sized conifers. Defining ANPP over a shorter interval 

would require more frequent re-measurements, but might be more representative of short-

term dynamics. Second , that assessing soil C stores solely by studying ANPP and litter 

fall (whether directly or by proxy through ANPP) may not be sufficient in complex 

terrain where the interaction of environmental (temperature and soil moisture) and 

physiological (litter chemistry and decomposer community nutrition) effects differ at 

very small scales.   
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CHAPTER 5 

INTEGRATED TOPOGRAPHIC METRICS ARE MORE RELIABLE THAN 

STAND STRUCTURE FOR DESCRIBING THE DISTRIBUTION OF 

DISSOLVED ORGANIC CARBON IN COMPLEX TERRAIN 

F. Peterson and K. Lajtha 

Submitted to: Geoderma 

Elsevier Publications 

Amsterdam, Netherlands 

5.1 Introduction 

In soil, DOC is the critical substrate for microbial respiration, transporting organic C 

through the soil where it can be used by organisms or immobilized onto minerals. DOC is 

a product of litter and fine root decomposition; that which is not consumed by microbes 

moves organic carbon downwards in the soil profile to the mineral layers (Kaiser et al., 

2001; Kalbitz et al., 2000; Sanderman et al., 2001) and may play a critical role in SOM 

stabilization by facilitating vertical carbon transport (Marin-Spiotta et al., 2007, 2009; 

Ostertag et al., 2008; Sollins et al., 2009). However, despite its importance, little is 

known about how DOC production and transport is affected by either biotic, such as 

ANPP, or abiotic, such as slope, factors, especially in complex mountainous terrain where 

topography and vegetation diversity vary at the scale of a few meters. Species 

composition and topography have been shown to affect DOC quantity, quality, and 

distribution within the soil profile but no precedent exists in the literature showing how 
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these abiotic and biotic factors play out on complex terrain at the landscape scale (for 

examples, see Bolan et al., 2002; Sanderman et al., 2001; Zsolnay, 2003). 

 

Sanderman et al. (2001) suggested that the primary ecosystem drivers of DOC export are 

moisture regime, litter quality, and soil chemistry. In complex terrain, soil moisture 

regime is shaped by topographic patterns across multiple scales; for example, elevation 

and aspect affect moisture on the regional scale, upslope contributing areas and 

belowground flow paths affect it on the hill slope scale, and bedrock geometry may 

determine available moisture on the scale of just a few meters (Hopp and McDonnell, 

2009; McDonnell et al., 2007). Because DOC distributions depend on hydrology, it 

follows that DOC should be related to the same complex topographic variables as those 

that control site hydrology. However, DOC is also driven by biological processes. While 

some studies suggest positive feedbacks exist between DOC leachate and other 

ecosystem processes such as productivity (Romkens et al., 2004; Tibor and Resaka, 

2005), others have suggested that although theoretically these processes and DOC should 

be linked, experimental evidence is lacking due to complexity in forest ecosystems (Aber 

et al., 1985; Nadelhoffer and Raich, 1992). This study explored how DOC and DOC flux 

from the ecosystem are related to ANPP, N-mineralization, and litter fall. 

 

In soil water, DOC may be stored in several different "pools" that are each accessible by 

different DOC capture or extraction techniques (Jones and Willett, 2006; Zsolnay, 2003). 

Zsolnay (2003) developed a three pool classification for soil DOC: (1) total potentially 
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available DOC, (2) that which is available but not mobile, and (3) mobile DOC. Three 

methods of DOC analysis were used to analyze three similar pools: (1) a KCl extraction 

(all DOC including that bound to minerals by cation bridges), (2) a water extraction 

(soluble DOC not limited to the saturated flowpath), and (3) tension lysimeters (mobile 

DOC limited to the saturated flow path and weakly bound DOC freeable by pressure 

gradients). Typically, biologically available C is separated from soil using a salt-based 

extraction (KCl extraction), which should capture the most potentially available C 

because cation bridges binding DOC to soil minerals are displaced by the salt's cations  

(Jones and Willett, 2006; Zsonay, 1996; Zsonay, 2003). Jones and Willett (2006) found 

that recovery of dissolved organic nutrients (DOC and DON) was greater when using 

salt-based extractions than water-extractions and suggest this is due to (1) that tightly 

bound amino acids can be displaced by KCl, but not by water and (2) trends in water 

extraction recovery are highly erratic and variable based on the soils being analyzed. 

Water extractions physically separate soluble DOC from the soil, but do not displace 

mineral bonds. Tension lysimeters capture leachate in the soil and also draw off some 

bound DOC (pressure gradients) from soil surfaces, but are contingent on soil saturation 

and therefore adequate precipitation events (Figure 26).  
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Figure 26. Extraction Methods and Soil Pools. Left, KCl extraction, middle, water 

extraction, right, tension lysimeters. 

 

This analysis tests how DOC flux and DOC content are related to aboveground 

ecosystem processes. Available DOC should be related to environmental conditions that 

influence aboveground productivity (Peterson and Lajtha, 2012) and which undoubtedly 

produce similar effects on rates of decomposition, litter quality and litter quantity (Cole et 

al., 1982; Kalbitz and Wennrich, 1998).  The primary objective of this analysis was to 

characterize the topographic and biotic variability associated with DOC and ecosystem 

drivers of DOC on one small (96 ha) mountainous watershed in the western Cascades 

range  in Oregon and relate DOC to aboveground net primary productivity, litter fall, and 
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N-mineralization by addressing which environmental factors can be used to predict DOC 

content and flux, and how methods of measuring DOC compare to one another. To do so, 

three hypotheses were tested regarding DOC and its relationship to abiotic and biotic 

drivers on complex montane terrain. First, the expectation was that (a) aboveground net 

primary productivity (ANPP),  litter fall, and N- mineralization are positively correlated 

with DOC (Peterson et al., 2012; Peterson and Lajtha, 2012).  Second, it was tested that 

(2) in complex terrain DOC export is related to landform characteristics and to stand 

composition; specifically, it was hypothesized that topographically that soils from 

microsites with shallow slopes, low elevations, deep soils, and large contributing areas 

will have greater DOC export than soils from sites at high elevations with steep slopes, 

shallow soils, and little upslope area. Biologically, it was hypothesized that stands with a 

dominance of hardwoods would have greater DOC export than those with conifer 

dominance because hardwoods have more rapid leaf turnover and on WS1 are currently 

and relatively more productive than conifers. Finally, the expectation was that (3)  all 

three methods (KCl extraction, water extraction, and tension lysimeter) of measuring 

DOC would be positively correlated with one another. 

  



150 
 

5.2 Materials and Methods 

Study area: Watershed 1 (WS1) is a 96 ha catchment on the H.J. Andrews Experimental 

Forest in the western Cascades range in Oregon. Originally part of a “paired watershed” 

experiment to understand the effects of forest harvest on stream flow dynamics, WS1 was 

clear-cut (1962-1966), burned (1967), and replanted (1968-1971) with Psuedotsuga 

menziesii (Douglas-fir) seed and seedlings (Halpern and Franklin, 1989; Halpern and 

Franklin, 1990). The harvest of WS1 was conducted using a small area of skidder-based 

logging (near the landing at the stream outlet) and a large extent of skyline logging. Due 

to the immense size of the individual trees and the instability of the slopes, the logging 

progressed slowly over four years and seven spatially distinct harvest units as new 

technology was implemented, and it has been documented that early regeneration, 

particularly of shrub-trees Acer circinatum (vine maple) and Rhododendron maximum 

(Rhododendron) had established on some of the early harvested units prior to whole-

landscape burning in 1967. Burning was “hot and satisfactory” and large stems not 

removed in logging but downed by burning were removed from the lower one-third of the 

watershed to clear the stream pathway.  Four attempts at regeneration were made; the 

first attempt was an aerial re-seeding over the whole landscape; the second through fourth 

were manual replanting on the south-facing slope, with maximum planting attempts 

devoted to an “unplantable” area in harvest documentation. The plantings in such areas 

were ultimately not successful in generating as much biomass as other parts of the site. 
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Mean annual precipitation on site is approximately 2300 mm with a mean temperature of 

2 C in January and 18 C in August, with a two to six degree average daily range, as is 

typical of the region. WS1 is near the confluence of Lookout Creek with the McKenzie 

River, at a relatively low elevation (410 m – 1080 m). Parent material is largely andesite 

and breccia, with both green and red breccias present, as well as blackish andesitic scree 

and large, potentially glacially-deposited boulders (Swanson and Jones, 2002). Four 

series of andisols exist on the site: Frissell, Budworm, Limberlost, and Andesite 

Colluvium, as well as a distinct “rock” area (Rothacher, 1967; Dyrness, 1969). 

Topography controls the microclimate, which differs distinctly by north- and south- 

facing aspects due to cumulative annual insolation, aspect-oriented day length, and 

growing season. Diurnal fluctuations in temperature due to adiabatic cooling on steep 

slopes yield nocturnal cold air drainages on approximately eighty percent of summer 

nights (Pypker et al., 2007). Nutrient concentrations of WS1 have not been studied in 

depth, but it has been shown that the site is limited primarily by N, which is typical of the 

region as a whole (Vitousek and Howarth, 1991). 

The current site vegetation  is dominated by 55 year old, 20 to 30 m height cohort of 

Pseudotsuga menziesii (Douglas-fir), most of which was developed from planted 

seedlings. However, other species such as Tsuga heterophylla (western hemlock), Alnus 

rubra (red alder), Thuja plicata (western red-cedar), Castanopsis chrysophylla (Golden 

chinquapin), Acer macrophyllum (big leaf maple), and Prunus emarginata (bitter cherry) 

have naturally seeded in from nearby old-growth stands and alder-dominated riparian 

areas. Acer circinatum and Rhododendron macrophyllum exist as tall shrubs. Ground 
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vegetation is primarily Polystichium munitum, Gaultheria shallon and Mahonia 

aquifolium, all of which have been present on the stand since establishment.  

Vegetation (biomass and ANPP): Long-term data for the site was available in the form 

of forest inventory flat-files consisting of diameter at breast height (DBH) measurements 

for each individual tree on 131 circular plot with an 8.92 m radius (Figure 2). These plots 

are arrayed systematically along six transect lines which bisect WS1 perpendicular to a 

“y-shaped” tributary and span the one square kilometer site at an angle of approximately 

220 degrees SSW to 40 degrees NNE (Acker et al., 1998; Lutz, 2005).  DBH was 

measured on all trees greater than one cm DBH; diameter at base (DBA) was used as a 

proxy for all trees less than 1 cm, and conversion equations were calculated by Lutz 

(2005). From DBH, to determine the biomass of individual trees, allometric equations in 

the Pacific Northwest Biomass Component Equation Library (Halpern and Means, 2004) 

were applied to the appropriate species following the precedent set in Lutz (2005) and 

Lutz and Halpern (2006). Because the plots were initially laid out on the surface rather 

than aerially, we calculated plot area using an elliptical adjustment based on gradient, and 

from this determined biomass per unit area (Mg/ha). We calculated ANPP based on the 

Acker et al. (1998) method, also precedent in Lutz (2005) and Lutz and Halpern (2006). 

We mapped the aboveground biomass and ANPP for the 131 re-measurement plots and 

used spherical kriging to extrapolate across the spatial extent (ArcGIS 9.3.1. 

“Geostatistical Analyst” Toolkit, ESRI 2009).  
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Soil Sampling: During the summer of 2011, soil cores were taken from all accessible 

vegetation plots (124 of 133 plots) using an Oakfield soil corer. Eight cores were taken at 

random locations within the plot, with the intent of capturing microtopographic and 

microclimatic variability. Soil cores did not include the O-horizon and were 10 

centimeters high and 1.7 cm in diameter, unless soil thickness was less than this amount, 

in which case soil cores reflected the maximum possible penetration up to 10 cm. Sixteen 

plots selected to represent the variability in biomass across the watershed based on 2007 

LiDAR analyses were cored subsequently in March of 2012 for the purpose of obtaining 

measurements of soil moisture. These 16 plots also house the lysimeters and litter traps 

used to measure mobile soil water and litter fall, respectively.  

Lysimeter collections: Lysimeter leachate was collected during the rainy seasons 

(October through May) between 2010 and 2012. In summer of 2010, we installed two 

lysimeters on each of the sixteen intensively measured plots in the soil pit . These 

lysimeters were placed within PVC housing and surrounded by silica gel to facilitate soil 

contact. The lysimeters drew water from 70 cm depth. Lysimeters were primed to 15 psi 

after each collection, and usually collected two days following priming. During the 2010-

2011 season, ten lysimeter collections were attempted, with between two and five 

lysimeters yielding water on any given run. During the 2011-2012 season, four lysimeter 

collections were made, with five to seven lysimeters yielding water on any given run. 

Climactic variability occurred between the two years. The rainy season of 2010-2011 

began earlier (October) than that of 2011-2012 (November) and did not extend as late 

into the spring (April versus May). Additionally, during the 2011-2012 season, cooler 
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temperatures and a lower snowline prevented access to some of the high elevation 

lysimeters during the early season. We averaged both lysimeters on each plot across time 

and with one another in order to determine a value for each plot. Because this method has 

high variability, we use the other methods of measuring soil water (KCl and water 

extraction) to validate or further explore patterns observed in DOC.  

Soil depth: We visited all of the accessible long-term re-measurement plots during spring 

of 2011. Soil depth was measured using the knocking pole method. This period was 

selected because of the soil penetrability afforded by moist conditions. The knocking pole 

was penetrated into the soil perpendicular to the surface to a maximum depth of 120 

centimeters to account for 90-95 percent of roots (Gasson and Cutler, 1990; Gilman, 

1990; Coutts, 1999).  The six measurements taken were averaged to a plot-scale mean 

that was used to estimate ESD.  

Soil Rockiness: Soil rockiness (percent by volume) was measured from excavations of 

sixteen sets of two soil pits with a 600 cm3 volume on the same subset of plots. In one of 

these pits, lysimeters were later placed. Soils were removed from the site manually and 

returned to the laboratory where they were separated by depth (0-10 cm and 10-20 cm) 

and sieved by particle size (<2 mm, 2-5 mm, and > 5 mm). Rock bulk density was 

calculated using the submersion method for each plot individually because volcanic rocks 

are often lighter than the traditional 2.65 g/cm3 value. Soil rockiness was computed on a 

volume-of-rock to volume-of-soil basis facilitated by the individual density calculations. 

We developed a metric of effective soil depth (ESD) similar to that which is used in 
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agriculture to imply the soil volume available for moisture storage (Wolf, 1995; 

Verseghy, 2007).  ESD was calculated as 

TOTAL DEPTH(cm) – PERCENT ROCKINESS (cm3)* TOTAL DEPTH (cm) = ESD 

(cm) 

The ESD metric was our primary metric for quantifying potential belowground moisture 

holding capacity.  

Litter fall: We collected litter from sixteen of the long-term plots on WS1. These plots 

were selected to represent the distribution of biomass on the watershed based on an 

imputed measurement of percent cover and tree height determined in LiDAR 

reconnaissance in 2008. Litter collections were conducted for the years of 2009-2011, 

from August to August in each year. The litter traps were located just outside the 

perimeter of the plots in order to avoid interaction with  other vegetative studies on the 

plots. Each litter trap is square with edges of 43 cm by 43 cm (1.849 m2). The slope 

measured  plot sizes are 250 m2; the aerial (horizontal) plot sizes range to 125 m2 due to 

steep slopes. Five collections of wet litter from the traps were made in the first year and 

four in the second. Trap status, as well as any anomalies in trap content (bark, debris, 

etc.) were recorded. For most collection periods, both fine and coarse litter were brought 

back to the lab and separated with a 12 inch hardware cloth with 12.5 cm openings. To 

sieve the materials in this manner, a sample was dumped onto the cloth screen, then 

gently shaken and lightly rubbed to pass the small pieces through the screen. After the 

separation, twigs which slipped through the screen were returned to the coarse fraction 
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and the needles stuck to the coarse objects were rubbed free and placed in the fine 

fraction. After the separation wet weight was recorded, the sample was placed in a 

labeled paper bag and oven-dried. Upon reaching a stable weight in the oven, the dry 

weight is recorded. A paper bag stapled and labeled like the sample bags is used to tare 

the bag weight out of the gross weight. Three traps were damaged between collections, so 

litter mass accumulated for these plots was only recorded prior to damage and a note was 

taken on the number and extent of damage. 

To calculate dry mass of leaves (in Mg) per hectare per period (interval between 

collections), three conversion factors were created following the form of : 

 

Mass per Hectare = 0.1849 m2 * Number of Traps * Dried Mass of Leaves/ 100000000 

 

The rationale for creating multiple conversion factors was to account for the set of plots 

on which only three or four samples were valid due to the damage. For the first year, leaf 

collections were precise to 365 days for almost all plots. Thus, the sum of the collected 

masses per hectare over the course of that year represented the annual collection. When 

plots were collected on subsequent days, extending the annual length, one additional day 

was included in the annual collection period, and the influence of that period on the sum 

was weighted by a conversion factor of 0.9696.   When a trap was damaged, mean values 

from the other collection periods (early summer and winter) were weighted to the 

appropriate amount of days and used as a proxy for the missing measurements. When 

extremely coarse materials such as large chunks of bark and rotted log were found in the 



157 
 

sample during one re-measurement, the data was not removed from the set. 

 

Topography: We developed a set of 12 topographic metrics within ArcGIS 9.3.1 (ESRI, 

2009) using a digital elevation model (DEM, 10 m resolution) and a LiDAR bare-earth 

map (1 m resolution, reconnaissance flown in 2008). LiDAR was flown with a minimum 

of nine returns per square meter to approximate vertical protrusions within 13 cm 

accuracy and horizontal cover within 1 m accuracy. For 1 m topography, the final returns 

for each of the voxels were averaged to determine bare-earth altitude (Lefsky et al., 1999). 

To address the influence of topography on stand structure, we derived metrics from the 

DEM or LiDAR bare-earth map using ArcGIS’s “Spatial Analyst toolkit” or the 

downloadable “Topography toolkit” (available from ESRI, 2010) topographic metrics 

such as aspect, slope, elevation, maximum solar insolation, upslope contributing area, 

angle to the horizon, Beer's Index, wind exposure, topographic wetness index (defined as 

the natural log of the contributing area divided by the slope angle) and Jenning’s 

landform classifications (Dyrness, 1969; Rothacher, 1973; Swanson and Jones, 2002). 

These topographic metrics we selected serve as remotely- sensed proxies for 

belowground resource distributions or ecosystem forces that could affect them.   

Nitrogen Mineralization: Measurements of nitrogen mineralization potentials was 

conducted following the protocols in the LTER Soil Methods handbook (Robertson et al., 

1999).  

From each plot, one 25 g soil aliquot was incubated for 28 days at 60% moisture capacity 

in a dark chamber. Every three days, samples were checked for weight maintenance to 
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ensure evaporation was not occurring, and refilled with water if mass greater than 3% 

was lost. Following the incubation period, samples were extracted by mixing the soil with 

100 mL of 1 molar KCl through shaking on the reciprocal shaker for two hours. After 

shaking, samples were filtered through a Watman glass number two filter twice. The first 

extraction was destroyed and the second extraction preserved at 4 C.  A second set of 

samples from each plot was immediately extracted following return from the field. The 

NH4-N and NO3-N content of each sample were assessed using a Lachat Autoanalyzer.  

 

DOC Analysis: Concentrations of DOC were calculated using a Leco Micro Spec.  25 g 

subsamples were used for analysis. A KCl extraction was performed using 1 M KCl and a 

water extraction using DD1 water. Both were filtered through a Watman Glass Filter 

#2.The collected leachate from the tension lysimeters was also retained for analysis.  
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5.3 Results 

Both linear and non-linear relationships were tested between DOC, and ANPP, litter fall, 

and N-mineralization using the linear and non-linear fitting tools in MatLab to conduct 

this analysis. Some pools of DOC were correlated with ANPP, litter fall, and N-

mineralization, and these relationships were improved in certain cases when topographic 

or biologic constraints were used. In a previous study of the same site, it was found that 

relationships between litter fall, N-mineralization and ANPP were related to one another 

and moderated by both topography and stand structure, specifically forest development in 

the context species composition and both initial and current dominance by hardwoods on 

some sites (Peterson et al., 2012; Peterson and Lajtha, 2012).  

A strong positive relationship existed between DOC leachate (concentrations of DOC 

collected from lysimeters in 2011-2012) and ANPP as calculated for the most recent 

evaluation time, the 2001-2007 re-measurement interval (R2= 0.54) (Figure 27). 

Exponential regression slightly increased the correlation (transformed R2 = 0.64), but this 

is likely due to reduction in variance from the transform, not to an actual physical 

phenomenon. KCl- extracted DOC (R2 = 0.17) and water-extracted DOC (R2=  0.01) 

were not correlated with ANPP. 
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Figure 27. Lysimeter DOC (leached DOC) (mg/L) collected in 2011 and 2012 versus 

ANPP calculated from the most recent re-measurement interval (2001-2007) (R2 

= 0.52).  Leached DOC from the previous year was not as well-correlated (R2= 

0.30) 

 

It was also found that at the whole watershed extent, available DOC (from KCl 

extractions), was not correlated with litter fall (R2 = 0.26) and was correlated with N-

mineralization (R2 = 0.41), however this correlation was strongly influenced by outlier 

plots(Figure 28). The plot with a very low available DOC (0.56 mg/L) is recently 

experienced very high mortality from suppression and windthrow. The two plots with 

very high (> 20 mg/L) available DOC are located in a moist area near the stream outlet. 
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Figure 27. Available DOC (mg/L) from KCl extractions using soils collected in 2011 

versus litter fall from 2010-2012 (R2 = 0.26) at the whole watershed extent; 

available DOC (mg/L) from KCl extractions using soils collected in 2011 versus 

N-mineralization from a one-month incubation in 2011 (R2 = 0.41). 

 

One topographic metric, Beer's Heat Index, which  is a measurement of azimuth and 

horizon-corrected aspect which stands as a proxy for potential heat and radiation 

available was moderately correlated with available DOC (R2 = 0.52) (Peterson and Lajtha, 

2012; Stage and Salas, 1991). This correlation was improved when WS1 was classified 

by aspect. On both the south- and north- facing slopes of the watershed, a strong negative 

correlation existed between Beer’s Index and available DOC, although it was more 

pronounced (R2 = 0.78 versus R2 = 0.62, respectively) on the south-facing slope (Figure 

28). Also, on the north-facing slope, an outlier value of available DOC greatly influences 

the correlation. 
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Figure 28. Map of Beer's Heat Index on WS1; Available DOC (from KCl extraction on 

soils collected in 2011) versus Beer's Heat Index on (a) North facing (R2  = 0.62)  

and (b) South facing aspects (R2 = 0.78). 

Litter fall is not well-correlated with available DOC at the whole watershed extent (R2 = 

0.26), and this relationship is not bettered when classifying the watershed by aspect. 

Likewise, there was also not betterment of the relationship between DOC and N-

mineralization (whole watershed, R2 = 0.41) when we divided the watershed by aspect 

(for whole watershed correlations, refer to figure 26). 

Although it appeared in our regressions that andesite colluvium soils were good 

classifiers for water-extractable  DOC, the p-value for the correlation was not significant; 

the relationship was strung between two small clusters of observations rather than 

representing a watershed scale trend.  

All three methods for determining DOC were significantly different (p<0.05) at a 

significance level of 0.05. In most plots (except plot 105, located nearest the drainage), 

the greatest DOC was found in the K Cl-extracted samples (Figure 30).  
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Figure 30. Bar graphs of DOC by method overlaid on the spatial locations of the plots ; 

black is KCl extraction mg/L, striped is water extraction mg/L, and white is 

lysimeter leachate mg/L and the mean mg/L collected in each of the DOC 

methods.   
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5.4 Discussion 

At the whole watershed scale, leached DOC increases with increasing ANPP. This 

positive relationship was expected, and it suggests the utility of aboveground productivity 

as a means for predicting C losses in dissolved leachate. It was also found that available 

DOC was positively correlated to litter fall and N-mineralization, although these 

relationships were not as strong as between leachate and ANPP.  Litter fall provides C to 

the soil, some of which is used by microbes and some of which is solubilized into DOC. 

N-mineralization is a microbial activity. If C is available in excess of what is used in 

microbial processing, it is sensible that at least some of this C would be contributed to the 

available DOC pool.  

On WS1, highly productive stands are currently dominated by coniferous biomass. When 

WS1 was first replanted following the 1962- 1966 harvest, conifers (specifically 

Psuedotsuga menziesii) thrived on moist, deep-soiled sites and drought-tolerant 

hardwoods established  on dry, shallow-soiled sites where conifer regeneration was 

unsuccessful; succession on moist sites was expedited in comparison to that of dry sites 

(Peterson et al., 2012). As of 2007, our last inventory period, the moister sites (found 

primarily on the north-facing slope) have declining ANPP as a result of canopy closure, 

which occurred for many trees between 1995 and 2001, or when the stand was around 35 

years in age. However, the ANPP of these sites is currently greater than that of 

hardwood-initiated sites, likely due to the fact that they simply have greater biomass. 

Areas of high biomass and high ANPP on WS1 are not spatially coherent. On the plots 
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initiated by hardwoods, although ANPP was initially quite high, current ANPP is low 

relative to that of the coniferous stands. However, turnover on these sites is still high, and 

positive feedbacks between soil nutrients, productivity, and litter fall may exist, if the 

vegetation is not limited and can benefit from increased resources.  Although the relative 

productivity may be less than that of the conifer dominated stands, over the course of 

stand development, site quality, particularly in terms of soil C and moisture, increases on 

the south-facing slopes of WS1 in conjunction with increasing productivity, N-

mineralization, and litter fall (Glenn-Lewin et al., 1992; Peterson et al., 2012).  

The relationship between ANPP and DOC remained strong on both aspects of the 

watershed, despite very different plant community dominances and soil moisture regimes. 

However, we found that differences existed across aspects while relating DOC to 

topographic variables, and that Beer's Heat Index, which emphasizes the solar loading 

and moisture loss resulting from aspect and exposure, was a strong negative predictor for 

available DOC on both the moist north-facing slope and the dry south-facing slope. A 

lack of soil water, whether due to evaporative losses in high heat or drainage due to 

convex landforms, may reduce microbial activity and soil organic matter break down, 

thereby reducing DOC. Or, if sites with a high heat load are spatially contiguous and on 

very sorptive soils, soil C may be held onto mineral surfaces rather than available in 

solution. 

It was expected that classification by species groups (hardwoods and conifers) would 

improve DOC correlations, especially with respect to ANPP and litter fall. Hardwoods 
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generate high-quality litter which provides microbial substrate and facilitates the creation 

of DOC. On hardwood dominated sites I expected  to find positive relationships between 

DOC, ANPP, litter fall, and N-mineralization that were stronger than those on conifer-

dominated sites, but did not. This suggests that topographic factors, more than biologic 

ones, control DOC distribution on WS1. However, the classification of "hardwoods" is 

very broad, representing species from the very drought-tolerant Castanopsis chrysophylla 

to the mesic nitrogen fixer, Alnus rubra. Therefore, biologic controls may still exist for 

WS1, even pertaining to species composition, but may not have been captured in this 

analysis.  

On WS1, the greatest concentrations of KCl-extractable DOC were found in locations 

with the greatest upslope area at the basin scale: in general, these are from the lowest 

elevations and nearest the mouth of the watershed. Not only are these locations saturated 

for longer periods of time during they year, they also have highly variable and 

denseforest communities which contribute to variability in microbial processing and soil 

incorporation. Exploration of the differences between methods for collecting and 

extracting DOC showed significant variation between all three methods. Altough it was 

expected that the results from each method would be correlated with one another, they 

were not.  One plot, which essentially represents the first order "pour point" of WS1, had 

particularly high values of water extractable and lysimeter DOC. Differences amongst 

DOC collections by methods may be attributed to the influence of topography; for 

example, on the "pour point" plot with higher than expected values of water-extractable 

and lysimeter DOC, soils are highly saturated, so DOC in the mobile categories may be 
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increased relative to the available DOC.  However, despite that DOC methods were not 

correlated with one another; we did find that trends over space were corresponding in all 

points except for one located near the watershed outlet. This stresses the importance of 

collection and analysis method when researching DOC, as trends in DOC presence, 

extractable, and leachate cannot be used to predict one another.   
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CHAPTER 6 

A SPATIALLY EXPLICIT MODEL OF THE ANNUAL LITTER FLUX IN A 

YOUNG FOREST IN THE WESTERN CASCADES RANGE, OREGON 

 

F.S. Peterson, J. Sexton, K. Lajtha 

Submitted to: Forest Ecology and Management 

Elsevier Publications 

Amsterdam, Netherlands 

6.1 Introduction 

Litter is an important component of the forest carbon (C) budget (Dyrness, 1967; Grier 

and Logan, 1977; Harmon, 1991; Adair et al., 2008). The litter stock in the budget 

represents C transitioning between the foliar biomass pool and the soil carbon pool 

(Adair et al., 2008; Valentini et al., 2000). On a global scale, the magnitude of the litter 

fall process has been estimated to be up to ten times greater than the flux of carbon from 

coal-burning power plants and other industrial sources, so litter may serve as large, albeit 

short-term, carbon store. Therefore, it is important to quantify where and how much litter 

fall occurs (Adair et al., 2008; Korner, 2003). However, it is difficult to obtain an 

estimate of litter fall over complex terrain because heterogeneous vegetation and resource 

availability complicate relationships between topography and productivity (Korner, 2003; 

Peterson et al., 2012). Additionally, difficulty arises in sampling from topographic 

heterogeneity and a large number of samples may be needed to properly represent a 

variety of plant communities that may exist on a site of interest. Also,bias may develop 



172 
 

towards communities on readily-accessible sites from which traps are preferentially 

placed and readily collected. Finally, extrapolation of litter mass collected from traps 

several orders of magnitude smaller than the spatial extent of the catchment being 

modeled ultimately results in a dampening of spatial variability (Korner, 2003). An 

existing alternative is to scale foliar biomass calculations from either species-specific 

DBH-based (diameter at breast height) forest inventory or remotely-sensed NDVI 

(normalized differential vegetation index) estimates (as a proxy for leaf area index, LAI, 

the m2 of leaves per m2 of ground area), but these methods still require spatial 

extrapolation (for the inventory) or interpolation (for the satellite data at a sub-grid scale) 

which are ultimately ground-truthed through sampling with the litter trap-based method 

(Asner et al., 1998; Hashimoto et al., 2011). Therefore, the strategy in this analysis was to 

collect samples from litter traps in representative locations based on LiDAR estimates of 

cover and height distributions taken immediately prior (< 1 year) to collection initiation. 

This LiDAR distribution was related to plant biomass, from which foliar biomass can be 

calculated.  

 

Because foliage is recycled rapidly, litter fall represents a pathway between aboveground 

and belowground biomass (Sayer et al., 2007). Although the biogeochemical processes of 

litter decomposition are well known, our ability to characterize it over a large spatial 

extent is limited. Spatially explicit characterizations of litter decomposition need to 

include heterogeneity in leaf turnover rates and leaf masses, which are in turn based on 

species, phenotype, stand age and stage in development, and environmental conditions, 
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such as moisture and temperature, all of which relate to or drive the net primary 

productivity (NPP) of the forest system (Lusk, 2001). In the case of WS1, an 

approximately sixty year old stand in the Western Cascades Range in the Pacific 

Northwest, it was found that current stand composition is a mix of hardwoods (about 20% 

of forest biomass) and conifers, although within watershed heterogeneity is high. 

Composition on sample plots ranges from nearly 100 percent conifers (Pseudeotsuga 

menziesii planted on the site intentionally) to 97 percent hardwoods (on dense hardwood 

sites, Prunus emarginata may dominate; seasonally, Acer circinatum also provides 

extensive foliar biomass). By definition, deciduous trees abscise their leaves annually, 

whereas annual turnover on the conifers is approximately 20 % (Lusk, 2001). As 

compared to the rate of turnover in the larger biomass components (bole, branches), these 

rates are relatively rapid (Harmon et al., 2001). 

 

Litter fall has direct, short-term relationships to other ecosystem C processes, notably 

decomposition and soil respiration (Harmon, 1991). This relationship is generally 

represented by non-linear saturation functions that depend on microbial biomass and leaf 

composition.  Further, positive feedback exists between litter fall and microbial biomass 

because litter provides substrate for microbes (Meetenmeyer, 1978).  This in turn 

increases rates of soil respiration, but also increases the rate by which this substrate is 

consumed (Harmon et al., 2001; Meetenmeyer, 1978;  Finzi, 2001; Lindahl et al., 2007). 

Further, on a macroscopic level, increased litter fall can also alter soil pH, soil water 
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content, and soil temperature, which may indirectly impact soil respiration and site 

fertility (Meetenmeyer, 1978). 

 

It has been suggested that litter flux may increase in the future if increased atmospheric 

carbon dioxide (CO2), temperature, or rainfall occur (Harmon, 1991; Sayer et al., 2007; 

Nabuurs et al., 2007). Experiments conducted using the Free Air Carbon Enrichment 

Facilities (FACE) have revealed that under an artificially elevated CO2 regime, litter fall 

increased by twenty-five percent (Delucia et al., 1999). Another study at FACE revealed 

that when temperature was independently increased without a simultaneous increase in 

carbon, litter fall increased by 0.2 to 0.7 Mg/ha/yr). However, in modeled experiments, it 

was shown under induced climatic stress (temperature, carbon) that litter C concentration 

did not change, nor did the relative concentration of C in soil organic matter (Delucia et 

al., 1999). Because of litter’s role in ecosystem function, it is desirable to mitigate the 

effects of changes in foliar C concentration, which may be detrimental to photosynthetic 

processes and lead to functional adaptations to increased C. For example, plants adapt to 

increased C by changing the allocation of other nutrients amongst plant components. 

(Lindahl et al., 2006). In the soil, decomposition may be limited even in the context of 

increased C because a decrease in microbial rates occurs as substrate is used up, thus 

maintaining a stable soil C concentration (Finzi, 2001; Delucia et al., 1999). Additional C 

may increase site productivity immediately, but ultimately fosters mechanisms that lead 

to stability and decreased productivity. Furthermore, changes in temperature directly 

affect litter distribution, and this in turn affects site productivity. Meentemeyer showed 
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that litter decomposition rates relate exponentially to temperature increases in cool or 

moist climates, such as those in the Pacific Northwest, no matter the litter composition 

(Meetenmeyer, 1978). In short, increasing temperatures, increased C concentrations, and 

changes in stand composition all affect the litter flux, and one another.  

 

It is thereby essential to understand litter fall spatially in order to identify critical areas in 

which future changes may have the greatest impacts on ecosystem function. Spatial 

analyses of litter flux are few, although studies of litter dynamics are fairly numerous 

(Sayer et al., 2007; Meetenmeyer, 1978; Lindahl et al., 2006; Bartha, 2010, e.g.). 

Weider’s (2009) research on litter fall spatial patterns assessed average litter values with 

relation to external resource gradients on a large scale using remotely-sensed and 

simulated information and found that it was positively correlated with rainfall and 

phosphorus availability; litter decomposition has been shown to relate to light availability 

and litter density (2009). On an extremely fine scale (< 1m), Bartha et al. (2010) assessed 

the clustering of litter within a vegetation plot and found effects related to local fauna. 

However, on the meso-scale (sub- basin), litter fall spatial patterns may be influenced 

significantly by factors on multiple scales both in space and time. If this is the case, then 

stand effects may potentially have an enormous impact on the accounting of a landscape 

scale carbon budget (Townshend, 2011; Weider et al., 2009). The goal of this analysis 

was to quantify litter fall and its relationship to other biotic metrics on one mountainous 

catchment. To do so, I answered the following questions: (1) What is the annual flux of 

litter on this catchment? (2) To what extent are aboveground net primary productivity 
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(ANPP) and other stand biometrics as measured in the most recent re-measurement 

(2001-2007) reflected in litter fall? (3) What is the spatial distribution of litter flux on this 

catchment and (4) what effects does it have on ecosystem functions in the C cycle? 
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6.2 Materials and Methods 

 

Study Area: Watershed 1 (WS1) is a 96 hectare catchment in the H.J. Andrews 

Experimental Forest (HJA) in the western Cascades Range of Oregon. The HJA is part of 

the National Science Foundation’s Long Term Ecological Research (LTER) program and 

provides a wealth of data and resources for spatially and temporally explicit studies of 

ecosystems, such as the C-balance study of which this project is a part. WS1 was 

originally part of an experiment regarding the effect of regeneration cuts on stream flow 

and sediment fluxes. Between 1962 and 1966, the stand was clear-cut, burned, and 

replanted with four attempts at seeding (aerial and three row-re-plantings of Pseudotsuga 

menziesii. The forest community on the site is currently dominated (70-80 %) by 

Pseudotsuga menziesii and Tsuga heterophylla of approximately 50 years of age. This 

site has steep (> 100% slopes) and distinct north-south aspects that result in both diurnal 

and seasonal patterns in radiation. The mean annual temperature is 9.7 C and variability 

in temperature is greater on ridges than in valleys due to a phenomena of "cold air 

pooling" caused by temperature inversions causing a downslope movement of cool air in 

the evenings. Mean annual precipitation is 2300 mm, typical for the region. Soils on WS1 

are derived from basaltic and andesitic parent material, exposed cap-rocks and talus 

slopes are common, although their origin (glacial or volcanoclastic) is not known. Soil 

moisture gradients have also been identified on this watershed, and as a general rule 

south-facing slopes are drier with shallower soils than north-facing slopes due to both 

radiation today and greater surface damage following harvest fifty years ago. 
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Litter Collection and Analysis: Litter was collected from sixteen plots on WS1. These 

particular plots have been intensely subsampled for other analyses (Peterson and Lajtha, 

2012). The intensely sampled plots were selected to represent the distribution of "cover 

times height" as measured by LiDAR reconnaissance in 2008. This metric was selected 

because it was believed to be a good proxy for biomass distribution (Lefsky et al., 2005). 

Litter collections were conducted for the years of 2009-2011, beginning with collection 

on 12 August 2009 and ending with collection on 11 August 2011. The litter traps were 

located just outside the perimeter of the plots in order to avoid interaction with the 

current vegetative studies on the plots. Each litter trap was square with edges of 43 cm by 

43 cm (1.849 m2). The ground-truthed plot sizes are 250 m2; the aerial plot sizes range 

down to 125 m2 due to steep slopes. Five collections of the litter traps were made in the 

first year. In the second year, four collections were made. Litter was collected wet. Trap 

status, as well as any anomalies in trap content (bark, logs, etc.) were recorded.  For most 

collection periods, fine and coarse litter were brought back to the lab and separated with a 

12 inch hardware cloth with 12.5 cm openings. To sieve the materials in this manner, a 

sample was dumped onto the screen and gently shaken and lightly rubbed to pass the 

small pieces through the screen. After the separation, twigs which slipped through the 

screen were returned to the coarse fraction and the needles stuck to the coarse objects 

were rubbed free and placed in the fine fraction. After the separation wet weight is 

recorded, the sample was placed in a labeled paper bag and oven-dried. Upon reaching a 

stable weight in the oven, the dry weight is recorded. A paper bag stapled and labeled like 
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the sample bags is used to tare the bag weight out of the gross weight. Some traps were 

damaged between collections, namely, traps on plots 419, 518, and 522. Litter mass 

accumulated for these plots was only recorded for non-damaged traps and a note was 

taken on the number and extent of damage. 

To calculate dry mass of leaves (in Mg) per hectare per "period" (interval between 

collections), three conversion factors were created following the form of : 

 

Mass per Hectare =  (1849cm2 * Number of Traps * Mass) / 100000000 

 

Where Mass represents the dried mass of leaves. The rationale for creating three 

conversion factors was to account for the set of plots on which only three or four trap 

samples were valid; on these plots the expansion factor must naturally be greater. 

For the first year, leaf collections were precise to 365 days for almost all plots. Thus, the 

sum of the collected masses per hectare over the course of that year represented the 

annual collection. For a few plots, one additional day was included in the final collection 

period, and the influence of that period on the sum was weighted by a conversion factor 

of 0.9696. For one plot (518), 2011 data was damaged for two collection periods, one in 

the late summer and one in the fall. Mean values from the other two collection periods 

(early summer and winter) were weighted to the appropriate amount of days and used as 

a proxy for the missing measurements. This greatly decreases the accuracy of this plot. 

For another plot (419), large chunks of bark and rotted log were found in the sample 
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during one re-measurement, because these are still a type of litter, it was not removed 

from analysis.  

 

Biometric correlates: To compare litter fall and stand biometrics, we calculated the 

biomass per unit area (in Mg/ha), aboveground net primary productivity (annual change 

in mass plus mortality (Mg/ha /Yr), percent hardwood (%), stem density, and basal area 

per hectare (m2/ha) for over-story and mid-story trees. Over-story trees on this site are 

Psuedotsuga menziesii, Tsuga heterophylla, Taxus brevifolia, Prunus emarginata, Thuja 

plicata, Castanopsis chrysophylla, Acer macrophyllum, Arbutus menziesii, Rhamnus 

purshiana and Lithiocarpus densiflorus. To calculate these biometrics, we used long-term 

inventory data of tree diameter at breast height (DBH) collected over seven re-

measurement periods (1980, 1984, 1988, 1991, 1995, 2001, and 2007) on 133 established 

vegetation plots (Halpern and Means, 2004; Halpern and Dyrness, 2010). Plot areas were 

calculated using aspect and slope-adjusted elliptical plots geo-referenced to scanning 

LiDAR reconnaissance own in 2008. Site and species-specific allometric equations were 

specified by the Pacific Northwest Biomass Component Equation Library (PNBCL) were 

used to calculate biomass from DBH following a power-law scaling form (Halpern and 

Means, 2004). These allometries were validated against a second set of allometries 

presented by Lefsky et al. (2005). Annual change in mass plus mortality is aboveground 

net primary productivity (ANPP) as defined in Acker et al. (2002). When full-extent 

maps for the current period are used as a background for litter fall discussion, the maps 

were created based on a regression of LiDAR measured "cover" and height to the on-the-
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ground biomass calculations. In comparative analyses,  plot data is either used at the plot 

scale or extrapolated via kriging, with the caveat that neither of these methods is 

sufficient for characterizing variability in complex terrain where plots are highly variable 

and the assumptions of kriging may not be met. Metrics were calculated over all time 

periods due to necessity for other research; however, in this study we only include 

metrics from stand initiation (1980) and the most current interval (2001-2007, 2007 for 

inventory metrics) due to the rationale that spatial patterns in litter would likely be the 

result of either original stand composition or existing stand composition. 

 

Statistical Methods: To calculate the gross flux of litter on the site, we computed the 

empirical probability distribution of litter fall in Mg/ha on the watershed. We used a 

Monte Carlo technique to generate 96 random variates from this distribution 1000 times. 

The Monte Carlo technique was part of the standard library in MatLab 2010. The sum of 

each set of these variates is an estimate of potential gross flux. We calculated summary 

statistics for these estimates in order to develop a measurement of confidence around our 

estimate. 

To determine relationships between litter fall and stand biometrics, I conducted simple 

linearand multivariate regressions. I expected that the relationship between litter fall 

biomass and vegetative parameters would be linear because in this developed stand leaf 

biomass represents a proportion of total tree biomass. Regression coefficients were 

assessed by the R2 criterion. The set of stand biometrics is named X and contains the 

measurements of ANPP in 2007, ANPP in 1980, aboveground overstory biomass in 2007, 
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aboveground overstory biomass in 1980, hardwood biomass in 1980, hardwood biomass 

in 2007, percent hardwood in 1980, percent hardwood in 2007, herbal biomass in 2007 

(small shrubs included), and basal area per hectare in 2007. Measurements from 1980 

were used as an indicator of stand development exclusive of site characteristics; were 

litter fall to be correlated with both 1980 and 2007 biometrics, the actual driver of the 

variability in litter fall might be related to a site feature (topographic) consistently 

expressed in the metric over time. To test for normality, the Shapiro-Wilk test was used 

(Shapiro and Wilk, 1965). Covariance in the planar regression was assessed by 

calculating the covariance matrix (cov X). High values of covariance would indicate that 

two metrics were sharing explanatory power. Shared explanatory power would need to be 

recognized by an interaction term in the model. A model was generated using the MVP 

regression method, a method of general linear modeling (GLM) specific to models driven 

by two (largely) independent factors. This model looked at combinations of uncorrelated 

explanatory biometrics versus litter directly measured on the sixteen plots. 

 

Geo-statistical Methods: To generate a mapping of the spatial pattern of litter fall, we 

applied the appropriate model calculated with the techniques detailed in 2.4 to the 133 re-

measurement plots from forest inventory in 2007. This modeled data was joined to plot 

data in ArcGIS v. 9.3.1 and then ordinary kriging was conducted using the Geo-statistical 

Analyst tools in ArcGIS v. 9.3.1. Kriging is a method of geo-statistical interpolation that 

assumes spatial autocorrelation without isotropy. The Geo-statistical Analyst tool tests 

for patterns of spatial autocorrelation and isotropy in order to ensure that assumptions 
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required for adequate predictive maps are met. The model was applied to the plots prior 

to the interpolation (rather than applied to interpolated spaces of the model parameters) in 

order to separate the error associated with the model from the error associated with the 

kriging. We also included the results from a post-kriging model application to show the 

differences between the techniques. Error in kriging is associated with the neighbor 

search radius and distribution of observed points. Uncertainty in the kriging technique 

was quantified using the Root Mean Squared Error (RSME) statistic and its normalized 

form, the Root Mean Squared Standardized (RMSS) statistic, which is calculated with a 

native cross validation technique in ArcGIS v. 9.3.1's geo-statistical wizard. The wizard 

uses a Monte-Carlo simulation to remove one training point from the data set and then 

conducts kriging on the remaining points, repeating this process for all the training points 

and calculating the difference between the expected simulated point from the full model 

and reduced simulated point from the cross-validation for that location. The root mean 

squared difference of these points is a measurement of the error inherent in the kriging. 

ArcGIS 9.3.1 was also used to measure the existence and degree of clustering in the 

modeled litter. Clustering was quantified by the semi-variogram as well as the Getis-Ord 

Gi* statistic. This statistic detects local "hot spots" where a given Z-value (here, litter fall) 

is elevated within a small lag distance, h. 
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6.3 Results 

 

Results were collected using a custom field notes sheet and tabulated in Microsoft Excel. 

Comments regarding litter composition are available in the raw data via the open data 

access at http://andrewsforest.oregonstate.edu/data under study code TW006.  

I calculated the annual flux of litter on the catchment and found that it was litter flux is 

222.24 ± 8.91 Mg (per hectare annual litter flux is 2.32 ± 0.90 Mg/ha/Yr). To further 

clarify this flux within the year, I plotted the temporal pattern of litter fall (grey) relative 

to the mean (red) over the two year period using the Sparklines package for Microsoft 

Excel (Tufte, 2009) (Figure 32). Sparklines are simplified temporal trajectories used to 

visualize how time series values (here, in gray) relate to a mean (in red). The distribution 

of litterfall on this watershed is right-skewed normal. The statistical parameters for this 

distribution without the removal of outliers are mean= 8.91, variance = 0.91, skew= 

2.073 and kurt = 11.67 (Figure 33).  
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Figure 32. Mean Litter Fall, Sparklines, and ANPP for the Two Years of Litter Collection 

by Plot. Plots are arranged from least mean litter fall to greatest. 
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Figure 33. Probability distribution of litter fall (Mg/ha/yr) 

 

To address the spatial distribution of litter on the watershed, ArcGIS 9.3.1 was used to 

create an overlay image of collected litter (average between year 1 and year 2 of 

collection) and LiDAR-extrapolated biomass from 2007 re-measurement. The 

distribution of biomass is bimodal; above 40 Mg/ha, biomass follows a normal 

distribution, but when biomass is less than 40 Mg/ha, it follows an exponential 

distribution. The mean biomass for the whole watershed is 118 Mg/ha, but the mean 
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biomass for the normally distributed area is 218 Mg/ha. Low-biomass was identified 

spatially using a binary classification based on the LiDAR extrapolated map of biomass 

(Figure 34). 

 

Figure 34. Spatial distributions of litter (Mg/ha/yr) and biomass from 2007 (Mg/ha) on 

WS1. The thin black lines denote the harvest units. The red areas are the lowest 1% 

of biomass. The teal circles represent the Mg/ha/yr litter fall from the 2010-2012 

collections.  

 

To relate the litter flux to biotic attributes, simple linear models and non-parametric 

models were fit to several potential associated variables versus litter mass. I tested results 
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for several variables, including initial (1980) biomass, initial percent hardwood (1980), 

initial hardwood biomass (1980), hardwood biomass in 2007, percent hardwood in 2007, 

aboveground net primary productivity (annual between 2001 and 2007), basal area (2007), 

biomass in 2007, stem density in 2007, and biomass of herbaceous vegetation in 2007. 

The only significant correlate found was ANPP between 2001 and 2007, with R2= 0.65 

and p < 0:001. The purpose of creating this model was to create an interpolation tool that 

could be used to regulate the spatial distribution of the long term permanent plot data to 

facilitate kriging. The parameters above were then altered to only include those 

temporally cohering to the litter fall measurements (i.e. previous measurements of ANPP 

or biomass were not considered). A stepwise regression procedure was run in MatLab 

(Mathworks, 2010) to search for valuable parameters, and percent hardwood, basal area 

per hectare (BAHA) and ANPP were identified.  

 

To quantify the uncertainty in the model, we addressed three issues. First, the error within 

the model. Second, the uncertainty inherent in the extrapolation (spatial) and third, the 

uncertainty in the ANPP estimates themselves, all of which are derived metrics from a set 

of raw data. For the error within the model, error (MSE)= 3.0764. To address the 

uncertainty in the extrapolation, a cross validation procedure was conducted on the 

kriging by randomly removing ten percent of points from the kriging and exercising the 

fit without that point. This procedure was repeated multiple times in order to generate the 

RMSE. To qualify and quantify the uncertainty within the estimates themselves we note 

that there are two sources of error for this calculation. First, error in the measurement of 
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DBH during the inventories or mis-identification of species may be propagated. This 

error we cannot quantify, but it could be large. Second, error in the allometric equations 

may also exist. This error was quantified in Lutz (2006) for all species on WS1. 

Allometric fits were greater than R2 = 0.9. However, many of these fits were linear fits to 

a log-transformed function, and may not adequately represent trees in the tails of the 

distribution. We did validate Lutz's equations using those in Lefsky (2005) and found that 

estimates were significantly different (p<0.001); however, the Lefsky equations included 

height as calculated by LiDAR, which in this case was our independent variable, and 

therefore they were not suitable for this analysis. Further, those equations were calibrated 

for all of Western Oregon, whilst those in the PNBCL are specific to only the western 

Cascades range, and in some cases, for young stands. Third, error in the temporal 

structure of this model may be inadequate; the model is fit to an annualized estimate of 

ANPP between 2001-2007; actual litter collection occurred between 2009 and 2011.  

 

We created two kriged maps of litterfall on the catchment. In one map, we first used the 

regression model to  extrapolate to all 133 plots and then conducted  kriging to 

extrapolate to the entire watershed; in the second, we kriged directly from our data, 

although they were not well-distributed in space. The goal of the two kriged maps was to 

visualize the difference between extrapolation methods; because we had few samples that 

were not well-distributed, comparisons of maps provided a valuable visualization of how 

using statistical methods only versus a combination of statistical and empirical methods 

influences conclusions (Figure 35).  
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Figure 35. Kriged annual flux of litter on the LiDAR Bare Earth map. On the right, the 

model is used to increase the point density of the map; on the left, only the field 

measurements were used. There is increased spatial heterogeneity in the left map. 

  

To quantify the uncertainty in the kriging, we calculated the RMSE, RMSS, and average 

standardized error (ASE) for the measured and modeled data versus the RSME for 

kriging the same parameters with only the measured data (RSME = 0.8567, RMSS = 

0.9851, ASE= 0.0172 Mg/ha for both; RSME = 0.8123, RMSS = 1.1, and ASE = 0.6718 

Mg/ha for measured only). Kriging parameters were nugget = 0.68 Mg/ha, sill = 0.121 

Mg/ha, and range was spherically increasing. When the interpolation was not used, 

vacancies in the distance distribution prevented a robust choice of semi-variogram shape. 
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6.4 Discussion 

 

The total annual flux of litter on this catchment is 222.24 ± 8.91 Mg, per unit area (Ha) 

the annual litter flux is 2.32 ± 0.90 Mg/ha/Yr. This was calculated at the hectare 

resolution using the empirical distribution. Should the mean litter flux be scaled up to the 

whole catchment, an estimate of 224.61 ± 85.39 Mg/ha is achieved (not significantly 

different at alpha = 0.05). However, should the values from either year 1 collections or 

year 2 collections be averaged and scaled up, the results differ signifcantly from that of 

the empirically estimated and temporally averaged (year one, p = 0.0725; year two, p = 

0.0251). In this situation, then, scaling up from the mean versus scaling up using an 

empirical distribution did not make a significant difference and this is even using a mean 

already dampened by temporal averaging. Over the spatial extent, mean- based 

extrapolations without the temporal averaging could result in inconsistent estimates.  

 

The maps indicate that the spatial distribution of litter fall is indirectly related to elevation, 

although this did not come out in regressions against topographic correlates. High litter 

fall is found on a precipice like area in the northeastern corner of the watershed that is 

prominent along the ridgeline, even outside the extent of WS1. Although no correlation 

between litter fall and elevation (p < 0:001) existed, based on the conclusions in Peterson 

et al. 2012, indirect effects of topography may be generated by species-specific responses 

in productivity, particularly on the hardwood-dominated drier soils found at higher 

elevations. Initially established by hardwoods, in the current stand this area has increased 
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ANPP due to the release of the formerly suppressed over-story (Peterson and Lajtha, 

2012). Increased productivity, and therefore turnover, at higher elevations is related to the 

topography of the catchment by the vegetation (and harvest) history. Additional support 

for this hypothesis is that seed-in is more likely due to proximity to neighboring stands. 

Many of these "non-plan table rocky areas" precluded crop tree (Psuedotsuga menziesii) 

establishment following harvest and hardwood establishment immediately post-harvest 

was rapid. Specifically, litter fall is highest in the north-eastern corner of the watershed 

where crop tree release has recently occurred and vine maples grow rampantly in new 

sunlight and along "transect four," which contains several plots of almost entirely 

composed of Prunus emarginata, thus facilitating a dense, rapidly changing canopy. For 

example, plot 423, located between litter plots 422 and 425 (3.1) contains 84% Prunus 

emarginata with an average DBH of12 cm. Plot 422 contains 60% mixed-hardwood, 

including Acer macrophyllum, Castanopsis chrysophylla, Lithiocarpus dendroctinus, and 

Prunus emarginata whereas plot 425 is exclusively Prunus emarginata (55%) and crop-

tree, Psuedotsuga menziesii (45%). These plots are both some of the most productive on 

the watershed and have notably high litter fall. The densest (defined here as most basal 

area per hectare) stands on WS1 are found in low-elevation, successful Psuedotsuga 

menzeisii dominated areas near the watershed's outlet and on a concave slope in the mid-

basin region. For example, litter plots 102, 109, 316, and 318 are 87%, 93%, 71% and 93% 

coniferous, with the plots on the first transect containing only Psuedotsuga menziesii and 

those on the third containing a mixture of Psuedotsuga menziesii and Tsuga heterophylla. 

These areas achieved initial success in biomass accumulation following harvest due to 
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deep, moist soils on the north-facing slope and successful aerial seeding. Currently, 

canopy closure is leading to self-thinning in these areas, such that productivity is low. A 

large portion of the included mortality in the ANPP calculation was added in during the 

1995-2001 re-measurement period, when self-thinning was at its peak. Now the stand is 

less dense, but the standing trees are thin and their growth rates are slow. Litter fall on 

these plots is reduced. From this we conclude that the spatial heterogeneity in 

productivity to a strong extent drives the spatial heterogeneity in litter fall, although high 

variance exists due to the temporal relationship between early hardwood presence and 

later releases of crop and flushes of productivity. 

 

Despite our expectations, the greatest magnitude of measured litter mass was found in the 

area of "lowest biomass". No notes in trap collection indicate that this is an anomaly due 

to collection of large woody material. This finding directly opposes the findings of Grier 

et al. (1977) who noted that biomass was correlated with litter in old-growth forests, and 

specifically in watershed 2 (WS2), WS1's paired "neighbor." This could be an artifact of 

the allometric calculation that lead us to underestimate biomass on plots with small trees 

and shrubs. Biomass was assessed only for overstory and midstory trees, such as 

Pseudutsuga menziesii, Tsuga heterophylla, Prunus emarginata, and Acer macrophyllum. 

Two important, but missing, small trees or large shrubs are Rhododendron macrophyllum 

and Acer circinatum. Both of these species regenerate early (within 10 years) following 

harvest and have extensive foliage, and Acer circinatum is deciduous. Thus, these species 

may also contribute significant litter fall to the forest floor, but we would not have 
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accounted for them in our biomass estimates. Consequently, we expect that these species 

would be found more on low-biomass, dry sites rather than on high-biomass, moist sites 

due to previous evidence of their success immediately post-harvest on dry soils located in 

the up-basin region. Or, the high litter in areas of low-biomass conflict may result from 

differences in developing stands versus older parts of the stand. Since the stand did not 

establish homogeneously, younger parts of the stand may have greater productivity 

despite having less trees because their growth rates are quicker. 

 

These findings may have significant impact on the estimates of decomposition and 

nutrient availability in a stand;  local and momentous fluxes of litter fall may be 

significantly greater than a watershed mean, resulting in a non-uniform spatial 

distribution and peaks in ecosystem processes over time. Further, where decomposition is 

increased, nutrient patterns may differ systematically, resulting in small-scale variability 

with yet un-quantified impacts in this stand. Although the magnitude of the annual litter 

flux, around 2.32 Mg/ha, is small compared to stand mean biomass (118 Mg/ha) but 

significant when compared to low-biomass areas' biomass (< 41 Mg/ha). Significant 

changes to the site at this scale might lead to different futures than predicted by 

aggregation-based estimates. 

 

Calculations of the annual litter flux for a small catchment is a key component in a 

carbon budget and it is small but highly variable. This study showed that annual litter 

fluxes have significant spatial variability, even within a small catchment. This variability 
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was attributed to productivity and stand development, which may be integrating and 

manifesting the historical and topographical heterogeneity that drive ecosystem scale 

variability. Litter fall variability within a developing stand may be governed by multiple 

factors. A map of litter fall using the relationships we obtained through regression was 

compared to a map generated using kriging and I assessed the impacts of extrapolation 

order for modeling litter flux. Due to the high variability in the litter flux even over a 

small spatial scale, attention must be paid to sampling and extrapolation in order to 

achieve an accurate estimate for a C budget.  
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CHAPTER 7 

CONCLUSION 

On complex terrain, ecosystem processes and soil carbon stores are linked through both 

abiotic and biotic factors. Topographic attributes unique to montane environments, such 

as potential heat loading due to aspect and upslope contributing area, and biotic 

heterogeneity that emerges from this complex topography, results in SOC distribution 

and DOC export that is not directly attributable to any easily measurable gradient or 

biological process. However, stand structure and forest development follow trajectories 

that can be interpreted in light of belowground resource availability so that we can better 

understand how, where, and when C was distributed in the complex landscape. 

In this dissertation, I drew a primary conclusion and four subsidiary conclusions. The 

primary conclusion of this dissertation is that stand structure, and particularly the stand 

structure following disturbance, is a key for exploring ANPP and its effects in complex 

terrain. Even on a sub 1 square kilometer scale watershed in what was intended to be an 

even-aged, monocultural stand, ANPP and  stand structure are highly variable in both 

space and time. My subsidiary conclusions are as follows. First, that a common method 

of measuring productivity at a particular time (which is often used when relating 

aboveground productivity to belowground resources) is inaccurate in complex terrain 

because stand development proceeds along multiple trajectories and a new method, such 

as the maximum likelihood method we propose, may better indicate belowground C than 

the traditional method. Second, that "aspect" in the general sense of being a north-facing 

or south-facing slope, is the most important topographic feature in a complex terrain, as it 
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influences the potential heat, moisture, soil depth, soil type, slope, and possible initiating 

biota on a site; however, that because aspect is a fairly weak, vaguely defined binary 

variable, more complex metrics, such as Beer's Index or Horizon Angle, which include 

many of the attributes resulting from "aspect" are the most useful topographic metrics for 

classifying ANPP.  Third, that the methods and distribution of DOC sampling regimes 

indicates various DOC attributes (presence, extractable, export) and each attribute is 

related to different factors in complex terrain, so that the method of sample collection 

impacts the conclusions we draw about influencers on DOC. Finally, I conclude that soil 

C dynamics is related to a complex of aboveground and belowground processes and that 

this study was too limited in scope to fully explore those interrelationships. Future 

research needs to include information about species, microclimate, and decomposition 

rates.  

The implications of this research for transformational science are that in complex terrain, 

knowledge of topography alone is not enough to make adequate predictions about soil C 

storage or export. Nor do biotic trajectories fully describe the relationships that certainly 

exist between the site and C both above and belowground. However, stand structure is a 

critical feature of complex terrain, and stand structure is not homogeneous. In order to 

better our predictions for the anthropocene era, it is critical that the importance of the 

forest, particularly its development since establishment, be quantified in such a way that 

our selection of time, interval, or method do not undermine our predictions..  
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APPENDICES 

Appendix 1. Historical Soil Surveys 

Table 1. Soil Bulk Density following logging on WS1 *skyline* and WS3 *high-lead* 

Timing Skyline High Lead 
Before Logging 0.677+-0.023 0.712+-0.016 

Undisturbed 0.730 +-0.032 0.753+-0.019 
Slightly Disturbed 0.668+-0.030 0.785+-0.032 
Heavily Disturbed 0.858 +-0.025 0.990+-0.026 

 

Table 2. Padilla's 2005 Soil Survey 

Aspect LAI Avg C:N Slope (%) Texture 
South 7.89 17+-6.05 65 Loam / clay 

loam 
South 7.91 19.4+-2.13 65 Sandy clay 

loam 
North 5.75 19.6+-1.93 80 Sandy loam 
North 5.78 24.2+-1.83 73 Sandy loam 

 

Table 3. Part1/6 of Keebler's 2007 Soil Survey (south-facing slope of WS1) 

Material depth horixon >2mm (%) texture munsell 
Organic 2 clear-smooth - - - 
Mineral -9 gradual-

wavy 
0 loam 7.5YR4/4 

Mineral -30 diffuse-
wavy 

25 silty-loam 10YR4/4 

Mineral -42 diffuse-
wavy 

0 silt 10YR5/6 

Mineral -60 diffuse-
wavy 

5 silt 10YR6/8 

Mineral >60 - 50 silt 10YR6/8 
 

 

 

Table 4. Part 2/6 of Keebler's 2007 Soil Survey (south-facing slope of WS1) 
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Material mottling concretion redox pH OM (%) 
Organic - - - 4.5 - 
Mineral 0 0 aerated 5 0.15 
Mineral 0 0 aerated 5 0.9 
Mineral 0-2 black Mg reducing 5 0.6 
Mineral 15-40 black Mg reducing 5 0.3 
Mineral >40 black Mg reducing 5 0 
 

Table 5. Part 3/6 of Keebler's 2007 Soil Survey (south-facing slope of WS1) 

Material structure texture bulk den root count root 
fraction 

Organic - - - - - 
Mineral subangular 

blocky 
fine 1.1 20-50 fine 

Mineral subangular 
blocky 

fine 1.2 50-200 fine 

Mineral subangular 
blocky 

fine 0.9 20-50 coarse 

Mineral subangular 
blocky 

fine 1.2 1-20 fine 

Mineral subangualr 
blocky 

fine 1.0 1-20 fine 

 

Table 6. Part 4/6 of Keebler's 2007 Soil Survey (south-facing slope of WS1) 

Horizon Thickness OM kg/m2 pore field capacity 
O - - - - 
A 0.9 dm 1.49 53 20 L/m2 
IIAB 2.1 dm 1.70 39 32 L/ m2 
B 1.2 dm 0.65 49 34 L/m2 
CB 1.8 dm 0.62 47 - 
BC - - 25 1-20 L/ m2 
 

 
 

 

Table 7. Part 5/6 of Keebler's 2007 Soil Survey (north-facing slope of WS1) 
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Material depth horizon >2mm texture munsell 
Organic 4 clear-smooth - - - 
Mineral -14 diffuse 30 silty loam 7.5YR4/3 
Mineral -28 diffuse 35 silty loam 7.5YR4/4 
Mineral -64 diffuse 45 loamy sand 7.5YR4/3 
Mineral >60 diffuse 25 silty loam 7.5YR4/4 
 

Table 8. Part 6/6 of Keebler's 2007 Soil Survey (north-facing slope of WS1) 

Material mottling concretion redox pH OM(%) 
Organic - - - 4.5 - 
Mineral - - aerated 5 0.15 
Mineral - - aerated 5 0.9 
Mineral 0-2 black Mg reducing 5 0.6 
Mineral >15 black Mg reducing 5 0 
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Appendix 3. Calculation of the Maximum Likelihood Estimator for mANPP 

We assume that B(t) follows the logistic function, which is classically employed in 

growth models for population biomass.  

 

where B is biomass in Mg/ha, K is the carrying capacity (population limit), t is time in 

years, r is a modeled growth rate parameter, and C is an arbitrary coefficient. To calculate 

ANPP from B, then, we assumed that ANPP was simply the derivative of B in the form: 

 

This is requisite for solving for mANPP, which occurs where the second derivative of B(t) 

or the first derivative of B'(t) is equal to zero. On the graph of B(t) this is the point of 

inflection. 

 

This is true when the numerator equals zero, which occurs when C=ert. Substituting back 

into B(t) with the parameter t0 for the point in time when inflection occurs, we solve B(t) 

without the  C constant as 



245 
 

 

The goal for fitting the logistic function to our data points is to simultaneously minimize 

least squares error on the parameters K (“biomass capacity of the site”), r (rate of growth), 

and t0 (inflection time). The least squares error is represented as: 

 

 

We use the method of logistic curve fitting developed by Cavallini (Cavallini, 1993). 

Essentially, a pseudo-parameter h is substituted into the logistic function such that 

 

from which the error function can be written as 

 

This is justifiable through a rather lengthy proof in Cavallini (1993). Minimization of 

total squared error involves setting the partial derivatives for each parameter equal to zero. 

By solving simultaneously  
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a function of e with respect to H and M is defined. This allows minimization of error on 

the logistic function with respect to only the parameters r and t0. This method is 

particularly valuable in the calculation of biomass for slow-growing sites because it is 

difficult to estimate K when B(t) has not yet reached its inflection.  

  

We developed a function in MatLab (MathWorks, 2010) to minimize error on the 

parameter space of r and t0. Initial guesses for ranges of applicable r were calculated by 

solving the ANPP equation for r such that 

 

B'(t0) was calculated by the point-slope form except when the largest B'(t0) occurred 

during the most recent re-measurement 
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The range of r was inclusive of all potential values of r from substituting B'(t0) into the 

equation for r. The range for t0 has to be tested iteratively using a sensitivity analysis. 

Because slow-growing plots may have not reached their point of inflection during the 28 

year duration of our data (1980-2007), it was necessary to test values for t0 that exceeded 

the 28 year range. We conducted the error minimization on the error space of t0 = [0,28], 

t0 = [0, 50], and t0=[0,100]. The same local minima were found in most error spaces, 

such that the estimated K is equivalent, no matter the initial guess within these ranges. 

Equivalent estimates of K mean that r and t0, when substituted into the ANPP equation 

for error minimization will predict the same results for t0. In some cases, however, dual 

minima were found when the t0 range or the r range was too small. In these cases, several 

initial guesses were tested until a local minimum could be reached. B(t0) was calculated 

and returned to the ANPP equation along with the estimated K, r, and t0. ANPP at t0 is 

the maximum ANPP for the site. 
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Appendix 3.  ANPP trajectories by species 
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 Appendix 4. Soil Properties on WS1
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