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ABSTRACT: Prediction of year-class strength is a critical challenge for fisheries managers. Theo-
retically, predictions of recruitment should be better when they are based on estimates of cohort
size taken close to the age of recruitment and may improve if the effects of environmental factors
that influence pre-recruit mortality are accounted for. In practice, measurement error and difficul-
ties in establishing robust recruitment-environment relationships complicate the picture. For 5
fish stocks of 4 species in 3 ecosystems, we examined the usefulness of indices of juvenile abun-
dance relative to larval abundance for predicting recruitment. Further, we examined whether
the use of environmental covariates improved predictions. For 2 of 4 stocks with sufficient data
(1 stock did not have larval data), juvenile abundance was a better predictor of recruitment com-
pared to larval indices. For the 2 other stocks, we found that juvenile indices were not superior to
larval indices, possibly because of error in the measurement of juvenile abundance. In all 5 of
these stocks, regression analysis showed that inclusion of environmental correlates contributed
significantly to explaining recruitment variation compared to models based on juvenile indices
alone. Further, cross validation showed that forecasts of future recruitment were either improved
or qualitatively unchanged by including environmental correlates. This was despite apparent
nonstationarity in the recruitment-environment relationships; most of the environmental vari-
ables and pre-recruit abundance indices were significantly correlated with recruitment for only
parts of the studied period. Such complex responses to environmental changes are difficult to
anticipate, yet the environmental information should not be ignored altogether.
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INTRODUCTION

The recruitment to many fish stocks is highly variable
because of large interannual fluctuations in survival
during early life stages (Hjort 1914, Cushing 1995,
Chambers & Trippel 1997). To understand the causes of
and, if possible, predict these fluctuations, the abun-
dances of spawners, eggs, larvae, and juveniles of

*Email: l.c.stige@bio.uio.no

many stocks are monitored regularly, along with
various biotic and abiotic environmental factors poten-
tially linked to survival. If the recruitment strength, that
is, the abundance of a cohort as it enters into the fishery,
can be accurately predicted >1 yr in advance, the man-
agers of the stocks can better evaluate the conse-
quences of alternative management actions (e.g. Loger-
well et al. 2003, Bailey et al. 2005, MacKenzie et al. 2008).
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Assuming that all measures of year-class strength
are equally accurate, the closer the measurement is
taken to the time of recruitment, the more likely it
will provide an accurate index of recruitment (Brad-
ford 1992). The vulnerability of egg and larval stages
to environmental perturbations may further diminish
their value as indices for predicting recruitment
(Bailey et al. 2005, Houde 2008). For example, these
stages may be particularly vulnerable to adverse
temperatures, predation, and mismatch with prey
because they lack sufficient behavioral mechanisms
to respond to poor environmental conditions (e.g.
Sinclair & Tremblay 1984, Houde 1994, Blood 2002,
Beaugrand et al. 2003, Fiksen et al. 2007). Juvenile
fish may be more resilient to environmental pertur-
bation. They are larger and have more energy re-
serves than eggs or larvae, and they can search
effectively for more favorable conditions (Sogard
1997). One may therefore expect that indices of juve-
nile abundance provide considerably better predic-
tions of the eventual recruitment to a fishery than
indices of eggs or larvae, unless egg or larval abun-
dances are measured with much higher accuracy. It
should be noted that large differences in measure-
ment error are indeed possible, as very different sur-
vey types and gears are needed to survey different
life-history stages, and each of these methods have
different shortcomings, types of error, and other
problems (Heath 1992, Godg 1998).

For any given pre-recruit life stage, it would also
seem reasonable that the inclusion of environmental
variables, such as water temperature and indices of
predator or competitor abundance, should increase
the ability to predict the survival of that life stage to
recruitment. Understanding the effects of climate on
fisheries has been a central research topic since the
foundation of the International Council for the Explo-
ration of the Sea (ICES) in 1902 (e.g. Cushing 1982,
Beamish 1993, Alheit & Hagen 1997, Borja et al.
1998, Rothschild 2000, Drinkwater et al. 2005, Hol-
lowed et al. 2011). In recent years, there has been an
effort to develop models incorporating climate and
other environmental indices for the prediction of
recruitment (e.g. Chen & Ware 1999, Borja et al.
2008, MacKenzie et al. 2008, Andonegi et al. 2011,
Mueter et al. 2011). For example, Zabel et al. (2011),
working with bocaccio Sebastes paucispinis in the
California Current system, found that a recruitment
model, which included juvenile abundance and cli-
mate and the interaction of these factors, explained
68 % of the recruitment variation, whereas a model
with population density alone explained only 1.4 % of
the recruitment variance. Using cross validation (i.e.

separating the data set into 'training’ and ‘testing’
data sets and using the training data set to predict the
response in the testing data set), Zabel et al. (2011)
found that the interaction model was also better at
predicting ‘new’ observations not used when esti-
mating the parameters in the model. In the Barents
Sea, a number of recruitment models have been
developed for cod Gadus morhua that have included
environmental variables, such as the yearly average
temperature along the Kola line (0 to 200 m) and
predator and prey biomasses (e.g. Hjermann et al.
2007, Dingser et al. 2010). To assess accurately the
stock size and advise corresponding catch limits for
the management of this stock, analogous recruitment
models are used to predict the recruitment of 3 yr
olds to the fishery in the coming 3 yr (ICES 2010). In
the management of most other stocks, environmental
information is not routinely used (De Oliveira &
Butterworth 2005), which can be partly explained by
the difficulty in identifying recruitment—environment
correlations that remain robust over time (Myers
1998).

For the present paper, we tested the hypothesis
that indices of juvenile abundance are better pre-
dictors of recruitment than indices of earlier life
stages for 3 fish species in the Barents Sea, 1 in the
Gulf of Alaska, and 1 in the eastern Bering Sea. We
also examined whether inclusion of environmental
covariates of juvenile survival (e.g. predator and
competitor abundance, prey availability, water tem-
perature, and climate patterns) in the models of
juvenile survival significantly improved both hind-
casts and predictions of recruitment. We expected
that predictions for 'new’ observations are not nec-
essarily better if the recruitment—environment cor-
relations are spurious or nonstationary. To detect
nonstationarity, we investigated whether the corre-
lations between recruitment on the one hand and
the environmental indices and the early life stage
abundance indices on the other were stable over
time. To assess the predictive value of the environ-
mental information, predictive models with and
without environmental variables were developed
for each year based only on data collected prior to
the year predicted. We then examined how closely
these 1 yr prior predictions matched the observa-
tions. By testing the same hypotheses for 5 different
stocks, we aimed to disclose general patterns relat-
ing to the predictability of fish recruitment from
pre-recruit abundance and environmental indices—
under the influence of measurement errors and un-
certain or changing relationships between these
indices and recruitment.
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MATERIALS AND METHODS
Data on fish abundance
Barents Sea cod, haddock, and capelin

To examine the relationships between indices at
different life stages and recruitment of 3 fish stocks in
the Barents Sea, we obtained data from several
sources (Table 1). For northeast Arctic (NEA) cod
Gadus morhua and NEA haddock Melanogrammus
aeglefinus, we considered the following indices:

spawning stock biomass (SSB;), egg abundance in
April to May (E;), larval abundance in April to July
(L), Age 0 abundance in August to September (NO,),
Age 1 and Age 2 abundances in January to March
(N1;and N2,), and recruitment at Age 3 year (R;). For
the Barents Sea (BS) capelin Mallotus villosus, we
considered spawning stock biomass (SSB;), larval
abundance in April to July (L;), Age 0 abundance in
August and September (NO;), and recruitment in
September to October at Age 1 year (R;). Sources and
manipulation of abundance data for the Barents Sea
stocks are described in Appendix 1.

Table 1. Description and sources of data used to examine the relationship between indices at different life stages and recruitment of 5 fish
stocks in the Barents Sea (BS), the Gulf of Alaska (GOA), and the eastern Bering Sea (EBS). ATF: arrowtooth flounder; NEA: northeast

Arctic; SST: sea surface temperature; SSB: spawning stock biomass

except 1982,1987,1999

Data type Years Source Reference

BS NEA cod and haddock

Egg 1959-1990 Russian (PINRO) ichthyoplankton surveys Mukhina (1992), Mukhina et al. (2003)

Larvae 1959-1990 Russian (PINRO) ichthyoplankton surveys Mukhina (1992), Mukhina et al. (2003)

Age 0 1966-2009 International 0-group surveys ICES (2007), (2010), their Table 1.2

Age 1 and Age 2 1981-2008 Norwegian acoustic surveys ICES (2010), their Tables A2 & B3

Recruitment (Age 3) 1962-2009 VPA stock assessment ICES (2010), their Tables 3.25 & 4.18

SSB 1959-2008 VPA stock assessment ICES (2010), their Tables 3.25 & 4.18

Predator (Age 3-6 NEA cod) 1946-2010 VPA stock assessment ICES (2010), their Table 3.22

BS capelin

Larvae 1959-2009; Combined from Russian (PINRO) Mukhina (1992), Mukhina et al. (2003),
except 2007, 2008  ichthyoplankton surveys and ICES (2010), their Table 9.4

Norwegian surveys

Age 0 1965-2009 International 0-group surveys ICES (2007), (2010), their Table 1.2

Recruitment (Age 1) 1973-2010 September—October acoustic surveys ICES (2010), their Table 9.6

SSB 1959-2009 September—October acoustic surveys ICES (2010), their Table 9.6

Predator (Age 1-2 herring) 1973-2009 VPA stock assessment ICES (2010), their Table 9.6

Mean December to March 1921-2009 PINRO Tereshchenko (1996), www.pinro.ru

temperature; 0-200 m at Kola

GOA pollock

Larvae 1979-2008; NOAA Fisheries Echo Integration Bailey (2000), Zhang et al. (2010)
except 1980,1984  trawl survey

Age 1 and Age 2 1981-2008; NOAA Fisheries acoustic survey Dorn et al. (2010), their Table 1.10

Recruitment (Age 4) 1977-2009 NOAA Fisheries stock assessment Dorn et al. (2010), their Table 1.17
SSB 1977-2009 NOAA Fisheries stock assessment Dorn et al. (2010), their Table 1.18
Predator (Age 3+ ATF) 1977-2009 NOAA Fisheries stock assessment Turnock & Wilderbuer (2009),

their Table 7.9
Mean April to June SST 1977-2009 NOAA Climate Diagnostics Center www.cdc.noaa.gov/cdc/reanalysis/
EBS pollock
Age 1 and Age 2 1982-2010 NOAA Fisheries groundfish trawl survey Ianelli et al. (2010), their Table 1.12
Recruitment (Age 4) 1976-2009 NOAA Fisheries stock assessment Ianelli et al. (2010), their Table 1.21
SSB 1976-2010 NOAA Fisheries stock assessment Tanelli et al. (2010), their Table 1.23
Predator (Age 1+ ATF) 1977-2010 NOAA Fisheries stock assessment Wilderbuer et al. (2010), their Table 6.10
Predator (Age 3+ pollock) 1977-2010 NOAA Fisheries stock assessment Tanelli et al. (2010), their Table 1.23
Predator (Age 0+ Pacific cod) 1977-2010 NOAA Fisheries stock assessment Thompson et al. (2010), their Table 2.25a
Predator (Age 3+ flathead sole)  1977-2010 NOAA Fisheries stock assessment Stockhausen et al. (2010), their Table 8.15
Mean May SST 1948-2010 NOAA Bering Climate www.beringclimate.noaa.gov
Ice cover index 1979-2008 NOAA Bering Climate www.beringclimate.noaa.gov
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Gulf of Alaska and eastern Bering Sea
walleye pollock

We examined the relationship between indices at
different life stages and recruitment of walleye pol-
lock Theragra chalcogramma in the Gulf of Alaska
(GOA) and Eastern Bering Sea (EBS). We defined
recruits (R;) as Age 4 pollock because that is the age
at which pollock start to recruit to the fishery in most
years. For the GOA, we used abundance estimates
available for pollock larvae (L), juveniles (N1: Age 1
and N2;: Age 2), spawning stock biomass (SSBy), and
recruits (Table 1). Sources, manipulation, and assump-
tions concerning pollock larvae data are described
by Bailey (2000) and Zhang et al. (2010). For the EBS,
we used indices of N1, N2, SSB, and R; (Table 1).
Pollock L;indices are not available for the EBS.

Environmental correlates

We focused on temperature and predator abundance
as the main environmental correlates (Table 1).
Water temperatures (integrated water column or sea
surface temperature [SST]) were used as the main
oceanographic correlates because fish are ectother-
mic organisms, with temperature strongly influenc-
ing all life stages. Moreover, temperatures are the
most frequently recorded environmental parameters
with available long-term time series. Temperatures
during the spawning season were used in the analy-
ses, except for the Barents Sea stocks, where temper-
ature for the winter following spawning correlated
more strongly with recruitment. The environmental
covariates considered for the different stocks are
listed below (see Table 1 for data sources).

Barents Sea cod, haddock, and capelin

(1) COD3_6 In(abundance) of cod aged 3 to 6 yr
was used as an index of a key predator on juvenile
cod and haddock (following e.g. Stige et al. 2010).

(2) HER;,;: In(biomass) of Age 1 and 2 herring
Clupea harengus was used as an index of a key pred-
ator/competitor of juvenile capelin (e.g. Stige et al.
2010).

(3) TEMP;: For a climate index for all 3 stocks, we
used the integrated water column temperature at 0 to
200 m depth at the Kola section (70.5 to 72.5°N,
33.5°E) in the south-central Barents Sea. Annual
mean winter temperatures for 1921 to 2006 were
computed from monthly averages of December

(year t) through March (year t + 1) temperatures. Kola
temperature correlates positively to recruitment of all
3 species (e.g. Stige et al. 2010).

Gulf of Alaska walleye pollock

(1) ATF; In(abundance) of arrowtooth flounder
Atheresthes stomias, an index of potential predation.
Arrowtooth flounder is the dominant groundfish spe-
cies in the GOA, and it exerts a significant predation
pressure on juvenile walleye pollock (Bailey 2000,
Dorn et al. 2010). Only arrowtooth flounder was used
as predation index in the GOA because of its over-
whelming abundance there.

(2) SST; mean April to June SST, derived from
average monthly temperatures interpolated across a
longitude band in the GOA from 155.6° W to 157.5°W
centered at latitude 56.2° N (data source: A. Macklin,
Pacific Marine Environmental Laboratory, Seattle,
WA, pers. comm., www.cdc.noaa.gov/cdc/reanalysis).

Eastern Bering Sea walleye pollock

(1) PRED;: In(total abundance) of adult walleye pol-
lock (Age 3+), arrowtooth flounder (Age 1+), Pacific
cod Gadus macrocephalus (Age 0+), and flathead
sole Hippoglossoides elassodon (Age 3+) (an index of
an aggregate of potential predators; Aydin et al. 2007).

(2) SST;: mean May SST. A relationship between
EBS pollock recruitment and SST was reported by
Quinn & Niebauer (1995).

(3) ICE;: sea ice cover index.

Modeling and statistical analyses
Correlation analysis

To determine the predictive value of abundance
indices representative of different early life stages,
we computed the correlations between the recruit-
ment (In(R;)) and each of the alternative indices
(In(SSBi-a), In(Ei,), In(Lis), In(NO,), In(NI1ia),
In(N2,_,.2), where a is the recruitment age).

To explore if and how the correlation between
recruitment and early life-stage abundance or envi-
ronmental indices varied over time, we computed
correlations between interannual variability in re-
cruitment and the different indices in 15 yr moving
windows and displayed the results graphically. That
is, we sliced the time-range into overlapping time-



Stige et al.: Predicting fish recruitment from juvenile abundance 249

slots of 15 yr (years 1,...,15; years 2,...,16; ... ; years
(n — 14),..., n), computed the correlation for each
time-slot, and plotted the resulting series of correla-
tion coefficients against the mid-year of the time-slots.

Baseline and environmental recruitment models

To quantify the extent to which the incorporation of
environmental indices improved recruitment pre-
diction models, we focused on the survival from the
juvenile stage to recruitment. For results to be com-
parable across stocks, we selected the earliest avail-
able post-larval index for each stock, that is, NO, for
BS capelin, NEA cod, and NEA haddock and N1, for
GOA and EBS walleye pollock. We considered ordi-
nary least-squares linear regression models of the
general form (here exemplified with the NO, juvenile
index and a recruitment age of 3 yr, as for NEA cod):

ln(R,) =0y + Oq ln(NOt_g) + Bl ENV].[_:;

+ By ENV2, 3+ ... + & )

Here, NO; and R; are abundance indices as defined
earlier, ENV1,, ENV2,, ... are environmental indices
that might potentially influence recruitment (i.e.
TEMP,_3 and CODg3_g 3 for NEA cod and NEA had-
dock; TEMP, ; and HERy_,,; for BS capelin; SST, 4
and ATF, , for GOA walleye pollock; SST, 4, ICE, 4,
and PRED,_, for EBS walleye pollock), ay, o, By, B2, .-
are coefficients estimated from the data, and ¢, is an
independent and normally-distributed error term
with a mean of zero and a standard deviation of .
The parameter o is the intercept, 1 — o; quantifies
the strength of density dependence, and By, B,,...
quantify the environmental effects (e.g. Stige et al.
2010). Note that for simplicity, we assumed a log-
linear relationship between past and present cohort
size (a 'Gompertz' model). To check for strong depar-
tures from this assumption (e.g. reduced R; at high
NO,_; because of overcompensatory density depend-
ence), we inspected plots of model residuals vs.
In(NO,_3). As these residual diagnostics (not shown)
failed to reveal any systematic departures, we deemed
the model formulation sufficient for our purposes.

We compared 2 alternative formulations of the
model above. In the ‘baseline’ model, no environ-
mental covariates were included, so that the model
simplified to the following relation:

In(Ry) = 0 + 0y In(NO3) + €; (2)

In the ‘environmental’ model, the covariates were
selected using an information theoretic approach: we
started with a model with all terms included (Eq. 1),

then removed (or added back) terms one by one until
we found the model formulation that provided the
lowest value of Akaike's information criterion cor-
rected for small sample size (AICc; Hurvich & Tsai
1989).

Measuring hindcast strength

To measure the performance of the 2 alternative
model formulations, the baseline and the environ-
mental, we considered both hindcast and forecast
strengths. The hindcast strength of a model refers to
the degree to which the model can reproduce the
observed pattern in the response retrospectively,
whereas the forecast strength refers to its ability to
make accurate predictions for observations not used
when fitting the model. The contribution of the envi-
ronmental information to the hindcast strength was
measured by the difference in explained variance
(R?) between the baseline and the environmental
models, fitted to the maximum year range for which
both environmental and abundance information was
available for each stock (from 23 to 41 yr; see Table 3).
An F-test was used to test whether this difference in
R? was statistically significant (as this test required
nested models, the juvenile index was added back to
the environmental models prior to testing if this vari-
able had been removed during AICc selection). Fur-
ther, the difference in AIC- was used to indicate
which model provided the best compromise between
explanatory power and model parsimony. In princi-
ple, the difference in AIC. should also indicate which
model would make the best predictions for new
observations (Burnham & Anderson 2002), but that is
not necessarily correct if the model assumptions are
not met, for example, if the relationship between the
response and the predictors change over time (i.e. in
the presence of nonstationarity).

Measuring forecast strength

To assess the forecast strengths of the baseline and
environmental models, we computed 1 yr prior pre-
dictions using a sequential approach. We compared 2
approaches to forecast recruitment, one based on
juvenile indices (NO; or N1,) alone and one that con-
siders environmental information. For each year from
the 11th year onward for each stock, 2 regression
models were constructed based on the data from the
years collected up until that point. The first was the
‘baseline’ model (Eq. 2). The second was the ‘envi-
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ronmental’ model, with the terms selected based on
AICc. From each model, the next year's recruitment
was forecast, i.e. the 11th observation was predicted
based on the first 10 yr with observations, the 12th
observation based on first 11 yr, etc. The selection of
terms to be included in the environmental model was
repeated for each year. To reduce identifiability
problems, the model selection was modified slightly
from that described above (see ‘Baseline and envi-
ronmental recruitment models’), in that model selec-
tion started with a model with no predictors instead
of one with all terms. This way, we obtained 2 time
series of predictions, one from the baseline model
and one from the environmental model, which were
compared to the observations by calculating R?
(calculated as the correlation coefficient squared),
root-mean-square error (RMSE) and mean absolute
prediction error (MAPE). Both RMSE and MAPE
measure the 'typical’ differences between predicted
and observed recruitment, with RMSE being more
influenced by the extreme values. As the RMSE val-
ues were not normally distributed, a bootstrap test
was used to assess whether the difference in RMSE
between the 2 modeling approaches was statistically
significant from zero. We generated a bootstrap distri-
bution of the test statistic by sampling with replace-
ment the time series of predictions and observations
10000 times, each sample being of the same size as
the original series.

Only linear and additive effects of the environmen-
tal variables were considered in the statistical models
used to forecast or hindcast recruitment. Quantifica-
tion of nonlinear and nonadditive effects demands
long time series and was not feasible with the fore-
casting approach used here, starting with only 10 yr

of data on which to base the first prediction (see
above). Moreover, we wanted to assess to what
degree simple, linear approaches might still be help-
ful, even if the true effects of the environmental fac-
tors are likely to be considerably more complex than
modeled. The programming environment R was used
for all statistical analyses (R Development Core Team
2010). The R code and data used for the analyses are
available in an electronic supplement that accom-
panies the online version of the paper (see Supple-
ment at www.int-res.com/articles/suppl/m480p245_

supp/).

RESULTS
Use of egg and larvae surveys vs. juvenile surveys

Our examination of the hypothesis that measure-
ment at a late life stage should provide an equally
good or better prediction of recruitment than meas-
urements at earlier life stages revealed mixed results.
Estimates of recruitment for some stocks showed an
improved prediction when older ages of pre-recruits
were used, while for some other stocks, indices of
larval abundance were better predictors of recruit-
ment than later life stages (Table 2, Figs. 1 & 2).
Among the Barents Sea stocks, capelin supported our
hypothesis: the Age 0 index was more strongly corre-
lated with recruitment than was the larval index and
spawning stock biomass (Table 2, Fig. 1). However,
for NEA cod and NEA haddock, the larval index,
counterintuitively, was more strongly correlated with
recruitment than was the Age 0 index (Table 2, Fig. 1).
When looking at the whole series of indices for NEA

Table 2. Correlations between recruitment and early life-stage abundance indices for 5 fish stocks (see Table 1 for abbreviations).
Spawning stock biomass (SSB) quantifies egg production potential. The values are product-moment correlation coefficients,
calculated for the same years for each row in the table (except the first row for GOA walleye pollock). Correlations for different
year ranges are shown for some stocks because of limited overlap among time series (Table 1). *p <0.05, **p < 0.01, ***p <0.001

Stock Correlation coefficient n (years) Year range
SSB Eggs Larvae Age 0 Age 1 Age 2
NEA cod 0.42* 0.61** 0.61** 0.47* 25 1966-1990
0.67*** 0.50** 0.68***  0.70*** 27 1980-2006
NEA haddock 0.33 0.17 0.63***  0.46* 25 1966-1990
0.46* 0.78*** 0.56** 0.94*** 27 1980-2006
BS capelin 0.00 0.32 0.71*** 35 1973-2009
GOA walleye pollock 0.49** 0.19 0.49* 0.64*** 23-25 1979-2005°
0.41 0.07 0.45 0.54* 19 1982-2005°
EBS walleye pollock -0.31 0.72*** 0.48* 25 1981-2005
“Missing larval data for years 1980 and 1984 and missing Age 1 and Age 2 data for years 1982, 1987, and 1999. Only the
correlations in the second row for GOA walleye pollock are calculated for exactly the same years
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Fig. 1. Temporal change in the correlations between recruit-
ment and early life-stage abundance indices for (a) NEA
cod, (b) NEA haddock, and (c) BS capelin. Correlation coef-
ficients (r) were calculated for 15 yr moving windows cen-
tered at the x-axis values. The symbols indicate with which
early life-stage abundance index recruitment (In(R)) was
correlated (E: eggs, L: larvae, NO: Age 0, N1: Age 1, N2: Age
2; see 'Materials and methods' for details). Broken lines: r =
0. Stippled lines: r = +0.51. The 15 yr correlations larger than
+0.51 are statistically significant (p < 0.05, ignoring auto-
correlation)

cod and haddock, from spawning stock biomass, to
the egg, larval, and Age 0, 1, and 2 indices, there
seems to be a tendency toward stronger correlations
with recruitment for the later life stages, but with the
correlations for the Age 0 (and for haddock, Age 1)
indices being somewhat weaker than expected from
such a pattern (Table 2) and with the ranking of the
indices, in terms of their correlation with recruitment,
varying with time (Fig. 1).

1.0 @
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0.5 4l

0.0 f-------------soosoooo-oooo

15 yr moving window correlations (product—-moment correlation coefficients)

In(N2;_p)
—054| &= In(N7;_3)
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Year
Fig. 2. Temporal change in correlations between walleye
pollock recruitment and early life-stage abundance indices

in the (a) Gulf of Alaska and (b) eastern Bering Sea. Corre-
lation details as in Fig. 1

In the GOA, walleye pollock recruitment was most
strongly correlated with the Age 2 index, followed by
the Age 1 index, spawning stock biomass, and the
larval index (Table 2). Fig. 2 supports this finding and
also shows that there is some variation in the correla-
tion of pollock life stage abundances and recruitment
over time. Our GOA pollock results thus mostly agree
with those of the BS capelin in that measurements
of later life stages provided better predictions of
recruitment (the exception being the lower correla-
tion when going from spawning stock biomass to the
larval index). In the EBS, we do not have larval pol-
lock data. However, we found that the Age 1 index
was strongly correlated with recruitment and, counter
to that expected, more strongly correlated with re-
cruitment than the Age 2 index (Table 2, Fig. 2).
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Temporal stability of correlations between
pre-recruit indices and recruitment

In all stocks examined, the correlations between
indices of pre-recruit abundances and recruitment
strength varied over time, with the relationship in
some stocks reversing sign (Figs. 1 & 2). For example,
for NEA cod in the Barents Sea, the Age 0 recruit-
ment correlation was stronger toward the start and
end of the period studied and non-significant in
the intervening period (Fig. 1a). In comparison, the
corresponding correlation for NEA haddock (Fig. 1b)
showed 2 periods with non-significant correlations
(around the early 1970s and 1990s), while that for BS
capelin was statistically significant throughout the
period studied (Fig. 1c).

For walleye pollock in the GOA and EBS, most cor-
relations between pollock early life stages and
recruitment varied considerably over time (Fig. 2).
The one exception was the correlation between
Age 1 pollock and pollock recruitment in the EBS
(Fig. 2b). That relationship was strong (correlation
coefficient > 0.5) for the duration of the time series. In
the GOA, walleye pollock showed a positive correla-
tion between larvae and recruitment in the 1980s,
but the correlation weakened and became negative
in the 1990s (Fig. 2a), a pattern similar to that found
by Bailey (2000).

Inclusion of environmental correlates in
hindcasts and forecasts

The results of applying linear regression models to
explain recruitment variation using juvenile indices,
with and without the addition of environmental cor-

relates, are presented in Table 3. In all cases, both
the R? and the AIC( of the model were substantially
improved with the addition of the environmental
correlates. With these encouraging results, we then
examined forecasts using a sequential approach to
compute predictions for mew’ observations not used
when fitting the model.

Barents Sea cod, haddock, and capelin

Environmental variables (TEMP for cod and had-
dock, HER; , for capelin) significantly improved
hindcasts for all 3 Barents Sea stocks tested (Table 3).
This was also true when the analysis was restricted
to the range of years for which forecast strength was
assessed (left-side columns in Table 4; here
also CODg3_g4, representing cannibalism, was selected
for cod). The strength of the correlations between
the environmental variables and recruitment varied
with time, however (Fig. 3), potentially reducing
the value of the environmental indices as predictors
of recruitment.

In the Barents Sea, forecasts of ‘new’ observations
from the 11th sampling year onward showed that
forecasts were significantly improved by utilizing
environmental information for the NEA haddock
(right-side columns in Table 4, Fig. 4). For this stock,
the inclusion of the environmental correlates re-
sulted in higher correlations between predictions
and observations (R? increasing from 0.44 to 0.64),
23 % lower RMSE, and 20% lower MAPE (Table 4).
For the NEA cod and the BS capelin, the inclusion of
environmental correlates resulted in no practical dif-
ference in forecast strength (<4 % change in RMSE
and MAPE; Table 4, Fig. 4).

Table 3. Contribution of environmental variables to the hindcast strength of statistical models describing the interannual fluc-
tuations in the recruitment to 5 fish stocks (see Table 1 for abbreviations). Baseline model: linear regression model with juve-
nile abundance index (NO; or N1, the only predictor. Environmental model: covariates (juvenile abundance and environmen-
tal indices) were selected using an information theoretic approach. Akaike's information criterion corrected for small sample
size (AIC(). AAIC: difference in AIC: between the baseline and the environmental model; negative values mean stronger sta-
tistical support of the environmental model. By considering environmental information, from 12.6 % (for BS Capelin) to 24.0 %
(for GOA walleye pollock), more of the variance in recruitment (R?) could be explained. *p < 0.05, **p < 0.01, ***p < 0.001; for
improvement in model fit by inclusion of environmental variables

Stock n (years) Baseline model R? Environmental model R? AAIC,
NEA cod 41 In(Ry,3) ~ In(INOy) 0.338 In(Ry3) ~ (NOt) +TEMP, 0.509 -9.9***
NEA haddock 41 In(Ry3) ~ In(INOy) 0.395 In(R;,3) ~ TEMP 0.620 -19.0***
BS capelin 37 In(Rs4) ~ In(NOy) 0.494 In(Rs, 1) ~ In(INO, ) +HER; 5, 0.616 -7.8**
GOA walleye pollock 23 In(Ry4) ~ In(N1)) 0.235 In(Rs,4) ~ In(N1,) + ATF; 0.475 -6.0**
EBS walleye pollock 25 In(Ry4) ~ In(N1)) 0.524 In(Ry4) ~ In(N1,) + PRED, + ICE, 0.671 -3.8*
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Table 4. The contribution of environmental variables to both hindcast and forecast strengths of recruitment models for 5 fish
stocks (see Table 1 for abbreviations). Hindcast strength: results of linear regression models as in Table 3, but excluding the first
10 yr (note resulting smaller sample size compared to Table 3). The predictor variables selected in the environmental models
differed from Table 3 in that COD;_s, and In(N;) were selected as additional variables for NEA cod and haddock, respectively,
while ATF,and PRED, were not selected for GOA and EBS walleye pollock, respectively. Forecast strength: results of linear re-
gression models as in Table 3, used to make 1 yr prior predictions from Year 11 onwards. Figs. 4 & 6 show which variables were
selected for the environmental model for each year and stock. R% explained proportion of variance. RMSE: root-mean-square
prediction error. MAPE: mean absolute prediction error. Lower RMSE and MAPE values are better. (*)p < 0.10, *p < 0.05, **p
< 0.01, ***p < 0.001; for improvement in model fit or predictions by inclusion of environmental variables (hindcast: F-test,
forecast: bootstrap test)

Stock Hindcast strength Forecast strength n
Baseline Environ. Baseline Environ. (years)
model model model model
NEA cod R? 0.33 0.63 0.17 0.35 31
RMSE 0.50 0.37*** 0.57 0.55
MAPE 0.41 0.27 0.45 0.44
NEA haddock R? 0.60 0.73 0.44 0.64 31
RMSE 0.81 0.67** 1.01 0.78*
MAPE 0.64 0.53 0.81 0.65
BS capelin R? 0.46 0.52 0.39 0.38 27
RMSE 1.02 0.96(%) 1.17 1.19
MAPE 0.81 0.79 0.92 0.97
GOA walleye pollock R? 0.47 0.47 0.40 0.34 13
RMSE 0.62 0.62 0.97 0.85
MAPE 0.51 0.51 0.84 0.75
EBS walleye pollock R? 0.66 0.75 0.65 0.63 15
RMSE 0.39 0.33(%) 0.45 0.44
MAPE 0.33 0.24 0.39 0.38

Gulf of Alaska and eastern Bering Sea walleye pollock

In developing the best model for hindcasting and
forecasting walleye pollock recruitment in the GOA,
we examined the value of 2 environmental indices, a
predation index that was Age 3+ arrowtooth flounder
abundance, and an index of SST. The correlation
between recruitment and the predation index varied
considerably over time, while the correlation be-
tween recruitment and temperature started with a
positive relationship that gradually weakened and
became negative (Fig. 5a). The correlation between
EBS pollock recruitment and all initial environmental
indices also varied considerably over time (Fig. 5b).
The sea ice cover index was positively correlated
with recruitment, whereas the correlation between
temperature and recruitment was at first positive and
then became negative. The correlation between pre-
dation and recruitment was relatively strong and sta-
ble until the early 1990s and subsequently decreased
(Fig. 5b).

In the GOA, the addition of environmental vari-
ables (specifically, ATF) improved the hindcasts of
walleye pollock recruitment (Table 3), although not
when tested on the more restricted year range, when
no environmental variables were selected (Table 4).
Forecasts of GOA walleye pollock recruitment with

and without the inclusion of environmental corre-
lates show that, by accounting for environmental
information, our predictions of pollock recruitment
were generally closer to the observed values for the
last years of the present study. For the earlier years,
the forecasts were identical because no environmen-
tal covariates were selected in the ‘environmental’
model (Fig. 6). This finding is supported by the (non-
significantly) 12 % lower RMSE and the 11 % lower
MAPE in the model with environmental predictors
(Table 4).

Similar to that observed for species in the other
ecosystems, environmental indices (specifically,
PRED and ICE) improved the hindcasts of walleye
pollock recruitment in the EBS (Table 3). This was
also the case when tested on the more restricted year
range (but here, only SST was selected among the
environmental variables; Table 4). Forecasts of EBS
walleye pollock recruitment using indices of Age 1
abundance, with or without environmental corre-
lates, showed a strong match in both the pattern and
the magnitude with observed recruitment values
(Fig. 6, Table 4). As for the NEA cod and the BS
capelin, the inclusion of environmental correlates
resulted in no practical difference in forecast
strength, neither to the better nor the worse (<4 %
change in RMSE and MAPE).



254 Mar Ecol Prog Ser 480: 245-261, 2013

1045 A —e— Env. model forecasts
22, @ --© - Baseline model forecasts
Observed
21 4
@2
c
Q0 20
Q
g
(@) 19 1
(&)
c ; .
_g © TEMP;_3 18 | Predictors:
% 10 5 CODg3_g, t-3 IN(NO;_3)
£ COD3_, -3
8 TEMP;_3
-
= .
()]
S
O
£ 21, b
A
o =
3 o 20
g S
= =191
[72] c
g ()
= g 18 1
o 5
() s
e 8 17
3 ie .
% 1.0, C STEMP, 16 1 Predictors:
2 ¥ HER4_5 t_1 In{NO¢-)
= i CODg3-6,t-3
o TEMP;_3
£ .
>
O
S
=
o 28, C
ld
27 A
-1.0 T T T T T 26 1
1960 1970 1980 1990 2000 25 -
Year 24 |
Fig. 3. Temporal change in correlations between recruit- 23 -
ment and environmental indices for (a) NEA cod, (b) NEA
haddock, and (c) BS capelin. Correlation details as in Fig. 1. 22 A
TEMP: integrated water column temperature, CODj g o1 1 Predictors:
Age 3 to 6 cod abundance IN(NO,_1)
HER_5, 1 -
DISCUSSION TEMP;_4 - —_— -
Our results suggest that large and variable meas- 1970 1980 1990 2000
urement errors and nonstationary dynamics are the Year
rule rather than the exception in investigations of Fig. 4. Observed recruitment time series and recruitment
fish recruitment. Determining the predictive value of forecast from early life-stage abundance and environmental

alternative pre-recruit abundance and environmen- indices for (a) NEA cod, (b) NEA haddock, and (c) BS cape-
lin. Models and variables as detailed in Tables 3 & 4. The

tal indices then remains an empirical question, which horizontal lines near the lower end of each panel indicate

we have assessed using a comparative approach for when each variable (Age 0 and environmental) entered the
5 fish stocks. environmental models



Stige et al.: Predicting fish recruitment from juvenile abundance 255

1.0 @

—6-SST, 4
—A ATFs,

-1.04
1010 reTicES
—o— SST;4

—A— PRED,_,

-1.0

15 yr moving window correlations (product-moment correlation coefficients)

1980 1985 1990 1995 2000
Year

Fig. 5. Temporal change in correlations between walleye
pollock recruitment and environmental indices in the (a)
Gulf of Alaska and (b) eastern Bering Sea. SST: sea surface
temperature, ICE: ice cover index, ATF: Age 3+ arrowtooth
flounder abundance, PRED: aggregated predator index.
Further details as in Fig. 1

Predictive value of larval compared to
juvenile abundance indices

Our findings show that different life-history stages
predict recruitment better in different populations.
Indices of the abundance of older life-history stages
in some cases (BS capelin, GOA walleye pollock), but
not all (NEA cod, NEA haddock, and EBS walleye
pollock), provided better bases for predicting recruit-
ment than earlier life-history stages such as indices of
egg or larval abundance. Low correlation between
the recruitment and the larval index for the BS
capelin is consistent in particular with variable pre-
dation by immature herring on capelin larvae (e.g.
Hjermann et al. 2004). This low correlation is proba-
bly not only due to noise. In a regression analysis
using the same larval index, it was found that 64 % of
its variability could be explained by capelin stock
size and indices of prey (zooplankton) and predators
(cod, feeding on the spawners, and herring, feeding

224 A
21 1
20
19 1
18 1
Predictors:
—_ In(N7;_3)
< ATF3, 14 [
s SSTy_4
E T T T T T T
£
= 247 b —e— Env. model forecasts
g O (E;%selinedmodel forecasts
serve
q_) .
L 23
&
22 A .
21 1
Predictors:
207 In(1g)
PRED;_4 _
ICE;_4 _
SSTy_4

1980 1985 1990 1995 2000 2005
Year

Fig. 6. Observed recruitment time series and recruitment

forecast from pollock early life-stage abundance (Age 1) and

environmental indices in the (a) Gulf of Alaska and (b) east-

ern Bering Sea. Models and variables as detailed in Tables 3

& 4. The horizontal lines near the lower end of each panel

indicate when each variable (Age 1 and environmental)
entered the environmental models

on the larvae) (Stige et al. 2010), suggesting that the
index indeed contains a biological signal. Likewise,
low correlation between the recruitment and the lar-
val index for the GOA walleye pollock is consistent
with high and variable juvenile mortality in this sys-
tem (Bailey 2000). This finding is in agreement with
the results of Bailey et al. (2005), who showed that,
over the range of population abundances available at
the time, there was no correlation between estimated
natality (egg abundance) and recruitment and that
the relationship between recruitment and estimates
of stage-specific abundances from life tables (some
values were interpolated) became stronger for the
older predictor variables. The authors found a weakly
positive correlation of recruitment with estimated
late-stage larval abundance, and the strength of the



256 Mar Ecol Prog Ser 480: 245-261, 2013

relationship increased for Age 0 abundance and
Age 1 abundance. These results matched our a priori
expectations, as the forecast should improve with
both more accuracy and precision as the forecast tar-
get gets closer in time to the predictor variable (Brad-
ford 1992).

For 3 of the 5 stocks examined in our study, NEA
cod, NEA haddock, and EBS walleye pollock, the
abundances of earlier life stages were better pre-
dictors of recruitment strength than were the abun-
dances of later life-history stages. Analyzing the
same data for NEA cod to determine when the signal
in vyear-class strength could first be detected,
Mukhina et al. (2003) reported that the largest im-
provement in explanatory power came when going
from the spawning stock biomass to the egg stage
and suggested that the lower predictive power of
later life stages was caused by higher measurement
error after the larval stage. According to Mukhina et
al. (2003), the signal in year-class strength of NEA
cod was thus often determined during the earliest
life-history stages (i.e. as eggs), enabling early fore-
casts of recruitment. Also, Helle et al. (2000) found
that an index of ‘early juveniles' (~3 mo olds) was
more strongly correlated with NEA cod recruitment
than was an Age 0 index (~5 mo olds). The Age 0 cod
may have begun to settle to the bottom at the time of
the pelagic 0-group survey in August and September
in the Barents Sea and may thus not have been fully
available to the sampling gear (Mukhina et al. 2003).
In fact, an Age 0 index calculated from demersal
trawls in October to December provided better re-
cruitment predictions than the pelagic Age 0 index
(Mukhina et al. 2003), as did the acoustic Age 1 index
for January to March (Table 2). Other possible causes
of high measurement error for Age 0 cod include in-
complete spatial coverage of the survey and school-
ing behavior (Helle et al. 2000). Likewise, the lower
predictive power of Age 2 EBS walleye pollock may
have been caused by higher measurement error of
this life stage than for Age 1 fish. Age 2 pollock are
thought to school higher in the water column, while
Age 1 fish are primarily located on the bottom and
available to the bottom trawl survey (Duffy-Ander-
son et al. 2003). Our findings suggest a need for cau-
tion when assuming that abundance indices of later
life stages always provide better predictions of
recruitment than earlier life stages. Our work shows
that the opposite is frequently the case, most likely
because older life stages may be more difficult to
measure due to, for example, wider geographical
and vertical distributions, aggregative behavior, and
net-escapement behavior.

Consistency of correlations between juvenile
indices and recruitment

In all but 2 stocks investigated (EBS walleye pol-
lock and BS capelin), the relationship between the
best index of pre-recruit abundance and the abun-
dance of recruits varied strikingly over time. In other
words, we found that the best life stage to use as
a predictive indicator of eventual recruitment may
change over time. One reason for such a change is
that the predictive value of a given pre-recruit index
can be modified by changes in the mortality during
the subsequent life stages.

In the GOA, we found a positive correlation be-
tween pollock larvae and recruitment in the 1980s,
but the correlation weakened and became negative
in the 1990s. Bailey (2000) also investigated the rela-
tionship between different pre-recruit life-history
stages and recruitment in GOA walleye pollock. He
showed that, prior to 1989, larval mortality was
inversely related to recruitment at Age 2 for the 1981
to 1988 year classes, but after 1988, larval mortality
and recruitment became decoupled. He attributed
this shift to a gradual trend of increasing juvenile
mortality, which eventually surpassed the larval
mortality. The increasing mortality of juveniles was
presumed to be linked to a trend of increasing preda-
tion potential in the ecosystem, most closely associ-
ated with a dramatic increase in arrowtooth flounder
Atheresthes stomias.

For the NEA cod in the Barents Sea, the Age 0
recruitment correlation appeared to break down for a
period around the 1980s. One possible reason for this
breakdown is the effect of cannibalism. Consistent
with this hypothesis is the finding that NEA cod
spawning stock biomass was correlated with calcu-
lated Age 1 but not Age 3 abundance in a virtual
population analysis with cannibalism included (Yara-
gina et al. 2009). This result indicated that cannibal-
ism, particularly on 1 to 2 yr olds, affected the year-
class strength. However, counter to this hypothesis,
analyses of stomach contents suggested that the
levels of cannibalism on Age 1 to Age 3 cod were not
particularly high in the 1980s (compared to high
levels from 1947 to 1965 and then again in the 1990s;
Yaragina et al. 2009).

The changing correlations should be interpreted
with considerable caution because they are likely to
reflect both biological and sampling issues, as catch-
ability is likely to have varied over time. For example,
the increasing correlation between the recruitment
and the Age 2 index for the EBS walleye pollock
seems unlikely to have a demographic basis, as the
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correlation between the recruitment and the Age 1
index was consistently strong in the same period. For
the NEA cod and haddock, the correlations with egg
and larval indices showed similar trends as the cor-
relations with the Age 0 indices, supporting the
hypothesis of a biological basis—a basis that should
be considered for further research.

The value of using environmental correlates
to predict recruitment

A fisheries management perspective

Although few stock-assessment working groups
have developed predictions of recruitment based on
a combination of stock and environmental variables,
there appears to be a growing trend in the number of
such models (ICES 2011). Our results support the
findings of several previous studies that environmen-
tal variables contribute significantly to explaining
recruitment variation retrospectively, both in the
BS (e.g. Ottersen & Sundby 1995, Mukhina et al.
2003, Dingser et al. 2007, Stige et al. 2010), the GOA
(Duffy-Anderson et al. 2002, Ciannelli et al. 2004,
Bailey et al. 2005), and the EBS (Mueter et al. 2006,
2011). Fewer studies have assessed if environmental
variables improve predictions of future recruitment
(but see e.g. MacKenzie et al. 2008, Zabel et al.
2011). We found that inclusion of environmental vari-
ables in some of our study cases improved recruit-
ment forecasts considerably and in the remaining
cases had only minor influence on the accuracy of
the forecasts. The incorporation of environmental
variables into models for predicting recruitment 1 yr
ahead improved forecasts of recruitment for NEA
haddock and GOA walleye pollock, although the
improvement was only statistically significant for
NEA haddock.

Fisheries managers may use forecasts of recruit-
ment a few years ahead to set catch limits that buffer
some of the effects of the interannual variability
in productivity. For fishermen, abrupt changes in
catches are clearly undesirable. In the harvest control
rule for the NEA cod, for example, the total allowable
catch (TAC) is set based on the stock forecasts, tak-
ing into account the predicted recruitment of 3 yr
olds 3 yr ahead, with the constraint that the TAC
should change by no more than 10 % from the previ-
ous year (ICES 2010). The NEA haddock is managed
using a 1 yr forecast with the constraint that the TAC
should change by no more than 25% from the pre-
vious year (ICES 2010). Under such a scheme, im-

provements in forecast strength by use of environ-
mental information, as shown here for the NEA had-
dock, can potentially improve the quality of the
advice and reduce the uncertainty in setting the
TAC. Note that such short-term predictions do not
necessarily require predictions of environmental
conditions, as the predictions can be based on cur-
rent environmental conditions within the 3 yr fore-
cast window.

Use of environmental information in recruitment
forecasts can also potentially increase the average
catches in the fisheries and reduce the risk of over-
exploitation, especially for short-lived species with
strong links between environmental conditions and
recruitment (De Oliveira & Butterworth 2005). How-
ever, if recruitment-environment correlations are
weak, accounting for environmental information may
lead to more uncertain and variable recruitment pre-
dictions and to lower average catches (De Oliveira &
Butterworth 2005). While our modeling accounted for
some of the uncertainties arising from using environ-
mental information to predict recruitment, the full
implications of using such predictions in a manage-
ment context remains to be assessed. In particular,
there is a need for studies that simulate alternative
management actions to evaluate both the potential
gains and risks of different approaches (e.g. Roel et
al. 2004, De Oliveira & Butterworth 2005).

Unstable recruitment—environment correlations

Despite the moderately positive results that we
found, there are also disadvantages in the use of
environmental information to predict recruitment.
Reviewing published recruitment—environmental
correlations that were retested when more data had
become available, Myers (1998) found that few of
the established correlations remained significant.
There were a few exceptions, such as temperature—
recruitment correlations toward the edges of the
distribution ranges of species, which generally were
robust.

Inconsistent correlations between the environ-
mental indices and recruitment may have contributed
to reduce the predictive value of the environmental
variables in the present study. The recruitment—
environment correlations for nearly all of the fre-
quently selected environmental variables in the fore-
cast models were found to cycle in and out of
statistical significance: HER; , for BS capelin, TEMP
for NEA cod and haddock, PRED and ICE for EBS
walleye pollock, and ATF;, for GOA walleye pollock.
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It may be noted that the recruitment-temperature
correlation for NEA haddock was among the more
stable ones, being significant except from the very be-
ginning of the period studied. Also, this was the only
stock for which the environmental indices significantly
improved the forecast for the time series as a whole.
Our results regarding the changing relevance of tem-
perature for the recruitment of the NEA cod in the
Barents Sea are consistent with results of Ottersen et
al. (2006), who proposed the finding to be caused by
increased sensitivity of age-truncated stocks to climate
fluctuations. In a recent meta-analysis of 42 North At-
lantic fish stocks, Ottersen et al. 2013, this Theme Sec-
tion) found that non-stationarity in the relationship
between spawning stock biomass, temperature, and
recruitment is the rule rather than the exception, but
that age-truncation in general is not linked to changes
in recruitment dynamics.

Nonlinear and nonadditive environmental effects

Nonlinear and nonadditive effects of environ-
mental factors on juvenile survival are likely to have
reduced the forecast value of the environmental
indices when using the simplistic approach chosen
in the present study. This can be exemplified by the
GOA walleye pollock. Zhang et al. (2010) made
Age 4 GOA pollock recruitment forecasts that ac-
counted for the effects of Age 1 abundance, thresh-
old effects of arrowtooth flounder biomass that
became important when arrowtooth flounder be-
came the dominant biomass species in the ground-
fish community, and autocorrelation terms that may
be related to inter year-class effects. These authors
found that strong, nonlinear threshold effects of
environmental variables on pollock recruitment im-
proved the amount of variability accounted for to
81 %, more than accounted for by the Age 1 abun-
dance alone (31%). Our results did not show the
same improvement in explaining GOA pollock re-
cruitment when environmental correlates were added.
We suspect that our modeling framework contributes
to the discrepancy in our results. Our environmental
model did not account for nonlinear or threshold
effects. The importance of nonlinear and nonstation-
ary interactions will challenge those wanting to
use environmental correlates in assessment models.
However, their incorporation will be necessary if we
are to improve our ability to account for the effects of
demographic and environmental variables on the
dynamics of fish populations (Rothschild 2000, Duffy-
Anderson et al. 2005, Litzow & Ciannelli 2007).

Simple models of complex dynamics

Our study exemplifies that correlations between
recruitment and both environmental and early life-
stage abundance indices may cycle in and out of
significance. For example, temperature may be an
important factor for explaining recruitment varia-
tions for a while, and then this effect becomes over-
whelmed by effects of an increase in the abundance
of predators. Similarly, an increase in predation on
juveniles can lead to a weaker link between larval
abundance and recruitment (Bailey 2000). Thus,
there are periods when the population seems respon-
sive to some variables, but then the dominance
seems to shift to other variables. The shifting impor-
tance of environmental factors may be due to shifting
importance of the life stage they are influencing (as
exemplified by the changing correlations between
the various pre-recruit indices and recruitment in the
present study), changes in the magnitude of the envi-
ronmental factor (here exemplified by the increasing
dominance of arrowtooth flounder in the GOA), and
indirect or interacting effects (here exemplified by
the arrowtooth flounder effect in the GOA likely
being threshold-like rather than linear). The results
thus reflect the complexity in specific responses to
ecosystem changes. For most marine species, the
available time series are too short to understand the
full complexity of the many interacting factors that
influence recruitment. Long time series are also
needed to detect the effects of slowly changing envi-
ronmental variables. Recent studies have demon-
strated nonlinear changes in the Bering Sea ecosys-
tem dynamics (Hunt et al. 2011) and a combination of
a gradual increase in predator abundance and non-
linear interaction effects of predators and tempera-
ture on pollock recruitment in the Gulf of Alaska
(Zhang et al. 2010). Given the simplistic approach
taken in the present study, predicting recruitment
from linear regression models fitted to short time
series, the moderately positive results regarding the
value of using environmental information is encour-
aging. In short, our results show that even if marine
systems are complex, even simple attempts at using
environmental information to predict fish recruit-
ment may be better than ignoring such information.

Acknowledgements. We thank The Research Council of
Norway (RCN) for funding the workshop Tropharct through
the MICO project (Match/Mismatch and Ecosystem). We are
greatly in debt to all of the people who made available the
data used in the study. We are thankful for an RCN grant to
L.C.S. through the ADMAR project, an NSF grant to G.L.H.,
and a CAMEO grant to M.E.H. This work is a product of the



Stige et al.: Predicting fish recruitment from juvenile abundance 259

IMBER regional program, Ecosystem Studies of Sub-Arctic
Seas (ESSAS). The findings and conclusions in the paper are
those of the authors and do not necessarily represent the
views of the National Marine Fisheries Service, NOAA. We
thank T. J. Quinn II, J. Napp, M. Mauritzen, and 3 anony-
mous reviewers for helpful comments on earlier versions of
the manuscript.

LITERATURE CITED

Alheit J, Hagen E (1997) Long-term climate forcing of Euro-
pean sardine and herring populations. Fish Oceanogr 6:
130-139

Andonegi E, Fernandes JA, Quincoces I, Irigoien X and
others (2011) The potential use of a Gadget model to pre-
dict stock responses to climate change in combination
with Bayesian networks: the case of the Bay of Biscay
anchovy. ICES J Mar Sci 68:1257-1269

Aydin K, Gaichas S, Ortiz I, Kinzey D, Friday N (2007) A
comparison of the Bering Sea, Gulf of Alaska, and Aleu-
tian Islands Large Marine Ecosystems through food web
modeling. NOAA Tech Memo NMFS-AFSC-178

Bailey KM (2000) Shifting control of recruitment of walleye
pollock Theragra chalcogramma after a major climate
and ecosystem change. Mar Ecol Prog Ser 198:215-224

Bailey KM, Ciannelli L, Bond NA, Belgrano A, Stenseth NC
(2005) Recruitment of walleye pollock in a physically
and biologically complex ecosystem. Prog Oceanogr 67:
24-42

Beamish RJ (1993) Climate and exceptional fish production
off the west coast of North America. Can J Fish Aquat Sci
50:2270-2291

Beaugrand G, Brander KM, Alistair Lindley J, Souissi S,
Reid PC (2003) Plankton effect on cod recruitment in the
North Sea. Nature 426:661-664

Blood DM (2002) Low-temperature incubation of walleye
pollock (Theragra chalcogramma) eggs from the south-
east Bering Sea shelf and Shelikof Strait, Gulf of Alaska.
Deep-Sea Res 11 49:6095-6108

Borja A, Uriarte A, Egana J, Motos L, Valencia V (1998)
Relationships between anchovy (Engraulis encrasicolus)
recruitment and environment in the Bay of Biscay (1967-
1996). Fish Oceanogr 7:375-380

Borja A, Fontdn A, Séenz J, Valencia V (2008) Climate,
oceanography and recruitment: the case of the Bay of
Biscay anchovy (Engraulis encrasicolus). Fish Oceanogr
17:477-493

Bradford MJ (1992) Precision of recruitment predictions from
early life stages of marine fishes. Fish Bull 90:439-453

Burnham KP, Anderson DR (2002) Model selection and
multimodel inference: a practical information-theoretic
approach. Springer, New York, NY

Chambers RC, Trippel EA (eds) (1997). Early life history
and recruitment in fish populations. Chapman & Hall,
London

Chen DG, Ware DM (1999) A neural network model for fore-
casting fish stock recruitment. Can J Fish Aquat Sci 56:
2385-2396

Ciannelli L, Chan KS, Bailey KM, Stenseth NC (2004) Non-
additive effects of the environment on the survival of a
large marine fish population. Ecology 85:3418-3427

Cushing DH (1995) Population production and regulation in
the sea. A fisheries perspective. Cambridge University
Press, Cambridge

Cushing (1982) Climate and fisheries. Academic Press,
London

De Oliveira JAA, Butterworth DS (2005) Limits to the use of
environmental indices to reduce risk and/or increase
yield in the South African anchovy fishery. Afr J Mar Sci
27:191-203

Dingser GE, Ciannelli L, Chan KS, Ottersen G, Stenseth NC
(2007) Density dependence and density independence
during the early life stages of four marine fish stocks.
Ecology 88:625-634

Dingser GE, Bogstad B, Stiansen JE, Subby S (2010) How
can we assess recruitment models for (age-3) NEA cod?
In: Report of the Arctic Fisheries Working Group Lis-
bon/Bergen, 22-28 April 2010. ICES, Copenhagen CM
2010/ACOM:05, WD 19

Dorn M, Aydin K, Barbeaux S, Guttormsen M, Spalinger K,
Wilkins M (2010) Assessment of the walleye pollock
stock in the Gulf of Alaska. In: Stock assessment and
fishery evaluation report for the groundfish resources
of the Bering Sea and Aleutian Islands regions. North
Pacific Fishery Management Council, Anchorage, AK

Drinkwater KF, Loeng H, Megrey BA, Bailey N, Cook RM
(2005) The influence of climate change on North Atlantic
fish stocks. ICES J Mar Sci 62:1203-1204

Duffy-Anderson JT, Bailey KM, Ciannelli L (2002) Conse-
quences of a superabundance of larval walleye pollock
Theragra chalcogramma in the Gulf of Alaska in 1981.
Mar Ecol Prog Ser 243:179-190

Duffy-Anderson JT, Ciannelli L, Honkalehto T, Bailey KM,
Sogard SM, Springer AM, Buckley T (2003) Distribution
of age-1 and age-2 walleye pollock in the Gulf of Alaska
and eastern Bering Sea: sources of variation and im-
plications for higher trophic levels. In: Browman HI,
Skiftesvik AB (eds) The big fish bang: Proceedings of the
26th annual larval fish conference. Institute of Marine
Research, Bergen, p 381-394

Duffy-Anderson JT, Bailey K, Ciannelli L, Cury P, Belgrano
A, Stenseth NC (2005) Phase transitions in marine fish
recruitment processes. Ecol Complex 2:205-218

Fiksen O, Jorgensen C, Kristiansen T, Vikebgo F, Huse G
(2007) Linking behavioural ecology and oceanography:
larval behaviour determines growth, mortality and dis-
persal. Mar Ecol Prog Ser 347:195-205

Godg OR (1998) What can technology offer the future fish-
eries scientist—possibilities for obtaining better esti-
mates of stock abundance by direct observations.
J Northwest Atl Fish Sci 23:105-131

Heath MR (1992) Field investigations of the early life stages
of marine fish. Adv Mar Biol 28:1-174

Helle K, Bogstad B, Marshall CT, Michalsen K, Ottersen G,
Pennington M (2000) An evaluation of recruitment
indices for Arcto-Norwegian cod (Gadus morhuaL.). Fish
Res 48:55-67

Hjermann DO, Ottersen G, Stenseth NC (2004) Competition
among fishermen and fish causes the collapse of Barents
Sea capelin. Proc Natl Acad Sci USA 101:11679-11684

Hjermann DO, Bogstad B, Eikeset AM, Ottersen G, Gjo-
seeter H, Stenseth NC (2007) Food web dynamics affect
Northeast Arctic cod recruitment. Proc R Soc Lond B Biol
Sci 274:661-669

Hjort J (1914) Fluctuations in the great fisheries of northern
Europe viewed in the light of biological research. Rapp
P-V Réun Cons Int Explor Mer 20:1-228

[] Hollowed A, Barange M, Ito SI, Kim S, Loeng H, Peck MA

(2011) Effects of climate change on fish and fisheries:



260 Mar Ecol Prog Ser 480: 245-261, 2013

forecasting impacts, assessing ecosystem responses, and
evaluating management strategies. ICES J Mar Sci 68:
984-985

Houde ED (1994) Differences between marine and fresh-
water fish larvae: implications for recruitment. ICES J
Mar Sci 51:91-97

Houde ED (2008) Emerging from Hjort's shadow. J North-
west Atl Fish Sci 41:53-70

Hunt GL Jr, Coyle KO, Eisner LB, Farley EV and others
(2011) Climate impacts on eastern Bering Sea foodwebs:
a synthesis of new data and an assessment of the Oscil-
lating Control Hypothesis. ICES J Mar Sci 68:1230-1243

Hurvich CM, Tsai CL (1989) Regression and time series
model selection in small samples. Biometrika 76:297-307

Ianelli JN, Barbeaux S, Honkalehto T, Kotwicki S, Aydin K,
Williamson N (2010) Assessment of the walleye pollock
stock in the Eastern Bering Sea. In: Stock assessment and
fishery evaluation report for the groundfish resources
of the Bering Sea and Aleutian Islands regions. North
Pacific Fishery Management Council, Anchorage, AK,
p 54-156

ICES (International Council for the Exploration of the Sea)
(2007) Report of the Arctic Fisheries Working Group
(AFWG), 18-27 April 2007, Vigo, Spain. ICES CM 2007/
ACFM:16, ICES, Copenhagen

ICES (2010) Report of the Arctic Fisheries Working Group
(AFWG), 22-28 April 2010, Lisbon, Portugal/Bergen,
Norway. ICES CM 2010/ACOM:05, ICES, Copenhagen

ICES (2011) Report of the Study Group on Recruitment
Forecasting (SGRF), 17-20 October 2011, Copenhagen,
Denmark. ICES CM 2011/ACOM:31, ICES, Copenhagen

Litzow MA, Ciannelli L (2007) Oscillating trophic control
induces community reorganization in a marine ecosystem.
Ecol Lett 10:1124-1134

Logerwell EA, Mantua N, Lawson PW, Francis RC, Agostini
VN (2003) Tracking environmental processes in the coastal
zone for understanding and predicting Oregon coho
(Oncorhynchus kisutch) marine survival. Fish Oceanogr
12:554-568

MacKenzie BR, Horbowy J, Késter FW (2008) Incorporating
environmental variability in stock assessment: predicting
recruitment, spawner biomass, and landings of sprat
(Sprattus sprattus) in the Baltic Sea. Can J Fish Aquat
Sci 65:1334-1341

Mueter FJ, Ladd C, Palmer MC, Norcross BL (2006) Bottom-
up and top-down controls of walleye pollock (Theragra
chalcogramma) on the eastern Bering Sea shelf. Prog
Oceanogr 68:152-183

Mueter FJ, Bond NA, Ianelli JN, Hollowed AB (2011) Ex-
pected declines in recruitment of walleye pollock (Thera-
gra chalcogramma) in the eastern Bering Sea under
future climate change. ICES J Mar Sci 68:1284-1296

Mukhina NV (1992) Results of the ichthyoplankton investi-
gations in the Norwegian and Barents Seas in 1959-1990.
In: Belikov SV, Mukhin AI, Savvatimsky PI, Tretyak VL,
Shevelev MS, Shleinik VN (eds) Ekologicheskie prob-
lemy Barentseva moria. PINRO, Murmansk (in Russian),
p 62-102

Mukhina NV, Marshall CT, Yaragina NA (2003) Tracking
the signal in year-class strength of Northeast Arctic cod
through multiple survey estimates of egg, larval and
juvenile abundance. J Sea Res 50:57-75

Myers RA (1998) When do environment-recruitment corre-
lations work? Rev Fish Biol Fish 8:285-305

Ottersen G, Sundby S (19995) Effects of temperature, wind

and spawning stock biomass on recruitment of Arcto-
Norwegian cod. Fish Oceanogr 4:278-292

[] Ottersen G, Hjermann DO, Stenseth NC (2006) Changes in

spawning stock structure strengthen the link between
climate and recruitment in a heavily fished cod stock.
Fish Oceanogr 15:230-243

Ottersen G, Stige LC, Durant JM, Chan KS, Rouyer TA,
Drinkwater KF, Stenseth NC (2013) Temporal shifts in
recruitment dynamics of North Atlantic fish stocks:
effects of spawning stock and temperature. Mar Ecol
Prog Ser 480:205-225

Quinn TJ II, Niebauer HJ (1995) Relation of eastern Bering
Sea walleye pollock (Theragra chalcogramma) recruit-
ment to environmental and oceanographic variables.
In: Beamish RJ (ed) Climate change and northern fish
populations. Can Spec Publ Fish Aquat Sci 121:497-507

R Development Core Team (2010) R: a language and envi-
ronment for statistical computing. R Foundation for Sta-
tistical Computing, Vienna. www.r-project.org

Roel BA, O'Brien CM, Basson M (2004) Management
options for the Blackwater herring, a local spring-
spawning stock in the Thames estuary. ICES J Mar Sci
61:297-307

Rothschild BJ (2000) ‘Fish stocks and recruitment’: the past
thirty years. ICES J Mar Sci 57:191-201

Sinclair M, Tremblay MJ (1984) Timing of spawning of
Atlantic herring (Clupea harengus harengus) popula-
tions and the match-mismatch theory. Can J Fish Aquat
Sci 41:1055-1065

Sogard SM (1997) Size-selective mortality in the juvenile
stage of teleost fishes: a review. Bull Mar Sci 60:
1129-1157

Stige LC, Ottersen G, Dalpadado P, Chan KS and others
(2010) Direct and indirect climate forcing in a multi-
species marine system. Proc R Soc Lond B Biol Sci 277:
3411-3420

Stockhausen WT, Nichol D, Lauth RR, Wilkins M (2010)
Assessment of the flathead sole stock in the Bering
Sea and Aleutian Islands. In: Stock assessment and
fishery evaluation report for the groundfish resources
of the Bering Sea and Aleutian Islands regions. North
Pacific Fishery Management Council, Anchorage, AK,
p 869-968

Tereshchenko VV (1996) Seasonal and year-to-year varia-
tions of temperature and salinity along the Kola meridian
transect. ICES CM 1996/C:11, ICES, Copenhagen

Thompson GG, lanelli JN, Lauth RR (2010) Assessment of
the Pacific cod stock in the Eastern Bering Sea and Aleu-
tian Islands area. In: Stock assessment and fishery evalu-
ation report for the groundfish resources of the Bering
Sea and Aleutian Islands regions. North Pacific Fishery
Management Council, Anchorage, AK, p 243-424

Turnock BJ, Wilderbuer TK (2009) Gulf of Alaska arrow-
tooth flounder stock assessment. In: Stock assessment
and fishery evaluation report for the groundfish re-
sources of the Bering Sea and Aleutian Islands regions.
North Pacific Fishery Management Council, Anchorage,
AK, p 627-680

Wilderbuer TK, Nichol DG, Aydin K (2010) Arrowtooth
flounder. In: Stock assessment and fishery evaluation
report for the groundfish resources of the Bering Sea and
Aleutian Islands regions. North Pacific Fishery Manage-
ment Council, Anchorage, AK, p 697-762

[] Yaragina NA, Bogstad B, Kovalev YA (2009) Variability in

cannibalism in Northeast Arctic cod (Gadus morhua)



Stige et al.: Predicting fish recruitment from juvenile abundance 261

during the period 1947-2006. Mar Biol Res 5:75-85
[] Zabel RW, Levin PS, Tolimieri N, Mantua NJ (2011) Inter-

[] Zhang T, Bailey KM, Chan KS (2010) Recruitment forecast
models for walleye pollock Theragra chalcogramma fine-

actions between climate and population density in the
episodic recruitment of bocaccio, Sebastes paucispinis, a
Pacific rockfish. Fish Oceanogr 20:294-304

tuned from juvenile survey data, predator abundance
and environmental phase shifts. Mar Ecol Prog Ser 417:
237-248

Appendix 1. Sources and manipulation of abundance data for the BS stocks

NEA cod and NEA haddock

SSB;and R; were estimated by virtual population analysis
based on catch data (Table 1). The E; and L, indices (given
by Mukhina 1992) were constructed based on egg and lar-
val data collected by surveys by the Knipovich Polar
Research Institute of Marine Fisheries and Oceanography
(PINRO), Murmansk, as described by Mukhina et al.
(2003). NO; was calculated from Age 0 data sampled by
international O-group surveys in the Barents Sea (ICES
2007, 2010). Several alternative indices of Age 0 abun-
dance have been computed, but none that cover the entire
year range. For 1980 to 2009, we defined NO; as NOgew:
where NOy ., is the most recent index (given in Table 1.2
of ICES 2010) that corrects for catching efficiency but has,
to our knowledge, not been calculated for years prior to
1980. To increase the temporal overlap with the egg and
larvae indices, we therefore calculated NO, for 1966 to
1979 from the so-called 'logarithmic’ Age 0 index (here
referred to as NO, ) that has been published for 1966 to
2004 (ICES 2007). The conversion equation was calculated
by ordinary least-squares regression on log-transformed
data for the 25 overlapping years—cod: In(NO,_pey,) = 23.9 +
1.817 In(NOpqq + 0.01), haddock: In(NOpey) = 23.2 + 1.445
In(NO.qq + 0.01); R? = 0.83 and 0.81, respectively; log-

transformation of predictors improved fit and removed cur-
vature in residuals-fitted plots. Finally, N1, and N2, were
calculated from Norwegian acoustic surveys in the Barents
Sea (ICES 2010).

BS capelin

SSB; and R; were estimated from September to Octo-
ber acoustic surveys (Table 1). L; was constructed by
combining an index based on data collected by PINRO
for 1959 to 1990 (Mukhina 1992, Mukhina et al. 2003;
here denoted L;py) and an index based on Norwegian
surveys for 1981 to 2009 (ICES 2010; here denoted
Linor). For 1981 to 2009, we used L; = Lo, for 1959 to
1980, we used In(L;) = 28.3 + 0.547 In(L.pys + 0.01), the
conversion equation calculated by least-squares regres-
sion for the 10 overlapping years (R? = 0.69). NO, was
constructed similarly to above, by linking the NO ey
for 1980 to 2009 (Table 1.2 in ICES 2010) with the
other index available for capelin, the so-called ‘area-
index’ (here denoted NO;.,4), which covers 1965 to 2004
(ICES 2007), using the following conversion equation:
In(NOppew) = 15.9 + 1.679 In(NO.qq) (R? = 0.87, n = 27
overlapping years).
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