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1. Introduction 
 
Technology has quietly yet surely made inroads into our everyday life through integration of 

sensors promised by the rise of Internet of Things (IoT). It is printed electronics, as detailed in 

Kirchmeyer et al. [1] a guidepost to interlinked technologies, which holds the key to this rise. They 

are now popular for a wide range of applications such as large-area electronics, robotics, smart 

textiles and flexible electronics [2]. Printed electronics is created by printing processes, an additive 

technology that simplifies manufacturing processes, reduces material and process costs thereby 

allowing technology to be available across social strata cutting across inequities [3]. Wearable 

electronics have, in last few years, risen as an integral part of people’s lifestyle. From heart rate 

sensor embedded within a watch on the wrist to medical applications, such as glucose measuring 

sensor over the hip or smart clothes – the reach of wearable printed electronics has transformed 

lives. On the same note, monitoring and real-time sensing of humidity could be applied to many 

applications and uses. For example, ambiance air quality could be set by monitoring and drawing 

patterns of breath moisture sensing. Allergens such as pollens and mites can be sanitized prior to 

health hazard from monitoring breath sensing. In this work, we report the development of printed 

nanocomposite-based humidity sensors and integration of printed RFID to demonstrate a wireless 

respiratory rate monitoring device in a wearable fashion.  

 
1.1 Printed Humidity Sensing Technologies 

 
Humidity sensing can be implemented through a variety of measuring principles such as 

capacitive, resistive, hygrometric, gravimetric, optical sensing. The following table compares 

state-of-the-art printed humidity sensors based on their (1) sensing technology, (2) sensing 

material, (3) substrate printed upon, (4) method of printing and (5) its performance.  



2 
 

 
 

*Data extracted from the plots and graphs provided in each work. 

Table 1.1 Table of comparison of previous work on printed humidity sensors. 
 

S.N
o 

Ref.
No 

Material used Substrate Method of 
Printing 

Sensing 
Technology 

Sensitivity (del 
R/Ro/%RH) 

Responsivity 

1. [4] Carboxylate CNT 
ink 

Paper Inkjet printing Capacitive 2pF/RH% Response time 4 
to 5 min for 3 to 

85%RH 
increase 

2. [5] Silver NP ink paper Inkjet printing Resistive 0.0124 * ~15 min* 

3. [6] TiO2 NP+ HPMC 
over gold layer 

PET Screen Printing Resistive S% = Rini -Rmes/Rini X 
100; 80% response for 0 

to 70% RH 

Response time 
~3min from 5 

to 40%RH, 
Recovery time ~ 

50s 
4. [7] CNT + CMC Paper Screen Printing Resistive 10 to 60% RH increases 

resistance by 15 times. 
N/A 

5. [8] MWCNT/PEDOT:
PSS 

Polymer Kapton 
HN500 

Drop casting Resistive 0.070 N/A 

6. [9] Graphene Oxide 
over piezoelectric 

ZnO thin film 

Flexible 
Polyimide 

Drop casting Lamb wave 
frequency 

145.83 ppm/%RH at 
85%RH 

Absorption time 
~ 20 s and 
Desorption  

~ 5 s 
7. [10] Porous Silicon/ 

Ag IDE 
Paper Roll- to- roll 

(spray coating) 
Resistive 0.011* 

500Mohm to 001Mohm 
for 0 to 90%RH 

~20 min* 

8. [11] MWCNT, P4VP, 
DBB on IDE Au 

electrode 

Ceramic 
substrate 

Automatic dip 
coating 

Resistive 470% increase from 1 to 
30%RH 

Response time 
~265s, 

Recovery time 
~ 152s 

9. [12] Ag NP Ink IDE 
with SL900a 

PET Gravure Printing Resistive Relative Sensitivity-
Conductance at 80% RH 

at 70% 

N/A 

10. [13] Polyaniline ink 
solution 

Polyester Sheet Inkjet Printing Resistive 0.0114* Response time 
~ 5 s 

11. [14] PEDOT:PSS, 
pHEMA, CAB and 

Nafion with Ag 
IDE 

Kapton 
Polyimide sheet 
woven to textile 

Inkjet Printing Impedance 107 ohms to 10 4 ohms 
from 60 to 100%RH 

N/A 

12. [15] COOH -CNT Cellulose Paper Drop casting Resistive 0.00714* Response time 
~6s, Recovery 

time ~ 120s 
13. [16] Ag/MWCNT/Ag Glass Drop casting Capacitive Capacitance increases 

366 times at 90RH 
Response time 
~2s, Recovery 

time ~ 8s 
14. [17] COOH- MWCNT, 

Au electrode 
Quartz plate Airbrush 

Spraying 
Resistive 0.0166* Response time 

~20s, Recovery 
time ~ 40s 

15. [18] Silver NP Ink Kapton 500 HN 
Substrate 

 
Inkjet Printing 

Humidity 
dependent 

permittivity 

171.4kHz/%RH N/A 

16. [19] Ag NP Ink PET Gravure Printing Capacitive 172% increase at 80%RH N/A 

17. [20] Plasma-treated 
MWCNT/PI 

Silicon nitride 
membrane 

LPCVD Resistive 0.00466 N/A 

18. [21] MWCNT Stainless Steel Drop Casting Capacitive 300% increase in 
capacitance response, 

35.86%/RH% 

Response time 
~200s, 

Recovery time ~ 
140s 
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Yoo et al. [20]  reported a resistive-type humidity sensor based on a composite film consisting of 

carbon nanotube (CNT) and polyimide. In the polyimide water system, a decrease in resistance is 

detected in the presence of high conductivity of water. However, the sensor has a humidity 

sensitivity only of 0.0047 ΔR/R /%RH, a sensitivity insufficient for reliable data reading. In Jiang 

et al. [22] used MWCNT nests grown on arrayed nonporous silicon to show a relative change in 

resistance of up to 362% between 11% and 85 % RH. Its recovery and response time are however 

very long, reaching up to an hour each half cycle. Such a slow response makes it an unconvincing 

sensor for real-time measurement. Nanotube-enhanced capillary condensation for a capacitive 

humidity sensor is described in Yeow et al. [21] in which multi-walled carbon nanotubes 

(MWCNTs) within the CNT-enhanced sensor yield transduction change in response to varying 

water and air proportion due to the change in the effective dielectric of the sensing material. This 

reciprocates as change in capacitance that is proportional to the change in relative humidity. The 

small gap between CNT structures facilitates the condensation. The high-dielectric constant water 

causes a big change in the effective dielectric constant. However, the complicated manufacturing 

process inhibits the scalability of fabrication process and makes it difficult to integrate with a 

wearable device. Such limitations from previous works have limited the scope of its sensing 

capability and integration to wearables. There is a strong need for advanced sensor technology 

with improved performance and manufacturing methods.  
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1.2 Strategy of sensor creation 
 
A variety of nanomaterials have been demonstrated for humidity sensings, such as 

semiconductor nanoparticles and carbon-based nanomaterials. Among them, carbon 

nanotubes (CNTs) have been a popular sensing material owing to its conductivity variable 

with environmental conditions, including charge, chemical, and moisture adsorption. CNTs 

are allotropes of carbon found in 1991 by Iijima et al., are 1D nanostructures with the whole 

weight dominated by their large surface structure. The large surface of tubulenes which 

determines the adsorption properties capable of highly sensitive chemical or humidity 

detection [8][24]. 

 

There are two common forms of CNTs - single-walled carbon nanotubes (SWCNTs) and 

multi-walled carbon nanotubes (MWCNTs), as shown in Figure 1. While SWCNTs are single 

surface carbon nanotubes with electronic properties varying with chirality [24], MWCNTs 

consist of multiple rolled layers of graphene and have an average effect of all chiral tubes. 

MWCNTs are more cost effective with higher molecular weight and better conductivity that 

have catapulted CNTs in a plethora of functionalities, such as in absorption and screening of 

electromagnetic waves, as additives to polymers and catalysts, composite materials (fillers or 

coatings), as nanoprobes, sensors, supercapacitors, etc.[17, 20].  
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Figure 1. Structures of a single-walled carbon nanotube (SWCNT) and a multi-walled 
carbon nanotube (MWCNT)[23]. 

 

Looking into the humidity sensing aspect of CNTs, Zahab et al. [25] reported that p-type 

CNTswould turn into n-type after adsorption of water molecules.  They demonstrated that the 

impedance of the CNT-based humidity sensor increases with increasing humidity. Cao et al. 

[17] explained in detail the humidity-dependent conductivity of MWCNTs. Humidity sensing 

using pristine CNT and doped CNTs described in Adjizian et al. [26] gives a full recovery of 

about 2.5 hours even when heated at 150oC. A fast response of 30 s was reported in Yu et al. 

[27]. However, the impedance change of the composite between 5 and 85 % RH was not 

sensitive enough for the application. Li et al. [11] have reported humidity sensing based on 

the composite of multi-walled carbon nanotubes and cross-linked poly(4-vinylpyridine) (QC-

P4VP) polyelectrolyte. It demonstrates the ability to detect humidity as low as 1%RH by 

exploiting the high intrinsic conductivity of MWCNTs; however, it has a slow recovery time. 

P4VP on its own has also been reported to have humidity sensing properties as in Liu et al. 

[28] but with a limited sensing dynamic range.  
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Figure 2. (a) Schematic of CNT-CMC-PEDOT:PSS ink composite. Structure of (b) poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), (c) carboxymethylcellulose (CMC), 

and(d) carboxylate carbon nanotube (COOH-CNT).[33] 

 
Figure 3. (e) Sensing mechanism of the humidity sensor. 

 

In this work, we aim to develop an electrical humidity sensor with improved response speed and 

sensitivity. We develop a nanocomposite sensing material composed of CNT embedded polymer 

undergoes electrical conductivity change in response to the change in environmental moisture as 
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illustrated in Fig. 2(a). The nanocomposite contains poly (3,4-ethylenedioxythiophene) 

polystyrene sulfonate (PEDOT:PSS) (Fig. 2(c), crosslinked carboxymethyl cellulose (CMC) (Fig. 

2(d)), and carboxylated MWCNTs (Fig. 2(e)). The nanocomposite utilizes CMC for reversible 

moisture uptake that induces slight volumetric expansion upon adsorption of moisture and 

shrinkage after evaporation. As depicted in Fig. 2(b), the volumetric change of CMC polymer 

further transduces the inter-CNT distance and therefore regulated the electrical conductivity of the 

nanocomposite. The sensing material can be applied and patterned on a flexible substrate using 

screen printing. From the literature review, we deduced that to prepare a screen-printable ink for 

sensor fabrication, a reliable binder and a dispersant are required along with the conductive 

MWCNT. We chose CMC as the binder and PEDOT:PSS as the conductive surfactant to aid in 

dispersion of CMC and MWCNT. CMC acts as a binder to improve the electrochemical property 

of ink as is explored in Barras et al. [7] where it was used with carbon fibers (CFs) within the 

purview of printable cellulose-based electro conductive composites for sensing elements in paper 

electronics. In addition, CMC crosslinks through its abundant carboxyl groups after heating that 

further strengthens the mechanical property of the sensor. We also use carboxylated MWCNT as 

opposed to pristine MWCNT to improve the dispersion property in preparing aqueous ink solutions 

as reported in David et al. [34].  

PEDOT:PSS has been explored to improve electrical conductivity [8,14,20,31], aid in dispersion of CMC 

and CNT and in making ink with high ductility to feature in flexible wearable printable electronics. 
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Figure 4. (a) inkjet printing, [3] and (b) gravure printing. [3] 

 
A variety of printing technologies were attempted to transfer conductive inks based on metal 

nanoparticles, carbon nanotubes, and graphene, for printed electronics. The printing technologies 

include inkjet printing (Fig 3(a)), spin-coating, drop-casting, screen printing, direct ink printing, 

and gravure printing (Fig 3(b)). [36, 37]We tested printing via inkjet, ballpoint, pipette- drop, spin 

coating. Screen printing[17][39] was adopted for creating flexible sensors and circuit boards. 

Screen printing provides the capability of large-area manufacturing, cost-effect process, and spatial 

resolution sufficient our applications. 

Apart from printing techniques, we also explored flexible and tactile substrates for the printed 

electronics. Sicong et al. [28] reported patterning of flexible and conductive material on a cotton 

fabric via inkjet printing under ambient conditions. Zhang et al. [38] demonstrated CNT-based and 

graphene-based hybrid films fabricated on arbitrary substrates or surfaces such as perforated 

polyethylene terephthalate (PET) substrates. After multiple printing tests using our nanocomposite 

ink on a spectrum of substrates, including glass, nylon net filters (NY41, EMD Millipore), and 

PET (50 um thick), we chose PET for its flexibility, transparency, and its adaptability to withstand 

150oC heat treatment required for the ink curing process.  
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1.3 Inspiration and Research Goals 
 
 

IoT and wearables[40, 41] are the need of the hour for a more fit and able lifestyle. Our main goal 

is to fabricate and characterize a new type of printed humidity sensor and integrate with a printed 

RFID in a wearable fashion to demonstrate real-time respiratory rate monitoring [18]. We will also 

investigate the effect of dimension and composition of the sensor on the sensitivity and pace of 

change [19-22]. An ideal sensor would traverse a larger gradient of magnitude in the shortest time 

possible. A sensor with high responsivity and sensitivity for reliable sensing was our main aim. 

We are also looking to integrate with RFID for continuous real-time data logging. 
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2 Experimental 
 

2.1 Chemical and Materials 
 
Commercially available carboxylated MWCNTs obtained from US Research Nanomaterials, 

Inc were used in this experiment. The COOH-functionalized MWCNT were 5-15 µm in length 

with purity above 95%. The hydrophilicity of the MWCNTs rendered by the carboxylate 

functional groups improves their dispersion in aqueous solutions and increases the adhesion 

with the substrate printed upon [15]. Sodium carboxymethyl cellulose (CMC) m.w. 90,000 

and poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (conductive grade 

PEDOT:PSS) 1.3 wt.% dispersion in H2O were obtained from Sigma-Aldrich    Dupont Silver 

Ink PE 873-4 with purity over 95% was used for fabricating screen-printed electrodes and 

RFID circuits. All the chemicals used in the work were of analytical grade and used as received 

unless noted otherwise.  

2.2 CNT Ink Preparation 

 

Figure 5. SEM image of the cured nanocomposite ink consisting of CNT, CMC, and 
PEDOT:PSS. 
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PEDOT:PSS (0.2 wt.%) was uniformly dispersed in DI water with 30 mg/ml CMC. This 

mixture was heated to 60oC for 10 minutes to aid uniform dispersion of CMC in water. Once 

well dispersed, 30 mg/ml carboxylated MWCNT was added. Repeated sonication and vortex 

(2 minutes for each) for a total of 30 minutes was performed to prevent settling of heavy CNT 

particles and aid uniform distribution. Probe sonication was carried out for 10 minutes at 20% 

amplitude and 2 second pulse width. To prevent evaporation, probe sonic was used for a 

minute at a time and altered between vortex and ultrasonic treatment. The ink requires a 

viscosity fit for screen printing. Fig. 4 shows an SEM image of CNT nanocomposite ink after 

150oC curing. 

 

2.3 Device Fabrication  

 

A sensor device pattern (0.5 mm width and 8 mm length), an interdigitated electrode (IDE) 

(0.4 mm width, 10 mm length) was created using Inkscape and printed on transparent sheets 

using a laser printer. Figures 5(a), 5(b) and 5(c) show the layouts of IDE, sensor, and RFID 

circuit, respectively. The patterns were created on stencil masks using pre-emulsified mesh 

silk screen printing sheets (EZScreenPrint).   
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Figure 6, Layouts of (a) interdigitated electrode (IDE), (b) sensor pattern, and (c) AMS SL900a 

RFID circuit. [49] 

 

Each stencil was made by UV lithographic transfer of the layout designs from the transparent sheet 

to a screen mask. Using a black felt board and a glass, the mask was clasped on either side with 

the stencil on it and exposed to UV light (Fig. 6(a)). This was done to prevent seeping of UV away 

from the pattern that causes blurring of the pattern on the stencil.  The optimal UV exposure times 

are 6 minutes for IDE and sensor layouts and 8 minutes for the RFID circuit layout. After UV 

exposure, the stencil was left in warm water for 20 minutes, dried, and then exposed to UV light 

once again for 10 minutes. After patted dry and left to harden at room temperature, the stencil as 

shown in Fig. 6(b) is ready for screen printing process.  
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Figure 7. (a) UV exposure box. (b) Stencil mask. (c) Screen printing technique [48]. (d) Screen 

printed RFID circuit using silver ink on a PET film. 

 

To start the screen printing process as shown in Fig. 6(c), the mask stencil was secured on a frame, 

placed over the PET, and clasped down to prevent seepage of ink off the pattern. To improve the 

adhesion of the printed silver ink and CNT ink on the PET surface, the PET thin film was first 

treated with oxygen plasma to obtain a hydrophilic surface.t. A rubber squeegee was used to apply 

ink through the stencil and remove the excess ink off the pattern. The frame with the stencil was 

gently lifted to reveal the screen-printed pattern on the PET. The humidity sensor was fabricated 

by a two-step screen printing process. The CNT nanocomposite pattern was first printed on PET 

and crosslinked at 150oC for 1.5 hr. The substrate was kept flattened during thermal treatment by 

clamped between two glass slides. Silver electrode patterns were then printed using silver ink 

PE874 (Dupont) followed by 160oC curing for 10 minutes. The process resulted in a bottom CNT 
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sensor layer covered by the Ag IDE pattern as shown in Fig. 7(a). Fig. 7(b) and 7(c) show the SEM 

images of the sensor area with both left and right sides covered by Ag electrodes. The SEM image 

in Fig. 7(c) resolves the boundary of the Ag electrode and sensor area. 

 

 

Figure 8. (a) Image of the printed humidity sensor, (b) Top-view SEM image of the printed 

sensor bounded by Ag electrodes on either side. (c) SEM image of the boundary between silver 

electrode and sensor area. 

 

The sensor was electrically connected to the characterization tool through copper strips attachea d 

to the sensor electrodes using silver paste, and the junctions were secured by UV-curable adhesive 

to obtain high reliability.  
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2.4 Characterization Set Up 

 

 

Figure 9. Characterization setup including (1) a laptop, (2) Keithley 2636B Sourcemeter, (3) 

humidity creation chamber, (4) device under test (DUT), (5) Raspberry Pi humidity sensor, and 

(6) humidity test chamber. 

 

The electrical resistance of the humidity sensor was characterized using a KEITHLEY 

electrometer as shown in Fig. 9 under various humidity conditions varying from 10 to 99% RH. 

The humidity levels inside the closed chamber were controlled by a home-made humidity 

generation system [3] that regulates the inflow air humidity by mixing dry air (dry N2) and 

humidified air with controllable ratios. The system was maintained at room temperature. [19]  
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          Figure 10. Schematic of the humidity sensor under test. 
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3 Result and Discussion 
 

3.1 Characterization Result of Humidity Sensing 
 
The humidity sensor was characterized using the setup in Fig. 8. The flow rate was kept 

constant to achieve a constant humidity. The resistance of the sensor was measured under a 

constant humidity level to analyze the sensitivity. We also monitored the resistance change in 

response to a rapid humidity change to evaluate the response speed of the sensor. Overall, the 

resistance of the humidity sensor increases as the environmental humidity increases. The trend 

agrees with the sensing mechanism explained in the previous section. The randomly 

distributed MWCNT network increases further in the inter-particle distance on the absorption 

of moisture by CMC. Therefore, the increase in humidity raises the resistance of the device.  

Fig. 10 shows the responsivity of the sensor in low humidity range. The sensor exhibits a short 

1 second fall time as the relative humidity drops from 36% to 9% and takes about 30 seconds 

to recover when the humidity returns to 36%. Figures 11, 12 and 13 show the sensing 

characterization of the sensor in the lower humidity range. The results suggest a historical 

effect on the sensor during recovery periods. The starting resistance increases with the increase 

of the humidity variation cycles; however, the resistance measured at low humidity levels 

remain consistent. The other notable observation is that from 9% RH to 20% RH, the fall time 

is within a second, however, in the range between 24% RH to 33% RH, the fall time becomes 

comparable to it rise time. There was no observable sensing between the ranges 33% RH to 

49% RH. Figures 14 and 15 show us a glimpse of sensor characteristics in higher humidity 

range. The resistance increases with the absorption of moisture and quickly recovers once 

exposed back to room humidity. The rate of resistance change is accelerated when exposed to 

a relatively higher humidity level. These observations suggest that the property would lead to 
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a reliable respiratory rate monitor sensor, which traces breathing rate through the moisture 

variation induced by exhalation and inhalation.  

 
Figure 11. Change in the measured resistance of the sensor at 0.5V as RH was switched 
between 10% RH and 36% RH. 

 
Figure 12. Resistive response between 42%RH and different %RH. 
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Figure 13. Calibration curve of humidity sensor. 

 

Sensing characteristic of a humidity sensor with 5 electrode pair IDE (Fig 14 c) is shown in 

Fig 13 and Fig. 15(c). The sensor layer was printed over the Ag IDE initially to evaluate the 

sensing performance. The fastest sensing response occurs at a high humidity level of 90 %RH, 

yielding a 40 second rise time and about 9 second fall time. The reading of the sensor was 

taken when the humidity chamber was stabilized on a given relative humidity. During this 

condition, the flow rate was kept constant to minimize the effect of flow rate. Fig. 17 shows 

the sensitivity of the sensor at different humidity levels. This shows that the sensor could be a 

point to point reference of resistance for a given humidity in the higher humidity range. 
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Figure 14. Responsivity of the sensor in response to rapid humidity change between 42% RH and 

99% RH. 
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3.2 Optimization of Humidity Sensing 
 

 
 
 
 

Figure 15. Humidity sensors with various device configurations for performance optimization.  

Large-dimension sensor printed on nylon mesh (a) under dry condition, and (b) during wet 

sensing test. (c) Five-electrode pairs IDE with a top sensing layer, and (d) single electrode pair 

IDE with a bottom sensing layer screen printed on PET. 

 

The dimension of the humidity sensor was found to affect its sensitivity and responsivity. Figure 

14.(a) and 18(b) are large-area sensors (3 cm length and 0.5 cm width) originally designed for wet 

sensing. The bulky, large-area device yielded long response and recovery time in response to 

humidity change making it not suitable for our application. We ascribe the slow response to the 

large sensing volume that requires more time to uptake enough moisture to produce observable 

resistance change. Based on the rationale, the sensor was reduced using IDE structure to improve 

the response of the sensor as shown in Fig. 18(c) and 18(d). The sensing area can be further scaled 
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down to 0.8 mm x 0.4 mm by covering part of it with a silver IDE printed on its top.  The reduced 

size of the sensor showed a remarkable improvement in sensing responsivity. 

 

Figure 16. Humidity sensing results from 1:1 CNT-CMC ratio based composite ink. 

 
The performance of the humidity sensors was also found to depend on the CMC and CNT 

ratio in the composite. We evaluated various CNT-CMC ratios  1:1, 1:2 and 2:1.  It was found 

that 1:1 of CNT-CMC ratio gave the largest sensitivity. The test was conducted by varying 

humidity between 35% RH and 90% RH. 
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3.3 Application on Respiratory Rate Monitoring 
 
The humidity sensor was applied to monitor human respiratory rate. The sensor was attached 

on the inner side of a face mask (Surgical grade fiberglass-free ear loop face mask from 

Walgreens) to capture the humidity change induced by breathing. Fig. 22 shows the picture of 

a sensor attached within the face mask. The respiratory rate monitoring was tested by multiple 

volunteers. The real-time sensing result in Fig. 20 shows that the sensor was able to resolve 

the pace, speed, and strength of breathing. The sensor was also tested for intermittent forceful 

and normal breathing. Fig. 20, 21 are the respiratory rate data collected on two different 

volunteers. While Fig. 20 tested for intermitted heavy and normal breathing, Fig. 21 also 

shows the consistent breathing result. 

 
 

Figure 16. Real-time respiratory rate monitoring. 
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4. RFID Integration 

 
 
 

Figure 17. Printed RFID-enabled humidity sensor integrated on a face mask for real-time 

respiratory rate monitoring. (a) With inset of the interior of the mask. (b) Displays flexibility of 

the integrated sensor. (c) Optimized integrated sensor. 

 
 
RFID integration is prominent in customizing the printed electronics to wearable devices. The 

sensor is currently being attempted to be integrated with active UHF RFID based on an AMS 

SL900a IC. If succeeded, this achieves the intension of wireless real-time data logging and 

monitoring. 
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5. Conclusions and Future Work 

We have demonstrated sensitive, high-responsive humidity sensor manufactured by using screen 

printed nanocomposite ink. The nanocomposite material based on CNT, CMC, and PEDOT:PSS 

forms a CNT-embedded polymer that provides resistance change in response to the adsorption and 

desorption of moisture.  The printed humidity sensor exhibits reliable sensitivity and responsivity 

in the breathing humidity range. Screen printing the sensor on the flexible PET allowed the 

possibility of integration on a face mask. Having successfully shown the results of the sensor 

pacing along with the pace of the breath of different people, the technology may lead to the point-

of-care tools capable of improving the diagnosis of sleep disorder or respiratory-related diseases. 

The future work includes the integration of the sensor with the printed RFID onto wearable 

devices. 
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