A Bibliography of Bitterbrush
(Purshia tridentata (Pursh) DC.)
Annotated From 1967 to 1978

Station Bulletin 640
July 1979
Agricultural Experiment Station
Oregon State University, Corvallis

in cooperation with
SEA-Agricultural Research, USDA
Foreword

Bitterbrush (*Purshia tridentata* (Pursh) DC.) is one of the most widely distributed shrubs in western North America. Its value as a browse species has been recognized for more than half a century. Recent concern for the ecological significance of shrubs in natural ecosystems and the serious depletion of many big game winter ranges have led to extensive investigations of bitterbrush.

This bibliography is the result of a literature review conducted during a course of graduate study at Oregon State University. It contains information that should be of interest to both the academic and nonacademic community.

This annotated bibliography primarily contains references published after 1967, since extensive reviews were completed earlier. In 1964, Frederick C. Hall compiled an unpublished literature review of bitterbrush that circulated primarily in Region 6 of the U.S. Forest Service. Joseph V. Basile published an annotated bibliography of bitterbrush in 1967 as USDA, Forest Service Research Paper INT-44 from the Intermountain Forest and Range Experiment Station. To compile as much information as possible under one cover, the references cited by Basile and Hall are listed collectively in the Appendix. Appreciation is extended to J. V. Basile and F. C. Hall for permission to reproduce portions of their manuscripts.

Authors: Robert G. Clark, Graduate Research Assistant; Carlton M. Britton, Assistant Professor, Eastern Oregon Agricultural Research Center, Squaw Butte Station, Burns, Oregon 97720. Results came from a cooperative investigation of the U.S. Department of Agriculture, SEA-AR, and Oregon Agricultural Experiment Station.
A Bibliography of Bitterbrush

A total of 355 bitterbrush plants were partially excavated, and severed below ground level. Specimens were cross-sectioned, sanded, and examined for age structures. Twelve plants were not readable and 14 were too decayed to be reliable. Thus only 7 percent were unusable although only 23 percent of the plants were alive at time of collection. Plant ages ranged from four to 127 years.

Summarizes age structure analysis in bitterbrush to reconstruct past populations of shrubs on critical winter deer range in southern Oregon. No significant differences in average density of either live or dead bitterbrush between communities was detected. Live plants averaged 58 years and dead plants 71 years. Plant establishment during the last 50 years has been poor, although if they became established, plants lived a normal life span of about 71 years. Juniper invasion is suspected as a major cause of bitterbrush reduction.

Trends for cliffrose gene flow in bitterbrush were traced through northeastern Oregon and along the eastern front of the Cascades, resulting in four distinct bitterbrush ecotypes. A low, layering ecotype growing under lodgepole pine, an ecotype similar in habit but differing in morphological characteristics on Hart Mountain, a tall, massive ecotype growing on deep soils near Janesville in northern California, and a similar columnar form growing near Durkee in northeastern Oregon, were described. Paper chromatography suggested cliffrose genes in certain populations. In all cases a diploid chromosome number of 2N=18 was found. Also, germination studies indicated that a 15 to 20 minute thiourea treatment yielded higher germination than the previously recommended five minute treatment.

Counts during 1963-1965 of mule deer fecal groups were related to 32 site factors on a Colorado winter range from 1,740 to 2,682 m elevation. Bitterbrush density and utilization accounted for the greatest variation in fecal group counts, and was the major food species.

Counts of mule deer fecal groups were related to mean forage yields and mean utilization of three shrubs, including bitterbrush. There was no significant correlation between indices of deer numbers and mean yield or utilization of bitterbrush. Mean yield and utilization were also not significantly correlated.

Bitterbrush occurred on three of nine burn age-classes. It resprouted following fire but did not invade as quickly as little rabbitbrush or snakeweed.

Annotates 221 references to bitterbrush through 1967.

Twig growth, seed production, and leaf and twig crude protein content of bitterbrush increased with each increment of applied nitrogen in the range of 33.6 to 168 kg/ha. Applied phosphorus had no effect on yield or utilization. In winter, elk preferred shrubs on fertilized plots.

Bitterbrush is mentioned as a non-leguminous, nitrogen-fixing plant.

Reviews literature on nitrogen fixation by non-leguminous plants in six taxonomic orders including Rosales, to which bitterbrush belongs.

Cytology, morphology, and taxonomy of actinomycete symbionts and their host plants, including bitterbrush, are discussed.

Simulated rainfall was used to study infiltration and sedimentation rate on 28 sites within five watersheds in Nevada where the shrub layer included bitterbrush. Infiltration and sedimentation data are presented for each plant community and watershed.

Describes bitterbrush and its hybridization with cliffrose and desert bitterbrush. Also summarizes literature relating to bitterbrush distribution and habitat.

In greenhouse studies, nodulated plants of bitterbrush grew satisfactorily in nitrogen-free water culture and fixed up to 40 mg of nitrogen per plant up to 16 months after planting. Acetylene assays confirmed nitrogenase activity by nodules but not by roots. Microscopic studies of nodules showed that their structure resembled that of other non-leguminous nodules.

Germination of bitterbrush seed stratified for 70 days at -1 to 5°C was 82.5 percent compared to 1 percent for untreated seed. Acid scarification in concentrated sulfuric acid for 50 minutes resulted in 83.5 percent germination.

Food habits of the Entiat mule deer herd appeared to be related to bitterbrush density. Where there was a high density of bitterbrush, deer ate primarily bitterbrush. As bitterbrush density, or the availability of preferred bitterbrush leaders decreased, mule deer ate other forage species. Fawns ate less bitterbrush than did the mature herd. Although bitterbrush is a preferred species, deer diets may shift to other highly preferred species when bitterbrush is not available. Thus, a decline in bitterbrush productivity may not be a limiting factor for the Entiat mule deer herd.

BUWAI, M. 1975. Plant vigor, herbage yield, and total nonstructural carbohydrates of several range species as influenced by defoliation treatments and rest periods. Diss. Abs. 36:1532.

Bitterbrush was most affected by late season defoliation. Defoliation appeared more detrimental to herbage yield and vigor than to total nonstructural carbohydrate levels. Herbage yield and vigor had not recovered after 14 to 25 months of rest. Heavy defoliation was more detrimental than moderate defoliation, and multiple defoliations more detrimental than single defoliations.

Cankers are responsible for heavy losses of bitterbrush on over 30,000 acres in northern California and southern Oregon. Early plant symptoms include the formation of swellings by twig dying and later limb or branch dying. Six possible pathogenic fungi have been cultured from the cankers.

Solar infrared aerial photography can be used to distinguish sagebrush from bitterbrush on rangelands. Bitterbrush appears bright red while the sagebrush is dark.

A taxonomic key based on xylem characteristics of 55 woody species is presented. Photomicrographs were used to determine vessel distribution, perforation plates, rays, and axial parenchyma. Photomicrographs and synopses of characters used in the key are presented for each species, including bitterbrush.

Acetylene reduction was used to assay nodule activity in both field and greenhouse plants. Maximum rates were observed at 20°C. Reduction rate increased linearly for five hours then declined in excised nodules, ceasing after 19 hours. Nodule activity declined in water stressed plants, essentially ceasing when xylem pressure potentials reached -25 bars. Only 46 percent of bitterbrush plants were nodulated and it was suggested that low soil temperature and poor moisture conditions were responsible. Total calculated nitrogen accretion rate was 0.057 kg N/ha/yr on a site where bitterbrush contributed 25.2 percent of vegetal cover.

Describes several habitat types in which bitterbrush dominates the shrub layer. Several Purshia-Stipa stands did not contain bitterbrush which was apparently removed by fire. It was concluded that bitterbrush is nearly always killed by a steppe fire.

The annual cycle of soil moisture use and recharge was examined in several climax communities including Purshia/Stipa. Soil temperatures were measured at 50 and 100 cm, and data were related to phenologies of dominant grasses. Plant community distribution was found to be related more to differences in soil moisture and temperature than to chemical composition or profile characteristics of the soil.

Describes a Pinus ponderosa-Purshia tridentata habitat type. Most of this forest is an edaphic climax on sandy or stony soils. Fire eliminates only the bitterbrush but extensive movement of its achenes by rodents and birds ensures prompt reinvansion of burned areas.

After two years in a four-year-old bitterbrush plantation, response was greater from browsing protection than from elimination of plant competition. Response was more evident in crown size than in plant height.

Bitterbrush contributes significantly to six of 21 ecosystems described.

On two sites where bitterbrush and low sagebrush occurred together, bitterbrush was not a reliable indicator of site conditions because landscapes that appeared to be uniform were actually highly variable with respect to internal soil characteristics.

Summarizes information on bitterbrush including collecting, cleaning, and storage of seeds.

Seasonal trends in proximate composition of several browse species including bitterbrush are presented and discussed. In feeding trials with mule deer fawns, adding pelleted lucerne to bitterbrush lowered percentage of digestibility and TDN content, but improved palatability and weight gains.

In a study designed to isolate the germination inhibitor in bitterbrush, two triterpenes, both cucurbitacins, were identified. Neither cucurbitacin was active as an inhibitor. The mother liquors from the fractions containing these triterpenes retained seed germination inhibitory activity. Normally limited to the Cucurbitaceae, Cruciferae, and Scrophulariaceae families, cucurbitacins in bitterbrush account for the very bitter taste of bitterbrush seeds.

On pumice soils in central Oregon, timber harvest practices resulted in moderately to heavily disturbed soils on 75 percent of the area and bitterbrush crown cover was reduced by 71 percent. Despite damage, bitterbrush responded quickly to more favorable growing conditions. Current twig growth doubled, and large numbers of seedlings were established on disturbed soils.

Production of seed from several shrub species, including bitterbrush, is discussed. Various aspects of growing shrubs for seed are emphasized.

Germination of bitterbrush seeds was greatest with cold night temperatures in the optimum range of 2 to 5°C for stratification. Warm daytime temperatures of 10 to 40°C gave relatively high germination when nighttime temperatures were in the stratification range. Thiourea treatment expanded the number of temperature regimes that gave maximum germination, and also increased amount of germination at all temperature ranges.

Seeds of bitterbrush were exposed to 12 different germination-stimulating treatments. In subsequent germination trials overall emergence was 10 percent greater than in untreated controls. Soaking in 1 percent H$_2$O$_2$ and shaking for three, five, or seven hours during exposure gave the best results. It was suggested that H$_2$O$_2$ treatments may reduce frost damage to seedlings since only a few seedlings emerged at one time.

Stem cuttings of 54 Nevada shrub species were tested for rooting capacity. Four percent of 110 total bitterbrush cuttings sprouted.

Captive deer mice from three western plant communities were fed seed from 18 grass, forb, and shrub species. Mice consumed seed equal to one-third of their body weight daily. Bitterbrush was the most preferred seed accounting for 10.2 to 30.7 percent of mice diets in five trials. The lowest value was obtained in the last trial where bitterbrush seed was coated with alpha-naphthy-thiourea, a rodent pesticide repellant.

Discusses evidence for and the role of nitrogen fixation in several shrubs, including bitterbrush.

Bitterbrush stems contain a highly sensitive ring pattern that can readily be dated despite irregular stem forms. Small or nearly absent rings, or false layers in larger rings do not detract from datability of ring sequences. Sensitivity of bitterbrush growth layers makes it an ideal species for ecological studies.

On two sites near the Payette River in southwest Idaho, browsed bitterbrush plants were compared to protected plants. On one site there was no difference, but on the other site survival of protected shrubs was 20 percent greater than unprotected plants. Mean surface area of protected plants was 1.6 to 3.4-fold greater than that of browsed plants, and young shrubs moderately browsed each winter remained smaller than unbrowsed shrubs.

Bitterbrush seeds exposed to field conditions for 80 days following seed dispersal exhibited reduced viability. Exposure of seeds to dry heat for periods up to 15 hours did not reduce germination percentage until temperature exceeded 80°C. Seeding survival and growth were significantly affected by both artificial watering and slope exposure.

Following mechanical removal of 30 to 50 percent of bitterbrush crowns, annual twig growth increased considerably, then gradually decreased over a four-year period. After four years twig growth remained greater than on untouched shrubs, however. No detrimental effects on shrub longevity or increased insect attack or disease damage resulted from topping. Using chain saws, costs of $9.00 to $21.00 per acre can be expected on stands of similar density.

Methods are described for estimating mean utilization of individual twigs by both length and weight. Caution should be used when extrapolating techniques outside southern Idaho.

A potting mixture of shredded peat moss, horticultural vermiculite, and several supplemental nutrients was used to grow bitterbrush seedlings. When supplemented with a slow-release fertilizer (18-6-12), potted seedlings had greater emergence, larger plants at one month, and larger and taller plants at two months. Thus, the benefits of fertilizing seemed to be primarily in larger, more robust seedlings at planting time. Also, reasonable success was achieved in suppressing damping-off by using a mixture of Benlate and Dexon applied as a drench immediately after sowing seed and again at the beginning of germination.

Describes 18 habitat types or associations in Oregon of which bitterbrush is a major component.
HANSEN, R. M., and B. L. DEARDEN. 1975. Winter

GIUNTA, B. C., D. CHRISTENSEN, and S. B. MON-

FURNISS, M. M., and R. G. KREBILL, 1972. Insects and

Lists 82 species of insects and mites known or suspected of utilizing or damaging bitterbrush.

Summarizes literature on insect and disease enemies of four western shrubs, including bitterbrush.

In seeding trials over a five-year period at 1737 m elevation, four browse species were sown in different scalp widths in dense cheatgrass. Scalp width had a highly positive effect on shrub survival after five years, with the greatest response shown by bitterbrush. Herbage production per plant was not affected by scalp width but total production per plot increased as a result of an increase in number of plants per plot.

Provides an extensive review of bitterbrush literature including 109 references.

In an area of moderate occurrence, bitterbrush contributed less than one percent to the diets of wild horses and cattle, and one percent for deer. Diets were determined from microscopic analysis of fecal material collected during the summer of 1975 but without regard to season of production.

Bitterbrush, big sagebrush, and Utah serviceberry contributed 14 percent to deer diets on a pinyon-

juniper-sagebrush site in early December and nine percent in March. On a pinyon-juniper site, these three species contributed 41 and 12 percent during the same periods. Shrub contribution generally decreased and tree utilization generally increased through the winter period.

During August 1936, 460 acres of sagebrush-grass range on the Upper Snake River Plains near Dubois, Idaho, were burned. In 1936, bitterbrush occurred only on the heavily burned plots. By 1948, small amounts had appeared on unburned plots. In 1966, bitterbrush had also appeared on lightly burned and moderately burned plots. The increase of bitterbrush might be related to the area's history of use or to weather factors that allowed invasion of a dense sagebrush stand.

Seeds of bitterbrush were soaked from 2 to 512 minutes in 1, 2, or 4 percent thiourea solutions and germinated under three temperature conditions. Soaking for 128 minutes in 2 percent solution gave the best results. However, toxic symptoms increased with thiourea concentration and soaking time. Germination of seed soaked in tap water for 48 hours on blotters moistened with 0.2 percent thiourea, 0.2 percent KNO3, or both, was 76.7, 9.0, and 19.5 percent, respectively.

Information is presented on optimum germination procedures and testing methods for various shrub species including bitterbrush.

Seasonal trends in moisture content, crude protein, crude fiber, crude fat, ash, calcium, phosphorus, apparent digestibility, and calcium:phosphorus ratio are reported for bitterbrush along with seven grass or grasslike plants, four forbs, and five other shrubs.

Bitterbrush seedling mortality was about equal until July 13 under negligible, light, and heavy levels of competition. Mortality at that date was attributed primarily to cutworms and other insects. At the end of the first growing season, heavy competition from native vegetation and crested wheatgrass re-
suited in higher mortality than either light or negligible competition. At the end of the third growing season, over half of the seedlings in the heavy competition plots were dead, compared to about 21 percent in light and negligible competition plots. (see also Hubbard, R. L. 1957. The effects of plant competition on the growth and survival of bitterbrush seedlings. J. Range Manage. 10:135-137.)

Whitetail deer preferred lower ground with a high shrub density, while mule deer preferred more open shrub communities, especially bitterbrush, in rugged country at higher elevations. Cattle grazing had little effect on the distribution of wildlife. Partial correlation analysis applied to 14 environmental parameters appeared useful for quantifying habitat use behavior and for resolving some ambiguities of overlapping habitat preferences.

Forty-eight of 90 tested species failed completely. Bitterbrush had an average rating of very poor or less.

Explorers and early settlers in Cache Valley found abundant grass and little sagebrush. Bitterbrush was the second most abundant shrub.

Sheep grazing was heaviest around shrubs, and sheep oriented themselves toward conspicuous objects while grazing. Presence of big sagebrush decreased utilization of neighboring bitterbrush.

Bitterbrush and cliffrose were used to compare two methods of determining browse utilization. Estimating the percentage of browsed twigs or calculating percentages from counts of browsed and unbrowsed twigs provided higher utilization than measuring twig lengths. Estimating percentages of browsed twigs resulted in high individual bias in heavy-use areas while calculating percentages of utilization from twig length measurements provided equal sensitivity throughout the 0 to 100 percent range. Twig measurement data were more consistent among observers than estimates. Measuring twig lengths required about four times more man-hours than estimating percentages or counting twig numbers.

Sheep grazed at two intensities on 12 areas of big game winter range at 1,737 to 1,890 m elevation, during six different periods, selected bitterbrush after mid-July. Bitterbrush availability to game was reduced in proportion to percentage used by sheep. Bitterbrush was the most abundant and desirable forage and was not impaired by any of the grazing systems used.

Discusses nutritional data for five grass species and bitterbrush. Crude protein levels in bitterbrush ranged from a high of 14.09 percent in June to a low of 7.51 percent in December 1938. Crude protein for 1941 varied less, from a high of 11.17 percent in May to a low of 8.55 percent in October.

Silvicultural and regeneration practices including stump culture, pruning, thinning, weeding, and tube stock planting were initiated to improve Christmas tree, juniper fence post, and forage production, wildlife habitat, and soil and watershed values. Overstory removal effectively released bitterbrush, increasing the number of twigs by 42 percent and leader growth by 100 percent over the control area. Bitterbrush cover increased by 28 percent.

Today this forest is filled with an understory of mountain mahogany and antelope bitterbrush. Although these two shrubs were components of the original community, frequent fires held them in check. Excessive density of these shrubs not only reduces pine reproduction but also greatly increases the fuel loadings and therefore the possibility of a conflagration which might destroy the entire community.

Bitterbrush seedlings were grown in pots of granitic soil taken from a bitterbrush site in southern Idaho. Soils from depths of 0-15, 15-40, and 40-90 cm were used with nitrogen supplements of 0, 34, and 100 kg/ha and two moisture regimes. Nitrogen caused seedling yields to decrease on the upper two layers, but to increase on soil from the 40 to 90 cm layer.
The high moisture regime reduced adverse effects of added nitrogen on seedlings grown in the surface layer, but increased the adverse effect on seedlings grown in lower soil layers. Subsequently, bitterbrush responded negatively or gave no response to added nitrogen in soils proven to deficient in nitrogen for barley. Yields of bitterbrush decreased when nitrogen in plants reached about two percent.

Bitterbrush seedlings were supplemented NPK, NPS, or NPKS, in soils which showed slight to marked sulfur deficiency. Weight of bitterbrush seedlings was significantly lower on NPK treatments than on NPS or NPKS treatments, but total nitrogen was 2.07 percent compared with 1.15 percent when sulfur was included. Subsequent additions of sulfur suggested that bitterbrush can grow satisfactorily on soils that are very low in nitrogen and sulfur, but less satisfactorily on soils where sulfur is much less available than nitrogen. It was recommended that where bitterbrush is grown on granitic soils and where fertilization is contemplated, that available nitrogen and sulfur be properly balanced.

Lists root rot, root-stem cankers, a parasitic plant, damping-off, dieback, drought, and frost as injurious to bitterbrush.

Histological analyses were made of root nodules of bitterbrush collected in Idaho and Utah. Hyper trophyed parenchyma cells in the cortex of nodules contained an endophyte characterized by ovoid vesicles connected to ends of narrow hyphae. The taxon Frankia purshiae (Becking) is recommended for this endophyte.

Forty-eight food habit studies were surveyed to summarize data on plants normally eaten by Rocky Mountain elk. Bitterbrush was rated as a highly valuable plant in winter and fall.

Ninety-nine food habit studies were surveyed to summarize data on plants normally eaten by mule deer. Bitterbrush use was rated heavy during winter, summer, and fall, and moderate during spring.

Four seral communities were described on advancing dunes near the Hanford Atomic Reservation in Washington, including a Purshia tridentata/Chrysothamnus nauseosus stage and a P. tridentata/Poa sandbergii stage. Seeds of four lateral pioneer species, including bitterbrush, were germinated in pots containing control, low, and high nitrogen levels. Bitterbrush germinated best in low-nitrogen pots with N levels similar to dunes in late seral stages.

Bitterbrush was rated fair/good for planting on only one of ten sites in central Arizona. The successful site was at 1981 m with 43 cm annual precipitation and a mean annual temperature of 9°C on Jacques loam soil.

Mentions that sheep seldom eat shrubs in the spring, except the flowers of bitterbrush.

Bitterbrush production decreased on good and poor condition range under fall or spring grazing, and also within exclosures. The large decrease in production was probably caused by damage from tent caterpillars in 1958-1960. In 1960 almost all bitterbrush plants were completely defoliated. By 1964 many were partly or completely dead.

Bitterbrush is a major component in ten of 529 exclosures and natural areas in Utah.

Cattle rumen samples indicated that they selected 80 percent grass when available, but shifted to some browse, primarily bitterbrush, in the fall. Deer selected browse on summer and winter ranges to about the same extent that cattle selected grass, although deer tended to select three to five browse species while cattle concentrated on one site-specific species. Some late autumn competition existed between deer and cattle for bitterbrush.

Nineteen variations of quadrat and plotless sampling techniques were used to estimate density of bitterbrush in a population with known parameters. All methods needed unrealistically large samples to give acceptable precision, many methods would not produce a correct answer with any size sample, and several methods required more effort than counting all plants. Visual estimation techniques or non-random sampling methods may be the most realistic approach to density sampling.

Shrub species valuable for browse production, including bitterbrush, are described. A table of 34 species is presented showing value for restoration of rangeland and soil stabilization, and the vegetation types to which they are best suited.

Shrubs, mostly bitterbrush, increased production about 2.2 kg/ha for each 30.5 cm increase in pine spacing, and about 1.1 kg/ha for each 1 percent decrease in pine canopy.

Fenceline comparisons in a uniform habitat showed bitterbrush density was reduced by heavy grazing but not affected by moderate use. Large increases in mean area per plant under heavy grazing did not alter overall form of random population dispersion. Inclusion of one-year-old plants on moderately used areas caused aggregation of the population but not on the heavily used areas. Contrasting reaction probably resulted from a differential pattern of seedling mortality due to different amounts of herbaceous understory in the two shrub populations.

Changes in average crown diameter and percentage of dead crown were related to bitterbrush age on moderately and heavily grazed ranges. There was a significant difference in average crown diameter under different grazing levels but differences between percentages of dead crown area were not significant.

Significant relationships were found between yield and age of bitterbrush. Plants that were heavily grazed during the spring and early summer produced more forage than plants that were moderately grazed during late summer and fall. Under heavy grazing, plant longevity was reduced and fewer plants survived until the age of maximum production. Consequently only 88 kg/ha of air-dry forage were produced under heavy early grazing compared with 172 kg/ha under moderate late-season grazing.

Discusses plant succession in juniper ecosystems with and without periodic fire. Also reports that on burns with high soil moisture, up to 30 percent of bitterbrush sprouted, but never more than 10 percent were left the second year.

Principles and procedures of seeding game ranges are discussed. In an example of seeding success, a ten-year-old bitterbrush seeding near Boise produced over 620 pounds of oven-dry twig material per acre in a stand with about 700 plants per acre.

Amounts and distributions of rainfall on an intermountain shrubland type in northern Colorado that caused increased seasonal growth resulted in lower seasonal total available carbohydrate storage. Bitterbrush was detrimentally affected by defoliation during late spring and summer at fruit development or seed shatter stages. Multiple defoliations were more detrimental than most single defoliations at any phenological stage. Plant vigor and herbage yield were more easily depressed than carbohydrate reserve storage.

(see also: MENKE, J. W. 1974. Effects of defoliation on carbohydrate reserves, vigor, and herbage yield for several important Colorado range species. PhD Diss. Colorado State Univ., Fort Collins. 311 p.)
Discusses shrub management in the intermountain region. Describes plant selection criteria, recent developments in plant selection, use of bare-root and containerized planting stock, and wildland disturbances. Bitterbrush is discussed throughout.

Seed collections were treated in thiourea solutions at 18 temperatures ranging from -1 to 93°C. Normal germination and seedling growth occurred following treatments between 16 and 60°C. Below 16°C germination rate declined slightly but seedling growth was normal. Seedling deformities began to appear above 60°C, and germination declined rapidly. Deformities consisted of annual cracks around the hypocotyls and detached root caps.

Discusses fuel loading, arrangement, moisture content, heat content, and chemical composition of several shrubs. Moisture content of living fuel was related to ash content. Bitterbrush foliage and current leaders had 147 percent moisture content in May, smaller foliage and stems had 131 percent, and ash content was 3.8 percent on a dry matter basis.

A ponderosa pine/bitterbrush community near the Salmon River, Idaho, was determined to be a seral stage of a Douglas fir/snowberry habitat type. Bitterbrush density was similar outside and inside a big game exclosure, but twig production was 12 times greater outside. Utilization by big game of this vegetation has maintained the productivity of bitterbrush and retarded succession to climax.

A lodgepole pine/bitterbrush habitat type near West Yellowstone, Montana is described as exceptionally droughty and nutrient poor.

Bitterbrush is the shrub layer dominant in four of 11 recognized climax lodgepole pine communities. Environmental conditions include well-drained pumice soils, seasonally wet pumice soils, obsidian sands, frost pockets, and subalpine climates.

Bitterbrush age-form classes indicated that less than 1 percent were seedlings, 5 percent were young, 65 percent mature, and 30 percent decadent. Ring counts on four distinct sites indicated that plants on canyon rims averaged ten years older than plants on toe slopes, canyon slopes, and ridge-tops. This was attributed to greater natural fire protection on canyon rims. On the four sites, plant ages ranged from 4 to 130 years with an average of 45 years. About 18 percent of all plants layered. It was suggested that three consecutive years of above normal moisture may be required for effective leader growth, seed production, and establishment. Historically, bitterbrush was able to reproduce and become established under extremely heavy grazing pressure. Fire has killed more bitterbrush than all other agents combined. Little or no reestablishment has occurred on most burns, although date of burning may be Important in recovery.

Discusses principles and procedures of successful range restoration with guidance for seeding specific vegetal types. Describes precipitation zones and soils to which bitterbrush is adapted. Recommends that low, layering forms be used for stabilizing and beautifying roadcuts and exposed sites. Low, layering forms also recover much better after burning; in some areas recovery has been virtually 100 percent but this is unusual.

Hand planting of bitterbrush has been replaced by seed dribblers mounted on crawler tractors which drop seed in cleat marks. Bitterbrush is an important artificially established species on restored game ranges. Ten principles for successful seeding are listed.

Summarizes results of studies on species selection, site determination, germination techniques, site preparation and planting, and protection of plantings. Bitterbrush is mentioned throughout.

Tame mule deer exposed to unlimited amounts of concentrated feed selected the same forage species, in similar proportions, as did deer that received no supplemental feed. Of the nine species which comprised 93 percent of all bites taken, bitterbrush contributed 39.1 percent.

On the Daggett winter range, bitterbrush was an important supplemental mule deer food. It accounted for 6.9 percent of rumen weight although it comprised only 0.6 percent of the total ground cover. By age classes, 92.2 percent of bitterbrush plants were mature, 6.1 percent young, 1.3 percent decadent, and 0.4 percent seedlings.

Mentions bitterbrush as a major shrub component below 630 feet elevation on a north facing slope in the Rattlesnake Hills of southeastern Washington. Bitterbrush did not occur at elevations from 630 to 3,450 feet.

Reviews literature on dendrochronological and age determination techniques for three shrubs, including bitterbrush. Over 550 references are reviewed.

Shrub age structures were determined by sampling in selected communities and aging individual plants by growth-layer analysis. Prepared specimens of bitterbrush were easily aged by cross-dating xylem growth layers.

On a loamy, 41 to 56 cm precipitation site of the Lantonia soil series, seedlings yielded an average of 4785 kg/ha compared to about 2464 kg/ha on native range. Climax vegetation on this site is dominated by bitterbrush in the shrub layer.

Radioactive 131I was injected into the soil to measure and delineate root systems of bitterbrush, big sagebrush, and Sandberg bluegrass.

In one of four described communities, bitterbrush occurs with big sagebrush. It was suggested that bitterbrush is able to grow with big sagebrush where silt decreases and sand increases at the 10 to 20 cm soil depth.

Analysis of six plant communities, four of which contained bitterbrush, showed that the occurrence of bitterbrush was not affected by elevation and that it occurred on slopes but not at the tops or bottoms of slopes, or on flat lands. Bitterbrush was absent from soils with a high content of surface gravel, and with high pH and exchangeable sodium. (see also SERGURA-BUSTAMANTE, M. 1970. Ecology of bitterbrush (Purshia tridentata (Pursh) DC.) in the Silver Lake deer winter range, Oregon. PhD Thesis. Oregon State Univ., Corvallis. 269 p.)

In central Oregon pine forests, bitterbrush reproduces almost exclusively from seed and frequently from caches of seed made by rodents. Fire exclusion has caused a decrease in suitable litter-free sites for seed caches and may result in a decline of bitterbrush. Bitterbrush is not fire resistant but is fire dependent.

Nitrogen fixation by non-leguminous plants, including bitterbrush, is discussed.

The ecological importance of nitrogen fixation by non-leguminous plants, including bitterbrush, is reviewed.

A mixed stand of big sagebrush and bitterbrush was sprayed with 2 lb/A of 2,4-D on five dates over three years. May treatments, when Sandberg bluegrass heads were in late boot, resulted in 95 percent sagebrush mortality and 10 percent bitterbrush mortality. Bitterbrush crown area was reduced by 25 percent. After flower eruption, bitterbrush damage increased. Since all bitterbrush leaves were killed at each spray date, recovery was directly related to earliness of spraying and length of growing season remaining after spraying.

Summarizes available information applicable to planting bitterbrush on roadsides in Nevada.

At elevations above 8,000 feet, quaking aspen is the favored host of the caterpillar. Between 1,800 and 3,500 feet, infestations are most serious on cottonwood and willow. Mentions 11 other trees and shrubs, including bitterbrush, on which the caterpillar feeds.

Discusses the role of bacteria, blue-green algae, root-nodulated angiosperms, and root-nodulated gymnosperms in nitrogen fixation. Notes that nitrogen fixing angiosperms are characteristic pioneer plants of areas low in combined nitrogen and therefore these plants have a competitive advantage. Includes Purschia [Purschia] as a root-nodulated angiosperm that needs to be tested for nitrogen fixation.

Bitterbrush was the only species utilized by deer in both logged and non-logged areas. Utilization was least in July and increased on logged areas during August. Overall utilization was seven to ten times higher on logged than on non-logged areas. Cattle use of bitterbrush on fringes of non-logged areas increased during August and reached 75 percent of the diet by the end of the grazing season. Sheep used bitterbrush on both logged and non-logged areas. Logging decreased numbers of bitterbrush plants but yields were 287 to 397 lbs/A on logged vs. 223 to 297 lbs/A on non-logged areas. (see also: STUTH, J. W. 1975. Livestock, deer, and logging interactions in the lodgepole pine-pumice region of central Oregon. PhD Thesis. Oregon State Univ., Corvallis. 175 p.)

Production of bitterbrush in logged areas was approximately the same or greater than in adjacent non-logged areas even though an average of 43 percent of the bitterbrush plants were lost during logging. Plants in logged areas had leader growth, 2.5 cm longer, than in non-logged areas. Plants taller than 40 cm were most frequently damaged by logging, and plants 20 to 40 cm tall accounted for the greater production response following logging.

Bitterbrush gradually replaced maturing forbs in the diets of deer during July. Bitterbrush was the most important forage species in the diets of cattle, sheep, and deer using the lodgepole pine/bitterbrush/western needlegrass communities. Fall was the peak consumption period for bitterbrush by cattle and deer, while sheep consumed large quantities throughout the summer grazing season.

Although bitterbrush and Stansbury cliffrose cross freely, at least 23 different characteristics distinguish these two species. So common is the hybridization and backcrossing that essentially no population of bitterbrush in Utah is free of introgression from cliffrose. Only two recombination products of crossing have found adaptive environmental niches.

Describes the sexual recombination process responsible for generation of new species. Although cliffrose and bitterbrush belong to separate genera, they hybridize quite commonly in nature, producing a highly fertile hybrid. It was suggested that the lower palatability of cliffrose to sheep creates an intense, selective advantage and allows cliffrose to spread its genes northward into bitterbrush populations.

Describes crossing strategies between two distinct genera and suggests that desert bitterbrush (Purshia glandulosa) is a stabilized segregant from the hybridization product of Stansbury cliftrose (Cowania stansburiana) and antelope bitterbrush (P. tridentata).

Forage management on juniper-sagebrush-bitterbrush range should include both livestock and game. Competition for bitterbrush can be minimized by grazing sheep in the spring and leaving most of the season's growth for deer.

Bitterbrush seedlings were planted on two forest sites in eastern Washington on colluvial subsoil from granodiorite parent material. Other soils were decomposed granodiorite, volcanic ash, and "popcorn" pumice. Organic matter content was low and slopes ranged from 40 to over 70 percent. Bitterbrush survival appeared to be affected by elevation differences between source and planting site. Seeding size at planting time should be tall enough to withstand inundation by ravelling, loose soil material, yet the root system should be small enough to allow hand planting with minimum site disturbance.

Four bitterbrush sites in Tooele County, Utah, yielded three species of thrips feeding on bitterbrush litter. These three species were found feeding on foliage of other plant species however, and one species—Frankliniella occidentalis (Pergande)—was considered a potential pest on rangelands.

Following 90 percent defoliation, bitterbrush made good recovery after 14 to 26 months rest. Heavy defoliation during the fruit development stage resulted in shorter twigs than plants defoliated at other stages. A rest period of 14 to 26 months was not sufficient for complete recovery of vigor, herbage yield, and total nonstructural carbohydrates. Live crown cover following rest was less than control plants if bitterbrush had been defoliated at any of four phenological stages. Defoliation at the fruit development or seed shatter stages was most harmful.

Fourteen native shrubs, including bitterbrush, are described and illustrated with emphasis on their position in the plant community, their value on wildlands, and their cultivation and potential for future use.

Percent digestibility using in vivo and in vitro techniques was lower for bitterbrush than most other shrubs tested. In vivo results were higher than those from in vitro methods.

Average winter cellulose content of several shrubs, including bitterbrush, was 19 to 32 percent. Lignin content was 18 to 25 percent. Average digestibility of twigs in February was 34 percent.

Rumen fluid from elk and cattle was used to determine in vitro dry matter digestibility of dried forage samples collected from November through March. Bitterbrush digestibility using elk inoculum was 23.3 to 30.3 percent and using inoculum from a steer on a lucerne diet was 22.2 to 24.7 percent. Digestibility values were highest in the March samples.

In the eastern Siskiyou Mountains of southern Oregon and northern California, Jeffrey pine occurs on extremely infertile soils derived from perodotite or serpentinite. These soils are high in iron and magnesium and low in phosphorus, potassium, nitrogen, and calcium. These soils are also shallow and generally droughty. Bitterbrush occurs infrequently on rocky sites within the Jeffrey pine type.

Four-month-old bitterbrush seedlings grown in a sandy soil with high natural nodulation potential were separated from nodules and the nodules were exposed to N15. Using 0.02 atmospheric percent of
excess N as positive evidence of nitrogen fixation, all samples resulted in 0.051 percent or greater.

In montane forests of central Oregon, about 90 percent of bitterbrush seedlings develop in clusters. Clusters originate from unrecovered caches of seed made by small rodents.

Reviews literature on effects of fire on several plants including bitterbrush.

A state-of-the-art review of fire effects on plants is presented, including bitterbrush, in five climax and four seral ponderosa pine communities.

A review of fire effects on several plants, including bitterbrush, is presented.

Reviews literature and summarizes effects of fire on several plants, including bitterbrush.

On a site that had been chained and seeded with crested wheatgrass and bitterbrush, bitterbrush sustained minor damage when one-leaf pinyon saplings were individually treated with picloram or karbutilate, provided the bitterbrush plants were not rooted beneath the tree canopy.

Temperatures above 5°C were too warm, and below 0°C too cold, for bitterbrush stratification. The optimum temperature for the longest duration was 2°C. Any departure from optimum temperature and moisture regimes prolonged time required for stratification or negated any effect of the stratification treatment.

Appendix

JULANDER, O. 1952. Forage habits of mule deer during the late fall as measured by stomach content analysis. USDA Forest Service. Intermountain Forest and Range Exp. Sta. Note 2, Ogden. 5 p.

SHORT, H. L., and E. E. REMMENGA. 1965. Use of fecal cellulose to estimate plant tissue eaten by deer. J. Range Manage. 18:139-144.

SMITH, A. D. 1965. Determining common use grazing capacities by application of the key species concept. J. Range Manage. 18:196-201.

WILKINS, B. T. 1957. Range use, food habits, and agricultural relationships of the mule deer, Bridger Mountains, Montana. J. Wildl. Manage. 21:159-169.

WILLIAMS, T. A. 1958. A report upon the grasses and forage plants and forage conditions of the eastern Rocky Mountain region. USDA, Div. of Agrostology. 78 p.
