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Introduction

Motivation

Environmentalists and policy makers are worried about the decline of insect pollinators
(such as bumblebees, moths, and butterflies) (Tylianakis, 2013), which are important to
both the agricultural industry and many ecosystems (Tylianakis, 2013; Aizen, et al.,
2009). These pollinators are disappearing, and it is neither a local phenomenon nor a
single species. Populations of wild pollinators are decreasing around the world due to
changing land use (Fitzpatrick, et al., 2007; Biesmeijer, et al., 2006). Ecologists predict
that the loss of pollinators will affect plant biodiversity (Tylianakis, 2013). Pollinators are
also important in agriculture because around 30% of the plants we eat require pollination
in order to produce fruits and vegetables (Tylianakis, 2013). As wild pollinator
populations decrease, we must supplement them with managed honeybee hives.
However, this comes with a price as studies have shown that the yield for these plants
increases when they are pollinated by wild pollinators (Aizen, et al., 2009).

Experts are also concerned about how plant extinctions will affect insect pollinator
populations, and there is evidence that pollinator extinctions are followed by plant
extinctions (Biesmeijer, et al., 2006; Aizen, et al., 2012). However, there is also evidence
suggesting that pollinators, even ones that have been observed exclusively interacting
with only a few plants, can adapt to changing plant species distributions (Tylianakis,
2013). Understanding more about how pollinators choose the flowers they visit will help
us predict how plant-pollinator networks will respond to changes in the distribution and
abundance of the species within the network.

Objective

The objective of this study is to create a method to identify a ranking of plant preferences
for a pollinator given field observations of plant-pollinator interactions and to determine
how floral traits affect the preference for each plant. To do this, we developed a
probabilistic model to identify the preferences in interaction networks under the
assumption that the plant-pollinator interactions can be modelled using only the
frequency of the interactions. We used the data collected at the H.J. Andrews
Experimental Forest by students from the Eco-Informatics Summer Institute (Pfeiffer,
2011-2014) and explored an extension of this model to determine if the traits of the
flowers affect the preferences of a pollinator. In this thesis, we will focus on identifying
the preferences of pollinators that interact with a large variety of plant species.

We applied these models to analyze plant-pollinator observations collected in the field.
These models take steps towards creating models that will be able to predict plant-
pollinator interactions in the case of the extinction of existing plants in a network, the



introduction of invasive species of plants to the area, or the restoration of an extirpated
plant to an area.

Background Information

To understand the behavior of pollinators (e.g., to determine their preferences), we must
first understand the background of plant-pollinator interactions. The relationship between
insect pollinators and flowers is mutualistic, as flowers need to be pollinated and insects
use flowers as a source of food, so plants and pollinators co-evolved. To ensure that they
can gather enough food, pollinators do not want to compete with other species, so there is
a push to focus only one plant species. However, if the pollinator becomes dependent on
this one plant species, and this species becomes extinct, the pollinator may also be in
danger of going extinct. The same is true for plants and pollination. A generalist plant or
pollinator is one that interacts with many species of the other group. A specialist plant or
pollinator only interacts with one or few species of the other group.

There are a few species that are well known to be truly specialist pollinators (such as
species in the genus Dufourea—each species specializes on a different flower)
(Moldenke, 2015). However, much specialization occurs due to the physical
characteristics of flowers that limits some pollinators from visiting. For example, some
flowers hang suspended which does not allow the pollinator to land on the flower and the
pollinator must fly into the flower (Moldenke, 2015). Collecting nectar and pollen in this
manner takes energy and certain skills, which not all pollinators have. As another
example, some plants have petals closed around the rewards (pollen and nectar), so the
pollinators for those plants need to have the skill to open the flower to access the rewards.
In cases where unrelated plants share similar pollinators and physical attributes, the
shared physical attributes are called pollination syndromes. We have some evidence
supporting pollination syndromes, but we need more critical examination of this theory
(Johnson & Steiner, 2000).

Many plants, such as plants that are highly dispersed and perennials, benefit greatly by
being pollinated by specialist pollinators. Plants that are highly dispersed would probably
specialize on one pollinator that is loyal to that plant species so that the stigmas are not
clogged by pollen of more abundant plants (Johnson & Steiner, 2000). The perennials in
this study are highly dispersed, but perennials also live over multiple years, so they have
multiple chances for pollination and the opportunity to specialize on just a few loyal
insects.

Other plants may benefit from being pollinated by generalist pollinators (Johnson &
Steiner, 2000). Annual plants encourage generalist pollinators (Johnson & Steiner, 2000)
2



because they only have one chance at pollination and attracting as many pollinators as
possible means more chances of pollination in that short period of time. Annuals also
vary greatly in abundance year to year, so pollinators are unlikely to specialize on these
plants (Moldenke, 2015). Abundant plant species and plant species with separate sexes
are also predicted to be pollinated by many different pollinators, but especially generalist
pollinators (Johnson & Steiner, 2000).

While we have many studies on pollination syndromes and the specialization of plants
and pollinators, we must remember that some pollinators could be labeled incorrectly as
specialists due to sampling error. If a pollinator is very rare, researchers will observe only
a few of the interactions it makes. If these few interactions are with the same plant
species, the pollinator might be labelled a specialist without enough evidence (Bluthgen,
2010). There are many methods to determine if a species was present in the field but was
not detected, from statistical models (MacKenzie, et al., 2002) to machine learning
models (Hutchinson, et al., 2011). With the data collection protocol followed for the data
used in this thesis, the previous methods are not needed. However, this shows that the
abundance of plants is also critical when trying to model plant-pollinator interactions. If a
plant is very abundant, a generalist pollinator might visit this plant even if it prefers a
rarer plant much more.

Competition also plays a huge role in field studies like the one used for this study. If a
flower is open both at night and in the day, many nocturnal pollinators (such as moths)
may visit the flower at night leaving less nectar for the pollinators who visit during the
day. Researchers during this field study also noticed that bumblebees and honeybees tend
to start their foraging earlier in the morning than solitary bees. This could mean that
solitary bees visit flowers with less reward because the nectar from other flowers was
already consumed by the social bees (Pfeiffer, 2011-2014). This would cause the solitary
bees to behave as if they are specialized in flowers that bumblebees and honeybees do not
like.

Other pollinator preferences have also been studied such as flower symmetry, flower
color, and corolla (petal) shape (Gomez, et al., 2008; Moller & Sorci, 1998; Rodriguez, et
al., 2004). These studies show that the corolla shape is a very important factor in the
preferences of pollinators. However, corolla shape could be important only due to other
related factors. For example, flying and hovering over a flower consumes much of a
pollinator’s energy. Therefore, corolla shape may only be important because the petals
form a platform for the pollinator to land on or allow the pollinator to walk to the next
flower. Researchers have also hypothesized that corolla size and shape could give the
pollinator a clue as to the reward from visiting the flower. Flower color has been a
popular target for pollinator preference studies (especially bees). The theory is that



brightly colored flowers (whites, yellows and oranges), reflect ultraviolet rays making
them more visible to insects. Reds and dark colors are theoretically not as visible to
pollinators (Moldenke, 2015), but studies of German wildflowers and lowland tropical
plants show that flower color by itself is not significantly correlated with pollinator
preferences (Johnson & Steiner, 2000).

Evolutionary theory states that if pollinators are specialists, and the plant they depend on
becomes extinct, the specialist pollinator will also go extinct (Biesmeijer, et al., 2006;
Memmott, et al., 2007; Aizen, et al., 2012). However, some studies suggest that declines
of specialist populations are not caused by simple food-plant specialization (Fitzpatrick,
et al., 2007) and others find that the specialist pollinators are the ones acquiring new plant
interactions (Tylianakis, 2013). Field studies today contain interactions that are not
recorded in historical studies and tend to involve species with previously narrow diets
(Tylianakis, 2013). This could mean that even specialist pollinators can adapt to human
alterations of the landscape, such as introduction of foreign or invasive species.
Ultimately, pollinator preference modeling could aid conservation biologists by finding
which plant, if any, could be introduced to an area to best help a struggling pollinator
species.

Because the quantity and quality of pollination experienced by plants is also declining
(Tylianakis, 2013), a few species of generalist pollinators is not enough to keep plant
biodiversity intact. For example, the managed honeybee (Apis mellifera) populations are
now commonly being raised on agricultural fields to supplement pollination normally
performed by wild pollinator populations (Tylianakis, 2013; Aizen, et al., 2009).
However, agricultural crops that require pollination yield more produce when pollinated
by a variety of wild pollinators regardless of the presence of Apis mellifera (Aizen, et al.,
2009; Tylianakis, 2013). Experts found that honeybees are not equally efficient at
pollination of different plant species even though they frequently transport a lot of pollen
(Tylianakis, 2013).

Relative to this thesis, there are two relevant approaches to the study of insect pollination:
network analysis and modelling and preference modelling. In network analysis, plant-
pollinator interactions are modeled as bipartite graphs (Bascompte, et al., 2003). Bipartite
graphs have two disjoint sets of nodes and connections only exist between nodes in
different sets. No connections occur between two nodes in the same set. In this case, plant
species and pollinator species make up the two sets of nodes and the interactions between
plants and pollinators are translated to connections. Bipartite networks are used to study
plant and pollinator network structure. Research on these networks has shown that in
large field studies, generalist pollinators visit nearly all plant species and most specialist
pollinators visit plants species that are already visited by many generalist pollinators



(Bascompte, et al., 2003; Moldenke, 1979). Network analysis, while not used in this
thesis, could be helpful as we grow our models from looking at a single pollinator species
to multiple pollinator species.

Another modelling approach is to model the behavior of pollinators due to apparent
preferences. One study examined how pollinator preferences for wild flowers in field
margins were affected by agricultural monocultures (Rands & Whitney, 2010). The
model created in this study found that pollinators located within agricultural fields
preferred the wild flowers in the field margins as the density of the wild flowers
increased. This study was based on the idea that pollinators show density—dependent
preferences, sometimes even avoiding plants that are unfamiliar (Rands & Whitney,
2010). We will present a new modelling approach to pollinator preferences in a field of
wild flowers without the influence of agriculture.



Materials and Methods

Field Study Data

The data analyzed in this study is from a field study conducted by Vera Pfeiffer in the
summer of 2011 and by the students at the Eco-Informatics Summer Institute (EISI) over
the summers of the years 2012-2014. The field observers recorded plant and pollinator
interactions in 18 meadows in the H.J. Andrews Experimental Forest, involving 109
plants and 293 pollinators over 4 years. During each year, observations were collected at
a subset of the 18 total meadows. Each meadow was visited by researchers about 5 times
each summer. Each visit is called a meadow-watch. For example, Figure 1 shows the
interactions between plants and pollinators during one meadow watch.
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Figure 1: This figure shows the plant-pollinator interactions recorded at the Lookout meadow, watch 2 in 2014.
Each row represents a plant that was available during the meadow-watch and each column represents a
pollinator that was observed interacting with a plant during the meadow-watch. The darker a cell is shaded, the
more interactions were observed between the respective plant and pollinator. The most abundant interactions
were between Apis mellifera and Gilia capitata, Apis mellifera and Eriophyllum lanatum, and Bombus mixtus and
Lupinus laxiflorus. There were a total of 1729 interactions recorded at this meadow-watch.

In each meadow-watch, observations of plant-pollinator interactions were made in 10
plots in the meadow during 15 one-minute intervals. The record for each interaction
includes the plant, the pollinator, the meadow-watch, the plot, and the number of times
the interaction was seen during that minute. At each interval, the temperature, time of
day, and cloud cover were recorded. For our purposes, we will use N, (i, j) for the total
number of interactions observed between plant i and pollinator j over all 10 plots and all

15 one-minute intervals of meadow-watch t.

Xylota sp x



Before every meadow-watch, researchers surveyed the plant species in all 10 plots in the
meadow watch, noting the plots where the plants were located as well as how many
flowers of that plant species were blooming. This data was compiled into a separate
dataset for plant availability. We will use A, (i) to indicate the total number of flowers of
plant species i during meadow-watch t.

Models

Multinomial Model

The goal of the multinomial model is to statistically determine which plants a pollinator
prefers from the field study data by fitting a multinomial distribution. In this model, a
given pollinator assigns preference scores (also referred to as scores and by ¢) to each
plant species indicating how much the pollinator likes that species. A higher score
indicates that the plant species is preferred more than a plant species with a lower score.
Our goal in this model is to find ¢;, which represents the score function for some

pollinator j.

In the multinomial model, we can think of the pollinator “rolling a die” with the names of
a plant species on each side of the die to determine which plant species it will visit next.
However, this die is not evenly weighted. Each side of the die will be weighted
differently according to a score that depends on the preference score and the relative
abundance of the plant in the meadow. The preference score for each plant is fixed for the
full dataset. We then use the interaction data for that pollinator species and the
probabilities of the pollinator visiting each plant to calculate the likelihood of the set of
observed interactions.

First consider the set X = {1... P} which ennumerates all plant species. On some
meadow watch t, only a subset of X is available. The availability of plants at meadow-
watch t can be denoted by a vector A, of size P where the number of flowers of plant
species i is denoted by A;(i) € N. Now, we know that pollinator j makes a collection of
visits on meadow-watch t,V; = {N;(1), N;(2), ... , N:(P)}. We denote the number of
times j visits i by N, (i) = Zf;l 1[V.(k), i] where I[V,(k), i] is an indicator function. The
total number of visits made is K;. The indicator function is equal to 1 when V,(k) is
equal to i and O otherwise. In this collection, v, € {1, ..., P} and v, represents the k™
plant species that was visited by pollinator j on meadow-watch t.

The pollinator assigns a score for each plant i which we will denote as the score
function ¢;; € R. This function gives a real-valued score to plant i indicating the



pollinator j’s relative preference for i. Then the probability that pollinator j’s k™ visit was
to plant i is:

A, () exp(dy)
Zliar=1 A, (") eXP((I)irj) .

Gi(Atr(bj) = P(v, =il A, q)j) =

The likelihood of observing the visits V; visited by pollinator j on meadow-watch t is:

_ _ K;! Ne(@)
LV ) = s Nt(N)!lT[ei(At, o).

Over the entire summer, the likelihood of the observed data is:

K;! Ne(i
L(Vt;¢j) = U(Nt(l)! .th(N)!l_.[gi(Atrd)j) O)'

As the resulting likelihood values will be extremely small, we will want to work in log-
space. Therefore, we will use the loglikelihood of the observed data:

K,!
10s6,) = 3 b+ 20 ok )
t i

LL(Viid) =) <log(Kt!) — (log(N(1) + -+ log(N,(N))
t

+ Z N, (D) log(8; (A, q)j))) :

We also introduce a regularization term to reduce over fitting the model. The parameter
lambda will be calibrated, via cross-validation, to optimize the ability of the model to
generalize to new meadow-watches. Our final likelihood model will be:

PLL(V;; ¢;) = LL(V;; @) — lz,%z

The ¢; parameters we choose will be the ¢; which maximizes the PLL () function
(penalized log likelihood) for the interactions we observe in the field data.



Originally, we planned to use a multinomial model in which we truncated the interaction
counts to 0 and 1 to indicate whether the interaction occurred or not. However, the
preliminary work showed that this model cannot be applied to all pollinators in general.
Please see Appendix A for more details about this model and the results from this model.

Traits Model

The traits model investigates whether the traits of the available plants can predict the
preferences of the pollinators. We take two approaches with this model. The first is a
two-phase approach where we first fit the score function and then use the traits to predict
the scores. The second is a single combined model to see how well the preferences can be
expressed in terms of the traits.

For simplicity, we chose a linear model where the traits of the plant species are
represented by the matrix T = {1, ¢ty, ..., t,} with one row for each species where 1
represents the intercept and wy, wy, ..., w,, are the corresponding coefficients. The term
wy is the intercept. Our goal in this model is to find wy, wy, ..., w,, Which are constant
over all the plants.

We can now express ¢, ;, the score given to plant i by pollinator j, in terms of the traits.
Gij = Wo + Wity + Waty; + o+ Wity

Two-Phase Approach

We will first consider cT;l-j, the score given to plant i by pollinator j, that we fit to the data
using the multinomial model. We will use a linear regression to find the values of the
coefficients. The linear regression may provide insight into which, if any, of the floral
traits seem to affect the preference scores of the pollinator as expected. If the regression
shows that there is a correlation between the plant’s traits and the score given to the plant,
we can use the combined model explained in the next section.

Combined Model

In this model, we will reparameterize the multinomial model such that the probability is
calculated using the traits rather than the ¢ score. In that case, the probability in the
multinomial model will be:

A (D) exp(wg + wyty; + - + wyty)
ijY:lAt(i,) exp(wo, + W1t1i/ + -+ Wntnil)

ei(At'(Is) = Pvpy=i|Ad) =

We can then continue to evaluate the multinomial model as a function of the traits of a
plant. We will use gradient descent to find the coefficients wy, wy, ..., wy,.



The Traits

We will be evaluating the effect of 11 traits of a flower on the score function. The values
for most of the traits are categorical values. R handles these categorical values
automatically for us. The 11 traits are the following:

1.

10.

11.

Biomass/flower: Estimate of reward per flower (inflorescence) per species.
Measured by multiplying the height, width, and length of the flower.

Visibility: The color of the flowers. The values for this trait are either “bright” or
“not bright”.

Closed: Flowers can either be closed or open. Closed flowers can only be
pollinated by the pollinators that are skilled at prying the flower open. Open
flowers do not require pollinators to have that skill.

Pendant: Flowers are either suspended or erect. Erect flowers bloom facing up.
Suspended flowers open to the side or upside down and pollinators must have the
skill to approach the flower from the bottom.

General Tube Shape: The general shape of the plant causes some pollinators to be
excluded by the plant. Plants are categorized as severe exclusion, moderate
exclusion, and poor exclusion depending on the width, length, and shape of the
plant’s tube.

Life Form: This trait categorizes plants as annuals or perennials.

Flower Form: This trait states if the flower is a bow! or plate shaped flower or if
exclusions apply.

Pollen Size: The value of this feature is “okay” if the pollen of the plant is of
average size and “difficult” if the pollen is either small or large. If the pollen is
too small or too large, bees are unable to harvest the pollen.

Diel: The value of this feature is “yes night” if the plant is ever open during the
night time and “no night” if the plant is only open during the day.

Platform: This feature can have a value of “strong”, “weak”, and “not useful”.
The value “not useful” indicates that the plant is not useful for mating purposes,
because the flower does not provide the visibility (advertising) necessary for an
insect to find a mate. The value “strong” indicates that the advertising value for
this flower is very high, and the value “weak” indicates that the flower does not
have very much advertising value.

Feebleness: This feature measures how strong the stem of the plant is. If the value
of this feature is “feeble”, it means that large insects will break the flower if they
try to land on it. If the value is “strong”, the size of the pollinator may also come
into play.
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Simulated Data Generation

It is necessary to evaluate the models with simulated data in order to debug and
understand them. Before we proceeded with the field data, we wanted some reassurance
that the model we are working with was doing a good job in the ideal situation where the
assumptions of the model are being met. Therefore, in our initial evaluation of the
models, we generated simulated plant-pollinator interactions.

To do this, we sampled the simulated data from the distribution specified by the
multinomial model using three score functions that we chose to reflect different kinds of
pollinators. We generated simulated data for all the meadow-watches over all 4 years and
used the availability for plant i at meadow-watch t (4,(i)) that is reported in the field
data.

To generate the data, we specified three different score functions. The “normal” score
function, representing a generalist pollinator with some preferences, was based on
random numbers generated in the range [—2, 2] with a zero-mean. The “half-special”
score function, representing a specialist pollinator that prefers a few plants much more
than all the others, had all but 3 plants with a score of —2. The 3 preferred plants had a
score of 2. The “true special” score function, representing a specialist pollinator that
prefers one plant above all others, had only one plant with a score of 2. All other plants
had a score of —2.

Using these three score functions and the plant availability provided in the anthesis data
from the field, we calculated the probability of the pollinator visiting each plant at that
meadow watch. Then, to simulate the plant-pollinator interactions, we used the
rmultinom() function in R to randomly assign a pre-set number of visits that pollinator
makes to a certain plant in a certain meadow-watch. We chose to allow the pollinator to
make 50 visits during one meadow-watch after analyzing the number of visits Apis
mellifera makes during one meadow-watch. This generates the N, (i) we use in the
multinomial and traits models.

After conducting experiments using the simulated data, we ran the models on field data
from each year separately to see how the pollinators in our study responded to different
plant distributions. We also ran our model on the cumulative set of data.

To simulate data for the evaluation of the traits model, we followed a similar approach. In
this simulation, we used the real traits for each flower along with the real availability for
each flower at each meadow. We set weight vector W, which acts as the coefficient to the
traits, to find the resulting score function ¢ using the equation T - W = ¢. We then
simulated a pollinator with score function ¢ using the method described above. A new
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weight vector W is fitted to the simulated data. We can generate the score function
associated with W by using the equation T - W = ¢.

Bootstrapping for Confidence Intervals

One concern we have when using the field observations is that we do not know the true
distribution of the data, and we only have one dataset. If we had more datasets, we could
create confidence intervals for the preference scores that are fitted by the model to each
dataset. This would show us a range in which to expect the true value of the preference
score and would give us confidence that some plant species are really ranked higher than
or lower than other plant species.

The idea behind bootstrap is to use the field observations as a population that
approximates the true distribution of interactions. We can then create new samples from
the field observations by resampling from the field observations without replacement. We
created 200 bootstrapped datasets for each year and the aggregate dataset over all years.
To create the bootstrapped datasets, we resampled from the original field interactions in
each meadow-watch the same number of times the meadow was used in the original
dataset. We then fitted the model to the bootstrapped meadow-watch interactions.

Evaluation

Goodness of Fit—Chi-Squared Test

The Chi-Squared goodness of fit test determines whether the distribution of the sample
population matches the distribution predicted by the fitted model for the interactions
observed for one pollinator j. To determine if we can reject the null hypothesis, we
compare the expected and observed frequency counts of each variable using the test
statistic

Pyt

EL:Z it — Elt)

Here, P; is the number of plant species available at meadow-watch t, L is the number of
meadow-watches in which both the pollinator was observed, and 0;, = N,(i). E;; is the
number of interactions we expect between the pollinator and plant species i on meadow-
watch t. We then fit ¢ to the field data and calculate E;, = 6;(4,, ¢) XF 0;,.
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The total number of terms in our x? test statistic is X, which is the number of possible
(meadow-watch, plant) pairs (each pair is a cell) where the pollinator had a probability
greater than zero for visiting that plant at that meadow-watch. X is slightly less than LP
where P is the total number of plant species in the dataset.

For this test, we must penalize one degree of freedom for each meadow the pollinator was
present in (L) because we use the number of visits observed in the meadow rather than
estimating this quantity independently. As we are also estimating ¢ for each plant, the
number of parameters is P, and we must penalize one degree of freedom for each
parameter. Because we fit a regularization parameter lambda, we must penalize one
degree of freedom for that. Our final calculation for the degrees of freedom (df) is

df =X—-L—-P—1.

The chi-squared test compares a null hypothesis (Ho) to an alternative hypothesis (Hy). In
this case, we will run two tests. The first test will have a null hypothesis as the uniform
score function (the preference score for each plant species is the same) and the alternative
hypothesis will be that the true distribution is not the uniform distribution. The second
test will have the null hypothesis that is equivalent to the learned probability distribution
and the alternative hypothesis will be that the true distribution is not equivalent to the
learned probability distribution.

A smaller y? indicates a better fit. We will then compare the y? statistic with the y2
distribution to determine the p-value of this test. If the p-value is less than 0.05, we will
reject the null hypothesis for that test.

Correlations

We used the Pearson’s product-moment correlation coefficient (Pearson’s r) and
Spearman’s rank correlation coefficient (Spearman’s p) to evaluate the scores fitted to
simulated data using the multinomial model in comparison to the true scores (comparing

¢ to P).

Pearson’s r is a test statistic that measures the linear correlation between two variables X
and Y. An r value of +1 denotes full positive correlation, -1 denotes full negative
correlation, and O denotes no correlation between the variables. The Pearson r is defined
as follows:

S Y (i — )i — )
VI G0 — 07 VI 0i - )2
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In this statistic x; and y; are elements in the variable sets X and Y. x and y are the
means of each set. When comparing the true scores and the estimated scores, if the model
fits well, the statistic will have a value close to 1.

Spearman’s p is defined as the Pearson correlation coefficient for ranked variables in two
sets X and Y. Each element in the sets X and (X;, Y;) are turned into ranks x; and y; that
are calculated using the position of the element in ascending order in the set. If there are
ties, the elements with ties are given an average rank by adding up all the positions and
dividing by the number of elements with the same value. After the ranks are ascertained,
we calculate the Spearman’s p statistic:

6 d?

=1 —
p nn2-1)

In this statistic, d; = x; - y;, which is the difference between ranks. When comparing
the true scores and the estimated scores, we expect to have p close to 1.

Likelihood Ratio Test

We used the likelihood ratio test to compare the multinomial model and the traits model.
This test is similar to the Chi-Squared test in that it can be used to make a decision
between two hypotheses. However, the likelihood ratio test is used to see if the likelihood
of a model with a given set of parameters 6, has a likelihood significantly different to the
likelihood of a model with a different set of parameters 6, where 8, is the null hypothesis
and 6, is the alternative hypothesis.

The test statistic A(x) calculates the ratio between the likelihood of the observed data
using the parameters 6,, denoted by the function L(8,|x), and the likelihood of the
observed data given 6,, denoted by the function L(8,|x):

L(%IX))

/l(x) = —2 % log<L(9—|X)

A large value of A(x) suggests that the null hypothesis gives a much better fit to the data
than the alternative.
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Results
Multinomial Model

Using Simulated Data

Our first step was to test the multinomial model on the simulated data. For each of the
three “true” score functions (normal, half-special, and true-special), we conducted 10
trials. In each trial, the simulated pollinator had 50 interactions with the plants in each
meadow-watch. We conducted these tests using both the unregularized multinomial
model and the regularized multinomial model to assess the effect of regularization. In
each test, we compared the score function fitted by the model using the simulated
interaction data to the true score function using Spearman’s p and Pearson’s r correlation
statistics.

Through these experiments we find that the multinomial model works well when dealing
with a true normal score function both with and without regularization. We see in both
Table 1 and Table 2, both Kendall’s T and Spearman’s p correlations are quite high for
the normal score function. Higher values for these two statistics indicate that the score
functions when ranked match up well. The higher value for Pearson’s r statistic in Table
2 for the normal distribution indicates that the exact values of the score functions match
up better with regularization. We can see the effect of regularization on Pearson’s r in
Figure 1 and Figure 2. We believe that the most appropriate correlation measure for this
task is Pearson’s r. Our objective is to find the most accurate score function for the
pollinator. Pearson’r r is the most accurate measure for that. Kendall’s T and Spearman’s
p correlations measure how well th