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The main contributions of this thesis are the development and applica-

tion of four computationally efficient solutions for least-squares-based (LS-based)

minimum variance spectral estimation (MVSE). They are: (1) fast computational

solution for the 1-D covariance LS-based MVSE, (2) fast computational solution

for the 1-D modified covariance LS-based MVSE, (3) fast computational solution

for the 2-D covariance LS-based MVSE, and (4) fast computational solution for the

2-D modified covariance LS-based MVSE. The four fast computational solutions

not only significantly reduce computational complexity and save memory from

array to vector sizing proportionalities, but they also inherit improved-feature de-

tails from the corresponding direct methods of 1-D and 2-D LS-based MVSEs.

The two 2-D fast computational solutions numerically produce the same results

as the corresponding 1-D fast solutions when the estimation order in one of the

two dimensions is set to zero.

MVSEs are high-resolution spectral estimators which have been used ex-

tensively in the sensor community (for example, radar, sonar, communication



signal localization, and seismic velocity discrimination) for extracting and resolv-

ing more features from limited data collection apertures than traditional Fourier-

based techniques. Least-squares-based MVSEs are especially applicable in the

case that the autocorrelation is unknown and only 1-D or 2-D finite data ac-

quisitions are available. However, LS-based minimum variance (MV) spectral

estimators require intensive computational burdens which limit their operational

use. This thesis proposes 1-D and 2-D fast computational solutions. The basis

for the fast solutions is the exploitation of the special structures of the various

inverse matrix relationships, which express the inverse of autocorrelation matri-

ces (or autocorrelation-like quadratic-data-matrix product matrices in the case of

the least-squares algorithms) in terms of the parametric autoregressive (AR) or

linear prediction (LP) parameters. The fast algorithms also have the serendipi-

tous feature that all lower-order solutions are obtained by the fast computational

solutions without additional computations, unlike the non-fast approaches. This

is useful especially when the correct order is unknown, requiring that a range of

orders to be evaluated to determine the order that produces the best result using

one algorithmic execution of a fast algorithm.
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pmax < (2N − 1)/3 for ˆ̃R−1
p exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.1 Comparison of Spectral Estimation Techniques. × indicates not avail-
able,

√
indicates available, N is the number of data samples, p is the

order of model, Nf is the number of FFT frequency bins. Notations
are given in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



FAST ALGORITHMS AND APPLICATIONS FOR

MULTI-DIMENSIONAL LEAST-SQUARES-BASED MINIMUM

VARIANCE SPECTRAL ESTIMATION

1. INTRODUCTION

1.1. Background and Motivation

High-resolution spectral estimation has been widely used to provide

improved spectral feature revelation in many practical applications, such as

acoustics, communication, radar, biomedicine, economics, and many other fields.

High-resolution spectral estimation can be applied to multi-dimensional data

sources with an improved-feature detail capability. Fig. 1.1 overviews the appli-

cation procedure of the high-resolution spectral estimation techniques covered in

this thesis. One-dimensional (1-D) or two-dimensional (2-D) autoregressive/linear

prediction (AR/LP) parameters can be calculated by existing fast algorithms, such

as the Yule-Walker algorithm, the Burg lattice algorithm, the least-squares-based

(LS-based) covariance method, and the LS-based modified covariance method.

The last two methods have been selected in this thesis for their high-resolution

capability [15, 16]. The spectral estimation techniques are then used to ana-

lyze 1-D or 2-D spectra. Table 1.1 summarizes the definitions, relative compu-

tational complexities and resolution capabilities of high-resolution spectral esti-

mation techniques introduced by Marple, Kay and others [15, 16, 13, 30, 33, 34].

In Table 1.1, the minimum variance spectral estimation (MVSE) is indicated to

have a high-resolution capability, compared with the Fourier-based spectral esti-



2

1-D / 2-D data arrays (acoustics, 
microwave, sonar, radar, 

biomedicine, economics, etc.)

1-D/2-D AR/LP Parametric 
Estimation Algorithms

1-D/2-D Power Spectral 
Density (PSD) Estimation 

Algorithms

Existing Fast Algorithms:
• Yule-Walker
• LS-based Lattice
• LS-based Covariance
• LS-based Modified Covariance

Spectral Estimators:
• Classical FFT-based Peroidogram
• AR (improved-feature detail)
• MVSE (improved-feature detail)

FIGURE 1.1. Overview of high-detail spectral estimation techniques.

mators, and almost as much resolution as the AR spectral estimators. However,

the computational complexity of the original method of the MVSE is much higher

than that of the Fourier-based spectral estimators and the AR spectral estimators.

The fast computational solutions of the 1-D LS-based MVSE in the Yule-walker

and Burg-Lattice cases can compensate for the computational inefficiency disad-

vantage of the original formulation of the MVSE while also increasing resolution.

The new fast solutions of the LS-based MVSE, proposed in this thesis, preserve

the high-resolution and decrease the computational complexity in the covariance

and modified covariance cases. The resolutions of the new fast solutions are as

high as the original non-fast-algorithm approach for estimating the MVSE. In

addition, the new fast solutions, based on the AR covariance estimator and the

AR modified covariance estimator, will recursively generate and save all interme-

diate order parameters. Therefore, if a lower order solution is required, it may be

obtained without re-calculation, which is not possible in the original formulation
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of the MVSE. This thesis focuses on investigation of the fast computational solu-

tions for 1-D and 2-D LS-based MVSEs in the covariance and modified covariance

cases.

√high
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+ FFT

Eq.3.17
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TABLE 1.1. Comparison of Spectral Estimation Techniques. × indicates not

available,
√

indicates available, N is the number of data samples, p is the order

of model, Nf is the number of FFT frequency bins.

MVSE was originally introduced by Capon [1] in 1969 for use in multi-

dimensional seismic array frequency-wavenumber analysis. Lacoss [2] reformu-

lated Capon’s MVSE for application to 1-D time-series analysis. Some recent
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work has improved the characteristics and widened the range of applications of

the MVSE [7–10, 15, 17, 19, 21, 26, 31]. For example, Krolik and Eizenman [17]

facilitated the application of the MVSE to broadband source localization. Lee

and Munson [26] reformulated spatially variant apodization (SVA) as a special

variation of the MVSE to implement image reconstruction from partial Fourier

data. Frazho and Sherman [19] discussed the convergence of the MVSE in a

nonstationary noise environment. It has been difficult to create robust 2-D spec-

tral estimators. Some 2-D spectral estimators that depend on polynomial fac-

toring into isolated poles could not be directly extended from the high-resolution

1-D spectral estimators that depend on pole placement, because 2-D polynomials

cannot always be factored into isolated poles. However, unlike other spectral es-

timation techniques, the MVSE was originally developed in a multi-dimensional

setting as an array processing technique [1]. Non-least-squares 2-D MVSE meth-

ods [9, 10] have been successfully used in practice. In addition to the 2-D MVSE,

the 2-D periodogram [9] and the 2-D hybrid methods [7] have been extended to

2-D primarily due to the fact that these 2-D estimators do not depend upon 2-D

polynomial factorization [15].

The MVSE has been shown in the literature to achieve high resolution,

however its practical application has been limited by an inherent disadvantage:

computational inefficiency. The original computational burden of the MVSE was

twofold. First, the calculation of an inverse autocorrelation matrix is intensive and

a large amount of memory is required. Second, the power density estimator has

to be calculated over all frequencies of interest. Typically, the second operation

is even more computationally intensive. Fortunately, some simplifications have

been discovered. In 1985, Musicus [13] published a fast computational solution

for the 1-D autocorrelation-based (ACS-based) MVSE by exploiting the inverse
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of the known autocorrelation matrix based on its Toeplitz structure. Inspired

by Musicus’ work, a fast computational solution for the 1-D covariance LS-based

MVSE that exploits the near-to-Toeplitz data product matrix was summarized in

2005 by Wei and Marple [30]. The full details of the development is presented in

this thesis. We then subsequently developed the fast computational solution for

the 1-D modified covariance LS-based MVSE [34].

In 1986, Marple [14] developed a fast algorithm for the multichannel mini-

mum variance spectral estimator, which involves a block-Toeplitz autocorrelation

matrix, and in 1987 [15] introduced the first fast algorithms for the 2-D minimum

variance spectral estimator. Andreas, Marple and Stoica [25] published a fast

algorithm for the 2-D MVSE that utilized features from the development of the

multichannel MVSE. This algorithm also used block recursion to solve the multi-

channel Yule-Walker normal equations, whose solution parameters could then be

used to express the block matrix elements of the inverse block-Toeplitz matrix.

Mathematical development of the fast algorithm of 2-D MVSE also very closely

parallels the fast algorithm of 1-D MVSE. In 2006, based on previous work, Wei

and Marple [34] developed a 2-D high-resolution algorithm for the covariance LS-

MVSE and then developed the associated fast algorithm by extending the methods

introduced in [15] and [30], respectively. This thesis will also present the develop-

ment and application of a fourth fast solution, i.e., the fast computational solution

for the 2-D modified covariance LS-based MVSE.

This thesis is organized as follows. In the first chapter, the background,

motivation, and summary of performance behavior of the four fast computational

solutions for the 1-D and 2-D LS-based MVSEs are reviewed. Then the concepts

and estimation methods for three 1-D MVSE algorithms, i.e., the ACS-based

MVSE, the covariance LS-based MVSE, and the modified covariance LS-based
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MVSE, will be introduced in Chapter 2. In Chapter 3, the two fast computational

solutions for the 1-D LS-based MVSE, inspired by the fast solution for 1-D ACS-

based MVSE, will be presented. Their computation and storage counts will be

provided as well. In Chapter 4, the application of the 1-D fast solutions to different

data sets will be illustrated. Paralleling the development in Chapter 3, Chapter 5

will be dedicated to deriving the 2-D MVSE in the autocorrelation case, the LS-

based covariance case, and the LS-based modified covariance case. Chapter 6

and Chapter 7 will present the 2-D fast algorithms development and 2-D test

applications, respectively. Finally, the research contributions reported in this

thesis will be summarized in Chapter 8.

1.2. Overview of Minimum Variance Spectral Estimation Research
Contributions

This thesis proposes four new fast computational solutions for the 1-D and

2-D LS-based MVSE. The basis for the fast solutions is the exploitation of the

structure of inverse autocorrelation matrices (or autocorrelation-like quadratic-

data-matrix product matrices in the case of least-squares algorithms) in terms of

their estimated AR or LP parameters. The contents in the red boxes in the figures

from Fig. 1.2 through Fig. 1.5 highlight the key attributes of the development of

the four fast solutions for the 1-D and 2-D LS-based MVSEs.

Inspired by the Musicus’ fast solution [13] of 1-D ACS-based MVSE, in

which he discovered that the MVSE denominator could be expressed efficiently

as an FFT-computable function of the inverse Toeplitz autocorrelation matrix. It

exploited the structure of the Toeplitz inverse, which can be formulated in terms

of triangular Toeplitz matrix products with matrix elements composed of AR pa-

rameters. However, the autocorrelation matrix is unknown in practice and only
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data samples are available. Therefore, the MVSE has to be formulated in terms

of a least squares minimization of the estimated output variance. Typically, two

types of least squares estimators are of interest: (1) the covariance LP approach

that utilizes separate forward and backward linear prediction for the estimate; (2)

the modified covariance LP approach that employs combined forward and back-

ward linear prediction. In the least-squares case, a stochastic approximation of

the autocorrelation matrix is estimated by products of data matrices. As a result,

the least-squares-based data matrix directly formed from a finite sampled data

record has a near-to-Toeplitz structure in the 1-D case [30], and near-to-doubly-

Toeplitz structure in the 2-D case [34], if the covariance data interval window is

applied (calculated LP errors do not run off ends of data record). This leads to

1-D LS-based MVSE expressions that involve inverses of near-to-Toeplitz products

of data matrices, and 2-D LS-based MVSE expressions involving inverses of near-

to-doubly-Toeplitz products of data matrices. This thesis will show that, in the

1-D case, the inverse of near-to-Toeplitz data product matrix can be formulated

in terms of triangular Toeplitz matrices products composed of LP parameters

and associated gain parameters. The LP parameters and gain parameters can be

provided by either the covariance LP algorithm or the modified covariance LP al-

gorithm. These in turn can be substituted into the near-to-Toeplitz matrix inverse

relationships to obtain fast computational solutions for evaluating the covariance

LS-based MVSE and the modified covariance LS-based MVSE, respectively. As-

suming p is the selected parametric order, the computational complexities of the

two 1-D fast computational solutions are proportional to p2 with memory storage

proportional to p over the frequency range [−1/2T, 1/2T ] in Hz, versus p3 com-

putations and p2 storage for each frequency component in both direct solution

methods.
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Table 3.2 and Table 3.3 in Chapter 3 summarize the computation and

storage counts. Fig. 1.6 and Fig. 1.7 each provide three examples that compare

the exact computational and storage savings of the two new 1-D fast solutions

versus the non-fast original methods. Both the computation count and the storage

count are functions of the length of the data record N , the model order p, and

the number of the FFT frequency bins Nf . Fig. 1.6 and Fig. 1.7 show that the

multiplication savings, addition savings and storage savings increase as the order

p increases from N = 64, N = 200, to N = 1000. For all cases, when the order p

is low, the computation and storage counts of the two new 1-D fast solutions may

be very close to or even slightly larger than those of the direct methods, due to

the overhead computation of the two new 1-D fast solutions. But as the order p

increases, the computation and storage counts of the two new 1-D fast solutions

are much less than those of the direct methods.

Similarly, for the 2-D case, the inverse matrix relationship of the near-

to-doubly-Toeplitz data product matrix has a similar structure as discovered in

the 1-D case, that is, it involves sums of products of triangular doubly-Toeplitz

matrices. When the 2-D FFT is applied to compute the 2-D denominator

of the 2-D LS-based MV estimators, a further significant simplification of the

2-D LS-based MVSE computation in the covariance and the modified covariance

cases is possible. However, unlike the 2-D AR spectral estimators, the 2-D LS-

based MV spectral estimators estimate the spectra without splitting it into four

quadrant planes. In Chapter 5, it will be shown that the MV spectral estimator is

numerically identical in each quarter-plane, and it does not have the skew problem

of the other estimators, such as 2-D AR estimates. Combining quarter-plane esti-

mates of the new fast solutions of LS-based MVSE is not necessary, which reduces

computational complexity further. The computational complexities of the two
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2-D fast computational solutions in the covariance and the modified covariance

cases are proportional to p5, with memory storage proportional to p3 over the 2-D

frequency range [−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2] in Hz or space per

cycle (such as meters/cycle in this thesis), versus p6 computation and p4 storage,

for each 2-D frequency component, if solved by the non-fast original 2-D method

(we assume p1 = p2 = p, in which p1 is the row parametric order and p2 is the

column parametric order).

Table 6.2 and Table 6.3 in Chapter 6 summarize the 2-D computation

and storage counts in detail. Fig. 1.8 and Fig. 1.9 each provide three examples

that compare the exact computational and storage savings of the two new 2-D

fast solutions versus the original non-fast 2-D methods. Both the computation

count and the storage count are functions of the size of data matrix (N1 × N2),

the row order p1 and the column order p2 of the model, and the number of 2-D

FFT frequency bins (Nf1 × Nf2). For the sake of simplification, p1 = p2 = p,

N1 = N2 = N , and Nf1 = Nf2 = 64 are assumed. Fig. 1.8 and Fig. 1.9 show that

the multiplication savings, addition savings and storage savings increase as the

number of data increases from N1 = N2 = 64, N1 = N2 = 300, to N1 = N2 = 1000.

As observed in the 1-D cases of Fig. 1.6 and Fig. 1.7, selecting small orders p1, p2

will yield computation and storage counts of the two new 2-D fast solutions that

may be very close to or even larger than those of the non-fast original 2-D methods,

due to the overhead computation of the two new 2-D fast solutions. As the orders

p1 and p2 increase, however, the computation and storage counts of the 2-D fast

solutions are less than those of the direct methods. The results for very large data

sizes N1 ×N2, such as 1000× 1000, and low 2-D orders p1 × p2, such as 12× 12,

indicate that the multiplication operations of the two new 2-D fast solution are

larger than those of the original 2-D method. Since the multiplication operation
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is very expensive, the new 2-D fast solutions may not be the best candidate in

this situation. However we usually need a higher order to estimate all features in

such a large data sample set.

Generally, the comparison results in Fig. 1.6 through Fig. 1.9 show that the

four new fast computational solutions save significant computations and storage,

especially multiplication operations which are more expensive, when the data size

is not too large compared with the model order. As a benefit, the two new 2-D fast

computational solutions produce numerically identical results as the corresponding

1-D fast solutions when the parametric order in one of the two dimension is set

to zero. This provides a convenient tool to evaluate both 1-D and 2-D data case

by using a single software implementation.

1.3. Summary of Performance Behavior

The four new fast computational solutions for the LS-based MVSE not

only significantly reduce computational complexity and save memory by resizing

from array to vector proportionalities, but also they inherit the improved-feature

detail from the corresponding original methods of 1-D and 2-D LS-based MVSEs.

The experimental results in Chapter 4 and Chapter 7 show that the LS-based MV

spectral estimators exhibit the improved-feature details that may be missed by

other spectral estimators, such as the Fourier-based algorithms or the AR meth-

ods. For example, the resolved peaks generated by the lattice-Burg methods show

bias and line-splitting problems, which are not seen in the estimates produced

by the four new fast solutions. The four new fast solutions create sharper peaks

than other estimators compared in this thesis. Moreover, the new 1-D fast modi-

fied covariance estimates show the sharpest peaks compared with other estimates
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in Fig. 4.4. This observation supports previous reports [15, 27] that concluded

that the modified covariance method may provide the better performance since it

combines the forward and backward LP parameters to provide a better statistical

approximation of the autocorrelation sequence. Chapter 4.1 shows that, when the

signal-to-noise (SNR) is 40 dB, the two new 1-D fast computational solutions gen-

erate 1.67 times higher resolution than the 1-D AR Yule-Walker method and the

1-D lattice-Burg method, which themselves have been reported as high-resolution

estimators [15, 16]. The AR process test cases show that the estimates produced

by the four new fast algorithms provide the best performance, and have less PSD

magnitude variance and less frequency variance over an ensemble of repeated test

cases. Another advantage of the four new fast computational algorithms is the

recursive calculation that saves all intermediate order LP parameters, so that one

can select a lower-order estimator without recalculating the LP parameters. It

also helps if one is searching for the optimal order for data modeling, as illus-

trated later in Fig. 4.7. The least squares solutions do not seem to require as

high an order as non-least-squares solutions in order to achieve similar feature

resolution detail in the MVSE spectra. Application to inverse synthetic aperture

radar (ISAR) radar data of an actual truck illuminated by the radar shows that

the four new fast solutions can detect more scattering centers than the classical

periodogram and AR spectral estimators in both the 1-D and 2-D cases. Also

the scattering centers in the ISAR radar images created by the two new fast 2-D

MVSE solutions are sharper than those generated by older radar-imaging spectral

methods.
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FIGURE 1.6. Computation and storage savings of the fast algorithm vs the orig-

inal method for 1-D covariance LS-Based MVSE. (a) Multiplication savings. (b)

Addition savings. (c) Storage savings. Notation: p is the order of the estima-

tor, N is the number of data values, and the number of 1-D FFT frequency bins

Nf = 64 is used.
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FIGURE 1.7. Computation and storage savings of the fast algorithm vs the

original method for 1-D modified covariance LS-Based MVSE. (a) Multiplication

savings. (b) Addition savings. (c) Storage savings. Notation: p is the order of the

estimator, N is the number of data values, and the number of 1-D FFT frequency

bins Nf = 64 is used.
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FIGURE 1.8. Computation and storage savings of the fast algorithm vs the

original method for 2-D covariance LS-Based MVSE. (a) Multiplication savings.

(b) Addition savings. (c) Storage savings. Notation: p1 = p2 = p are the orders

of the 2-D estimator in rows and columns, N1 = N2 = N are the size of 2-D data

values, and the numbers of 2-D FFT frequency bins Nf1 = Nf2 = 64 are used.
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FIGURE 1.9. Computation and storage savings of the fast algorithm vs the

original method for 2-D modified covariance LS-Based MVSE. (a) Multiplication

savings. (b) Addition savings. (c) Storage savings. Notation: p1 = p2 = p are

the orders of the 2-D estimator in rows and columns, N1 = N2 = N are the size

of 2-D data values, and the numbers of 2-D FFT frequency bins Nf1 = Nf2 = 64

are used..
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2. ONE-DIMENSIONAL MINIMUM VARIANCE SPECTRAL
ESTIMATORS: CONCEPTUAL AND ESTIMATION

TECHNIQUES

2.1. Autocorrelation-Based Minimum Variance Spectral Estimation:
Toeplitz Autocorrelation Case

Assume that a stationary random process x[n] for 1 ≤ n ≤ N is complex-

valued (in general) and is filtered by passing through a finite impulse response

(FIR) filter

y[n] =

p∑

k=0

hp[k]x[n− k] = xT

p [n]hp (2.1)

of order p and output y[n], in which the data vector xT
p [n] =

(
x[n] x[n− 1] · · · x[n− p]

)
is a column vector of dimension (p + 1), and the

filter vector hT
p =

(
hp[0] hp[1] · · · hp[p]

)
is also of dimension (p + 1) in which T

represents the matrix transposition operation. The filter output variance is simply

ρp = E{|y[n]|2} = hH

p E{x∗p[n]xT

p [n]}hp = hH

p Rphp (2.2)

where H represents the matrix hermitian transposition operation and the

(p + 1)× (p + 1) Toeplitz autocorrelation matrix is

Rp =




r[0] r∗[1] · · · r∗[p]

r[1]
. . . . . .

...

...
. . . . . . r∗[1]

r[p] · · · r[1] r[0]




(2.3)

and r[m] = E{x[n]x∗[n −m]} are the autocorrelation sequence (ACS) elements.

We minimize the filter output variance ρp subject to the constraint that, at a

frequency f0, the gain is unity, that is, eH
p (f0)hp = 1 for the (p + 1)−dimensional

complex sinusoidal vector eT
p (f0) =

(
1 exp(j2πf0T ) · · · exp(j2πf0pT )

)
and T
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is the sample interval. The result of the constrained minimization of the variance

[15] is

ρMV−acs =
1

eH
p (f0)R−1

p ep(f0)
. (2.4)

Since variance has units of power, scaling the variance by T changes the units

to power per Hz, or power spectral density (PSD). Letting the frequency range

over the Nyquist frequency interval (−1/2T ≤ f ≤ 1/2T ) in Hz, we define the

traditional autocorrelation-based (ACS-based) MVSE [15] as

PMV−acs(f) = TρMV−acs =
T

eH
p (f)R−1

p ep(f)
. (2.5)

2.2. Least-Squares-Based Minimum Variance Spectral Estimation: Co-
variance Case

Assume that a finite data record of N complex-valued (in general) samples

will be used to fit the frequency-adaptive FIR filter. The autocorrelation matrix

is assumed unknown. The covariance LS-based MVSE is based on the concept of

separate forward and backward FIR filters of the signal process x[n] for 1 ≤ n ≤ N

yf [n] =

p∑

k=0

āp[k]x[n− k] = xT

p [n]āp = āT

pxp[n], (2.6)

yb[n] =

p∑

k=0

b̄p[k]x[n− p + k] = xT

p [n]Jb̄p = b̄
T

pJxp[n]

of order p. The forward filter output yf [n] and the backward filter output yb[n]

depend on the column (p + 1)−dimensional data vector xp, which is defined in

Eq. 2.1. In practice, we most choose p < N . The filter forward parameter vector

āp and the backward parameter vector b̄p are defined as

āT

p =
(
1 āp[1] āp[2] · · · āp[p]

)

b̄
T

p =
(
1 b̄p[1] b̄p[2] · · · b̄p[p]

)
,
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respectively. A symbol with a bar above it, such as ā, means that it is related

to the covariance case. A symbol written in bold font represents a matrix or a

vector, rather than a scalar. Note that āp[0] = b̄p[0] = 1 by definition. We also

note that āp[p] = ka
p and b̄p[p] = kb

p, where ka
p and kb

p are reflection coefficients

in a lattice realization of the LP error filters [15]. J is a reflection matrix (an

all-zeros matrix with ones along the anti-diagonal, whose dimension depends on

the equation matrix structure) that has the effect of time reversing a signal vector.

Note that JJ = I, the identity matrix.

The definition of the covariance LS-based MVSE assumes that x[n] is only

available over the range 1 ≤ n ≤ N , so that FIR outputs can only be formed

over the interval p + 1 ≤ n ≤ N to avoid running off the ends of the data. The

sum of squared error magnitudes of the forward filter, if normalized by 1/(N −p),

becomes an estimate of the output variance

ˆ̄ρp =
1

N − p

N∑
n=p+1

|yf [n]|2

=
1

N − p
āH

p

( N∑
n=p+1

x∗p[n]xT

p [n]

)
āp (2.7)

=
1

N − p
āH

p

(
XH

p Xp

)
āp

=
1

N − p
āH

p
ˆ̄Rpāp

in which the (N − p)× (p + 1) rectangular Toeplitz data matrix is

Xp =




x[p + 1] · · · x[1]

...
. . .

...

x[N − p] · · · x[p + 1]

...
. . .

...

x[N ] · · · x[N − p]




, (2.8)



23

and the (p + 1)× (p + 1) dimensional data product matrix

ˆ̄Rp = XH

p Xp

=




ˆ̄rp[0, 0] · · · ˆ̄rp[0, p]

...
. . .

...

ˆ̄rp[p, 0] · · · ˆ̄rp[p, p]




(2.9)

is a stochastic least squares approximation of an ACS matrix, in which the ele-

ments of ˆ̄Rp are ˆ̄rp[i, j] =
∑N

m=p+1 x∗[m− i]x[m− j] for 0 ≤ i, j ≤ p.

We minimize the estimated filter output variance ˆ̄ρp subject to the same

unit gain constraint as applied to the ACS-based MVSE such that, at a frequency

f0, eH
p (f0) āp = 1. Let āp = āp,min + δp in which δp is defined as a (p + 1) × 1

complex vector (in general) that satisfies eH
p (f0) δp = 0. Substituting āp into the

right side of Eq. 2.7 yields

āH

p
ˆ̄Rpāp = āH

p,min
ˆ̄Rpāp,min + āH

p,min
ˆ̄Rpδp + δH

p
ˆ̄Rpāp,min + δH

p
ˆ̄Rpδp

in which the two middle terms are equal to zero

āH

p,min
ˆ̄Rpδp =

(
eH

p (f0)
ˆ̄R−1

p ep(f0)

)−1

eH

p (f0)δp = 0 ,

āp = (eH
p (f0))

−1, and δH

p
ˆ̄Rpāp,min = (āH

p,min
ˆ̄Rpδp)

H = 0 , where ˆ̄Rp is hermitian

and positive definite. Hence,

āH

p
ˆ̄Rpāp − āH

p,min
ˆ̄Rpāp,min = δH

p
ˆ̄Rpδp ≥ 0 . (2.10)

Thus, the minimum value of āH
p

ˆ̄Rpāp follows from Eq. 2.10 by selecting the mini-

mizing āp vector as

āp,min =
ˆ̄R−1

p ep(f0)

eH
p (f0)

ˆ̄R−1
p ep(f0)

.
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Substituting the above expression āp,min into Eq. 2.7 yields the constrained least-

squares covariance minimization of the estimated variance

ˆ̄ρMV−cov =
1

eH
p (f0)

ˆ̄R−1
p ep(f0)

.

Scaling the variance by T then yields units of PSD. Letting the frequency range

over −1/2T ≤ f ≤ 1/2T in Hz, we define the covariance LS-based MVSE as

ˆ̄PMV−cov(f) = T ˆ̄ρMV−cov =
T

eH
p (f) ˆ̄R−1

p ep(f)
. (2.11)

Note that the LS-based data product matrix ˆ̄Rp does not have a Toeplitz structure,

but it does have a near-to-Toeplitz (it is the product of two rectangular Toeplitz

data matrices) property which can be exploited to decompose the inverse matrix

ˆ̄R−1
p into sums of products of triangular Toeplitz matrices. We will provide the

derivation in Section 3.2.1. ˆ̄Rp is also a hermitian matrix since

ˆ̄Rp = ˆ̄RH

p .

2.3. Least-Squares-Based Minimum Variance Spectral Estimation:
Modified Covariance Case

The modified covariance LS-based MVSE differs from the covariance LS-

based MVSE in that a combination of filtering the signal process x[n], 1 ≤ n ≤ N ,

in forward and backward directions through the FIR filter is presented in one

variance expression. It was shown in [15] that the forward and backward LP

parameters for a stationary random process are simply complex conjugates of the

other, so the output yb[n] of the backward FIR filter in Eq. 2.6 may then be

expressed as

yb[n] =

p∑

k=0

ã∗p[k]x[n− p + k] = xT

p [n]Jã∗p = ãH

p Jxp[n]. (2.12)
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A symbol with a tilde above it, such as ã, means that it is related used for the

modified covariance case. The LS-based modified covariance case combines both

the forward and backward filter variances to form the total variance estimate over

the interval p + 1 ≤ n ≤ N , when normalized by 1/[2(N − p)], which is

ˆ̃ρp =
1

2(N − p)

N∑
n=p+1

|yf [n]|2 + |yb[n]|2 (2.13)

=
1

2(N − p)
ãH

p

( N∑
n=p+1

x∗p[n]xT

p [n] + Jxp[n]xH

p [n]J

)
ãp

=
1

2(N − p)
ãH

p

(
XH

p Xp + JXT

pX
∗
pJ

)
ãp

in which Xp is the (N − p) × (p + 1) rectangular Toeplitz data matrix defined

in Eq. 2.8. This forms the basis of the modified covariance LS-based MVSE.

Minimizing the estimated variance in Eq. 2.13 subject to the same unit gain

constraint as used in the covariance LS-based MVSE of the previous section then

yields the following modified covariance LS-based MVSE

ˆ̃
PMV−mod(f) =

T

eH
p (f)

ˆ̃
R
−1

p ep(f)

(2.14)

in which the (p + 1)× (p + 1) near-to-Toeplitz matrix ( it is composed of sum of

products of Toeplitz data matrices) is

ˆ̃
Rp = (XH

p Xp + JXT

pX
∗
pJ)

=




ˆ̃rp[0, 0] · · · ˆ̃rp[0, p]

...
. . .

...

ˆ̃rp[p, 0] · · · ˆ̃rp[p, p]




(2.15)

in which ˆ̃rp[i, j] =
∑N

m=p+1

(
x∗[m− i]x[m− j]+x[N −m+1+ i]x∗[N −m+1+ j]

)

for 0 ≤ i, j ≤ p . Also
ˆ̃
Rp is centrosymmetric and hermitian since

ˆ̃
Rp = J

ˆ̃
R
∗
pJ,

ˆ̃
Rp =

ˆ̃
R

H

p .
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3. FAST SOLUTIONS FOR ONE-DIMENSIONAL MINIMUM
VARIANCE SPECTRAL ESTIMATION

This chapter will present the development of the two new fast computa-

tional solutions of the 1-D LS-based MVSE in both the covariance and the modi-

fied covariance cases, whose flowcharts are illustrated in Fig. 1.2 and Fig. 1.3. We

will first review the fast computational solution of the 1-D ACS-based MVSE.

3.1. Autocorrelation-Based 1-D Minimum Variance Spectral Estima-
tion: Toeplitz Autocorrelation Case

3.1.1. Review Fast Computational Solution

A fast computational algorithm, attributed to Musicus [13], is obtained

by first noting that the inverse of the Toeplitz autocorrelation matrix can be

expressed as the following difference of products of triangular Toeplitz matrices

R−1
p =

1

ρAR
p

ApA
H

p −
1

ρAR
p

BpB
H

p (3.1)

in which the (p + 1)× (p + 1) triangular Toeplitz matrices

Ap =




1 0 · · · 0 0

ap[1] 1 · · · 0 0

...
. . . . . .

...
...

ap[p− 1] ap[p− 2]
. . . 1 0

ap[p] ap[p− 1] · · · ap[1] 1
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Bp =




0 0 · · · 0 0

a∗p[p] 0 · · · 0 0

...
. . . . . .

...
...

a∗p[2] a∗p[3]
. . . 0 0

a∗p[1] a∗p[2] · · · a∗p[p] 0




are composed of AR parameters ap[m] for 1 ≤ m ≤ p, defined as the solution to

Rp




1

ap[1]

...

ap[p]




=




ρAR
p

0

...

0




(3.2)

The AR parameters and white noise variance ρAR
p are estimated from either the

Yule-Walker method, using the known ACS or the estimated ACS, or from the

Burg lattice algorithm. Substituting Eq. 3.1 for the inverse matrix into Eq. 2.5

yields, after extensive algebra,

PMV−acs(f) =
T∑p

k=−p ψMV−acs[k] exp(−j2πfkT )
(3.3)

in which the complex conjugate symmetric coefficients ψMV−acs[k] = ψ∗MV−acs[−k]

for −p ≤ k ≤ −1 are weighted correlations of the AR parameters

ψMV−acs[k] =
1

ρp

p−k∑
i=0

(p + 1− k − 2i)ap[k + i]a∗p[i] (3.4)

over the interval 0 ≤ k ≤ p. An examination of the denominator of Eq. 3.3 shows

that it has the form of a discrete time Fourier transform (DTFT), thus a FFT can

be used to evaluate it. Also, FFTs can be used for a fast correlation computation

of Eq. 3.4.
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3.1.2. Computation and Storage Counts

Table 3.1 summarizes the savings in computational complexity and mem-

ory storage required by the fast 1-D ACS-based MVSE in Eq. 3.3 versus that

required by the direct method in Eq. 2.5. The computational complexity of the

fast solution of the 1-D ACS-based MVSE is proportional to p2, with memory

storage requirements proportional to p, versus p3 computational complexity and

p2 storage if solved by the direct solution approach.

1-D ACS-based MVSE

Fast Solution Direct Method

Computational ×
13
8 p2 + Nf log2(Nf ) 2

3p3 + 5
3p2 − 1

3p + N2
f

Complexity + 3
2p2 + Nf log2(Nf ) 2

3p3 − 2
3p + N2

f

Storage 3p + 2 + Nf p2 + Nf

TABLE 3.1. Comparison of the Computation Complexity and Storage Counts

for 1-D ACS-Based MVSE. Note: p is the order of the estimator, N is the number

of data sequence, Nf is the number of FFT frequency bins, × is the number of

complex multiplications, and + is the number of complex additions.

3.2. Least-Squares-Based 1-D Minimum Variance Spectral Estimation:
Covariance Case

3.2.1. Development of Fast Computational Solution

A new fast algorithm for evaluating the covariance LS-based MVSE is

inspired by the highly structured inverse Toeplitz autocorrelation matrix for the
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known ACS case of the previous section. We present here the discovery that the

inverse of the near-to-Toeplitz data product matrix, ˆ̄R−1
p , in Eq. 2.11 can also be

expressed in terms of a sum of products of triangular Toeplitz matrices formed by

the estimated LP parameters, which are recursively computed by Marple’s fast

algorithm [15]. The structure of the least squares covariance inverse also leads

to a modified denominator in which an FFT will then be used to evaluate the

denominator of the covariance LS-based MVSE, PMV−cov(f), in Eq. 2.11.

Based on Eq. 2.9, the crucial partitions needed for the development of the

fast algorithm of the covariance LS-based MVSE are the following order-index

partitions of the matrix ˆ̄Rp of dimension (p + 1)× (p + 1)

ˆ̄Rp =




ˆ̄R
′
p−1

ˆ̄r
′
p

ˆ̄r
′H
p

ˆ̄rp[p, p]




(3.5)

and

ˆ̄Rp =




ˆ̄rp[0, 0] ˆ̄r
′′H
p

ˆ̄r
′′
p

ˆ̄R
′′
p−1




(3.6)

in which the dimension−p column vectors are ˆ̄r
′H
p =

(
ˆ̄rp[p, 0] · · · ˆ̄rp[p, p− 1]

)
and

ˆ̄r
′′H
p =

(
ˆ̄rp[0, 1] · · · ˆ̄rp[0, p]

)
. The ˆ̄R

′
p−1 and ˆ̄R

′′
p−1 are square hermitian matrices

ˆ̄R
′
p−1 = ˆ̄R

′H
p−1 , ˆ̄R

′′
p−1 = ˆ̄R

′′H
p−1 .

Also crucial are the following time-index partitions

ˆ̄R
′
p =

N∑
n=p+2

x∗p[n]xT

p [n] = ˆ̄Rp − x∗p[p + 1]xT

p [p + 1]

and
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ˆ̄R
′′
p =

N−1∑
n=p+1

x∗p[n]xT

p [n] = ˆ̄Rp − x∗p[N ]xT

p [N ].

A pair of auxiliary (p + 1) × 1 vectors c̄T
p =

(
c̄p[0] · · · c̄p[p]

)
and

d̄T
p =

(
d̄p[0] · · · d̄p[p]

)
are also needed in the development of the fast algorithm.

These are defined by

ˆ̄Rpc̄p = x∗p[N ] , ˆ̄Rpd̄p = x∗p[p + 1] .

Minimizing the estimated variance ˆ̄ρp in Eq. 2.7 by least squares minimization

then yields the dimension−(p + 1) normal equations [15]

ˆ̄Rp




1

āp


 =




ρ̄a
p

0p


 (3.7)

ˆ̄Rp




Jb̄p

1


 =




0p

ρ̄b
p


 (3.8)

in which 0p is a p × 1 all-zeros column vector. The parameters ρ̄a
p and ρ̄b

p are

the forward and backward LP error variance estimates, which are positive and

real-valued scalars. Substituting the special matrix partitions Eq. 3.5 and Eq. 3.6

into the left sides of normal equations Eq. 3.8 and Eq. 3.7 yields, respectively,




ˆ̄R
′
p−1

ˆ̄r
′
p

ˆ̄r
′H
p

ˆ̄rp[p, p]







Jb̄p

1




=




0p

ρ̄b
p




(3.9)




ˆ̄rp[0, 0] ˆ̄r
′′H
p

ˆ̄r
′′
p

ˆ̄R
′′
p−1







1

āp




=




ρ̄a
p

0p




. (3.10)

The following relations can be derived from Eq. 3.9 and Eq. 3.10
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ˆ̄r
′
p = − ˆ̄R

′
p−1Jb̄p , ρ̄b

p − ˆ̄rp[p, p] = ˆ̄r
′H
p Jb̄p ,

ˆ̄r
′′
p = − ˆ̄R

′′
p−1āp , ρ̄a

p − ˆ̄rp[0, 0] = ˆ̄r
′′H
p āp .

By using the partitioned matrix inversion lemma and the augmented matrix in-

version lemma [15], the inverse matrix of Eq. 3.5 can be written as

ˆ̄R−1
p =




ˆ̄R
′−1
p−1 + ˆ̄R

′−1
p−1

ˆ̄r
′
p∆

−1ˆ̄r
′H
p

ˆ̄R
′−1
p−1, − ˆ̄R

′−1
p−1

ˆ̄r
′
p∆

−1

−∆−1ˆ̄r
′H
p

ˆ̄R
′−1
p−1, −∆−1




(3.11)

in which

∆ = ˆ̄rp[p, p]− ˆ̄r
′H
p

ˆ̄R
′−1
p−1

ˆ̄r
′
p = ˆ̄rp[p, p] + ˆ̄r

′H
p Jb̄p = ρ̄b

p .

Noting that ∆−1 = 1/ρ̄b
p , then ˆ̄R−1

p can be rewritten as

ˆ̄R−1
p =




ˆ̄R
′−1
p−1 + Jb̄pb̄

H

p J Jb̄p

b̄
H

p J 1




1

ρ̄b
p

. (3.12)

Also,

ˆ̄R
′−1
p−1 = ˆ̄R−1

p−1 +
ˆ̄R−1

p−1x
∗
p−1[p]xT

p−1[p] ˆ̄R−1
p−1

1− xT
p−1[p] ˆ̄R−1

p−1x
∗
p−1[p]

= ˆ̄R−1
p−1 +

d̄p−1d̄
H
p−1

1− γd
p−1

in which γd
p−1 = xT

p−1[p] ˆ̄R−1
p−1x

∗
p−1[p] is a positive real-valued scalar in the range

[0, 1]. Define the gain adjustment factor of d̄ as ρ̄d
p−1 = 1 − γd

p−1, also bound

between 0 and 1, so that Eq.3.11 may be expressed as

ˆ̄R−1
p =




ˆ̄R−1
p−1 + d̄p−1d̄

H
p−1/ρ̄

d
p−1 + Jb̄pb̄

H
p J/ρ̄b

p , Jb̄p/ρ̄
b
p

b̄H
p J/ρ̄b

p , 1/ρ̄b
p




. (3.13)
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Similarly the inverse matrix of Eq. 3.6 may be written as

ˆ̄R−1
p =




1/ρ̄a
p , āH

p /ρ̄a
p

āp/ρ̄
a
p , ˆ̄R−1

p−1 + c̄p−1c̄
H
p−1/ρ̄

c
p−1 + āpā

H
p /ρ̄a

p




(3.14)

in which the gain adjustment factor of c̄ is ρ̄c
p−1 = 1 − γc

p−1, where

γc
p−1 = xH

p−1[N ] ˆ̄R−1
p−1xp−1[N ] is a positive real-valued scalar in the range [0, 1].

Assume ūp[j, k] is an element of ˆ̄R−1
p . From the above, the following relations

may be found

ūp[0, 0] = 1/ρ̄a
p , ūp[p, p] = 1/ρ̄b

p , ūp[j, 0] = āp[j]/ρ̄
a
p , ūp[0, k] = ā∗p[k]/ρ̄a

p ,

ūp[p, p− k] = b̄∗p[k]/ρ̄b
p , ūp[p− j, p] = b̄p[j]/ρ̄

b
p

for 1 ≤ j, k ≤ p, and

ūp[j, k] = ūp−1[j, k] + d̄p−1[j]d̄
∗
p−1[k]/ρ̄d

p−1 + b̄p[p− j]b̄∗p[p− k]/ρ̄b
p ,

ūp[j + 1, k + 1] = ūp−1[j, k] + c̄p−1[j]c̄
∗
p−1[k]/ρ̄c

p−1 + āp[j + 1]ā∗p[k + 1]/ρ̄a
p

for 0 ≤ j, k ≤ p − 1. Combine the last two equations to eliminate ūp−1[j, k],

yielding

ūp[j + 1, k + 1] = ūp[j, k] + āp[j + 1]ā∗p[k + 1]/ρ̄a
p − b̄p[p− j]b̄∗p[p− k]/ρ̄b

p

+¯̄cp−1[j]Φ̄
−1
p−1

¯̄cH

p−1[k] (3.15)

in which ¯̄cp−1 = (d̄p−1 c̄p−1) is of dimension (p + 1) × 2, where ¯̄cp−1[m] =

(d̄p−1[m] c̄p−1[m]) for 0 ≤ m ≤ p− 1 is a 1× 2 row vector, and the 2× 2 diagonal

matrix

Φ̄p =



−ρ̄d

p 0

0 ρ̄c
p
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contains the gain adjustment factors ρ̄d
p and ρ̄c

p of d̄ and c̄, respectively. These are

positive real-valued scalars in the range [0, 1]. Eq. 3.15 is a recursive relationship

that permits all inverse elements to be computed from knowledge of only the LP

parameters āp and b̄p. The following matrix inverse may also be deduced from

Eq. 3.15

ˆ̄R−1
p =

1

ρ̄a
p

ĀpĀ
H

p −
1

ρ̄b
p

B̄pB̄
H

p + C̄p−1P̄
−1
p−1C̄

H

p−1 , (3.16)

in which the (p + 1)× (p + 1) triangular Toeplitz matrices

Āp =




1 0 · · · 0 0

āp[1] 1 · · · 0 0

...
. . . . . .

...
...

āp[p− 1] āp[p− 2]
. . . 1 0

āp[p] āp[p− 1] · · · āp[1] 1




B̄p =




0 0 · · · 0 0

b̄p[p] 0 · · · 0 0

...
. . . . . .

...
...

b̄p[2] b̄p[3]
. . . 0 0

b̄p[1] b̄p[2] · · · b̄p[p] 0




the (p + 1)× 2(p + 1) triangular Toeplitz matrix

C̄p−1 =




0 0 · · · 0 0

¯̄cp−1[0] 0 · · · 0 0

...
. . . . . .

...
...

¯̄cp−1[p− 2] ¯̄cp−1[p− 3]
. . . 0 0

¯̄cp−1[p− 1] ¯̄cp−1[p− 2] · · · ¯̄cp−1[0] 0
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in which 0 is a 1× 2 all-zero row vector element, and the 2(p+1)× 2(p+1) block

diagonal matrix is

P̄
−1
p−1 =




Φ̄−1
p−1 · · · 0

...
. . .

...

0 · · · Φ̄−1
p−1




in which the all-zero block matrices 0 are of dimension 2× 2 in this case. These

matrices are formed from the forward LP parameters āp, the forward LP error

variance ρ̄a
p, the backward LP parameters b̄p, the backward LP error variance ρ̄b

p,

the 1× 2 gain adjustment parameters ¯̄cp−1[m], and the 2× 2 gain adjustment ma-

trix Φ̄p−1. All of these parameters and factors are computed recursively as part of

a normal execution of the fast computational solution to the least-squares-based

covariance case of LP [15]. Substituting Eq. 3.16 into Eq. 2.11, the complex con-

jugate symmetric ψ̄MV[k] coefficients lead to the following alternative relationship

for the covariance LS-based MVSE

ˆ̄PMV−cov(f) =
T

∑p
k=−p

ˆ̄ψMV[k] exp(−j2πfkT )
(3.17)

in which the weighted autocorrelations of the LP parameters form the coefficients

ˆ̄ψMV[k] =

p−k∑
i=0

1

ρ̄a
p

(p + 1− k − i)āp[k + i]ā∗p[i]−
1

ρ̄b
p

i b̄p[i]b̄
∗
p[k + i] (3.18)

+(p− k − i)¯̄cp−1[k + i]Φ̄−1
p−1

¯̄cH

p−1[i]

for 0 ≤ k ≤ p. Note that ˆ̄ψMV[k] = ˆ̄ψ∗MV[−k] for −p ≤ k ≤ −1. The following

are additional useful mathematical facts: (a) āp[0] = b̄p[0] = 1 and ¯̄cp−1[p] = [0 0]

by definition; (b) vector ¯̄cp−1[0] = (d̄p−1[0] c̄p−1[0]) is non-zero; (c) when calculat-

ing the LP parameters and the gain adjustment parameters, the maximum order

pmax must satisfy pmax < (N − 1)/2, otherwise ˆ̄Rp is not invertible because the

dimension of Xp in Eq. 2.8 is (N − p)× (p + 1) .
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3.2.2. Computation and Storage Counts

The computation and storage counts are summarized in Table 3.2. The

new algorithm requires a number of multiplication operations and addition oper-

ations proportional to p2 in order to calculate the set of ψ̄MV[k] coefficients, for

0 ≤ k ≤ p. An FFT is applied to the denominator of Eq. 3.17 to evaluate the

LS-based MVSE over a range of frequencies (−1/2T, 1/2T ) in Hz. It only requires

memory proportional to p storage values to save all of the parameters. This sig-

nificantly reduces computational complexity and memory storage, compared with

the direct evaluation method Eq. 2.11 that has computational complexity and

memory storage requirements proportional to p3 and p2, respectively. In Table

3.2, the computational complexity of the direct approach refers to the method

described in [3].

1-D LS-based MVSE (Covariance Case)

Fast Solution Direct Method

Computational
× 23

2
p2 + (2N + 47

2
)p + 3N + Nf log2(Nf ) 2

3
p3 + ( 10

3
+ Nf )p2 + (4 + N + 3Nf )p + (N + 2Nf )

Complexity + − 1
2
p2 + (5N + 23

2
)p + N + Nf log2(Nf ) 2

3
p3 + (1 + Nf )p2 − ( 2

3
−N − 2Nf )p + N

Storage 5p + 13N + Nf p2 + (4 + N)p + N + Nf

TABLE 3.2. Comparison of the Computation Complexity and Storage Counts

for 1-D Covariance LS-Based MVSE. Note: p is the order of the estimator, N is

the number of data sequence, Nf is the number of FFT frequency bins, × is the

number of complex multiplications, and + is the number of complex additions.

Note that the maximum order pmax must satisfy pmax < (N − 1)/2 for ˆ̄R−1
p exist.
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3.3. Least-Squares-Based 1-D Minimum Variance Spectral Estimation:
Modified Covariance Case

3.3.1. Development of Fast Computational Solution

In this section, we show the development of the inverse of the near-to-

Toeplitz data product matrix,
ˆ̃
R
−1

p in Eq. 2.14, for the LS-based modified co-

variance case. The LP parameters have been recursively solved by Marple’s fast

algorithm [27].

Based on Eq. 2.15, the crucial partitions needed for the development of

the fast algorithm of the modified covariance LS-based MVSE are the following

order-index partitions of the (p + 1)× (p + 1) matrix
ˆ̃
Rp

ˆ̃
Rp =




ˆ̃
R
′

p−1
ˆ̃rp

ˆ̃r
H

p
ˆ̃rp[p, p]




(3.19)

and

ˆ̃
Rp =




ˆ̃rp[0, 0] ˆ̃r
T

pJ

Jˆ̃r
∗
p J

ˆ̃
R
′∗
p−1J




(3.20)

in which

ˆ̃
R
′

p =
N∑

n=p+2

(
x∗p[n]xT

p [n] + Jxp[n]xH

p [n]J
)

and the p−dimensional column vector ˆ̃r
T

p =
(
ˆ̃rp[p, 0] · · · ˆ̃rp[p, p− 1]

)
. Note that

ˆ̃rp[p, p] = ˆ̃rp[0, 0] =
∑N

n=p+1

(|x[n]|2 + |x[n−p]|2) are real-valued scalars. The
ˆ̃
R
′

p−1

is a square hermitian matrix
ˆ̃
R
′

p−1 =
ˆ̃
R
′H

p−1.

Also crucial are the following time-index partitions
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ˆ̃
Rp =

ˆ̃
R
′

p + x∗p[p + 1]xT

p [p + 1] + Jxp[N ]xH

p [N ]J

and the centrosymmetric variant, J
ˆ̃
R
∗
pJ =

ˆ̃
Rp,

ˆ̃
Rp = J

ˆ̃
R
′∗
p J + Jxp[p + 1]xH

p [p + 1]J + x∗p[N ]xT

p [N ].

The pair of auxiliary (p + 1)× 1 vectors c̃p and d̃p are also needed in the devel-

opment of the fast algorithm. They are defined by

ˆ̃
Rpc̃p = Jxp[N ],

ˆ̃
Rpd̃p = x∗p[p + 1].

In an analogous procedure to Eq. 3.7 and Eq. 3.8, minimizing the estimated vari-

ance ˆ̃ρp in Eq. 2.13 yields the following normal equations of dimension (p + 1)

ˆ̃
Rp




1

ãp


 =




ρ̃a
p

0p


 (3.21)

ˆ̃
Rp




Jã∗p

1


 =




0p

ρ̃a
p


 (3.22)

in which 0p is a p× 1 all-zeros column vector, and the forward LP error variance

estimate ρ̃a
p is a positive real-valued scalar. Substituting the special matrix par-

titions Eq. 3.19 and Eq. 3.20 into the left sides of normal equations Eq. 3.22 and

Eq. 3.21 yields, respectively,



ˆ̃
R
′

p−1
ˆ̃rp

ˆ̃r
H

p
ˆ̃rp[p, p]







Jã∗p

1




=




0p

ρ̃a
p




(3.23)




ˆ̃rp[0, 0] ˆ̃r
T

pJ

Jˆ̃r
∗
p J

ˆ̃
R
′∗
p−1J







1

ãp




=




ρ̃a
p

0p




. (3.24)
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The following relations can be easily derived from Eq. 3.23 and Eq. 3.24

ˆ̃rp = − ˆ̃
R
′

p−1Jã∗p , ρ̃a
p − ˆ̃rp[p, p] = ˆ̃r

H

p Jã∗p ,

Jˆ̃r
∗
p = −J

ˆ̃
R
′∗
p−1Jãp , ρ̃a

p − ˆ̃rp[0, 0] = ˆ̃r
T

pJãp .

By using the partitioned matrix inversion lemma and the augmented matrix in-

version lemma [15], the inverse matrix of Eq. 3.19 can be written as

ˆ̃
R
−1

p =




ˆ̃
R
′−1

p−1 +
ˆ̃
R
′−1

p−1
ˆ̃rp∆

−1ˆ̃r
H

p
ˆ̃
R
′−1

p−1, − ˆ̃
R
′−1

p−1
ˆ̃rp∆

−1

−∆−1ˆ̃r
H

p
ˆ̃
R
′−1

p−1, ∆−1




(3.25)

in which

∆ = ˆ̃rp[p, p]− ˆ̃r
H

p
ˆ̃
R
′−1

p−1
ˆ̃rp = ˆ̃rp[p, p] + ˆ̃r

H

p Jã∗p = ρ̃a
p .

So ∆−1 = 1/ρ̃a
p, and

ˆ̃
R
−1

p can be rewritten as

ˆ̃
R
−1

p =




ˆ̃
R
′−1

p−1 + Jã∗pã
T

pJ Jã∗p

ãT

pJ 1




1

ρ̃a
p

(3.26)

in which

ˆ̃
R
′−1

p−1 =
ˆ̃
R
−1

p−1 +
ˆ̃
R
−1

p−1x̄
∗
p−1[p]

(−x̄T

p−1[p]
ˆ̃
R
−1

p−1x̄
∗
p−1[p] + I2

)−1
x̄T

p−1[p]
ˆ̃
R
−1

p−1

=
ˆ̃
R
−1

p−1 + ˜̃cp−1Φ̃
−1
p−1

˜̃cH

p−1

The matrices x̄p[n] =
(
xp[n] Jx∗p[N + p + 1 − n]

)
and ˜̃cp =

(
d̃p c̃p

)
are each of

dimension (p+1)×2, I2 is a 2×2 identity matrix, and the 2×2 hermitian matrix

Φ̃p−1 is
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Φ̃p−1 = I2 − x̄T

p−1[p]
ˆ̃
R
−1

p−1x̄
∗
p−1[p]

= I2 −




xT
p−1[p]

xH
p−1[N ]J


 ˆ̃

R
−1

p−1

(
x∗p−1[p] Jxp−1[N ]

)

= I2 −




xT
p−1[p]

xH
p−1[N ]J




(
d̃p−1 c̃p−1

)
.

Alternatively, two forms of the inverse of
ˆ̃
R
−1

p may be developed. Eq. 3.25 ex-

presses the inverse

ˆ̃
R
−1

p =




ˆ̃
R
−1

p−1 + ˜̃cp−1Φ̃
−1
p−1

˜̃cH

p−1 + Jã∗pã
T

pJ/ρ̃a
p , Jã∗p/ρ̃

a
p

ãT

pJ/ρ̃a
p , 1/ρ̃a

p




, (3.27)

and Eq. 3.20 may express the inverse as

ˆ̃
R
−1

p =




1/ρ̃a
p , ãH

p /ρ̃a
p

ãp/ρ̃
a
p ,

ˆ̃
R
−1

p−1 + J˜̃c∗p−1Φ̃
−1
p−1

˜̃cT

p−1J + ãpã
H

p /ρ̃a
p




. (3.28)

Assume ũp[j, k] is an element of
ˆ̃
R
−1

p . From above, the following relations may be

found

ũp[0, 0] = ũp[p, p] = 1/ρ̃a
p , ũp[j, 0] = ãp[j]/ρ̃

a
p , ũp[0, k] = ã∗p[k]/ρ̃a

p ,

ũp[p, p− k] = ã∗p[k]/ρ̃a
p , ũp[p− j, p] = ãp[j]/ρ̃

a
p

for 1 ≤ j, k ≤ p, and

ũp[j, k] = ũp−1[j, k] + ˜̃cp−1[j]Φ̃
−1
p−1

˜̃cH

p−1[k] + ã∗p[p− j]ãp[p− k]/ρ̃a
p ,

ũp[j + 1, k + 1] = ũp−1[j, k] +

(
˜̃cp−1[p− 1− j]Φ̃−1

p−1
˜̃cH

p−1[p− 1− k]

)∗

+ãp[j + 1]ã∗p[k + 1]/ρ̃a
p
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for 0 ≤ j, k ≤ p − 1. Combine the last two equations to eliminate ũp−1[j, k],

yielding

ũp[j + 1, k + 1] = ũp[j, k] + ãp[j + 1]ã∗p[k + 1]/ρ̃a
p − ã∗p[p− j]ãp[p− k]/ρ̃a

p (3.29)

+

(
˜̃cp−1[p− 1− j]Φ̃−1

p−1
˜̃cH

p−1[p− 1− k]

)∗
− ˜̃cp−1[j]Φ̃

−1
p−1

˜̃cH

p−1[k].

Eq. 3.29 is a recursive relationship that permits all inverse elements to be com-

puted from knowledge of only the modified covariance LP parameter vector ãp.

The following inverse matrix relationship may also be developed from Eq. 3.29

ˆ̃
R
−1

p =
1

ρ̃a
p

ÃpÃ
H

p −
1

ρ̃a
p

B̃pB̃
H

p − C̃p−1P̃
−1

p−1C̃
H

p−1 + D̃p−1P̃
∗−1

p−1D̃
H

p−1 (3.30)

in which the (p + 1)× (p + 1) triangular Toeplitz matrices

Ãp =




1 0 · · · 0 0

ãp[1] 1 · · · 0 0

...
. . . . . .

...
...

ãp[p− 1] ãp[p− 2]
. . . 1 0

ãp[p] ãp[p− 1] · · · ãp[1] 1




B̃p =




0 0 · · · 0 0

ã∗p[p] 0 · · · 0 0

...
. . . . . .

...
...

ã∗p[2] ã∗p[3]
. . . 0 0

ã∗p[1] ã∗p[2]
. . . ã∗p[p] 0




and the (p + 1)× 2(p + 1) triangular vector-block Toeplitz matrices
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C̃p−1 =




0 0 · · · 0 0

˜̃cp−1[0] 0 · · · 0 0

...
. . . . . .

...
...

˜̃cp−1[p− 2] ˜̃cp−1[p− 3]
. . . 0 0

˜̃cp−1[p− 1] ˜̃cp−1[p− 2] · · · ˜̃cp−1[0] 0




D̃p−1 =




0 0 · · · 0 0

˜̃c∗p−1[p− 1] 0 · · · 0 0

...
. . . . . .

...
...

˜̃c∗p−1[1] ˜̃c∗p−1[2]
. . . 0 0

˜̃c∗p−1[0] ˜̃c∗p−1[1] · · · ˜̃c∗p−1[p− 1] 0




have 1 × 2 all-zero row vector elements 0 and 1 × 2 row vector elements

˜̃cp−1[m] = (d̃p−1[m] c̃p−1[m]) for 0 ≤ m ≤ p − 1, and the 2(p + 1) × 2(p + 1)

block diagonal matrix

P̃
−1

p−1 =




Φ̃−1
p−1 · · · 0

...
. . .

...

0 · · · Φ̃−1
p−1




which has all-zero block elements 0 of 2×2 dimension. These matrices are formed

from the modified covariance LP parameter vector ãp, the modified covariance LP

error variance estimate ρ̃a
p, the 2× 1 gain adjustment vector parameters ˜̃cp−1[m],

and 2×2 gain adjustment matrix Φ̃p−1. If Eq. 3.30 is substituted into Eq. 2.14, the

complex conjugate symmetric ψ̃MV[k] coefficients form an alternative formulation

of the least-squares-based modified covariance MVSE, in which

ˆ̃
PMV−mod(f) =

T
∑p

k=−p

ˆ̃
ψMV[k] exp(−j2πfkT )

(3.31)
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and

ˆ̃
ψMV[k] =

p−k∑
i=0

1

ρ̃a
p

(p + 1− k − 2i)ãp[k + i]ã∗p[i] (3.32)

−(p− 1− k − 2i)˜̃cp−1[k + i]Φ̃−1
p−1

˜̃cH

p−1[i]

for 0 ≤ k ≤ p. Note that
ˆ̃
ψMV[k] =

ˆ̃
ψ
∗
MV[−k] for −p ≤ k ≤ −1. The following

additional math facts are: (a) ãp[0] = 1 and ˜̃cp−1[p] = [0 0] by definition; (b) the

1 × 2 row vector ˜̃cp−1[0] contains non-zero values; (c) when calculating the LP

parameters and the gain adjustment parameters, the maximum order pmax must

satisfy pmax < (2N − 1)/3, otherwise
ˆ̃
Rp is not invertible based on Eq. 3.30.

3.3.2. Computation and Storage Counts

The computation counts are summarized in the Table 3.3. The new algo-

rithm requires a number of multiply operations and a number of add operations

proportional to p2 to calculate the set of ψ̃MV[k], 0 ≤ k ≤ p, coefficients. An FFT

may be used to evaluate the denominator of the LS-based MVSE Eq. 3.31 over a

range of frequencies (−1/2T, 1/2T ). It only requires memory storage proportional

to p in order to save all of the parameters. This significantly reduces the compu-

tational complexity and memory storage requirements, compared with the direct

evaluation method Eq. 2.14 in which the computational complexity and memory

storage requirements are proportional to p3 and p2, respectively. In Table 3.3, the

computational complexity of the direct approach refers to the method described

in [3].
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1-D LS-based MVSE (Modified Covariance Case)

Fast Solution Direct Method

Computational
× − 1

2
p2 + (10N + 41)p+ 2

3
p3 + ( 4

3
+ Nf )p2+

Complexity 3N + Nf log2(Nf ) (3N + 3Nf + 2)p + (2 + N + 2Nf )

+ −p2 + (10N + 53
2

)p + 2N + Nf log2(Nf ) 2
3
p3 + Nf p2 + (2N − 8

3
+ 2Nf )p + 2N

Storage 10p + 16N + Nf p2 + (5 + N)p + N + Nf

TABLE 3.3. Comparison of the Computation Complexity and Storage Counts for

1-D Modified Covariance LS-Based MVSE. Note: p is the order of the estimator,

N is the number of data sequence, Nf is the number of FFT frequency bins, × is

the number of complex multiplications, and + is the number of complex additions.

Note that the maximum order pmax must satisfy pmax < (2N−1)/3 for ˆ̃R−1
p exist.
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4. IMPROVED-FEATURE DETAIL USING FAST ALGORITHMS
FOR ONE-DIMENSIONAL MINIMUM VARIANCE SPECTRAL

ESTIMATION

This chapter presents experimental results for four different 1-D data

classes to test the performance of the two fast computational algorithms for

1-D LS-based MVSE in the covariance and the modified covariance cases. The

narrow-band sinusoid data and the wide-band AR process are common test cases.

A narrow-band sinusoidal data set is used to test the resolution capability and

the improved-feature detail of each spectral estimation technique. A wide-band

AR process is next used to examine the characteristic of the frequency variance

and the power spectral density (PSD) variance [15] of our estimators. A sim-

ulated Doppler radar data set, generated as a combination of narrow-band and

wide-band signals, is next used to evaluate the performance of the two 1-D fast

computational solutions with mixed signal components. Finally, the performance

of our spectral estimators using an actual 1-D Doppler radar data set is illustrated

and analyzed.

4.1. Application One: Narrow-Band Sinusoidal Data

For the sake of a common test case that is analytically easy to understand,

the 1-D 64-complex-point signal has been generated as the sum of six 1-D complex

sinusoids corrupted by 1-D additive complex Gaussian white noise

x[n] = A

[
e(−j2πf1nT ) + e(−j2πf2nT ) + e(−j2πf3nT )

+e(−j2πf4nT ) + e(−j2πf5nT ) + e(−j2πf6nT )

]
+ ω[n] (4.1)

where T = 1 sec is the data sample interval, n is the sample index. The frequency

axis shown through this thesis is expressed as a dimensionless fraction of the sam-
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FIGURE 4.1. True spectral density of the six complex sinusoidal signals.

pling frequency, which means that the actual frequency f in Hz is normalized

by the sampling frequency fs = 1/T . Due to the sampling theorem for signals,

the fractional frequencies must be lie between −0.5 and 0.5. The six sinusoids

frequencies correspond to f1 = −0.4, f2 = −0.35, f3 = 0, f4 = 0.02, f5 = 0.3 and

f6 = 0.312 in the fraction of sampling frequency axis, and the amplitude A = 1.

The six sinusoids were carefully chosen for the analytical purpose of represent-

ing three different spectral resolution spacings, from a very narrow spacing to a

larger spacing. ω[n] is white Gaussian noise. Fig. 4.1 illustrates the expected

true spectral density of the sinusoidal data x[n]. Fig. 4.2, Fig. 4.3 and Fig. 4.5

illustrate the spectral estimates based on SNR from 40 dB to 10 dB. In this ex-

periment, the model order p = 14, and the number of PSD frequencies Nf = 7k.

This experiment compared the two fast computational algorithms estimates of the

1-D MVSE in the covariance and the modified covariance cases with the classic
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Fourier-based periodogram estimator Eq. 4.2 [15], the AR Yule-Walker estimator

Eq. 4.3 [15], and the lattice-Burg MV spectral estimator Eq. 3.3 [15].

Pperiod(f) =
1

N
|

N−1∑
n=0

x[n]e(−j2πfnT )|2 (4.2)

where x[n], for 0 ≤ n ≤ N − 1, is the data vector.

PAR(f) =
ρp

|1 +
∑p

k=1 a[k]e(−j2πfkT )|2 (4.3)

where p is the order of a AR filter, a[k], for 1 ≤ k ≤ p, is an AR filter parameter,

and ρp is the white noise variance of the driving sequence.

In Fig. 4.2, only the fast covariance and the fast modified covariance LS-

based MV estimators [Fig. 4.2(d) and (e)] can distinguish the most closely spaced

sinusoids located at f5 = 0.3 and f6 = 0.312 fraction of sampling frequency.

In addition, their estimates for the other four sinusoids from f1 = −0.4 frac-

tion of sampling frequency through f4 = 0.02 fraction of sampling frequency are

sharper than the periodogram estimates, the AR Yule-Walker estimates and the

lattice-Burg estimates [Fig. 4.2 (a),(b) and (c)]. Therefore, the two fast solution

algorithms of the 1-D LS-based MV spectral estimators achieve 0.02/0.012 ≈ 1.67

times higher resolution than the other three spectral estimators, where 0.02 is the

frequency spacing between sinusoids f3 = 0.0 and f4 = 0.02 fraction of sampling

frequency, and 0.012 is the frequency spacing between sinusoids f5 = 0.3 and

f6 = 0.312 fraction of sampling frequency.

In Fig. 4.3, for a SNR of 20 dB, no method can distinguish the most closely

spaced pair of sinusoids at f5 = 0.3 and f6 = 0.312 fraction of sampling frequency.

However, the peaks at f3 = 0 and f4 = 0.02 fraction of sampling frequency,

as estimated by the fast covariance and the fast modified covariance estimators,

Fig. 4.3 (d) and (e), are still sharper than those in Fig. 4.3 (a) (b) and (c), which
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can be easily observed in the zoomed figures shown in Fig. 4.4. When the SNR is

reduced to 10 dB, only the most widely spaced pair of sinusoids can be resolved in

Fig. 4.5. A closeup of Fig. 4.5 the sinusoids at f1 = −0.4 and f2 = −0.35 fraction

of sampling frequency, Fig. 4.6, shows that the lattice-Burg estimates Fig. 4.6 (b)

has biased frequency peaks which are not exactly at f1 = −0.4 and f2 = −0.35

fraction of sampling frequency. There is no bias in the peak location found in the

1-D fast covariance and the 1-D fast modified covariance estimates [Fig. 4.6 (c)

and (d)].

The two new 1-D fast algorithms not only inherit the improved-feature de-

tail from the non-fast direct evaluation versions of the LS-based MVSE, they also

generate and optionally save all of the parameters of intermediate order solutions

due to the recursive structure of the fast algorithms, which generate all the LP

parameters from order 0 to the maximum order pmax. If we monitor the output

LP error variances ρa (forward) and ρb (backward), we will observe that they de-

crease as the order increases, as illustrated in Fig. 4.7. We can select an optimal

fitting order (for example, popt = 14 in Fig. 4.7) at the point where either ρa or ρb

has decreased to a desired low level. Since all intermediate order parameter values

have been generated, we do not need to recompute to obtain the optimal parame-

ters, as they are already available from the recursive algorithms. It is especially

helpful in applications for which the appropriate order is not known a priori. Once

the optimal order is selected, the saved parameters can then be used to compute

the LS-based MVSE for that selected order. Therefore the two new fast compu-

tational solutions of the 1-D LS-based MVSE are both computationally-efficient

and order-selectable.
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4.2. Application Two: Wide-Band Autoregressive Process

The wide-band AR process, another common test case, is often used in

the journal literature to test the PSD variance and the frequency variance of a

spectral estimator. In this experiment, the AR(6) process of Eq. 4.4 is generated,

with three poles inside the unit circle in Fig. 4.8(a) at 0.2 ± j0.9, 0.6 ± j0.7 and

0.8± j0.6:

x[k] = −a[1]x[k − 1]− a[2]x[k − 2]− a[3]x[k − 3]

−a[4]x[k − 4]− a[5]x[k − 5]− a[6]x[k − 6] + ω[k] , (4.4)

where the AR parameters are a[1] = 3.22, a[2] = −5.74, a[3] = 6.468, a[4] =

−5.0865, a[5] = 2.533, a[6] = −0.7225. ω[k] is a white Gaussian noise process

with variance ρω = 0.01. The true AR spectrum in Fig. 4.8(b) is computed as

Par(f) =
Tρω

|1 +
∑6

n=1 a[n]e(−j2πfnT )|2 (4.5)

over frequency range (−1/2T, 1/2T ) in Hz, where T = 1 sec is the sampling in-

terval. The driving noise variance is ρω = 0.01. The spectra of the three pairs

of poles should exhibit peaks at ±0.215, ±0.138 and ±0.093 fraction of sampling

frequency along the frequency axis, respectively. Since the AR spectrum is sym-

metric about 0 fraction of sampling frequency, Fig. 4.8(b) only shows the positive

frequency half axis. Fig. 4.9 illustrates overlapped spectral estimates for 50 data

realizations of 400 samples each of the AR(6) process. The model order p = 40

and the number of PSD frequencies Nf = 6k. The 1-D fast covariance estimator

in Fig. 4.9(c) and the 1-D fast modified covariance estimates in Fig. 4.9(d) have

less frequency variance than the 1-D lattice-Burg estimates in Fig. 4.9(b), which

provides less PSD variance. This observation was also reported by Nuttall [5] and

Shon and Mehrotra [12]. The larger PSD variance of the LP-based methods may
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come from the fact that the linear prediction methods do not require stable pole

estimates, unlike the lattice method that restricts the pole estimates to fall only

inside the unit circle. The Yule-Walker algorithm generates the poorest estimator

of the AR(6) spectrum, which also was observed by Marple in [15].

4.3. Application Three: Simulated Doppler Radar Data

In this experiment, a test case is generated as a combination of both

narrow-band and wide-band signals. A 64-complex-point simulated Doppler radar

data set [15] is used to test the resolution capability of the two new 1-D fast so-

lutions for the LS-based MVSE. The Doppler frequency Fd is proportional to

(V fc/c) [29], where V is the radial velocity of an object moving toward/away

from a radar, fc is the carrier frequency (assumed here as 10 GHz), and c is the

light speed (3 × 108 m/sec). The true spectrum of the test data, calculated by

analytical means, is illustrated in Fig. 4.10(a). The frequency axis is expressed

as a fraction of the sampling frequency (fs = 2500 Hz in this simulation). The

five stems at −0.3, −0.1, 0.2 , 0.21 and 0.4 in the fraction of sampling frequency

axis simulate five aircraft flying at different radial velocities toward or away from

the radar. The two closest stems with highest power at 0.2 and 0.21 fraction of

sampling frequency are used to test the resolution capability of an estimator. The

short stem at 0.4 fraction of sampling frequency with lower power is used to test

if an estimator can pick out a weak signal component among strong noise content.

The colored noise process is created by passing white noise through a filter, (with

a truncated cosine shaped frequency response), to simulate typical low frequency

clutter effects due as wind (0 to 231 m/h) [37], cloud motions (0 to 100 m/h) [22],

flying birds (0 to 100 m/h) [36] and moving traffic on a road (0 to 70 m/h) [38].
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The estimator spectral responses produced from the 64-complex-samples

are illustrated in Fig. 4.10 for order p = 12. In Fig. 4.10(b), the Nuttall window

has been used to reduce the sidelobe artifacts in the classical periodogram spectral

estimate. The expected resolution of the classic periodogram is 1/64T ÷ 1/T =

0.0156 [15, page 134], so it can not resolve the two closest sinusoids at 0.2 and

0.21 fraction of sampling frequency. However these are resolved in Fig. 4.10(d) and

even more clearly distinguished in Figs. 4.10(e) and (f), all of which are MVSE

estimators. By using the Musicus fast algorithm to evaluate MVSE [13] and the

AR Yule-Walker algorithm to estimate the AR parameters, the resulting MVSE in

Fig. 4.10(c) does not provide the desired high-resolution result. The sinusoid peak

at 0.4 fraction of sampling frequency is even too weak to be trusted. Although the

performance of the Musicus algorithm that uses the lattice-based Burg algorithm

estimate of the AR parameters, instead of the Yule-Walker-based AR algorithm,

provides a better resolved MVSE spectra in Fig. 4.10(d), it has peaks that are

biased wider than the spectra estimated by the two new LS-based MVSEs with

fast algorithms that are shown in Figs. 4.10(e) and (f). Therefore, the new fast

algorithms of the LS-based MVSE achieve improved resolution over the previous

ACS-based versions of the MVSE. Moreover, a closeup of the PSD reveals that

there is one biased peak in the Burg spectral estimate in Fig. 4.11(a) which is not

exactly at 0.21 fraction of sampling frequency. However, the peaks derived by the

new fast algorithms are unbiased and align with the correct frequency locations,

as shown in Fig. 4.11(b). Furthermore, Fig. 4.12 illustrates that the spectra of the

new fast algorithms do not exhibit the spectral line splitting phenomenon of the

Burg algorithm [15], as one increases the order p from 12 to 16. For the sake of

brevity, only one of the new fast algorithms of the LS-based MVSE is illustrated
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in Fig. 4.11 and Fig. 4.12, since both have essentially identical performance for

this test case.

4.4. Application Four: Actual 1-D Doppler Radar Data

A test case with 1-D Doppler radar data derived from anechoic chamber

radar data echos off an actual truck target is presented here. It is used to validate

the improved-feature capability of the two new fast solutions of the 1-D LS-based

MVSE. The experimental results show that the two new fast 1-D solutions are

able to resolve more scattering centers detected in single lines of a synthetic aper-

ture radar processing of the anechoic chamber data when compared with the 1-D

classical periodogram method and the 1-D covariance AR estimator.

Before the experimental results are demonstrated, ISAR radar acquisition

and processing steps to create radar images will be briefly described. The radar

data was collected in a 10-story microwave anechoic chamber, shown in Fig. 4.13,

located in Rancho Bernardo, CA. This data is provided by Dr.Marple with per-

mission to use by the author of this thesis. Radar can use frequencies from 3 MHz

to over 40 GHz. A radar system is characterized by its operating frequency. For

example, a high frequency (HF) radar can detect targets beyond the horizon by

utilizing the ionosphere to reflect electromagnetic waves off of it. Radars in the

very high frequency (VHF) range have been used as early warning radar systems.

For applications of most medium range radars for ships, aircraft and ground-based

units, S-band radars are widely used [35]. The chamber radar data of the truck

presented here has been acquired in S-band in the range 3.093 GHz to 3.947 GHz.

In the middle of the chamber, the truck was raised on a pylon and slowly rotated

on the pylon shown in Fig. 4.13. The rotation is stepped in degrees of azimuth
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(the head-on view of the truck is the 0o reference of the azimuth). The radar

illuminates the rotating truck with a stepped RF frequency and receives echoed

signals from the truck. The acquisition equipment captures the echo signals at

every stepped azimuth angle (0.015o) and every stepped frequency (10.67 MHz).

Due to azimuth (rotating) data acquisition, the ISAR raw radar data is collected

in a polar grid acquisition format. Polar-to-cartesian interpolation is then used

to format the ISAR raw data to a uniform rectangular data grid, a requirement

needed by all 1-D and 2-D spectral estimation techniques [23] that assume uni-

formly spaced cartesian data grids (which is the case for the methods described

in this thesis).

Fig. 4.14 outlines a diagram of the interpolation and estimation steps for

1-D Doppler data processing (path 2) and 2-D ISAR imagery processing (path

1). In path 1, 2-D radar imagery is obtained by application of a 2-D inverse

FFT (IFFT). Alternatively, 2-D spectral estimation techniques can be applied to

predict the scattering centers to a greater precision or resolution, which will be

introduced in Chapter 7.3. In path 2, 1-D Doppler data is extracted from the

acquired and interpolated 2-D data by selecting either one row or one column

for processing. Different 1-D spectral estimation techniques are then applied to

estimate the spectra of the selected row or column radar data vector. Fig. 4.15

and Fig. 4.16 show the estimated spectra of the selected data at the center of the

down range dimension at 3.78 GHz with 200 MHz bandwidth and measurement

polarization of VT VR which means the target response signal is captured by a

vertically polarized transmission VT and a vertically polarized reception VR. The

model order is p = 30 and the number of FFT frequencies is Nf = 256. Fig. 4.15

is the processed results at center azimuth angle of 47o, while Fig. 4.16 is processed

results at center azimuth angle of 75o. Both results show that the two new fast
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solutions of the 1-D LS-based MVSE reveal more and sharper peaks than the 1-D

classical periodogram method and the 1-D covariance AR estimator. The results

of 2-D estimator will be demonstrated in Chapter 7.3.
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FIGURE 4.2. Comparing the capability for improved-feature detail for the dif-

ferent spectral estimators with SNR = 40 dB. (a) 1-D classical periodogram

estimator. (b) 1-D AR Yule-Walker estimator. (c) 1-D lattice-Burg estimator.

(d) the new fast 1-D covariance LS-based MV estimator. (e) the new fast 1-D

modified covariance LS-based MV estimator.
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FIGURE 4.3. Comparing the capability for improved-feature detail for the dif-

ferent spectral estimators with SNR = 20 dB. (a) 1-D classical periodogram

estimator. (b) 1-D AR Yule-Walker estimator. (c) 1-D lattice-Burg estimator.

(d) the new fast 1-D covariance LS-based MV estimator. (e) the new fast 1-D

modified covariance LS-based MV estimator.
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FIGURE 4.4. Close up of the peaks in different spectral estimators. (a) 1-D

AR-Yule Walker estimator. (b) 1-D lattice-Burg estimator. (c) the new fast 1-D

covariance LS-based MV estimator. (d) the new fast 1-D modified covariance

LS-based MV estimator (zoomed in from Fig. 4.3).
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FIGURE 4.5. Comparing the capability for improved-feature detail for the dif-

ferent spectral estimators with SNR = 10 dB. (a) 1-D classical periodogram

estimator. (b) 1-D AR Yule-Walker estimator. (c) 1-D lattice-Burg estimator.

(d) the new fast 1-D covariance LS-based MV estimator. (e) the new fast 1-D

modified covariance LS-based MV estimator.
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FIGURE 4.6. Close up of the biased phenomenon in different estimators. (a)

1-D AR-Yule Walker estimator. (b) 1-D lattice-Burg estimator. (c) the new fast

1-D covariance LS-based MV estimator. (d) the new fast 1-D modified covariance

LS-based MV estimator (zoomed in from Fig. 4.5).
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FIGURE 4.8. A six-order AR(6) process with driving noise variance ρω = 0.01

described by Eq. 4.4. (a) The positions of its poles. (b) True spectral density of

the AR(6) process.
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FIGURE 4.9. Response of four spectral estimators to the AR(6) process. Over-

lapped estimates of 50 realizations, each of 400-samples, are shown for each

method. (a) 1-D AR Yule-Walker estimator. (b) 1-D lattice-Burg estimator.

(c) the new fast 1-D covariance LS-based MV estimator. (d) the new fast 1-D

modified covariance LS-based MV estimator.
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FIGURE 4.10. A set of 1-D spectral estimators of a 64-complex-point test se-

quence (order p = 12, sampling frequency fs = 2500 Hz). (a) true spectra. (b)

1-D classical periodogram estimate. (c) 1-D AR Yule-Walker estimator. (d) 1-D

lattice-Burg estimator. (e) the new fast 1-D covariance LS-based MV estimator.

(f) the new fast 1-D modified covariance LS-based MV estimator.
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FIGURE 4.11. Close up of the biased peak phenomenon in different estimators

(order p = 12). (a) 1-D lattice-Burg estimator. (b) the new fast 1-D covariance

LS-based MV estimator (zoomed in from Fig. 4.10).

(a) (b)

−0.33 −0.32 −0.31 −0.3 −0.29 −0.28 −0.27
−45

−40

−35

−30

−25

−20

−15

−10

−5
ESTIMATED PSD by ACS−BASED MVSE with LATTICE−BURG ALG.

FRACTION OF SAMPLING FREQUENCY

R
E

LA
T

IV
E

  P
S

D
  (

dB
)

−0.31 −0.305 −0.3 −0.295 −0.29

−50

−45

−40

−35

−30

−25

−20

−15

−10

ESTIMATED PSD by FAST ALG. of MODIFIED COVARIANCE LSE−MVSE

FRACTION OF SAMPLING FREQUENCY

R
E

LA
T

IV
E

  P
S

D
  (

dB
)

FIGURE 4.12. Close up of the line splitting phenomenon in different estimators

(order p = 16). (a) 1-D lattice-Burg estimator. (b) the new fast 1-D modified

covariance LS-based MV estimator (zoomed in from Fig. 4.10).
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(a) (b)

(c) (d)

FIGURE 4.13. Photos of the acquisition system of ISAR radar data for an actual

truck. (a) 10-story microwave anechoic chamber. (b) truck was set on a pylon in

the middle of the chamber. (c) close up the front of truck. (d) close up the rear

of the truck. (The data were collected by Dr.Marple with permission for use in

this thesis.)
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FIGURE 4.14. Illustration of basic steps to create 1-D Doppler radar data and

2-D synthetic aperture radar data that can be used to create radar imagery by

2-D spectral analysis.
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FIGURE 4.15. Truck radar echoes spectral estimates by different 1-D spectral

estimators (center azimuth is 47 degrees). (a) 1-D classical periodogram estimator.

(b) 1-D covariance AR estimator. (c) the new fast 1-D covariance LS-based MV

estimator. (d) the new fast 1-D modified covariance LS-based MV estimator.
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FIGURE 4.16. Truck spectral estimator by different 1-D spectral estimates (cen-

ter azimuth is 75 degrees). (a) 1-D classical periodogram estimator. (b) 1-D

covariance AR estimator. (c) the new fast 1-D covariance LS-based MV estima-

tor. (d) the new fast 1-D modified covariance LS-based MV estimator.
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5. TWO-DIMENSIONAL MINIMUM VARIANCE SPECTRAL
ESTIMATORS: CONCEPTUAL AND ESTIMATION

TECHNIQUES

5.1. Autocorrelation-Based 2-D Minimum Variance Spectral Estima-
tion: Doubly-Toeplitz Autocorrelation Case

To develop a 2-D version of the minimum variance spectral estimator, it

is convenient to consider the case of a 2-D [p1, p2]-th order adaptive filter with

parameters hp[k1, k2] defined over [0 ≤ k1 ≤ p1, 0 ≤ k2 ≤ p2] in the first-quadrant

(Q1) plane. Assume that a 2-D discrete random process x[n1, n2], 1 ≤ n1 ≤ N1

and 1 ≤ n2 ≤ N2, complex-valued (in general) and zero-mean, passes through the

2-D FIR filter. The filter output y[n1, n2] is defined as

y[n1, n2] =

p2∑

k2=0

p1∑

k1=0

hp[k1, k2] x[n1 − k1, n2 − k2] = xT

p [n1, n2] hp (5.1)

of row order p1 and column order p2. Note that, for purposes of the algorithms

to be described, one assumes that the row order p1 is a fixed order while the

column order p2 is a variable order, so that the recursive order will be p = p2

in Eq. 5.1. We shall also assume that p2 ≥ p1 for most efficient computation,

otherwise we should switch the roles of p1 and p2, and let the recursive order be

p = p1. When either p1 or p2 equals zero, the 2-D adaptive filter reduces to the

usual 1-D adaptive filter. In practice, we choose p1 < N1 and p2 < N2. In Eq. 5.1,

the row vector of 2-D adaptive filter parameters

hT

p2
=

(
hp2 [0, 0], · · · , hp2 [p1, 0], hp2 [0, 1], · · · , hp2 [p1, 1],

· · · · · · , hp2 [0, p2], · · · , hp2 [p1, p2]

)
(5.2)

has dimension (p1+1)(p2+1)×1. The column vector of 2-D data vector xp2 [n1, n2]

has dimension (p1 + 1)(p2 + 1)× 1



68

xT

p2
[n1, n2] =

(
x[n1, n2], · · · , x[n1 − p1, n2], x[n1, n2 − 1], · · · , x[n1 − p1, n2 − 1],

· · · · · · , x[n1, n2 − p2], · · · , x[n1 − p1, n2 − p2]

)
(5.3)

where T represents transpose. The statistical expectation of the 2-D adaptive filter

output variance (which has a subscript p2 to denote its recursive dependence on

the variable dimension p2) is

ρp2 = E{|y[n1, n2]|2} = hH

p2
E{x∗p2

[n1, n2] x
T

p2
[n1, n2]}hp2 = hH

p2
Rp2

hp2 (5.4)

in which a bold font symbol with a bar under it, such as R, denotes a block

matrix or a block vector. The (p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) doubly-Toeplitz

autocorrelation matrix is

Rp2
=




r[0, 0] · · · r[−p1, 0] r[0,−p2] · · · r[−p1,−p2]

...
. . .

... · · · ...
. . .

...

r[p1, 0] · · · r[0, 0] r[p1,−p2] · · · r[0,−p2]

...
. . .

...

r[0, p2] · · · r[−p1, p2] r[0, 0] · · · r[−p1, 0]

...
. . .

... · · · ...
. . .

...

r[p1, p2] · · · r[0, p2] r[p1, 0] · · · r[0, 0]




(5.5)

and r[m1,m2] = E{x[n1 +m1, n2 +m2]x
∗[n1, n2]} are the autocorrelation sequence

elements. The autocorrelation matrix Rp2
has an alternative representation

Rp2
=




Rp2 [0] Rp2 [−1] · · · Rp2 [−p2]

Rp2 [1] Rp2 [0] · · · Rp2 [−(p2 − 1)]

...
...

. . .
...

Rp2 [p2] Rp2 [p2 − 1] · · · Rp2 [0]




(5.6)
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in which each block element has the structure

Rp2 [i] =




r[0, i] r[−1, i] · · · r[−p1, i]

r[1, i] r[0, i] · · · r[−(p1 − 1), i]

...
...

. . .
...

r[p1, i] r[p1 − 1, i] · · · r[0, i]




(5.7)

for −p2 ≤ i ≤ p2 is a (p1 +1)× (p1 +1) Toeplitz matrix. The 2-D doubly-Toeplitz

autocorrelation matrix is hermitian and centrosymmetric, that is,

Rp2
= RH

p2
, Rp2

= J R∗
p2
J ,

where J is a (p1 +1)(p2 +1)× (p1 +1)(p2 +1) reflection matrix with the property

JJ = I, where I is an identity matrix. Although, each element matrix Rp2 [i] is

not hermitian, it is Toeplitz, and it satisfies the following conjugate property

Rp2 [−i] = R∗
p2

[i].

The minimum variance spectral estimator of the 2-D random process is obtained

by minimizing the 2-D output variance subject to the constraint that, at a selected

dual frequency (f1, f2), the gain is unity, that is, eH
p2

(f1, f2)hp2 = 1. The complex

sinusoidal vector in Q1 is defined as

eT

p2
(f1, f2) =

(
ep2(f1), exp(j2πf2 T2) ep2(f1), · · · , exp(j2πf2 [p2] T2) ep2(f1)

)
(5.8)

with dimension 1× (p2 + 1), in which e(f1) is of dimension 1× (p1 + 1)

eT

p2
(f1) =

(
1, exp(j2πf1T1), · · · , exp(j2πf1[p1]T1)

)
(5.9)

and T1 and T2 are the sampling intervals. The result of the constrained minimiza-

tion of the variance is

ρ2DMV−acs =
1

ep2
H(f1, f2) R−1

p2
ep2(f1, f2)

. (5.10)
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Scaling the variance by T1T2 yields units of power per Hz of bandwidth, that

is, it is a 2-D power spectral density. Letting the frequencies range over

(−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2) in Hz or meters/cycle, we ar-

rive at the definition of the 2D MVSE [15]

P2DMV−acs(f1, f2) = T1 T2 ρMV =
T1 T2

ep2
H(f1, f2) R−1

p2
ep2(f1, f2)

. (5.11)

5.2. Least-Squares-Based 2-D Minimum Variance Spectral Estimation:
Covariance Case

Assume that a 2-D finite data record of N1×N2 complex-valued (in general)

samples is used to construct the 2-D adaptive FIR filter for the MVSE in Q1. The

least-squares covariance 2-D MVSE is based on the concept of separately filtering

the 2-D sampled data x[n1, n2] over the intervals [1 ≤ n1 ≤ N2, 1 ≤ n2 ≤ N2] in

both a forward and a backward direction through the 2-D FIR filter of row order

p1 and column order p2. In anticipation of the fast computational algorithm to be

proposed in the next section, we assume that the order p1 is fixed and the order

p2 is adjustable. Normally p1 < N1 and p2 < N2. The forward filtered output yf

and the backward filtered output yb are defined respectively as

yf [n1, n2] =

p2∑

k2=0

p1∑

k1=0

h̄a
p[k1, k2] x[n1 − k1, n2 − k2] = xT

p [n1, n2] h̄
a
p (5.12)

yb[n1, n2] =

p2∑

k2=0

p1∑

k1=0

h̄b
p[k1, k2] x[n1 − p1 + k1, n2 − p2 + k2] = xT

p [n1, n2] Jh̄
b
p

where h̄
a
p and h̄

b
p are the forward and backward 2-D FIR filter parameters, respec-

tively. Similar to the discussion in Section 5.1, we select p = p2. For most efficient

computation, we shall assume p2 ≥ p1. If not, the one can switch the roles of

p1 and p2, in which case p = p1 for a variable p1 and a fixed p2. The forward
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parameter vector h̄
a
p2

of the 2-D FIR filter is similar to the definition in Eq. 5.2,

in which its alternative expression

(h̄
a
p2

)T =

(
(h̄

a
p2

[0])T , (h̄
a
p2

[1])T , · · · , (h̄
a
p2

[p2])
T

)
(5.13)

is a block vector of block dimension 1 × (p2 + 1). Each vector element is of

dimension 1× (p1 + 1)

(h̄
a
p2

[k])T =

(
h̄a

p2
[0, k], h̄a

p2
[1, k], · · · , h̄a

p2
[p1, k]

)
(5.14)

for 0 ≤ k ≤ p2. The definition of the data vector xp2 [n1, n2] of dimension

(p1 + 1)(p2 + 1) × 1 was defined previously in Eq. 5.3. The backward parameter

vector

(h̄
b
p2

)T =

(
(h̄

b
p2

[0])T , (h̄
b
p2

[1])T , · · · , (h̄
b
p2

[p2])
T

)
(5.15)

is of dimension 1× (p2 + 1) with vector elements each of dimension 1× (p1 + 1)

(h̄
b
p2

[k])T =

(
h̄b

p2
[0, k], h̄b

p2
[1, k], · · · , h̄b

p2
[p1, k]

)
(5.16)

for 0 ≤ k ≤ p2. Thus, Eq. 5.12 could be reformulated as

yf [n1, n2] = xT

p2
[n1, n2] h̄

a
p2

(5.17)

yb[n1, n2] = xT

p2
[n1, n2]J h̄

b
p2

.

To solve the 2-D least squares normal equations of the 2-D covariance interval

window of linear prediction, we shall assume that 2-D data is only available over

a 2-D range of 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2, so that valid 2-D FIR outputs for Q1 can

only be formed over the intervals p1 +1 ≤ n1 ≤ N1 and p2 +1 ≤ n2 ≤ N2 without

running off the ends of the data. The statistical expectation of the forward filter

output variance may then be estimated as, if normalized by 1/
[
(N1−p1)(N2−p2)

]
,
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ˆ̄ρp2 =
1

(N1 − p1)(N2 − p2)

N2∑
n2=p2+1

N1∑
n1=p1+1

|yf [n1, n2]|2 (5.18)

=
1

(N1 − p1)(N2 − p2)
(h̄

a
p2

)H

( N2∑
n2=p2+1

N1∑
n1=p1+1

x∗p2
[n1, n2]x

T

p2
[n1, n2]

)
h̄

a
p2

=
1

(N1 − p1)(N2 − p2)
(h̄

a
p2

)H
(
XH

p2
Xp2

)
h̄

a
p2

in which the (N2 − p2)× (p2 + 1) rectangular block Toeplitz data matrix

Xp2
=




x[p2 + 1] x[p2] · · · x[1]

x[p2 + 2] x[p2 + 1] · · · x[2]

...
...

. . .
...

x[N2] x[N2 − 1] · · · x[N2 − p2]




(5.19)

also has elements

x[k] =




x[p1 + 1, k] x[p1, k] · · · x[1, k]

x[p1 + 2, k] x[p1 + 1, k] · · · x[2, k]

...
...

. . .
...

x[N1, k] x[N2 − 1, k] · · · x[N1 − p1, k]




(5.20)

which themselves form rectangular Toeplitz 2-D data matrices of dimension

(N1 − p1)× (p1 + 1) over 1 ≤ k ≤ N2.

We minimize the estimated filter output variance ˆ̄ρp2 subject to the same

unit gain constraint as applied to the 2-D ACS-based MVSE, at a 2-D frequency

(f01 , f02), that is eH
p2

(f01 , f02) h̄
a
p2

= 1, and then scale the minimized variance

ˆ̄ρ2DMV by T1T2 to yield the following 2-D PSD. Letting the 2-D frequency range

over (−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2) in Hz or meters/cycle, the

2-D covariance LS-based MVSE has the formulation

ˆ̄P2DMV−cov(f1, f2) = T1 T2 ˆ̄ρp2 =
T1 T2

eH
p2

(f1, f2)
ˆ̄R−1

p2
ep2(f1, f2)

(5.21)
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in which the complex sinusoidal vector e(f1, f2) for Q1 is defined in Eq. 5.8 and

Eq. 5.9, and the product of the block data matrices Eq. 5.19 is

ˆ̄Rp2
= XH

p2
Xp2

=




ˆ̄Rp2 [0, 0] ˆ̄Rp2 [0, 1] · · · ˆ̄Rp2 [0, p2]

ˆ̄Rp2 [1, 0] ˆ̄Rp2 [1, 1] · · · ˆ̄Rp2 [1, p2]

...
...

. . .
...

ˆ̄Rp2 [p2, 0] ˆ̄Rp2 [p2, 1] · · · ˆ̄Rp2 [p2, p2]




(5.22)

of dimension (p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1), and ˆ̄Rp2 [i, j] for 0 ≤ i, j ≤ p2 is

defined as

ˆ̄Rp2 [i, j] =

N2∑
m=p2+1

xH[m− i]x[m− j] (5.23)

which forms a (p1 + 1)× (p1 + 1) square matrix

ˆ̄Rp2 [i, j] =




ˆ̄rp2 [0, j − i] ˆ̄rp2 [1, j − i] · · · ˆ̄rp2 [p1, j − i]

ˆ̄rp2 [−1, j − i] ˆ̄rp2 [0, j − i] · · · ˆ̄rp2 [p1 − 1, j − i]

...
...

. . .
...

ˆ̄rp2 [−p1, j − i] ˆ̄rp2 [−(p1 − 1), j − i] · · · ˆ̄rp2 [0, j − i]




(5.24)

where ˆ̄rp2 [i, j] =
∑N1

k=p1+1 xH[k, m − i] x[k − l, m − j], for −p1 ≤ l ≤ p1, is

an element of ˆ̄Rp2 [i, j].
ˆ̄Rp2

is a LS-based stochastic approximation of the

(p1 + 1)(p2 + 1) × (p1 + 1)(p2 + 1) autocorrelation matrix Rp2
in the known au-

tocorrelation case; it does not have the doubly Toeplitz structure of the known

autocorrelation case, but it does have a near-to-doubly-Toeplitz structure which

will be exploited to develop a computationally efficient algorithm for the solution

of the 2-D covariance LS-based MVSE, which will be presented in Section 6.2.1.

If either p1 or p2 is equal to zero, the 2-D linear prediction then reduces to the 1-D

usual linear prediction solution, in which case the 2-D covariance LS-based MVSE

in Eq. 5.21 will yield numerical results identical to the 1-D covariance LS-based

MVSE solution [30].
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One can define the 2-D covariance LS-MVSE in Eq. 5.21 for the three

other quarter planes Q2, Q3 and Q4 in a similar manner. Analogous to Eq. 5.8

and Eq. 5.9, the complex sinusoidal vectors ei, (i = 2, 3, 4) for Q2 to Q4 are defined

as

(e2
p2

(f1, f2))
T =

(
exp(−j2πf2 [p2] T2) e

2
p2

(f1), exp(−j2πf2 [p2 − 1]T2) e
2
p2

(f1), · · · ,

exp(−j2πf2 T2) e
2
p2

(f1), e2
p2

(f1)

)

(e2
p2

(f1))
T =

(
1, exp(j2πf1T1), · · · , exp(j2πf1[p1]T1)

)
,

and

(e3
p2

(f1, f2))
T =

(
exp(−j2πf2 [p2] T2) e

3
p2

(f1), exp(−j2πf2 [p2 − 1]T2) e
3
p2

(f1), · · ·

exp(−j2πf2 T2) e
3
p2

(f1), e3
p2

(f1)

)T

(e3
p2

(f1))
T =

(
exp(−j2πf1[p1]T1), exp(−j2πf1[p1 − 1]T1), · · · , 1

)
,

and

(e4
p2

(f1, f2))
T =

(
e4

p2
(f1), exp(j2πf2 T2) e

4
p2

(f1), · · · , exp(j2πf2 [p2 − 1] T2) e
4
p2

(f1),

exp(j2πf2 [p2] T2) e
4
p2

(f1)

)T

(e4
p2

(f1))
T =

(
exp(−j2πf1[p1]T1), exp(−j2πf1[p1 − 1]T1), · · · , 1

)
.

Substituting ei
p2

(i = 2, 3, 4) into Eq. 5.21 yields the 2-D covariance LS-based

MVSE formulation for the second, third and fourth quadrants (Q2, Q3 and Q4).

Each formulation in Q2, Q3 and Q4 achieves identically numerical results of the

2-D covariance LS-based MVSE formulated in Eq. 5.21 for Q1. Although MVSE is

a nonparametric spectral estimation, it is developed starting from an adaptive 2-D

filter with 2-D AR parameters. However, the adaptive parameters disappear in the
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final PSD expression in Eq. 5.21; that expression only depends on the inverse data

product matrix ˆ̄R−1
p2

, independent of the quadrant selected. Therefore, it is not

necessary to calculate the 2-D covariance LS-based MVSE for all four quadrants.

This is in contrast to the 2-D AR estimator, in which each 2-D AR quadrant

estimates skews the spectral estimate in different directions.

5.3. Least-Squares-Based 2-D Minimum Variance Spectral Estimation:
Modified Covariance Case

The 2-D modified covariance LS-based MVSE was developed in the same

manner as 1-D modified covariance LS-based MVSE. The 2-D modified covariance

LS-based MVSE is a combination of filtering the signal process x[n1, n2] over the

intervals [1 ≤ n1 ≤ N2, 1 ≤ n2 ≤ N2] in both forward and backward directions

through the 2-D FIR filter in one variance expression. The forward filtered output

yf and the backward filtered output yb are defined respectively as

yf [n1, n2] =

p2∑

k2=0

p1∑

k1=0

h̃a
p[k1, k2] x[n1 − k1, n2 − k2] = xT

p [n1, n2] h̃
a

p (5.25)

yb[n1, n2] =

p2∑

k2=0

p1∑

k1=0

h̃a∗
p [k1, k2] x[n1 − p1 + k1, n2 − p2 + k2]

= xT

p [n1, n2] Jh̃
a∗
p

where h̃
a

p is forward 2-D FIR filter parameters. Similar to the discussion in Sec-

tion 5.1, one selects p = p2 and assumes that p2 ≥ p1 and p1 < N1, p2 < N2. The

alternative expression of the forward parameter vector is defined as

(h̃
a

p2
)T =

(
(h̃

a

p2
[0])T , (h̃

a

p2
[1])T , · · · , (h̃

a

p2
[p2])

T

)
(5.26)
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which is a block vector of block dimension (p2 + 1)× 1 with vector elements, each

of which has dimension (p1 + 1)× 1

(h̃
a

p2
[k])T =

(
h̃a

p2
[0, k], h̃a

p2
[1, k], · · · , h̃a

p2
[p1, k]

)
(5.27)

for 0 ≤ k ≤ p2. The definition of the data vector xp2 [n1, n2] of dimension

(p1 + 1)(p2 + 1)× 1 was defined in Eq. 5.3. Eq. 5.25 can be reformulated as

yf [n1, n2] = xT

p2
[n1, n2] h̃

a

p2
(5.28)

yb[n1, n2] = xT

p2
[n1, n2]J h̃

a∗
p2

.

To solve the 2-D least squares normal equations of the 2-D covariance interval

window of LP, we shall assume that 2-D data is only available over the 2-D range

(1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2), so that valid 2-D FIR outputs for Q1 can only be

formed over the intervals p1 +1 ≤ n1 ≤ N1 and p2 +1 ≤ n2 ≤ N2 without running

off the ends of the data. The statistical expectation of the forward filter output

variance may then be estimated as, if normalized by 1/
[
(N1 − p1)(N2 − p2)

]
,

ˆ̃ρp2
=

1

(N1 − p1)(N2 − p2)

N2∑
n2=p2+1

N1∑
n1=p1+1

|yf [n1, n2]|2 (5.29)

=
1

(N1 − p1)(N2 − p2)
(h̃

a

p2
)H

( N2∑
n2=p2+1

N1∑
n1=p1+1

x∗p2
[n1, n2]x

T

p2
[n1, n2]

+Jxp2 [n1, n2]x
H

p2
[n1, n2]J

)
h̃

a

p2

=
1

(N1 − p1)(N2 − p2)
(h̃

a

p2
)H

(
XH

p2
Xp2

+ JXT

pX
∗
pJ

)
h̃

a

p2

in which the (N2 − p2) × (p2 + 1) rectangular block Toeplitz data matrix Xp2
is

defined in Eq. 5.19 .

The estimated filter output variance ˆ̃ρp2
is minimized, subject to the same

unit gain constraint at a 2-D frequency (f01 , f02) as applied to the 2-D ACS-based
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MVSE, that is eH
p2

(f01 , f02) (h̃
a

p2
) = 1. Scaling the minimized variance ˆ̃ρp2

by

T1T2 then yields the following 2-D PSD. Letting the 2-D frequency range over

(−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2) in Hz or meters/cycle, the 2-D

modified covariance LS-based MVSE has the formulation

ˆ̃
P 2DMV−mod(f1, f2) = T1 T2

ˆ̃ρ2DMV =
T1 T2

eH
p2

(f1, f2)
ˆ̃
R
−1

p2
ep2(f1, f2)

(5.30)

in which the complex sinusoidal vector e(f1, f2) for Q1 is defined in Eq. 5.8 and

Eq. 5.9, and the product of the block data matrices forms the
ˆ̃
Rp2

matrix as

ˆ̃
Rp2

= XH

p2
Xp2

+ JXT

pX
∗
pJ =




ˆ̃
Rp2 [0, 0]

ˆ̃
Rp2 [0, 1] · · · ˆ̃

Rp2 [0, p2]

ˆ̃
Rp2 [1, 0]

ˆ̃
Rp2 [1, 1] · · · ˆ̃

Rp2 [1, p2]

...
...

. . .
...

ˆ̃
Rp2 [p2, 0]

ˆ̃
Rp2 [p2, 1] · · · ˆ̃

Rp2 [p2, p2]




(5.31)

which has dimension (p1 + 1)(p2 + 1) × (p1 + 1)(p2 + 1), and the block elements

ˆ̃
Rp2 [i, j] for 0 ≤ i, j ≤ p2 are defined as

ˆ̃
Rp2 [i, j] =

N2∑
m=p2+1

(
xH[m− i]x[m− j] (5.32)

+JxT [m− (p2 + 1) + i]x∗[m− (p2 + 1) + j]J

)

which forms a (p1 + 1)× (p1 + 1) square matrix

ˆ̃
Rp2 [i, j] =




ˆ̃rp2 [0, j − i] ˆ̃rp2 [1, j − i] · · · ˆ̃rp2 [p1, j − i]

ˆ̃rp2 [−1, j − i] ˆ̃rp2 [0, j − i] · · · ˆ̃rp2 [p1 − 1, j − i]

...
...

. . .
...

ˆ̃rp2 [−p1, j − i] ˆ̃rp2 [−(p1 − 1), j − i] · · · ˆ̃rp2 [0, j − i]




(5.33)

where each element

ˆ̃rp2 [l, j − i] =

N1∑

k=p1+1

(
x∗[k, m− i] x[k − l, m− j]

+x[k, m− (p1 + 1) + i] x∗[k − l,m− (p1 + 1) + j]

)
,
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for −p1 ≤ l ≤ p1. Note that
ˆ̃
Rp2

is centrosymmetric and hermitian

ˆ̃
Rp2

= J
ˆ̃
R
∗
p2
J,

ˆ̃
Rp2

=
ˆ̃
R

H

p2
.

ˆ̃
Rp2

is a LS-based stochastic approximation of the (p1+1)(p2+1)×(p1+1)(p2+1)

autocorrelation matrix Rp2
in the known autocorrelation case; however, it does

not have the doubly Toeplitz structure of the known autocorrelation case, but it

does have a near-to-doubly-Toeplitz structure which can be exploited to develop a

computationally efficient algorithm for the solution of the 2-D modified covariance

LS-based MVSE, which will be presented in Section 6.3.1. When either p1 or p2

is equal to zero, the 2-D LP solution reduces to the usaul 1-D LP solution, so

that the 2-D modified covariance LS-based MVSE in Eq. 5.30 yields numerical

results equal to the 1-D modified covariance LS-based MVSE solution. The 2-D

covariance LS-based MVSE has same dimension-reduction solution property.

Similarly, the 2-D modified covariance LS-based MVSE has identical nu-

merical solutions in Q2, Q3 and Q4 as that obtained in Q1. Therefore, it is not

necessary to calculate the 2-D modified covariance LS-based MVSE for quadrants

Q2 to Q4 as well.
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6. FAST SOLUTIONS FOR TWO-DIMENSIONAL MINIMUM
VARIANCE SPECTRAL ESTIMATION

This chapter presents the development of the two new fast computational

solutions of the 2-D LS-based MVSE in the covariance case and modified covari-

ance cases, whose flowcharts are illustrated in Fig. 1.4 and Fig. 1.5. We will start

from a review of the fast computational solution of the 2-D ACS-based MVSE.

6.1. Autocorrelation-Based 2-D Minimum Variance Spectral Estima-
tion: Doubly-Toeplitz Autocorrelation Case

6.1.1. Review Fast Computational Solution

Marple [24] developed a fast algorithm in the case of the 2-D lattice method.

This algorithm was developed as the result of insights into the fast algorithm of the

multichannel MVSE [14], which recursively solved the multichannel Yule-Walker

normal equations for all intermediate orders from order 1 to the desired highest

order p2. The fast 2-D algorithm is based on solving for a block parameter AR

matrix A of the 2-D lattice linear prediction, rather than based on the direct

solution for h in Eq. 5.2. The special Yule-Walker normal equations of order p2

are

Rp2




I

Ap2 [1]

...

Ap2 [p2]




=




Pp2

0

...

0




. (6.1)

Since the doubly-Toeplitz autocorrelation matrix Rp2
is hermitian and centrosym-

metric, the Yule-Walker normal equation Eq. 6.1 may alternatively be expressed
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as

Rp2




JA∗
p2

[p2]J

JA∗
p2

[p2 − 1]J

...

I




=




0

0

...

JP∗
p2
J




(6.2)

in which the (p1 + 1)(p2 + 1) × (p1 + 1)(p2 + 1) dimensional block matrix Rp2

is defined in Eq. 5.5 and Eq. 5.6. The special 2-D AR parameters Ap2 [k] for

0 ≤ k ≤ p2 and special 2-D AR variance Pp2 are (p1 + 1) × (p1 + 1) square

matrices. The variance Pp2 is a positive definite hermitian matrix. The I, 0

and J matrices are the (p1 + 1) × (p1 + 1) identity matrix, zero matrix, and

reflection matrix, respectively. The (p1 +1)× (p1 +1) dimensional special 2-D AR

parameters Am[m] and special 2-D AR variance Pm for 0 ≤ m ≤ p2 can be solved

by the 2-D Levinson recursion for the Yule-Walker equations Eq. 6.1. Analogous

to the inverse expressions of the 1-D autocorrelation matrix and the multichannel

autocorrelation matrix in [15], one can develop a similar inverse formula for the

2-D doubly-Toeplitz autocorrelation matrix, which is expressed as the difference

of the products of triangular Toeplitz matrices

R−1
p2

= Ap2
(PA

p2
)−1AH

p2
−Bp2

(PB
p2

)−1BH

p2
(6.3)

where the (p2 + 1)× (p2 + 1) block matrices are formed as

Ap2
=




I 0 · · · 0

Ap2 [1]
. . . . . .

...

...
. . . . . . 0

Ap2 [p2] · · · Ap2 [1] I




, (6.4)
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Bp2
=




0 0 · · · 0

(JA∗
p2

[p2]J)
. . . . . .

...

...
. . . . . . 0

(JA∗
p2

[1]J) · · · (JA∗
p2

[p2]J) 0




, (6.5)

and the (p2 + 1)× (p2 + 1) block matrices are

PA
p2

=




Pp2 0 · · · 0

0
. . . . . .

...

...
. . . . . . 0

0 · · · 0 Pp2




, (6.6)

PB
p2

=




(JP∗
p2
J) 0 · · · 0

0
. . . . . .

...

...
. . . . . . 0

0 · · · 0 (JP∗
p2
J)




, (6.7)

and the (p1 + 1)× (p1 + 1) matrix

Pp2 =




ρp2 · · · 0

...
. . .

...

0 · · · ρp2




(6.8)

is formed from the ρp2 output variance of linear prediction. Substituting the

inverse formula Eq. 6.3 into Eq. 5.11 and performing some matrix algebra yields

the alternative 2-D MVSE formulation

P2DMV−acs(f1, f2) =
T1 T2∑p1

m=−p1

∑p2

k=−p2
α[m, k] e−j2π[f1mT1+f2kT2]

(6.9)
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where α[m, k] is obtained from the 2-D FIR filter parameters A by a weighted

correlation. For its definition and derivation one could refer to Eq. 6.36 in Sec-

tion 6.2.1. A 2-D FFT can be used for both the fast correlation computation of

α[m, k] and for evaluating the denominator expression of Eq. 6.9 over the range

[−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2]. The fast computational algorithm

requires computational complexity proportional to order p5 and memory storage

proportional to order p3, compared to the computational complexity of p6 and

storage of p4 required by direct evaluation of the 2-D MVSE function in Eq. 5.11.

In a similar manner, one can define the PSD of Eq. 5.11 in the second,

third and forth quadrants (Q2, Q3 and Q4). The numerical results will be identical

to Eq. 5.11 and Eq. 6.9, that is, there is no numerical difference among the first,

second, third and fourth quadrant minimum variance estimators, in contrast to the

quadrant-based AR spectral estimates which are generally numerically different

and biased [11].

The next two sections will introduce the derivation of 2-D covariance least-

squares-based minimum variance spectral estimation and its fast computational

algorithm.

6.1.2. Computation and Storage Counts

The Table 6.1 summarizes the savings of the computational complexity

and the memory storage required by the fast 2-D ACS-based MVSE in Eq. 6.9

versus the direct method in Eq. 5.11. The computational complexity of the fast

solutions of the 2-D ACS-based MVSE is proportional to p5, with memory storage

requirements proportional to p3, versus p6 computation and p4 storage if solved

by using the direct 2-D solution approach.
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2-D ACS-based MVSE

(p1 = p2 = p,N1 = N2 = N,Nf1 = Nf2 = Nf )

Fast Solution Direct Method

Computational ×
13
8 p5 + 2Nf log2(Nf ) 2

3p6 + 5
3p4 − 1

3p2 + 2N2
f

Complexity + 3
2p5 + 2Nf log2(Nf ) 2

3p6 − 2
3p2 + 2N2

f

Storage 3p3 + 2 + Nf p4 + Nf

TABLE 6.1. Comparison of the Computation and Storage Counts for 2-D auto-

correlation-based (ACS-Based) MVSE. Note: p1, p2 are the orders of the estimator

in 2-D directions, N1, N2 are the size of 2-D data sequence, Nf1, Nf2 are the num-

bers of 2-D FFT frequency bins, × is the number of complex multiplications, and

+ is the number of complex additions.

6.2. Least-Squares-Based 2-D Minimum Variance Spectral Estimation:
Covariance Case

6.2.1. Development of Fast Computational Solution

The computational burden of 2-D LS-MVSE is twofold. First, calculating

the inverse autocorrelation matrix is time consuming. Second, the power spectral

estimator has to be calculated over all frequencies (f1, f2) of interest. To develop

a fast computational algorithm of the 2-D least-squares-based minimum variance

spectral estimator, the first step is to decompose the inverse matrix of the near-

to-doubly-Toeplitz 2-D data product matrix. Our proof is analogous to the devel-

opment of the inverse doubly Toeplitz autocorrelation matrix in Eq. 6.3, which

was expressed in terms of differences of products of triangular Toeplitz matrices
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formed from the 2-D AR parameters. This section will develop the derivation of

the inverse formula of the near-to-doubly-Toeplitz 2-D data product matrix.

Inspired by Eq. 6.1 and Eq. 6.2, the decomposition of the inverse 2-D

near-to-doubly-Toeplitz data product matrix ˆ̄R−1
p2

is based on the solution of the

Yule-Walker normal equations of order p2

ˆ̄Rp2




I

āp2


 =




P̄
A
p2

0


 (6.10)

and

ˆ̄Rp2




J b̄p2

I


 =




0

P̄
B
p2


 (6.11)

where the new special AR vectors of dimension (p1 + 1)(p2 + 1)× (p1 + 1) are

āT

p2
=

(
Ā

T

p2
[1], · · · , Ā

T

p2
[p2]

)
(6.12)

and

b̄
T

p2
=

(
B̄

T

p2
[1], · · · , B̄

T

p2
[p2]

)
, (6.13)

in which Āp2 [k] and B̄p2 [k] for 0 ≤ k ≤ p2 are (p1 + 1) × (p1 + 1) square ma-

trices and Āp2 [0] = B̄p2 [0] = I by definition. The solutions of the Yule-Walker

normal equations have been developed by Marple in [20]. Both P̄
A
p2

and P̄
B
p2

are

positive definite square hermitian matrices of dimension (p1 + 1)× (p1 + 1). The

(p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) dimensional ˆ̄Rp2
is defined in Eq. 5.22. ˆ̄Rp2

is

not Toeplitz, but it does have hermitian symmetry,

ˆ̄Rp2
= ( ˆ̄Rp2

)H .

Based on Eq. 5.22, the crucial decompositions of the inverse of a near-to-doubly-

Toeplitz data product matrix are the following order-index partitions of the

(p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) dimensional matrix ˆ̄Rp2
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ˆ̄Rp2
=




ˆ̄R
′
p2−1

ˆ̄r
′
p2

(ˆ̄r
′
p2

)H ˆ̄Rp2 [p2, p2]




(6.14)

or

ˆ̄Rp2
=




ˆ̄Rp2 [0, 0] (ˆ̄r
′′
p2

)H

ˆ̄r
′′
p2

ˆ̄R
′′
p2−1




(6.15)

in which the (p1 + 1)(p2 + 1)× (p1 + 1) block vectors are defined as

(ˆ̄r
′
p2

)H =

(
ˆ̄RH

p2
[0, p2], · · · , ˆ̄RH

p2
[p2 − 1, p2]

)
, (ˆ̄r

′′
p2

)H =

(
ˆ̄RH

p2
[1, 0], · · · , ˆ̄RH

p2
[p2, 0]

)
.

Also crucial are the following time-index partitions,

ˆ̄R
′
p2

=

N2∑
m=p2+2

xH

p2
[m]xp2

[m] = ˆ̄Rp2
− xH

p2
[p2 + 1]xp2

[p2 + 1] (6.16)

and

ˆ̄R
′′
p2

=

N2−1∑
m=p2+1

xH

p2
[m]xp2

[m] = ˆ̄Rp2
− xH

p2
[N2]xp2

[N2] , (6.17)

where the (N1 − p1)× (p1 + 1)(p2 + 1) dimensional data column block vector is

xp2
[m] =

(
x[m],x[m− 1], · · · ,x[m− p2]

)
(6.18)

in which x[m], 1 ≤ m ≤ N2, are rectangular Toeplitz data matrices of dimension

(N1 − p1)× (p1 + 1) defined in Eq. 5.20. Note that Eq. 5.19 can be alternatively

expressed as

Xp2
=




xp2
[p2 + 1]

xp2
[p2]

...

xp2
[N2]




.
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of dimension (N1 − p1)(N2 − p2) × (p1 + 1)(p2 + 1). The pair of auxiliary

(p1 +1)(p2 +1)× (N1−p1)−dimensional block vectors c̄T
p2

=
(
C̄

T

p2
[0], · · · , C̄

T

p2
[p2]

)

and d̄
T

p2
=

(
D̄

T

p2
[0], · · · , D̄

T

p2
[p2]

)
are also critical to the fast algorithm. They are

defined by

ˆ̄Rp2
c̄p2

= x∗p2
[N2], P̄

C
p2

= I− xp2
[N2] c̄p2

(6.19)

and

ˆ̄Rp2
d̄p2

= x∗p2
[p2 + 1], P̄

D
p2

= I− xp2
[p2 + 1] d̄p2

(6.20)

where (p1 + 1)× (p1 + 1)−dimensional positive definite square hermitian matrices

P̄
C
p2

and P̄
D
p2

, considered as matrix gain adjustment factors associated with the

gain adjustment parameter vectors c̄p2
and d̄p2

. The diagonal values of both P̄
C
p2

and P̄
D
p2

are real-valued. The initial conditions of Eq. 6.19 and Eq. 6.20 are

ˆ̄R0[0, 0] C̄0[0] = x∗[N2] (6.21)

and

ˆ̄R0[0, 0] D̄0[0] = x∗[p2 + 1] . (6.22)

The solutions of Eq.6.19 and Eq.6.20 have been reported by Marple in [20].

Substituting the submatrix partitions Eq. 6.14 and Eq. 6.15 into the left

sides of the Yule-Walker normal equations Eq. 6.11 and Eq. 6.10 yields, respec-

tively,
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ˆ̄R
′
p2−1

ˆ̄r
′
p2

(ˆ̄r
′
p2

)H ˆ̄Rp2 [p2, p2]







B̄p2 [p2 + 1]

...

B̄p2 [1]

I




=




0

...

0

P̄
B
p2




(6.23)




ˆ̄Rp2 [0, 0] (ˆ̄r
′′
p2

)H

ˆ̄r
′′
p2

ˆ̄R
′′
p2−1







I

Āp2 [1]

...

Āp2 [p2 + 1]




=




P̄
A
p2

0

...

0




. (6.24)

The following relations can be easily derived from Eq. 6.23 and Eq. 6.24

ˆ̄r
′
p2

= − ˆ̄R
′
p2−1 J b̄p2

, (ˆ̄r
′
p2

)H J b̄p2
+ ˆ̄Rp2 [p2, p2] = P̄

B
p2

(6.25)

and

ˆ̄r
′′
p2

= − ˆ̄R
′′
p2−1 āp2

, (ˆ̄r
′′
p2

)H āp2
+ ˆ̄Rp2 [0, 0] = P̄

A
p2

. (6.26)

Analogous to the partitioned matrix inversion lemma and the specialized form of

the augmented matrix inversion lemma in [15], the inverse matrix of Eq. 6.14 can

be expressed as

ˆ̄R−1
p2

=




( ˆ̄R
′
p2−1)

−1 + ( ˆ̄R
′
p2−1)

−1ˆ̄r
′
p2
∆−1

p2
(ˆ̄r
′
p2

)H( ˆ̄R
′
p2−1)

−1, −( ˆ̄R
′
p2−1)

−1ˆ̄r
′
p2
∆−1

p2

−∆−1
p2

(ˆ̄r
′
p2

)H ( ˆ̄R
′
p2−1)

−1, ∆−1
p2




(6.27)

in which

∆p2 = ˆ̄Rp2 [p2, p2]− (ˆ̄r
′
p2

)H( ˆ̄R
′
p2−1)

−1ˆ̄r
′
p2

= ˆ̄Rp2 [p2, p2] + (ˆ̄r
′
p2

)H J b̄p2
= P̄

B
p2

, (6.28)
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so that ∆−1
p2

= (P̄
B
p2

)−1 . Substituting Eq. 6.28, Eq. 6.25 and Eq. 6.20 into Eq. 6.27,

ˆ̄R−1
p2

can then be rewritten as

ˆ̄R−1
p2

=




( ˆ̄R
′
p2−1)

−1 + J b̄p2
(P̄

B
p2

)−1b̄
H

p2
J, J b̄p2

(P̄
B
p2

)−1

(P̄
B
p2

)−1b̄
H

p2
J, (P̄

B
p2

)−1




(6.29)

=




( ˆ̄R
′
p2−1)

−1 + d̄p2−1 (P̄
D
p2−1)

−1d̄
H

p2−1 + J b̄p2
(P̄

B
p2

)−1b̄
H

p2
J, Jb̄p2

(P̄
B
p2

)−1

(P̄
B
p2

)−1b̄
H

p2
J, (P̄

B
p2

)−1




Alternatively, the inverse matrix Eq. 6.15 can also be expressed as

ˆ̄R−1
p2

=




(P̄
A
p2

)−1, (P̄
A
p2

)−1āH
p2

āp2
(P̄

A
p2

)−1, ˆ̄R−1
p2−1 + c̄p2−1(P̄

C
p2−1)

−1c̄H
p2−1 + āp2

(P̄
A
p2

)−1āH
p2




. (6.30)

Assume ūp2 [j, k] is a (p1 + 1)× (p1 + 1) block element of ˆ̄R−1
p2

ˆ̄R−1
p2

=




ūp2 [0, 0] ūp2 [0, 1] · · · ūp2 [0, p2]

ūp2 [1, 0] ūp2 [1, 1] · · · ūp2 [1, p2]

...
...

. . .
...

ūp2 [p2, 0] ūp2 [p2, 1] · · · ūp2 [p2, p2]




(6.31)

of (p1 +1)(p2 +1)×(p1 +1)(p2 +1) dimension. From above, the following relations

may be found

ūp2 [0, 0] = (P̄
A
p2

)−1, ūp2 [p2, p2] = (P̄
B
p2

)−1 ,

ūp2 [j, 0] = Āp2 [j](P̄
A
p2

)−1 , ūp2 [0, k] = (P̄
A
p2

)−1Ā
H

p2
[k] ,

ūp2 [p2, p2 − k] = (P̄
B
p2

)−1B̄
H

p2
[k] , ūp2 [p2 − j, p2] = B̄p2 [j](P̄

B
p2

)−1

for 1 ≤ j, k ≤ p2, and
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ūp2 [j, k] = ūp2−1[j, k] + D̄p2−1[j](P̄
D
p2−1)

−1D̄
H

p2−1[k]

+B̄p2 [p2 − j](P̄
B
p2

)−1B̄
H

p2
[p2 − k] ,

ūp2 [j + 1, k + 1] = ūp2−1[j, k] + C̄p2−1[j](P̄
C
p2−1)

−1C̄
H

p2−1[k]

+Āp2 [j + 1](P̄
A
p2

)−1Ā
H

p2
[k + 1] ,

for 0 ≤ j, k ≤ p2 − 1. Combining the last two equations as follows to eliminate

ūp2 [j, k] will then yield

ūp2 [j + 1, k + 1] = ūp2 [j, k] + Āp2 [j + 1](P̄
A
p2

)−1Ā
H

p2
[k + 1] (6.32)

−B̄p2 [p2 − j](P̄
B
p2

)−1B̄
H

p2
[p2 − k] + C̄p2−1[j](P̄

C
p2−1)

−1C̄
H

p2−1[k]

−D̄p2−1[j](P̄
D
p2−1)

−1D̄
H

p2−1[k].

Eq. 6.33 is a recursive relationship that permits all inverse elements to be com-

puted from knowledge of only the Ā and B̄ vectors. The following inverse matrix

relationship may also be developed from Eq. 6.33

ˆ̄R−1
p2

= Āp2
(P̄

A
p2

)−1Ā
H

p2
− B̄p2

(P̄
B
p2

)−1B̄
H

p2
(6.33)

+C̄p2−1(P̄
C
p2−1)

−1C̄
H

p2−1 − D̄p2−1(P̄
D
p2−1)

−1D̄
H

p2−1

in which the (p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) block triangular Toeplitz matrices

Āp2
=




I 0 · · · 0

Āp2 [1]
. . . . . .

...

...
. . . . . . 0

Āp2 [p2] · · · Āp2 [1] I




B̄p2
=




0 · · · · · · 0

B̄p2 [p2]
. . . . . . 0

...
. . . . . .

...

B̄p2 [1] · · · B̄p2 [p2] 0






90

and block diagonal matrices

(P̄
A
p2

)−1 =




(P̄
A
p2

)−1 · · · 0

...
. . .

...

0 · · · (P̄
A
p2

)−1




(P̄
B
p2

)−1 =




(P̄
B
p2

)−1 · · · 0

...
. . .

...

0 · · · (P̄
B
p2

)−1




where each block element is a (p1 + 1) × (p1 + 1) dimensional matrix. The

(p1 + 1)(p2 + 1)× (N1 − p1)(p2 + 1)−dimensional triangular Toeplitz matrices

C̄p2−1 =




0 · · · · · · 0

C̄p2−1[0]
. . . . . . 0

...
. . . . . .

...

C̄p2−1[p2 − 1] · · · C̄p2−1[0] 0




D̄p2−1 =




0 · · · · · · 0

D̄p2−1[0]
. . . . . . 0

...
. . . . . .

...

D̄p2−1[p2 − 1] · · · D̄p2−1[0] 0




each has block elements that are (p1 + 1)× (N1 − p1) dimensional matrices. The

block diagonal matrices

(P̄
C
p2−1)

−1 =




(P̄
C
p2−1)

−1 · · · 0

...
. . .

...

0 · · · (P̄
C
p2−1)

−1






91

(P̄
D
p2−1)

−1 =




(P̄
D
p2−1)

−1 · · · 0

...
. . .

...

0 · · · (P̄
D
p2−1)

−1




are of dimension (N1 − p1)(p2 + 1)× (N1 − p1)(p2 + 1) and each block element is

of dimension (N1 − p1) × (N1 − p1). Based on the substitution of Eq. 6.33 into

Eq. 5.21, the 2-D covariance LS-MVSE can be formulated as

ˆ̄P2DMV−cov(f1, f2) =
T1 T2

eH
p2

(f1)
(∑p2

k=−p2

ˆ̄Ψ[k] e−j2πf2kT2
)
ep2(f1)

(6.34)

in which the (p1+1)×(p1+1) dimension matrix ˆ̄Ψ, formed as a weighted correlation

of Ā and B̄ elements, is defined as

ˆ̄Ψ[k] =





∑p2−k
i=0

[
(p2 + 1− k − i) · Āp2 [i] (P̄

A
p2

)−1 Ā
H

p2
[k + i]

−i · B̄p2 [k + i] (P̄
B
p2

)−1 B̄
H

p2
[i]

+(p2 − k − i) · C̄p2 [i] (P̄
C
p2

)−1 C̄
H

p2
[k + i]

−(p2 − k − i) · D̄p2 [i] (P̄
D
p2

)−1 D̄
H

p2
[k + i]

]
for 0 ≤ k ≤ p2

ˆ̄Ψ
H

[−k] for −p2 ≤ k ≤ 0

where Āp2 [0] = B̄p2 [0] = I, by definition. If we now define the elements of the ˆ̄Ψ

matrix as

ˆ̄Ψ[k] =




ˆ̄Ψk[0, 0] · · · ˆ̄Ψk[0, p1]

...
. . .

...

ˆ̄Ψk[p1, 0] · · · ˆ̄Ψk[p1, p1]




(6.35)

and the α̂ terms as sums along diagonals of the ˆ̄Ψ matrix for 0 ≤ k ≤ p2

ˆ̄α[m, k] =





∑p1−m
n=0

ˆ̄Ψk[n, n + m], for 0 ≤ m ≤ p1

∑p1+m
n=0

ˆ̄Ψk[n−m,n], for −p1 ≤ m < 0 ,
(6.36)



92

then Eq. 6.34 can be alternatively expressed as

ˆ̄P2DMV−cov(f1, f2) =
T1 T2∑p1

m=−p1

∑p2

k=−p2
ˆ̄α[m, k] e−j2π[f1mT1+f2kT2]

. (6.37)

Note that the symmetry property ˆ̄α[m,−k] = ˆ̄α[−m, k] has been used in Eq. 6.37.

The 2-D parameter ˆ̄α is obtained from the 2-D forward and backward AR filter

parameters Ā and B̄. It can be observed that the structure of the denomina-

tor of Eq. 6.37 can be computed using the 2-D FFT of ˆ̄α[m, k] over the interval

(−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2) in Hz or meters/cycle. The

fast computational algorithm requires computational complexity proportional to

p5 and memory storage proportional to p3. This is more efficient than direct

evaluation of the original 2-D LS-MVSE defined in Eq. 5.21, which requires com-

putational complexity proportional to p6 and memory storage proportional to p4.

The fast algorithm of 2-D LS-MVSE is able to save all intermediate order parame-

ters when it recursively calculates the parameters from order 1 to p2. By solving

and saving all intermediate order parameter values, it allows us to search for the

optimal order fit to the data samples. The order selection process does not cost

any extra computation of the set of required parameters. The PSD estimate in

Eq. 6.37 in Q1 is the same as those in Q2, Q3 and Q4 as well, since the special

AR parameter vectors ā and b̄, and the auxiliary factor vectors c̄ and d̄, do not

depend on the selected quadrant. Therefore, the computation of the 2-D least-

squares-based minimum variance spectral estimate based on ˆ̄R−1
p2

does not have

to reprocess the data range into four quadrants, which reduces the overall com-

putational complexity, compared with 2-D AR spectral estimators that depend

upon quadrant selection.
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6.2.2. Computation and Storage Counts

The computation and storage count is summarized in the Table 6.2. The

new algorithm requires a number of multiply operations and a number of add

operations proportional to p5 in order to calculate the set of ˆ̄Ψ[k], 0 ≤ k ≤ p2,

coefficients. A 2-D FFT in Eq. 6.37 is then used to evaluate the denominator of

the LS-based MVSE over a range of frequencies (−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤
f2 ≤ 1/2T2) in Hz or meters/cycle. It only requires memory storage proportional

to p3 to save all of the parameters. This significantly reduces the computational

complexity and memory storage requirements, compared with the direct eval-

uation method Eq. 5.21, whose computational complexity and memory storage

requirements are proportional to p6 and p5, respectively.

6.3. Least-Squares-Based 2-D Minimum Variance Spectral Estimation:
Modified Covariance Case

6.3.1. Development of Fast Computational Solution

In this section, we show the development of the inverse of the near-to-

Toeplitz data product matrix,
ˆ̃
R
−1

p in Eq. 5.31.

Inspired by Eq. 6.1 and Eq. 6.2, the decomposition of the inverse 2-D

near-to-doubly-Toeplitz data product matrix
ˆ̃
R
−1

p2
is based on the solution of the

Yule-Walker normal equations of order p2

ˆ̃
Rp2




I

ãp2


 =




P̃
A

p2

0


 (6.38)
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2-D LS-based MVSE (Covariance Case)

(p1 = p2 = p, N1 = N2 = N, Nf1 = Nf2 = Nf )

Fast Solution Direct Method

17
2

p5 − ( 3
2
N − 87

2
)p4 + (2N2 + N

2
+ 181

2
)p3 p6 − (2N − 4)p5 + (N2 − 8N + 2N2

f + 23
3

)p4

−(3N3 + N2 − 21
2

N − 207
2

)p2 +(4N2 − 12N + 8N2
f + 29

3
)p3

+(2N4 −N3 −N2 + 33
2

N + 65)p +(6N2 − 8N + 12N2
f + 26

3
)p2

Computational × +(2N4 + 4N3 + 2N2 + 8N) +(4N2 − 2N + 8N2
f + 20

3
)p

Complexity +2Nf log2(Nf ) +(N2 + 2N2
f )

9p5 − (3N − 40)p4 5
3
p6 − (N2 − 2N + 1)p5

+(2N2 − 12N + 61)p3 −(7N2 − 14N − 2N2
f − 9)p4

+ +(8N2 − 37N − 44)p2 −(8N2 − 16N − 4N2
f − 28

3
)p3

−(N3 − 22N2 + 17N − 10)p −(2N2 − 40N − 2N2
f − 28

3
)p2

+(2N4 − 2N3 + 7N2 −N) +(2N2 − 2N + 14
3

)p

+2Nf log2(Nf ) +(N2 − 2N)

2p3 + (4N + 24)p2 2p4 − (2N − 6)p3

Storage +(4N2 − 5N + 39)p +(N2 − 4N + 7)p2

+(12N2 + 5N + N2
f ) +(2N2 − 2N + 4)p + (N2 + N2

f )

TABLE 6.2. Comparison of the Computation and Storage Counts for 2-D Co-

variance LS-Based MVSE. Note: p1, p2 are the orders of the estimator in 2-D

directions, N1, N2 are the size of 2-D data sequence, Nf1, Nf2 are the numbers of

2-D FFT frequency bins, × is the number of complex multiplications, and + is

the number of complex additions. Note that the maximum 2-D order pmax must

satisfy pmax < (N − 1)/2 for ˆ̄R−1
p exist.
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and

ˆ̃
Rp2




J ã∗p2
J

I


 =




0

J(P̃
A

p2
)∗J


 (6.39)

where the new special AR vectors of dimension (p1 + 1)× (p1 + 1)(p2 + 1) are

ãT

p2
=

(
Ã

T

p2
[1], · · · , Ã

T

p2
[p2]

)
(6.40)

and

(J ã∗p2
J)T =

(
(J Ã

∗
p2

[1]J)T , · · · , (J Ã
∗
p2

[p2]J)T

)
, (6.41)

where Ãp2 [k], 0 ≤ k ≤ p2, are (p1 + 1)× (p1 + 1) matrices and Ãp2 [0] = I by def-

inition. The solutions of the Yule-Walker normal equations have been performed

by Marple in [20]. P̃
A

p2
is a positive definite square hermitian matrix of dimension

(p1 + 1) × (p1 + 1). The (p1 + 1)(p2 + 1) × (p1 + 1)(p2 + 1)−dimensional
ˆ̃
Rp2

is

defined in Eq. 5.31.
ˆ̃
Rp2

is not Toeplitz, but it is centrosymmetric and hermitian

ˆ̃
Rp2

= J
ˆ̃
R
∗
p2
J,

ˆ̃
Rp2

=
ˆ̃
R

H

p2
.

Based on Eq. 5.31, the crucial to the structure of the inverse near-to-doubly-

Toeplitz data product matrix is the following order-index partitions of the

(p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) dimensional matrix
ˆ̃
Rp2

ˆ̃
Rp2

=




ˆ̃
R
′

p2−1
ˆ̃rp2

ˆ̃r
H

p2

ˆ̃
Rp2 [p2, p2]




(6.42)

and

ˆ̃
Rp2

=




ˆ̃
Rp2 [0, 0] Jˆ̃r

T

p2
J

Jˆ̃r
∗
p2
J J

ˆ̃
R
′∗
p2−1J




(6.43)
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in which the (p1 + 1)(p2 + 1)× (p1 + 1) block vectors are defined as

ˆ̃r
H

p2
=

(
ˆ̃
R

H

p2
[0, p2], · · · ,

ˆ̃
R

H

p2
[p2 − 1, p2]

)
,

Jˆ̃r
T

p2
J =

(
J

ˆ̃
R

T

p2
[1, 0]J, · · · ,J

ˆ̃
R

T

p2
[p2, 0]J

)
.

Also crucial are the following time-index partitions,

ˆ̃
R
′

p2
=

N2∑
m=p2+2

(xH

p2
[m]xp2

[m] + JxT

p2
[m]x∗p2

[m]J) (6.44)

=
ˆ̃
Rp2

− g̃H

p2
[m + 1] g̃

p2
[m + 1]

or

J
ˆ̃
R
′∗
p2
J = J

ˆ̃
R
∗
p2
J− J g̃T

p2
[p2 + 1] g̃∗

p2
[p2 + 1]J (6.45)

where the (N1−p1)×(p1+1)(p2+1)−dimensional data column block vector xp2
[m]

is defined in Eq. 6.18. The alternative 2(N1 − p1)× (p1 + 1)(p2 + 1)−dimensional

data matrix is

g̃
p2

[p2] =




x[p2]

Jx∗[N2]


 .

The pair of auxiliary (p1 + 1)(p2 + 1) × (N1 − p1)−dimensional block vectors

c̃T

p2
=

(
C̃

T

p2
[0], · · · , C̃

T

p2
[p2]

)
and d̃

T

p2
=

(
D̃

T

p2
[0], · · · , D̃

T

p2
[p2]

)
are also critical to

the fast algorithm. They are defined by

ˆ̃
Rp2

c̃p2
= Jxp2

[N2],
ˆ̃
R
∗
p2
Jc̃p2

= xp2
[N2] , (6.46)

and

ˆ̃
Rp2

d̃p2
= x∗p2

[p2 + 1],
ˆ̃
R
∗
p2
Jd̃p2

= Jx∗p2
[p2 + 1] . (6.47)

To simplify the derivation, a new (p1+1)(p2+1)×2(N1−p1)−dimensional column

block vector is defined as

sp2
=

(
d̃p2

, c̃p2

)
(6.48)



97

where the auxiliary block vector s̃T

p2
=

(
S̃

T

p2
[0], · · · , S̃

T

p2
[p2]

)
has block elements

S̃p2 [m] =
(
D̃p2 [m], C̃p2 [m]

)
, for 0 ≤ m ≤ p2, of dimension (p1 + 1)× 2(N1 − p1).

Based on Eq. 6.45, Eq. 6.46 and Eq. 6.47, we can infer the following relationship

ˆ̃
Rp2

s̃p2
= g̃H

p2
,

ˆ̃
R
∗
p2
Js̃p2

= Jg̃H

p2
(6.49)

Substituting the submatrix partitions Eq. 6.42 and Eq. 6.43 into the left

sides of the Yule-Walker normal equations Eq. 6.39 and Eq. 6.38 yields, respec-

tively,




ˆ̃
R
′

p2−1
ˆ̃rp2

ˆ̃r
H

p2

ˆ̃
Rp2 [p2, p2]







JÃ
∗
p2

[p2 + 1]J

...

JÃ
∗
p2

[1]J

I




=




0

...

0

J(P̃
A

p2
)∗J




(6.50)




ˆ̃
Rp2 [0, 0] Jˆ̃r

T

p2
J

Jˆ̃r
∗
p2
J J(

ˆ̃
R
′∗
p2−1)J







I

Ãp2 [1]

...

Ãp2 [p2 + 1]




=




P̃
A

p2

0

...

0




. (6.51)

The following relations can be derived from Eq. 6.50 and Eq. 6.24

ˆ̃rp2
= − ˆ̃

Rp2−1 J ã∗p2
J, ˆ̃r

H

p2
J ã∗p2

J +
ˆ̃
Rp2 [p2, p2] = J(P̃

A

p2
)∗J (6.52)

and

ˆ̃r
∗
p2

= −(
ˆ̃
R
′

p2−1)
∗ J ãp2

J, J ˆ̃r
T

p2
J ãp2

+
ˆ̃
Rp2 [0, 0] = P̃

A

p2
. (6.53)

Analogous to the partitioned matrix inversion lemma and the specialized form of

the augmented matrix inversion lemma in [15], the inverse matrix of Eq. 6.42 can
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be expressed as

ˆ̃
R
−1

p2
=




(
ˆ̃
R
′

p2−1)
−1 + (

ˆ̃
R
′

p2−1)
−1ˆ̃rp2

∆−1
p2

ˆ̃r
H

p2
(
ˆ̃
R
′

p2−1)
−1, −(

ˆ̃
R
′

p2−1)
−1ˆ̃rp2

∆−1
p2

−∆−1
p2

ˆ̃r
H

p2
(
ˆ̃
R
′

p2−1)
−1, ∆−1

p2




(6.54)

in which

∆p2 =
ˆ̃
Rp2 [p2, p2]− ˆ̃r

H

p2
(
ˆ̃
R
′

p2−1)
−1ˆ̃rp2

(6.55)

=
ˆ̃
Rp2 [p2, p2] + ˆ̃r

H

p2
J ãT

p2
J = J(P̃

A∗
p2

)J ,

so that ∆−1
p2

= (P̃
A∗
p2

)−1 . Substituting Eq. 6.56, Eq. 6.52 and Eq. 6.49 into Eq. 6.54,

ˆ̃
R
−1

p2
can then be rewritten as

ˆ̃
R
−1

p2
=




(
ˆ̃
R
′

p2−1)
−1 + (J ã∗p2

J)J (P̃
A∗
p2

)−1J(JãT

p2
J), (J ã∗p2

J)J (P̃
A∗
p2

)−1J

J (P̃
A∗
p2

)−1J(J ãT

p2
J), J (P̃

A∗
p2

)−1J




(6.56)

=




(
ˆ̃
R
′

p2−1)
−1 + s̃p2−1 Φ̃−1

p2−1 s̃H

p2−1 + J ã∗p2
(P̃

A∗
p2

)−1ãT

p2
J, J ã∗p2

(P̃
A∗
p2

)−1J

J(P̃
A∗
p2

)−1ãT

p2
J, J(P̃

A∗
p2

)−1J




Alternatively, the inverse matrix Eq. 6.43 can be expressed as

ˆ̃
R
−1

p2
=




(P̃
A

p2
)−1, (P̃

A

p2
)−1ãH

p2

ãp2
(P̃

A

p2
)−1,

ˆ̃
R
−1

p2−1 + J s̃p2−1(Φ̃
∗
p2−1)

−1 s̃T

p2−1J + ãp2
(P̃

A

p2
)−1ãH

p2




(6.57)
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Assume ũp2 [j, k] for 0 ≤ j, k ≤ p2 is a (p1 + 1)× (p1 + 1) block element of
ˆ̃
R
−1

p2

ˆ̃
R
−1

p2
=




ũp2 [0, 0] ũp2 [0, 1] · · · ũp2 [0, p2]

ũp2 [1, 0] ũp2 [1, 1] · · · ũp2 [1, p2]

...
...

. . .
...

ũp2 [p2, 0] ũp2 [p2, 1] · · · ũp2 [p2, p2]




(6.58)

of (p1 +1)(p2 +1)×(p1 +1)(p2 +1) dimension. From above, the following relations

may be found

ũp2 [0, 0] = (P̃
A

p2
)−1, ũp2 [p2, p2] = J(P̃

A∗
p2

)−1J ,

ũp2 [j, 0] = Ãp2 [j](P̃
A

p2
)−1 , ũp2 [0, k] = (P̃

A

p2
)−1Ã

H

p2
[k] ,

ũp2 [p2, p2 − k] = J(P̃
A∗
p2

)−1Ã
T

p2
[k]J , ũp2 [p2 − j, p2] = JÃ

∗
p2

[j](P̃
A∗
p2

)−1J

for 1 ≤ j, k ≤ p2, and

ũp2 [j, k] = ũp2−1[j, k] + S̃p2−1[j]Φ̃
−1
p2−1S̃

H

p2−1[k]

+JÃ
∗
p2

[p2 − j](P̃
A

p2
)−1Ã

T

p2
[p2 − k]J ,

ũp2 [j + 1, k + 1] = ũp2−1[j, k] + JS̃
∗
p2−1[p2 − j](Φ̃∗

p2−1)
−1S̃

T

p2−1[p2 − k]J

+Ãp2 [j + 1](P̃
A

p2
)−1Ã

H

p2
[k + 1] ,

for 0 ≤ j, k ≤ p2 − 1. Combining the last two equations allows us to eliminate

ũp2 [j, k], yielding

ũp2 [j + 1, k + 1] = ũp2 [j, k] + Ãp2 [j + 1](P̃
A

p2
)−1Ã

H

p2
[k + 1]

−JÃ
∗
p2

[p2 − j](P̃
A∗
p2

)−1Ã
T

p2
[p2 − k]J− S̃p2−1[j]Φ̃

−1
p2−1S̃

H

p2−1[k]

+JS̃
∗
p2−1[p2 − j](Φ̃∗

p2−1)
−1S̃

T

p2−1[p2 − k]J . (6.59)
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Eq. 6.59 is a recursive relationship that permits all inverse elements to be com-

puted from knowledge of only the Ã vectors. The following inverse matrix rela-

tionship may be developed from Eq. 6.59

ˆ̃
R
−1

p2
= Ãp2

(P̃
A

p2
)−1Ã

H

p2
− B̃p2

(P̃
B

p2
)−1B̃

H

p2
(6.60)

−C̃p2−1(P̃
C

p2−1)
−1C̃

H

p2−1 + D̃p2−1(P̃
D

p2−1)
−1D̃

H

p2−1

in which the (p1 + 1)(p2 + 1)× (p1 + 1)(p2 + 1) triangular Toeplitz matrices

Ãp2
=




I 0 · · · 0

Ãp2 [1]
. . . . . .

...

...
. . . . . . 0

Ãp2 [p2] · · · Ãp2 [1] I




B̃p2
=




0 0 · · · 0

JÃ
∗
p2

[p2]J
. . . . . .

...

...
. . . . . .

...

JÃ
∗
p2

[1]J · · · JÃ
∗
p2

[p2]J 0




(P̃
A

p2
)−1 =




(P̃
A

p2
)−1 · · · 0

...
. . .

...

0 · · · (P̃
A

p2
)−1




(P̃
B

p2
)−1 =




J(P̃
A∗
p2

)−1J · · · 0

...
. . .

...

0 · · · J(P̃
A∗
p2

)−1J




where each element is a (p1 + 1) × (p1 + 1)−dimensional matrix. The

(p1 + 1)(p2 + 1)× 2(N1 − p1)(p2 + 1) dimensional triangular Toeplitz matrices
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C̃p2−1 =




0 0 · · · 0

S̃p2−1[0]
. . . . . . 0

...
. . . . . .

...

S̃p2−1[p2 − 1] · · · S̃p2−1[0] 0




D̃p2−1 =




0 0 · · · 0

JS̃
∗
p2−1[p2 − 1]J

. . . . . . 0

...
. . . . . .

...

JS̃
∗
p2−1[0]J · · · JS̃

∗
p2−1[p2 − 1]J 0




have block elements that are (p1 + 1) × 2(N1 − p1)−dimensional matrices. The

diagonal matrices

(P̃
C

p2−1)
−1 =




Φ̃−1
p2−1 · · · 0

...
. . .

...

0 · · · Φ̃−1
p2−1




(P̃
D

p2−1)
−1 =




J(Φ̃∗
p2−1)

−1J · · · 0

...
. . .

...

0 · · · J(Φ̃∗
p2−1)

−1J




are of dimension 2(N1−p1)(p2+1)×2(N1−p1)(p2+1) with elements of dimension

2(N1 − p1)× 2(N1 − p1). Based on the substitution of Eq. 6.61 into Eq. 5.30, an

alternative 2-D modified covariance LS-MVSE relationship becomes

ˆ̃
P 2DMV−mod(f1, f2) =

T1 T2

eH
p2

(f1)
(∑p2

k=−p2

ˆ̃
Ψ[k] e−j2πf2kT2

)
ep2(f1)

(6.61)

in which the (p1 + 1)× (p1 + 1)−dimension matrix
ˆ̃
Ψ of correlated Ã elements is

defined as
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ˆ̃
Ψ[k] =





∑p2−k
i=0

[
(p2 + 1− k − i) · Ãp2 [i] (P̃

A

p2
)−1 Ã

H

p2
[k + i]

− i · J(
Ãp2 [k + i] (P̃

A

p2
)−1 Ã

H

p2
[i]

)∗
J

+(p2 − k − i) · S̃p2 [i] Φ̃
−1
p2−1 S̃

H

p2
[k + i]

−(i + 1) · J(
S̃p2 [k + i] Φ̃−1

p2−1 S̃
H

p2
[k]

)∗
J

]
for 0 ≤ k ≤ p2

ˆ̃
Ψ

H

[−k] for −p2 ≤ k ≤ 0

where Ãp2 [0] = I, by definition. If we now define the elements of the
ˆ̃
Ψ matrix as

ˆ̃
Ψ[k] =




ˆ̃
Ψk[0, 0] · · · ˆ̃

Ψk[0, p1]

...
. . .

...

ˆ̃
Ψk[p1, 0] · · · ˆ̃

Ψk[p1, p1]




(6.62)

and the 2-D α̂ scalars as sums along diagonals of the
ˆ̃
Ψ matrix for 0 ≤ k ≤ p2

ˆ̃α[m, k] =





∑p1−m
n=0 Ψ̂k[n, n + m], for 0 ≤ m ≤ p1

∑p1+m
n=0 Ψ̂k[n−m,n], for −p1 ≤ m < 0 ,

(6.63)

then Eq. 6.61 can be reformulated as

ˆ̃
P 2DMV−mod(f1, f2) =

T1 T2∑p1

m=−p1

∑p2

k=−p2

ˆ̃α[m, k] e−j2π[f1mT1+f2kT2]
. (6.64)

Note that the symmetry property ˆ̃α[m,−k] = ˆ̃α[−m, k] has been used in Eq. 6.37.

The weighted correlation-like result ˆ̃α is obtained from the 2-D forward and back-

ward FIR filter parameters Ã. It can be observed that the structure of the de-

nominator of Eq. 6.64 can be computed using the 2-D FFT over the interval

(−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤ f2 ≤ 1/2T2) in Hz or meters/cycle. For the

same reason as the 2-D covariance LS-based MVSE, the 2-D modified covariance

LS-based MVSE estimator in Eq. 6.64 in Q1 is numerically identical to the results
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in quadrants Q2, Q3 and Q4, which saves computations as there is no need to

compute the other three quadrants.

6.3.2. Computation and Storage Counts

The computation and storage count is summarized in the Table 6.3. The

new algorithm requires a number of multiply operations and a number of add

operations proportional to p5 in order to calculate the set of
ˆ̃
Ψ[k], 0 ≤ k ≤ p2,

coefficients. An 2-D FFT in Eq. 6.64 is then used to evaluate the denominator of

the LS-based MVSE over a range of frequencies (−1/2T1 ≤ f1 ≤ 1/2T1,−1/2T2 ≤
f2 ≤ 1/2T2) in Hz or meters/cycle. It only requires memory storage proportional

to p3 to save all of the parameters. This significantly reduces computational com-

plexity and memory storage requirements, compared with the direct evaluation

method Eq. 5.30 whose computational complexity and memory location are pro-

portional to p6 and p5, respectively.
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2-D LS-based MVSE (Modified Covariance Case)

(p1 = p2 = p, N1 = N2 = N, Nf1 = Nf2 = Nf )

Fast Solution Direct Method

− 5
2
p5 − (10N − 53

2
)p4 8

3
p6 − (4N − 12)p5

+( 5
2
N2 + 3

2
+ 135

2
)p3 +(2N2 − 16N + 2N2

f + 71
3

)p4

−(14N3 + N2 − 45
2

N − 235
2

)p2 +(8N2 − 24N + 8N2
f + 28)p3

+(3N4 − 2N3 −N2 + 29
2

N + 89)p +(12N2 − 16N + 12N2
f + 65

3
)p2

Computational × +(3N4 + N3 + 5N2) +(8N2 − 4N + 8N2
f + 10)p

Complexity +2Nf log2(Nf ) +(2N2 + 2N2
f )

−2p5 − (10N − 40)p4 8
3
p6 − (4N2 − 8N − 8)p5

+(12N2 − 15N + 59
2

)p3 −(14N2 − 28N − 2N2
f − 8)p4

+ +(10N2 − 37
3

N − 47)p2 −(16N2 − 32N − 4N2
f − 16

3
)p3

−(N3 − 15N2 + 10N − 44)p −(4N2 − 8N − 2N2
f − 22

3
)p2

+(5N4 −N3 + 11N2 −N) +(4N2 − 8N − 8
3
)p + (2N2 − 4N)

+2Nf log2(Nf )

4p3 + (7N + 30)p2 3p4 − (2N − 10)p3

Storage +(4N2 − 3N + 54)p +(N2 − 4N + 14)p2

+(14N2 + 9N + N2
f ) +(2N2 − 2N + 10)p + (N2 + N2

f )

TABLE 6.3. Comparison of the Computation and Storage Counts for 2-D Mod-

ified Covariance LS-Based MVSE. Note: p1, p2 are the orders of the estimator in

2-D directions, N1, N2 are the size of 2-D data sequence, Nf1, Nf2 are the numbers

of 2-D FFT frequency bins, × is the number of complex multiplications, and + is

the number of complex additions. Note that the maximum 2-D order pmax must

satisfy pmax < (2N − 1)/3 for ˆ̃R−1
p exist.
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7. IMPROVED-FEATURE DETAIL USING FAST ALGORITHMS
FOR TWO-DIMENSIONAL MINIMUM VARIANCE SPECTRAL

ESTIMATION

Experimental results from three different 2-D data sets are used to evaluate

the performance of the two new fast computational solutions for 2-D LS-based

MVSE in the covariance and the modified covariance cases in this chapter. A

narrow-band 2-D complex sinusoid data set is used to test the capability to capture

improved-feature detail out of the spectral estimation techniques. A wide-band

2-D AR process data set is used to evaluate the characteristic of the frequency

variance and the PSD variance of the two new fast 2-D solutions. Finally, a third

data set tests their performance with a 2-D ISAR radar data set to create a radar

image of an actual truck.

7.1. Application One: Narrow-Band 2-D Sinusoid Data

In this application, the simulation results of 2-D complex sinusoids will

be presented. The simulation examples serve to demonstrate the high resolution

capability of the two new fast solutions for the 2-D LS-MVSE. The 2-D 32 × 32

complex-point signal has been generated as the sum of five 2-D complex sinusoids

(cisoids) corrupted by 2-D additive complex Gaussian white noise samples w[m,n]

with variance ρω = 0.1. The spatial sampling intervals along the axis x and y are

Dx = 1 cm and Dy = 1 cm. The fixed row order p1 = 7 and the variable column

order p2 = 7 are chosen. In order to compare the resolutions of the selected

spectral estimators, two pairs of very closely spaced sinusoids in white Gaussian

noise are selected. The 2-D sampled signal is described by
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x[m,n] = exp[j2π(fx1·Dx·m+fy1·Dy ·n)] + exp[j2π(fx2·Dx·m+fy2·Dy ·n)]

+ exp[j2π(fx3·Dx·m+fy3·Dy ·n)] + exp[j2π(fx4·Dx·m+fy4·Dy ·n)]

+ exp[j2π(fx5·Dx·m+fy5·Dy ·n)] +w[m,n]

where the cisoids all have unit amplitude and are located at 2-D spatial frac-

tion of sampling frequencies fx1 = 0.3, fy1 = 0.3, fx2 = 0.35, fy2 = 0.35, fx3 =

−0.2, fy3 = −0.2, fx4 = −0.25, fy4 = −0.15, fx5 = −0.05, fy5 = −0.4. w[m,n] is

a 2-D white Gaussian noise. The SNR = 20 dB. The numbers of PSD frequencies

in 2-D is Nf1 = Nf2 = 4k. The two new fast solutions of 2-D LS-based MVSE in-

herit the high-resolution performance of the original non-fast-algorithm methods

of the 2-D LS-based MVSE. Therefore, we only show estimates calculated by the

two new fast solutions. Fig. 7.1 (a) shows the anticipated 2-D true spectra. The

simulation results in Fig. 7.1 (b) to (f) illustrate the enhanced resolution improve-

ment of the two new fast solutions of the 2-D LS-based MVSE, compared to the

2-D classical periodogram, the 2-D covariance AR estimator and the 2-D lattice

MV spectral estimator. In Fig. 7.1 (b), the 2-D Nuttall window was applied to

suppress the sidelobes of 2-D FFT, but still the 2-D classic periodogram could not

distinguish the two very closely -spaced sinusoid pairs. The peaks are fairly wide,

and artifact peaks appear due to the sidelobe behavior of the 2-D FFT. Fig. 7.1(c)

shows the 2-D covariance AR estimates which combine the first and the fourth

quadrant estimates. When the SNR is reduced, the 2-D covariance AR spectral

resolution degenerates. The 2-D lattice MV estimates shown in Fig. 7.1(d) could

locate some frequencies correctly, however its amplitude estimates are much worse.

The five peaks in Fig. 7.1(e) and (f) are very sharp and are accurately located on

the true 2-D frequencies. The improved feature details can be easily seen in the

1-D slices of the different 2-D spectra at 2-D spatial frequency 0.3 in the column
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dimension shown in Fig. 7.2. The two fast solutions of the 2-D LS-MVSE in co-

variance case and in modified covariance case are not only more computationally

efficient than their direct methods, but they also inherit the advantage of sharper

peaks from 2-D MVSE.

7.2. Application Two: Wide-Band 2-D bandpass signal

The wide-band 2-D bandpass signal, another common test case for 2-D

application, is used to evaluate the data modeling capability of the two new fast

solutions of the 2-D LS-based MVSE. The generated 50 × 50 random signal has

a doughnut-shape bandpass 2-D spectrum shown in Fig. 7.3(a). Fig 7.3(b) to (f)

show the experimental results created by different 2-D spectral estimators. The

orders p1 = p2 = 10 and the numbers of PSD in 2-direction Nf1 = Nf2 = 2k are

chosen in this experiment. Both 2-D periodogram Fig 7.3(b) and 2-D covariance

AR Fig 7.3(c) algorithms can not fit the data well. It is hard to recognize the

flat top in Fig 7.3(b), while it is hard to tell the double circle in Fig 7.3(c). The

2-D lattice MV estimates shows better results. However, when compared with the

results shown in Fig 7.3(e) and (f), the two new fast algorithms of the 2-D MV

estimator provide the best fit to the doughnut-shape bandpass 2-D spectrum.

7.3. Application Three: Actual 2-D Synthetic Aperture Radar Data

The truck ISAR radar data introduced in Chapter 4.4 is used to validate

the two new fast solutions of the 2-D LS-based MVSE. This application focuses

on evaluation of the capability of the two new fast computational solutions of 2-D

LS-based MVSE for extracting scattering centers of the truck ISAR imagery made

by 2-D spectral analysis of the 2-D radar data. Their improved results presented
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in this thesis are compared with those of the 2-D classical periodogram estimator

and the 2-D covariance AR estimator.

In path 1 on Fig. 4.14 in Chapter 4, a 2-D radar image in the 2-D spatial

domain is obtained by forming the magnitude of the 2-D IFFT (a sample 2-D

periodogram). The x-axis represents the cross-range distance in units of cm,

while the y-axis represents down-range distance in units of cm. The truck ISAR

images in Fig. 7.5 to Fig. 7.11 are generated by four different estimation methods

at four selected center azimuth angles [0o, 47o, 75o and 180o] to obtain more

knowledge about the truck radar image at different viewing aspect angles. A

front view of the truck is the 0o azimuth reference. Other parameters are chosen

to be the same as those used in the 1-D evaluation in Chapter 4.4. As shown in

figures Fig. 7.5 to Fig. 7.11, the two new fast solutions of the 2-D LS-based MVSE

can more sharply detect scattering centers in the ISAR imagery than seen in the

2-D classical periodogram estimator and the 2-D covariance AR estimator. These

estimated scattering centers are much sharper compared with those estimated by

the other methods.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7.1. Comparison of the resolution and accuracy for the different 2-D

spectral estimators. (a) True spectra of 2-D complex sinusoids. (b) 2-D classical

periodogram estimator. (c) 2-D covariance AR estimator. (d) 2-D lattice MV

estimator. (e) the new fast 2-D covariance LS-based MV estimator. (f) the new

fast 2-D modified covariance LS-based MV estimator.
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FIGURE 7.2. One-dimensional slices for the different 2-D spectral estimators

at 0.3 spatial fraction of sampling frequency in the column dimension. (a) True

spectra of 2-D complex sinusoids. (b) 2-D classical periodogram estimator. (c)

2-D covariance AR estimator. (d) 2-D lattice MV estimator. (e) the new fast

2-D covariance LS-based MV estimator. (f) the new fast 2-D modified covariance

LS-based MV estimator.
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FIGURE 7.3. Comparison data modeling capability for different 2-D spectral

estimators. (a) doughnut-shape true 2-D spectrum of wide-band bandpass signal.

(b)2-D classical periodogram estimator. (c) 2-D covariance AR estimator. (d) 2-D

lattice MV estimator. (e) the new fast 2-D covariance LS-based MV estimator.

(f) the new fast 2-D modified covariance LS-based MV estimator.
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FIGURE 7.4. S-band ISAR image of truck obtained by different spectral estima-

tors (center azimuth 0 degrees - front of truck). (a) 2-D classical periodogram

estimator. (b) 2-D covariance AR estimator.
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FIGURE 7.5. S-band ISAR image of truck obtained by different spectral estima-

tors (center azimuth 0 degrees - front of truck). (a) the new fast 2-D covariance

LS-based MV estimator. (b) the new fast 2-D modified covariance LS-based MV

estimator.
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FIGURE 7.6. S-band ISAR image of truck obtained by different spectral esti-

mators (center azimuth 47 degrees). (a) 2-D classical periodogram estimator.

(b) 2-D covariance AR estimator.
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FIGURE 7.7. S-band ISAR image of truck obtained by different spectral estima-

tors (center azimuth 47 degrees). (a) the new fast 2-D covariance LS-based MV

estimator. (b) the new fast 2-D modified covariance LS-based MV estimator.
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FIGURE 7.8. S-band ISAR image of truck obtained by different spectral esti-

mators (center azimuth 75 degrees). (a) 2-D classical periodogram estimator.

(b) 2-D covariance AR estimator.



117

(a)

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Cross-Range Distance (cm)

D
ow

n-
R

an
ge

 D
is

ta
nc

e 
(c

m
)

S-BAND ISAR IMAGE by 2-D LS-MVSE
(Covariance) [center:75 deg.]   

0

-5

-10

-15

-20

-25

-30

P
SD

 in
 d

B

(b)

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Cross-Range Distance (cm) 

D
ow

n-
R

an
ge

 D
is

ta
nc

e 
(c

m
)

S-BAND ISAR IMAGE by 2-D LS-MVSE     
(Modified Covariance) [center:75deg.]

0

-5

-10

-15

-20

-25

-30

P
SD

 in
 d

B

FIGURE 7.9. S-band ISAR image of truck obtained by different spectral estima-

tors (center azimuth 75 degrees). (a) the new fast 2-D covariance LS-based MV

estimator. (b) the new fast 2-D modified covariance LS-based MV estimator.
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FIGURE 7.10. S-band ISAR image of truck obtained by different spectral esti-

mators (center azimuth 180 degrees - rear of truck). (a) 2-D classical periodogram

estimator. (b) 2-D covariance AR estimator.
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FIGURE 7.11. S-band ISAR image of truck obtained by different spectral estima-

tors (center azimuth 180 degrees - rear of truck). (a) the new fast 2-D covariance

LS-based MV estimator. (b) the new fast 2-D modified covariance LS-based MV

estimator.
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8. SUMMARY OF RESEARCH CONTRIBUTIONS

In this last chapter, the research contributions presented in this thesis are

summarized and future research work is proposed. The contributions of this the-

sis fall into four sections: (1) fast computational solution for the 1-D covariance

LS-based MVSE, (2) fast computational solution for the 1-D modified covariance

LS-based MVSE, (3) fast computational solution for the 2-D covariance LS-based

MVSE, and (4) fast computational solution for the 2-D modified covariance LS-

based MVSE. The two 2-D fast computational solutions are rather complex exten-

sions of the two 1-D solutions. However, the two 2-D fast computational solutions

produce numerically identical results to the corresponding 1-D fast solutions when

the estimation order in one of two dimension is set to zero.

Table 8.1 expands Table 1.1 and compares the properties of the new fast

computational solution algorithms with other estimation techniques. The research

contributions of this thesis are noted. The four new fast computational solutions

have the following advantages in common:

(1) They significantly decrease computational complexity and memory

storage requirements, as summarized in Tables 3.2, 3.3, 6.2 and 6.3. The closed-

form expressions of the inverses of the 1-D near-to-Toepliz matrices and 2-D

doubly-near-to-Toepliz matrices provide special structures that enable fast compu-

tational solutions to be developed. The computational complexity of the two 1-D

fast computational solutions in the covariance and modified covariance cases are

proportional to p2 with memory storage proportional to p, versus p3 computation

and p2 storage requirements for both direct solution methods. The computational

complexity of the two 2-D fast computational solutions in the covariance and mod-

ified covariance cases are proportional to p5 with memory storage proportional to
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p3, versus p6 computation and p4 storage requirements if solved by using either

2-D direct solution approaches. The four new fast computational solutions signifi-

cantly reduce computational complexity and memory storage, especially for short

data records. Short means that the data size N should not be too large compared

with the order p, as illustrated with examples in Fig. 1.6 through Fig. 1.9.

(2) All inherit the capability of improved-feature detail from their direct

solution methods. The new fast solutions of the LS-based MV spectral estimators

can find extra spectral details which may be missed by Fourier-based and AR

spectral estimation algorithms. The resolution for sinusoid signals was shown in

this thesis to be about 1.67 times better by our new fast algorithms than by the

classical periodogram. However, compared with the lattice-Burg method, the four

new fast solutions of MV spectral estimation do not show bias and line-splitting

problems. The fast modified covariance MVSE generates the sharpest peaks in

some applications. The four new fast solutions exhibited the least PSD variance

and the least frequency variance among all spectral estimators tested.

(3) The basis for the fast solutions is the exploitation of the structures of the

various inverse relationships, which expresses the inverse of covariance matrices

(or covariance-like quadratic-data-matrix product matrices in the case of the least-

squares algorithms) in terms of the LP parameters.

(4) Furthermore, all fast computational solutions recursively calculate and

save all intermediate order LP parameters so that one can select a lower-order

estimator without recalculating the LP parameters. It also helps to find the opti-

mal order for data modeling. The LS-based fast solutions are often not required

to use as high an order as non-least-squares solutions in order to achieve similar

feature detail resolution in the MVSE spectra.
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(5) The LS-based fast solutions are appropriate for applications in which

the 1-D or 2-D autocorrelations are unknown and only 1-D or 2-D finite data

samples are available. The four new fast solutions can detect more scattering

centers in the ISAR imagery of an actual truck than other estimators in both 1-D

and 2-D cases. Meanwhile the scattering centers in the ISAR imagery created by

the four new fast solutions are sharper than those generated by other methods.

In addition to these important characteristics, there are more distinctive

advantages:

(1) In practice, both 1-D and 2-D fast solutions of LS-based MVSE in the

modified covariance case appear to achieve higher resolution than the correspond-

ing covariance solutions, since the modified covariance LP approach employs a

combination of both forward and backward LP, versus the separate forward and

backward LP estimates made in the covariance approach. The modified covariance

approach collects more information while calculating the LP parameters.

(2) Both 2-D fast computational solutions of LS-based MVSE are quarter-

plane independent and does not have the skew problem of the other 2-D estima-

tors, such as 2-D AR estimator. This further reduces computation load.

Future research includes the following possibilities: (1) Apply the improved

results of the new 2-D fast computational solutions of the spectral estimation pro-

posed in this thesis to the new 2-D bandwidth extrapolation techniques proposed

by Liew [32] in order to achieve enhanced image of 2-D sensor data. (2) Develop

fast computational solutions for 3-D LS-based MVSE which may benefit from the

3-D LP fast algorithm [32]. (3) Develop fast computational solutions for multi-

channel MVSE. (4) In the case of long data records, especially for the 2-D case,

the advantage of the computational efficiency of the new fast computational solu-

tions presented in this thesis may be canceled out. Alternative multi-dimensional
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fast computational solutions of the LS-based MVSE for long data records would

also be an interesting topic.

Notations on Table 8.1:

(a) N →∞; unreliable.

(b)large variance; only short data record.

(c) guarantee stability; line splitting; biased.

(d) separate the forward and backward LP; no line splitting; unbiased; less

variance.

(e) combine the forward and backward LP; no line splitting; unbiased; less

variance.

(f) less variance; no line splitting; unbiased.

(g) large variance; short data record.

(h) guarantee stability; Less variance; line splitting; biased estimator.

(i) separate the forward and backward LP; less variance; no line splitting;

unbiased.

(j) combine the forward and backward LP; less variance; no line splitting;

unbiased.



124

(g)
√

√
M

ediu
m

Y
u

le-W
a

lker   
+

 C
orrelatio

n  
+

 F
F

T
E

q
.3

.3

M
in

im
u

m
 

V
aria

n
ce 

S
p

ectral 
E

stim
ation

(h)
√

√
H

igh

B
urg-Lattice

+
 C

orrelatio
n  

+
 F

F
T

E
q

.3
.3

(i)
√

√
H

igh

C
ovarian

ce

+
 C

orrelatio
n  

+
 F

F
T

E
q

.3
.1

7

(j)
√

√
H

igh

M
od

ified 
C

ovarian
ce

+
 C

orrelatio
n  

+
 F

F
T

E
q

.3
.3

1

(f)
√

×
M

ediu
m

O
riginal 

A
p

p
roach

E
q

.2
.5

R
elative 

Storage

√ √ √ √ ×

F
ast 

Solution 
A

vailable

√ √ √ √ ×

L
ow

er-
order

Solutions
R

ecursively
G

enerated

M
od

ified 
C

ovarian
ce

C
ovarian

ce

B
urg Lattice

(e)
H

igh

(d)
H

igh

(c)
M

ediu
m

(b
)

M
ediu

m
Y

u
le-W

a
lker

E
q

.4
.3

A
utore-

gressive

(a)
Lo

w
P

erio
do

gra
m

E
q

.4
.2

C
lassica

l 
F

ourier 
M

eth
ods

N
otation

R
elative 

C
om

p
utational 

C
om

plexity
R

esolution 
C

apability
M

ethod
D

efining 
E

quations

Spectral 
E

stim
ator 

T
ype

2
(

l
g

)
O

N
o

N
(

)
O

N(
)

O
p

3
(

)
O

p
2

(
)

O
p(

)
O

p

2

2

(

l
g

)
f

f

O
p

N
o

N

+2

2

(

l
g

)
f

f

O
p

N
o

N

+

TABLE 8.1. Comparison of Spectral Estimation Techniques. × indicates not

available,
√

indicates available, N is the number of data samples, p is the order

of model, Nf is the number of FFT frequency bins. Notations are given in this

chapter.
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ACS-based 
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AR 
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Discrete time Fourier transform ……………………………… 28 

FIR  
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Fast Fourier transform ……………………………………….. 2 

IFFT 
 

Inverse Fast Fourier transform ………………………………. 53 
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Inverse synthetic aperture radar ……………………………… 15 

LP 
 

Linear prediction ……………………………………............... 
 

1 

LS-based   
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MVSE 
 

Minimum variance spectral estimation ………………………. 
 

1 

PSD 
 

Power spectral density ……………………………………….. 
 

2 
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Radio Frequency …………………………………………....... 51 

SNR 
 

Signal-to-noise ratio ………………………………………….. 
 

14 
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20 
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Toeplitz autocorrelation matrix ……................................................ 20 
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21 
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ACS-based minimum filter output variance ………………………. 21 
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Forward filter output of FIR filter ………………………………… 21 
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Filter forward parameter vector in 1-D covariance case ………….. 
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ˆ
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LS-based filter output variance in 1-D covariance case …………... 
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Toeplitz data matrix ………………………………………………. 22 

ˆ
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Near-to-Toeplitz data product matrix in 1-D covariance case …..... 
 

22 
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Inverse of the data product matrix in 1-D covariance case ……….. 
 

23 
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ˆ
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LS-based minimum filter output variance in 1-D covariance case .. 
 

24 
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Filter forward parameter vector in 1-D modified covariance case ... 
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'
1

ˆ
p−R  

 

Upper partition matrix in 1-D covariance case …………………… 29 
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33 
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33 
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