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Brownian Motion: Representations and Expansions

Erica Rode

February 25, 2013



2

Chapter 1 Introduction

The Central Limit Theorem states that the normalized average of a sequence of

independent random variables with finite mean and variance converges to a standard

Gaussian random variable. Because of this, Gaussian random variables and random

fields are used extensively as models in fields such as physics, finance and medical

imaging. In particular they appear in models with fluctuations that can be thought

of as Gaussian random variables. Models can be adapted for di↵erent applications

by modifying the covariance function and mean vector.

Standard Brownian motion is a Gaussian random field with independent incre-

ments. Arguably, it first appeared as a model of the random motion of a particle

suspended in a fluid. Paul Lévy introduced Lévy’s Brownian motion as a way to

generalize standard Brownian motion to multiple dimensions. Lévy’s Brownian mo-

tion is an isotropic locally stationary random field with mean zero. It has since been

studied extensively. In [12] McKean found an expansion for Lévy’s Brownian motion

in Rd which he used to draw conclusions about the Markov properties of the random
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field. In [14] Noda presented the Karhunen-Loéve expansion for Lévy’s Brownian

motion on the surface of the unit sphere.

In order to use random fields in computational settings it is necessary to be

able to simulate them. This can be accomplished using expansions in terms of

basis functions and standardized random variables. Orthogonal polynomials are

integral to expansions of isotropic random fields. Lévy’s Brownian motion has an

integral representation given in [15] which we use to find a new representation for the

covariance function. This thesis presents a new expansion for the Lévy’s Brownian

motion as an infinite linear combination of independent standard Gaussian random

variables. This expansion is not the Karhunen-Loéve expansion, but shares some

desirable properties of the Karhunen-Loéve expansion.

We also introduce a new family of Gaussian random fields, called the p-processes,

of which Lévy’s Brownian motion is a special case. If we let A
s

be the ball in Rd

with the vector s as the diameter and ⌫
p

be the measure with density function

d⌫
p

= c
d

|u|p du

then the p-process is defined to be a mean zero Gaussian process in the unit ball in

Rd with covariance function

K
p

(s, t) = ⌫
p

(A
s

\ A
t

).
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The case p + d = 1 is Lévy’s Brownian motion. Lévy’s Brownian motion is a locally

stationary process, though non-stationary. The p-process are isotropic but, except

for Lévy’s Brownian motion, not locally stationary. We also find an expansion for the

p-processes in terms of spherical harmonics and standard Gaussian random variables.

Using an orthonormal basis for L2(Bd) we show that for t 2 Bd and p + d > 0 the

p-processes have the expansion

X
t,p

= c
p,d

1
X

m,k=0

⇤
m,k,p

(|t|)
h(m)
X

j=1

'
m,j

(t/|t|)Z
m,k,j

where ⇤
m,k,p

is a function of orthogonal polynomials on [�1, 1], {'
m,j

} is an orthonor-

mal basis of spherical harmonics for L2(Sd�1) and {Z
m,k,j

} is an array of independent

standard Gaussian random variables.

These expansions can be used to simulate Lévy’s Brownian motion and the p-

processes. We use expansions for the covariance functions to approximate the co-

variance matrix and we present simulations along a ray from the origin using the

Cholesky factorization of the approximated covariance matrix.

Chapter 2 covers the necessary background in probability and random fields.

There we introduce an integral representation for Lévy’s Brownian motion and an

orthonormal basis for L2(Bd) that will be needed to find expansions for the random

fields. In Chapter 3 the Brownian sheet, which is typically defined only on Rd

+,

is generalized to all of Rd. This is used to define a white noise integral using a

constructive approach. In Chapter 4 we find a decomposition for Levy’s Brownian
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motion and its covariance function in terms of spherical harmonics and independent

standard Gaussian random variables. In chapter 5 we define the p-processes and find

an expansion for the p-processes in terms of spherical harmonics and independent

standard Gaussian random variables. Chapter 6 is devoted to simulations of Lévy’s

Brownian motion and the p-processes using the expansions found in Chapters 4 and

5.
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Chapter 2 Preliminaries

This chapter will cover the background material in random fields and orthogonal

polynomials necessary to obtain the expansions for Lévy’s Brownian motion and the

p-processes.

2.1 Random Variables

A probability space is often considered in the context of an experiment where the

outcome is not known, but the set of possible outcomes is known as well as a way to

assign probabilities to these outcomes.

Definition 2.1 (Probability Space) [3] A probability space is an ordered triple

(⌦,A, P ) where

• ⌦ is a collection of outcomes, called the sample space

• A is a �-field of subsets of ⌦, called events and

• P is a measure on (⌦,A) with

1. 0 6 P (A) 6 1 8A 2 A
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2. P (;) = 0, P (⌦) = 1 and

3. if {A
i

: i > 1} ⇢ A is a pairwise disjoint collection of events then

P

 1
[

i=1

A
i

!

=
1
X

i=1

P (A
i

). (2.1)

We are often concerned with knowing whether events are independent of each other

or a↵ected by each other.

Definition 2.2 A collection of events {A
i

: i > 1} on a common probability space

(⌦,A, P ) is said to be independent if for any m 6= n

P (A
m

\ A
n

) = P (A
m

)P (A
n

). (2.2)

Random variables are commonly used as a tool to assign numerical values to outcomes

in the sample space.

Definition 2.3 (Random Variable) [3] A random variable on a probability space

(⌦,A, P ) is a real valued function that is A�measurable.

For any event A 2 A we denote the probability of A by

P (X 2 A) = P ({! : X(!) 2 A}) . (2.3)

When there is no possibility of confusion we will just write P (A) for P (X 2 A). For

any random variable, X, �(X) is defined to be the smallest �-field with respect to

which X is measurable. Two random variables X and Y on a common probability
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space (⌦,A, P ) are said to be independent if �(X) and �(Y ) are independent. For

any random variable we can compute the mean or expectation, which is a weighted

average of the values of the random variable, and the variance, which is a measure

of how much the random variable deviates from its mean.

Definition 2.4 (Mean and Variance of a Random Variable) [3] Let X be a

random variable on the probability space (⌦,A, P ). Then the mean or expectation of

X is

E(X) =

Z

⌦

X(!) dP (!) (2.4)

and the variance is

V ar(X) = E
⇥

(X � E(X))2
⇤

. (2.5)

Given a collection of random variables on a common probability space the covariance

can be used to determine how the random variables interact with each other.

Definition 2.5 Let X, Y be random variables on a common probability space. Then

the covariance of X and Y is

Cov(X, Y ) = E(XY )� E(X)E(Y ). (2.6)

If two random variables are independent then their covariance is zero, however the

converse is not true in general.

A commonly used random variable is the Gaussian or normal random variable.

The Central Limit Theorem tells us that the standardized average of a sequence of
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random variables converges a Gaussian random variable. Because of this, Gaussian

random variables are often used for modeling situations in physics, finance and other

areas.

Definition 2.6 (Gaussian Random Variable) [3] A Gaussian random variable

with mean µ 2 R and variance �2 > 0 is a random variable on the probability space

(R,B, P ) where B is the Borel ��field and for any B 2 B

P (B) =
1p

2⇡�2

Z

B

e�
(x�µ)2

2�

2 dx. (2.7)

The function

f
�,µ

(x) =
1p

2⇡�2
e�

(x�µ)2

2�

2 (2.8)

is called the density of X. In the case µ = 0 and �2 = 1, X is called a standard

Gaussian random variable. Gaussian random variables have several properties that

make them desirable to work with. One of these properties is that two Gaussian

random variables, X and Y are independent if and only if Cov(X, Y ) = 0. Several

other useful properties will be introduced in this section. First we define one notion

of convergence of random variables, weak convergence or convergence in distribution.

Definition 2.7 (Weak Convergence) [3] Let {X
n

: n > 1} and X be random

variables. Then {X
n

: n > 1} converges weakly to X if for each x 2 R

lim
n!1

P (X
n

6 x) = P (X 6 x). (2.9)
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Lemma 2.1 Let {X
i

: i > 1} be a sequence of Gaussian random variables with

E(X
i

) = µ
i

and V ar(X
i

) = �2
i

for each i and suppose lim
n!1 µ

n

= µ and lim
n!1 �2

n

=

�2
. Then

1. For any n, Y =
P

n

i=1 a
i

X
i

is a Gaussian random variable with mean

E(Y ) =
n

X

i=1

a
i

µ
i

(2.10)

and variance

V ar(Y ) =
n

X

i=1

a2
i

�2
i

+ 2
X

i<j

Cov(X
i

, X
j

). (2.11)

2. X
n

converges weakly to a Gaussian random variable with mean µ and variance

�2
.

The idea of a Gaussian random variable can be extended to consider a random

vector X = [X
i

: 1 6 i 6 n] where for each i, X
i

is a random variable.

Definition 2.8 (Multivariate Gaussian Random Vector) [13] A random vec-

tor X = [X
i

: 1 6 i 6 n] is called multivariate Gaussian if for any set of real numbers

{a
i

: 1 6 i 6 n} the random variable

Y =
n

X

i=1

a
i

X
i

(2.12)

is a Gaussian random variable.
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Every multivariate Gaussian random vector is characterized by a mean vector

~µ = [E(X
i

) : 1 6 i 6 n] (2.13)

and a covariance matrix

⌃ = [E(X
i

X
j

)� µ
i

µ
j

: 1 6 i, j 6 n] . (2.14)

The density function of such a random vector is given by

f(~x) =
1

p

(2⇡)n|⌃�1|exp

⇢

�1

2
(~x� ~µ)T ⌃�1(~x� ~µ)

�

. (2.15)

If ~µ = ~0 and ⌃ is the identity matrix then X is called a standard Gaussian random

vector.

2.2 Stochastic Processes

Stochastic processes are used to model changes in random systems, such as the

random motion of a particle or fluctuations in financial systems.

Definition 2.9 [3] A stochastic process is a collection of random variables, {X
t

:

t 2 T}, defined on a common probability space.

This thesis will focus on Gaussian processes.

Definition 2.10 (Gaussian Process) [3] A stochastic process {X
t

: t 2 T} is said

to be a Gaussian process if any finite collection [X
t1 , Xt2 , ..., Xt

k

] has a multivariate

Gaussian distribution.
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A Gaussian process is completely characterized by its mean and a covariance function

Cov(X
s

, X
t

) = E [X
s

X
t

� E(X
s

)E(X
t

)] . (2.16)

A stochastic process with T ⇢ Rd is often called a random field.

Standard Brownian motion in one dimension is a mean zero Gaussian process

whose covariance function is

C(s, t) = s ^ t =
1

2
(|t|+ |s|� |t� s|). (2.17)

Two common ways to generalize Brownian motion to a random field are the Brownian

sheet and Lévy’s Brownian motion. These are obtained by generalizing the covariance

function to operate on vectors in Rd.

Definition 2.11 (Brownian Sheet) [10]A Brownian sheet is a Gaussian random

field that is defined on (Rd

+,B(Rd)) with mean 0 and covariance function

C(s, t) =
d

Y

i=1

s
i

^ t
i

. (2.18)

Note that the covariance function is equal to the volume of the intersection of

the d-dimensional rectangles with one vertex at the origin s and t as their diagonals.

Definition 2.12 (Lévy’s Brownian Motion) [16]Lévy’s Brownian motion in d

dimensions is a mean zero Gaussian random field with covariance function

K(s, t) =
1

2
(|t|+ |s|� |t� s|) (2.19)

for s, t 2 Rd

, where | · | is the Euclidean norm in Rd

.
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For the majority of this paper we will restrict our study of Levy’s Brownian motion

to the unit ball in Rd, denoted Bd. In order to work more easily with this covariance

function, we introduce an integral representation.

Lemma 2.2 Define A
s

to be the ball with the vector s 2 Rd

as the diameter, that is

A
s

=

⇢

u 2 Rd : |u| < u

|u| · s
�

(2.20)

and let µ be the measure on Rd

with density function

f
d

(u) =
⌘

d

+ 1

�
d�1

|u|�(d�1) (2.21)

where �
d�1 is the surface area of Sd�1

and ⌘
d

= d�3
2 . Then we can write

K(s, t) = µ(A
s

\ A
t

). (2.22)

A
t
∩A

s

t

s

Figure 2.1: Example of A
s

\ A
t

in R2

The following will prove useful in the proof of Lemma 2.2.
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Lemma 2.3 [8] Let � be a bounded, integrable function on [�1, 1] and u be a fixed

point on Sd�1
. Then

Z

S

d�1

�(u · v) d�(v) = �
d�1

Z 1

�1

�(x)(1� x2)⌘

d dx. (2.23)

Proof of Lemma 2.2:

Consider the function

G
t,s

(r, ✓) = sgn(✓ · t� r)� sgn(✓ · s� r). (2.24)

So

G
t,s

(r, ✓) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2 if ✓ · t > r and ✓ · s < r

�2 if ✓ · t < r and ✓ · s > r

0 else

. (2.25)

Therefore

Z

S

d�1

Z

R

G2
t,s

(r, ✓) dr d�(✓) = 4

Z

S

d�1



Z

✓·t

✓·s
1

✓·s·<✓·t dr +

Z

✓·s

✓·t
1

✓·t<✓·s dr

�

d�(✓)

= 4

Z

S

d�1

|✓ · t� ✓ · s| d�(✓).

To evaluate this integral apply Lemma 2.3 with v = ✓, u = t�s

|t�s| and �(x) = |x| to

get

4�
d�1|t� s|

Z 1

�1

|x|(1� x2)⌘

d dx =
4�

d�1

⌘
d

+ 1
|t� s|.
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Alternately, we could rewrite A
s

(u) with u converted to polar coordinates gives

A
s

(r, ✓) = {(r, ✓) : 0 < r < ✓ · s}. (2.26)

So we can see that G
t,s

can be written as

2 [1
✓·s<r<✓·t(r✓)� 1

✓·t<r<✓·s(r✓)] = 2
⇥

1
A

t

\A

c

s

(u)� 1
A

s

\A

c

t

(u)
⇤

.

Therefore

G2
t,s

(u) = 4 (1
A

s

4A

t

( u)) (2.27)

giving

Z

Rd

G2
t,s

(u) dµ(u) = 4

Z

1

A

s

4A

t

dµ(u)

= 4µ(A
s

4A
t

)

and

|s� t| = µ(A
s

4A
t

). (2.28)

Letting s = 0 in (2.28) also gives

µ(A
t

) = |t|. (2.29)

Therefore

K(s, t) =
1

2
[µ(A

s

) + µ(A
t

)� µ(A
s

4A
t

)] (2.30)

= µ(A
s

\ A
t

). (2.31)

⌅
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2.3 Orthogonal Polynomials

In the following section we will construct an orthonormal basis for L2(Bd) that will

later be useful in finding expansions of Gaussian random fields. This basis will be

constructed using bases for L2 ((0, 1)) and L2(Sd�1).

Definition 2.13 (Jacobi Polynomial) [7] For parameters ↵, � > �1 define the

Jacobi polynomials on [�1, 1] {P (↵,�)
n

: n > 0} by

P
n

(x) =
(�1)n

2nn!
(1� x)�↵(1 + x)��

dn

dxn

(1� x)↵+n(1� x)�+n. (2.32)

The Jacobi polynomials are orthogonal with respect to the weight (1� x)↵(1 + x)�

on [�1, 1]. i.e.

Z 1

�1

P (↵,�)
n

(x)P (↵,�)
m

(x)(1� x)↵(1 + x)� dx = 0 for m 6= n. (2.33)

In addition they are a complete set in L2([�1, 1]). Through translation they can be

used to form a complete orthogonal set in L2([0, 1]).

Lemma 2.4 Let P
(0,�)
n

denote the Jacobi polynomial with parameter ↵ = 0. Then

{P (0,�)
n

(2r � 1) : n > 0} is orthogonal with respect to the weight r�

on [0, 1].
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Proof : For n 6= m

0 =

Z 1

�1

P (0,�)
n

(x)P (0,�)
m

(x)(1 + x)� dx

= 2

Z 1

0

P (0,�)
n

(2r � 1)P (0,�)
m

(2r � 1)(2r)� dr

= 2�+1

Z 1

0

P (0,�)
n

(2r � 1)P (0,�)
m

(2r � 1)r� dr.

⌅

Definition 2.14 (Spherical Harmonics) [8]A polynomial p is said to be harmonic

if it is homogeneous with 4p = 0. The spherical harmonics in d dimensions are the

restriction of such polynomials to the unit sphere Sd�1
.

We will denote the space of normalized spherical harmonics of degree n and

dimension d by Hd

n

and the space of homogeneous polynomials of degree n and

dimension d by Pd

n

. The dimension of Hd

n

is

h
d

(n) = dimPd

n

� dimPd

n�2. (2.34)

For every d, there is an orthonormal basis for L2(Sd�1) consisting of spherical har-

monics.

2.3.1 An orthonormal basis for L2(Bd)

Lemma 2.5 Let Hd

n

be an orthonormal basis for Hd

n

and '
n,j

2 Hd

n

. Define Jd

k

(|u|)

to be the Jacobi polynomial of degree k with parameter ↵ = 0 and � = d�1 evaluated



18

at 2|u|� 1. Define the set

P d = {�
k

Jd

k

(|u|)'
n,j

(u/|u|) : k > 0, n > 0, 1 6 j 6 h
d

(n)} (2.35)

where �
k

is a constant so that

�2
k

Z 1

0

(Jd

k

(r))2rd�1 dr = 1. (2.36)

Then P d

is an orthonormal basis for L2(Bd).

Proof : To check orthogonality, observe that

Z

B

d

Jd

k

(|u|)'
n,j

(u/|u|)Jd

l

(|u|)'
m,i

(u/|u|) du =

1
Z

0

Jd

k

(r)Jd

l

(r)rd�1 dr

Z

S

d�1

'
n,j

(✓)'
m,i

(✓) d�(✓) (2.37)

which is clearly 0 if (k, n, j) 6= (l, m, i) due to the orthogonality of the Jacobi poly-

nomials on [0, 1] and the spherical harmonics on Sd�1.

Now, assume f 2 L2(Bd) with

Z

B

d

f(u)Jd

k

(|u|)'
n,j

(u/|u|) du = 0 (2.38)

for all k, n, j. Converting to polar coordinates then gives

Z

S

d�1

'
n,j

(✓)

Z 1

0

f(r✓)Jd

k

(r)rd�1 dr d�(✓) = 0. (2.39)

Since the spherical harmonics form an orthonormal basis for L2(Sd�1), this implies

Z 1

0

f(r✓)Jd

k

(r)rd�1 dr = 0 (2.40)
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for each k and each ✓. However, this is only possible if f(r✓) = 0 for all r, since

the Jacobi polynomials form a basis for L2([0, 1]). Therefore, f ⌘ 0 and P d is an

orthonormal basis.

⌅

Lemma 2.6 The normalizing constant �
k

is equal to

p
2k + d.

To prove this we begin by adapting two known formulas for the Jacobi polyno-

mials for use with the polynomials P
(↵,�)
n

(2r � 1).

Lemma 2.7 [7] For any polynomial q

Z 1

�1

q(x)P (↵,�)
n

(x)(1� x)↵(1 + x)� dx =
1

2nn!

Z 1

�1

(1� x)↵+n(1 + x)�+n

dn

dxn

q(x) dx.

(2.41)

Then the corollary follows immediately.

Corollary 2.1 For any polynomial q

Z 1

0

q(r)rd�1P (0,d�1)
n

(2r � 1) dr =
1

n!

Z 1

0

(1� r)nrn+d�1 dn

drn

q(r) dr. (2.42)

Lemma 2.8 [7] For any n > 1

d

dx
P (↵,�)

n

(x) =
n + ↵ + � + 1

2
P

(↵+1,�+1)
n�1 (x). (2.43)

And the following corollary is immediate.
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Corollary 2.2 For any n > 1

d

dr
P (↵,�)

n

(2r � 1) = (n + ↵ + � + 1)P (↵+1,�+1)
n�1 (2r � 1). (2.44)

Repeated application of Corollary 2.2 gives the formula

dk

drk

P
(0,d�1)
k

(2r � 1) =
(2k + d� 1)!

(k + d� 1)!
P

(k,k+d�1)
0 (2r � 1) =

(2k + d� 1)!

(k + d� 1)!
. (2.45)

Proof of Lemma 2.6: First, apply Corollary 2.1 with q(r) = P
(0,d�1)
k

(2r � 1):

��2
k

=

Z 1

0

�

P (0,d�1)
n

(2r � 1)
�2

rd�1 dr (2.46)

=
1

k!

Z 1

0

(1� r)krk+d�1 dk

drk

P
(0,d�1)
k

(2r � 1) dr. (2.47)

Now use (2.45) to get

✓

2k + d� 1

k

◆

Z 1

0

(1� r)krk+d�1 dr =

✓

2k + d� 1

k

◆

Z 1

0

(1� r)krk+d�1 dr

=

✓

2k + d� 1

k

◆

�(k + 1, k + d)

=

✓

2k + d� 1

k

◆

k!(k + d� 1)!

(2k + d)!

=
1

2k + d
.

So �
k

=
p

2k + d.

⌅
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2.3.2 Legendre Polynomials

The spherical harmonics are closely related to a family of polynomials called the

Legendre polynomials, which are orthonormal on [�1, 1] with respect to the weight

(1� x2)⌘

d .

Definition 2.15 (Legendre Polynomials) [8] For d > 2, n > 0 the Legendre poly-

nomial of degree n in d dimensions is

P d

n

(t) = qd

n

�

1� t2
��⌘

d

dn

dtn
(1� t2)⌘

d

+n (2.48)

where ⌘
d

= d�3
2 and

qd

n

= (�1)n2�n

n

Y

i=1

(⌘
d

+ i)�1 . (2.49)

For all n and d the Legendre polynomials {P d

n

: n > 0} have the properties that

1. |P d

n

(t)| 6 1 for all t 2 [�1, 1] and

2. P d

n

(1) = 1

The following relationships between spherical harmonics and Legendre polynomials

will be useful in later calculations.

Lemma 2.9 [8] Fix d > 2, n > 0. Let {'
n,i

: 1 6 i 6 h
d

(n)} be an orthonormal

basis for Hd

n

, the space of spherical harmonics in dimension d of degree n. Then for
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s, t 2 Sd�1

h

d

(n)
X

i=1

'
n,i

(s)'
n,i

(t) =
h

d

(n)

�
d�1

P d

n

(s · t) (2.50)

where P d

n

is the Legendre polynomial in dimension d of degree n.

Note that in the case of s = t this yields

h

d

(n)
X

i=1

'2
n,i

(t) = P
m

(1) =
h

d

(m)

�
d�1

. (2.51)

Theorem 2.1 (The Funk-Hecke Theorem) [8] If � is a bounded integrable func-

tion on [-1,1] and '
n

is a spherical harmonic of degree n in d dimensions then �(u·v)

is (for any fixed u 2 Sd�1
) an integrable function on Sd�1

and

Z

S

d�1

�(u · v)'
n

(v) d�(v) = ↵
d,n

(�)'
n

(u)

where

↵
d,n

(�) = �
d�1

Z 1

�1

�(t)P d

n

(t)(1� t2)⌘

d dt (2.52)

and ⌘
d

= (d � 3)/2 , P d

n

is the Legendre polynomial of dimension d and degree n,

�
d�1 is the surface area of Sd�1

and � is the uniform measure on Sd�1
.
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Chapter 3 The White Noise Integral

In this section we will use the Brownian sheet on Rd to construct a random variable

called the white noise integral and use it to find an alternate representation for

Lévy’s Brownian motion. Recall that the covariance function, K(s, t) can be written

in integral form as

K(s, t) = µ(A
s

\ A
t

) (3.1)

where µ is the measure with density

dµ(u) =
⌘

d

+ 1

�
d�1

|u|�(d�1) du (3.2)

and

A
s

=
�

u 2 Bd : |u� s/2| < |s/2| (3.3)

This leads to a stochastic integral representation for Lévy’s Brownian motion.

3.1 The Brownian Sheet

In order to write Lévy’s Brownian motion as a stochastic integral we use a white noise

integral. Recall that a Brownian sheet is a random field that is typically defined on
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Rd

+ as a Gaussian random field with mean 0 and covariance function

C(s, t) =
d

Y

i=1

s
i

^ t
i

. (3.4)

To extend this definition to Rd the covariance function must be modified so that it

is positive definite. To accomplish this we introduce the following definition for the

Brownian sheet in Rd.

Definition 3.1 (Brownian Sheet) The Brownian sheet in Rd

is a mean zero Gaus-

sian random field with covariance function

C(s, t) =

8

>

>

<

>

>

:

Q

d

i=1 |si

| ^ |t
i

| if s and t are in the same orthant

0 otherwise

(3.5)

Before we can use this definition we need to verify that such a random field exists.

The following theorems give criteria for the existence of Gaussian random field based

on the structure of the covariance function and the finite-dimensional distributions.

Definition 3.2 (Finite-dimensional Distributions) [3] Let {X
t

: t 2 T} be a

random field on (⌦,A, P ), {A
i

: 1 6 i 6 n} ⇢ B and [X
t

i

: 1 6 i 6 n] be any finite

random vector from the random field. Then define the measure µ
t1,...,t

n

to be the joint

distribution function of [X
t1 , ..., Xt

n

]. That is

µ
t1,...,t

n

(A1 ⇥ ...⇥ A
n

) = P (X
t1 2 A1, ..., Xt

n

2 A
n

) . (3.6)

These measures are called the finite-dimensional distributions of {X
t

: t 2 T}.
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Theorem 3.1 (Kolmogorov’s Consistency Conditions) [3] Let

{µ
t

k1
,...t

k

n

: n > 1} be a collection of measures on Rd

. Suppose each measure satisfies

the following two conditions.

1. For any permutation, ⇡, of {1, 2, ..., n},

µ
t

⇡1,...,t

⇡n

(A
⇡1 ⇥ ...⇥ A

⇡n

) = µ
t1,...,t

n

(A1 ⇥ ...⇥ A
n

) (3.7)

and

2.

µ
t1,...,t

n�1(A1 ⇥ ...⇥ A
n�1) = µ

t1,...,t

n

(A1 ⇥ ...⇥ A
n�1 ⇥ R). (3.8)

Then there exists a random field with these measures as the finite-dimensional dis-

tributions.

Due to the structure of the multivariate Gaussian density function, any valid covari-

ance function defines a Gaussian random field.

Lemma 3.1 [3] Let K : T ⇥ T ! R be a symmetric function such that the matrix

⌃ = [K(t
i

, t
j

) : 1 6 i, j 6 n] (3.9)

is positive definite for any finite n. Then there exists a mean 0 Gaussian random

vector [X
t1 , ..., Xt

n

] with

K(t
i

, t
j

) = Cov(X
t

i

, X
t

j

) (3.10)

for each i, j.
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Lemma 3.2 The function C(s, t) defined in (3.5) is the covariance function of a

Gaussian random field.

Proof: For t 2 R?d = [R [ {±1}]d let I
t

denote the rectangle

I
t

= I
t1 ⇥ I

t2 ⇥ ...⇥ I
t

d

(3.11)

where

I
t

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(t, 0] if t < 0

(0, t] if 0 6 t < 1

(0,1) if t = 1

(3.12)

t

s

I
s
∩I

t

Figure 3.1: Example of I
s

\ I
t

in Rd
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Then for any s, t 2 R?d we can write C(s, t) as the integral

Z

Rd

1I
t

\I
s

(u) du. (3.13)

Let F = {t
i

: 1 6 i 6 n} be some finite subset of R?d and A be the n⇥ n matrix

[C(t
i

, t
j

) : 1 6 i, j 6 n]. Suppose that for 1 6 i, j 6 k, t
i

and t
j

are in the same

orthant. Then for any x 2 Rd

xT Ax =
k

X

i=1

k

X

j=1

x
i

Z

Rd

1I
t

i

\I
t

j

(u) du x
j

(3.14)

=

Z

Rd

k

X

i=1

x
i

1I
t

i

(u)
k

X

j=1

x
j

1I
t

j

(u) du (3.15)

=

Z

Rd

 

k

X

i=1

x
i

1I
t

i

(u)

!2

du (3.16)

> 0. (3.17)

Therefore a mean 0 Gaussian random field exists with the covariance function

C(s, t).

⌅

3.2 The White Noise Integral

We begin by considering the family of simple functions built from indicators on

rectangles of the form described in (3.11) and (3.12).

Note that it su�ces to consider rectangles of this form since they can be used to

construct an indicator function on a general rectangle of the form R = (a1, b1]⇥ ...⇥
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(a
d

, b
d

]. To construct R, begin by writing

1

R

(~x) =
d

Y

i=1

1(a
i

,b

i

](xi

). (3.18)

Then if a
i

and b
i

have the same sign (a
i

, b
i

] can be written as I
b

i

\ I
a

i

. In addition,

intersections commute with the Cartesian product so we can write

1(a
i

,b

i

](xi

) = 1

I

a

i

\I
b

i

(x
i

). (3.19)

If a
i

< 0 < b
i

then I
a

i

and I
b

i

are disjoint so we can write

1(a
i

,b

i

](xi

) = 1

I

a

i

+ 1

I

b

i

. (3.20)

Let {t
i

: 1 6 i 6 n} be a subset of Rd, {a
i

: 1 6 i 6 n} a sequence of real numbers

and let f be the simple function

f(u) =
n

X

i=1

a
i

1I
t

i

(u). (3.21)

Define the random variable I(f) to be

I(f) =
n

X

i=1

a
i

W (t
i

) (3.22)

where W (·) is the Brownian sheet.

Definition 3.3 (White noise integral of a general function) Let f 2 L2(Rd).

Then the white noise integral of f , denoted

Z

f(u) dW
u

(3.23)
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is a mean zero Gaussian random variable with variance

Z

f 2(t) dt. (3.24)

Lemma 3.3 For a simple function f

I(f) =

Z

f(u) dW
u

. (3.25)

Proof: The fact that I(f) is Gaussian and mean 0 is immediate since the sum of

Gaussian random variables is also Gaussian and the Brownian sheet has mean 0.

To calculate the variance, consider

E
�

I2(f)
�

= E

 

n

X

i=1

a
i

W (t
i

)

!2

=
n

X

i=1

a2
i

E(W (t
i

)2) + 2
X

16i<j6n

a
i

a
j

E(W (t
i

)W (t
j

))

=
n

X

i=1

a2
i

d

Y

k=1

|t
i,k

|+ 2
X

16i<j6n,t

i

t

j

>0

a
i

a
j

d

Y

k=1

|t
i,k

| ^ |t
j,k

|

=
n

X

i=1

a
i

a
j

Z

Rd

1I
t

i

\I
t

j

dt

=

Z

Rd

f 2(t) dt.

⌅

Next we will show that the white noise integral of a general function can be

considered as the limit of the white noise integral of simple functions. First we define

another notion of convergence of random variables, convergence in probability, which

is stronger than weak convergence.
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Definition 3.4 (Convergence in Probability) [3] Let {X
n

: n > 1} and X be

random variables on (⌦,A, P ). Then X
n

converges to X in probability, denoted

X
n

!P X (3.26)

if

lim
n!1

P (|X
n

�X| > ✏) = 0 (3.27)

for all ✏ > 0.

Lemma 3.4 Let {f
n

: n > 1} be a sequence of simple functions that converge to

f 2 L2(Rd). Then

Z

f
n

(u) dW
u

!P

Z

f(u) dW
u

. (3.28)

Proof: Since f
n

! f in L2(Rd), {f
n

: n > 1} is Cauchy and therefore for any m, n

E

✓

Z

f
n

(u) dW
u

�
Z

f
m

(u) dW
u

◆2

=

Z

(f
n

(t)� f
m

(t))2 dt (3.29)

! 0. (3.30)

So there exists some random variable X such that

Z

f
n

(u) dW
u

!P X. (3.31)

Since convergence in probability implies weak convergence, X must be a Gaussian

random variable with mean zero and variance

lim
n!1

Z

f 2
n

(t) dt =

Z

f 2(t) dt. (3.32)
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⌅

If the convergence of f
n

to f is fast enough then we get one more type of conver-

gence, convergence almost surely.

Definition 3.5 (Almost Sure Convergence) [9] Let {X
n

: n > 1}, X be random

variables on (⌦,A, P ). Then X
n

converges to X almost surely if

P

✓

lim sup
n!1

|X
n

�X| > "

◆

= 0 (3.33)

for all " > 0.

Almost sure convergence implies convergence in probability and weak convergence.

Lemma 3.5 If {f
n

: n > 1} is a sequence of simple functions converging to f such

that

1
X

n=1

E

✓

Z

f
n

(u) dW
u

◆2

< 1 (3.34)

then

Z

f
n

(u) dW
u

!
Z

f(u) dW
u

almost surely. (3.35)

To prove this we will make use of two common results.

Lemma 3.6 (The Borel-Cantelli Lemma) [3] Let {A
n

: n > 1} be a sequence of

events. If

1
X

n=1

P (A
n

) < 1 (3.36)
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then

P

✓

lim sup
n!1

A
n

◆

= 0. (3.37)

Lemma 3.7 (Markov’s Inequality) [3] Let X be a mean zero random variable on

(⌦,A, P ) and ✏ > 0. Then

P (|X| > ") 6 V ar(X)

"2
. (3.38)

Proof of Lemma 3.5

By Markov’s Inequality

P

✓

�

�

�

�

Z

f
n

(u) dW
u

�
Z

f(u) dW
u

�

�

�

�

> "

◆

6 1

"2

Z

(f
n

(t)� f(t) dt)2 dt (3.39)

for any " > 0. So by the Borel-Cantelli Lemma, for f
n

converging to f in L2

P

✓

lim sup
n!1

�

�

�

�

Z

f
n

(u) dW
u

�
Z

f(u)dW
u

�

�

�

�

> "

◆

= 0 (3.40)

if
1
X

n=1

||f
n

� f ||2
L

2 < 1 (3.41)

which proves almost sure convergence of the white noise integral.

⌅

The covariance of two white noise integrals will allow us to find the white noise

integral representation of Lévy’s Brownian motion.
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Lemma 3.8 Let f, g 2 L2(Rd). Then

E

✓

Z

Rd

f(u) dW
u

Z

Rd

g(u) dW
u

◆

=

Z

Rd

f(t)g(t) dt. (3.42)

Proof: We can write

E

✓

Z

Rd

f(u) + g(u) dW
u

◆2

=

Z

Rd

(f(t) + g(t))2 dt (3.43)

=

Z

Rd

f 2(t) + g2(t) + 2f(t)g(t) dt. (3.44)

On the other hand,

E

✓

Z

Rd

f(u) dW
u

+

Z

Rd

g(u) dW
u

◆2

=

E

✓

Z

f(u) dW
u

◆2

+ E

✓

Z

g(u) dW
u

◆2

+ 2E

✓

Z

f(u)g(u)dW
u

◆

. (3.45)

Since the stochastic integral is a linear function, these two are equal and the result

follows. ⌅

These properties immediately yield the white noise integral representation for

Lévy’s Brownian motion.

Lemma 3.9 Lévy’s Brownian motion has white noise integral representation

X
t

=

s

⌘
d

+ 1

�
d�1

Z

B

d

|u|�(d�1)/2
1

A

t

(u) dW
u

. (3.46)
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Chapter 4 Expansions for Lévy’s Brownian Motion in Terms of Spherical
Harmonics

In this section we will find an expansion for Lévy’s Brownian Motion and its covari-

ance function in d dimensions as a linear combination of standard Gaussian random

variables. Such expansions can be extremely useful in simulating the processes. The

expansions will be based on the Karhunen-Loeve Theorem and Mercer’s Theorem.

4.1 The Karhunen-Loeve Expansion

Theorem 4.1 (Mercer’s Theorem) [6] Let T be a compact subset of Rd

and K be

a continuous positive definite function on T ⇥ T . Then there exists an orthonormal

basis {e
i

: i > 0} of L2
consisting of eigenfunctions of K with corresponding non-

negative eigenvalues {�2
i

: i > 0} and

K(s, t) =
1
X

j=0

�2
j

e
j

(s)e
j

(t) (4.1)

where convergence is absolute and uniform.

Theorem 4.2 (The Karhunen-Loeve Theorem) [6] Let T be a compact subset

of Rd

and {X
t

: t 2 T} be a mean zero stochastic process with continuous covariance
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function K(s, t). Then there is an orthonormal basis {e
i

(t) : i > 0} for L2(T )

consisting of eigenfunctions of K(s, t) and

X
t

=
1
X

n=0

�
n

Z
n

e
n

(t) (4.2)

where �2
n

is the eigenvalue corresponding to e
n

and

Z
n

=
1

�
n

Z

T

X
t

e
n

(t) dt. (4.3)

The series in (4.2) is called the Karhunen-Loeve expansion for X
t

and converges

uniformly to X
t

in L2(T ).

The Karhunen-Loéve Expansion for standard Brownian motion in 1 dimension can

easily be found by finding the eigenvalues of the covariance function.

Lemma 4.1 Let {Z
n

: n > 0} be a sequence of independent standard Gaussian

random variables and t 2 [0, 1]. Then the Karhunen-Loéve expansion for standard

Brownian motion in 1 dimension is

X
t

=
p

2
1
X

n=0

sin[(n + 1
2)⇡t]

(n + 1
2)⇡

Z
n

. (4.4)

Proof: We seek to find an orthonormal basis {'
n

: n > 0} of L2((0, 1)) such that for

each n
Z 1

0

(s ^ t)'
n

(s) ds = �
n

'
n

(t). (4.5)
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Let

I =

Z 1

0

(s ^ t)f(s) ds (4.6)

=

Z

t

0

sf(s) ds + t

Z 1

t

f(s) ds. (4.7)

Then

@2I

@t2
= �f(t) (4.8)

which yields the di↵erential equation

f 00(t) = ��f(t) (4.9)

with the initial condition f(0) = 0. This has solutions of the form

f(t) = c sin(t��1/2) (4.10)

where c is some normalization constant. To solve for � solve the equation:

Z 1

0

(s ^ t) sin(s��1/2) ds = � sin(t��1/2) (4.11)

which gives

� =
1

�

(n + 1
2)⇡

�2 (4.12)

for any n 2 Z. Normalize the solution by setting

Z 1

0

c2 sin2

✓

(n +
1

2
)⇡s

◆

ds = 1 (4.13)
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which has the solution c =
p

2. So the eigenfunctions are

'
n

(t) =
p

2 sin

✓

(n +
1

2
)⇡t

◆

(4.14)

with corresponding eigenvalues

�
n

=
1

�

(n + 1
2)⇡

�2 . (4.15)

Now, recall

Z
n

=
p

2

Z 1

0

X(t) sin

✓

(n +
1

2
)⇡t

◆

dt (4.16)

Since
p

2X(t) sin(
�

n + 1
2)⇡t

�

is a standard Gaussian random variable for each n and t,

the integral will also be a standard Gaussian random variable. Apply the Karhunen-

Loéve Theorem to obtain the expansion.

⌅.

These expansions can be extremely useful in simulation, however solving the

eigenvalue problem in Mercer’s Theorem can be di�cult or even impossible and

often yields complicated expansions. In the next section we will use the integral

representation of the covariance function given in Lemma 2.2 to derive an expansion

for Lévy’s Brownian motion.
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4.2 Lévy’s Brownian Motion

Theorem 4.3 Let {X
t

: t 2 Bd} be Lévy’s Brownian motion and K(s, t) = E(X
s

X
t

)

be its covariance function. Then

K(s, t) =
1
X

m=0

1
X

k=0

�
m,k

(|t|)�
m,k

(|s|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)'
m,j

(s/|s|) (4.17)

where

�
m,k

(|t|) =
�2

d�1

⌘
d

+ 1
�

k

1
Z

0

P d

m

(x)(1� x2)⌘

d

Z

x|t|

0

J
k

(r)r(d�1)/2 dr dx (4.18)

P d

m

is the Legendre polynomial of degree m in d dimensions and {Z
m,k,j

: m > 0, k >

0, 1 6 j 6 h
d

(m)} is an array of independent standard Gaussian random variables

and {'
m,j

: m > 0, 1 6 j 6 h
d

(m)} is an orthonormal basis of spherical harmonics.

We will begin by finding an expansion for a function y
t

(·) which has the property

that

K(s, t) = c
d

Z

B

d

y
t

(u) y
s

(u) du =< y
t

, y
s

>
L

2(Bd) (4.19)

for a constant c
d

.

Lemma 4.2 For each u, t 2 Bd

define the function

y
t

(u) = |u|�(d�1)/2
1

A

t

(u) (4.20)

and let

p
m,k,j

(u) = �
k

Jd

k

(|u|)'
m,j

(u/|u|) (4.21)
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be an element of the orthonormal basis P d

as defined in (2.35). Then

Z

B

d

y
t

(u)p
m,k,j

(u) du = ↵
m,k

(|t|)'
m,j

(t/|t|) (4.22)

where

↵
m,k

(|t|) = �
d�1�k

Z 1

0

P
m

(x)(1� x2)⌘

d

Z

x|t|

0

J
k

(r)r(d�1)/2 dr dx (4.23)

where P
m

the Legendre polynomial of degree m in d dimensions and �
d�1 is the

surface area of Sd�1
.

Proof : We begin by writing the integral in polar coordinates.

Z

B

d

y
t

(u)p
m,k,j

(u) du = �
k

Z

✓·t>0

✓·t
Z

0

J
k

(r)'
m,j

(✓)r(d�1)/2 dr d�(✓) (4.24)

=

Z

✓·t/|t|>0

�
t,k

(✓ · t/|t|)'
m,j

(✓) d�(✓) (4.25)

where

�
t,k

(x) = �
k

x|t|
Z

0

Jd

k

(r)r(d�1)/2 dr (4.26)

We can now apply the Funk-Hecke Theorem to get

Z

B

d

y
t

(u)p
m,k,j

(u) du = ↵
m,k

(|t|)'
m,j

(t/|t|) (4.27)

where

↵
m,k

(|t|) = �
d�1

1
Z

0

P
m

(x)(1� x2)⌘

d�
t,k

(x) dx. (4.28)

⌅
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This allows us to expand y
t

(u) in terms of the spherical harmonics as

y
t

(u) =
1
X

m=0

1
X

k=0

h

d

(m)
X

j=1

< y
t

, p
m,k,j

> p
m,k,j

(u) (4.29)

=
1
X

m=0

1
X

k=0

↵
m,k

(|t|)
h

d

(m)
X

j=1

p
m,k,j

(u)'
m,j

(t/|t|). (4.30)

Now, note that

⌘
d

+ 1

�
d�1

Z

B

d

y
t

(u)y
s

(u) du = K(s, t). (4.31)

Using the expansion for y
t

given in equation 4.30 gives the following expansion

for K in terms of spherical harmonics.

K(s, t) =
⌘

d

+ 1

�
d�1

< y
t

, y
s

> (4.32)

=
⌘

d

+ 1

�
d�1

1
X

m=0

1
X

k=0

h

d

(m)
X

j=1

< y
t

, p
m,k,j

>< y
s

, p
m,k,j

> (4.33)

=
1
X

m=0

1
X

k=0

�
m,k

(|t|)�
m,k

(|s|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)'
m,j

(s/|s|) (4.34)

where

�
m,k

(|t|) =

s

⌘
d

+ 1

�
d�1

↵
m,k

(|t|). (4.35)

⌅

This also leads to an expansion for Lévy’s Brownian motion. Note that since the

basis vectors used are not eigenfunctions of the covariance function this will not be

the Karhunen-Loéve expansion, but can still be shown to converge with probability

1.
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Theorem 4.4 Let {Z
m,k,j

: m > 0, k > 0, 1 6 j 6 h
d

(m)} be an array of indepen-

dent standard Gaussian random variables and define

X̃
t

=
1
X

m=0

1
X

k=0

�
m,k

(|t|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)Z
m,k,j

. (4.36)

Then {X̃
t

: t 2 T} is equal in distribution to Lévy’s Brownian motion and the sum

converges with probability 1.

To prove that {X
t

: t 2 Bd} is Lévy’s Brownian motion we need to show that it is

a mean 0 Gaussian random field with covariance function K(s, t). Fubini’s Theorem

will be used to justify exchanging the sums with the expectation.

Theorem 4.5 (Fubini’s Theorem) [11] Suppose (⌦,A, P ) and (⇤,F , ⌫) are �-

finite measure spaces. Let f be a real-valued A ⇥ F measurable function on ⌦ ⇥ ⇤

such that at least one of the quantities

1.

Z

⌦⇥⇤

|f(x, y)| d(P ⇥ ⌫)(x, y)

2.

Z

⌦



Z

⇤

|f(x, y)|d⌫(y)

�

dP (x)

3.

Z

⇤



Z

⌦

|f(x, y)| dP (x)

�

d⌫(y)
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is finite. Then

Z

⌦⇥⇤

f(x, y) d(P ⇥ ⌫)(x, y) =

Z

⌦



Z

⇤

f(x, y)d⌫(y)

�

dP (x)

=

Z

⇤



Z

⌦

f(x, y) dP (x)

�

d⌫(y).

Proof of Theorem 4.4: The fact that X
t

is mean 0 and Gaussian follows immediately

from the fact that it is a sum of mean 0 Gaussian random variables.

To simplify notation for the following, let

X

m,k,j

=
1
X

m=0

1
X

k=0

h

d

(m)
X

j=1

. (4.37)

Then

X
t

X
s

=
X

m,k,j

X

n,l,i

�
m,k

(|t|)�
n,l

(|s|)'
m,j

(t/|t|)'
n,i

(s/|s|)Z
m,k,j

Z
n,l,i

. (4.38)

So E(X
t

X
s

) can be thought of as the iterated integral of integration with respect to

a counting measure, ⌫, and the density of the normal random variable, P . Recall

that {Z
m,k,j

} forms an array of i.i.d. standard normal random variables so

E(Z
m,k,j

Z
n,l,i

) = �(m,k,j),(n,l,i). (4.39)

Also,

X

m,k,j

|�
m,k

(|t|)�
m,k

(|s|)'
m,j

(t/|t|)'
m,j

(s/|s|)| =

c
d

X

m,k,j

|< y
t

, p
m,k,j

>< y
s

, p
m,k,j

>| (4.40)
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where < ·, · > is the standard L2 inner product and y
t

, p
m,k,j

are defined as in (4.20)

and (4.21).

By Holder’s inequality this is bounded above by

c
d

s

X

m,k,j

| < y
t

, p
m,k,j

> |2
X

m,k,j

| < y
s

, p
m,k,j

> |2 = c
d

ky
t

k
L

2(Bd)kys

k
L

2(Bd). (4.41)

This is finite so Fubini’s Theorem implies

E(X
s

X
t

) =
X

m,k,j

�
m,k

(|t|)�
m,k

(|s|)'
m,j

(t/|t|'
m,j

(s/|s|)E(Z2
m,k,j

) = K(s, t). (4.42)

Therefore X
t

converges to Lévy’s Brownian motion. All that remains is to show it

converges with probability 1, which will use the following.

Lemma 4.3 [3] Let {X
n

: n > 1} be a sequence of independent random variables on

a common probability space. If

P1
n=1 V ar(X

n

) < 1 then

P1
n=1 X

n

converges with

probability 1.

Define

X
m,k,j

= �
m,k

(|t|)'
m,j

(t/|t|)Z
m,k,j

. (4.43)

Then {X
m,k,j

} is a sequence of independent random variables with variance

V ar(X
m,k,j

) = �2
m,k

(|t|)'2
m,k,j

(t/|t|). (4.44)

So

X

m,k,j

V ar(X
m,k,j

) = K(t, t) < 1. (4.45)
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Therefore X
t

converges to Lévy’s Brownian motion with probability 1. ⌅

The expression for K(s, t) given in (4.17) can be simplified significantly by ex-

changing sums and integration and applying Lemma 2.9. First, by Lemma 2.9

h

d

(m)
X

j=1

'
m,j

(s/|s|)'
m,j

(t/|t|) =
h

d

(m)

�
d�1

P
m

(s · t/|s||t|). (4.46)

Next we will work on switching the double integral with one of the infinite sums. To

simplify notation, let

Q
m

(x, y) = P
m

(x)(1� x2)⌘

dP
m

(y)(1� y2)⌘

d (4.47)

where P
m

is the Legendre polynomial of degree m. Note that |Q
m

(x, y)| 6 1 for all

x 2 [0, 1].

Let

f
n

(s, t) =
n

X

k=0

�2
k

Z 1

0

Z 1

0

Q
m

(x, y)

Z

x|t|

0

Jd

k

(r)r(d�1)/2 dr

Z

y|s|

0

Jd

k

(u)u(d�1)/2 du dx dy.

(4.48)

And recall Lebesgue’s Dominated Convergence Theorem.

Theorem 4.6 [11] Suppose {f
n

: n > 1} is a sequence of measurable functions

that converges point wise to a real-valued function. Further suppose that there is a

nonnegative integrable function, g, such that |f
n

| 6 g for all n. Then

Z

lim
n!1

f
n

= lim
n!1

Z

f
n

. (4.49)
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If we can show that there is some function, g, integrable on Bd ⇥ Bd such that for

every (s, t) 2 Bd ⇥Bd and every n

|f
n

(s, t)| 6 g(s, t) (4.50)

then Lebesgue’s Dominated Convergence Theorem can be applied to (4.17).

First, using the fact that |Q
m

(x, y)| 6 1, we obtain the bound

|f
n

(s, t)| 6
Z 1

0

Z 1

0

n

X

k=0

�

�

�

�

�

�2
k

Z

x|t|

0

Jd

k

(r)r(d�1)/2 dr

Z

y|s|

0

Jd

k

(u)u(d�1)/2 du

�

�

�

�

�

dx dy.

(4.51)

By the Cauchy-Schwarz inequality, this is bounded by

Z 1

0

Z 1

0

v

u

u

t

n

X

k=0

�

�

�

�

�

Z

x|t|

0

�
k

Jd

k

(r)r(d�1)/2 dr

�

�

�

�

�

2
n

X

k=0

�

�

�

�

�

Z

y|s|

0

�
k

Jd

k

(u)u(d�1)/2 du

�

�

�

�

�

2

dx dy.

(4.52)

However, since all the terms in the summation are positive, this is bounded by

Z 1

0

Z 1

0

v

u

u

t

1
X

k=0

�

�

�

�

�

Z

x|t|

0

�
k

Jd

k

(r)r(d�1)/2 dr

�

�

�

�

�

2 1
X

k=0

�

�

�

�

�

Z

y|s|

0

�
k

Jd

k

(u)u(d�1)/2 du

�

�

�

�

�

2

dx dy.

(4.53)

Now rewrite this as

Z 1

0

Z 1

0

v

u

u

t

1
X

k=0

�

�

�

D

�
k

Jd

k

(r)r(d�1)/2,1(0,x|t|)(r)
E

�

�

�

2
1
X

k=0

�

�

�

D

�
k

Jd

k

(u)u(d�1)/2,1(0,y|s|)(u)
E

�

�

�

2
dx dy

(4.54)
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where < ·, · > is the L2((0, 1)) inner product. Since {�
k

Jd

k

(r)r(d�1)/2 : k > 0} forms

an orthonormal basis for L2((0, 1)) this is equal to

Z 1

0

Z 1

0

�

�

�

1(0,x|t|)

�

�

�

L

2((0,1))

�

�

�

1(0,y|s|)

�

�

�

L

2((0,1))
dx dy 6 1 (4.55)

Since g(s, t) = 1 is integrable on Bd ⇥ Bd, the Dominated Convergence Theorem

implies

1
X

k=0

�2
k

Z 1

0

Z 1

0

Q
m

(x, y)

Z

x|t|

0

Jd

k

(r)r(d�1)/2 dr

Z

y|s|

0

Jd

k

(u)u(d�1)/2 du dx dy =

Z 1

0

Z 1

0

Q
m

(x, y)
1
X

k=0

Z

x|t|

0

�
k

Jd

k

(r)r(d�1)/2 dr

Z

y|s|

0

�
k

Jd

k

(u)u(d�1)/2 du dx dy. (4.56)

Again, we can rewrite the inner integrals as inner products and this is equal to

Z 1

0

Z 1

0

Q
m

(x, y)
D

1(0,x|t|),1(0,y|s|)

E

dx dy =

Z 1

0

Z 1

0

Q
m

(x, y)(x|t| ^ y|s|) dx dy.

(4.57)

We have just proven the following:

Lemma 4.4 The covariance function for Lévy’s Brownian motion can be written as

K(s, t) = c
d

1
X

m=0

h
d

(m)P
m

(s · t/|s||t|)
Z 1

0

Z 1

0

Q
m

(x, y)(x|t| ^ y|s|) dx dy. (4.58)

This expression will be very useful in simulating Lévy’s Brownian motion.
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Chapter 5 The P-Processes

The ideas in the preceding section can be generalized to find the expansions of a

family of random fields, {Xp : p + d > 0} with similar covariance functions.

5.1 Definition

For each p > �d define the measure ⌫
p

on Bd by

⌫
p

(A) =
⌘

d

+ 1

�
d�1

Z

A

|u|p du. (5.1)

Then define the function K
p

: Bd ⇥Bd ! R by

K
p

(s, t) = ⌫
p

(A
s

\ A
t

) (5.2)

where

A
s

=
�

u 2 Rd : |u� s/2| < |s|/2 . (5.3)

For each p the p-process is defined to be a mean zero Gaussian random field with

K
p

as its covariance function.

Kolmogorov’s consistency conditions will allow us to conclude that such a random

field exists.
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Lemma 5.1 For any finite F = {t
i

: 1 6 i 6 n} with t
i

2 Bd

the matrix

A = [K
p

(t
i

, t
j

) : 1 6 i, j 6 n] (5.4)

is positive definite.

Proof: Let

y
t,p

(u) = |u|p/2
1

A

t

(u). (5.5)

Then we have the integral representation

K
p

(s, t) =
⌘

d

+ 1

�
d�1

Z

B

d

y
t,p

(u)y
s,p

(u) du. (5.6)

So the matrix A is

A =



Z

B

d

y
t

i

,p

(u)y
t

j

,p

(u) du : 1 6 i, j 6 n

�

(5.7)

for some n 2 Z+.

Therefore, for any x 2 Rn

xT Ax =
n

X

i=1

n

X

j=1

x
i

Z

B

d

y
t

i

,p

(u)y
t

j

,p

(u) du x
j

(5.8)

=

Z

B

d

 

n

X

i=1

x
i

y
t

i

,p

(u)

!2

du (5.9)

which is non-negative for any choice of x.

⌅
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Note that we can calculate the variance of the process X
t,p

by calculating the

integral

⌫
p

(A
t

) =

Z

A

t

|u|p du (5.10)

=

Z

✓·t>0

Z

✓·t

0

rp+d�1 dr d�(✓) (5.11)

=
1

p + d

Z

✓·t>0

(✓ · t)p+d d�(✓). (5.12)

Now, apply Lemma 2.3 with v = ✓, u = t/|t| and �(x) = xp+d

1{x>0} to get

�
d�1

p + d
|t|p+d

Z 1

0

xp+d(1� x2)⌘

d dx = �
p,d

|t|p+d (5.13)

where

�
p,d

=
�

d�1

2(p + d)
� ((p + d + 1)/2, ⌘

d

+ 1) (5.14)

So the variance will be close to zero near the origin and increasing as it moves away

from the origin. Note also that since |t|p+d is decreasing in p + d for 0 < |t| < 1 that

the variance at a fixed point decreases as p + d increases.

It is also helpful to consider the process along a ray from the origin. Let r, s > 0

and consider

K
p

(r✓, s✓) = ⌫
p

(A(r^s)✓) = �
p,d

(r ^ s)p+d. (5.15)

Now, to examine the behavior of the process in increments along this ray, suppose

the length of the increment is held constant at ⌧ > 0 and consider

V ar(X(r+⌧)✓,p

�X
r✓,p

) = �
p,d

�

(r + ⌧)p+d � rp+d

�

. (5.16)
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This is constant if p + d = 1, increasing in r if p + d > 1 and decreasing in r if

0 < p + d < 1.

As in the case of Lévy’s Brownian motion, the integral representation for the

covariance function allows a white noise integral representation of the p-processes.

Lemma 5.2 The p-processes have the white noise integral representation

X
t,p

=

s

⌘
d

+ 1

�
d�1

Z

B

d

|u|p/2
1

A

t

(u) dW
u

. (5.17)

5.2 Expansions of P-Processes in Terms of Orthogonal Polynomials

As with Lévy’s Brownian Motion, the p-processes and their covariance function have

expansions in terms of spherical harmonics and independent standard Gaussian ran-

dom variables.

Theorem 5.1 Let {X
t,p

: t 2 Bd} be a p-process and K
p

(s, t) = E(X
s,p

X
t,p

) be its

covariance function. Then

K
p

(s, t) = c
p,d

1
X

m=0

1
X

k=0

�
m,k,p

(|t|)�
m,k,p

(|s|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)'
m,j

(s/|s|) (5.18)

where

�
m,k,p

(|t|) =

s

⌘
d

+ 1

�
d�1

Z 1

0

P
m

(x)(1� x2)⌘

d

Z

x|t|

0

J
k

(r)rd+p/2�1 dr dx (5.19)

P
m

is the Legendre polynomial of degree m and {Z
m,k,j

: m > 0, k > 0, 1 6 j 6

h
d

(m)} is an array of i.i.d standard Gaussian random variables.
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We begin by finding an expansion for a function y
t,p

with the property that

K
p

(s, t) = c
d

< y
t,p

, y
s,p

>
L

2(Bd) . (5.20)

Lemma 5.3 For each u, t 2 Bd

define the function

y
t,p

(u) = |u|p/2
1

A

t

(5.21)

and let

p
m,k,j

(u) = �
k

Jd

k

(|u|)'
m,j

(u/|u|) (5.22)

be an element of the orthonormal basis as defined in equation 2.35. Then

Z

B

d

y
t,p

(u)p
m,k,j

(u) du = ↵
m,k,p

(|t|)'
m,j

(t/|t|) (5.23)

where

↵
m,k,p

(|t|) = �
k

Z 1

0

P
m

(x)(1� x2)⌘

d

Z

x|t|

0

J
k

(r)rd+p/2�1 dr dx. (5.24)

Proof : We begin by converting the integral to polar coordinates.

Z

B

d

y
t,p

(u)p
m,k,j

(u) du = �
k

Z

✓·t>0

✓·t
Z

0

Jd

k

(r)'
m,j

(✓)rd+p/2�1 dr d�(✓)

=

Z

✓·t/|t|>0

�
t,k,p

(✓ · t/|t|)'
m,j

(✓) d�(✓)

where

�
t,k,p

(x) = �
k

x|t|
Z

0

Jd

k

(r)rd+p/2�1 dr. (5.25)
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We can now apply the Funk-Hecke Theorem to get

Z

B

d

y
t,p

(u)p
m,k,j

(u) du = ↵
m,k,p

(|t|)'
m,j

(t/|t|) (5.26)

where

↵
m,k,p

(|t|) = �
d�1

1
Z

0

P
m

(x)(1� x2)⌘

d�
t,k,p

(x) dx. (5.27)

⌅

This yields the expansion

y
t,p

(u) =
1
X

m=0

1
X

k=0

↵
m,k,p

(|t|)
h

d

(m)
X

j=1

p
m,k,j

(u)'
m,j

(t/|t|). (5.28)

Now, note that

K
p

(s, t) =
⌘

d

+ 1

�
d�1

< y
t,p

, y
s,p

> (5.29)

=
1
X

m=0

1
X

k=0

h

d

(m)
X

j=1

< y
t,p

, p
m,k,j

>< p
m,k,j

, y
s,p

> (5.30)

and Theorem 5.2 follows with

�
m,k,p

(|t|) =

s

⌘
d

+ 1

�
d�1

↵
m,k,p

(|t|). (5.31)

This also yields an expansion for the p-process.

Theorem 5.2 Let p + d > 0 and define

X̃
t,p

=
1
X

m=0

1
X

k=0

�
m,k,p

(|t|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)Z
m,k,j

. (5.32)

Then X̃
t,p

converges to a p-process with probability 1.
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Proof: To prove that {X̃
t,p

: t 2 T} is equal to the p-process we need to show that it

is a mean 0 Gaussian random field with E(X̃
s,p

X̃
t,p

) = K
p

(s, t). The fact that X̃
t,p

is mean 0 and Gaussian follows immediately from the fact that it is a sum of mean

0 Gaussian random variables. Also,

X̃
t,p

X̃
s,p

=
X

m,k,j

X

n,l,i

�
m,k,p

(|t|)�
n,l,p

(|s|)'
m,j,

(t/|t|)'
n,i

(s/|s|)Z
m,k,j

Z
n,l,i

. (5.33)

Now

X

m,k,j

|�
m,k,p

(|t|)�
m,k,p

(|s|)'
m,j

(t/|t|)'
m,j

(s/|s|)| =

c
d

X

m,k,j

|< y
t,p

, p
m,k,j

>< y
s,p

, p
m,k,j

>| (5.34)

where < ·, · > is the standard L2 inner product and y
t,p

, p
m,k,j

are defined as in (5.21)

and (4.21).

By Holder’s inequality this is bounded above by

c
d

s

X

m,k,j

| < y
t,p

, p
m,k,j

> |2
X

m,k,j

| < y
s,p

, p
m,k,j

> |2 = c
d

ky
t,p

k
L

2(Bd)kys,p

k
L

2(Bd).

(5.35)

This is finite so the sums and expectations can be exchanged. Therefore

E(X̃
s,p

X̃
t,p

) =
X

m,k,j

�
m,k,p

(|t|)�
m,k,p

(|s|)'
m,j

(t/|t|'
m,j

(s/|s|)E(Z2
m,k,j

) = K
p

(s, t).

(5.36)

Therefore X̃
t,p

converges to the p-process. It remains to show that it converges with

probability 1.
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Define

X
m,k,j

= �
m,k,p

(|t|)'
m,j

(t/|t|)Z
m,k,j

. (5.37)

Then {X
m,k,j

} is a sequence of independent random variables with variance

V ar(X
m,k,j

) = �2
m,k,p

(|t|)'2
m,j

(t/|t|). (5.38)

So

X

m,k,j

V ar(X
m,k,j

) = K
p

(t, t) < 1. (5.39)

Therefore X
t,p

converges to a p-process with probability 1. ⌅

The expression for K
p

(s, t) given in (4.17) can be simplified significantly by ex-

changing sums and integration.

Let

f
n,p

(s, t) =

n

X

k=0

�2
k

Z 1

0

Z 1

0

Q
m

(x, y)

Z

x|t|

0

Jd

k

(r)rd+p/2�1 dr

Z

y|s|

0

Jd

k

(u)ud+p/2�1 du dx dy (5.40)

where Q
m

is defined as in (4.47).

If we can show that there is some function, g
p

, integrable on Bd ⇥ Bd such that

for every (s, t) 2 Bd ⇥Bd and every n

|f
n,p

(s, t)| 6 g
p

(s, t) (5.41)

then Lebesgue’s Dominated Convergence Theorem can be applied.
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First, using the fact that |Q
m

(x, y)| 6 1, we obtain the bound

|f
n,p

(s, t)| 6
Z 1

0

Z 1

0

n

X

k=0

�

�

�

�

�

�2
k

Z

x|t|

0

Jd

k

(r)rd+p/2�1 dr

Z

y|s|

0

Jd

k

(u)ud+p/2�1 du

�

�

�

�

�

dx dy.

(5.42)

By Holder’s inequality, this is bounded by

Z 1

0

Z 1

0

v

u

u

t

n

X

k=0

�

�

�

�

�

Z

x|t|

0

�
k

Jd

k

(r)rd+p/2�1 dr

�

�

�

�

�

2
n

X

k=0

�

�

�

�

�

Z

y|s|

0

�
k

Jd

k

(u)ud+p/2�1 du

�

�

�

�

�

2

dx dy.

(5.43)

However, since all the terms in the summation are positive, this is bounded by

Z 1

0

Z 1

0

v

u

u

t

1
X

k=0

�

�

�

�

�

Z

x|t|

0

�
k

Jd

k

(r)rd+p/2�1 dr

�

�

�

�

�

2 1
X

k=0

�

�

�

�

�

Z

y|s|

0

�
k

Jd

k

(u)ud+p/2�1 du

�

�

�

�

�

2

dx dy.

(5.44)

Now rewrite this as

Z 1

0

Z 1

0

v

u

u

t

1
X

k=0

�

�

�

D

�
k

Jd

k

(r)r(d�1)/2, r(d+p�1)/2
1(0,x|t|)(r)

E

�

�

�

2
⇥

v

u

u

t

1
X

k=0

�

�

�

D

�
k

Jd

k

(u)r(d�1)/2, u(d+p�1)/2
1(0,y|s|)(u)

E

�

�

�

2
dx dy (5.45)

where < ·, · > is the L2((0, 1)) inner product. Since {�
k

Jd

k

(r)r(d�1)/2 : k > 0} forms

an orthonormal basis for L2((0, 1)) this is equal to

Z 1

0

Z 1

0

�

�

�

r(d+p�1)/2
1(0,x|t|)(r)

�

�

�

L

2((0,1))

�

�

�

u(d+p�1)/2
1(0,y|s|)(u)

�

�

�

L

2((0,1))
dx dy 6 1 (5.46)
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Since g(s, t) = 1 is integrable on Bd ⇥ Bd with respect to the measure dµ(u) =

|u|p+d�1 du for p > �d, the Dominated Convergence Theorem implies

1
X

k=0

�2
k

Z 1

0

Z 1

0

Q
m

(x, y)

Z

x|t|

0

Jd

k

(r)rd+p/2�1 dr

Z

y|s|

0

Jd

k

(u)ud+p/2�1 du dx dy =

Z 1

0

Z 1

0

Q
m

(x, y)
1
X

k=0

Z

x|t|

0

�
k

Jd

k

(r)rd+p/2�1 dr

Z

y|s|

0

�
k

Jd

k

(u)ud+p/2�1 du dx dy. (5.47)

Again, we can rewrite the inner integrals as inner products and this is equal to

Z 1

0

Z 1

0

Q
m

(x, y)
D

r(d+p�1)/2
1(0,x|t|)(r), r

(d+p�1)/2
1(0,y|s|)(r)

E

dx dy =

1

p + d

Z 1

0

Z 1

0

Q
m

(x, y)(x|t| ^ y|s|)p+d dx dy. (5.48)

We have just proven the following:

Lemma 5.4 The covariance function for the p-process can be written as

K
p

(s, t) = c
d,p

1
X

m=0

h
d

(m)P
m

(s · t/|s||t|)
Z 1

0

Z 1

0

Q
m

(x, y)(x|t|^ y|s|)p+d dx dy. (5.49)

This expression will be very useful in simulating the p-processes.

5.3 Properties of P-Processes

5.3.1 Stationarity

Definition 5.1 (Strictly Stationary Random Field) [17] A random field {X
t

:

t 2 T} is called stationary if all finite dimensional distributions are invariant under

translations.
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Since the variance of the p-processes is a power of |t| for every p, all p-processes,

including Levy’s Brownian Motion are non-stationary. Levy’s Brownian Motion does,

however, have a local stationarity property.

Definition 5.2 (Locally Stationary) [17] Let G(T ) be the group of all rotations

and translations in T ⇢ Rn

. The random field {X
t

: t 2 T} is locally stationary if

{X
g(t) �X

g(0) : t 2 T} =d {X
t

�X0 : t 2 T} 8g 2 G(T ). (5.50)

Lemma 5.5 Levy’s Brownian Motion is the only p-process that is locally stationary.

Proof It was shown in (5.15) that for p + d 6= 1, {X
t,p

: t 2 Bd} is not locally

stationary. If p + d = 1 then the p-process is Lévy’s Brownian motion and

V ar(X
g(t) �X

g(0)) = |g(t)� g(0)| = |t| 8g 2 G. (5.51)

⌅

5.3.2 Isotropy

Definition 5.3 (Isotropic Random Field) Let G(T ) be the group of all rotations

of T ⇢ Rd

. A random field with covariance function C(s, t) is called isotropic if

C(s, t) = C(g(s), g(t)) 8g 2 G(T ),8s, t 2 T. (5.52)

Lemma 5.6 All p-processes are isotropic in all dimensions.
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Proof: The rotation of a vector t 2 Rd can be expressed by Qt where Q is a real

unitary matrix with determinant 1. Then for any p, d with p + d > 0

K
p

(Qt, Qs) =

ZZ

{0<r<✓·(Qt)^✓·(Qs)}

rp+d�1 dr d�(✓)

=
1

p + d

Z

{(QT

✓)·t^(QT

✓)·s>0}

((QT ✓) · t ^ (QT ✓) · s)p+d d�(✓)

=
1

p + d

Z

{↵·t^↵·s>0}

(↵ · t ^ ↵ · s)p+d d�(↵)

= K
p

(s, t).

Theorem 5.3 Let

XM,K

t,p

=
M

X

m=0

K

X

k=0

�
m,k,p

(|t|)
h

d

(m)
X

j=1

'
m

(t/|t|)Z
m,k,j

. (5.53)

Then {XM,K

t,p

: t 2 Bd} is isotropic in all dimensions and for all M, K.

The proof relies on the following property of spherical harmonics:

Lemma 5.7 [8] If ⇢ is a rotation on Bd

and H = {h
i

: 1 6 i 6 h
d

(n)} is an or-

thonormal basis for Hd

n

then ⇢�1(H) := {h
i

�⇢:1 6 i 6 h
d

(n)} is also an orthonormal

basis for Hd

n

.

Proof of Lemma To show that ⇢�1 � h is harmonic, we take

@2

@x2
i

(h(⇢(x)) =
@2h

@x2
i

(⇢(x))⇢0(x) +
@h

@x
i

(⇢(x))⇢00(x). (5.54)
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Since h is harmonic and ⇢ is linear, this gives 4h � ⇢ = 0. Further, for any inner

product, < ·, · > and g, h 2 Hd

n

we must have

< ⇢�1(g), ⇢�1(h) >=< g, h >

so the image ⇢�1(H) will also be an orthonormal set. Since ⇢ is an injective function,

⇢�1(H) will also be the same size as H, and therefore ⇢�1(H) is an orthonormal basis

for Hd

n

.

Proof of Theorem:

Let ⇢ be any rotation of Bd and

KM,K

p

(s, t) =
M

X

m=0

K

X

k=0

�
m,k,p

(|t|)�
m,k,p

(|s|)
h

d

(m)
X

j=1

'
m,j

(t/|t|)'
m,j

(s/|s|) (5.55)

be the covariance function for the random field {XM,K

t,p

: t 2 Bd}.

Then

KM,K

p

(⇢(s), ⇢(t)) =
M

X

m=0

K

X

k=0

�
m,k,p

(|t|)�
m,k,p

(|s|)
h

d

(m)
X

j=1

'
m,j

(⇢(t/|t|))'
m,j

(⇢(s/|s|))

= KM,K

p

(s, t).

5.4 Generalization to Balls of Radius a.

The Gaussian random fields from the previous sections can be generalized to be

defined on any sized ball in Rd.
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5.4.1 An Orthonormal Basis

First, we need to define a new orthonormal basis. Let Bd

a

denote the ball of radius

a centered at the origin in Rd.

Lemma 5.8 Let P
(↵,�)
n

denote the Jacobi polynomial of degree n with parameters ↵

and �. Then

n

P
(0,�)
n

�

2
a

x� 1
�

: n 6 0
o

is orthogonal with respect to the weight x�

on [0, a]. i.e.

Z

a

0

P (0,�)
n

✓

2

a
x� 1

◆

P (0,�)
m

✓

2

a
x� 1

◆

x� dx = 0 for m 6= n. (5.56)

Proof : Using the change of variables y = x/a we can rewrite (5.56) as

a�+1

Z 1

0

P (0,�)
n

(2y � 1)P (0,�)
m

(2y � 1)y� dy (5.57)

which is 0 for n 6= m by Lemma (2.4). ⌅

This leads to the orthonormal basis for Bd

a

,

P d

a

= {�
a,k

Jd

k

(|u|/a)'
n,j

(u/|u|) : n, k > 0, 1 6 j 6 h
d

(n)}. (5.58)

where Jd

k

is the Jacobi polynomial of degree k with parameters ↵ = 0 and � = d� 1,

{'
n

, j : 1 6 j 6 h
d

(n)} is an orthonormal basis for the spherical harmonics of order

n and �
a,k

is a constant chosen so that

�2
a,k

Z

a

0

(Jd

k

)2(x/a) dx = 1. (5.59)
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A simple calculation and change of variables shows that

�2
a,k

= a�d�2
k

= a�d(2k + d) (5.60)

where �
k

=
p

2k + d is the normalization constant from P d, the orthonormal basis

for L2(Bd).

5.4.2 Expansion in Terms of Orthogonal Polynomials

The expansion for the p-processes on the ball of radius a is similar to the expansion

on the unit ball and can be found using a similar method.

Theorem 5.4 Let {X
t,p

: t 2 Bd

a

} be the p-process on the ball of radius a and K
p

be

its covariance function. We can write

K
p

(s, t) = ap

1
X

m=0

1
X

k=0

�
m,k,p

(|t|)
1
X

m=0

'
m,j

(t/|t|) (5.61)

and

X
t,p

= ap/2
1
X

m=0

1
X

k=0

�
m,k,p

(|t|)
h

d

(m)
X

j=1

'
m,j

(t/|t|) (5.62)

where �
m,k,p

and '
m,j

are the same as in Theorem 5.2.

Proof : We begin, as in the proof of Theorem 5.2 by using the function

y
t,p

(u) = |u|p/2
1

A

t

(u). (5.63)
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Then

Z

B

d

a

y
t,p

(u)Jd

k

(|u|/a)'
m,j

(u/|u|) du =

Z

✓·t>0

'
m,j

(✓)

✓·t
Z

0

Jd

k

(r/a)rd+p/2�1 dr d�(✓)

= ad+p/2

Z

✓·t>0

'
m,j

(✓)�
t/a,k,p

(✓ · t/|t|) d�(✓)

where �
t,p,k

(x) is as defined in (5.25). Now, we apply the Funk-Hecke Theorem to

obtain

Z

B

d

a

y
t,p

(u)Jd

k

(|u|/a)'
m,j

(u/|u|) du = ad+p/2↵
m,k,p

(|t|/a)'
m,j

(t/|t|). (5.64)

where ↵
m,k,p

is as defined in (5.27).

The rest of the proof is identical to that of Theorem 5.2 . ⌅



63

Chapter 6 Simulations

In this chapter the expansions for Standard Brownian motion, Lévy’s Brownian

motion and the p-processes found in the preceding chapters will be used to simulate

the random fields for values of t along a ray from the origin.

6.1 Standard Brownian Motion

Recall the Karhunen-Loéve expansion for standard Brownian motion on [0, 1] is

X
t

=
p

2
1
X

n=0

sin[(n + 1
2)⇡t]

(n + 1
2)⇡

Z
n

(6.1)

where {Z
n

: n > 0} is a sequence of independent standard Gaussian random vari-

ables. Finite truncations of this sum can be used to generate simulations. Figure 6.1

used the first 100 terms in the expansion with 100 time steps. Figure6.1 used 1000

terms with 100 time steps
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Figure 6.1: Brownian motion with 100 terms
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Figure 6.2: Brownian motion with 1000 terms

6.2 Lévy’s Brownian Motion and the P -Processes

In the case of Lévy’s Brownian motion and the p-processes the expansions for the

covariance function can be used to simulate the random fields much more e�ciently

than the expansions for the random fields themselves.
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Lemma 6.1 [18] Suppose K is a positive-definite symmetric matrix. Then there

exists an upper triangular matrix, R, such that RRT = K.

The product RRT is called the Cholesky decomposition of K and is very useful for

simulations of multivariate Gaussian random variables.

Lemma 6.2 [18] Let K be an n⇥n positive-definite symmetric matrix with Cholesky

decomposition RRT

and let Z be an n ⇥ 1 vector of standard Gaussian random

variables. Then RZ is a mean 0 Gaussian random vector with covariance matrix K.

Recall that the expansion for the covariance function K was obtained by taking

K(s, t) = c
d

X

e2E

< y
t

, e >< y
s

, e > (6.2)

where y
t

, y
s

2 L2(Bd) and E is an orthonormal basis for L2(Bd). For a fixed integer

N > 0 define K
N

to be a finite truncation of the sum in (6.2),

K
N

(s, t) = c
d

N

X

i=1

< y
t

, e
i

>< y
s

, e
i

> (6.3)

where {e
i

: 1 6 i 6 N} ⇢ E. Then for any finite matrix n, define the matrix

M = [K
N

(t
i

, t
j

) : 1 6 i, j 6 n]. (6.4)

For any vector x 2 Rn

xT Mx = c
d

X

16i,j6n

N

X

k=1

x
i

< y
t

i

, e
k

>< y
t

j

, e
k

> x
j

(6.5)

= c
d

N

X

k=1

 

n

X

i=1

x
i

< y
t

i

, e
k

>

!2

(6.6)

> 0. (6.7)
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So M is positive definite and therefore any finite truncation of the sum in (6.2) can

be used to simulate a random field.

6.3 Lévy’s Brownian Motion

Recall that the covariance function for Lévy’s Brownian motion can be written as

K(s, t) = c
d

1
X

m=0

h
d

(m)P
m

(s · t/|s||t|)
Z 1

0

Z 1

0

Q
m

(x, y)(x|t| ^ y|s|) dx dy (6.8)

where Q
m

(x, y) = P
m

(x)P
m

(y)(1�x2)⌘

d(1�y2)⌘

d and P
m

is the Legendre polynomial

of degree m in d dimensions.

To reduce computation time, we will simplify this expression further. Recall that

the Legendre polynomial is equal to

P
m

(x) = (�1)m2�m

m

Y

i=1

(⌘
d

+ i)�1(1� x2)�⌘

d

dm

dxm

(1� x2)⌘

d

+m. (6.9)

So

Q
m

(x, y) = p2
m

dm

dxm

(1� x2)⌘

d

+m

dm

dym

(1� y2)⌘

d

+m (6.10)

where

p
m

= (�1)m2�m

m

Y

i=1

(⌘
d

+ i)�1. (6.11)
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So

K(s, t) =

c
d

1
X

m=0

P
m

(s · t/|s||t|)q2
m

Z 1

0

Z 1

0

dm

dxm

(1� x2)⌘

d

+m

dm

dym

(1� y2)⌘

d

+m(x|t| ^ y|s|) dx dy

(6.12)

where q
m

=
p

h
d

(m)p
m

. Consider the double integral

Z 1

0

Z 1

0

dm

dxm

(1� x2)⌘

d

+m

dm

dym

(1� y2)⌘

d

+m(x|t| ^ y|s|) dx dy (6.13)

for m > 2. The cases m = 0 and m = 1 can be computed directly. If we assume that

|t| > |s| > 0 then this can be rewritten as

|t|
Z 1

0

dm

dym

(1� y2)⌘

d

+m

Z

y|s|/|t|

0

x
dm

dxm

(1� x2)⌘

d

+m dx dy +

|s|
Z 1

0

y
dm

dym

(1� y2)⌘

d

+m

Z 1

y|s|/|t|

dm

dxm

(1� x2)⌘

d

+m dx dy. (6.14)

Using integration by parts

Z

y|s|/|t|

0

x
dm

dxm

(1� x2)⌘

d

+m dx =

y|s|/|t| dm�1

dxm�1
(1� x2)⌘

d

+m

�

�

x=y|s|/|t| � dm�2

dxm�2
(1� x2)⌘

d

+m

�

�

�

y|s|/|t|
x=0 . (6.15)

Also, since d

k

dx

k

(1� x2)⌘

d

+m |
x=1 = 0 for all k < ⌘

d

+ m,

Z 1

y|s|/|t|

dm

dxm

(1� x2)⌘

d

+m dx = � dm�1

dxm�1
(1� x2)⌘

d

+m

�

�

x=y|s|/|t| . (6.16)
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Incorporating these into (6.14) gives

�|t|
Z 1

0

dm

dym

(1� y2)⌘

d

+m

dm�2

dxm�2
(1� x2)⌘

d

+m

�

�

�

y|s|/|t|
x=0 dy . (6.17)

However, for odd k < ⌘
d

+ m,

dk

dxk

(1� x2)⌘

d

+m |
x=0 = 0 (6.18)

so

dm�2

dxm�2
(1� x2)⌘

d

+m |
x=0

Z 1

0

dm

dym

(1� y2)⌘

d

+m dy = 0 (6.19)

and therefore

K(s, t) = f0(s, t) + f1(s, t)�

c
d

|t|
1
X

m=2

h
d

(m)q2
m

P
m

(s·t/|s||t|)
Z 1

0

dm

dym

(1�y2)⌘

d

+m

dm�2

dxm�2
(1�x2)⌘

d

+m

�

�

x=y|s|/|t| dy .

(6.20)

Now, if we rewrite

dm�2

dxm�2
(1� x2)⌘

d

+m

�

�

�

�

x=y|s|/|t| = (|t|/|s|)m�2 dm�2

dym�2

�

1� (|s|/|t|y)2
�

⌘

d

+m

(6.21)

and perform repeated integration by parts starting with

u =
dm�2

dym�2

�

1� (|s|/|t|y)2
�

⌘

d

+m

and dv =
dm

dym

(1� y2)⌘

d

+m dy (6.22)

we get

Z 1

0

dm
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(1� y2)⌘

d

+m

dm�2

dym�2

�

1� (|s|/|t|y)2
�

⌘

d

+m

dy =

(�1)m

Z 1

0

(1� y2)⌘

d

+m

d2m�2

dy2m�2

�

1� (|s|/|t|y)2
�

⌘

d

+m

dy. (6.23)
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So

K(s, t) = f0(s, t) + f1(s, t)�

c
d

|t|
1
X

m=2

(�|s|/|t|)mq2
m

P
m

(s·t/|s||t|)
Z 1

0

(1�y2)⌘

d

+m

d2m�2

dx2m�2

�

1� x2
�

⌘

d

+m

�

�

x=y|s|/|t| dy.

(6.24)

Now we will simulate Lévy’s Brownian on an interval by approximating the covariance

function at discrete points along a vector. Since Lévy’s Brownian motion is isotropic

it su�ces to consider

{X
t

: t = ke
n

} (6.25)

where e
n

is a standard basis vector in Rd and k is any real number with |k| 6 1.

Additionally, if t
i

= k1en

and t
j

= k2en

then for any m,

P
m

(t
i

· t
j

/|t
i

||t
j

|) = P
m

(1) = 1. (6.26)

So in this case we can think of the covariance function K as a function of two real

numbers. For 0 < i 6 j 6 1 define

K 0
N

(i, j) = f1(i, j) + f2(i, j)�

c
d

j

N

X

m=2

(�i/j)mq2
m

Z 1

0

(1� y2)⌘

d

+m

d2m�2

dx2m�2
(1� x2)⌘

d

+m

�

�

x=yi/j

. (6.27)

This is a finite truncation of the expansion of covariance function K evaluated at s

and t where |s| = i and |t| = j. So in order to simulate Lévy’s Brownian motion on
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an interval we evaluate

M = [K 0
N

(i, j) : 0 < i 6 j 6 1] (6.28)

then find the Cholesky factorization of M and multiply it by a matrix of standard

Gaussian random variables. The following simulations were created using this pro-

cess.
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Figure 6.3: Lévy’s Brownian motion with 500 terms, d=3
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Figure 6.4: Lévy’s Brownian motion with 1000 terms, d=3
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Figure 6.5: Lévy’s Brownian motion with 100 terms, d=5
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6.4 p-processes

In this section we will discuss simulation of the p-processes along a ray from the

origin. Recall that the covariance function for the a p-process can be written as

K
p

(s, t) =

c
d,p

1
X

m=0

h
d

(m)P
m

(s · t/|s||t|)
Z 1

0

Z 1

0

Q
m

(x, y)(x|t| ^ y|s|)p+d dx dy. (6.29)

As with Lévy’s Brownian motion, further simplification of the double integral will

reduce computation time. If we assume that |t| > |s| > 0 and m > 2 then we can

rewrite the double integral

Z 1

0
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0

dm
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d

+m

dm

dym

(1� y2)⌘

d

+m(x|t| ^ y|s|)p+d (6.30)

as
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d
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d
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Using integration by parts
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�
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x=0 dy . (6.32)
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Incorporating this into (6.31) gives

�(p + d)|t|p+d

Z 1

0

dm

dym

(1� y2)⌘

d

+m

Z

y|s|/|t|
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(1� x2)⌘

d

+m dx dy. (6.33)

Now this can be simplified even further using integration by parts by taking

u =

Z

y|s|/|t|

0

xp+d�1 dm�1

dxm�1
(1� x2)⌘

d

+m dx and dv =
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d

+m dy (6.34)

Since u(0) = 0 and v(1) = 0, (6.31) is equal to

(p + d)|s|p+d
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d
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d

+m

�

�

x=y|s|/|t| dy . (6.35)

Further, recall that the constant, c
p,d

in the expansion of K
p

given in is equal to

c
d

/(p + d), where c
d

is the constant in the expansion of K. So the form of the

covariance function that will be used to simulate the p-processes is

K
p

(s, t) = f
p,0(s, t) + f

p,1(s, t)+

c
d

|s|p+d

1
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(6.36)

Now we will do a more explicit calculation for the case p + d = 2. The method

described below can be generalized to work for any integer value of p. Consider the

integral
Z 1

0

y
dm

dym

(1� y2)⌘

d

+m

dm�1

dxm�1
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Use integration by parts with u = y and

dv =
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(1� y2)⌘

d

+m

dm�1

dxm�1
(1� x2)⌘

d

+m

�

�

x=y|s|/|t| dy (6.38)
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to get
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y
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Using repeated integration by parts on v, starting with
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v simplifies to
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However, note that for each k > 1,
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Therefore
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So
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Z 1

0

(1� y2)⌘

d
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Replacing the integral

Z 1
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y
dm

dym

(1� y2)⌘

d

+m

dm�1

dxm�1
(1� x2)⌘

d
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�

�

x=y|s|/|t| dy (6.46)

given in (6.36) gives an expansion for the covariance function K2�d

(s, t). The follow-

ing simulations were obtained using this representation for the covariance function

in the manner described in the previous section.
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Figure 6.6: d=3, p=-1, 100 terms, 50 time steps
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Figure 6.7: d=3, p=-1, 30 terms, 100 time steps
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Chapter 7 Conclusion

This thesis introduces a new family of isotropic Gaussian random fields that are not

locally stationary and presents two types of representations for isotropic Gaussian

random fields. The first is a stochastic integral representation. The second is a

new expansions as an infinite linear combination of independent standard Gaussian

random variables that converges with probability 1. Finite truncations of this rep-

resentation are used to simulate the random fields along a ray through the origin in

Rd.
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.1 Code for Simulating Standard Brownian Motion

step=.01;

m=1000;

U=0:step:1;

%Create a vector of standard Gaussian random variables

W=normrnd(0,1,m+1);

lambda=zeros(1,m+1);

E=zeros(length(U),length(U));

Eprime=zeros(length(U),length(U));

for k=1:m+1

%%Define the eigenvalues

lambda(k)=1/((k-.5)*pi);

%kth column of E is the kth eigenfunction

%% evaluated at each point of U

E(:,k)=sqrt(2)*sin((k-.5)*pi*U);

%kth column of Eprime is kth column of E times

%%the kth eigenvalue and a standard Gaussian random variables

Eprime(:,k)=E(:,k)*lambda(k)*W(k);

end

figure;plot(U,Y);

.2 Code for simulating Lévy’s Brownian Motion Along a Ray

d=5;etad=(d-3)/2;

M=100;

syms x s t y

%%Create the constant sigma_d-1

sigd=2*pi^((d+1)/2)/gamma((d+1)/2);

c(1)=1;
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c(2)=d;

for m=3:M

u=2*m-4;

%%Create the constants q_m and h_d(m)

qv=(d-1):2:d-3+2*(m-1);

c(m)=nchoosek(d+m-2,m-1)-nchoosek(m+d-4,m-3);

%%Create the vector of order 2m-2 derivatives

P(m)=c(m)*prod(qv)^(-2)*diff((1-x^2)^(etad+m-1),x,u);

Q(m)=int((1-y^2)^(etad+m-1)*subs(P(m),x,y*s/t),y,0,1);

end

%%The case m=0 and m=1 treated separately

Q(1)=c(1)*(s*int(y*(1-y^2)^etad*int((1-x^2)^etad,x,y*s/t,1),y,0,1)...

+t*int((1-y^2)^etad*int((1-x^2)^etad*x,x,0,y*s/t),y,0,1));

Q(2)=c(2)*4*(etad+1)^2*(t*int(y*(1-y^2)^etad*.. .

int(x^2*(1-x^2)^etad,x,0,y*s/t),y,0,1)...

+s*int(y^2*(1-y^2)^etad*int(x*(1-x^2)^etad,x,y*s/t,1),y,0,1));

step=.01 ;

T=step:step:1;

K=zeros(length(T),length(T));

lam1=zeros(1,M);

for i=1:length(T)

for j=i:length(T)

%%Create the terms in the expansion of the covariance function

%%evaluated along (0,1]

lam1(1)=subs(subs(Q(1),s,T(i)),t,T(j));

lam1(2)=subs(subs(Q(2),s,T(i)),t,T(j));

for m=3:M

lam1(m)=-T(j)*(-T(i)/T(j))^((m-1))*...

subs(subs(Q(m),s,T(i)),t,T(j));

end

%%Create the matrix, K, of the covariance function evaluated

%%at all points in the square (0,1]X(0,1]

K(i,j)=sum(lam1);
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end

end

Tz=0:step:1;

%%Compute the Cholesky factorization of K

R=chol(sigd^-1*(etad+1)*K);

%%Multiply the Cholesky factorization by a

%%standard Gaussian vector

Z=normrnd(0,1,size(transpose(T)));

S=transpose(R)*Z;

Sc=zeros(size(S)+1);

for k=1:size(S)

Sc(k+1)=S(k);

end

figure; plot(Tz,Sc)

.3 Code for simulating the P -Processes Along a Ray

d=2;etad=(d-3)/2;

p=2-d;

M=100;

sigd=2*pi^((d+1)/2)/gamma((d+1)/2);

for m=1:M

u=2*m-3;

w=2*m-4;

%%Create the constants q_m and h_d(m)

qv=(d-1)/2:1:etad+(m-1);

if m<3

c(m)=nchoosek(d+m-2,m-1);

else

c(m)=nchoosek(d+m-2,m-1)-nchoosek(m+d-4,m-3);

pc(m)=c(m)/prod(qv)^2;

end

%%Create the vectors of order 2m-1 and 2m-2 derivatives
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P1(m)=pc(m)*diff((1-x^2)^(etad+m-1),x,u);

P2(m)=pc(m)*diff((1-x^2)^(etad+m-1),x,w);

m

end

Pp(1)=1;

step=.01;

T=step:step:1;

lamp=zeros(1,M);

%%Create the terms in the expansion of the covariance function

%%evaluated along (0,1]

Kp=zeros(length(T));

for i=1:length(T)

for j=i:length(T)

%%Compute terms for m=0 and m=1 separately

lamp(1)=T(j)^2*int((1-y^2)^etad*...

int((1-x^2)^etad*x^2,x,0,y*T(i)/T(j)),y,0,1)...

+T(i)^2*int(y^2*(1-y^2)^etad*...

int((1-x^2)^etad,x,y*T(i)/T(j),1),y,0,1);

lamp(2)=-pc(2)*(etad+1)^2*(T(j)^2*int(y*(1-y^2)^etad*...

int(x^3*(1-x^2)^etad,x,0,y*T(i)/T(j)),y,0,1)...

+T(i)^2*int(y^3*(1-y^2)^etad...

*int(x*(1-x^2)^etad,x,y*T(i)/T(j),1),y,0,1));

for m=3:M

lamp(m)=T(i)^2*(m-1)*(-1/4)^(m-1)*...

int((1-x^2)^(etad+m-1)*P2(m),x,0,1)+...

T(i)^2*(-1/4)^(m-1)*int(int((1-x^2)^(etad+m-1)*...

P1(m),x,y,1),y,0,1);

end

%%Create the matrix K_p of the covariance function

%%evaluated at all points in (0,1]X(0,1]

Kp(i,j)=sum(-lamp);

Kp(j,i)=Kp(i,j);

end

end

%%Find the Cholesky factorization of K_p

Rp=chol(sigd^-1*(etad+1)*Kp);
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%%Multiply K_p by a standard Gaussian random vector

Zp=normrnd(0,1,size(transpose(T)));

S=transpose(Rp)*Zp;

Tz=0:step:1;

Sz=zeros(1,length(S));

for i=1:length(S)

Sz(i+1)=S(i);

end

figure; plot(Tz,Sz);


