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Anaerobic digestion is a biological process in which organic matter is decomposed by 

a community of microbes in the absence of oxygen. The end product of anaerobic 

digestion is biogas, composed of methane and carbon dioxide, which is often 

recovered and used to generate energy. Commonly, biogas is not produced in 

sufficient quantities suitable for economic recovery, resulting in the flaring of biogas 

to the atmosphere. To optimize anaerobic digestion performance, in silico models 

have been created. Current models examine the critical components of anaerobic 

digestion, approaching the system at a macroscopic level. To address the limits of 

current macroscopic in silico models, a genome-scale model (GEM) of a pure culture 

anaerobic digester was constructed to evaluate both the individual organism’s 

metabolic activity and the community level fitness. An in silico pure culture 

anaerobic digester GEM was defined to include the acidogenic bacteria Clostridium 

acetobutylicum (iCac802), the syntrophic short chain fatty acid oxidizer 

Syntrophomonas wolfei (iTK530), and the methanogenic archaea Methanosarcina 

barkeri (iMG746). While GEMs for both C. acetobutylicum and M. barkeri have 

been previously published, a novel GEM for S. wolfei ( iTK530) was curated. Flux 

balance analysis was performed on the S. wolfei GEM to determine reaction fluxes 
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through the system for various experimental conditions. The pure culture anaerobic 

digester was analyzed through the application of OptCom and descriptive-OptCom, 

which utilized multi-level and multi-objective optimization techniques. The 

construction of a pure culture anaerobic digester GEM presents a high resolution 

platform for in silico analysis and continued investigation of anaerobic digestion at 

the genome level. 
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Genome-Scale Metabolic Reconstruction and Analysis of a Pure Culture
 
Anaerobic Digester
 

CHAPTER 1
 
INTRODUCTION
 

Anaerobic digestion is a natural process in which microorganisms break down 

organic material in the absence of oxygen, producing biogas, a mixture of methane 

and carbon dioxide. (Gujer & Zehnder, 1983) Naturally occurring in numerous 

environments, anaerobic activity has been found in wetlands, benthic deposits, hot 

springs, and the intestinal tract of various mammals including cattle and humans. 

(Gerardi, 2003) Anaerobic digestion is commonly used as the terminal step in the 

wastewater treatment process, due to its ability to stabilize wastewater sludge, reduce 

sludge volume, and produce a sustainable source of energy. (Chen et al, 2008) 

Anaerobic digestion has also gained traction for its ability to reduce the 

quantity and relative strength of greenhouse gasses, due to the capture and 

combustion of the methane produced. Methane released to the atmosphere has a 21 

times greater global warming potential than carbon dioxide. (IPCC, 2001) 

Exacerbated by methane’s increased global warming potential, methane emissions 

have been estimated to contribute 20.7% of total anthropogenic greenhouse gas 

emissions. (US EPA, 2012) The global scientific community has recognized the 

importance of anaerobic digestion for its capacity to reduce greenhouse gas emissions 

and produce a renewable energy source, and has sought out methods to optimize 

digester performance. (Kythreotou, 2014) 

Due to the complexity of anaerobic digestion, mathematical models have been 

developed to increase digester efficiency and understand digester operating 

conditions. Mathematical models of anaerobic digestion have been evolving since the 

early 1960’s, and have been developed to understand a wide range of conditions 

though a variety of approaches. (Andrews, 1969; Kythreotou, 2014) The majority of 
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mathematical models produced for anaerobic digestion utilize reaction kinetics, 

chemical reactions, or a combination of both kinetics and chemical reactions to 

estimate digester performance. (Lyberatos & Skiadas, 1999) 

Advances in genomic sequencing techniques have allowed for the 

construction of genome-scale models (GEMs), which provide a high-resolution 

platform for in silico analysis. (Milne et al, 2009) While simple kinetic based 

solutions may capture the rate of a desired metabolite produced, these models often 

neglect the remaining metabolism of the microorganism, which provide valuable 

insight into the function and structure of the microorganism’s metabolism. Through 

the development of GEMs, inter-species interactions and the metabolic network of 

each species can be modeled and analyzed. (Oberhardt et al, 2009) The application of 

GEMs to the anaerobic digestion process will allow researchers to better elucidate the 

fundamental metabolic processes and microbial population dynamics that occur in an 

anaerobic digester. The construction of an anaerobic digester GEM will assist in the 

optimization of anaerobic digestion, allowing for enhanced substrate utilization and 

methane production. Additionally, an anaerobic digester GEM will serve as a 

discovery platform for the further investigation of a microorganism’s metabolic 

processes. Through the investigation of the metabolism of a microorganism, 

commercially valuable metabolic byproducts can be uncovered and the critical rate 

limiting steps of the microorganism’s metabolism can be identified and analyzed. 
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CHAPTER 2
 
LITERATURE REVIEW
 

2.1 History of Anaerobic Digestion 

The process of anaerobic digestion was first uncovered in the late 1700s, 

where Van Helmont first observed that decaying organic matter produced a 

flammable gas. (Abbasi et al, 2011) In 1776, Volta then determined that the quantity 

of flammable gas was dependent on the quantity of decaying organic material. This 

flammable gas was later determined to be methane during the early 1800’s by John 

Dalton and Humphrey Davy, who conducted experiments independently from 1804-

1808. (Tietjen, 1975) 

Anaerobic digestion was first reported to be a microbial mediated process in 

1868 by Bechamp. Microorganisms involved in anaerobic digestion were first 

isolated by Omelianski in the early 1890s. Omelianski determined that the isolated 

microbes were responsible for the production of hydrogen, acetic acid, and butyric 

acid during the anaerobic degradation of cellulose. 

In addition to the isolation of microbes that were critical to the anaerobic 

degradation of organic material, Omelianski proposed that methane was generated in 

a reaction between hydrogen and carbon dioxide, mediated by a microorganism. 

Omelianski’s hypothesis was later confirmed by Sohngen in 1910. Sohngen also 

proposed that the fermentation of complex macromolecules occurs through oxidation-

reduction reactions, producing hydrogen, carbon dioxide, and acetic acid.  Sohngen 

was also the first to propose that methane is generated from the decarboxylation of 

acetic acid. (McCarty et al, 1982) 

Anaerobic digestion was first applied in the treatment of wastewater in 1881 

by Mouras using an “automatic scavenger” design. (Moigno, 1881) This design was 

later refined and termed a “septic tank” by Cameron in England. The first municipal 
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use of anaerobic digestion was in 1897 when the local government of Exeter, England 

used septic tanks to treat the city’s wastewater. (McCarty et al, 1982) The septic tanks 

in Exeter were also one of the first implementations of heating and lighting systems 

designed to use biogas produced from anaerobic digestion. (Chawla, 1986) 

Anaerobic digestion has continued to be used in the treatment of wastewater 

and the stabilization of putrescible solids. Receiving very little dedicated research in 

the early 1900s, the fundamental technology of the anaerobic digestion of wastewater 

sludge has remained largely the same. Reinvigorated by the oil crisis in the early 

1970’s and developing pollution restrictions, scientific interest returned to anaerobic 

digestion, as indicated by Figure 2.1. (Abbasi et al, 2011)  The main focus of this 

renewed research was to enhance biogas production from organic substrates. At its 

current rate, anaerobic digesters typically do not produce enough gas to make capture 

and purification for energy generation economical. (Kapdi et al, 2005) By increasing 

the volume of biogas produced, energy or clean natural gas can be produced at an 

economical rate. 
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Figure 2.1: Cumulative Anaerobic Digestion Capacity in Europe (adopted from
 

European Bioplastics, 2015)
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2.2 Introduction to Microbiology of Anaerobic Digestion 

Anaerobic digestion is performed by a diverse community of microorganisms 

who each play a critical role in this process. Anaerobic microorganisms can be 

divided into two distinct groups determined by their reaction to free molecular 

oxygen. Oxygen-tolerant anaerobes will exhibit significant metabolic inhibition, but 

will survive in an environment with free molecular oxygen. Common oxygen tolerant 

anaerobes found in an anaerobic digester include acidogenic, which ferment organic 

monomers to a wide arrange of volatile fatty acids (VFAs), and acetogenic bacteria, 

which transform VFAs to acetic acid. (Speece, 1983; Gerardi, 2003) 

Strict anaerobic microorganisms will die in the presence of free molecular 

oxygen. Common strict anaerobes include the methanogenic community. Anaerobes 

are most active when the oxidation-reduction potential (ORP) of the system is 

between -200 and -400 millivolts (mV). Common anaerobic digestion substrates, 

including primary sludge and waste activated sludge, feature a low ORP, ranging 

from -100 to -300 mV. Increasing the ORP has been shown to inhibit anaerobic 

activity including hydrolysis, acetogenesis, and methanogenesis. (Gerardi, 2003) 

2.3 Primary Processes of Anaerobic Digestion 

Anaerobic digestion is composed of four primary processes including 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis. Insoluble organic 

material and organic macromolecules are hydrolyzed by numerous hydrolytic 

enzymes, breaking down the organic material into smaller soluble monomers. The 

small monomers produced are then fermented by a group of acidogenic bacteria, 

producing a wide range of VFAs. VFAs are then transformed to acetate by a group of 

acetogenic bacteria. The final process in anaerobic digestion is methanogenesis, 

where acetate, carbon dioxide, and hydrogen are transformed to methane by a group 
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of methanogenic Archaea. (Parkin & Owen, 1986) A figure illustrating the anaerobic 

digestion process can be found below in Figure 2.2. (Rapport et al, 2008) 

The degradation of complex macromolecules to methane requires a high level 

of syntrophic relationships between organisms and relies on the flow of metabolites 

through the entire system. Due to the sensitive nature of the microorganisms 

involved, an excess of any of the metabolic products produced during anaerobic 

digestion will likely cause inhibition of the system. (Gerardi, 2003) 

Figure 2.2: Anaerobic digestion process (adopted from Rapport et al, 2008) 

2.3.1 Hydrolysis 

The first step of anaerobic digestion is hydrolysis, in which complex organic 

macromolecules are cleaved and the hydroxide and hydrogen ions from water are 

attached to the separate products at the cleavage point. An example of hydrolysis can 

be seen in Figure 2.3. During hydrolysis, complex organic polymers are hydrolyzed 

by extracellular hydrolytic enzymes, which catalyze the degradation of long chain 
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polymers into simple monomers. The primary constituents that are hydrolyzed 

include large compounds such as polysaccharides, proteins, and lipids, which are 

hydrolyzed by extracellular enzymes secreted by a wide range of fermentative 

bacteria. Extracellular enzymes produced by a single bacterium only degrade a unique 

or small set of compounds. Examples of the wide range of bacteria required to 

hydrolyze common substrates and their resulting products can be in Table 2.1. Each 

species can only degrade a subset of the total variety of substrates, therefore 

anaerobic digestion requires a diverse community of bacteria for the hydrolysis of 

complex organic substrates. (Gerardi, 2003) 

Table 2.1: Examples of common hydrolytic products and bacteria (adopted from
 

Gerardi, 2003)
 

Substrate to be 

Degraded 

Exoenzyme 

Needed 
Example Bacterium Product 

Polysaccharides Saccharolytic Cellulase Cellulomonas Simple sugars 

Proteins Proteolytic Protease Bacillus Amino acids 

Lipids Lipolytic Lipase Mycobacterium Fatty acids 
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Figure 2.3: Hydrolysis example: Sucrose + Water ! Glucose + Fructose (adopted 

from Reece et al, 2011) 

The hydrolysis of complex organic substrates into simple soluble monomers 

has been identified as one the key rate limiting steps of anaerobic digestion due to the 

slow kinetics of hydrolytic enzymes and the bottleneck imposed by the lack of 

suitable substrates for anaerobic digestion. (Tomei et al, 2009) Previous studies have 

found that slow hydrolytic conversion of biological sludge leads to the slowdown of 

the entire anaerobic digestion process, significant lag times during startup, and 

digester failure. (Eastman & Ferguson, 1981; Gujer & Zehnder, 1983; Li & Noike, 

1987; Tomei et al, 2009) 
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2.3.2 Acidogenesis 

Following hydrolysis, the soluble monomers that were produced are 

transformed into VFAs, alcohols, organic acids, organic nitrogen compounds, organic 

sulfur compounds, carbon dioxide, and hydrogen through a process called 

acidogenesis. (Gerardi, 2003) Acidogenic bacteria typically produce a large variety of 

potential products through fermentation. This can be clearly seen by the fermentative 

bacteria and obligate anaerobe Clostridium acetobutylicum, which is capable of 

producing acetic acid, butyric acid, acetone, butanol, ethanol, hydrogen, and carbon 

dioxide, as detailed in Figure 2.4. 

Acidogenesis is performed by a wide variety of fast growing anaerobic 

bacteria through an array of fermentative pathways, and is typically the most rapid 

step in the anaerobic digestion process. Due to the rapid fermentation of a substrate, 

sudden drops in pH may result from the increased production of acidogenic products. 

As a result of the increase in the VFAs concentrations, the acetogenic and 

methanogenic populations may become inhibited. (Beaty & McInerney, 1989) The 

inhibition of the acetogenic and methanogenic populations creates cyclic affect, as the 

decrease in the removal of organic acids leads to a continued drop in pH, and 

ultimately digester failure. (Gerardi, 2003; Henze, 2008) 
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Figure 2.4: Fermentation of glucose by C. acetobutylicum 

Fermentation products produced by acidogenic bacteria are often dependent 

on environmental and operating conditions, with system pH cited as a critical 

condition. (Bahl et al, 1982) The role pH plays on product production can be seen by 

the fermentative bacteria and obligate anaerobe Clostridium acetobutylicum. 

C. acetobutylicum primarily produces acetate and butyrate when the pH is greater 

than 5.1. Under operating conditions at a pH lower than 5.1, acetate and butyrate are 

utilized to produce acetone, butanol, and ethanol. These alternative metabolic 

products have been shown to be toxic to most bacteria, resulting in the further 

inhibition of the anaerobic digester. (Huang et al, 1986; Dash et al, 2014) Common 
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acidogenic reactions from sucrose as a substrate are listed in Table 2.2, adopted from 

Henze, 2008. 

Table 2.2: Acidogenic reactions with sucrose as the substrate (adopted from
 

Henze, 2008) 


Common Acidogenic Reactions 

C12H22O11+ 9H2O → 4CH3COO- + 4HCO3 
- + 8H+ + 8H2 

C12H22O11 + 5H2O → 2CH3CH2CH2COO- + 4HCO2 
- + 6H+ + 4H2 

C12H22O11 + 3H2O → 2CH3COO- + 2CH3CH2COO- + 2HCO3 
- + 6H+ +2H2 

2.3.3 Acetogenesis 

While acetate is also produced during acidogenesis, a wide array of VFAs, 

alcohols, organic acids, organic nitrogen compounds, and organic sulfur compounds 

are produced as well. The diverse end products produced through acidogenesis are 

transformed to acetate through a process called acetogenesis. (Gerardi, 2003) 

Examples of common acetogenic reactions can be seen in Table 2.3. Acetogenesis is 

performed by a group of obligate anaerobic bacteria known as acetogens. Acetogens 

can be further separated into two categories including homoacetogens, which includes 

carbon dioxide reducing acetogens, and syntrophic acetogens. (Drake, 2012) 

Homoacetogens produce acetate as its sole fermentation product, while carbon 

dioxide reducing acetogens reduce carbon dioxide and hydrogen to acetate. (Ragsdale 

& Pierce, 2008) Syntrophic acetogens are capable of producing acetate from a variety 

of substrates through a syntrophic relationship with a microbial partner. (Beaty & 

McInerney, 1989) 
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Table 2.3 Common acetogenic transformation of propionate, glucose, and ethanol 

Acetogenic Reactions 

CH3CH2COO- + 3H2O ↔ CH3COO- + H+ + HCO3 

C6H12O6 + 2H2O ↔ 2CH3COOH + 2CO2 + 4H2 

CH3CH2OH + 2H2O ↔ CH3COO- + 2H2 +H+ 

- + 3H2 

2.3.3.1 Homoacetogens 

Homoacetogens produce acetate as its sole fermentation product. Acetogenic 

microbes area found dispersed throughout many phyla including Chloroflexi, 

Firmicutes, and Spirochaetes, demonstrating that acetogenesis is a metabolic trait, 

and not a phylogenetic trait. While acetogens are found throughout many phyla, 

homoacetogens present a rarer subset of acetogens. (Ragsdale & Pierce, 2008) In the 

homoacetogenic fermentation of glucose to acetate, glucose is first metabolized to 

two acetates, carbon dioxide, and hydrogen though the Embden-Meyerhof-Parnas 

pathway, a glycolytic pathway to metabolize glucose to pyruvate coupled with the 

generation of ATP and NADH. The carbon dioxide produced is then reduced via the 

Wood-Ljungdahl pathway, a highly elucidated metabolic pathway responsible for the 

production of acetate from carbon dioxide. (Leang et al, 2013) Homoacetogenic 

fermentation of glucose to acetate is detailed in Table 2.4 and Figure 2.5. (Diekert & 

Wohlfarth, 1994) 

Table 2.4: Homoacetogenic transformation of glucose and carbon dioxide 

(adopted from Diekert & Wohlfarth, 1994) 

C6H12O6 + 2H2O → 2CH3COO− + 2CO2 + 8H+ 

8H+ + 2CO2 → CH3COO−+ H++ 2H2O 

Σ C6H12O6 → 3CH3COO− 
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Figure 2.5: Homoacetogenic transformation of glucose and carbon dioxide (adopted 

from Diekert & Wohlfarth, 1994) 

2.3.3.2 Syntrophic Acetogens 

Syntrophic acetogens are capable of utilizing various VFAs, such as butyrate, 

to produce acetate. In the production of acetate, H2 is produced which must be 

removed by a syntrophic partner, typically a methanogen or sulfate reducing bacteria. 

(Sieber et al, 2010; McInerney et al, 1979) The degradation of VFAs to acetate is a 

thermodynamically unfavorable reaction, and only remains favorable through the 

constant removal of the H2 produced. 

A model syntrophic acetogen is the gram negative anaerobic bacterium 

Syntrophomonas wolfei, which beta-oxidizes butyrate to acetate through a syntrophic 

relationship with a methanogenic partner. (Sieber et al, 2010) As detailed in Table 

2.5, the degradation of butyrate to acetate has a Gibbs free energy change of 

+48.6 KJ/mol, which is thermodynamically impractical. (Thauer et al, 1977) When 

the H2 partial pressure is kept at 1 Pa by a syntrophic partner, the Gibbs free energy 

change for the degradation of butyrate to acetate becomes -39.2 KJ/mol. As evident 

!
 



 

  

     

  

  

   

 

 

    

 

 
 

 

 

 

 

  

      

 

 

 
     

  

! 
14 

by the low available energy, syntrophic microorganisms typically feature slow growth 

rates and low growth yields. (Schöcke & Schink, 1997; Scholten & Conrad, 2000; 

Jackson & McInerney, 2002; Sieber et al, 2010) In a stable anaerobic digester, 

hydrogenotrophic methanogens utilize free H2 rapidly so that the H2 partial pressure 

remains below 10-4 atm. This zone of allowable H2 partial pressures that maintains 

thermodynamic favorability can be seen in Figure 2.6. (Henze, 2008) 

Table 2.5: Thermodynamics of the degradation of butyrate to acetate, (adopted from 

Thauer et al, 1977; Sieber et al, 2010) 

Acetogenic Reaction 

Without 

Hydrogen 

Removal 

ΔG°' (KJ/mol) 

With 

Hydrogen 

Removal 

ΔG°' (KJ/mol) 

Butyrate- + 2H2O --> 2 Acetate- + H+ + 2H2 +48.6 -39.2 

Figure 2.6: Free energy change versus H2 partial pressure (adopted from 

Henze, 2008) 
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2.3.4 Methanogenesis 

The terminal step in anaerobic digestion is the conversion of single carbon 

compounds and hydrogen, produced during acidogenesis and acetogenesis, to 

methane. Methanogenesis is performed by a unique group of highly specialized 

obligate anaerobic Archaea called methanogens. Methanogens are a morphologically 

diverse and have diverse growth patterns, shapes, and sizes. (Vogels et al, 1988; 

Boone et al, 1993a) Methanogen cells are typically 0.1–15 um in diameter, with 

filaments ranging up to 200 um in length. (Gerardi, 2003) Methanogens can be 

divided into two main categories, acetoclastic or acetotrophic methanogens and 

hydrogenotrophic methanogens. Acetoclastic methanogens are responsible for 

converting acetate to methane and carbon dioxide while hydrogenotrophic 

methanogens are responsible for converting hydrogen and carbon dioxide to methane. 

Some species of methanogens are capable of utilizing a wide variety of single 

carbon compounds in addition to the acetotrophic and hydrogenotrophic pathways 

used to produce methane. One such model methanogen, Methanosarcina barkeri, is 

capable of fermenting hydrogen, acetate, methanol, and methylamines to methane. 

(Balch et al, 1979) It is estimated that two-thirds of the methane produced in nature is 

derived from the methyl group of acetate, while the remaining third is derived from 

the reduction of carbon dioxide with electrons derived from the oxidation of hydrogen 

or formate. (Demirel & Scherer, 2008) Both classes of methanogens are critical in 

anaerobic digestion, as accumulation of organic acids and hydrogen have been shown 

to inhibit both acetogenesis and methanogenesis. (Chen et al, 2008) 

2.3.4.1 Acetoclastic Methanogens 

Acetoclastic, or acetotrophic, methanogens are a group of methanogens 

responsible for converting acetate to methane. (Ferry, 1992) The fermentation of 

acetate by acetoclastic methanogens has only recently been recently elucidated, and 
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proceeds by reducing the cleaved methyl group of acetate to methane with electrons 

derived from the oxidation of the carbonyl group of acetate to carbon dioxide. 

(Vogels et al, 1988; Ferry, 1992) The net reaction for this process can be seen in 

Equation 1, with the metabolic process detailed in Figure 2.7. 

Equation 1: Fermentation of acetate to methane
 

CH3COO- + H+ ! CH4 + CO2
 

(ΔG°'= -36 kJ/mol CH4)
 

Figure 2.7: Methane production from acetotrophic methanogenesis (adopted from
 

Madigan et al, 2010)
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Reactor design, operating parameters, and substrate type play a critical role in 

the quantity and species of acetoclastic methanogens found in an anaerobic digester. 

(Yu et al, 2005) Summaries of studies on digester startup and operation have found 

that Methanosaeta spp. was the dominant acetoclastic methanogen in anaerobic 

digesters with low acetate loadings. (Griffin et al, 2000; Zheng & Raskin, 2000) In 

digesters with elevated acetate concentrations or unstable conditions, Methanosarcina 

spp. was found to be the dominant acetoclastic methanogen. (Demirel & Scherer, 

2008) Elevated acetate concentrations and unstable digester conditions commonly 

occur in the anaerobic co-digestion of high strength organic wastes. Subsequently, 

Methanosarcina spp. was found to be the dominant acetoclastic methanogen in co-

digestion reactors, which co-digest municipal solid wastes along with other high 

strength wastes such as fats, oils, and greases (FOG). (Stroot et al, 2001; McMahon et 

al, 2001; Demirel & Scherer, 2008) Acetoclastic methanogens play a critical role in 

digester activity, as high loading of acetate has been shown to inhibit both acetogens 

and methanogens (Demirel & Scherer, 2008) 

2.3.4.2 Hydrogenotrophic Methanogens 

Hydrogenotrophic methanogens play a critical role in digester stability, and 

are responsible for controlling the hydrogen partial pressure in an anaerobic digester. 

Through the conversion of hydrogen and carbon dioxide to methane, 

hydrogenotrophic methanogens maintain a low hydrogen partial pressure, which 

allows the fermentative pathways that occur in acidogenesis and acetogenesis to 

remain energetically favorable. (Hedderich & Whitman, 2006; Sarmiento et al, 2011) 

Hydrogenotrophic methanogens utilize carbon dioxide as a carbon source and 

hydrogen as the reducing agent to produce methane. In the reduction of carbon 

dioxide to methane, carbon dioxide is first bound to the coenzyme methanofuran 

(MFR) and is then reduced to the formyl level. The formyl group of 

formylmethanofuran is then transferred to the coenzyme H4MPT and subsequently 
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dehydrated to methenyl-H4MPT. The carbon group of methenyl-H4MPT is then 

reduced down to methyl-H4MPT where the methyl group is transferred to coenzyme 

M (CoM). Ultimately, The methyl-CoM is then reduced to methane using coenzyme 

B (CoB) as the final electron donor. (Liu & Whitman, 2008; Sarmiento et al, 2011) 

The net reaction of this process can be seen in Equation 2, with the complete 

metabolic process detailed Figure 2.8, adopted from Goldman et al, 2009. 

Equation 2: Reduction of carbon dioxide to methane
 

H2 + CO2 ! CH4 + H2O
 

(ΔG°'= -130.4 kJ/mol CH4)
 

Figure 2.8: Hydrogenotrophic methanogenesis pathway (adopted from
 

Goldman et al, 2009)
 

!
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

! 
19 

Digester operating conditions significantly impact the diversity and activity of 

the methanogenic community. In a study on thermophilic anaerobic digesters, 

hydrogenotrophic methanogens were found to be greatly outnumbered by the quantity 

of acetotrophic methanogens. (Scherer et al, 2000) While hydrogenotrophic 

methanogens were outnumbered by acetotrophic methanogens, their populations 

remained steady while the acetotrophic methanogenic population significantly 

decreased as temperature was increased from 55 to 65 °C. (Ahring et al, 2001) 

The methanogenic community of a thermophilic anaerobic digester was 

monitored from digester start up to steady state by Montero et al, 2008. 

Hydrogenotrophic methanogens were found to be the dominant methanogen during 

digester start up, but were quickly displaced by acetotrophic methanogens as the 

digester reached steady state. The dominance of the hydrogenotrophic methanogens 

during digester start up may be attributed to the volatile nature of the digester and the 

extremophilic tolerance of hydrogenotrophic methanogens. Hydrogenotrophic 

methanogenic activity have been found in environments with a pH as low as 3.8 and 

as high as 9.9, and are speculated to dominate in acidic environments due to the 

presence of free acetic acid, which can freely pass through the cell membrane and 

potentially disrupt the proton motive force. (Kotsyurbenko et al, 2007) 

2.4 Anaerobic Digestion Microbial Community 

Anaerobic digestion is a sensitive and complex process that requires a rich 

community of microorganisms. Anaerobic digesters are microbially dense, with 

greater than 1016 cells per milliliter of digestate. (Gerardi, 2003) Feedstock source and 

practically every operating condition such as temperature, sludge retention time, pH, 

and concentration of various nutrients and metals have been shown to influence the 

population of microorganisms found in anaerobic digesters. (Demirel & Scherer, 

2008; Ali Shah, 2014) In addition to the variation of microbial populations between 

digesters, specific phylotypes of common bacteria can be found native to each 
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digester. (Riviere et al, 2009) To better understand the role each organism plays in 

this diverse process, research has been conducted to characterize the microbial 

community of an active anaerobic digester. 

There are numerous techniques to identify the species distribution found in an 

anaerobic digester sample. The most common molecular techniques include 

fluorescent in-situ hybridization (FISH), microautoradiography-fluorescence in situ 

hybridization (MAR-FISH), 16S rRNA analysis, and applying polymerase chain 

reaction along with denaturing gradient gel electrophoresis and pyrosequencing. 

(Thayanukul et al, 2010; Liu et al, 2010; Sanapareddy et al, 2009; McLellan et al, 

2010; Reyes et al, 2015) 

Utilizing FISH, the population of a mesophilic anaerobic digester in Valencia, 

Spain was analyzed. Of the phenotypes sampled, methanogens comprised 30 percent 

of all bacteria in the digester. The dominant order of methanogens was found to be 

Methanosarcinales (14% of all bacteria), followed by an even distribution of 

Methanomicrobiales and Methanobacterales (8% of all bacteria). Sulfate reducing 

bacteria were found to account for 20 percent of the digester sample while 10 percent 

were identified as denitrifying bacteria. The remaining 40 percent of the digester were 

uncharacterized, and assumed to include the acidogenic and acetogenic bacteria found 

in anaerobic digesters. (Reyes et al, 2015) 

A core group of bacteria found in anaerobic digesters were recently defined by 

Rivere et al, 2009. The study sampled seven anaerobic digesters from France, Chile, 

and Germany using PCR and 16S rRNA analysis. 16S rRNA sequences were then 

assigned operational taxonomic units (OTUs). The core group included OTUs 

affiliated with Betaproteobacteria, Chloroflexi, Synergistetes, and Bacteroidetes. 

OTUs affiliated with these four phylums were found in all seven of the anaerobic 

digesters sampled. A table of the percentages of Bacteria and Archaea found in all 

seven anaerobic digesters is broken down in Table 2.6. (Rivere et al, 2009) 
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Table 2.6: Percent of phylogenetic groups from digesters sequenced (adopted from
 

Rivere et al, 2009)
 

Phylogenetic Group 

Average proportion 

of each group in % ± 

standard deviation (Min - Max) 

Bacteria domain 

Chloroflexi 

Proteobacteria 

Bacteroidetes 

Firmicutes 

Aminanaerobiaa 

WWE1 

Actinobacteria 

Synergistetes 

Coprothermobacteria 

Spirochaete 

Minor groups 

Unclassified 

Archaea domain 

Euryarchaeota 

Methanosarcinales 

ArcI 

Methanomicrobiales 

Methanobacteriales 

Crenarchaeota 

32 ± 9 

18 ± 5 

11 ± 6 

9 ± 6 

2 ± 2 

2 ± 4 

2 ± 1 

4 ± 4 

1 ± 2 

1 ± 1 

6 ± 3 

12 ± 4 

51 ± 30 

36 ± 34 

10 ± 2 

0.2 ± 0.3 

2 ± 3 

(15 - 45) 

(11 - 24) 

(3 - 25) 

(5 - 25) 

(ND - 6) 

(ND - 12) 

(0.4 - 2) 

(0.4 - 12) 

(ND - 7) 

(ND - 2) 

(2 - 9) 

(6 - 19) 

(12 - 93) 

(ND - 77) 

(2 - 35) 

(ND - 1) 

(ND - 7) 

ND: Not detectable 
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2.5 Review of Anaerobic Digestion Modeling 

Anaerobic digestion is a complex multi-step biological process involving a 

community of microorganisms. Due to the complexity of the anaerobic digestion 

system, mathematical models were developed to optimize the process. Through the 

application of an anaerobic digestion model, design parameters and operating 

conditions can be efficiently evaluated. 

Numerous models have been developed that utilize various parameters and 

characteristics of the system as the backbone of the model. Mathematical models 

have been created that utilize various control parameters including substrate inhibited 

Monod kinetics of methanogens, volatile fatty acid concentration, H2, pH decrease, 

and increase of NH3 concentration in the influent sludge. (Andrews, 1969; Smith et 

al, 1988; Bryers, 1985; Costello et al, 1991a; Costello et al, 1991b; Siegriest et al, 

1993) The wide variety of control parameters modeled is a function of the complexity 

of the anaerobic digestion system. Early mathematical models were constructed to 

model the rate-limiting step of anaerobic digestion. These rate-limiting steps are 

subject to change due to the variable operation conditions, resulting in the wide 

variety of mathematical models currently available. (Lyberatos & Skiadas, 1999) 

The most comprehensive anaerobic digestion model to date, ADM1, was 

produced by the Anaerobic Digestion Modeling Task Group established by the 

International Water Association. (Batstone et al, 2002) ADM1 was designed to be as 

general as possible, and is composed of a large set of reactions and reaction kinetics. 

ADM1 models every step of the anaerobic digestion process including hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis. Model outputs by ADM1 include 

standard output variables such as biogas flow rate, pH, and concentration of volatile 

organic acids and ammonia. The model is also able to account for various causes of 

inhibition, including inhibition from pH or decreased biomass growth from nitrogen 

limitations. (Batstone et al, 2002)  A comprehensive overview of variables included 

in ADM1 can be seen in Figure 2.9. 
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ADM1 takes a kinetics based approach to modeling anaerobic digestion. All 

extracellular and hydrolytic reactions are assumed to follow empirically derived first 

order rate law kinetics. All reactions occurring within the cell follow Monod-type 

substrate uptake kinetics, and all substrate uptake rates are assumed to remain 

proportional to the biomass growth rate and biomass concentration. (Batstone et al, 

2002; Kythreotou, 2014) While ADM1 has been validated for numerous conditions, it 

is not well suited for the examination of species dynamics, optimization studies, 

process control, or detailed studies of the active metabolic pathways of each 

microorganism, as many of these parameters were not included in ADM1. 

(Kythreotou, 2014) 

Figure 2.9: ADM1 processes (adopted by Batstone et al, 2002) 
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2.6 Genome-Scale Modeling 

As the number of sequenced genomes and development of high-throughput 

biological technologies has rapidly increased, an in silico platform was needed to 

examine and visualize the vast array of accumulating biological data. Comprised of a 

combination of genomic, transcriptomic, proteomic, metabolomics and fluxomic data 

(“omics” data), GEMS provide a powerful tool to connect “omics” data with 

microbial physiology. (Milne et al, 2009; Edwards & Palsson, 2000) GEMS are 

generally comprised of “(a) a list of reactions that occur through each metabolic 

pathway of an organism, including reaction stoichiometry and reversibility, (b) a 

group of Gene-Protein-Reaction (GPR) associations that correlate gene activity with 

metabolic reactions, and (c) a biomass composition reaction that specifies which 

compounds are necessary for microbial growth.” (Devoid et al, 2013) 

GEMS have been applied in various ways, most notably for “(a) 

contextualization of high-throughput biological data, (b) guidance of metabolic 

engineering, (c) direction hypothesis-driven discovery, (d) interrogation of multi-

species relationships, and (e) metabolic network discovery.” (Oberhardt et al, 2009) 

First developed in 1999 for Haemophilus influenza, there are now more than 100 

GEMS that have been experimentally validated. (Schilling & Palsson, 2000; UCSD, 

2015) Although the availability of sequenced genomes are growing at an exponential 

pace, the growth of GEMs has continued to lag behind by an order of magnitude, as 

seen in Figure 2.10. (Milne et al, 2009) The slow increase in GEM production is due 

to the time intensive nature of manually curating and validating the metabolic 

network reconstruction. 
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Increase of Available Genomes and GEMs
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Figure 2.10: Available genome sequences and GEMS (adopted from 

Milne et al, 2009) 

2.7 Genome-Scale Model Construction 

GEMS are constructed by utilizing a variety of techniques and depending on 

the biological and experimental data available, can exist in four distinct phases 

including (1) draft reconstruction, (2) curated reconstruction, (3) genome-scale 

metabolic model, and (4) a platform for design and discovery. (Feist et al, 2008) The 

first, and lowest quality stage is a genome-scale draft reconstruction. A draft 

reconstruction is produced through the annotation of an organism’s genome sequence, 

where biological functions are attached to genomic elements based on similarities to 

known genomic elements. 

As GEMs have become an active area of research, numerous automated tools, 

such as The SEED, have been developed. (Overbeek et al, 2005) The SEED employs 

a process that creates GEM draft reconstructions in conjunction with biological 

databases such as KEGG, an organism specific genomic and biological pathway 

database, through the input of an organism’s genome sequence. (Kanehisa et al, 2014; 
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Kanehisa & Goto, 2000) A thorough procedure for constructing an automated GEM 

by Devoid et al has been summarized below. 

2.7.1 Automated GEM Draft Reconstruction 

Automated GEM draft reconstruction produced using the SEED network can 

be broken down into an abbreviated seven step process including (1) submitting a 

genome sequence to Rapid Annotation using Subsystem Technology (RAST), (2) 

annotation of the genome, (3) review and curation of the annotation, (4) submitting a 

RAST annotation to Model SEED, (5) reconstruction of a core metabolic model, (6) 

generation of a draft biomass composition reaction, (7) review and curation of the 

metabolic model. (Devoid et al, 2013) A flow chart of the GEM reconstruction 

process can be seen in Figure 2.11. 

Figure 2.11: Flow chart of GEM reconstruction process 

2.7.2 Submitting a Genome to RAST for Genome Annotation 

After registering for a SEED account, a genome sequence can be uploaded to 

the RAST server through SEED. (Overbeek et al, 2005; Aziz et al, 2008) Genomes 
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are submitted to SEED in a FASTA format, a text-based format used to represent 

genome sequences, for annotation. Upon submittal to the RAST server for annotation, 

RAST first completes a targeted search for rRNAs, tRNAs, and genes associated with 

the synthesis and use of selenocysteine and pyrrolysine. (Devoid et al, 2013) 

Following the search for these explicit elements, protein-encoding genes 

(PEGs) are identified through an iterative process that identifies well known genes 

and then works to fill gaps and large overlaps based on the knowledge of common 

genes. After the identification of the PEGs, functions are assigned based on the 

similarity to well annotated reference genomes. Following the first pass of assigning 

functions to easily identifiable PEGs, functions are assigned to unknown PEGs 

utilizing the BLAST program. (Altschul et al, 1990) BLAST identifies these 

unknown PEGs by comparing their sequences to the DNA sequences of existing 

PEGs. Functions are then assigned to the unknown PEGs based on these DNA 

sequence similarities. (Devoid et al, 2013) 

2.7.3 RAST Annotation Review 

Prior to submitting a RAST annotation for model construction in the SEED 

environment, it is recommended to review the completed automated RAST 

annotation. Genome sequences submitted to RAST for annotation are often 

phylogenetically close to previously annotated genomes, providing an efficient 

reference point for submitted genomes. While the automated RAST annotation will 

provide a functional annotation, users are encouraged to manually check for errors. 

Annotations can be improved through comparison with curated reference 

genomes, such as the E. coli GEM. Additionally, the sequence quality many induce 

errors through frameshifts or truncations. (Figures 2.12 and 2.13) Frame shifts can be 

caused by the addition or deletion of nucleotides, shifting the ORF, which results in 

an incorrect translation. (Devoid et al, 2013) 
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After manually reviewing the RAST annotation, the annotated genome can be 

submitted to the Model SEED for the automated reconstruction of a draft GEM. Upon 

submittal to Model SEED, a complete automated draft GEM reconstruction will be 

completed in about 24 hours. (Devoid et al, 2013) 

Figure 2.12: Example of a frame shift (adopted from National Library of Medicine, 

2015) 

Figure 2.13: Example of a truncation (adopted from Madigan et al, 2010) 
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2.7.4 Converting RAST Annotation to Draft GEM 

The Model SEED calls upon a catalog of over 13,000 metabolic reactions and 

over 16,000 reactants to complete an automated draft GEM reconstruction. This 

catalog of biochemical data, populated by KEGG and published GEMs, is then called 

upon to generate a non-redundant set of reactions. (Kanehisa et al, 2014; Kanehisa & 

Goto, 2000) Model SEED translates a RAST annotated genome to a draft GEM by 

constructing a framework that links GPRs with reactions through protein complexes, 

or groups of proteins with associated polypeptide chains. The Model SEED 

community continuously updates the mapping framework used in draft GEM 

reconstruction as new information becomes available. In addition to reactions dictated 

by the genome, spontaneous reactions that occur in a natural environment are also 

added to every model constructed in Model SEED. (Devoid et al, 2013) 

2.7.5 Developing GEM Draft Biomass Composition Reaction 

Following the reconstruction of the metabolic pathways in Model SEED, a 

draft biomass composition reaction is developed through Model SEED. The biomass 

composition reaction details the quantity of all metabolites that must be produced to 

generate one gram of biomass. Biomass composition reactions are composed of 

DNA, RNA, proteins, lipids, cell walls, and various cofactors. An exact biomass 

composition reaction cannot be determined from the RAST annotation alone, as the 

quantity of each metabolite cannot be determined from the genome sequence. Due to 

the inability to predict an exact biomass composition reaction, four individual 

biomass compositions have been developed for gram negative bacteria, gram positive 

bacteria, Mycoplasma bacteria, and Archaea. A general biomass composition reaction 

is assigned through interrogation of the RAST annotation or through user assignment. 

(Devoid et al, 2013) 
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To assign the general biomass composition reaction, Model SEED queries the 

RAST annotation for various functional roles associated with cell wall types. After 

the cell wall type is identified, Model SEED selects one of the four matching generic 

biomass composition reactions. Upon the selection of the general biomass 

composition reaction, the remaining metabolites are included. 

The first sets of metabolites included are universal metabolites, such as amino 

acids and nucleotides, which are generally included in all biomass composition 

reactions. The remaining metabolites are determined through querying the RAST 

annotation for functional roles associated with the biosynthesis or utilization of the 

metabolites. Approximate stoichiometric coefficients, or relative quantities for each 

metabolite are determined based on the general biomass composition reaction applied 

and an associated reference organism. (Devoid et al, 2013) 

The energy cost required for the biomass composition reaction is then 

determined. The energy category is one of the most important terms in the biomass 

composition reaction, representing the ATP consumption by the organisms to produce 

biomass. The stoichiometric coefficient for the energy parameter is also determined 

by the general biomass composition reaction template used. (Devoid et al, 2013) 

Because the stoichiometric coefficient determined during the automated 

construction of the draft biomass composition reaction is only an approximation, 

manual curation is required. Manual curation is crucial because the biomass 

composition reaction is a critical component of the draft GEM construction process 

and therefor the resulting metabolites and stoichiometric coefficients included in the 

draft biomass composition reaction can significantly alter the function of the model. 

Thus, to validate the biomass composition reaction, extensive literature, biological, 

and experimental data is required to properly determine the stoichiometric 

coefficients and compounds included in the biomass composition reaction. (Devoid et 

al, 2013) 
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2.7.6 Auto-completion of a Draft GEM 

After the draft GEM and biomass composition reaction are constructed 

through the automated protocol in Model SEED, the remaining metabolic gaps (i.e. 

reactions that do not link with the remaining metabolism) of the draft GEM must be 

completed.  Metabolic gaps present in the draft GEM must be fixed to allow the draft 

GEM to produce all metabolites required by the biomass composition reaction. Model 

SEED auto-completes metabolic gaps in a draft GEM through a multi-step process 

outlined by Figure 2.14. (Devoid et al, 2013) 

Figure 2.14: Auto-completion process of a draft GEM reconstruction (adopted from
 

Devoid et al, 2013)
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Model SEED auto-completes metabolic gaps by first preparing a biochemistry 

database composed of 10,516 reactions and 8,335 compounds. (Figure 2.14a) To 

insure that no irrelevant pathways are added by Model SEED, generic reactions, 

lumped reactions, and unbalanced reactions are removed from the biochemistry 

database. After the biochemistry database is prepared, it is merged with the draft 

GEM, and all redundant reactions are removed. (Figure 2.14b) (Devoid et al, 2013) 

After composing a merged system of reactions with a uniform reaction name 

format, Model SEED constructs a stoichiometric matrix with the columns 

representing the reactions and the rows representing the compounds. (Figure 2.14c) 

Each reaction is decomposed into unique forward and reverse reactions, regardless of 

the actual reversibility of the reaction. The elements within the stoichiometric matrix 

are the stoichiometric coefficients of every compound from each respective reaction. 

The matrix is then applied to form linear mass balance constraints for a flux balance 

analysis (FBA) problem by setting the product of the stoichiometric matrix and the 

vector of fluxes equal to zero. (Figure 2.14d) 

Additional constrains are then added to the linear optimization problem. 

(Figure 2.14e) For example, the biomass composition reaction is constrained to 

always have a positive flux value. Additionally, exchange fluxes are added for all 

compounds that occur in the extracellular compartment of the GEM reconstruction. 

The bounds of the exchange fluxes are adjusted based on the media selected, which is 

generally always complete media, or media that contains all the chemical compounds 

found in the Model SEED database. Complete media is usually selected because it 

allows for the exchange of all transportable compounds in the model. (Devoid et al, 

2013) 

To identify which reactions should be included when the biomass composition 

reaction is optimized through FBA, binary variables are created for each candidate 

reaction that did not appear in the draft GEM reconstruction. (Figure 2.14f) Each 

binary variable is given a value of one or zero. If the binary variable is equal to one, 

its associated reaction is active when a flux is applied to the biomass composition 
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reaction. If the binary variable is equal to zero, its associated reaction is not active 

when a flux is applied to the biomass composition reaction. 

The auto-completion optimization problem is set to have an objective function 

that minimizes the sum of the binary variables multiplied by a set of cost coefficients. 

The cost coefficients are calculated for each reaction based on the “thermodynamic 

feasibility, completion of existing pathways, the confidence in the biochemistry, and 

the amount of information available for the biochemistry.” (Devoid et al, 2013) The 

cost coefficient may also be calculated by utilizing the BLAST similarity scores for 

the genes linked to gap filled reactions in related genomes. (Devoid et al, 2013) 

Solutions identified for the auto-completion optimization problem signify a 

set of reactions that must be included or made reversible in the GEM reconstruction. 

(Figure 2.14g) Each solution to the auto-completion optimization problem will allow 

the GEM to permit a flux through the biomass composition reaction. Gap filled 

reactions are selected by Model SEED that minimize the sum of the binary variables 

multiplied by a set of cost coefficients. Gap filled reactions identified through this 

process will then be added to the GEM reconstruction. While Model SEED attempts 

to reliably gap fill the metabolism of the organism, manual curation is required to 

validate the selected gap filled reactions. (Devoid et al, 2013) 

2.7.6.1 Errors Introduced During an Automated Reconstruction 

While automated reconstructions of metabolic networks have streamlined 

GEM construction, there are also errors introduced during this step. Errors introduced 

through an automated reconstruction include (1) out of date genome annotations, 

(2) incorrect annotations due to missing genes or errors in the gene finding 

algorithms, (3) missing functionalities of enzymes, and (4) unknown transporter 

reactions. Various biological databases, such as KEGG, are also called upon during 

the assembly of an automated draft reconstruction, introducing the potential for 

additional errors. Errors stemming from biological databases used during an 
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automated reconstruction include (1) Gene-Protein-Reaction (GPR) associations, (2) 

reaction specificity, (3) reaction stoichiometry and directionality, (4) compounds 

protonation states, (5) coenzyme availability, and (6) organism specific pathways. 

Detailed tables of common errors and possible solutions are found in Table A.1 and 

Table A.2 in the Appendix (adopted from Feist et al, 2008). 

2.7.7 Completed GEM Review 

Following the auto-completion of a draft GEM reconstruction by Model 

SEED, it is important to review the completed GEM reconstruction. After the 

automated reconstruction of a GEM, completed automated GEMs may be 

downloaded in Linear Programming (LP), Microsoft Excel, and Systems Biology 

Markup Language (SBML) formats. While Model SEED features numerous tools to 

review and analyze the GEM reconstruction, external tools have also been developed 

to review, analyze, and simulate GEM reconstructions. Utilizing the COBRA 

Toolbox and the downloaded SBML GEM reconstruction, the protocol outlined by 

Devoid et al, 2013 can be followed. (Schellenberger et al, 2011) 

Each reaction in the GEM reconstruction is first verified utilizing updated 

KEGG maps, as KEGG maps utilized by Model SEED may be outdated. Reactions 

may be verified using experimental, literature, and genomic data. Utilizing KEGG 

maps, metabolic pathways present in the organism can be easily visualized. KEGG 

maps are also critical to determine which reactions may be gap-filled or removed. For 

example, when there are numerous reactions in a metabolic pathway, but only single 

steps in the pathway missing, the missing reactions may be prime targets for gap 

filling. Conversely, when lone reactions are found completely detached from the 

metabolic network, these reactions may be prime examples for removal. When adding 

or removing a reaction, it is important to consult experimental, literature, and 

genomic data to verify the addition or removal of a target reaction. 
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In addition to the manually gap-filled reactions, gap-filled reactions included 

during the auto-completion process by Model SEED must also be manually verified 

through a similar process to determine if the proper reactions were included. If after 

consulting experimental, literature, and genomic data the auto-completed gap-filled 

reaction appears correct, the gap-filled reaction should be included in the GEM 

reconstruction. If the auto-completed gap-filled reaction appears to be incorrect, the 

reaction should be removed. 

When removing any gap-filled reactions, it is crucial to understand which 

metabolic pathways the reaction is used in, and re-verify that the metabolic network is 

correctly linked. While the individual gap-filled reaction may be incorrect, it still 

suggests that there is a missing, or incorrectly linked, reaction found somewhere in 

that metabolic pathway. It is then important to analyze and identify any candidate 

reactions in the pathway for addition to the GEM reconstruction. 

Following the gap-filling process, the biomass composition reaction can be 

analyzed and reviewed utilizing the COBRA Toolbox in MATLAB. (MathWorks, 

2013b) By comparing biomass composition reactions of phylogentically close 

organisms and applying experimental, literature, and genomic data, each compound 

included in the biomass composition reaction can be verified. The biomass 

composition reaction is the primary critical component of a GEM, and influences the 

operation and validity of the resulting simulations. Thus it is critical that each 

compound included in the biomass composition reaction is tested one by one to 

confirm that the compound is produced by the GEM and that it is properly connected 

within the metabolic network. To confirm that each compound is properly connected, 

the biomass composition reaction is reconstructed compound by compound and FBA 

is used to identify if growth is possible at each step. 

!
 



 

  

 

 

  

 

 

  

 

 

 

  

 

 

 

 

  

 

 

     

  

 

! 
36 

2.8 Flux Balance Analysis 

Various constraint based analysis techniques are applied to GEMs to evaluate 

to flow of metabolites through a metabolic network. (Orth et al, 2010) The 

predominant constraint based analysis approach used in genome-scale modeling is 

FBA. Through FBA, an objective function can be optimized by the constraints 

imposed by the mass balance and capacity constraints of the GEM. Utilizing the 

optimization of an object function, a unique solution to the objective function can be 

identified in a large solution space. 

One of the key benefits of FBA is that it does not require kinetic data and 

solutions can be calculated quickly through various software toolboxes, such as 

COBRA Toolbox. In addition to predicting the flow of metabolites, constraint based 

tools can be used in gene knockout simulations, gap-filling, physiological studies, and 

guided metabolic engineering. (Orth et al, 2010; Feist & Palsson, 2008) 

Upon verification that each compound, reaction, and element of the biomass 

composition reaction is correct, the model can be validated and queried against 

experimental and literature data using FBA. If the flux distribution produced through 

FBA does not align with experimental data, the reaction and biomass composition 

reaction must be re-analyzed to identify any remaining errors. The flux distribution 

may also be used to identify any reactions that generate excess carbon or energy in an 

unfeasible manner. 

2.8.1 Mathematics of FBA 

Metabolic reactions in a GEM are mathematically represented as a 

stoichiometric matrix (S) of size m x n, where m represents a row for each unique 

metabolite and n represents a column for each reaction. For each reaction where a 

metabolite is being consumed, a negative stoichiometric coefficient is applied. When 

a metabolite is being produced, a positive stoichiometric coefficient is applied. If a 
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metabolite listed in a row m does not participate in a reaction, it is given a value of 

zero in the S matrix. The resulting S matrix transcribed from the GEM will be sparse, 

as each metabolite is only actively involved in a subset of reactions in the GEM. 

(Orth et al, 2010) 

One of the key assumptions made in FBA is that the GEM is at steady state, 

where metabolite concentrations are no longer changing. This is represented by the 

equation dx/dt = 0, where the vector x represents the concentrations of all metabolites 

in the system. Given that the GEM is under steady state conditions, the system of 

mass balance equations can be represented by S*v = 0, where the vector v represents 

the flux of all the reactions in the system. Because there are generally more reactions 

than metabolites in a GEM, this system contains more unknown variables than 

equations, yielding a system of equations with no unique solutions. (Orth et al, 2010) 

While a unique solution cannot be calculated at this stage, the constraints imposed by 

the S matrix and capacity constraints imposed by the upper and lower bounds of a 

reaction yield a defined solution space. (Palsson, 2006) 

To identify a unique point on the constraint imposed solution space, an 

objective function is maximized or minimized. An objective function is formed from 

the idea that the system, representing a microorganism, is constructed to behave 

optimally through the process of evolution. A common objective function used in 

FBA is to maximize the specific growth rate of an organism. Maximizing the growth 

rate is a valid objective function from the observation that a microorganism has been 

constructed to grow as efficiently as possible through the process of evolution. 

The objective function, Z, is mathematically defined as Z = cT*v, where c is a 

vector of weights on fluxes that contribute to the objective function. In the case of the 

optimization of the specific growth rate, cT would contain a list of zeroes, with a one 

in the location of the reaction being optimized. Through the use of linear 

programming, the objective function is optimized and a solution is located on the 

edge of the previously defined solution space. FBA produces a flux distribution in the 

units of millimoles per gram of dry cell weight per hour (mmol/gDW-hr). For the 
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biomass composition reaction, this further reduces down to the specific growth rate 

(h-1). (Orth et al, 2010) A summary of the FBA process is shown in Figure 2.15. 

Figure 2.15: Summary of a FBA Problem (adopted from Orth et al, 2010) 
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2.9 Modeling Microbial Communities With GEMs 

Microorganisms are rarely found alone in the environment, and play an 

important role in many natural cycles. Microbial communities are responsible for the 

global cycling of energy and nutrients, such as carbon and nitrogen, and are critical in 

the biodegradation of pollutants, wastewater treatment, production of biofuels, and 

other biotechnology processes. (Follows et al, 2007; Stephanopoulos, 2007; Peng et 

al, 2008; Wagner & Loy, 2002; Daims & Wagner, 2006; Sabra et al, 2010; Zomorrodi 

& Maranas, 2012) Within these microbial communities, individual organisms may 

operate at various levels of their optimal activity. Some microorganisms may form a 

syntrophic relationship with other microorganisms where they both benefit from the 

association while other microorganisms may be negatively impacted due to the 

competition of scarce resources. The inter-species relationships of the microbial 

community have been shown to fluctuate as a response from environmental stimuli 

and plays a critical role in the activity and population of the microbial community. 

(Hansen et al, 2007; Kerr et al, 2002; Tilman, 2004; Xavier, 2011; Fuhrman, 2009; 

Zomorrodi & Maranas, 2012) 

To better understand the interactions and tradeoffs between species within a 

microbial community, attempts to model microbial GEM communities have been 

made.  The first microbial community GEMs were constructed by creating separate 

compartments for each GEM and allowing the transfer of metabolites between 

compartments. (Mo et al, 2007; Dobson et al, 2010; Bizukoic et al, 2010). Numerous 

microbial community GEMs have been constructed that model positive inter-species 

relationships, negative inter-species relationships, or synthetic relationships between 

mutants of the same species. These models were constructed and analyzed using a 

variety of methods including FBA, dynamic FBA, minimization of metabolic 

adjustment (MOMA), evolutionary game theory, non linear systems, and stochastic 

process. (Segre et al, 2002; Zhuang et al, 2011; Mahadevan et al, 2002; Frey, 2010; 

Lehmann & Keller, 2006; Schuster et al, 2010; Zomorrodi & Maranas, 2012) 
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2.9.1 Development of OptCom to Model Microbial Communities 

Existing techniques to model microbial communities are unable to solve for 

the multi-level nature of decision making in microbial communities. (Zomorrodi & 

Maranas, 2012) To address these issues, a flux balance analysis framework, which 

utilizes a multi-level optimization description, known as OptCom was developed. 

Applying OptCom allows for the optimization of individual species fitness function 

versus the microbial community fitness function and evaluates the tradeoffs that each 

individual species makes for the fitness of the entire community. 

Unlike previous attempts to model microbial community interactions, 

OptCom is able to capture positive interactions, negative interactions, or a 

combination of both for any number of species in the microbial community. OptCom 

creates a unique biomass optimization function for each species in the community as 

the inner level of the framework. The microbial community biomass is optimized in 

the outer level of the framework. Linking the inner and outer levels of the framework, 

inter-species exchange constraints and optimality criteria are applied in the outer 

problem. 

Applying the same notation from FBA, this framework can be seen in 

Figures 2.16 and 2.17. (Zomorrodi & Maranas, 2012) OptCom generates a non-

convex bi-linear optimization problem, and calls upon the Branch-And-Reduce 

Optimization Navigator (BARON) solver in The General Algebraic Modeling 

Systems (GAMS). (Tawarmalani & Sahinidis, 2005; GAMS Development 

Corporation, 2013) BARON solves for the global solution of nonlinear and mixed 

integer nonlinear programs. 
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Figure 2.16: Visualization of OptCom (adopted from Zomorrodi & Maranas, 2012) 

Figure 2.17: Multi-level optimization framework of OptCom (adopted from 

Zomorrodi & Maranas, 2012) 
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2.9.2 Descriptive-OptCom 

Through the application of descriptive-OptCom, species are able to function 

below their optimal levels of activity for the benefit of the entire microbial 

community. To measure an individual species deviation from their optimal activity, a 

metric for each species k was developed called the optimality level or ck. The 

optimality level for each species is calculated through a variant of OptCom known as 

descriptive-OptCom. (Zomorrodi & Maranas, 2012) In descriptive-OptCom, the inner 

framework is composed of all data related to the constraints of individual species of 

the microbial community while the outer framework includes all data related to the 

constraints of the community biomass. Descriptive-OptCom allows the biomass flux 

of individual species to rise above or fall below the maxima (voptk
biomass) calculated 

using OptCom. The framework for descriptive-OptCom can be seen in Figure 2.18. 

(Zomorrodi & Maranas, 2012) 

Figure 2.18: Multi-level optimization framework of descriptive-OptCom (adopted 

from Zomorrodi & Maranas, 2012) 
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Solving for the optimality level using descriptive-OptCom presents three 

possible scenarios. 1) An optimality level of less than one for a species in the 

community suggests that the microorganism grows sub-optimally at the rate 100% x 

ck of voptk
biomass, 2) an optimality level of one suggests that the species grows at 100% 

of the optimum level equal to voptk
biomass, and 3) an optimality level greater than one 

suggests that the species is growing at a greater rate than the community level specific 

maximum by depleting resources from other members in the community, resulting in 

sub-optimal growth for the remainder of the community. (Zomorrodi & Maranas, 

2012) 
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CHAPTER 3
 

MATERIALS AND METHODS
 

3.1 Definition of a Pure Culture Anaerobic Digester 

To construct an effective and efficient GEM of a pure culture anaerobic 

digester, the microbial community must be first reduced to a minimal set of 

microorganisms. The set of microorganisms selected must fit a range of parameters to 

produce a reliable model that is able to represent the entire community. 1) The first 

parameter is that the microorganisms must accurately represent the key reactions that 

occur within the anaerobic digester. 2) To assist future research and validation, the 

second parameter is that the microorganisms must be commercially available for 

culture in a laboratory. 3) The final parameter is that the microorganisms must 

already have a validated GEM available, or at a minimum, have an accurate genome 

sequence with growth and experimental data available in the literature from which a 

GEM can be constructed and validated. 

In the definition of a pure culture anaerobic digester, the hydrolysis process 

was not included in the pure culture anaerobic digester GEM. While the hydrolysis of 

complex organic substrates is a vital step in anaerobic digestion, it is typically 

performed by a wide array of extracellular enzymes from an even wider array of 

bacteria. The addition of hydrolysis to a GEM could be accomplished by constructing 

a separate external compartment and applying known reaction constraints, however, 

the application of this serves little function to the overall model and creates further 

modeling complexities. Thus, the critical processes included in the definition of a 

pure culture anaerobic digester are acidogenesis, acetogenesis, and methanogenesis. 
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3.2 Acidogenic Organism 

The acidogenic bacteria that fulfilled all the necessary parameters for the pure 

culture anaerobic digester GEM (Section 3.1) was Clostridium acetobutylicum ATCC 

824. C. acetobutylicum is a gram positive strict anaerobic bacteria from the Order 

Clostridia and is commonly found in anaerobic digesters. (Wirth et al, 2012) At the 

neutral pH commonly found in anaerobic digesters, C. acetobutylicum ferments 

simple sugars, such as glucose, into to acetate, butyrate, hydrogen, and carbon 

dioxide. (Bahl et al, 1982)  When the pH drops below 5.1, C. acetobutylicum enters a 

solventogenic phase and transforms acetate and butyrate to acetone and butanol. In 

addition to being fully sequenced, C. acetobutylicum ATCC 824 has had three GEMs 

produced, due to interest in C. acetobutylicum’s ability to produce butanol during 

solventogenesis. The most recent GEM constructed for C. acetobutylicum is iCac802, 

constructed by Dash et al, 2014. iCac802 features 802 genes and 1,462 reactions that 

utilize 1,137 metabolites. 

3.3 Acetogenic Organism 

The acetogenic bacteria that met the bulk of the prescribed parameters in 

Section 3.1 was identified as Syntrophomonas wolfei ATCC BAA-1933. S. wolfei is a 

gram negative bacteria from the Order Clostridia. (Sobieraj & Boone, 2006; Sieber et 

al, 2010) S. wolfei is capable of growth on fatty acids of four to eight carbons in 

length, although it prefers four carbon fatty acids. As a byproduct of beta-oxidation, 

S. wolfei produces acetate and hydrogen, which must be continually removed by a 

syntrophic partner. (Sobieraj & Boone, 2006) Additionally, methanogens are 

commonly found in a syntrophic relationship S. wolfei in anaerobic digesters, as they 

utilize the acetate and hydrogen in the production of methane. (Beaty & McInerney, 

1989) While a sequence for S. wolfei is available, a thorough GEM has not been 

previously produced. The construction of a GEM for S. wolfei is detailed in Section 4. 
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3.4 Methanogenic Organism 

Following the prescribed parameters of the pure culture anaerobic digester in 

Section 3.1, the methanogen Methanosarcina barkeri ATCC BAA-1921 was selected. 

M. barkeri is a gram positive Archaea from the Order Methanosarcinales. 

(Gonnerman et al, 2013) M. barkeri was chosen due to its diverse metabolism, which 

is capable of fermenting acetate, hydrogen, methanol, and methylamines into methane 

and carbon dioxide. (Balch et al, 1979) M barkeri has two high quality GEMs 

previously constructed, with the most recent being iMG746, constructed by 

Gonnerman et al, 2013. iMG746 features 746 genes, 816 reactions, and 718 

metabolites. 

3.5 Construction of a Genome Scale Model for S. wolfei 

Prior to the formation of a GEM for a pure culture anaerobic digester, a GEM 

for S. wolfei was constructed. The S. wolfei GEM was constructed utilizing the 

automated protocol provided by The SEED in addition to the GEM reconstruction 

protocols previously outlined. (Thiele & Palsson, 2010; Santos & Teusink, 2011) 

Following the automated draft metabolic reconstruction, each reaction of the draft 

GEM was manually verified and curated against the KEGG database and existing 

literature data. 

3.6 Draft Reconstruction 

The genome for S. wolfei was downloaded from the National Center for 

Biotechnology Information (NCBI) in a FASTA format. (NCBI, 2010) An overview 

of the S. wolfei genome, adopted from Sieber et al, 2010, can be found in Table 3.1. 

S. wolfei features one circular chromosome composed of 2,936,195 base pairs (bp). 
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The S. wolfei genome is of a similar size to many other syntrophic organisms and 

features a slightly lower rate of functional assignments of ORFs than many other 

similar organisms. (Sieber et al, 2010) 

The genome was submitted to RAST for an automated annotation. Following 

the automated annotation of the S. wolfei genome, the Model SEED was used to 

construct a draft GEM reconstruction using the algorithm discussed in Chapter 2. 

Following the automated draft GEM reconstruction produced by the Model SEED, 

the S. wolfei GEM was manually curated. 

Table 3.1: Features of the S. wolfei genome (adopted from Sieber et al, 2010) 

Category Amount 

DNA, total 

DNA, coding 

G + C content 

DNA scaffolds 

Genes total number 

Protein coding genes 

RNA genes 

rRNA genes 

5S rRNA 

16S rRNA 

23S rRNA 

tRNA genes 

Genes with function prediction 

Genes without function prediction 

2,936,195 bp 

2,489,888 bp 

44.87% 

1 

2,677 

2,574 (97.5%) 

65 (2.5%) 

19 

13 

3 

3 

46 

1,507 (57.1%) 

1,067 (40.4%) 
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3.7 Manual Curation 

The completed automated draft GEM was downloaded from the Model SEED 

and manually curated to further refine the GEM. Due to inaccuracies produced by the 

algorithm employed by Model SEED, major edits were required. S. wolfei was 

constructed as a gram positive bacteria by the Model SEED, although multiple 

literature reviews on S. wolfei report that it stains gram negative. (Sieber et al, 2010; 

McInerney et al, 1981; Lorowitz et al, 1989) In addition to transforming the S. wolfei 

GEM from a gram positive to a gram negative model, the biomass composition 

reaction was re-built. After rebuilding the biomass composition reaction, each 

reaction in the S. wolfei GEM was manually verified with data from the KEGG 

database. Reactions that were incorrectly added during the automated draft 

reconstruction were flagged for removal, and subsequently removed after extensive 

validation. Gap filled reactions, added during the automated draft reconstruction to 

complete metabolic pathways, were individually reviewed and compared to existing 

literature data as well. 

3.7.1 Growth Media 

The Model SEED used complete media during the construction of a GEM to 

identify candidate reactions and metabolites accurately. Using complete media in the 

GEM allows for all compounds within the database to be transported across the cell 

boundary, if required for growth. While complete media may be beneficial during the 

automated reconstruction of a draft GEM, it may produce a number of errors. (Devoid 

et al, 2013) 

Due to the use of complete media, synthesis of many amino acids and various 

metabolic intermediates were not included in the reconstruction. These reactions and 

metabolites were added during the manual curation and gap filling process. 

Additionally, the uptake of many compounds found in the defined media, listed in 
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Table 3.2, were not included in the automatic reconstruction and were manually 

added. (Beaty & McInerney, 1990) Finally, when grown in pure culture, S. wolfei 

utilizes crotonate as a carbon source. (Beaty & McInerney, 1987) However, due to the 

use of complete media during GEM reconstruction the crotonate uptake pathway was 

missing. Therefore, the crotonate uptake reactions were manually added to the GEM. 

Table 3.2: Defined media for growth of S. wolfei (adopted from Beaty & McInerney, 

1990) 

Defined Media 

Required Growth Factors Trace Metal Solution Mineral Solution 

Biotin (B7) 

Cyanocobalamin (B12) 

Thiamine (B1) 

p-Aminobenzoic Acid (Bx) 

Lipoic Acid 

Mn 

SO4 

Fe 

NH4 

Co 

Cl 

Zn 

Cu 

Ni 

Na 

MoO4 

SeO4 

WO4 

K 

PO4 

Mg 

Cl 

Na 

NH4 

Ca 

3.7.2 Biomass Composition Reaction 

The biomass composition reaction composed by the Model SEED was
 

replaced entirely due fatal flaws in the initial automatic reconstruction. S. wolfei was 
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incorrectly labeled as a gram positive bacteria, resulting in a biomass composition 

reaction that followed a gram positive template. Numerous studies show that S. wolfei 

forms a gram negative cell wall, complete with peptidoglycan but lacking a 

lipopolysaccharide layer. (Sieber et al, 2010) This unusual gram negative cell wall 

construction may have been the reason that Model SEED predicted it to be a gram 

positive organism. 

To replace the incorrect biomass composition reaction, the biomass 

composition reaction from the highly validated Escherichia coli GEM was used as the 

scaffolding for the manual construction of the S. wolfei biomass composition reaction. 

The E. coli biomass composition reaction was selected as the scaffolding since it 

contained the gram negative biomass composition reaction required by S. wolfei and 

it has been extensively curated and validated. (Feist et al, 2007) 

While the general format of the E. coli biomass composition reaction was 

followed, all relevant data from S. wolfei was utilized to manually curate the biomass 

composition reaction. For example, the amino acid profile and DNA composition was 

modified using the known GC content and relative composition of the cell. (Sieber et 

al, 2010) The cell wall was revised based on literature data that suggests that S. wolfei 

forms a unique gram negative cell wall. The cell wall of S. wolfei was found to have 

peptidoglycan, but lack a lipopolysaccharide layer. (Sieber et al, 2010) Thus, the lipid 

profile was adjusted, based on previous phospholipid fatty acid studies, to create 

S. wolfei’s unique cell wall. (Henson et al, 1988) 

Additionally, polyhydroxybutyrate (PHB) was found to represent up to 20% 

of the cell by weight. (Beaty & McInerney, 1987) PHB is typically produced when a 

microorganism is under stress, however, S. wolfei uniquely produces PHB under 

standard growth conditions. It is hypothesized that S. wolfei utilizes PHB as an energy 

storage mechanism and metabolizes the PHB when environmental conditions make 

the beta-oxidation of butyrate thermodynamically unfavorable. (Sieber et al, 2010; 

Beaty & McInerney, 1987) The inorganic ions and soluble pool included in the S. 

wolfei biomass composition reaction were based almost entirely on the E. coli 
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biomass composition reaction, except for the substitution of menaquinones, critical in 

the transfer of electrons, typically found in anaerobic microorganisms. (Unden, 1988) 

3.7.3 Model SEED Gap Filled Reactions 

Through the automated draft reconstruction process performed by Model 

SEED, numerous reactions were included in the gap filling process. Each gap filled 

reaction was manually verified against the KEGG database and existing literature. 

Gap filled sink and exchange reactions from the complete media were removed and 

replaced with sink and exchange reactions for the S. wolfei defined media. Gap filled 

sink and exchange reactions for the uptake of amino acids were also removed, as the 

defined media used for growth in pure culture did not have any amino acids 

supplemented. 

3.8 GEM Evaluation 

Upon the manual curation of each reaction included in the automated draft 

reconstruction, the biomass composition reaction, and the gap filled reactions, the 

entire GEM was evaluated and debugged. The GEM is evaluated through the 

application of FBA, with the maximization of the biomass composition reaction 

serving as the objective function. Utilizing FBA, no solution was obtainable, which 

required the entire metabolic network to be re-evaluated. Through the manual re-

evaluation of the entire metabolic network, new gap filled reactions were identified 

and added to the S. wolfei GEM. 

3.8.1 Manual Gap Filling 

Gap filled reactions were added based on existing literature data or as a 

requirement to complete the metabolic network. The first step in identifying the gap 
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filled reactions was to evaluate the S. wolfei GEM for each compound included in the 

biomass composition reaction using FBA. After the biomass composition reaction 

was linked to the metabolic network to achieve biomass growth, metabolic reactions 

were added to the GEM only if explicitly stated in literature. (iTK530 Excel) 

3.8.1.1 Linking Biomass Components 

The S. wolfei GEM was evaluated for each individual compound in the 

biomass composition reaction. By evaluating the metabolic network for each unique 

compound included in the biomass composition reaction, reactions required to link 

the biomass composition reaction to the metabolic network can be more readily 

identified. When applying FBA for a single compound in the reduced biomass 

composition reaction, positive growth indicates the GEM will produce the required 

compound and an infeasible solution indicates that the compound is not linked to the 

network. The metabolic network can then be examined through the use of metabolic 

maps provided by KEGG and Model SEED. Utilizing the metabolic maps, the 

pathway leading to the synthesis of each compound can be examined and missing 

reactions can be identified. This process was completed for each compound in the 

biomass composition reaction. 

Due to the inclusion of amino acid sinks and exchange reactions, numerous 

amino acids required gap filled reactions for production. While the amino acid profile 

has not been sufficiently characterized, the E. coli GEM scaffolding used has been 

extensively validated. (Feist et al, 2007) Gap filling the amino acid profile followed 

the previously described protocol. (Devoid et al, 2013) After shutting down the 

exchange of amino acids by the S. wolfei GEM, amino acids were checked for 

connectivity to the metabolic network one by one. Any amino acid that was not 

produced was analyzed and reactions were gap filled. (iTK530 Excel) 

The lipid profile included in the automated draft reconstruction was entirely 

removed and updated with lipid data for S. wolfei. Due to the unique lipid profile and 

!
 



 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

  

  

 

  

   

 

! 
53 

the incorrect assignment of cell wall type by the Model SEED, the entire lipid profile 

was not connected to the metabolic network. Additionally, some lipids were not 

included in the Model SEED compound database, and were manually added to the 

model. Reactions for compounds manually added were constructed based on the 

reaction pathway of similar lipids or from literature data. Due to the number of lipids 

not present in the Model SEED compound database, the lipid profile required a large 

number of gap filled reactions. (iTK530 Excel) 

3.8.2 Futile Cycles and Unbalanced Reactions 

After the biomass composition reaction was completely linked to the 

metabolic network, reactions were analyzed for futile cycles and unbalance reactions. 

A futile cycle occurs when two metabolic pathways are coupled and run in opposite 

directions, resulting in a cycle that does not produce any valuable metabolic products 

or acts as an energy sink. Unbalanced reactions are reactions that have stoichiometric 

imbalances, resulting in the net production or loss of a compound. 

Futile cycles and unbalanced reactions can be identified through the analysis 

of the flux distribution produced through FBA. Futile cycles and unbalanced reactions 

will often produce flux values of positive or negative 1000, which can be viewed as 

positive or negative infinity. (Orth et al, 2011) An example of an unbalanced reaction 

that was included in the automated draft reconstruction can be seen in rxn05817 

(Table 3.3). In rxn05817, dGTP was produced by a single diphosphate. When 

applying FBA, this reaction would run at its maximum level because it is generating 

free carbon and energy to use throughout the cell. This reaction generates free carbon 

and energy because it is converting one mol of diphosphate into a mol of dGTP, 

which is incorrect. Clearly, this reaction is infeasible and rxn05817 was removed 

from the S. wolfei GEM. 

!
 



 

   

 

  
 

  
   

 

  

 

  

  

   

   

 

 

 

  

 

   

  

   

 

   

  

 

  

! 
54 

Table 3.3: Unbalanced reaction example from Model SEED (adopted from Overbeek 

et al, 2005) 

Reaction ID SEED ID: rxn05817 
KEGG ID: R00376 

Equation dGTP <=> PPi 
Chemical Equation C10H13N5O13P3 <=> H2O7P2 

3.8.3 Substrate Uptake and Product Secretion 

Substrate uptake and product secretion rates were constrained based on 

literature data. Crotonate served as the primary carbon source, and acetate and 

hydrogen served as the main product secretions, with a small amount of butyrate and 

hexanoate additionally produced. (Beaty & McInerney, 1987) All compounds 

described in the defined growth media (Table 3.2) were allowed transport into the 

cell. Due to the lack of literature data defining required growth co-factor uptake rates, 

growth media compounds were allowed to enter the cell as required by the GEM for 

biomass growth. 

3.8.4 Continued Evaluation 

After each key aspect of the S. wolfei GEM was manually curated, FBA was 

performed to examine the growth rate. The growth rate after the first pass at manual 

curation was infeasible due to numerous futile cycles and unbalance reactions, which 

required further manual curation. Utilizing the flux distribution produced through 

FBA, reactions that produced flux values near or at the upper and lower limit of +/-

1000, representing infinite flux, were examined for validity. 

Reactions that continued to produce futile cycles were constrained through the 

reversibility parameter based on literature data and the logical flow of metabolites 

through the metabolic network. After a reaction was constrained, FBA was performed 
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to generate a new set of flux distributions. This process was continued until all major 

futile cycles and unbalanced reactions were constrained or removed. (iTK530 Excel) 

3.9 Construction of a Pure Culture Anaerobic Digester GEM 

Upon the completed curation and verification of the S. wolfei GEM, the three 

selected models were linked together through OptCom, performed in GAMS. As 

detailed in Figure 2.7, the three models included in OptCom share a pool of external 

metabolites. The uptake of one compound, such as acetate by M. barkeri, was 

programmed to be less than or equal to the combined production of acetate by C. 

acetobutylicum and S. wolfei. This process was repeated for all shared metabolites 

between the three GEMs. 

Prior to programing the pure culture anaerobic digester GEM, the 

C. acetobutylicum GEM (iCac802), the S. wolfei GEM (iTK530), and the M. barkeri 

GEM (iMG746) were reduced to the active reactions using the removeDeadEnds 

function in the COBRA Toolbox. By reducing the models to only the active 

metabolic network, metabolic dead end reactions and metabolites are removed from 

the pure culture anaerobic digester model, reducing the complexity of the model 

while preserving the metabolic functions of each GEM. 

The pure culture anaerobic digester was programmed in OptCom and 

descriptive-OptCom based on the protocols and examples provided by Zomorrodi & 

Maranas, 2012. Through OptCom, the community biomass and individual species 

biomass were optimized. Descriptive-OptCom parallels OptCom, except descriptive-

OptCom allows for each species biomass growth rate to fall above or below a 

previously determined optimum in order to maximize the community level biomass 

growth. To fit both OptCom and Descriptive OptCom data to literature results, 

additional flux constraints were applied to uptake and secretion fluxes. (iTK530 

Excel) After programming OptCom and descriptive-OptCom, the flux distribution of 

the pure culture GEM was solved in GAMS using the BARON global solver. 
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CHAPTER 4
 

iTK530 RESULTS AND DISCUSSION
 

4.1 iTK530 Summary 

The S. wolfei GEM (iTK530) features 530 genes, 1,175 reactions containing 

1,193 metabolites. iTK530 is capable of growth on crotonate and butyrate, which 

were found to be S. wolfei’s primary carbon sources. iTK530 produces biomass on 

defined media specified by Beaty & McInerney, 1990. 

The biomass composition reaction was completely rebuilt based on the 

validated E. coli model iAF1260, due to the incorrect cell wall designation by Model 

SEED, and was reconstructed using literature data. (Sieber et al, 2010; Beaty & 

McInerney, 1987; Beaty & McInerney, 1989; Amos & McInerney, 1990; Henson et 

al, 1988) iTK530 features an additional 143 reactions and an additional 83 

metabolites when compared to the automated draft reconstruction (Table 4.1). The 

additional reactions and metabolites were manually added to reconstruct S. wolfei’s 

biomass composition reaction and gap-fill S. wolfei’s metabolism. 

Table 4.1: Comparison of original draft S. wolfei GEM and iTK530 

S. wolfei GEMs 

Draft 

Reconstruction 
iTK530 

Genes 

Reactions 

Metabolites 

528 

1032 

1110 

530 

1175 

1193 
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4.2 iTK530 Validation 

To verify iTK530, FBA was performed and the resulting flux distribution was 

contrasted with published literature data. Uptake and secretion fluxes of major 

metabolites were constrained based on literature data from Beaty & McInerney, 1987 

(Table 4.2). The application of these literature constraints did not produce growth 

(Table 4.2). To achieve the specific growth rate produced by Beaty & McInerney, 

1987, the secretion of the three measured metabolic byproducts (acetate, butyrate, and 

hexanoate) were reduced by 30 percent. The secretion fluxes of the three metabolic 

products were reduced, as opposed to the crotonate uptake flux increased, because the 

secretion of metabolic byproducts is a function of the model, indicating the overall 

validity of the GEM. Through the reduction of the secretion fluxes, growth of iTK530 

closely matched the specific growth rate detailed by Beaty & McInerney, 1987 (Table 

4.3). The constraints applied to reach the validated specific growth rate are detailed in 

Table 4.3. 

Table 4.2: Uptake and secretion rates of critical compounds (adopted from Beaty & 

McInerney, 1987) 

Uptake and Secretion Rates of Critical Compounds (Beaty & McInerney, 1987) 

Compound 

Flux 

(mmol/gDW-hr) 

Crotonate Acetate Butyrate Hexanoate Growtha 

0.9258 1.9840 0.1824 0.05670 0.01200 

a Growth is measured as the specific growth rate (h-1) 
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Table 4.3: Uptake, secretion, and specific growth rates of iTK530 

Uptake, Secretion, and Specific Growth Rates of iTK530 

Compound 

Flux 

(mmol/gDW-hr) 

Crotonate Acetate Butyrate Hexanoate 

0.9258 1.3889 0.1289 0.0397 

Growtha 

0.01204 

a Growth is calculated as the specific growth rate (h-1) 

The required 30 percent reduction of the secretion fluxes to achieve a 

literature validated growth rate is likely due to 1) a carbon intensive biomass 

composition reaction, 2) an overestimation of maintenance requirements, or 3) 

limitations of the GEM model and the reactions included. The draft biomass 

composition reaction produced by Model SEED was removed, due to incorrect cell 

wall assignment, and was replaced with a new biomass composition reaction based 

off of the E. coli iAF1260 model. While the newly constructed biomass composition 

reaction was constructed using available literature data, the literature data available 

was not sufficient enough to construct a highly accurate biomass composition 

reaction and may overestimate the amount of carbon required for biosynthesis by 

S. wolfei. The overestimation of required carbon coupled with S. wolfei’s inherent 

metabolic limitations, due to its maximal energy production from the beta-oxidation 

of butyrate, resulted in the necessity to decrease the secretion fluxes to achieve a 

validated growth rate 0.012 h-1 (Table 4.3). 

4.3 Maximum Acetate Production 

The major metabolite produced from the beta-oxidation of butyrate by 

S. wolfei is acetate. Acetate is a critical metabolite in the anaerobic digestion process, 

and accounts for up to 70 percent of all methane produced in an anaerobic digester. 

(Wang et al, 2009) By increasing the acetate produced in an anaerobic digester, the 
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production of methane can be increased, resulting in an increase in the economic 

viability of biogas recovery. 

To examine the maximum amount of acetate produced by S. wolfei, the lower 

limits of the fluxes for butyrate and hexanoate production were set to zero. Setting the 

lower limit of the butyrate and hexanoate production fluxes to zero does not 

completely shut off production, instead it only allows the metabolite to be produced if 

it is required to optimize biomass production. The acetate production rate that yielded 

a literature determined growth rate was 1.85 mmol acetate/gDW-hr, producing a 

growth rate of 0.012 h-1. (Figure 4.1) (Beaty & McInerney, 1987; Beaty & 

McInerney, 1989; Amos & McInerney, 1990; Sieber et al, 2010) The maximum 

acetate production from the uptake of 0.9258 mmol crotonate/gDW-hr was 

2.15 mmol acetate/gDW-hr, which resulted in a near zero S. wolfei growth rate. 

(Figure 4.1) A theoretical maximum growth rate of 0.1177 h-1 can also be calculated 

when no acetate is produced from the uptake of 0.9258 mmol crotonate/gDW-hr. The 

growth rate is greatly increased without acetate production, as acetate represents the 

major source of carbon leaving the cell. (Figure 4.1) 
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Figure 4.1: Crotonate uptake vs. acetate production vs. growth rate in S. wolfei 
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4.4 Maximum Formate Production 

Formate production is a critical metabolic process in S. wolfei. (Sieber et al, 

2010) Formate production is linked with the reoxidation of NADH and reduced 

electron transfer flavoproteins. Analysis of the S. wolfei genome predicted that there 

are five formate dehydrogenases, with two being externally oriented. (Sieber et al, 

2010) Additionally, numerous methanogenic syntrophic partners are capable of 

utilizing formate in the production of methane. (Beaty & McInerney, 1989) 

While no direct measurements of formate production by S. wolfei have been 

previously conducted, iTK530 predicts that the maximum formate production, 

coupled with the uptake of 0.9258 mmol crotonate/gDW-hr and secretion of 1.3889 

mmol acetate/gDW-hr, is 2.86 mmol formate/gDW-hr. (Figure 4.2) Applying the 

previous crotonate uptake and acetate secretion fluxes, iTK530 predicts a formate 

production rate of 1.8 mmol formate/gDW-hr, yielding a biomass growth rate of 

0.012 h-1,which remains consistent with literature values. (Figure 4.2) (Beaty & 

McInerney, 1987; Beaty & McInerney, 1989; Amos &McInerney, 1990; Sieber et al, 

2010) 

The theoretical maximum formate production, without acetate production 

present, is 8.5 mmol formate/gDW-hr, which results in near zero growth. (Figure 4.3) 

The production of 1.8 mmol formate/gDW-hr, when coupled with acetate production, 

and 7.6 mmol formate/gDW-hr when acetate production is absent, both produced a 

biomass growth rate near the lower limit of literature values. (Figures 4.2 and 4.3) 

The formate secretion rates increased without acetate production present because 

formate represents the primary source of carbon leaving the cell when acetate 

production is absent. (Beaty & McInerney, 1987; Beaty & McInerney, 1989; Amos 

&McInerney, 1990; Sieber et al, 2010) 
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Figure 4.2:  Maximum formate production coupled with acetate production in 

S. wolfei 
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Figure 4.3: Maximum formate production without acetate secretion in S. wolfei 
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4.5 Maximum PHB Production 

S. wolfei one of the few members of Syntrophomonas that is capable of 

producing polyhydroxyalkanoates (PHAs), including PHBs. (McInerney et al, 1992) 

PHB is a valuable bio-product that can be used to produce a sustainable bio-plastic. 

(Luengo et al, 2003) Typically, PHAs are produced during metabolic stress or 

nutrient limitation. (Anderson et al, 1990; McInerney et al, 1992) However, unlike 

most PHA/PHB producers, S. wolfei produces PHB, during the exponential phase of 

growth under no apparent nutrient limitations or metabolic stress. (Amos & 

McInerney, 1989) Additionally, PHB was found to represent up to 20 percent of the 

S. wolfei cell by weight. (Beaty & McInerney, 1987) It is hypothesized that PHB 

synthesis in S. wolfei may act as an energy storage mechanism, allowing for 

continued metabolic function when environmental conditions make the beta-oxidation 

of VFAs unfavorable. (Amos & McInerney, 1989; Beaty & McInerney, 1989; 

McInerney et al, 1992; Sieber et al, 2010) 

FBA was performed to identify the maximum PHB production rate when 

acetate is produced at a literature derived value as well as the theoretical maximum 

PHB production rate when acetate is not produced. The maximum PHB production 

rate when crotonate uptake and acetate production are set to the literature derived 

rates 0.9258 mmol crotonate/gDW-hr and 1.3889 mmol acetate/gDW-hr, 

respectively, was calculated to be 0.3 mmol PHB/gDW-hr, yielding a near zero 

growth rate (Figure 4.4). (Beaty & McInerney, 1987) 

Applying the previous literature derived crotonate uptake and acetate 

production fluxes, iTK530 predicts that PHB is produced at 0.22 mmol PHB/gDW-hr 

with a growth rate of 0.012 h-1, as suggested by literature (Figure 4.4). (Beaty & 

McInerney, 1987) The theoretical maximum PHB production rate from a crotonate 

uptake of 0.9258 mmol crotonate/gDW-hr without acetate production was 0.96 mmol 

PHB/gDW-hr (Figure 4.5). PHB production is increased when acetate production is 
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absent because more carbon is now available for the synthesis of PHB, which would 

have originally been secreted as acetate. 

PHB is a carbon intensive compound that is closely linked to the uptake of the 

carbon sources utilized by S. wolfei, including butyrate and crotonate. (Sieber et 

al, 2010) As detailed by Figure 4.6, PHB can be efficiently synthesized using either 

butyrate or crotonate as a carbon source. Due to the carbon intensive nature of PHB, 

only minimal amounts of PHB can be produced while still achieving a satisfactory 

growth rate (Figures 4.4 and 4.5). 

This is due to the fact that the carbon sources needs to flow through the 

enzymes associated with PHB production to enter the remaining metabolism of S. 

wolfei (Figure 4.6). Thus, an increase in PHB production would clearly siphon off the 

carbon entering the remaining metabolism, significantly impacting growth rate and 

resource availability. Therefore, to increase the PHB production by S. wolfei, the rate 

of carbon uptake would need to be dramatically increased in order to yield a growth 

rate near literature values. (Beaty & McInerney, 1987; Beaty & McInerney, 1989; 

Amos &McInerney, 1990; Sieber et al, 2010) 
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Figure 4.4: PHB production coupled with acetate production in S. wolfei 
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Figure 4.6: Simplified metabolic map of butyrate (butanoate) or crotonate (activated 

to crotonoyl-CoA during transport) to PHB in S. wolfei. Underlined enzymes are 

active in this process, according to Model SEED, KEGG, and Sieber et al, 2010. 

4.6 Maximum H2 Production 

Genomic analysis of S. wolfei indicates that S. wolfei has three hydrogenases, 

with one hydrogenase being externally oriented. (Sieber et al, 2010) Hydrogen 

production in S. wolfei is linked to the reoxidation of reduced ferredoxin. (Sieber et 

al, 2010) While the generation of hydrogen, and subsequent removal by a syntrophic 

partner, remains critical to the metabolism of S. wolfei, little is known about the exact 

mechanisms of hydrogen production in S. wolfei. Subsequently, the hydrogen 

generation flux is unavailable for model validation. 
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The theoretical maximum hydrogen production associated with the literature 

defined rates of crotonate uptake and acetate production, set to 0.9258 mmol 

crotonate/gDW-hr and 1.3889 mmol acetate/gDW-hr, respectively, is approximately 

11 mmol hydrogen/gDW-hr (Figure 4.7). However, when applying the previous 

literature derived crotonate uptake and acetate production rates, and limiting the 

growth rate to 0.012 h-1, the hydrogen production rate predicted by iTK530 reduced 

to 2.1 mmol hydrogen/gDW-hr (Figure 4.7). (Beaty & McInerney, 1987) Hydrogen 

production may be increased when acetate production is absent due to the availability 

of greater energy resources. When acetate production is present, S. wolfei may 

produce hydrogen at a lower rate because a greater amount of the NAD+ and reduced 

ferredoxin associated with hydrogen production is utilized to produce acetate. 

However, when acetate production is absent, a greater amount of these compounds 

required for hydrogen production may be available. 

Interestingly, growth production plateaus after the hydrogen production rate 

reaches 11 mmol hydrogen/gDW-hr even though the hydrogen production continues 

to increase. Similar trends are observed when acetate is not produced by S. wolfei 

with the maximum theoretical hydrogen production, where the biomass growth rate 

plateaus at a hydrogen production rate of 37 mmol hydrogen/gDW-hr. (Figure 4.8) 

The steady hydrogen production rates are likely due to the hydrogen cycling 

throughout the model due to unknown reaction constraints. Additionally, the growth 

rates do not decline as hydrogen production is allowed to increase. This suggests that 

the hydrogen production reactions are not reducing the overall energy available to the 

cell, and instead endless looping throughout the metabolism is occurring. By 

leveraging future experimental data, such as the detailed measurement of hydrogen 

production rates by S. wolfei, the hydrogen production bounds could be constrained to 

more realistic bounds, resulting in a more accurate GEM. 
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4.7 Uptake of Select Growth Media Compounds 

S. wolfei grows on a defined medium with five B vitamins as required growth 

cofactors (Table 3.2). (Beaty & McInerney, 1990) While the five B vitamins required 

by S. wolfei for growth in pure culture have been studied, little research has been 

conducted to examine the requirement of the other compounds included in the trace 

metal and mineral solutions. Two compounds supplied in the defined media, 

ammonium and vitamin B12, were selected for analysis. 

Although no nitrogen sources were explicitly specified in literature, 

ammonium was selected as it represents the most likely dominant nitrogen source. S. 

wolfei, commonly found in anaerobic digesters, would likely see large amounts of 

ammonium in the wastewater treatment system. Vitamin B12 was selected due to its 

requirement for growth by S. wolfei in addition to its significance in the synthesis of 

the vitamin B12 coenzyme. 

The maximum ammonium uptake by S. wolfei when 0.9258 mmol 

crotonate/gDW-hr was supplied and 1.3889 mmol of acetate/gDW-hr was produced, 

as derived from literature, was 0.8 mmol ammonium/gDW-hr (Figure 4.9). Applying 

the previous literature derived crotonate uptake and acetate production rates that 

produced a growth rate of 0.012 hr-1, iTK530 predicts an ammonium uptake rate of 

0.3 mmol ammonium/gDW-hr (Figure 4.9). These uptake rates indicate that S. wolfei 

utilizes a minimal amount of nitrogen to meet its optimum growth conditions. 

However, it was also observed that no growth occurs when ammonium is not 

supplied, indicating that ammonium, although minimally utilized, is indeed a critical 

source of nitrogen for S. wolfei. 
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Figure 4.9: Ammonium uptake by S. wolfei when acetate is produced at a rate of 

1.3889 mmol acetate/gDW-hr 

Of the five B vitamins required for growth by S. wolfei, vitamin B12 was 

selected for analysis, as it is required for the synthesis of the vitamin B12 coenzyme. 

(Kanehisa et al, 2014; Kanehisa & Goto, 2000) It was observed that minimal amounts 

of vitamin B12 were required for growth when crotonate was supplied at 0.9258 

mmol crotonate/gDW-hr and acetate was supplied and 1.3889 mmol of acetate/gDW-

hr (Figure 4.10). Applying the previously detailed crotonate uptake and acetate 

production rates that produced a growth rate of 0.012 h-1, a vitamin B12 uptake rate 

of 0.27 x 10-5 mmol vitamin B12/gDW-hr was predicted (Figure 4.10). Under the 

same conditions, iTK530 predicts a maximum vitamin B12 uptake rate of 0.8 x 10-5 

mmol B12/gDW-hr, yielding a near zero growth rate. Because vitamin B12 is directly 

correlated with biomass growth, uptake above the amount required for growth was 

infeasible. Figure 4.10 also confirms that vitamin B12 is required for growth, and that 

the inhibition of vitamin B12 uptake will directly decrease S. wolfei’s growth rate. 

!
 



 

 
   

 

 

   

 

     

 

 

   

  

  

  

 

  

  

   

  

 

 

! 
70
 

0.04 0.03 

0.03

/h
r) 0.025 

G
ro

w
th

 R
at

e 
(1

0.02 0.02 

0.01 
0.015 

1 
0 

1 

0.01 

0.8 
0.6 0.6 

0.8 0.005 

x 10−5 0.4 
0.2 0.2 

0.4 

B12 Uptake (mmol/g DW−hr) 
0 0 

Crotonate Uptake (mmol/g DW−hr) 

0.035 

Figure 4.10: Vitamin B12 uptake by S. wolfei when acetate is produced at a rate of 

1.3889 mmol acetate/gDW-hr 

4.8 S. wolfei GEM (iTK530) Conclusions 

The S. wolfei GEM (iTK530) is capable of predicting the specific growth rate 

of S. wolfei through the constraint of the carbon source and acetate production 

reactions. Due to the minimal amount of available literature data regarding the growth 

of S. wolfei, additional constraints are needed to improve model function. Formate 

and hydrogen production rates are critically needed, as these compounds have been 

shown to provide a significant function to the metabolism of S. wolfei. (Sieber et al, 

2010) Additionally, as formate represents a source of carbon leaving the cell, formate 

secretion rates are required to accurately perform a carbon balance. (Beaty & 

McInerney, 1987) 

While iTK530 closely matches available literature growth rates for S. wolfei 

grown in pure culture on crotonate, the product secretion rates needed to be reduced 

by 30 percent to meet these literature expected values. (Beaty & McInerney, 1987) 

The accuracy of the product secretion rates can be improved through better data on 
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the S. wolfei biomass composition reaction and product formation rates. The current 

biomass composition reaction for S. wolfei was constructed using the E. coli biomass 

composition reaction as the scaffolding, due to the incorrect assignment of cell wall 

type by Model SEED. 

In addition to the in-depth analysis of the composition of the S. wolfei cell, 

better data is needed to better understand the maintenance energy requirements of S. 

wolfei. One of the most critical aspects of the biomass composition reaction is the 

maintenance energy required to produce biomass. The maintenance requirements 

used in iTK530 were taken from the E. coli GEM, and do not fully represent the 

maintenance requirements of S. wolfei. Through additional experiments, the biomass 

composition reaction can be refined to further improve the accuracy and validity of 

iTK530. 

S. wolfei is a model organism for syntrophic organisms, and represents a 

critically understudied aspect of the ecology and function of anaerobic digestion. 

iTK530 provides a high-resolution in silico platform for the study of S. wolfei, and 

through the application of FBA (and other constrain based analysis techniques not 

used in this study), the metabolism of S. wolfei can be efficiently simulated and 

analyzed. While additional experiments are required to further improve iTK530, 

iTK530 presents a critical step forward in the elucidation of the genome, activity, and 

capabilities of S. wolfei. 
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CHAPTER 5 

PURE CULTURE ANAEROBIC DIGESTER GEM RESULTS AND 

DISCUSSION 

5.1 Pure Culture Anaerobic Digester GEM 

While current in silico anaerobic digestion models approach the system at a 

macroscopic level, genome-scale modeling allows for the in-depth analysis of a 

microorganism, down to the genomic level. Recently, OptCom was developed to link 

multiple GEMs together to allow for the detailed analysis of a microbial community. 

(Zomorrodi & Maranas, 2012) Applying OptCom and descriptive-OptCom to the 

constructed pure culture anaerobic digester, presented in this work, provided a high-

resolution in silico platform to study the complex processes of anaerobic digestion. 

The pure culture anaerobic digester GEM was first analyzed using OptCom, a 

multi-level framework that allows for the optimization of both the community and 

individual species biomass growth rate. To examine the impact of the variation of the 

percent methanogens found in an anaerobic digester, the percent of methanogens was 

manually varied using both OptCom and descriptive-OptCom. Applying descriptive-

OptCom allows for the optimization of the community and individual species 

biomass growth rate, but additionally allows the individual species growth rate to rise 

above or fall below the originally predicted optimum value. By allowing each species 

to rise above or fall below the previously determined optimum value, the tradeoffs 

and syntrophic relationships that occur between species can be examined. 

5.2 Pure Culture Anaerobic Digester GEM Validation with OptCom 

The pure culture anaerobic digester GEM was first examined using OptCom. 

Through the application of OptCom, the model predicted a total community biomass 
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growth rate of 0.457 h-1 from a glucose feed rate of 10 mmol glucose /gDW-hr 

(Figure 5.1). The glucose feed rate was constrained to a maximum uptake rate of 10 

mmol glucose/gDW-hr as determined by experimental results and in silico validation. 

(Dash et al, 2014) The growth rates for C. acetobutylicum, S. wolfei, and M. barkeri 

were calculated to be 21 percent, 110 percent, and 4 percent greater than their 

literature measured growth rates of 0.32, 0.020, and 0.025 h-1, respectively. (Dash et 

al, 2014; Beaty & McInerney, 1987; Gonnerman et al, 2013) The calculated growth 

rates for each organism were likely elevated from the predicted literature growth rates 

as OptCom does not allow for the organisms to rise above or fall below their 

optimum growth rates. 

Maximum Experimental Growth Rates vs. 
Maximum OptCom Growth Rate 

0.500 
0.400 R

at
e 

(1
/h

) 

0.320 
0.389 

0.300w
th

0.200 
0.100

Sp
ec

ifi
c 

G
ro

0.020 0.042 0.025 0.026 
0.000 

C. acetobutylicum S. wolfei M. barkeri 

Pure Culture Anaeroibc Digester Microogranism 

Experimental Growth Rate OptCom Maximum Growth Rate 

Figure 5.1: Validation of OptCom model results 

Methane production of the pure culture anaerobic digester was also analyzed 

using OptCom (Figure 5.2). Applying the Buswell & Mueller, 1952 equation, as 

modified by Richards et al, 1991, yielded a maximum theoretical methane yield of 3 

mmol methane per mmol glucose. Previous batch anaerobic digestion of glucose 

experiments yielded an experimental methane production yield of 2.3 mmol methane 
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per mmol glucose. (Kalyuzhnyi & Davlyatshina, 1997a) A lower literature limit was 

selected from the analysis of the anaerobic digestion that occurs in the rumen, with an 

expected methane yield of 0.56 mmol methane per mmol glucose. (Czerkawski, 

2013) OptCom calculated a methane production rate of 0.045 mmol methane per 

mmol glucose, which fell well below literature determined range. 

The minimal methane production yield was likely due to the relatively low 

percentage of methanogens (5.7 percent) calculated by OptCom to be in the pure 

culture anaerobic digester. This calculated percentage of methanogens was within the 

literature determined values of 2 to 30 percent, but was on the lower end of the 

spectrum. (Reyes et al, 2015) 

One possible explanation for the low methanogen percentage may be 

attributed to the methanogen selected for the model. The methanogen used in this 

study, M. barkeri, was chosen, in part, due to its capability of growth on a wide range 

of substrates including acetate, hydrogen, methanol, and methylamines. (Balch et al, 

1979) Although M. barkeri has a wide range of compatible substrates, specialized 

methanogens that grow on a sole substrate, such as acetate and hydrogen, have been 

shown to have a specific growth rate up to 0.163 h-1, which is 552 percent increase 

from M. barkeri’s specific growth rate. (Kalyuzhnyi, 1997b). Additionally, OptCom 

does not allow for interactions between organisms in the community, the application 

of OptCom may not yield literature supported results. (Zomorrodi & Maranas, 2012) 
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Figure 5.2: Analysis of methane production rates 
1(Czerkawski, 2013); 2(Kalyuzhnyi & Davlyatshina, 1997a); 3(Richards et al, 1991) 

5.3 Varying Methanogenic Population with OptCom 

The total percent methanogens was varied to examine the impact of the 

methanogenic community on the growth and metabolic byproduct production rates of 

the microorganisms in the pure culture anaerobic digester (Figure 4.13). Through the 

variation of the ratio of total methanogens and holding the glucose feed rate at 10 

mmol glucose/g DW-hr, the total community biomass increased by 5.1 percent from 

0.435 h-1 to 0.457 h-1 at 1 percent and 5.7 percent methanogens, respectively. (Figure 

5.3) OptCom was unable to determine a solution outside of these narrow bounds, as it 

does not allow the species to rise above or fall below the optimal growth rate 

calculated by OptCom. 

The increase in the methanogenic growth rate as C. acetobutylicum’s and S. 

wolfei’s growth rate stayed constant suggests that methanogenic growth was not 

limited by acetate and hydrogen production by the community. This was confirmed 

through the analysis of the flux distribution calculated by OptCom, which showed an 
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excess of acetate, butyrate, formate, hydrogen, and carbon dioxide in the system. 

While growth was not limited by acetate uptake at such low methanogen percentages, 

acetate uptake was nearing its literature validated limit of 6.4 mmol acetate /gDW-hr 

(Figure 5.11). (Gonnerman et al, 2013) 

Figure 5.3: Community and species growth rate with methanogenic population 

variation. CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri 

The methane production yield as a function of the methanogen percentage was 

also analyzed through OptCom (Figure 5.4). The methane production yield as, mmol 

of methane per mmol of glucose, remained far below literature values (0.56 – 3 mmol 

methane / mmol glucose). At only 5.7 percent methanogens, the methane yield topped 

out at 0.045 mmol methane per mmol glucose. (Figure 5.4) Aside from the low 

percentage of total methanogens within the community, the low methane yield may 

be a result of the low literature validated acetate uptake limit, as up to 70 percent of 

all methane produced is through acetoclastic pathways. (Gonnerman et al, 2013; 

Avery et al, 2003) 
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Figure 5.4: Validation of mmol methane produced per mmol of glucose supplied. 
1(Czerkawski, 2013); 2(Kalyuzhnyi & Davlyatshina, 1997a); 3(Richards et al, 1991) 

5.4 Varying Methanogenic Population with Descriptive-OptCom 

Throughout nature, microorganisms often operate under less than optimal 

conditions to benefit the community, and may form syntrophic partnerships with 

surrounding microorganisms. Through descriptive-OptCom, the growth rate of each 

individual organism is allowed to deviate from the optimum value in order to 

maximize the community biomass growth. 

To analyze the community dynamics of the pure culture anaerobic digester, 

descriptive-OptCom was applied with the optimum growth rate for each organism set 

at the literature derived rates of 0.32 h-1, 0.012 h-1, and 0.025 h-1 for C. 

acetobutylicum, S. wolfei, and M. barkeri, respectively. The glucose uptake limit was 

set at 10 mmol glucose/gDW-hr, as specified by Dash et al, 2014, and the acetate 

uptake rate was doubled from 6.4 mmol acetate/gDW-hr to 12.8 mmol 

acetate/gDW-hr. The doubling of the acetate uptake rate was necessary due to the 

failure of the model at 10% total methanogens and an acetate uptake rate of 6.4 mmol 
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acetate/g DW-hr. The model failed, in part, due to the methanogen reaching its 

acetate uptake limit, stagnating its growth. As a response, the model did not allow for 

the growth of S. wolfei in order for the methanogen to meet the percent methanogen 

limit specified in the model. To work around these limits, the acetate uptake rate was 

doubled from the original literature validated rate due to M. barkeri quickly 

approaching the acetate uptake limit (Figure 5.3). 

5.5 Growth Dynamics with Descriptive-OptCom 

The growth dynamics of the pure culture anaerobic digester indicate that both 

S. wolfei and M. barkeri operated at an increased specific growth rate when compared 

to their literature values when the percent methanogens were greater than 15 percent 

(Figures 5.5 and 5.6). In contrast, C. acetobutylicum operated under its optimal 

literature specific growth rate when the percent methanogens was greater than 15 

percent (Figures 5.5 and 5.6). 

The greatest community biomass occurred at 10 percent methanogens, which 

was followed by a plateau of methanogenic growth, and an overall decrease in the 

community biomass (Figure 5.5). This drop in community level biomass growth rate 

is due to M. barkeri reaching its acetate uptake limit, stagnating its growth. As the 

model is operated at increased percent methanogens, the growth of C. acetobutylicum 

must be decreased to meet this condition, as M. barkeri growth can no longer increase 

to meet the designated percent methanogen parameter of the model. This can be more 

clearly seen through the examination of each species’ optimally levels (Figure 5.6). 

At a percent methanogen value less than 5 percent methanogens, M. barkeri is 

operating at a reduced activity level while C. acetobutylicum is operating an increased 

activity level. From 5 percent methanogens to 15 percent methanogens, M. barkeri 

increases its optimality level until its acetate uptake constrain is reached and growth 

stagnates. As the percent methanogens increases past 15 percent, C. acetobutylicum 

must decreased is activity level in order for the methanogen to meet the percent 
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methanogen parameter defined in the model. In other words, since the methanogen 

growth rate cannot increase further, the only way for their relative abundance to 

increase is for C. acetobutylicum to decrease. 
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Figure 5.5: Community growth dynamics as a function of percent methanogens
 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri
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Figure 5.6: Optimality level of each organism versus the total percent methanogens 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri 

5.5.1 Rate Limiting Step Identification with Descriptive-OptCom 

Applying descriptive-OptCom to the pure culture anaerobic digester GEM 

indicated that digester performance is limited by the activity of the methanogens, 

specifically their acetate uptake rate. The M. barkeri growth rate quickly reached a 

plateau due to the acetate uptake rate approaching its limit of 12.8 mmol 

acetate/gDW-hr, even though this was twice the literature reported value of 6.4 mmol 

acetate/gDW-hr (Figure 5.5). Throughout the model, the methanogen was identified 

as the key rate limiting step due to its elevated optimality level and acetate uptake 

limitations. (Figures 5.6 and 5.11) 

While S. wolfei is also operating at an increased optimality level, it’s 

metabolic activity is not considered rate limiting as it is metabolizing very low 

amounts of butyrate (0.7244 mmol butyrate/gDW-hr) and producing minimal 
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amounts of acetate (1.24 mmol acetate/gDW-hr). However, S. wolfei’s increased 

optimality level does indicate that the organism is performing at many times its 

expected activity to support overall digester growth. S. wolfei likely remains at an 

elevated optimality level throughout the model due to minimal amount of supporting 

experimental data available. Because minimal supporting experimental data is 

available, the growth, metabolite uptake, product secretion, and maintenance energy 

requirement rates may not be properly validated. 

As the methanogenic population starts to increase, the growth of the acidogen, 

C. acetobutylicum, begins to decrease. This decrease in C. acetobutylicum growth can 

be attributed to the increased acetate production needed to support the methanogenic 

growth at higher percentages, which leaves little remaining resources for 

C. acetobutylicum’s biomass growth. The continued decrease in growth from 

C. acetobutylicum after 30 percent of total growth is methanogenic may also be 

attributed to the constructed model forcing a lower acidogen growth to meet the 

required percent methanogens in the system. This reasoning can also be applied to the 

decrease in S. wolfei growth once methanogens reach 50 percent of the digester 

community population. Due to the inability for M. barkeri to continue increasing its 

growth rate as a result of its acetate uptake limitation, the growth rates of the other 

organisms, C. acetobutylicum and S. wolfei, must decrease to allow the total percent 

methanogens to increase. 

5.5.2 Methane Production Validation with Descriptive-OptCom 

Through the application of descriptive-OptCom, the yields of methane 

produced per mmol of glucose supplied can be analyzed. As indicated by Figure 5.4 

and Figure 5.7, methane production remained well below literature supported values 

when the methanogens accounted for less than 20 percent of the microbial 

community. As the percent of methanogens in the digester increases from 20 percent 

to 40 percent, the methane production per mmol of glucose falls within literature 
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derived limits of 0.56 to 3 mmol methane/ mmol glucose (Figure 5.7). This closely 

aligns with real world anaerobic digesters, which typically have a distribution of 

methanogens ranging from 2 to 30 percent of all microorganisms. (Wirth et al, 2012; 

Jaenicke, 2011; Reyes et al, 2015) While the biomass growth rate for M. barkeri and 

S. woflei both deviated above their literature derived growth rates, C. acetobutylicum 

fell within its expected literature growth range. The elevated M. barkeri and S. wolfei 

growth rates can be accounted for due to M. barkeri’s increased acetate uptake rate 

and the lack of literature data for the uptake of butyrate and production of acetate, 

formate, and hydrogen by S. wolfei, which made validation difficult to achieve. 
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Figure 5.7: Methane yield as a function of percent methanogens at double the
 

literature support acetate uptake rate
 
1(Czerkawski, 2013); 2(Kalyuzhnyi & Davlyatshina, 1997a); 3(Richards et al, 1991)
 

5.6 Model Improvement Though Constraint of S. wolfei 

The previous simulations were conducted using literature derived butyrate 

uptake and acetate production constraints applied to S. wolfei. (Beaty and McInerney, 

!
 



 

     

   

 

  

 

  

 

  

    

     

     

     

  

 

 

  

 

 

  

  

  

    

    

 

 

  

! 
83 

1989) These constraints yielded an elevated S. wolfei growth rate as compared to the 

literature data (Figure 5.6). (Beaty and McInerney, 1987) These constraints likely 

yielded an elevated growth rate due to the unknown secretion rate of formate, which 

would serve as another major sink for carbon, further lowering the growth rate of 

S. wolfei. Applying the crotonate uptake and acetate secretion constraints established 

from growth on crotonate by Beaty and McInerney, 1987, S. wolfei growth aligned 

closely with published studies. Crotonate is a four carbon short chain acid that is 

activated to Crotonoyl-CoA, where it is integrated into the butyrate metabolism 

pathway. (Sieber et al, 2010) The application of these constraints was made based on 

the assumption that crotonate and butyrate would likely be metabolized at similar 

rates, as they enter the metabolism of S. wolfei in nearly identical positions (Figure 

5.6). By applying the values associated with the crotonate uptake and acetate 

production rates from pure cultures of S. wolfei grown on crotonate to the model, the 

S. wolfei growth fell by 68.9 percent from 0.0721 h-1 to 0.0224 h-1, which was more 

closely aligned to its literature expected growth rate of 0.012 h-1. The S. wolfei growth 

rate decreased due to an increase in the overall net carbon secreted as acetate. 

5.6.1 Growth Dynamics of Modified Model Through Descriptive-OptCom 

Upon updating the uptake and production constraints of S. wolfei, growth 

dynamics and optimality levels were examined using descriptive-OptCom (Figures 

5.8 and 5.9). While the maximum growth of the community biomass slightly 

decreased from 0.5 to 0.45 h-1 at 10 percent methanogens, the growth of each 

individual species included in the pure culture anaerobic digester GEM were closer to 

their literature expected values, with the only outlier being growth of M. barkeri. The 

0.05 h-1 reduction of overall community biomass growth rate can be solely attributed 

to the decrease in growth by S. wolfei, which had a 0.05 h-1 decrease in growth due to 

the newly applied constraints (Figure 5.8). 

!
 



 

   

   

    

    

   

  

    

   

   

   

 

 
    

   

 

    

 

 

 

 

 

 

! 
84 

M. barkeri had an elevated growth rate compared to its literature derived 

growth rate after 5 percent total methanogens due to the increased acetate uptake rate 

of 12.8 mmol acetate/gDW-hr, twice the literature value. Figure 5.8 and Figure 5.9 

suggest that the activity of M. barkeri is the rate limiting step of the pure culture 

anaerobic digester, with S. wolfei contributing very little to the overall metabolism of 

the community. The lack of influence by S. wolfei on the community was determined 

through the analysis of the flux distribution calculated by OptCom. Due to the low 

literature derived limits of butyrate uptake and acetate production by S. wolfei, a 

maximum of 15 percent of all acetate consumed by M. barkeri is derived from the 

production of acetate by S. wolfei. 
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Figure 5.8: Community specific growth rate as a function of percent methanogens
 

with updated S. wolfei metabolism constraints and doubled M. barkeri acetate uptake
 

constraints
 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri
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Figure 5.9: Optimality levels as a function of percent methanogens with updated 

S. wolfei metabolism constraints and doubled M. barkeri acetate uptake constraints 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri 

5.6.2 Methane Validation of Modified Model Through Descriptive-OptCom 

Similar to the previous simulations conducted, the mmol methane produced 

per mmol of glucose consume remained below literature data at percentages where 

the methanogens were less than 25 percent (Figure 5.10). The methane production 

yield fell in the range of literature rates from 25 to 60 percent methanogens. The 

methane production rate begins to plateau when methanogens comprise 50 percent of 

the digester community, as M. barkeri’s acetate uptake limit is reached, even though 

it was set at twice the expected literature value. The fact that M. barkeri can reach its 
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new acetate uptake limit that was twice the literature limit reinforces the idea that 

C. acetobutylicum’s metabolism dominates the pure culture anaerobic digester. 

While literature data suggests that methanogens contribute between 2 and 30 

percent of overall biomass in an anaerobic digester, a wider variety of methanogens 

are typically found in real world anaerobic digesters, which may increase the methane 

production rate of the digester community. (Reyes et al, 2015) Although M. barkeri is 

capable of metabolizing a wide range of single carbon substrates, many methanogenic 

specialist which degrade a single compound, such as acetate or hydrogen, also 

comprise a large percentage of the methanogenic population. (Reyes et al, 2015) Due 

to M. barkeri’s inability to completely metabolize the available metabolic byproducts, 

the methane yields remains low. Through the addition of other acetate, carbon 

dioxide, hydrogen, and formate degrading methanogens, the methane yield should 

increase so that it correlates more closely with literature supported methane yields. 

Methane Validation 
3.5os

e 

2.5 

3

m
ol

 G
lu

c

Model Methane 
Yield 

2m Lower Literature 

0.5 

1 

1.5

m
m

ol
 M

et
ha

ne
 / Limit(1) 

 Literature 
Limit(2) 
Theoretical 

0 Limit(3) 

0 20 40 60 
Percent Methanogens 

Figure 5.10: Methane yield versus percent methanogens with updated S. wolfei 

metabolism constraints and doubled M. barkeri acetate uptake constraints 
1(Czerkawski, 2013); 2(Kalyuzhnyi & Davlyatshina, 1997a); 3(Richards et al, 1991) 
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5.7 Effect of Acetate Uptake Rate Through Descriptive-OptCom 

Methanogens are a diverse group of Archaea, with many species that 

specialize in growth on single substrates, such as acetoclastic methanogens and 

hydrogenotrophic methanogens. While M. barkeri was selected due to its range of 

available substrates, it is unlikely that a single species of methanogens would 

accurately represent a set of sensitive and diverse microorganisms. While the acetate 

uptake of M. barkeri was originally set to the literature constraints of 6.4 mmol 

acetate/g DW-hr, the acetate uptake in a real world anaerobic digester would likely be 

increased due to the diverse consortia of microorganisms involved. (Gonnerman et al, 

2013) As suggested in Figures 5.3, 5.5, 5.10, the acetate uptake limit remains the rate-

limiting reaction of the pure-culture anaerobic digester, limiting the growth of M. 

barkeri. Although M. barkeri remained above its literature determined growth rate of 

0.025 h-1 throughout each simulation, the methanogen acetate uptake rate was varied 

to examine the effect of removing the rate limiting step of the pure culture anaerobic 

digester GEM. 

The methane production flux of M. barkeri increased as the acetate uptake 

rate increased due to the increased amount of carbon entering M. barkeri (Figure 

5.11). At the original literature acetate uptake rate of 6.4 mmol acetate/g DW-hr, the 

methane production rate quickly plateaus as the methanogenic population increases 

before the model produces a zero growth rate. (Gonnerman et al, 2013) As the acetate 

rate is increased to 12.8 mmol acetate/g DW-hr, the methane flux increases before 

plateauing due to the defined acetate uptake limit. When the acetate uptake rate is 

unconstrained, the methane production flux drastically increases before beginning to 

plateau. The plateau when acetate uptake is unconstrained is likely due to internal 

constraints of required growth cofactors and maintenance energy requirements. 
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Figure 5.11: Methane flux as acetate uptake is increased 

5.7.1 Population Dynamics With Acetate Unconstrained 

Removing the limits of the acetate growth rate did not greatly impact overall 

biomass growth of the total community when compared to the total community 

growth when the acetate uptake limit was set to double the literature value (Figures 

5.12 and 5.13). However, the removal of the acetate uptake limits did significantly 

impact the growth rate of M. barkeri. With the acetate uptake rate constrained at 12.8 

mmol acetate /gDW-hr, the M. barkeri specific growth rate plateaued at 0.072 h-1 

(Figure 5.8). But, when the acetate uptake flux was unconstrained, the M. barkeri 

specific growth rate increased to 0.146 h-1 before plateauing (Figure 5.12). The 

growth plateau with the acetate uptake rate unconstrained is a function of the internal 

constraints of the organism, likely related to the uptake of required growth co-factors 

and various limits places on the ATP maintenance energy requirements. 

The optimality levels of each organism under unconstrained acetate uptake 

rate conditions (Figure 5.13) closely followed the optimality levels seen under an 

acetate uptake constraint of 12.8 mmol acetate/gDW-hr (Figure 5.9). The exception is 
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the increased optimality level of M. barkeri and higher total percent methanogens 

observed when the acetate rate is unconstrained. This follows closely with the growth 

data seen in Figure 5.12, as the increase in acetate uptake only truly benefits 

M. barkeri. 
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Figure 5.12: Community biomass growth with unconstrained acetate uptake as a
 

function of percent methanogens
 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri
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Figure 5.13: Optimality levels of a pure culture anaerobic GEM with acetate
 

unconstrained as a function of the percent methanogens
 

CAB: C. acetobutylicum; SWO: S. wolfei; MBA; M. barkeri
 

5.7.2 Methane Validation of the Modified GEM 

The methane production yield, modeled through descriptive-OptCom, closely 

followed the methane production when the acetate uptake rate was constrained to 

12.8 mmol acetate/gDW-hr (Figures 5.14 and 5.10). While methane yields began to 

level off at 50 percent methanogens when the acetate uptake rate was constrained to 

12.8 mmol acetate/gDW-hr, the methane yield continued to increase exponentially 

when the acetate uptake rate was unconstrained and did not reach a plateau. 

Additionally, the methane production yield also increased past the theoretical 

methane production yield of 3 mmol methane per mmol glucose when the acetate 

uptake was unconstrained. (Richards et al, 1991) This increase in the methane 

production yield beyond the theoretical methane yield is likely due to the acidogen 

producing large amounts of acetate at the expense of its growth. This resultins in an 
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increase in acetate uptake by the methanogen, which is ultimately removed from the 

system as methane as the methanogen’s growth rate begins to level off. 

 
Figure 5.14: Methane yield with acetate unconstrained as a function of percent 

methanogens 
1(Czerkawski, 2013); 2(Kalyuzhnyi & Davlyatshina, 1997a); 3(Richards et al, 1991) 

 

5.8 Comparison of the Pure Culture Anaerobic Digester GEM to a Real 
World Anaerobic Digester  

 

Using data supplied by the Gresham Wastewater Treatment Plant (Gresham, 

Oregon), the mmol of methane per mmol glucose yield was calculated. Assuming a 

conversion factor of 1.42 mg COD per mg of volatile suspended solids, 1.07 mg COD 

per mg glucose, 1016 milliliters of cells per milliliter of anaerobic digestate, and that 

methane accounts for 70% of biogas formed, the methane yield was calculated to be 

14.5 mmol methane per mmol glucose (Tables 5.1 and 5.2). (Grady et al, 2011) This 

methane yield falls above the batch scale digestion of glucose value of 2.3 and the 

theoretical maximum yield of 3 due to the incorporation of fats, oils, and greases 

(FOG) and other high strength wastes at the Gresham Wastewater Treatment Plant. 

(Kalyuzhnyi & Davlyatshina, 1997a; Richards et al, 1991) The Gresham Wastewater 
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Treatment Plant produced an elevated methane yield due to the high loading rates and 

volatile solids destruction rates they are able to achieve through the addition of FOG.  

Theoretically, a typical real world digester produces 4.485 to 6.788 mmol 

methane per mmol glucose. (Metcalf & Eddy, 2003), This theoretical methane yield 

is likely greater than the methane yields observed during the anaerobic digestion of 

glucose in batch anaerobic digesters is due to the complexity and variety of the 

influent wastes. Primary and secondary sludge is a relatively complex waste, which is 

typically a mixture of carbohydrates, fats, and proteins which are reduced down to 

simple sugars, VFAs, and amino acids, respectively. An increase in the diversity of 

substrates allows for the wide array of microorganisms in an anaerobic digester to 

produce a greater amount of single carbon compounds used by the methanogens. 

Additionally, the methane yields were derived from the batch anaerobic digestion of 

glucose, as opposed to a continuous stirred tank reactor commonly using in real world 

anaerobic digesters, which may alter the activity of the microbial community. Batch 

scale digesters may not capture the activity of real world digesters because they are 

only loaded once at the beginning of the experiment, which may overload or 

underload the microbial community with a substrate, potentially inhibiting or starving 

the microorganisms. (Metcalf & Eddy, 2003) 

Applying the real world anaerobic digestion glucose loading rates to the pure 

culture anaerobic digester GEM produced methane yields that were much less than 

the expected methane yields of real world anaerobic digesters (Figure 5.15). The 

disparity between the results may be a result of the effective glucose loading rate, 

which is orders of magnitude lower in real world digesters than the pure culture 

anaerobic digester GEM glucose loading rate of 10. The difference between the 

effective glucose loading rates may be derived from the difference of culturing 

organisms in pure culture versus an active full-scale anaerobic digester. Additionally, 

the conversion of the volatile solids loading rate of an anaerobic digester to glucose 

loading rate involves the assumption that all VS can be effectively converted to 

glucose. 
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Table 5.1: Glucose loading rates of real world anaerobic digesters. 

Source  

Metcalf & Eddy Design Parameters Gresham, 
Oregon 

Anaerobic 
Digestion 

Lower limit Upper Limit 

Glucose Uptake             
(mmol 

Glucose/gDW/hr) 
2.12E-07 1.06E-06 7.97E-07 

 

 

A methane yield curve was created by varying the glucose loading rate in 

descriptive-OptCom while holding the percent methanogens constant at 15 percent 

(Figure 5.15). 15 percent methanogens was selected as it in the middle of the reported 

range of methanogens. (Reyes et al, 2015) To linearize the data, the log was taken of 

both the methane yield and the glucose loading rate. A linear fit was applied a 

generate a line with a R squared value of 0.9802 (Figure 5.16). Utilizing the data from 

a real world anaerobic digester, the methane yields were estimated based on the 

calculated glucose loading rate of the anaerobic digester (Table 5.2). 

According to Metcalf & Eddy, 2003, methane yields as, mmol methane per 

mmol glucose, are estimated to range 4.49 to 6.79. The fitted data yields a slight 

underestimate due to limitations within the model when operating at very low glucose 

loading rates. The pure culture anaerobic digester GEM is comprised of three GEMs, 

which all have unique constraints. Each model has various internal constraints related 

to ATP yield or growth co-factor uptake. Decreasing the glucose loading rate far 

below a typical value that each cell would see when grown in pure culture during 

exponential growth, results in an infeasible solution as calculated by the model. As a 

result, the data at low glucose loading rates is sparse which leads to errors in the fitted 

model yields and an underestimated methane yield. 
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Table 5.2: Calculated glucose loading rates and predicted methane yields 

Glucose 

Loading Rate  

Model Predicted Methane 

Yield  
Actual Methane Yield  

(mmol/gDW-

hr) 

(mmol Methane / mmol 

Glucose) 

(mmol Methane / mmol 

Glucose) 

0.000000212a 4.22 6.79 

0.000000797b 3.87 14.5 

0.00000106a 3.79 4.49 
a Lower and upper limits of anaerobic digestion loading (Metcalf & Eddy, 2003) 

b Data from an anaerobic co-digester, digesting high strength wastes. 

 

 
Figure 5.15: Methane yield as a function of the glucose loading rate at 15 percent 

methanogens 
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Figure 5.16: Linearized methane yield as a function of glucose loading rate at 15 

percent methanogens 

 

Applying the real world and theoretical anaerobic digester data to simulations 

of a pure culture anaerobic digester through the application of descriptive-OptCom 

produced methane yields that fell below real world methane yields. While the 

microorganisms selected in our anaerobic digester were selected due do their 

appearance in anaerobic digester sequences and apparent substrate connectivity, 

anaerobic digesters feature a large and diverse array of microorganisms. A greater 

diversity of microorganisms may allow specific organisms to metabolize the 

substrates that produce the most efficient biomass growth. Additionally, detailed data 

relating to the population diversity and operating parameters from real world 

anaerobic digesters would increase the number of data points to accurately constrain 

and validate the pure culture anaerobic digester GEM.    
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5.9 Pure Culture Anaerobic Digester Conclusions 

 

Due to limited literature data available, validation of the individual and 

combined models was difficult to achieve. While each of the organisms selected for 

the pure culture anaerobic digester are commonly found in an anaerobic digester, no 

studies were conducted that cultured each of the organisms together. Culturing a tri-

culture anaerobic digester and analyzing the resulting flux distribution, growth rates, 

and population dynamics would allow for the accurate validation of each organism, as 

well as provide additional constrains for the models included. While literature growth 

data exists for each organism, the growth studies were often conducted in pure 

culture, and may not fully represent the capability of each organism.  

The methanogen selected for the pure culture anaerobic digester was chosen 

due to its capability to utilize a wide array of substrates. However, many 

methanogens are often only capable of using a limited range of substrates, or even 

only a single substrate. The inclusion of a greater array of methanogens may yield 

more accurate results, as a wide variety of methanogenic organisms are typically 

found in anaerobic digesters. (Reyes et al, 2015; Gerardi 2003) 

While the constructed pure culture anaerobic digester GEM is limited by 

scarce data, the model represents the first community level GEM constructed for an 

anaerobic digester. The pure culture anaerobic digester GEM presents a high-

resolution platform for the in silico analysis of an anaerobic digester. Through the 

application of OptCom and descriptive-OptCom, community dynamics and the flux 

distribution through an entire anaerobic digester can be examined. Additionally, as 

more manually curated GEMs become available, they can be quickly included in the 

pure culture anaerobic digester GEM, increasing the real world significance and 

applicability of the developed platform. 
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CHAPTER 6 

CONCLUSIONS 

 

 

6.1 iTK530 and Pure Culture Anaerobic Digester GEM Conclusions 

 

Anaerobic digestion presents a unique opportunity for the sustainable 

treatment of wastewater and for the generation of a renewable energy source. 

Although many anaerobic digesters do not currently produce enough biogas suitable 

for economic recovery, a growing number of anaerobic digesters are able to produce 

sufficient quantities of biogas to reduce or completely offset the wastewater treatment 

plants energy consumption. Through the continued research and optimization of 

anaerobic digestion, wastewater treatment plants could see a significant reduction in 

net energy consumption or the addition of new sources of income through providing 

energy back to the electrical grid. 

While there have been numerous attempts to model the anaerobic digestion 

process, current models approach the system at a macroscopic level. To address the 

limits presented by current in silico anaerobic digestion models, genome scale 

modeling was applied to the anaerobic digestion process. The application of genome-

scale modeling presents a high-resolution platform for in silico analysis. Through the 

manual curation of a pure culture anaerobic digester GEM, population dynamics and 

operating parameters can be critically examined. The pure culture anaerobic digester 

GEM presented represents the first GEM constructed of an anaerobic digester. To 

complete the pure culture anaerobic digester GEM, a novel GEM for S. wolfei was 

constructed and validated.  

Through the application of OptCom and descriptive-OptCom, the pure culture 

anaerobic digest GEM was analyzed. Through OptCom, the system was dominated 

by the acidogenic bacteria C. acetobutlyicum, while the methanogen M. barkeri only 

comprised 5.7 percent of the total community biomass. At a lower percent of total 
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methanogens, the methane yield fell below literature expected values, as the 

methanogens could not keep pace with the rapid growing acidogen. 

Through the application of descriptive-OptCom, the total percent of 

methanogens was varied to examine the effects of methanogenic population on 

digester activity. Through the additional constraint of the S. wolfei GEM, the model 

produced methane yields that fell within the literature expected range when the 

methanogenic population comprised 20 to 40 percent of the total biomass and the 

glucose loading rate was set to 10 mmol/g DW-hr. Although the application of the 

pure culture anaerobic digester GEM did not accurately match data from real world 

anaerobic digesters, the construction of the pure culture anaerobic digester presents a 

unique opportunity for the continued exploration of the anaerobic digestion process. 

Anaerobic digestion is a complex process that may not be accurately 

represented by three model microorganisms. Through the expansion of the pure 

culture anaerobic digester platform developed, anaerobic digestion can be continued 

to be analyzed and optimized. As more species are included in the pure culture 

anaerobic digester GEM, a high-resolution model will be developed that may be used 

by wastewater treatment plant operators to optimally control an anaerobic digester for 

by researchers for the continued exploration and elucidation of the anaerobic 

digestion process.  

 

6.2 Future Work 

 

Future work is needed to further optimize and explore both the S. wolfei GEM 

and the pure culture anaerobic digester GEM. To increase the validity of the S. wolfei 

GEM, in depth studies of the biomass composition and substrate uptake and secretion 

rates are required. In addition to the pure culture analysis of S. wolfei, further 

experiments need to be conducted that utilize S. wolfei with additional syntrophic 

partners to elucidate the interaction between multiple species.  
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To improve upon the pure culture anaerobic digester GEM, each organism 

included in the GEM needs to be culture separately and together. While data for each 

organism grown in pure culture was relatively abundant, no experiments have been 

conducted that examine how the three species included would function and interact 

together. In addition to the further understanding of the original three organisms 

included in the pure culture anaerobic digester GEM, additional species need to be 

included in the pure culture anaerobic digester to increase its applicability to real 

world anaerobic digesters. Increasing the diversity of acidogens in the model would 

allow the GEM to metabolize a greater range of substrates. Additional acetogens are 

required to further understand the role that fatty acid oxidizers play in anaerobic 

digestion. Increasing the number of methanogenic species will vastly improve the 

applicability of the model, as numerous methanogens species specialize in the 

degradation of a single substrate.    
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Table A.1: Errors introduced during from genome annotations during automated 
GEM reconstruction (adopted from Feist et al, 2008) 

 
Problem  Description  Methods  

Genome annotations  

Annotations 
are not 
continuously 
updated with 
new 
information  

As new genes are found, older genome 
annotations are not updated, resulting in 
incorrectly annotated genes. For example, in 
most databases, slr0788 in Synechocystis spp. 
is annotated as a pre-B-cell enhancing factor 
(a mammalian function assigned to a 
bacterial gene), but in SEED21, is correctly 
annotated as nicotinamide 
phosphoribosyltransferase.  

Automated annotation 
pipelines can be used 
to reanalyse older 
genome annotations.  

Incorrect 
annotations  

Incorrect annotations can be due to either 
missing genes (from sequencing or gene-
finding algorithm errors) or incorrect gene 
annotations. This can occur for a number of 
reasons. For example, when new sequences 
are not used to update older genome 
annotations or when weak homology is used 
as sole evidence for functional assignment.  

Analysis of 
reconstructed 
networks can help 
identify some of these 
errors.  

Missing 
functionalities  

Approximately 30% of enzyme activities 
with enzyme commission numbers lack 
sequence data118.Therefore, not all reactions 
will be associated with gene or protein 
sequences. For example, in 2005, the 6-
phosphogluconlactonase gene (pgl) in 
Escherichia coli was discovered119. Prior to 
this, there was no pgl gene in the genome 
annotation even though the enzymatic 
activity was observed in cell extracts.  

Automated tools have 
been developed to 
find missing reactions 
(for example, 
SMILEY algorithm, 
GapFind (or GapFill) 
PathoLogic114 and 
topology-based 
methods).  

Transporter 
specificity  

Annotations for transporters often lack 
sufficient detail to determine what substrate 
(or substrates) they transport, even though 
the mechanism (for example, proton symport 
or ATP hydrolysis) is known.  

Methods for 
improving transporter 
functional annotations 
are needed.  
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Table A.2: Errors introduced from databases during automated GEM reconstruction 
(adopted from Feist et al, 2008) 

Problem  Description  Methods  
Databases  

Gene-protein- 
reaction (GPR) 
associations  

Relationships between genes, enzymes and 
reactions are not always clearly defined (for 
example, subunits compared with isozymes).  

Can be automated 
based on comparisons 
of sequences and 
known GPRs.  

Reaction 
specificity  

Reactions are often characterized through 
their actions on a general class of compounds, 
which can result in ambiguous connections in 
a network. Common general classes include 
electron carriers (for example, quinones, NAD 
compared with NADP) and alcohols (for 
example, ethanol and methanol compared 
with butanol).  

Changes in databases 
are needed or 
automated tools need 
to be developed.  

Reaction 
imbalances  

Reactions are not elementally balanced for H, 
C, P, N, O or S. This means that substrates 
and products are missing from imbalanced 
reactions. For example, analysis of the KEGG 
database in 2004 found that only 51% of the 
reactions were balanced for C, P, N, O, H and 
S.  

Automated 
procedures are 
available to check 
elemental reaction 
balancing.  

Reaction 
directionality  

Reactions are generally defined as reversible. 
This can be a problem; for example, if cycles 
between reactions allow the free conversion 
of ADP into ATP (free-energy equivalents).  

Automated 
procedures have been 
developed.  

Compound 
protonation 
states  

Reactions are generally written for the neutral 
form of molecules and do not account for the 
protonation state of compounds (for example, 
carboxylic acid groups are deprotonated at pH 
7). This affects the stoichiometric coefficients 
for protons across the network.  

pKa prediction 
software is available, 
and therefore 
automation is 
possible.  

Coenzyme 
availability  

Enzymes often need coenzymes (for example, 
pyridoxal 5-phosphate, vitamin B12 and 
biotin). For enzymes to be functional, the cell 
must be able to produce them or get them 
from the environment. BRENDA contains this 
type of information, and is available for 
download.  

Automation is 
possible now that 
data are becoming 
available.  

Organism-
specific 
pathways  

The cell membrane (or membranes) is 
composed of macromolecules (for example, 
phospholipids and peptidoglycans) that can 
vary across organisms and species. As a 
result, the biosynthesis pathways for these 
compounds are often unique.  

Would require 
experimental data and 
is therefore unlikely 
to become subject to 
automation.  




