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Abstract—Identifying coherent sub-graphs in networks is im-
portant in many applications. In power systems, large systems
are divided into areas and zones to aid in planning and control
applications. But not every partitioning is equally good for
all applications; different applications have different goals, or
attributes, against which solutions should be evaluated. This
paper presents a hybrid method that combines a conventional
graph partitioning algorithm with an evolutionary algorithm to

partition a power network to optimize a multi-attribute objective
function based on electrical distances, cluster sizes, the number
of clusters, and cluster connectedness. Results for the IEEE RTS-
96 show that clusters produced by this method can be used to
identify buses with dynamically coherent voltage angles, without
the need for dynamic simulation. Application of the method to the
IEEE 118 bus and a 2383 bus case indicates that when a network
is well partitioned into zones, intra-zone transactions have less
impact on power flows outside of the zone; i.e., good partitioning
reduces loop flows. This property is particularly useful for power
system applications where ensuring deliverability is important,
such as transmission planning or determination of synchronous
reserve zones.

Index Terms—Network clustering, power network partitioning,
evolutionary algorithms, electrical distance.

I. INTRODUCTION

T
HE electric power infrastructure of the United States and

Canada is divided into four synchronous interconnec-

tions. Each of these is subsequently partitioned into Regional

Transmission Organizations (RTO) or Balancing Authorities

(BA). Balancing areas are frequently sub-divided into zones

for particular planning or control applications. These divi-

sions are used to reduce the computational and administrative

complexity associated with many planning and operations

applications. In most regions operational security analysis, re-

source adequacy assessments, zonal pricing, zone-based volt-

age control schemes, Area Control Error (ACE) calculations,

reserves scheduling, and capacity obligation determinations all

use areas or zones in one form or another. Some of these
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applications are reviewed in [1]–[4]. In some regions (PJM, for

example), the existing zonal boundaries result from historical

asset ownership, rather than the physical properties of the

network. This simplifies the network partitioning problem,

but raises questions regarding the quality of the planning,

operational and reliability applications that make use of zones.

The partitioning of data and networks has a long history in

the scientific literature. Kron and Happ [5]–[7] pioneered the

study of diakoptics, or ‘tearing’ to reduce the computational

requirements associated with analyzing large-scale systems.

The clustering of data enables a variety of applications in

statistics and artificial neural networks [8], [9]. Partitioning

methods can also be used to reveal complex community

structures in large-scale networks [10], [11].

Several approaches have been proposed for dividing power

networks into clusters. Clustering methods have been used

to define control areas for reactive power markets or zones

for voltage security assessment [12]–[14]. Kamwa et al. [15],

[16] employed clustering methods to evaluate the dynamic

vulnerability of a real system (Hydro-Quèbec). Several studies

used simulation methods to divide a power network, such as

the slow coherency approach [17] or disturbance simulation

approaches [15], [18], [19]. Li et al. [20] developed a hier-

archical clustering method that takes into account the active

and reactive power mismatch between areas. Recent studies

have also shown that network partitioning can facilitate the

integration of renewable sources [21], [22].

This paper describes an alternative approach, which defines

zones within a power system as collections of buses such that

buses within a zone are strongly connected and buses between

zones are weakly connected. Strongly-connected buses could

be treated as aggregated single buses for purposes of power

system analysis. We formalize this notion of strong and weak

connections using an electrical distance measure that relates

network topology to active-power sensitivities, and use this

measure in a multi-attribute network partitioning problem that

seeks to minimize distances between nodes within a zone,

and maximize distances between nodes in different zones. Our

electrical distance measure is primarily based on information

found in the system admittance (YBUS) matrix, thus avoiding

the need for extensive use of simulation data. We derive a

proper electrical distance measure from information contained

in the YBUS matrix. Our definition of electrical distance and

our multi-attribute partitioning approach are likely to be useful

for a number of network analysis and security applications

where identifying closely-tied buses is advantageous, including

identification of locational load-shedding to maintain secu-
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rity; wide-area monitoring problems such as synchrophasor

placement; and the definition of reserve requirements (such

as installed capacity or reactive reserve). The properties of

our multi-attribute network partitions would also be useful

for applications where ensuring deliverability is important,

including transmission planning and reserves scheduling. One

feature of our approach to clustering power networks is that the

zonal definitions are dependent on the network topology and

not on specific operating points. This has potential advantages

(in making the clustering method useful in a variety of appli-

cations) but also has its limits - since the electrical distance

measure is a function of network topology, our approach

is probably not well-suited for applications where system

dynamics are important.

This work improves substantially upon preliminary work

by the authors [4] by using an improved measure of electrical

distance (based on work in [23]), an improved representation

of solutions for the evolutionary computational algorithm, a re-

vised fitness function that considers both within- and between-

cluster distances, and results showing that good partitioning

results reduce extra-zonal power flows.

The remainder of this paper is organized as follows. Sec-

tion II illustrates how to apply the concept of electrical

distance to a power system clustering problem. Section III de-

scribes the individual metrics that compose the multi-attribute

optimization function. Section IV details the evolutionary

computational algorithm (EA) that we use in this work and

Sec. V summarizes the results obtained for two example power

networks. Finally, Sec. VI provides conclusions from this

work.

II. MEASURING ELECTRICAL DISTANCE

The general graph partitioning problem can be stated as

follows. Given a graph with n vertices V (|V | = n), a set

of edges linking V and some measure of distance between

all pairs of vertices d(a, b), ∀(a, b) ∈ V , find a way to divide

V into approximately p groups {M1,M2, ...,Mp} (Mi ⊂ V ,

Mi∩Mj = ∅), such that the distances between the groups are

maximized and the distances within the groups are minimized.

Different methods measure distances differently, or put more

relative emphasis on these two objectives, but all algorithms

use distances in some form or another. In some methods

(e.g., spectral clustering [24]), distances are inferred from the

network topology. In others (e.g., K-means) distances are used

explicitly.

In this paper we explicitly evaluate the quality of solutions

using electrical distances. While electrical distances have been

used in a number of power systems problems [12], [13], [25],

[26], only in [25] (and our own previous work [4]) were they

explicitly used for network partitioning. Lagonotte et al. [25]

showed that the logarithmic voltage magnitude sensitivity in

a power grid can function as a proper distance metric1, under

some conditions.

1To qualify as a formal distance metric, each distance d(a, b) must be non-
negative, all self distances d(a, a) must be zero, and any combination of three
distances must satisfy the triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).

The distance metric used in this paper captures the marginal

impact of active-power transactions between nodes in a net-

work on voltage phase-angle (θ) differences between the

nodes. Specifically, our electrical distance metric ea,b estimates

the incremental change in phase angles that would result from

an incremental increase in active power flow from bus a to

bus b. This is done by computing the “resistance distance”

matrix [27] from the quadrant of the power flow Jacobian

corresponding to real power injections and voltage phase

angles (JPθ). If we assume that voltages are held nearly

constant by reactive power resources throughout a network

(∆V = 0), then the incremental change in nodal power

injections is given by:

∆P = JPθ∆θ.

Assuming that all branches in the network are symmetric (i.e.,

with nominal tap-changers and phase shifters), and neglecting

shunt capacitance in transmission lines, JPθ functions as a

symmetric Laplacian matrix describing the power network as

a weighted graph. Under the DC power flow assumptions JPθ

is the susceptance matrix B = ℑ(YBUS). If we let J+

Pθ be the

pseudo-inverse [28] of JPθ , then each element (ea,b) of the

electrical “reactance” distance matrix (analogous to resistance

distance) is:

ea,b = (J+

Pθ)a,a − (J+

Pθ)a,b − (J+

Pθ)b,a + (J+

Pθ)b,b, (1)

which is conveniently independent of the reference bus chosen

for the network. This results in a distance matrix (E), for

which each element ea,b measures the incremental change in

phase angle difference between nodes a and b (∆θa − ∆θb)
given an incremental active power transaction between nodes a
and b. Since, if we assume that angle differences are small and

that voltages are nominal, incremental phase angle differences

and incremental reactive power dissipation are the same, E

also provides the reactive power dissipation that would result

from orthonormal current excitations.

In [23] we found that E, thus defined, satisfies the condi-

tions for a proper distance metric so long as all series branch

reactances are non-negative, and shunt capacitances are small.

Note that this definition differs from the simpler metric used

in [4], which was based on the simple inverse of the YBUS

matrix. Since the metric in [4] did not have zeros on the

diagonal, it can not be considered a formal distance metric;

however, numerical comparisons indicated that the two metrics

are strongly correlated.

It is important to note that electrical distances differ substan-

tially from topological distances (dij , the number of branches

that must be utilized to travel a topological path between Bus

i and Bus j) in power grids. The power systems literature

contains a number of examples where statistical clustering has

been employed using topological distance metrics (e.g., [1],

[2], [29]), but topological methods will not generally produce

cohesive clusters from an electrical perspective [4]. The par-

titioning method developed in this paper, based on electrical

distance, produces zones that are electrically cohesive, reduces

loop flows (transaction leakage) between zones, and in at least

one case identifies buses with dynamically coherent voltage

angles (see Sec. V).
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III. MEASURING THE QUALITY OF PARTITIONING

SOLUTIONS

In power system applications, objectives beyond inter- and

intra-cluster cohesiveness may be important. This section

describes metrics used to evaluate partitioning solutions. The

example metrics developed here were developed for problems

such as transmission planning or zonal scheduling, but also

illustrate how our approach can be used in combination with

a variety of attributes. The first two quality metrics are based

on electrical distances, the third and fourth measures relate to

cluster sizes, and the fifth index measures connectedness. For

consistency, each index is normalized to fit within the range

[0,1] with 1 indicating highest quality.

A. Electrical Cohesiveness Index (ECI)

From the electrical distance matrix E it is straightforward to

measure the total intra-cluster distance, for a given clustering

solution C,

ê(C) =
n∑

a=1

∑

b∈Ma

eab. (2)

where Ma is the set of buses that are in the same cluster

as bus a. ê(C) ranges between zero, when all nodes are in

separate clusters, and the sum of all elements in E when

all nodes are in a single, fully-connected cluster. For most

applications, high-quality clusters will have lower electrical

distances between nodes in each cluster (and thus high intra-

cluster cohesiveness).

The Electrical Cohesiveness Index (ECI) uses ê(C) to

measure the extent to which the buses within each cluster are

electrically proximate to other cluster members, as measured

by the extent to which phase angles within a cluster will

react in concert given a change in power injections within

the cluster.

ECI = 1−
ê(C)

êmax

= 1−

∑n
a=1

∑
b∈Ma

eab∑n
a=1

∑n
b=1

eab
. (3)

Eq. (3) evaluates to one when all nodes are in separate clusters

(p = n), because every node is “perfectly” connected to every

other node in each cluster. Conversely, it evaluates to zero

when all nodes are in one cluster, reflecting the fact that

randomly chosen node pairs within very large clusters are,

on average, electrically distant from one another.

B. Between-Cluster Connectedness Index (BCCI)

ECI incorporates the within-cluster distances for a cluster-

ing solution, but does not consider the connections across

zonal boundaries. If a cluster boundary cuts through a low-

impedance connection, such as a very short transmission line

or a transformer, the effect on ECI would be insignificant.

Therefore, we use (4) to measure the strength of connections

between clusters.

h(C) =

n∑

a=1

∑

b/∈Ma

1

eab
(4)

The use of the inverse distance (1/eab) increases the contri-

bution of low-impedance connections to h. This measure is

similar to the graph “efficiency” measures proposed in [30]

and adapted for power grids in [31].

The Between-Cluster Connectedness Index (BCCI) mea-

sures the extent to which buses in different clusters are loosely

connected to one another, based on (4). Unlike ECI, BCCI

evaluates to one when all nodes are in the same cluster, be-

cause there are no cross-cluster connections. For an atomistic

solution (p = n), BCCI is zero because all nodes are strongly

connected to nodes outside of their clusters.

BCCI = 1−
h(C)

hmax

= 1−

∑n
a=1

∑
b/∈Ma

1/eab∑n
a=1

∑n
b=1
a 6=b

1/eab

(5)

In (5), the numerator, h(C), is the sum of connection strengths

between clusters, while the denominator is the maximum

possible h(C).

C. Cluster Count Index (CCI)

The Cluster Count Index (CCI) measures the proximity of

the number of clusters in a given clustering solution, p, to

a predetermined ideal number of clusters, p∗. p∗ is a user-

defined parameter, based on the assumption that the user of

the method has some preference for the number of clusters

that result. We define CCI using the shape of the log-normal

probability density function with its mode set at p∗, as follows:

CCI = e
−(ln p−ln p∗)2

2σ2 , (6)

where σ = w ln(n). This shape is desirable because it gives

CCI= 1.0 when p = p∗, and approaches zero as p → n. The

parameter w sets the width of the fitness function relative to n;

that is, w is effectively a penalty factor, with larger values for

w increasing the penalty for p being far from p∗. The results

in this paper use w = 0.05.

D. Cluster Size Index (CSI)

The Cluster Size Index (CSI) evaluates the extent to which

the cluster sizes deviate from the ideal cluster sizes of s∗ =
n/p∗. To obtain CSI we measure the size of each cluster, and

then obtain a weighted average of cluster sizes:

s̄ =

n∑

i=1

si/n (7)

where si is the size of the cluster that node i resides in. Note

that by summing over each node, rather than over each cluster,

the result is a weighted average, rather than a simple average,

of cluster sizes. As with CCI, CSI follows the shape of the

log-normal distribution with the width parameter σ = w lnn:

CSI = e−
(ln s̄−ln s∗)2

2σ2 (8)

E. Cluster Connectedness (CC)

By definition, a cluster is a set of nodes that are physically

linked to one another. All buses in a cluster, therefore, should

be reachable by traversing links within that cluster. To enforce

this definition we define Cluster Connectedness (CC) as a

binary measure that evaluates to zero when any cluster is not

fully connected, and one if all clusters are fully connected.
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F. Aggregate clustering fitness

To evaluate the aggregate quality (or fitness, f ) of a given

clustering solution, we use a multiplicative aggregate fitness

function, calculated as the weighted product of the five quality

measures above:

f = ECIα · BCCIβ · CCIγ · CSIζ · CC (9)

where {α, β, γ, ζ} ∈ [0, 1] are user-defined scalars that

define the relative importance of ECI , BCCI , CSI , CCI
respectively. Eq. (9) uses the product of the five measures

for three related reasons. First, we seek an aggregate fitness

function satisfying “preferential independence” of the five

individual quality metrics. Preferential independence is defined

by the condition ∂2f
∂a∂b 6= 0 for any two values of distinct

individual quality metrics a and b; thus any multiplicative

fitness function would satisfy preferential independence (ad-

ditive fitness metrics, for example, will not satisfy preferential

independence). Using a fitness function that does not satisfy

preferential independence may produce clustering solutions

with high total fitness, but low scores for one or more quality

metrics. Second, a multiplicative form of the fitness function

gives f = 0 whenever any cluster is not fully connected.

Third, the interaction of the five individual clustering quality

metrics prevents our evolutionary algorithm (Sec. IV) from

pre-maturely converging on trivial solutions, such as creating

clusters with only one node.

IV. A HYBRID K-MEANS/EVOLUTIONARY ALGORITHM

FOR MULTI-ATTRIBUTE NETWORK PARTITIONING

Conventional partitioning algorithms such as spectral and

K-means approaches are computationally efficient, but are

not easily adapted to produce solutions that are optimal with

respect to objectives beyond those of maximizing between-

cluster distances or minimizing within-cluster distances. This

section presents a hybrid of the K-means algorithm [32] and

an evolutionary computational algorithm (EA), which can be

used to optimize with respect to a multi-attribute objective

function. The K-means algorithm is used to generate an initial

set of candidate solutions and the EA is used to improve the

initial solutions according to the fitness function (9).

A. K-Means algorithm implementation

K-means clustering uses a top-down, or divisive, approach

that begins with a complete network, divides the network into

clusters, and finally adjusts those clusters based upon some

criteria. The aim of the K-means algorithm is to divide the n
nodes in the network into K clusters so that the within-cluster

distances are minimized [32]. The algorithm starts by ran-

domly choosing K nodes within the network as centroids for

new clusters. The remaining nodes are subsequently assigned

to the closest of the K initial centroids. The K centroids

are then relocated to the node in each cluster that minimizes

the mean distance between the centroid and other nodes with

the cluster. Each node then calculates the distance between

itself and the K points, and reassigns itself to the cluster

associated with the nearest centroid. The method iterates until

the movement of the K centroid points falls below some

minimum threshold and a stable set of clusters is obtained.

In our implementation electrical distances were used for the

distance metric, and we chose K = p∗ as the (exogenously

determined) optimal number of clusters.

B. Evolutionary algorithm implementation

Genetic algorithms, a type of evolutionary algorithm (EA),

can be very effective at solving non-convex optimization prob-

lems, particularly when solutions can be represented as strings

of numbers, and the quality of solutions can be represented

using a single objective [33]. In this paper we adapted the

standard genetic algorithm (henceforth referred to as a evo-

lutionary algorithm, EA) to the problem of finding clustering

solutions that maximize the fitness function in Eq. (9). The

following sections describe the methods used to represent

solutions in the EA, to generate the initial population of

solutions, and to implement selection, crossover and mutation.

1) Initial population: The initial populations for the EA

were produced using a combination of random clusters and

clusters generated from the K-means algorithm. Random clus-

ters were generated by selecting random nodes as cluster

centroids and iteratively expanding the clusters to encompass

neighboring nodes until each node is assigned to exactly one

cluster. Both the random and K-means initial solutions were

selected to have a CSI score greater than 0.9 in order to

produce a balanced set of initial conditions with respect to

cluster sizes. The random solutions provided the EA with

a wide variety of different solutions, whereas the K-means

solutions provided a group of good solutions to improve upon.

2) Representation of solutions: In a standard genetic al-

gorithm (a type of evolutionary algorithm) each solution is

represented as a string of (typically binary) numbers. This

string is known as the genotype, since it encodes the actual

solution (the phenotype) into an abstract representation. In

our clustering EA, each solution is represented as a string

of ng = n integers (g = [g1 . . . gn]), where n is the number

of nodes in the network (see Fig. 1). In this representation,

each gi is an index between 0 and the number of topological

neighbors for Node i (mi, which is equivalent to the number of

buses adjacent to Bus i). When gi = 1, Node i is located in the

same cluster as its first neighbor; when gi = 2, it is located in

the same cluster as its second topological neighbor; etc. When

gi = 0, Node i is not necessarily placed in the same cluster

as any other node, however it may end up clustered with one

or more of its neighbors (e.g., Node k with connection gk)

if gk indicates a connection to Node i. Every solution within

the bounds 0 ≤ gi ≤ mi ∀i is a valid solution to the cluster

problem (with a CC score of 1, Sec. III-E). A change to a

single byte can divide a cluster into two clusters, or merge it

with a neighboring cluster. This flexibility increases the power

of mutation and crossover operations, which are the primary

methods for search in a genetic algorithm (see Sec. IV-B3).

In order to evaluate the benefits of encoding the solutions

with the integer genotype described above, we designed an

experiment that compares the integer approach with the binary

representation that was used in [4]. The binary genotype
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Figure 1. Illustration of three solutions (phenotypes) to a four-node clustering
problem, using the integer genotype described in Sec. IV-B2. Each byte gi in
the genotype indicates which of Node i’s neighbors are in the same cluster
as Node i. Each Node numbers its neighbors sequentially, such that in the
above, Node 1’s first neighbor (gi = 1) is Node 2 and its second neighbor
(gi = 2) is Node 3.

consisted of a string of ng = r bits (g = [g1 . . . gr]), where r is

the number of branches in the network. For a given branch (i),
the state gi = 1 indicates that the endpoint buses for branch i
are located in the same cluster. The state gi = 0 indicates the

location of a potential boundary. The experiment consisted

of applying the clustering algorithm to the test system in

Sec. V-D with a flat start (all the initial solutions are random)

and a predetermined maximum number of generations. We

then measured the fitness of the solutions obtained when using

the binary genotype versus using the integer genotype, while

keeping the rest of parameters constant for both runs. Figure 2

illustrates the fitness evolution for both representations given

an identical set of initial solutions.

Figure 2. The fitness of the EA-produced partitioning solutions, by genera-
tion, for two alternate representation methods.

The results clearly show that the EA with the integer

representation achieves substantially better solutions in far

fewer generations. This is the case because, in the integer

representation, a smaller number of mutations are required

to produce substantially different solutions. In the binary

representation, in order to separate a given subgraph into two

subgraphs, every bit along a cut-set of that subgraph would

need to mutate from one to zero. In the integer representation

a single integer mutation can separate a subgraph into two

subgraphs. In the integer representation, distinct solutions are

thus a smaller distance from one another, which dramatically

improves the power of crossover and mutation.

3) Selection, recombination and mutation: Our EA selected

individuals to combine (crossover) and preserve between gen-

erations (elitism) based on fitness scores from (9). Parents

for crossover operations are selected using the standard tour-

nament selection method without replacement [34], [35], in

which the selection of each individual depends upon a fitness

comparison with a given number (tournament size) of other

fitness scores from different individuals. In each generation

the EA generates a set of new individuals equal to 80% of

the population through crossover. The new individuals replace

existing individuals probabilistically, using the roulette wheel

method. The crossover process is summarized as follows:

1) Select two parents using a tournament algorithm without

replacement that compares the fitness scores.

2) Choose a single random point in the genotype pair at

which both parents are split (single-point crossover).

3) Create a new individual with the vector head of one

parent and the vector tail of the second.

4) Replace an individual in the population with the new

individual, with replacement probabilities proportional

to fitness.

In addition, the top three individuals are retained without

modification at each generation (elitism). For the rest of the

population, mutation occurs at the end of each generation.

When a byte mutates it is randomly reset to an integer in

the feasible set gi,new ∈ {0, 1, . . . ,mi}. We use a mutation

probability of 1/n, so that we get approximately one mutation

per individual per generation.

C. Choosing weights for multiple objectives

The fitness function (9) uses a multiplicative form in order

to ensure that the EA penalizes solutions that have low scores

in any of the four dimensions. However, in some applications

some of the objectives are less important than others. In

order to adjust the weights in (9), we specifically tested a

variety of solutions for a specific application that requires

zones (reducing loop flows, for example, Sec. V-A), and used

multiple-regression to determine the relative importance of the

four objectives to the desired outcome. Sec. V-D discusses the

application of this approach to a relatively large system.

V. RESULTS

This section illustrates the proposed partitioning algorithm

using three different test systems, the relatively small IEEE-

RTS-96 and IEEE-118 test systems and a larger model that

represents the power grid in Poland.

A. Measuring transaction leakage (loop flow)

A common application for zonal analysis in power system

planning and operations is monitoring the impact of transac-

tions between distant locations. In transmission planning appli-

cations, for example, it is desirable that intra-zonal transactions

do not significantly affect currents, voltages or power flows

outside of the zone. In reserves scheduling, the importance

of deliverability of reserves has recently been emphasized,

i.e. reserves themselves should not face curtailment because

of transmission constraints and the dispatch of reserves should

not cause additional congestion elsewhere in the system [36].
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In this section we test the hypothesis that when zones are de-

signed to have higher BCCI and ECI scores, while controlling

for the number and size of clusters (CCI, CSI), intra-zonal

real power transactions result in less current flow changes on

branches outside of the zone. If Bz is the set of buses in

zone z, Eq. (10) provides a measure of average impact of

transactions within zone z on currents in branch m in the

network.

Tz(m) =

∑
∀a,b∈Bz

max(Im(a → b)− Im(0), 0)

|Bz |(|Bz| − 1)
(10)

where Im(0) is the current magnitude (in per unit) on branch

m before the transaction, and Im(a → b) is the (p.u.) current

on the same branch after adding an additional 1 MW (0.01

p.u.) of demand at bus b and allowing a “slack bus” at bus a
to meet this additional demand. We use the term Tz to refer

to the average Tz(m) over all branches m that are outsize

of zone z, and Tz to be the average Tz over all zones in a

given solution to the clustering problem. The currents Im(0)
and Im(a → b) were calculated using a standard Newton-

Raphson ac power flow. Transaction leakage thus measures

the average amount that currents (in per unit) change outside

of a zone, given transactions within a zone. Note that because

we averaged over a large number of branches, many of which

are far from a particular zone, and because the numbers are

expressed in per unit, the numbers are small (on the order

of 10−5 to 10−4 per unit). Because transaction leakage is in

some contexts referred to as “loop flow”, this paper uses the

two terms interchangeably.

B. Test system: IEEE-RTS-96

The IEEE reliability test system 1996 constitutes one of

the most commonly utilized benchmarks for power system

analysis [37]. It is composed by 73 buses, 120 transmission

lines and 99 generators.

To illustrate how the use of our clustering method (fitness

function and evolutionary algorithm) could improve the per-

formance of planning applications, we partition the IEEE-

RTS-96 bus test case into three zones, and compare the

quantity of transaction leakage to the fitness scores f . We

make this comparison for 100 randomly generated divisions

of the IEEE-RTS-96 case into three zones (using the random

centroid method) and the best solution that resulted from our

evolutionary algorithm. To avoid distortions that might result

from unbalanced cluster sizes, we compared only random

solutions with a CSI score of 0.9 or higher.

The results shown in Fig. 3 indicate a strong, and statisti-

cally significant, negative correlation between f and Tz (see

Fig. 3). We take this as strong evidence in support of our

hypothesis that defining network partitions with high electrical

cohesiveness reduces transaction leakage. Note that the values

of Tz computed are small, largely because the size of the

initial transaction was small (0.01 p.u.) and because the results

show an average over all transmission lines outsize of the zone

(many of which are quite far from the zone, and thus will have

very small numbers for Tz(m) from Eq. (10).

Additionally, the solution achieved by the EA (marked with

a triangle in Fig. 3) yields identical clusters to those found

0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−4

f = 0.79 · 0.52 · 1 · 1 →

f = ECI · BCCI · CCI · CSI

T
z

Figure 3. Scatter plot showing clustering quality (f ) and the amount of loop
flow (Tz) for random clustering solutions (×) and a solution generated by
the EA (△) for the IEEE-RTS-96 network and 3 clusters.

Table I
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI IN THE RTS-96 CASE.

Bk
1 T stat. P-val

intercept -12.3 -42.6 < 10−3

ECI -6.7 -3.59 < 10−3

BCCI -2.6 -2.82 < 10−2

CSI 0.5 0.33 0.74678

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) + B3 ln(CSI).

by the dynamic simulation method proposed in [15]. This

provides evidence that using electrical distances for partition-

ing can identify generators that are likely to be dynamically

coherent.

C. Test system: IEEE-118

The IEEE-118 bus test case consists of 118 buses and 186

branches and comes from a reduced model of the Midwestern

US power grid in 1962 [38]. We follow the same procedure

described in Sec. V-B to initialize the EA and obtained a 3-

cluster partition of the IEEE-118 test case that substantially

improves the multi-objective goal with respect to the random

solutions. Figure 4 and Table II further support the hypothesis

that partitions with high electrical cohesiveness reduce loop

flows.

In order to test the hypothesis that our new distance metric

from (1) better correlates with T̄z than the metric in [4], we

generated 100 random divisions of the 118 bus case into 3

clusters, and evaluated the four metrics from (9) (neglecting

CC, since all solutions had CC = 1) using the old and new

distance metrics. Linear regression was used (as in Table II)

to predict Tz from the four metrics. The model using distance

as defined in (1) had an R2 value of 0.75, vs. R2 = 0.61 for

the old distance measure. Note that the predictiveness would

further decrease if BCCI were not included in the regression,

as was the case in [4]. We interpret this as evidence supporting
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Figure 4. Scatter plot showing clustering quality (f ) and the amount of loop
flow (Tz) for random clustering solutions (×) and a solution generated by
the EA (△) for the IEEE-118 network and 3 clusters.

Table II
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI IN THE IEEE-118 CASE.

Bk
1 T stat. P-val

intercept -13.5 -52.3 < 10−3

ECI 1.01 0.6 0.5506

BCCI -6.08 -8.54 < 10−3

CSI -5.94 -4.37 < 10−3

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) +B3 ln(CSI).

the hypothesis that the new measure is superior in terms of

predicting transaction leakage.

D. Test system: Poland, case2383wp

To test this algorithm on a realistic, relatively large power

system, we use data from the Poland grid, corresponding to

a snapshot of the grid for a winter peak load profile [39].

After collapsing leaf-nodes2 (which will cluster within the

same set as their immediate upstream neighbors) the network

comprises 1733 buses and 2240 transmission lines. The fol-

lowing algorithm summarizes the application of the method

proposed in Sec. IV to this specific case and illustrates how to

manage multiple objectives, to produce partitioning solutions

for a large system.

1) Merge the leaf-nodes (nodes with exactly 1 other con-

nection) with their immediately connected neighbor.

2) Generate an initial population of random and K-means

clustering solutions for calibration. The total number of

calibration solutions in this example is 40 (20 random

+ 20 K-means).

3) Choose the fitness function coefficients according to the

relative importance of the metrics with respect to the

specific application. In this case, we fit a linear model

for Tk and decide that given the strong (anti-)correlation

with BCCI , an appropriate weighting would be f =

2Leaf-nodes are those that only have one connection.

Table III
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI FOR THE POLISH CASE (INITIAL SOLUTIONS).

Bk
1 T stat. P-val

intercept -15.8 -27.4 < 10−4

ECI 11.9 4.88 < 10−4

BCCI -7.1 -10.55 < 10−4

CSI -8.7 -6.22 < 10−4

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) + B3 ln(CSI).

ECI0.8·BCCI1·CCI1·CSI0.8 (see Table III). Because

the total number of clusters is an external constraint

usually given by a client (e.g. a regional transmission

organization), this combination of coefficients also main-

tains a strong selection preference toward CCI .

4) Generate the EA initial population. In this case we

construct an initial population of 400 individuals, com-

bining the 40 calibration solutions from Step 2 and 360
additional random solutions.

5) Run the EA. We evolved the set of solutions according

to the parameters described above and saved a set of

273 improved solutions over 6,000 generations.

6) Calculate the Pareto set of solutions from all the EA

solutions. We further refined the results by choosing

the 33 non-dominated solutions with respect to the

individual metrics (represented by triangle markers in

Fig. 5).

7) Calculate Tk on the reduced set of solutions and se-

lect a final partition that is optimal with respect to

the weighted multiple objectives. (See Fig. 5, the red-

shadowed symbols compose the Pareto optimal set from

within the full aggregate set of 73 solutions)

The top panel of Fig. 6 illustrates solution ‘a’ in Fig. 5, which

was generated from the K-means algorithm and has small

average loop flow (Tz). However, the balance of cluster sizes

(CSI) in solution ‘a’ is substantially worse than that of the EA

solution (‘b’ in Fig. 5). For a small increase in Tz , the most

fit EA solution (solution ‘b’) is optimal in a Pareto sense, and

substantially superior in terms of total fitness.

In order to compare our method with spectral clustering

approaches [40] we generated and evaluated a clustering

solution based on the Fiedler Vector [41] for this test case. The

loop flow evaluation for this solution yielded Tz = 2.26×10−5

which makes it comparable to a good K-means solution.

The overall fitness score of this solution, from Eq. (9), was

f = 0.259. While this solution is competitive with the K-

means approach, it would not qualify for the Pareto front in

Fig. 5.

VI. CONCLUSIONS

This paper presents a multi-attribute, hybrid method for

dividing a power system into electrically coherent partitions

(zones), using electrical distances. Using a K-means algorithm

in combination with an evolutionary computational algorithm

produces solutions that balance several measures of quality

(attributes). Our EA includes a novel integer representation

that allows for efficient exploration of the search space. The

method is not designed to optimize zonal partitions for a
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Figure 5. Scatter plot showing clustering quality f and the amount of loop
flow (Tz) for the Polish power grid, with p∗ = 5. The red-shadowed symbols
are Pareto optimal with respect to Tz and f . Two of these optimal solutions
{a, b} are further illustrated in Fig. 6.

Figure 6. Two partitions of the Polish power grid that are Pareto optimal
with respect to f and Tz . The fitness scores of these solutions are fa = 0.80·
0.36·1·0.92 and fb = 0.82·0.36·1·0.96 for f = ECI ·BCCI ·CCI ·CSI .

specific application. Rather, this paper presents a general

approach to the power network partitioning problem whose

solutions have demonstrably advantageous properties for some

classes of power system applications, and whose formulation

could be tailored to specific operational or planning problems.

An application of the method to the 76 bus IEEE Reliability

Test Case produced a partitioning solution that groups buses

that respond coherently to dynamic disturbances. A study of

the extent to which intra-zonal transactions impact extra-zonal

currents (loop flows) in two test cases (the IEEE 118 bus and

the Polish network), showed that clustering based on electrical

distances can reduce unwanted loop flows. This property

of our clustering solutions seems advantageous for system

security applications, such as location-specific load-shedding.

The localized (intra-cluster) response to active-power perturba-

tions also suggests that electrical-distance clustering could be

utilized in wide-area monitoring schemes, or cascading failure

analysis [42].

The general results in this paper open up opportunities

for future research on electrical-distance based partitioning

schemes for particular applications. For example, transmission

topology reconfiguration problems, such as transmission ex-

pansion planning and optimal transmission switching, are often

intractable on large power systems [43], [44]. By using zonal

definitions that minimize loop flows, the inter-zonal effects

of topology modifications are limited and topology reconfig-

uration problems may be applied to distinct zones/areas with

greater accuracy.
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