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The collective chemosensing of nonexcitable mammalian cells involves a biochemical network that

features gap junction communications and heterogeneous single cell activities. To understand the

integrated multicellular chemosensing, we study the calcium dynamics of micropatterned fibroblast

cell colonies in response to adenosine triphosphate (ATP) stimulation. We find that the cross-correlation

function between the responses of individual cells decays with topological distance as a power law for

large colonies and much faster for smaller colonies. Furthermore, the strongly correlated cell pairs tend to

form clusters and are more likely to exceed the percolation threshold. At a given topological distance, the

cross-correlations exhibit characteristics of Poisson distributions, which allows us to estimate the unitary

conductance of a single gap junction which is in good agreement with direct experimental measurements.
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Biological systems use self-organized biochemical net-
works to make decisions in response to environmental cues
and, in particular, to chemical stimuli [1]. At the single cell
level, for instance, signaling pathways that involve tens
of proteins and ribonucleic acids (RNAs) determine cell
differentiation [2] and cell cycle [3]. When intercellular
signaling is present, these pathways extend to the multi-
cellular scenario where each cell type plays distinct roles to
form subnetworks in a given regulatory circuit [4,5].
However, there is an underappreciated aspect of multi-
cellular networks: when many cells of the same type
form a colony and sense biochemical perturbations, the
single cell responses are coupled by intercellular commu-
nications, which in turn generate integrated responses that
can involve the entire population. These processes, which
we termed collective chemosensing [6], have been studied
to date mostly in prokaryotic cells [7].

Upon chemical stimulation, bacteria and eukaryotic
cells such as Dictyostelium discoideum employ intercel-
lular ‘‘quorum sensing,’’ which leads to positive feedback
between the cells and the messenger molecules [8]. This
mechanism allows the population behaviors to be charac-
terized as reaction-diffusion systems [9]. However, the
corresponding multicellular dynamics of mammalian cells
are much different [6]. In this case, the collective response
of a cell colony to chemical stimuli features heterogeneous
responses of individual cells linked by nearest-neighbor
communications. As a result, it is necessary to develop
statistical tools to understand the spatial-temporal dynam-
ics underlying the network of collective chemosensing.

In this Letter, we report the self-organized network
responses of (nonexcitable) mammalian cells to chemical
stimuli. Our experimental system consists of a high density
of fibroblast cells growing on two-dimensional substrates.
We stimulate the cell colonies using different

concentrations of adenosine triphosphate (ATP), which is
a common signaling molecule that orchestrates various
multicellular functions such as platelet aggregation [10]
and vascular tone [11]. When P2 receptors on the cell
membrane recognize ATP molecules, they release the sec-
ond messenger inositol trisphosphate (IP3), which acti-
vates ion channels of the endoplasmic reticulum calcium
stores and generates transient calcium oscillations in the
cell cytoplasm [12]. We monitor these calcium dynamics
using fluorescent indicators. At the same time, cells that are
physically in contact form gap junctions through their
membranes, which allow intercellular communication by
rapidly exchanging small molecules such as Ca2þ and
IP3 [13]. Although we use fibroblast cells as our model,
P2 receptors are expressed almost universally in mamma-
lian tissues [14]. Since similar calcium dynamics takes
place in many cell types and regulates crucial physiologi-
cal functions such as apoptosis [15] and inflammation
responses [16], our model system is representative of a
large category of biochemical signaling networks.
To explore the underlying statistical principles of col-

lective chemosensing by mammalian cells, we developed a
flow device combined with micropatterning of cells
(Fig. 1). Briefly, cleaned glass cover slips were coated
with a protein-repellent layer (interpenetrated gel of acryl-
amide and polyethylene glycol) [17]. Then we used pho-
tolithography methods and an air plasma treatment to
locally etch the protein-repellent gel [18] so that glass
cover slips were patterned with antiadhesive gel and plain
glass squares. In the last step we grafted proteins (gelatin)
onto the plain glass patches. The treated cover slips were
then sealed with polydimethylsiloxane (PDMS) channels
using plasma bonding [Fig. 1(a)].
NIH 3T3 fibroblast cells were trypsinized and suspended

in growth medium (Dulbecco’s modified Eagle medium
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supplemented with 10% calf bovine serum and 1% peni-
cillin, ATCC) before injecting into flow channels. The
filled channels were incubated at 37 �C and 5% CO2 for
24 h and then washed with growth medium to remove
nonadhering cells. These steps left the cells that
were growing on gelatin-coated patches to form high den-
sity (�1000 cells=mm2) colonies of desired geometry,
including square patches, which we will refer to by their
edge dimensions (100–300 �m), and continuous sheets
covering the whole surface. After washing, we loaded
calcium indicators (Fluo-4, Invitrogen) into the cells and
mounted the devices on an inverted microscope (Leica
SP5 confocal) for fluorescent imaging at 1 frame per sec
with a 20� oil immersion objective (numerical aperture ¼
0:7) [19].

ATP solutions of concentrations from 10 to 100 �M
were delivered by a syringe pump at a flow rate of
60 �L=min. The flow rate was chosen to deliver ATP
across the field of view within 2 sec while minimizing
the flow perturbation to the cells. Cell locations were
manually identified and homemade MATLAB image pro-
cessing programs were used to obtain the response
curves fRiðtÞg of individual cells’ average fluorescent in-
tensity, which represent the calcium dynamics at the single
cell level [Fig. 1(b)]. We note that there were small tran-
sient calcium elevations due to switching on the flow,

which relaxed quickly before the ATP arrived. We remove
this section of the response curves in our analysis [6].
Figures 1(c) and 1(d) show typical calcium images of a
continuous cell sheet and an array of square cell patches.
To quantify the statistical properties of the collective

chemoresponse, we first define the topological distance D
by Delaunay triangulation [Fig. 2(a)] such that nearest-
neighbor cells have topological distancesD ¼ 1. This defi-
nition reflects the nature of intercellular communication
and the large variations in the cell shapes [20]. For each
pair of cells i and j with response curves RiðtÞ and RjðtÞ,
we can calculate their dimensionless cross-correlation Cij:

Cij ¼
R
T
0

_RiðtÞ _RjðtÞdtffiffiffiffiffiffiffiffiffiffiffi
�i�j

p ; where �i ¼
Z T

0

_RiðtÞ2dt; (1)

here, _RiðtÞ ¼ dRiðtÞ
dt is independent of the basal level fluores-

cence and T typically span 700 frames [21]. Also, the time
average of _RiðtÞ can be neglected, i.e.,

(a) (b)

(d)(c)

FIG. 2 (color). The mean cross-correlations vary with topo-
logical distances. (a) The triangulation based on cell locations
defines the topological distance between cells. Examples of cell
pairs with topological distances D ranging from 1 to 3 are linked
in different colors. For clarity, only a few links of D> 1 are
shown. (b) The normalized histogram of cross-correlations for a
typical experiment (continuous sheet, ½ATP� ¼ 100 �M). 3000
cell pairs for each topological distance were used for each
histogram. (c) The mean cross-correlations decay asD increases.
At least 3 independent experiments were conducted for each
condition (colony geometry and [ATP]), and �3000 pairs are
sampled to calculate the mean cross-correlations. (d) At moder-
ate [ATP], mean cross-correlations that decay with topological
distance can be fit with power-law functions (RMSD< 0:005).
Legend abbreviations: x�M, [ATP]; contin., continuous cell
sheet; pacid, treatment with palmitolic acid; y�m, edge dimen-
sions of cell colonies with square a geometry.

FIG. 1 (color online). The experiment setup. (a) Flow
devices were made by sealing micropatterned glass and PDMS
channels. By using photolithography, cell repellent (interpene-
trated polyethylene glycol and acrylamide) and cell adhesive
(gelatin) proteins are coated on the glass substrates with a
desired geometry. (b) Representative response curves obtained
by averaging fluorescent intensity of 40 pixels for each cell on
each frame. The small transient calcium increase due to flow
perturbations has relaxed before the arrival of ATP (vertical
dashed line) and only the subsequent ATP-induced calcium
dynamics is analyzed. (c), (d) Typical fluorescent images of a
continuous cell sheet and colonies of finite size. Scale bar
100 �m.

PRL 110, 158103 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

12 APRIL 2013

158103-2



h _RiðtÞiT ¼ RiðTÞ � Rið0Þ
T

! 0; (2)

because for most cells calcium concentrations relaxed to
the initial level at the end of each experiment [Fig. 1(b)].

The cross-correlation Cij measures the level of synchro-

nization which receives positive contributions from persis-
tent, in-phase calcium oscillations of the cell pair fijg. For
cell pairs of a given topological distance, their cross-
correlations are broadly distributed with non-Gaussian
characteristics [Fig. 2(b)] [22]. The shape of the distribu-
tion differs dramatically from typical excitable neural
networks, where nearby cells communicate through
strong-sparse and weak-dense links [23]. Although the
cross-correlations exhibit large fluctuations, the distribu-
tions of Cij shift to lower values at increasing topological

distances Fig. 2(b)]. To quantify this observation, we define
the mean cross-correlation �CðdÞ as

�CðdÞ ¼ hCijiDði;jÞ¼d; (3)

which averages over all pairs with topological distance d.
For a continuous monolayer, moderate ATP concentrations
(20–100 �M) generate multiple calcium spikes for each
cell and the mean cross-correlation �CðdÞ slowly decays at
larger topological distance [Fig. 2(c)]. At much lower
concentrations of ATP (<10 �M), only a fraction of cells
have significant calcium spikes [6], while the pair correla-
tions near threshold (½ATP� ¼ 10 �M) quickly decay to a
small residual value, which is likely because we simulta-
neously stimulated all the cells in the field of view. To
further confirm the role of intercellular communications,
we treated the cell sheets with palmitolic acid (pacid,
400 �M, 10 min) to inhibit the gap junctions [24]. In
this case, pair correlations are suppressed significantly
and rapidly decay to the basal level [Fig. 2(c)].

The existence of long-range correlations as indicated in
Fig. 2(c) usually implies a strong dependence of system
size. Indeed, although the correlations of 300 �m colonies
(containing �130 cells) behave similarly to a continuous
monolayer, the response starts to deviate significantly
when the colony sizes are reduced to 100 �m [Fig. 2(c)].
We suspect this qualitative change of the correlation
behavior is linked to an underlying length scale at about
100 �m or 3–5 times the typical cell size. To better char-
acterize the slowly decaying correlations with topological
distances, we find they can be fit well with power-law
functions �CðdÞ ¼ ad�b where we have been able to vary
d over about a factor of 7 [Fig. 2(d)]. To our knowledge, the
long-range correlation of the individual chemical
responses has not been reported before for nonexcitable
mammalian cells.

Although the correlations in chemical responses
between the nearby cells are heterogeneous [Fig. 2(b)],
underlying spatial structures can be revealed through com-
parison with their reference random network. For each
experiment where cell locations in a colony (either

continuous or of finite size) are known, we construct a
reference Erdös-Rényi graph (ref) [25] by randomly link-
ing qN cell pairs with topological distanceD ¼ 1. Here, N
is the total number of nearest neighbors and 0< q< 1 is a
cutoff fraction. The corresponding experimental graph
(exp) is then constructed by selecting the strong correla-
tors. In particular, we rank all of the nearest neighbor pairs
according to their cross-correlations and link the top qN
pairs. With this construction, each cell belongs to a con-
nected cluster that contains s cells, s � 1 [26].
Now an important question can be asked: Are strong

correlators randomly scattered in the cell colony, or do they
tend to cluster together? To answer the question, we evalu-
ate the probability Pðs > xÞ, or simply PðxÞ, of a cell
belonging to a connected cluster of size s (number of cells)
bigger than x. Without loss of generality, we choose the
cutoff fraction q ¼ 0:15. For reference, PrefðxÞ only
depends on the cell density and colony size, and exponen-
tially decays as a function of x (Fig. 3, solid curve). The
results for experimental graphs PexpðxÞ deviate systemati-

cally from Pref as shown in Figs. 3(b) and 3(d). For a
continuous monolayer, the strongly correlated cells tend
to be in bigger clusters but are less likely to be in small
fragments compared to the reference network. The cross-
over cluster size, at around x � 4, only weakly depends on
the ATP concentrations [Figs. 3(a) and 3(b)] [27]. The
same observation holds for finite size colonies, which
also demonstrate a nontrivial dependence on system size:
larger colonies are correlated with higher probabilities of
forming big clusters [Figs. 3(c) and 3(d)]. Choosing differ-
ent cutoff fractions q does not change these qualitative
trends [28].
To understand the spatial organization of strongly corre-

lated pairs, it is helpful to calculate the percolation thresh-
old of the network: the degree k, which is the number of
links connected to a cell, has its distribution determined by
the intrinsic network properties and the cutoff q. If we
follow a link from cell i to j, the average degree of cell j is

� ¼ hk2i
hki , the ratio of the second moment and the first

moment of the degree distribution. If the cutoff q is larger
than a percolation threshold qt, we have � > 2. In this case
we can follow the link to a next cell and continue the
process so that there exists a percolating cluster whose
size scales with the total number of cells forming the
network [29]. For the continuous monolayers stimulated
by moderate concentrations of ATP (20–100 �M), we
found the percolation threshold is qt � 0:1, while their
reference graphs have qt > 0:2 [30]. Thus, we conclude
that the self-organized networks of collective chemosens-
ing tend to form large clusters by relaying strong
correlations.
As shown in Fig. 2(b), the distribution of pair cross-

correlations are far from Gaussian. In fact, the mean �C ¼
avg½Cij�Dði;jÞ¼1 and variance var½Cij�Dði;jÞ¼1 of nearest

neighbors’ cross-correlations all fall on the same line as
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shown in Fig. 4 (filled symbols). This result means that the

ratio
var½Cij�
avg½Cij� is a fundamental quantity independent of ATP

concentrations and colony sizes. The fact that the variance
is proportional to the mean usually implies an underlying
Poisson process [31]. Therefore, we hypothesize that the
number of gap junctions formed between nearby cells
follows a Poisson distribution. With this assumption, the
elementary contribution c0 � 0:3 of each gap junction to
the cross-correlation is determined by the slope of the line
in Fig. 4 [32].

For simplicity, we consider only IP3 communications
through a single gap junction, which weakly affect the
paces of each cell’s transient calcium oscillations. We
expect the elementary correlation c0 is then a function of
the cell volume V, the unitary conductance k of a single
gap junction (number of IP3 molecules transported per unit
time and unit concentration difference), and the typical

frequency !0 of the calcium oscillation. Using only these
physical ideas, from dimensional analysis we expect

c0 ¼ �

�
k

V!0

�
�
: (4)

Here, � is a numerical prefactor of order 1, V�
2� 10�7 mm3, !0 � 0:05 Hz [6], and � � 1, as we
have confirmed by extending a calcium-IP3 model [33]
with gap junction communications [34]. Using Eq. (4), we
estimate the unitary conductance of each gap junction to be
k� 3� 10�9 mm3=s, which agrees well with direct ex-
perimental measurements [35].
The variances and means of larger topological distances

also fall on the same line [1<Dði; jÞ< 7; Fig. 4, empty
symbols]. We hypothesize that effective communication is
established between non-neighboring cells due to the long-
range correlations. Thus, smaller �CðdÞ at larger d can be
understood as a decrease in the number of effective com-
municating channels at larger d.
In this Letter, we have discussed the network character-

istics of collective chemosensing by fibroblast cells
exposed to external ATP stimuli. By combining micro-
patterning and microfluidics, we investigated the effects
of both stimuli concentrations and cell colony sizes. We
find the cross-correlation function between the responses of
individual cells decayed with topological distance as power
law for large colonies and much faster for smaller colonies.
The exponentials of the power-law decay [Fig. 2(d)] fall in
a similar range as those reported for bacteria suspension
[36] and flocking birds [37,38]. By comparing with random
networks, we found strongly correlated cell pairs tend to
form clusters and statistically are more likely to exceed the
percolation threshold, which could lead to clusters that
scale with the size of the system. At a given topological

–1

–2

–1

–2

(a)

(c) (d)

(b)

FIG. 3 (color). The cluster distribution of strong correlators for
cutoff fraction q ¼ 0:15. (a) The probability Pðs > xÞ of a cell
belonging to a cluster larger than size x, where x is the number of
cells in a cluster formed by linking strong correlators. At least 3
experiments at each given [ATP] were used to obtain the average
probabilities. For each experiment, 2000 realizations of its
corresponding reference network were simulated and averaged
to obtain the reference probability distributions Pref . For con-
tinuous monolayers, and given cutoff fraction, Pref only depends
weakly on [ATP]. (b) The deviation of probability distributions
between experimental networks and their corresponding refer-
ence graphs Pexp � Pref for continuous cell sheets at different

[ATP]. (c), (d) The probability distributions and the difference
between experiment and their corresponding reference networks
for finite-sized colonies stimulated with 100 �M ATP. Legend
abbreviations: as in Fig. 2; exp., experimental results; ref.,
simulation results of reference networks.

FIG. 4 (color online). The statistics of cross-correlations.
Means and variances of nearest-neighbor cross-correlations
(filled symbols) for different ATP concentrations and colony
sizes fall near a line y ¼ 0:3x. Cross-correlations of larger
topological distances (empty symbols) scatter around the same
line. Each point is calculated from�3000 cell pairs from at least
3 experiments of each given condition. Legend abbreviations are
the same as in Fig. 2.
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distance, the cross-correlations exhibit characteristics of
Poisson distributions, where the ratio of the mean and
variance are independent of ATP concentration and cell
colony size. This result allows us to estimate the conduc-
tance of a single gap junction, which is in good agreement
with direct experimental measurements. Our study high-
lights the rich spatiotemporal structures that are built into
the self-organized networks of nonexcitable mammalian
cells. These results help to understand the information
encoding and signal transduction in multicellular organ-
isms, which regulate a broad range of physiological func-
tions such as tissue remodeling and immunological
responses.
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