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Abstract. This paper analyses the factors explaining productivity and efficiency differences across salmon aquaculture farms, 
with an emphasis on agglomeration externalities. We specify a stochastic frontier production model with agglomeration 
indexes included in both the frontier production function and the technical inefficiency model. The frontier model is 
estimated on a rich panel data set with 2,738 observations on 577 farms. Our results confirm the importance of agglomeration 
externalities for the productivity and technical inefficiency of salmon farms. Both frontier output and technical efficiency 
increase with increasing regional industry size. There is a negative relationship between overall productivity and regional 
farm density, suggesting the presence of negative biological congestion externalities. These results have implications for the 
Norwegian government’s regulation of the industry, since the government, to a large extent, has determined the spatial 
distribution of salmon production through a licence system. 
 
 
1. INTRODUCTION 
 
During the 1990s, several empirical studies of 
agglomeration externalities have appeared in the 
literature.1 These studies hypothesized that there is a 
positive relationship between the size of an industry, or 
industry agglomeration, in a region, and externalities 
among firms belonging to the regional industry that lead 
to increased productivity. Such externalities can be among 
competing firms, among firms and their vendors, or 
among firms and their customers. 
 
Our empirical analysis focuses on a primary production 
sector – salmon aquaculture. The notion that primary 
production sectors (e.g., agriculture and aquaculture) are 
technologically less sophisticated than manufacturing and 
certain service sectors has become obsolete with the 
increasing use of computer-based technologies and bio-
technologies in the former sectors. This development may 
have lead to the emergence of external economies that 
were previously not present in primary production sectors. 
 
Our study of Norwegian salmon aquaculture extends the 
empirical literature on agglomeration economies in three 

                                                        
1 See, for example, Caballero and Lyons (1992), Ciccone 
and Hall (1996), Paul and Siegel (1999), and other studies 
cited in Eberts and McMillen (1999). 

directions. First, we measure agglomeration externalities, 
or “localization” economies, using firm-level panel data 
instead of aggregate industry data.2 Hence, we avoid 
aggregation biases associated with internal returns to 
scale and the assumption of cross-industry homogeneity 
for input parameters of the production function, which 
also influence the estimates of external returns to scale 
(Burnside, 1996). Second, we separate the effects of 
agglomeration externalities on the production frontier and 
technical inefficiency. Previous studies have estimated 
average production functions. Third, we provide empirical 
evidence for a primary production sector. Although, 
empirical analysis of external effects have generally been 
undertaken for manufacturing sectors, there are also 
pervasive reasons to hypothesize the presence of such 
effects in primary sectors due to technological 
sophistication, specialization and indivisibilities 
associated with both physical capital and labor. We assert 
that this is the case for the salmon aquaculture industry. 
 

                                                        
2 Localization economies are external to the firm but 
internal to the industry. Another category of 
agglomeration economies, which is external to both the 
firm and the industry, is termed “urbanization 
economies”. See Eberts and McMillen (1999, pp. 1460-
63) for a discussion of different types of agglomeration 
economies.  
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We employ an unbalanced panel data set with 2,738 
observations on 577 salmon aquaculture farms observed 
during the years, 1985 to 1995. The farms were observed 
from one to eleven years. Information on the age of the 
farm, regional location, production level, input levels, 
costs and revenues are included in the data set. Several 
econometric production model specifications are 
estimated to test hypotheses on productivity convergence. 

 
Finally, we estimate model specifications with internal 
and external factors that can influence productivity. The 
external factors we consider are regional industry size 
(measured by employment) and farm density in the 
region. We assert that the possibilities for the sharing of 
industry infrastructure capital and exploiting external 
economies of scale are closely linked with these two 
regional industry indicators. 
 
The paper is organized as follows: Section 2 provides a 
further discussion of some of the issues raised in the 
introduction. The empirical models are presented in 
Section 3. Section 4 presents the empirical analysis. A 
summary and conclusions are provided in Section 5. 
 
 
2. MODEL SPECIFICATION ISSUES 
 
This section discusses agglomeration externalities and 
other issues that have implications for the specification of 
the production models in this paper.  
 
In the empirical analysis, we compare the performance of 
salmon aquaculture producers in eight Norwegian 
regions. There are substantial cross-regional differences 
in the size of the salmon aquaculture industry and the 
spatial concentration of production. This is important if 
there are external economies of scale.3 Sources of external 
economies are indivisibilities associated with tangible and 
intangible capital inputs, such as physical industry 
infrastructure capital, research and development, 
knowledge spillovers (i.e., learning from others) and 
specialized human capital. Firms sharing these types of 
capital inputs have savings on materials and labor inputs, 
and a reduced need for internal investments in certain 
types of capital equipment. 
 
Salmon aquaculture is a capital-intensive industry. 
Several types of capital equipment used by the industry 
are characterized by lumpiness, where full capacity 

                                                        
3 For discussions of these issues, and for empirical testing 
of the contribution of external economies, see Caballero 
and Lyons (1990), Basu and Fernald (1997), and Paul and 
Siegel (1999). For an industry with constant internal (or 
private) economies of scale, external economies of scale 
are present if a doubling of inputs by all firms more than 
doubles their outputs. 

utilization requires that several farms demand their 
services.4 The industry is also a heavy user of advanced 
computer-based technologies for different operations in 
the production process (Dietrichs, 1995). Moreover, it 
demands specialized expertise in management, export 
marketing, production monitoring, veterinary services, 
biology, etc. Provision of specialized services to the 
industry requires a certain minimum market size. Since 
the Norwegian industry is spread over a long coastline, 
with high transportation costs for factors of production, 
the relevant input market is generally the regional market. 
It can be asserted that an increase in the size of the 
regional salmon aquaculture industry will lead to the 
provision of more productive specialized physical and 
human capital inputs.  
 
Another source of external economies is knowledge 
spillovers. Producers may not only learn from their own 
production experiences, but also from those of others. The 
extent of external knowledge spillovers should increase 
with farm density, which is considered in one of the 
model specifications below. Finally, producers may learn 
from other agents in the industry infrastructure. Feed 
manufacturers, veterinarians, salmon fingerling producers 
and researchers may be sources of knowledge on different 
aspects of the production process for salmon farming. 
 
Industry-specific infrastructure is, to a large extent, 
organized in regional units. This is the case for 
government agencies that monitor and assist fish farms on 
disease treatment, environmental issues (e.g., farm 
location) and other matters that affect farm performance. 
The Norwegian Fish Farmers’ Association, which is 
organized in regional units, is involved in training 
programs and dissemination of knowledge to fish farmers. 
 
There are several other reasons for using a regional 
division for the Norwegian salmon farming industry. 
First, regions have different biophysical conditions. This 
applies particularly to sea temperature and water 
exchange, which are two important determinants of 
salmon growth and mortality. The average sea 
temperature is significantly lower in the northern counties 
than in the southern counties. The growth rate of salmon 
increases with sea temperature. On the other hand, due to 
tidal currents, the water exchange is higher in the northern 
regions than in the southern regions, implying that the 
supply of clean water and oxygen is higher in northern 
regions. Biophysical shocks, such as disease outbreaks 
and algae blooms, tend to be spatially correlated. Diseases 
are usually first transmitted to neighboring farms, and the 
probability of contagion is positively related to the density 

                                                        
4 Examples of lumpy capital inputs are vessels which 
transport salmon fingerling and salmon feed to the farms, 
vessels which transport live fish from the farms, and 
slaughter facilities. 
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of farms. Density-dependent disease externalities can be 
regarded as a special type of congestion externalities. In 
this paper, we explore whether positive or negative 
density-dependent externalities dominate in salmon 
aquaculture. Historically, disease losses have not been 
evenly distributed along the Norwegian coast, but were 
concentrated in certain regions. In our econometric 
production model, we use region-specific effects to 
account for differences in biophysical conditions. 

 
Regions also entered the industry at different stages, 
which means that there are cross-regional differences in 
average farm age. If learning-by-doing effects are present 
then age differences may lead to productivity differences. 
We include farm age in the production model to account 
for age-dependent effects. 
 
Government regulations have played an important role in 
determining the spatial distribution of farms along the 
Norwegian coast. When salmon farming became 
economically viable in the early 1980s, a large number of 
entrepreneurs applied to the Norwegian government for 
licences to establish farms. The central government 
decided the number of licences that should be awarded to 
each region, while regional/local authorities determined 
which entrepreneurs should obtain licences and the 
location of farms in the region. Licence owners could not 
move the farm to another location or region, or sell the 
licence without a permit from the authorities. It can be 
asserted that the government regulations produced a 
spatial farm distribution that would not have emerged 
with a national licence auction system or free entry. It is 
natural to ask what effects regulation has had on the 
productivity of the industry. Are there welfare losses due 
to higher marginal production costs associated with the 
current spatial industry configuration? 
 
There are some conceptual problems associated with the 
specification of external effects in a production frontier 
model. The literature that deals with external economies, 
or, more specifically, agglomeration effects, generally 
includes an external economy index in the production 
function and ignores inefficiency. For example, Caballero 
and Lyons (1990) specify the production function, y = f(x; 
E, t), where x includes inputs; E is an external economy 
index; and t is a productivity index. Inefficiency has been 
a less relevant issue for most empirical studies of external 
economies, since they, unlike this study, test hypotheses 
using aggregate industry data. Important questions are the 
following. Do external effects, in the form of information 
spillovers among firms, only lead to the transmission of 
existing knowledge which is already embodied in the 
frontier (best-practice) production technology? If this is 
the case, then knowledge spillovers lead to a reduction in 
firms’ technical inefficiency relative to the production 
frontier that represents efficient input use with the best-
practice technology. On the other hand, could information 

spillovers be of a nature and processed in a way that leads 
to the creation of new knowledge which is not already 
embodied in the frontier production technology? In this 
case, the production frontier will shift in a positive 
direction, leading to an increase in maximum output 
conditional on a given level of inputs. Finally, to what 
extent are information spillovers and new knowledge 
creation from this localized? With localized information 
spillovers and knowledge creation the production frontier 
becomes region-specific, conditional on an index 
representing locally generated knowledge.  
 
A general specification of the production model that 
accounts for the technical inefficiency and other factors 
discussed above is 
 y = f(x, Dr, E, t)�exp(V – U), 
where f(�) is now the production frontier function; Dr is a 
region-specific effect (regional dummy), capturing 
regional biophysical conditions (e.g., temperature and 
tidal water) and other more or less time-invariant factors 
influencing productivity; E is an external economy index; 
t is a time-trend variable, representing technical change; V 
is a traditional random error term; and U is a non-negative 
random variable associated with technical inefficiency of 
production. In its most general form, U is defined by 

U = U(x, AGE, E), 
where AGE is the farm age; and U(�) represents a function 
of the variables, x, AGE and E. With the above 
specification, the production model allows agglomeration 
effects to influence both the production frontier and the 
level of technical inefficiency. 
 
Different measures have been used for the external 
agglomeration effect, E. Caballero and Lyons (1992) 
employed aggregate manufacturing output as 
agglomeration index when analyzing data from a two-
digit manufacturing sector. Ciccone and Hall (1996) used 
a spatial density of employment index as the external-
effects index to explain differences in labor productivity 
across US states.5 In our analysis of firm-level salmon 
aquaculture data, we employ both the size of the regional 
industry and the spatial concentration of production 
activity as regional agglomeration indexes. 
 
3. EMPIRICAL MODEL SPECIFICATIONS 
 
Three different empirical models, denoted A, B and C, are 
estimated in this paper. These models are specified with 
both a stochastic frontier production function and a 
technical inefficiency model, following Battese and Coelli 
(1995). The models differ with respect to the specification 
of agglomeration effects. 
 

                                                        
5 Eberts and McMillen (1999, pp. 1480-1483) discuss the 
measurement of agglomeration economies in urban areas. 
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The specification of the stochastic frontier production 
function is: 

(1) lnyit = 0E  + 6rErDr + 6kEklnxkit + 6j6ktjEjklnxjit lnxkit + 

Ett + Et2t
2 + Et3t

3 + 6kEktlnxkitt + Er + (Vit - Uit),  
  i = 1,..., N; t = 1,..., T, 

where lnyit is the natural logarithm of salmon output of 
farm i in year t; Dr is the dummy variable for region r (r = 
H, SF, MR, ST, NT, N, T&F); lnxkit is the logarithm of 
input k, where k = F, I, K, L, M represent the five inputs, 
fish feed, fish stock at the beginning of the year, capital, 
labor, and materials, respectively; Er is an agglomeration 
index to be defined below; and the Es are parameters to be 
estimated. The intercept for region r is E0+Er , where E0 is 
the intercept for the base region, Rogaland. The 
production frontier may shift over time according to the 
values of the parameters, Et, Et2, Et3 and Ekt. The Vits are 
random variables that are assumed to be independent and 

identically distributed and have N(0,2VV )-distribution. 

The translog form for the terms involving the input levels, 
xkit, implies that we do not impose any a priori restrictions 
with respect to the internal returns to scale. The Uits are 
non-negative random variables, which account for 
technical inefficiency in production, and are assumed to 
be independently distributed, such that Uit is the 
truncation (at zero) of the N(Pit,V

2)-distribution, where Pit 
is a function of observable explanatory variables and 
unknown parameters, as defined below. It is assumed that 
the Vits and Uits are independent random variables. 
 
Different specifications of the external economy index, 
Er, in the production frontier (1) are estimated. These are 
defined as follows: 

Model A: Er = ERLlnRL + ERL2(lnRL)2,  
 
where RL is regional industry size (measured by 
employment).  
 

Model B: Er = EFSRlnFSR + EFSR2(lnFSR)2,  
where FSR is farm density in the region (farms per square 
kilometer).  

 
Model C: Er = ERLlnRL + ERL2(lnRL)2  
+ EFSRlnFSR + EFSR2(lnFSR)2,  

to account for regional industry size and farm density, 
simultaneously. The rationale for these external economy 
indexes RL and FSR are discussed later in this section. 
 
Next, we turn to the specification of the technical 
inefficiency model. The means of the technical 
inefficiency effects, the Uits, the Pits, are assumed to be a 
function of farm and regional characteristics: 
(2) Pit = zitGG  
 
where zit is a vector of values of observable variables 
explaining the inefficiency; and GG is a vector of 

parameters to be estimated. A positive parameter value 
for a coefficient of the kth z-variable, i.e., Gk>0, implies 
that the mean technical inefficiency increases as the value 
of this z-variable increases. 
 
The technical inefficiency models are specified as 
follows: 
(3a) zitGG = G0 + 6kGklnxkit + GLNAGElnAGE + 
GLNAGE2(lnAGE)2 + GRLlnRL + GRL2(lnRL)2 + 6rGrtDrt + 
6rGrt2Drt

2   (Model A) 
 
(3b) zitGG = G0 + 6kGklnxkit + GLNAGElnAGE + 
GLNAGE2(lnAGE)2 + GFSRlnFSR + GFSR2(lnFSR)2 + 6rGrtDrt + 
6rGrt2Drt

2  (Model B) 
 
(3c) zitGG = G0 + 6kGklnxkit + GLNAGElnAGE + 
GLNAGE2(lnAGE)2 + GRLlnRL + GRL2(lnRL)2 + GFSRlnFSR + 
GFSR2(lnFSR)2 + 6rGrtDrt + 6rGrt2Drt

2.  
  (Model C) 
 
The input levels, xk, are included to account for the 
relationships between scale of operation and the level of 
technical inefficiency. Managerial ability, which is 
unobserved, is expected to be positively correlated with 
the size of the farm, since larger farms can afford to hire 
better-educated managers. 
 
The variable, AGE, is included as a determinant of 
technical inefficiency in all model specifications. A 
negative relationship is expected between technical 
inefficiency and the logarithm of farm age, due to 
learning-by-doing. However, there may also be forces 
working in the opposite direction with respect to farm 
age. If replacement of physical capital is costly, a 
negative capital vintage effect, which is positively 
correlated with farm age, may be present. Furthermore, 
early entrants tended to be located at more sheltered sites 
with lower bioproductivity than farms that entered the 
industry later. According to studies of salmon farms, the 
marine environment around a farm also tends to become 
more disease prone over time, due to the accumulation of 
organic sediments below the cages, leading to oxygen loss 
and increased risk of fish diseases.6 Since it may be 
difficult to obtain a government licence to relocate at a 
new site with higher bioproductivity, and relocation of 
farms is costly, farm age may be positively correlated 
with technical inefficiency. Finally, due to changes in the 
recruitment process to the industry over time, it may also 

                                                        
6 These findings have been documented in a large number 
of scientific reports by Johannessen (with different co-
authors) during the 1985-1992 period. See Johannessen, 
P.J. et al. (1985-92), Studies of Recipient Capacity at Fish 
Farm Sites (In Norwegian: "Resipientundersøkelser på 
oppdrettslokaliteter"), Report, Institute of Fisheries and 
Marine Biology, University of Bergen. 
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be the case that the early cohorts of entrepreneurs were 
less competent than those entering at a later stage.7 
 
The models assume that the technical inefficiency is a 
function of time, t, and allows the rate of adjustment to 
vary across regions by interacting the time variable with 
the regional dummy variables, Dr. Through the region-
specific time variables, we try to capture technology and 
knowledge-diffusion processes that lead to reductions in 
technical inefficiency differentials across regions. By 
including both farm age and the time effect, we 
distinguish between the effects of learning-by-own-doing 
and diffusion processes on the inefficiencies of firms. 

 
Total regional industry employment (RL) is included in 
models A and C. This variable may capture external 
economies of scale or the availability of industry-specific 
capital. It can be viewed as a proxy for human capital in 
the regional industry, but it is probably also correlated 
with the physical capital of the regional industry. 
 
To account for density-dependent external effects among 
farms, the number of farms per square kilometer of sea 
area (FSR) in the region is included in models B and C. 
The proximity of farms can influence productivity in 
several respects. High farm density should enhance 
knowledge transmission. It should also lead to a more 
efficient use of industry capital equipment, such as 
vessels for transportation of live fish, and fish-processing 
facilities. Hence, investments by individual farms in 
capital equipment are expected to decline due to increased 
opportunities for sharing. This implies that there are 
external economies of scale associated with an increase in 
the number of farms in a region. On the other hand, there 
may be congestion externalities of a biological nature. 
Fish disease externalities among farms are expected to 
increase with higher farm density, leading to lower 
technical efficiency (and productivity). 
 
All inputs and the externality indexes were normalized by 
their respective sample means prior to estimation. 
 
The parameters of the model are estimated using the 
program, FRONTIER 4.1, written by Coelli (1996), such 

that the variance parameters are defined by 2
SV = 2

VV +V2 

and J=V2/ 2
SV , originally recommended by Battese and 

Corra (1977). The log-likelihood function of this model is 
presented in the appendix of the working paper, Battese 
and Coelli (1993). When the variance associated with the 
inefficiency term, Uit, converges towards zero (i.e., 
V

2
o0) then the ratio parameter, J, approaches zero. When 

                                                        
7 The Norwegian government awarded licences to new 
farms, and, in the early stages, it tended to put less 
emphasis on the qualifications of applicants and more on 
their regional affiliation. 

the variance of the random error, Vit, (
2
VV ) decreases in 

size, relative to the variance associated with the Uits, the 
value of J approaches one. 
 
4. EMPIRICAL RESULTS 
 
In the presentation of the empirical results, we first 
discuss the results for the frontier production function and 
the technical inefficiency model separately, before we 
present overall results from our estimated models. 
 
The parameter estimates for our stochastic frontier 
production functions are not presented here.8 The 
hypothesis that the average production function is an 
adequate representation of the data, given the 
specifications of the stochastic frontier model of 
equations (1)-(2), is rejected for all three models at the 
one per cent level of significance. For example, the 
likelihood-ratio (LR) statistic, for testing that the 
inefficiency effects in Model A are not present, is equal to 
439.60, which exceeds, 46.96, the upper one per cent 
point for the Chi-square distribution with 27 degrees of 
freedom.9 
 
Table 1. Frontier Elasticity Estimates* 
Model A  B  C 

 Mean St. 
Err. 

 Mean St. 
Err. 

 Mean St. 
Err. 

EFeed 0.455 0.014  0.455 0.015  0.452 0.015 

EInfish 0.269 0.010  0.274 0.010  0.275 0.010 
EKapital 0.0212 0.0088  0.0183 0.0091  0.0194 0.0089 

ELabor 0.024 0.016  0.023 0.016  0.024 0.016 

EMater 0.0585 0.0089  0.0596 0.0087  0.0621 0.0087 
RTS 0.828 0.027  0.830 0.027  0.833 0.027 

TC 0.0441 0.0038  0.0563 0.0032  0.0464 0.0035 
ERL 0.187 0.041     0.293 0.051 

EFSR    -0.002 0.030  -0.139 0.038 

x Elasticities are evaluated at the sample mean 
level of the regressors. Symbols: Ek = Elasticity 
of frontier output with respect to input k (k = F, 
I, K, L, M); RTS = Returns To Scale; TC = rate of 
Technical Change; ERL = Elasticity of frontier 
output with respect to regional industry 
employment; EFSR = Elasticity of frontier output 
with respect to regional farm density. 

                                                        
8 Available from the authors upon request. 
9 The correct critical values for testing the hypothesis that 
the parameter, J, is equal to zero, should be obtained from 
Table 1 of Kodde and Palm (1986). These values are less 
than the upper per cent points for the Chi-square 
distribution. For Model A, the correct value is 39.53. 
However, if the LR statistic exceeds the Chi-square value, 
then the null hypothesis that J=0 should obviously be 
rejected. 
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4.1. The Frontier Production Function 
 
The estimates for the frontier elasticities, evaluated at the 
sample mean levels of the variables, are presented in 
Table 1. Later, in Table 3, we present the elasticities of 
mean output with respect to the inputs, where the 
elasticity of the technical efficiency is added to the 
elasticity of frontier output. These elasticity estimates are 
discussed later. 
 
In all three models, fish feed (F) turns out to be the most 
important input, as measured by the frontier feed 
elasticity (EF) with values 0.45-0.46 across the models for 
the frontier function (cf. Table 1). Fish stock (I) is the 
second most important input in terms of frontier output 
elasticity, with values around 0.27. Labor (L), materials 
(M), and capital (K) are much less important. The frontier 
output elasticity with respect to materials is about 13 per 
cent of the feed elasticity. The frontier output elasticities 
with respect to capital and labor are about five per cent of 
the feed elasticity. The returns-to-scale (RTS) parameter, 
which is the sum of the input elasticities, is very similar 
across the three models, with a mean value around 0.83. 
This implies that farms with inputs at the mean levels 
operate at a sufficiently large scale to exhaust economies 
of scale. 
 
Models A and C include regional industry size (RL) as a 
proxy for agglomeration externalities, causing shifts in the 
regional production frontier. According to the parameter 
estimates, the production frontier increases with industry 
size, but at a decreasing rate. The elasticity of frontier 
output with respect to regional employment (ERL) is 18.7 
and 29.3 per cent in Models A and C, respectively (see 
Table 1). These estimates suggest that an increase in 
regional industry size has a substantial impact on the 
regional production frontier.  
 
The other index for agglomeration externalities, regional 
farm density (FSR), has no statistically significant effect 
on frontier output in Model B, according to the standard 
errors of the estimators for the parameters, EFSR and EFSR2. 
The frontier output elasticity with respect to FSR is 
estimated to be very small in Model B, namely –0.2%. 
However, in Model C, the most general model, regional 
farm density is significant in both statistical and economic 
terms. The frontier elasticity with respect to FSR is 
estimated to be –13.9 per cent, meaning that the frontier 
output is lower for farms that are closely located. Our 
interpretation of this result is that biological congestion 
effects, mainly through fish diseases, dominate any 
positive externalities from spatial proximity. 
 
The rate of technical change (TC) of the production 
frontier exhibits some variation across models; technical 
progress is estimated to be 4.4, 5.6 and 4.6 per cent using 
Models A, B and C, respectively. The discrepancy in TC 

estimates seems to be due to different specifications of 
regional agglomeration effects in the models. 

 
The coefficients associated with the regional dummies 
suggest that there are statistically significant differences 
in frontier output of a more permanent character, and that 
these differences are fairly large. It is reasonable to 
attribute these differences to varying biophysical 
conditions and services from regional public 
infrastructure capital. 
 
4.2. The Technical Inefficiency Model 
 
We now examine the results from the estimated technical 
inefficiency models. According to the estimated input 
parameters (GF, GI, GK, GL, GM), which are not reported 
here, the input use has a significant effect on mean 
technical inefficiency. For feed, fish input and labor, the 
coefficients are negative in all models, implying that 
efficiency increases as the quantity employed of these 
inputs increase. On the other hand, technical efficiency 
decreases as materials inputs increase. For the capital 
input the results are ambiguous across models, with 
models B and C indicating that technical efficiency 
increases with increasing capital. However, the estimates 
associated with capital are not significant for any of the 
three models. Table 2 provides the estimates of the 
elasticity of technical efficiency with respect to the inputs 
(EPk). A positive estimate means that the level of technical 
efficiency is increased as the value of the associated 
variable increases. According to Table 2, the inputs have 
fairly small marginal effects. The effect of increasing the 
use of all inputs by the same magnitude is measured by 
the elasticity TEIP = 6EPk in Table 2. Depending on the 
model, a one per cent increase in all inputs leads to an 
increase in technical efficiency between 6.2 and 6.5 per 
cent. 
 
Table 2. Estimates for Elasticities of Technical 
Efficiency* 
Model A  B  C 

 Mean St. 
Err. 

 Mean St. 
Err. 

 Mean St. 
Err. 

EPFeed 0.0303 0.0039  0.0307 0.0041  0.0292 0.0040 

EPInfish 0.0286 0.0037  0.0251 0.0038  0.0258 0.0042 

EPKapital -0.001 0.0027  0.0029 0.0028  0.0024 0.0025 

EPLabor 0.0160 0.0049  0.0183 0.0048  0.0170 0.0044 

EPMater -0.011 0.0034  -0.012 0.0029  -0.013 0.0028 

TEIP 0.0629 0.0084  0.0649 0.0084  0.0617 0.0082 

EPAGE -0.001 0.0002  -0.001 0.0003  -0.001 0.0002 

TECP 0.0054 0.0009  0.0035 0.0010  0.0037 0.0010 

EPRL 0.0447 0.0091     0.0045 0.0082 

EPFSR    0.080 0.014  0.075 0.014 

* This table provides elasticity estimates for technical 
efficiency, evaluated at the sample means of the 
regressors. The elasticities are defined as follows: EPk = 
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Elasticity of technical efficiency with respect to input k (k 
= F, I, K, L, M); TEIP = 6EPk = Total input elasticity of 
technical efficiency; TECP = rate of change in technical 
efficiency (i.e. catch-up over time); EPAGE = Elasticity of 
technical efficiency with respect to age; EPRL = Elasticity 
of technical efficiency with respect to regional industry 
employment; EPFSR = Elasticity of technical efficiency 
with respect to regional farm density. 
 
The effect of farm age on technical efficiency is of 
interest. Only very small values are estimated for the 
elasticity of technical efficiency with respect to farm age, 
being -0.1 per cent. for all models (see Table 2). This 
means that learning-by-doing contributes little to the 
catch-up of inefficient firms, or that learning-by-doing is 
counteracted by a farm site deterioration effect.10 
 
Next, we investigate the change in technical efficiency 
over time, or the rate of catch-up of inefficient firms. 
Region-specific rates of catch-up are accounted for in the 
models.11 A homogeneous rate of catch-up across regions 
(i.e., Gr,t = Gt and Gr,t2 = Gt for all r) was rejected for all 
three models using a likelihood-ratio test, the test 
statistics being 23.98, 44.24 and 35.14 (exceeding the five 
per cent critical value, 23.68, for the Chi-square 
distribution with 14 df) for Models A, B and C, 
respectively.12 Although estimates for the catch-up 
parameters, Gr,t and Gr,t2, are statistically significant, the 
sizes of the estimates for the elasticity of technical 
efficiency with respect to time, TECP , ranged from 0.3 
per cent (for Model B) to 0.5 per cent (for Model A), 
indicating that differences in technical efficiencies over 
time are relatively small. 
 
The relationship between technical efficiency and the 
agglomeration externalities indexes is now considered. 
The second-order coefficients, GRL2 and GFSR2, are 
estimated to be negative across Models A, B and C, 
indicating that maximum values of the quadratic functions 

                                                        
10 Farms were located at sites that tended to become 
biologically exhausted over time due to the accumulation 
of organic sediments. 
11 In all regions, the region-specific estimated rate of 
change in technical efficiency (not reported here) is 
negative or zero, implying a reduction in the level of 
technical efficiency, except in the southernmost region, 
Rogaland. This is in line with a priori expectations, since 
Rogaland was considered to be the technically most 
efficient region in the beginning of the data period. 
12 The appropriateness of including time in the technical 
inefficiency functions was supported by LR tests of  
H0: Gr,t = 0 and Gr,t2 = 0, for all r, which provided test 
statistics of 30.42 for Model A and 54.08 for Model B 

(exceeding the critical value, 26.30, for the 2
16F  

distribution). 

are involved. These coefficients are highly statistically 
significant, except for the estimate for regional industry 
size (RL) in Model C. The elasticity of technical 
efficiency with respect to regional industry size (EPRL) is 
estimated to be 4.5 and 0.4 per cent for Models A and C, 
respectively (see Table 2). Furthermore, the elasticity of 
technical efficiency with respect to regional farm density 
is estimated to be 8.0 and 7.5 per cent for Models B and 
C, respectively. Hence, the models suggest that an 
increase in industry size and farm density lead to an 
increase in technical efficiency. For farm density, our 
results suggest that negative biological congestion 
externalities are captured by the production frontier 
function, while positive externalities (e.g., due to sharing 
of specialized input and knowledge spillovers) are 
captured by the technical inefficiency model. 
 
4.3. Overall Results 
 
We have estimated three competing models to test for the 
influence of agglomeration effects. It turns out that Model 
A and Model B are rejected by LR-tests, given the 
specifications of the more general Model C. We therefore 
put most emphasis on the results from Model C. 
 
Table 3. Estimates of Elasticities of Mean Salmon 
Output With Respect to Inputs* 
Model A  B  C 

 Mean St. 
Err. 

 Mean St. 
Err. 

 Mean St. 
Err. 

ENFeed 0.485 0.015  0.486 0.016  0.482 0.015 
ENInfish 0.298 0.010  0.299 0.011  0.301 0.011 

ENKapital 0.0206 0.0092  0.0211 0.0095  0.0219 0.0093 

ENLabor 0.040 0.017  0.042 0.017  0.041 0.016 
ENMater 0.047 0.010  0.0474 0.0092  0.0494 0.0092 

RTSN 0.891 0.028  0.895 0.029  0.895 0.028 
TCN 0.0495 0.0039  0.0598 0.0033  0.0501 0.0037 

ENRL 0.231 0.042     0.298 0.052 

ENFSR    0.078 0.034  -0.064 0.041 

* This table provides non-neutral elasticity estimates, as 
proposed by Battese and Broca (1997), evaluated at the 
sample mean level of the variables. The elasticities are 
defined as follows (cf Table 1 and 2): ENk = Ek + EPk, 
 k = F, I, K, L, M; RTSN = RTS + TEIP; TCN = TC 
+ TECP; ENRL = ERL + EPRL; ENFSR = EFSR + EPFSR. 
 
In Table 3, we present the estimates for the elasticity of 
mean output with respect to the inputs obtained using 
Models A, B and C.13 These elasticities involve both the 
elasticity of frontier output and the elasticity of technical 
efficiency, where the latter term is non-zero for a non-

                                                        
13 Other studies that have estimated elasticities for non-
neutral frontier models are Huang and Liu (1994), Coelli 
and Battese (1996), Battese and Broca (1997), and 
Lundvall and Battese (2000). 
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neutral stochastic frontier model, which has input 
variables in the model for the inefficiency effects. The 
elasticities in Tables 1 and 2 are added, for the 
corresponding inputs, to obtain the elasticity of mean 
output with respect to the given input. Note that the 
estimated returns to scale (RTSN) is larger for all models.  
 
According to Model C, the total effect of an increase in 
regional farm density on mean output is negative, with an 
elasticity of –6.4 per cent. This result suggests that 
negative biological congestion externalities more than 
outweigh positive externalities from higher farm density. 
On the other hand, all models with RL included provide 
support for positive externalities associated with 
increasing industry size. In the preferred model, Model C, 
the elasticity of output with respect to regional industry 
size is as high as 29.8 per cent. Inclusion of the 
agglomeration indexes is strongly supported by 
likelihood-ratio tests for all three models.14 
 
5. CONCLUSIONS 
 
In this paper, we examine the influence of regional 
agglomeration externalities on the productivity and 
efficiency of salmon farming in Norway. Our results 
support the presence of such externalities. 
 
We estimate stochastic frontier production models on a 
large panel of salmon farms. These models allow us to 
distinguish the effects of different factors, such as inputs 
and external effects, on the production frontier and 
technical efficiency. We also control for unobservable 
region-specific effects, farm age and technical change in 
our models.  
 
Internal returns to scale and agglomeration externalities 
are the main factors explaining differences in productive 
performance. Technical change is also an explanatory 
factor behind discrepancies when we compare 
productivity across time. Learning-by-doing, as measured 
by farm age, seems to be a less important factor. 

 
Two external economy indexes are used in the models, 
namely regional industry size and regional farm density. 
In the most general specification, we use these indexes in 
both the frontier production function and the technical 
inefficiency model, because we hypothesize the 
agglomeration externalities influence both productivity 

                                                        
14 The LR statistics associated with the null hypothesis, 
that all parameters involving the regional agglomeration 
indexes are zero, are 43.74 and 43.32 for Models A and 
B, which exceed the five per cent critical value, 9.49, for 

the 2
4F  distribution). For Model C, the LR statistic is 

83.90, which is greater than the critical value, 15.51, for 

the 2
8F  distribution. 

and inefficiency of salmon farming. We found that an 
increase in regional industry size is associated with 
increases in both frontier output and the level of technical 
efficiency for farms in that region. An increase in regional 
farm density has a negative effect on frontier output, but 
is associated with a positive effect on the level of 
technical efficiency. Overall, the effect of increasing 
regional farm density on output is negative, implying that 
negative congestion externalities associated with fish 
diseases dominate positive externalities associated with 
knowledge spillovers and sharing of specialized inputs.  
 
It should be noted that our results do not allow us to 
identify the sources or mechanisms that generate external 
economies. A more detailed case study of selected regions 
or farms could be a useful means to uncover the 
mechanisms that are at work.15 
 
The Norwegian government has influenced the regional 
distribution of salmon farms through its regulations. This 
paper shows that regional location of farms may influence 
the industry’s marginal cost curve. There exists a 
potential for spatial redistribution of farms that can lead to 
a downward shift in the industry’s supply curve. Based on 
the findings here, one should take into account density-
dependent effects of relocation and effects on regional 
external economies of scale. According to our results, 
shifting productive resources between two regions affects 
the productivity in both regions, but in opposite 
directions. Although government regulation may have 
lead to an average productivity that is lower than the 
potential, deregulation may not necessarily lead to an 
efficient spatial distribution of production. With a large 
number of independent farms, external economies of scale 
and disease externalities are not fully internalized by 
private decision makers, leading to inefficient outcomes. 
Hence, there is a role for government to account for these 
externalities. 

 
This paper provides new evidence on the effects of 
learning and industry infrastructure on productivity in 
Norwegian salmon farming. Future analyses should try to 
decompose and measure the effects of biophysical 
differences, farm-specific factors and regional industry 
infrastructure on productivity differentials. Furthermore, 
models should be specified to allow testing whether 
individual farms have different abilities to capture 
positive externalities from the regional industry. 
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