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SOME ANALYTICAL PROPERTIES OF BIVECTORS
INTRODUCTION

In this thesis is presented some elementary theory
concerning bivector spaces, which are defined as being
finite dimensional vector spaces over the field of complex
numbers in which there is an inner product obeying certain
postulates.

Derivatives for polyadiec functions are defined, a
generalization of the Cauchy-~Riemann conditions is derived,
and necessary and sufficient conditions for the existence
of the derivative are proved. Included are two theorems
about analytiec functions known on the boundary of a closed
hypersurface., Finally a result analogous to the Cauchy-
Goursat theorem but involving surface integrals is derived.



VECTOR SPACES

Definition 2A., A vector space ¥ (g) (1, p. 162)

over a field # is a set of elements (called vectors) with
the operations of addition and multiplication defined and
obeying the following postulates:

(1) V is an Abelian group under addition.

(2) For every vector A and every element a of ¥,
the product aA determines a unique vector in 7,

(3) aA = Aa

(4) a(A+B) = aA + aB

(6) (a+b)A = aA + bA

(6) (ab)A = a(ba)

(7) 1A = A,

Definition 2B. A Euclidean vector space (1, p. 189)

is a vector space ¥V (R) over the field of real numbers & such
that to every two vectors A and B in V(R) there corresponds
a unique real number which we designate by A+B (called the
inner product) satisfying the following properties:

(1) A+«B = BeA

(2) (aA)+B = a(A+B) a real

(3) A«(B+C) = A+B + A+C

(4) A+A > 0o unless A =0 0:0 = o,

Definition 2C. A bivector space %, is the vector

space ¥ (€) of dimension n (1, pp. 168-9) over the field of
complex numbers € such that to every two elements A and B
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of'vh(e) there corresponds a unique complex number which

we designate by A+B (called the inner product of A and B)

satisfying the following properties:

(1)
(2)
(3)
(4)

A*B = B+A
(aA)*B = a(A+B) a complex
A«(B+C) = A+B + A«C,

There exists a linear independent set (1, p.

167) of elements (A4}, 1 = 1,2,..,., n, such that Aj+Ay #

o (1 not summed) for all 1 = 1,2,..., N,

We shall call the elements or‘ﬂi bivectors,



EUCLIDEAN SUBSETS

Hereafter we shall use the summation convention,
repeated indices indicating summation on those indices

unless otherwise stated, Thus
3
a3h; = 4=) e1h4.

Definition 3A., Given fA,}, %= 1,2,..., k ¢ n,

& linear independent set (1, p. 167) of vectors in V (%),
and given a field ¢ which is either % or a subfield (1,
Pe 36) of ¥, we form the set P of all linear combinations
B=gA4,, 8, ing. We say that P is the set spanned over
& by A}, *= 1,2,.04y k.

Definition 3B. If a subset ¥ of a bivector space

Wnis a Euclidean vector space of dimension k, 1 ¢ k ¢ n,

under the addition, multiplication, and inner product oper=-

ations in %, we say that ¥ is a Euclidean subset of 7.
Definition 3C, If V has the dimension n,J is a

complete Euclidean subset of #,.

Theorem 3A. In any %, there exists a complete

Euclidean subset,

We shall show that there exists an independent set
{Bs}, 1 = 1,2,.44, n, in ¥y, such that
(3.1) By +By = ‘11( »



which is sufficient to prove the theorem since the subset
spanned over & by {By} is a Euclidean vector space.

Let {A;} be a set of n independent elements of ¥, satisfy-
ing postulate 4, Definition 2C, Then for any set of n

elements { By} in ¥, we can write

By = bijhj 1 =1,2,00ep N
since the set {A;} is a basis (1, pp. 168-9) of ";.
Then
By*By = by jbumAjtAm = %y;0g 4Dyp »
where
“ym = Agedn ' (# o for § = m),
Set

% 4mP1 Pum =S4k »
and we have %(n+1) equations in the n® unknowns b3y » which
has an infinite number of solutions for n > 1 (and one solu-
tion if n = 1). The set { Bs} is independent because if not,

there exists a set of numbers by not all zero such that

biBi = 0,
Suppose by # o, then
Bl"’ 1 biBi 1'2,..., n,
B
and
31'31"‘% byBy By = o 1=2,000ym,

which contradicts (3.1).



We note that a set of n linear independent vectors
fc4} of a complete Euclidean subset ¢ of %, forms a basis

of ¥, and any bivector Z of ¥, can be written
(3.2) Z =430y = (ag+iby)Cy
= 84Cy+1byCy = X + 1Y
where =, are complex numbers, aj and by are real numbers,
and X and Y are vectors in « ,
It seems that for Vn there might be only one come

plete Euclidean subset; however this is not true.

Theorem 3B, For n = 2 there are more than one come

plete Euclidean subset in .
Consider an orthonormal basis By}, 1 = 1,2,..s, 0,
of ¥/, a complete Euclidean subset of ¥,
Define
Dy = aBy + 1bBy
Dg = 1bBy = aBg,

where a and b are any two real numbers satisfying

82 « b2 = 4 b ¥ o,

Then
Dy Dy ™ Sy | «p=1,2
D.(-Bi-o o ,B=1,2; 1 =03,4,004, n

That is, the set { Dy,Dp,B3,+ee, By} satisfies (3.1) and
therefore constitutes a basis of a complete Euclidean

subset.
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Hereafter in our discussion of ¥, we shall assume
that a definite complete FEuclidean subset o has been chosen
and whenever we write an arbitrary bivector as a sum Z =
X + 1Y, X and Y are elements of .

We shall call a bivector Z = X + iY real or complex
depending upon whether Y is or is not null. The conjugate
7Z of Z 18 2 = X = 1Y and the norm |Z| of Z is defined as

1Z| = of2°2 .



GIBBS' RESULT -

We shall generalize to %, a result that Gibbs ob-
tained for Wy (5, pp., 87-88), Every bivector Z = U + 1V

can be written in the form

(4.1) z = ¢lT(P+iQ),
where
(4.2) PeQ =0

To prove this we show that in the equation
(4,3) U+ 41V = (cos r + 1 sin »)(P + 1Q)
r, P, and Q are determinable.
Taking the inner product of each side by itself we obtain
UelU = VoV + 21UV = (cos 2r + 1 sin 2r)(P«P - Q+Q).
It follows that
UsU « V+V = gos 2r(P+«P - Q+Q)
2U.V = sin 2r(P.P - Q°Q).
Taking the quotient

tan 2r = 20V ___ U.U # VoV,
UsU = VoV

If U-U = V+V, make r = J .
Having found r we find P and Q from the equation
P+1Q = (cos r = 1 sin r)(U + 1V),
It is readily shown that r, P, and Q thus determined do in
fact satisfy equation (4.3).



POLYADICS

The equation
(A'B‘)O“ = A (B“‘C“) o« = 1..0.’ m,
where A is an arbitrary vector, defines the entity
$ 4 B0y
called a dyadic by Gibbs., Likewise
(A+B )G, D = A+(B,C.D, )
defines

(3)
¥ =BC.D,
called a triadic, Obviously this definition can be ex-

tended by induction to define

g (¥) -8l 8 ... &,
called a polyadic or order k.
It is evident from the definition that two poly-
adics § and ¥ of the same order are equal if and only if
A+$# = A+¥(or equivalently § *A = ¢+A) for an
arbitrary bivector A.
The double dot product of two polydiecs §

= upuf... f and ¥ = NyNG... WYWSTLo., MY 15 defined as
2 i 1. 1 ¥ . +1 +m
®:¥ ?ii lﬂ. HJ ﬁ H? ens l& H}: H? ese HJ; .

The dot product of two polydies is defined as

(0500 M) o (W3NG L0 )
= wfon} wing. .. mfiNgNg.L . N
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The conjugate ; of a polyadiec $§ = mimf... lt is

defined as & = Ii ﬂf vés l: , the norm |3 as

’*'“ VQ’; .
For more information about polydics we give the

references 3, pp. 1l35«77; 5, pp. 52-84; 6, pp. 260=331; 7,
pp. 93-114; 8, pp. 21-24g, pp. S2-74,
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DERIVATIVES OF POLYADIC FUNCTIONS

Definition 6A., For a polyadic function § (Z)

lim
Z>rZ,

§(z) =4

if and only if for an arbitrary € >o there exists a §>o0
such that

|#(2z) = A|< €
for all Z satisfying

0422 )< § .

We say that ¢ (Z) is continuous at Zo if and only if

lim

= $(z) = $(z,) .

Consider a polyadic function L(Z) of a bivector
variable Z, We denote by dZ any change in Z from a fixed
value Z,, that is, dZ = Z2-Z,. Writing Z = X + 1Y we have
dZ = dX + 1dY. Let

4“"‘“‘-(20) =0(z) - 0(z,) .

Definition 6B, fl (Z) is differentiable at Z, if and

only if we can write

(6.1) 40(2y) = AZ+Dpf(Zp) + dX+§,(dz) + a¥+$p(dz), where
Dz(Zy) 1s a polyadic independent of dZ, and $,(dZ) and
$5(dz) are polyadics satisfying

(6.2) o En(@2) = 2,(0) = 0 m=1,2,


http:dZ�Dz.D.CZ
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Dzn(zo).ia called the derivative with respect to Z at Z, .
Similarly we define & partial derivative of a
funetion A(W,Z) with respect to one variable, say Z. Let

A, 00 ,2 ) =2(W ,2) = 0(Wy,2,) .

Definition 6C, . 1s differentiable with respect to
Z at W=W,, Z2=Z, if, and only 1if,

(6.3) AgR(W,,Z,) = AZQz(Wo,2Z) + dX+¢,(dZ) + d¥+¢p(az),
where 05 (W, ,%Z,) is a-polyadie independent of dZ and

1im

(6.4) az+0

!m(dz) - §m(0) =0 m= 1,2,

R5(W,,Z,) is called the partial derivative of L with
respect to Z,

Theorem 6A. If D W(Z) exists at Z, and D A(W)
exists at W = U + iV = W(Z,), then
(6.5) Dz (W(Zg)) = DzW(Zo)+Dy (W) W, = W(Z,) .
Write
4w = W(z) - W(Zg)
AQ=40(w) - n(W,)
(6,6) AW = AZ+D,W(Z,) + dX-§,(dz) + ayv-§,(az)

(6,7) AR= ai-n,n(wo) + AU<¥, (W) + AV+¥5(4W), where

o $nldZ) = 8,(0) = 0 m = 1,2

qlm §aUW) =gy(0) =0 .
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Substituting (6,6) into (6.7) we obtain
A0 = azDyW(Z, ) *Dy(Wp) + aX+[3(aZ) + av+lp(az),
where
Fy(az) = ¢, (az)+D W, ) + [RDyW(z,) + Ae ¢ 4(az)]-
“¥q (AW) + [UnDzW(Zg) + dm &4 (a2)]+¥5 (W)
Mp(dz) =35(az)DyMWy) + [= ImDgW(Zy) + A § o(az)]-
¥, (AW) + [Ae DpW(Zg) + du B (a2 )] Fp(4W).
The symbols Re and Im followed by a polyadic represent
respectively the real and the imaginary components of the
polyadic., Since every term of I, end [, contains an in-

finitesimal factor we have

1lim
dz >0

and our result is obtained.

Mpldz) = I,(0) = 0 m= 1,2,

It is readily shown that
(6.8) Dy (aZ) = aI,
(6.9) Dyé=0,
where a is a complex number, I is the idemfactor (5, p. 58)
and ¢ is a constant polyadic.
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GENERALIZATION OF THE CAUCHY-RIEMANN CONDITIONS

For a polyadic function f1(Z), we may write
£(z) = '(X,Y) + 1A(X,Y),
where Z = X + 1Y and all the bivectors composing " and A
are real.
Then by (6.8) and (6.9)
(7.1) Zx = I
(7.2) Zy = 1I.
By (6.5), (7.1) and (7.2)
.D.x = Zy*Dy = I«Dypfi= Dy )
Ny = Zy'Dgfd= iI.Dzfk= 1D, N,
that is
DyR=fy = «i0y .,
Upon replacing N1(Z) by I'(X,Y) + 1A(X,Y) we obtain
Dpf=Ty + 1Ay = «ily +Ay .
Setting the real parts equal and the imaginary parts
equal, we obtain
(7.3) Py = Ay A = =y
which are the bivector equivalents of the Cauchy~Riemann
conditions,

Definition 7A. A neighborhood of a point Z, is a
set of points satisfying

|2 = 24| < @ e >0 ,
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Theorem 7A, Consider a function
n(z) = rx,y) + 1A(x,Y)

and let Iy A, 'y, I'ys Ay, and Ay exist and be continuous
in a neighborhood of Z,. Then for D; N to exist at Z in
the neighborhood of Z, it 1s necessary and sufficient that

My =y Fy = =My -

The necessary condition has already been proved.

For Z and Z + dZ in the neighborhood of Z, write

(7.4) AT = (X+dX, Y+dY) - (X,Y) = [(X+dX, Y+dY)
- F(X,Y+dY) + [(X,Y+dY) - [(X,Y) .
But
(7.8) I'(X,Y+dY) = I'(X,Y) = d¥+[y(X,Y) + a¥+¢,(dY) ,

where
o F1(aY) = 2y(0) =0,
Also
(7.6) I (X+dX, Y+Y) - (X, Y+dY) = aX«[}(X,¥Y+dY)
+ dX«$,(dX) ,
where

o ¥elax) =ép(0) =0 ,

Since Fk is continuous we have
7.7)  Tx(X,¥Y4dY) = M (X,Y) + ¢5(ay),
where

dzn.:o Qs(dY) - Qs(o) =0.
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Substituting (7.7) into (7.6) and then (7.5) and (7.6)
into (7.4) we obtain
AT = axe 3 (X,Y) + a¥eTy(X,Y)
+ dX.¥,(az) + a¥.¥,(az) ,

where

¥q(az) =$p(ax) + $5(ay) ,

Yolaz) =¢,(ay) .
It immediately follows that

lim

dza’o?,(dZ) = Pn(0) =0 m= 1,2,

Similarly
AN = aXeAy(X,Y) + a¥+Ay(X,Y)
+ dX+P5(dZ) + a¥eg,(az) ,
where
11 '

sz ¥m(8Z) = Fp(0) = 0 m = 3,4,

Therefore

AD=0(2+442) = 0(Z) = Ar+ 1 AA
= dx.r'x + dY. r"!- s dx.il + dY.i'z
+ 1(dXOAx+dYoAY+dx-fs"'dY'f4) .
Replace 'y by ~Ay and Ay by I’y and obtain

A= (dI+1dY)'rx + 1(G.X+1dY)¢Ax + 51'95 - dY's'g
= Gz ([HA)) + aXg_ +aTg

where



Fg = ¥y +1¥5 ,

Obviously

1lim
az->o "™
Therefore Dz exists and

Dpf = Iy + hy .

?6'}24'1?4 .

Yo = ¥nl0) =0

17

m= 5,6,
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GEOMETRICAL CONSIDERATIONS.

Definition 8A. A line in %, is a set of points Z

described by the equation
Z = A + DB
where A and B are constant bivectors and b is a real para-
meter. It can be shown easily that two points determine a
line,
Definition 8B. A manifold of type 1 in ¥y, 1s a
set of points Z described by

2 =A+DbB +0oC,
wvhere A, B, and C are constant bivectors, and b and ¢ are
real parameters,
It is evident that a line through any two points
in a menifold of type 1 lies entirely in the manifold.
Definition 8C. A manifold of type 2 1s a set

described by
Z =A + aB + b(iB)
where A and B are constant bivectors and a and b are real
parameters,
We may write w = a + ib and put this equation in
the form
Z =A+WwB,

where w is a complex parameter,
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Definition 8D. A regular curve in¥p, 1s a set

Z = F(t) -végstib i@
where F 1s a continuous function with a continuous first
derivative except possibly at a finite number of points
in every finite interval of the variable t.

Definition 8E, A simple closed curve is a regular

curve where a and b are finite and F gives a one to one
correspondence between points on the curve and numbers t
in the interval except that
F(a) = F(b) .
Definition 8F, A closed regular hypersurface is

a set of points satisfying the condition that every inter-
section with a manifold of type 1 is a simple closed curve.
An example of such a surface is the one described
by the equation
[z -Bl =2,

where B is a constant bivector.
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ANALYTIC FUNCTIONS

Definition 9A. A polyddic function fL(Z) is analy-

tic at a point Z, if and only if D,fl exists at every point
in some neighborhood of Z,. Sl is analytic in a region if
L is analytic at every point in the region,

Theorem 9A. If f(Z) is analytic in the interior

and on the boundary of a region bounded by a closed regular
hypersurface, and if f is known on the boundary, its value
at every point in the interior is determined,
For an arbitrary point Z = A in the interior con-
sider any manifold of type 2 passing through Z = A:
Z=A +wB,
The manifold intersects the closed regular hypersurface in
a simple closed curve
Z=A+w(t)B tlé.-t éta
w(ty )=w(tg)
where w(t) is a simple closed curve about the origin in
the complex number plane. We have
£(z) = £(A+wB) = g(w) .
Then
S8 = B .Dyr
in some neighborhood of every point in the complex plane
inside and on the curve w(t), Therefore g(w) is analytic
inside and on the curve, and by the Cauchy integral formula
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glo) is determined. Since
£(A) = glo)
£(A) is determined.
Theorem 9B, Under the hypotheses of Theorem 9A

f(Z) is continuous along every line in the interior of the
region,
An arbitrary line

Z =A +DbB b real
lies in some manifold of type 2,

Z=A+wB,
Since g(w) is continuous along the line w=b (the line of
reals) in the complex plane, f(Z) 1s continuous along the
line Z = A + bB,
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SURFACE INTEGRALS

Consider the bivector space ¥,,. In a complete
Euclidean subset ¥ of ¥ there exists an orthonormal basis
Ey, Egyeees Ey (1, pp. 192-93), We may regardJ as being
a subspace (1, p. 164) of a Euclidean vector space 82::'
Then the set E;, Ep,«ve, E, can form part of an orthonormal
basis of 82!: (1, po 193). Let Py, Fo,sse, F, be a set of
vectors in szn which together with the set E;, Eg,..., By

form an orthonormal basis of Gzn. Then

(10.1) Ei'EJ = ‘.‘-.j Fi'FJ = Sij
Ei’Fj L - 1’3 - 1’2’000' n.
Let
$ = FyEq I = 11 + Ig

We observe that
I,+¢=0 $.150 =0
I+Ig = IgeIy =0 ,

If R is an element of Ezn and Z = X + 1Y is an ele~
ment of ‘Vn, a one to one oorroapondenc_e between the elements
of W, and €g, is established by the relation
(10.3) R=X + §Y .

This makes E, in %, correspond to Ep in 5, and 1E, in ﬁfn
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correspond to F, in €5, ¥ = 1,2,..., n. The inverse
transformation is
(10,4) X = ReI, ,
Y = }T.R =Re$,

where §, is the transpose of ¢; or we may write
(10.5) Z =Re(Iy*i¢) .
We shall call %, and €o, associated spaces and the ele-
ments Z snd R = X + §+Y corresponding elements.

Consider ¥ (R), a continuous real polyadic function
of R in €p,3 and 2(z) = I'(X,Y) + 1A(X,Y), an analytic poly~-
adic function of Z = X + 1Y in "n' We designate by

= , a closed regular hypersurface in wn
o', surface in 62n corresponding to ¢«
r;: subdivisions of ¢!
Ty subdivisions of ¢ corresponding to ri
Ry, any point in ¢
Zy, any point in 0'1(21 =X+ iYi)
Aay, the hyperarea of d';

N, the unit normal to o'

L= N-(Ilﬁj), the element of % corresponding to
N. We shall call L the unit normal to 7,

Let Z} and Zj be points in ~,, and Rl and RY be
points in cr;. We define



A £ i 1 ni
= max (sup ’Zl 22] 3 21,22 in ri)

!
4= max (sup [Ri-Ré[ 3 Ri,Ré in o";J v

Then a surface integral of £ over ¢ is

1lim k .
(10,6) [ Lfda =k»0 ¥ L(Z;)UZ )Aa,
o A+0 1i=1 '

Also a surface integral of ¥ over ¢’ is
lim k
(10,7) [ ,N¥da =k >® ¥ N(Ry)¥(Ry)day .
r 4 =»o 1=1

24



SOME DIFFERENTIAL IDENTITIES

Differentiating (10.4) we obtain
(11.1) DX = I,
DY = ¢,
where the derivatives are understood to be taken with
respect to R, Also

Dr= Dx.rx + M‘FY = Il'rx ""'FY

= rx +§'rY *
Therefore

Del = (Fy), + (8o Ty,

where by the subscript s we indicate contraction on the

first two vector files of the polyadic, Thus if
1,2,3
Fy = AlaEAS .., AK
then

1,,2,3 Kk
([R)g = APAVAL oon A

When we write
{ ]
we find that

. r = ' LR ]
L ]
= F, E, E, .+.E
rilig...ik 1,71713 i *

and

25
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($Ty)g = ¥, Fy *By Eq +0eBy =0 ,
The " ¥i 10 Ry vesly

2"'1k
Therefore
(11.2) DelP= (Ix)g »
By Hostetter's method (8, pp., 46-48)
D(#) = p[@]r
D(¢.r) =D[®.1P= (1)(&) : DI
= (I)(®) : ([x+eeTy) .

If we set
Ty ® Ve,40...0, B1 B, By, 0
My = ¥310.001, B Brgees By o
then
(I)(8) s Tx = Ug,00,,.0, 5,08 0, B »
and
((1)(@) = Pxls = ¥yqa,..00) B *Fy By By By
=0.
Also

Pely =¥ . Fy By E sie |2
Y 13 000t Pi By By 1.

(I)(3) 2 (@+Ty) = Uiliz...ik e Fa Ra B, B

i1

[(1)(@): (@eTy)g =¥y 4 .4 Fy *Fy By By oo E .
12""" 1 234 k



But

and

[(1)(§) ¢ (BeTy)],

Therefore
(11,.3)

1
=g S

27

F, +F, = E, +E
i, "1 iy Tig 0

E, *Ey E; B oo E
1 1, MpTigTiy ig

= (nf)s "

k

D.(Q'F) - (rY)’ .



AN INTEGRAL THEOREM

We now prove a theorem that is an analogue of the
Cauchy-Goursat Theorem (4, pp. 81-82),
Theorem 12A, If a polyadic function N (Z) is analy-

tic inside and on a closed regular hypersurface ¢ in ¥

then
(12.1) T, = [Lefaa=0
o=
Proof:
: 4 kum }]:!t L(Zg4) (24 )A
= el . a
1 40 i=1 i i > |
- }if (Ry) » (1+18) « [F( )
= k->® N ° I+i ® X 'Y
4> o i=1 " e
+1A(X4,Y3)] 4 a4
= Tl + 1‘1'2
where
lim k
¥)=k>@ 3 N(Ry) + [TyeM(Xy,Yy) = §A(Xyq,Yq)]dey ,
&' >0 i=1
¥ xlim ‘11:‘ N(Ry ) * [TqeA(Xq,¥%3) + $o(X3,Y4)]4
= [ ] 5 L] ’ . a .
2 A'ao 181 i ) 4 i»*1 1231 i
Therefore

}1 EbnttrqéoA)da »

Fg = [Ne(A+§:T)aa .

By the divgrgénoo theorem for polyadics in Ezn’ the proof of
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which is an immediate generalization of the proof given
by Hostetter ror'Es (8, pp. 96=97,),

¥ = [ Delr=ppiar

}2 = jr D-(A+§-l")d1’.

where the integral is taken over the region 7 inclosed by
o' and 47 is an element of hypervolume.
By (11.2) and (11.3)

¥y = S [Ux)g = (Ay)glax
¥o = [ [(hg)g + (Fy)glar .

By the generalization of the Cauchy-Riemann condi-
tions (7.3),

r‘x-AY-o Ax+f‘!.-0.
Therefore

(Ty)g = (Ay)g =0  (Ax)g + (Iy)g =0,
and

¥,=0, ¥2=0.
Therefore

I,=0,
which completes the proof,
Since we can write
(12.2) ¥p= [ LAda= | L:I)0da

= f'_L-Oda "



where

9= 1,0,

and since from (14,1)
f.— L*®da =0 ,

we have

(12.3) Tgo =0,

which is a more general result than Ty, = 0 .
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