A THESIS
submitted to
OREGON STATE COLLEGE
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
June 1956

APPROVED:

Redacted for Privacy

Professor of Mathematics
In Charge of Major
Redacted for"Privacy
Head of Department of Mathematics
Redacted for Privacy
Chairman of School Graduate Committee
Redácted fór Privacy
Dean of Graduate School

Date thesis is presented. Wov, 28,1955
Typed by Edith S. Mimopoulos

ACKNOWLEDGMENT

I gratefully acknowledge the interest and assistance of Professor Hostetter under whose guidance this work was done.

TABLE OF CONTENTS

Page
Introduction 1
Vector Spaces 2
Euclidean Subsets 4
Gibbs' Result 8
Polyadics 9
Derivatives of Polyadic Functions 11
Generalization of the Cauchy-Riemann Conditions 14
Geometrical Considerations 18
Analytic Functions 20
Surface Integrals 22
Some Differential Identities 25
An Integral Theorem 28
Bibliography 31

SOME ANALYTICAL PROPERTIES OF BIVECTORS

INTRODUCTION

In this thesis is presented some elementary theory concerning bivector spaces, which are defined as being finite dimensional vector spaces over the field of complex numbers in which there is an inner product obeying certain postulates.

Derivatives for polyadic functions are defined, a generalization of the Cauchy-Riemann conditions is derived, and necessary and sufficient conditions for the existence of the derivative are proved. Included are two theorems about analytic functions known on the boundary of a closed hypersurface. Finally a result analogous to the CauchyGoursat theorem but involving surface integrals is derived.

VECTOR SPACES

Definition 2A. A vector space $V(g)(1, p .162)$
over a field 7 is a set of elements (called vectors) with the operations of addition and multiplication defined and obeying the following postulates:
(1) V is an Abelian group under addition.
(2) For every vector A and every element a of 7 , the product a determines a unique vector in \boldsymbol{v}.
(3) $a \mathrm{~A}=\mathrm{Aa}$
(4) $a(A+B)=a A+a B$
(5) $\quad(a+b) A=a A+b A$
(6) $(a b) A=a(b A)$
(7) $1 \mathrm{~A}=\mathrm{A}$.

Definition 2B. A Euclidean vector space (1, p. 189) is a vector space $V(a)$ over the field of real numbers a such that to every two vectors A and B in $V(\mathbb{R})$ there corresponds a unique real number which we designate by $A \cdot B$ (called the inner product) satisfying the following properties:
(1) $\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$
(2) $(a A) \cdot B=a(A \cdot B)$
a real
(3) $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$
(4) $A \cdot A>0$ unless $A=0$

$$
0.0=0 .
$$

Definition 2C. A bivector space W_{n} is the vector
space $V_{n}(C)$ of dimension $n(1, p p .168-9)$ over the field of complex numbers C such that to every two elements A and B
of $V_{n}(C)$ there corresponds a unique complex number which we designate by $A \cdot B$ (called the inner product of A and B) satisfying the following properties:
(1) $\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$
(2) $(a \mathrm{~A}) \cdot \mathrm{B}=a(\mathrm{~A} \cdot \mathrm{~B}) \quad$ a complex
(3) $A \cdot(B+C)=A \cdot B+A \cdot C$.
(4) There exists a linear independent set (1, p. 167) of elements $\left\{A_{1}\right\}, 1=1,2, \ldots, n$, such that $A_{i} \cdot A_{i} \neq$ - (1 not summed) for all $i=1,2, \ldots, n$.

We shall call the elements of W_{n} bivectors.

EUCLIDEAN SUBSETS

Hereafter we shall use the summation convention, repeated indices indicating summation on those indices unless otherwise stated. Thus

$$
a_{i} A_{1}=\sum_{i=1}^{n} a_{1} A_{i}
$$

Definition 3A. Given $\left\{A_{\alpha}\right\}, \alpha=1,2, \ldots, k \leq n$, a linear independent set (1, p. 167) of vectors in $V_{n}(7)$, and given a field \& which is either of or subfield (1 , p. 36) of 7 , we form the set P of all linear combinations $B=a_{\alpha} A_{\alpha}, a_{\alpha}$ ing. We say that P is the set spanned over \& by $\left\{A_{\alpha}\right\}, \alpha=1,2, \ldots, k$.

Definition 3B. If a subset \mathcal{f} of a bivector space W_{n} is a Euclidean vector space of dimension $k, l \leq k \leq n$, under the addition, multiplication, and inner product operations in W_{n}, we say that \mathcal{A} is a Euclidean subset of W_{n}. Definition 3C. If $\mathcal{\ell}$ has the dimension n, \mathcal{l} is a complete Euclidean subset of W_{n}.

Theorem 3A. In any w_{n} there exists a complete Euclidean subset.

We shall show that there exists an independent set $\left\{B_{i}\right\}, i=1,2, \ldots, n$, in W_{n} such that

$$
\begin{equation*}
B_{i} \cdot B_{k}=\delta_{i k} \tag{3.1}
\end{equation*}
$$

which is sufficient to prove the theorem since the subset spanned over Q by $\left\{B_{i}\right\}$ is a Euclidean vector space. Let $\left\{A_{i}\right\}$ be a set of n independent elements of W_{n} satisfying postulate 4, Definition 2C. Then for any set of n elements $\left\{B_{1}\right\}$ in W_{n} we can write

$$
B_{1}=b_{1 j^{A}} \quad 1=1,2, \ldots, n
$$

since the set $\left\{A_{1}\right\}$ is a basis ($1, \mathrm{pp}, 168-9$) of w_{n}. Then

$$
B_{i} \cdot B_{k}=b_{i j} b_{k m} A_{j} \cdot A_{m}=\alpha_{j m} b_{i j} b_{k m} \text {, }
$$

where

$$
\alpha_{j m}=A_{j} \cdot A_{m} \quad(\neq \circ \text { for } j=m)
$$

Set

$$
\alpha_{j m} b_{i j} b_{k m}=\delta_{i k},
$$

and we have $\frac{n}{2}(n+1)$ equations in the n^{2} unknowns $b_{i j}$, which has an infinite number of solutions for $n>1$ (and one solution if $n=1$). The set $\left\{B_{i}\right\}$ is independent because if not, there exists a set of numbers b_{i} not all zero such that

$$
b_{1} B_{1}=0 .
$$

Suppose $b_{1} \neq 0$, then

$$
B_{1}=-\frac{1}{b_{1}} \quad b_{i} B_{i} \quad i=2, \ldots, n,
$$

and

$$
B_{1} \cdot B_{1}=-\frac{1}{b_{1}} \quad b_{1} B_{1} \cdot B_{1}=0 \quad i=2, \ldots, n,
$$

which contradicts (3.1).

We note that a set of n linear independent vectors $\left\{C_{1}\right\}$ of a complete Euclidean subset \mathcal{A} of W_{n} forms a basis of W_{n} and any bivector z of W_{n} can be written

$$
\begin{align*}
z & =\alpha_{1} c_{1}=\left(a_{1}+i b_{1}\right) c_{1} \tag{3.2}\\
& =a_{1} c_{1}+i b_{1} c_{i}=x+i Y
\end{align*}
$$

where α_{1} are complex numbers, a_{1} and b_{i} are real numbers, and X and Y are vectors in \mathcal{d}.

It seems that for W_{n} there might be only one complete Euclidean subset; however this is not true.

Theorem 3B. For $\mathrm{n} \geqslant 2$ there are more than one complete Euclidean subset in W_{n}.

Consider an orthonormal basis $\left\{B_{i}\right\}, i=1,2, \ldots, n$, of \mathcal{d}, a complete Euclidean subset of W_{n}. Define

$$
\begin{aligned}
& D_{1}=a B_{1}+i b B_{2} \\
& D_{2}=1 b B_{1}-a B_{2},
\end{aligned}
$$

where a and b are any two real numbers satisfying

$$
a^{2}-b^{2}=1 \quad b \neq 0 .
$$

Then

$$
\begin{array}{ll}
D_{\alpha} \cdot D_{\beta}=\delta_{\alpha \beta} & \alpha, \beta=1,2 \\
D_{\alpha} \cdot B_{1}=0
\end{array} \quad \alpha, \beta=1,2 ; i=3,4, \ldots, n
$$

That is, the set $\left\{D_{1}, D_{2}, B_{3}, \ldots, B_{n}\right\}$ satisfies (3.1) and therefore constitutes a basis of a complete Euclidean subset.

Hereafter in our discussion of W_{n} we shall assume that a definite complete Euclidean subset $\mathcal{\alpha}$ has been chosen and whenever we write an arbitrary bivector as a sum $Z=$ $X+i Y, X$ and Y are elements of \mathcal{A}.

We shall call a bivector $Z=X+i Y$ real or complex depending upon whether Y is or is not null. The conjugate \bar{Z} of Z is $\overline{\mathrm{Z}}=\mathrm{X}-\mathrm{iY}$ and the norm $|\mathrm{Z}|$ of Z is defined as $|z|=\sqrt{z \cdot \bar{z} .}$

GIBBS ' RESULT

We shall generalize to W_{n} a result that Gibbs obtained for $W_{3}(5, p p, 87-88)$. Every bivector $Z=U+i V$ can be written in the form

$$
\begin{equation*}
z=e^{i r}(P+i Q), \tag{4.1}
\end{equation*}
$$

where

$$
(4.2) \quad P \cdot Q=0
$$

To prove this we show that in the equation
(4.3) $\quad U+i V=(\cos r+i \sin r)(P+i Q)$
r, P, and Q are determinable.
Taking the inner product of each side by itself we obtain

$$
U \cdot U-V \cdot V+2 I U \cdot V=(\cos 2 r+i \sin 2 r)(P \cdot P-Q \cdot Q) .
$$

It follows that

$$
\begin{aligned}
& U \cdot U-V \cdot V=\cos 2 r(P \cdot P-Q \cdot Q) \\
& 2 U \cdot V=\sin 2 r(P \cdot P-Q \cdot Q) .
\end{aligned}
$$

Taking the quotient

$$
\tan 2 r=\frac{2 U \cdot V}{U \cdot U-V \cdot V} \quad U \cdot U \neq V \cdot V
$$

If $\mathrm{U} \cdot \mathrm{U}=\mathrm{V} \cdot \mathrm{V}$, make $\mathrm{r}=\frac{\pi}{4}$.
Having found r we find P and Q from the equation

$$
P+1 Q=(\cos r-1 \sin r)(U+i V) .
$$

It is readily shown that r, P, and Q thus determined do in fact satisfy equation (4.3).

POLYADICS

The equation

$$
\left(A \cdot B_{\alpha}\right) C_{\alpha}=A\left(B_{\alpha} C_{\alpha}\right) \quad \alpha=1, \ldots, m
$$

where A is an arbitrary vector, defines the entity

$$
\Phi=B_{\alpha} C_{\alpha}
$$

called a dyadic by Gibbs. Likewise

$$
\left(A \cdot B_{\alpha}\right) C_{\alpha} D_{\alpha}=A \cdot\left(B_{\alpha} C_{\alpha} D_{\alpha}\right)
$$

defines

$$
\Psi^{(3)}=B_{\alpha} C_{\alpha} D_{\alpha},
$$

called a triadic. Obviously this definition can be extended by induction to define

$$
\Phi(k)=B_{\alpha}^{l} B_{\alpha}^{2} \ldots B_{\alpha}^{k}
$$

called a polyadic or order k.
It is evident from the definition that two polyadios Φ and I of the same order are equal if and only if

$$
A \cdot \Phi=A \cdot \Psi(\text { or equivalently } \Phi \cdot A=\Psi \cdot A) \text { for an }
$$

arbitrary bivector A.
The double dot product of two polydies Φ
$=M_{i}^{1} M_{i}^{2} \ldots M_{i}^{k}$ and $\Psi=N_{j}^{1} N_{j}^{2} \ldots N_{j}^{k_{j}^{k}} N_{j}^{k+1} \ldots N_{j}^{k+m}$ is defined as
$\Phi: \Psi=\Psi: \Phi=M_{i}^{1} \cdot N_{j}^{l} \quad N_{i}^{2} \cdot N_{j}^{2} \ldots M_{i}^{k} \cdot N_{j}^{k} \quad N_{j}^{k+1} \ldots N_{j}^{k+m}$.
The dot product of two polydies is defined as

$$
\begin{aligned}
& \left(M_{i}^{l} M_{i}^{2} \ldots M_{i}^{k}\right) \cdot\left(N_{j}^{l} N_{j}^{2} \ldots N_{j}^{m}\right) \\
& \quad=M_{i}^{k} \cdot N_{j}^{l} M_{i}^{l} M_{i}^{2} \ldots M_{i}^{k-1} N_{j}^{2} N_{j}^{3} \ldots N_{j}^{m} \quad
\end{aligned}
$$

The conjugate $\bar{\Phi}$ of a polyadic $\Phi=M_{i}^{1} M_{i}^{2} \ldots M_{i}^{k}$ is defined as $\bar{\Phi}=\pi_{1}^{2} \pi_{i}^{2} \ldots \pi_{i}^{k}$, the norm $|\Phi|$ as

$$
|\Phi|=\sqrt{\Phi: \Phi} .
$$

For more information about polydies we give the references 3, pp. 135-77; 5, pp. 52-84; 6, pp. 260-331; 7, pp. 93-114; 8, pp. 21-245, pp. 62-74.

DERIVATIVES OF POLYADIC FUNCTIONS

Definition 6A. For a polyadic function $\Phi(z)$

$$
\lim _{z \rightarrow z_{0}} \Phi(z)=1
$$

if and only if for an arbitrary $\epsilon>0$ there exists a $\delta>0$ such that

$$
|\Phi(z)-1|<\epsilon
$$

for all Z satisfying

$$
0<\left|z_{-2}\right|<\delta .
$$

We say that $\Phi(Z)$ is continuous at Z_{0} if and only if

$$
\lim _{z \rightarrow z_{0}} \Phi(z)=\Phi\left(z_{0}\right)
$$

Consider a polyadic function $\Omega(Z)$ of a bivector variable Z. We denote by dz any change in Z from a fixed value Z_{0}, that is, $d Z=Z-Z_{0}$. Writing $Z=X+i Y$ we have $d z=d x+1 d y$. Let

$$
\Delta \Omega=\Delta \Omega\left(z_{0}\right)=\Omega(z)-\Omega\left(z_{0}\right) .
$$

Definition $6 B . \Omega(Z)$ is differentiable at Z_{0} if and only if we can write
(6.1) $\Delta \Omega\left(Z_{0}\right)=d Z \cdot D_{Z} \Omega\left(Z_{0}\right)+d x \cdot \Phi_{1}(d Z)+d Y \cdot \Phi_{2}(d Z)$, where $\mathrm{D}_{\mathrm{Z}}\left(\mathrm{Z}_{0}\right)$ is a polyadic independent of dZ , and $\Phi_{1}(\mathrm{dZ})$ and $\Phi_{2}(d Z)$ are polyadies satisfying
(6.2)
$\lim _{d Z \rightarrow 0} \Phi_{m}(\mathrm{dZ})=\Phi_{\mathrm{m}}(0)=0$

$$
m=1,2
$$

$D_{Z} \Omega\left(Z_{0}\right)$ is called the derivative with respect to Z at Z_{0}. Similarly we define a partial derivative of a function $\Omega(W, Z)$ with respect to one variable, say Z. Let

$$
\Delta_{z} \Omega\left(W_{0}, Z_{0}\right)=\Omega\left(W_{0}, z\right)-\Omega\left(W_{0}, Z_{0}\right)
$$

Definition 6C. Ω is differentiable with respect to Z at $\mathrm{W}=\mathrm{W}_{\mathrm{O}}, \mathrm{Z}=\mathrm{Z}_{\mathrm{O}}$ if, and only if,

$$
\text { (6.3) } \Delta_{Z} \Omega\left(W_{0}, Z_{0}\right)=d Z \cdot \Omega_{Z}\left(W_{0}, Z_{0}\right)+d X \cdot \Phi_{1}(d Z)+d Y \cdot \Phi_{2}(d Z) \text {, }
$$ where $\Omega_{Z}\left(W_{0}, Z_{0}\right)$ is a polyadic independent of $d Z$ and (6.4) $\quad \lim _{d Z \rightarrow 0} \Phi_{m}(d Z)=\Phi_{m}(0)=0 \quad m=1,2$.

$\Omega_{Z}\left(W_{0}, Z_{0}\right)$ is called the partial derivative of Ω with respect to Z.

Theorem 6A. If $D_{Z} W(Z)$ exists at Z_{0} and $D_{w} n(W)$ exists at $W=U+i V=W\left(Z_{O}\right)$, then
(6.5) $\quad D_{Z} \Omega\left(W\left(Z_{0}\right)\right)=D_{Z} W\left(Z_{0}\right) \cdot D_{W} \Omega\left(W_{0}\right)$

$$
w_{0}=w\left(z_{0}\right)
$$

Write

$$
\begin{aligned}
& \Delta W=W(Z)-W\left(Z_{0}\right) \\
& \Delta \Omega=\Omega(W)-\Omega\left(W_{0}\right) \\
& \text { (6.6) } \Delta W=d Z \cdot D_{Z} W\left(Z_{0}\right)+d X \cdot \Phi_{2}(d Z)+d Y \cdot \Phi_{2}(d Z) \\
& \text { (6.7) } \Delta \Omega=\Delta W \cdot D_{W} \Omega\left(W_{0}\right)+\Delta U \cdot \Psi_{1}(\Delta W)+\Delta V \cdot \Psi_{2}(\Delta W) \text {, where } \\
& \lim _{d Z \rightarrow 0} \Phi_{m}(d Z)=\Phi_{m}(0)=0 \quad m=1,2 \\
& \lim _{\Delta W \rightarrow 0} \Psi_{m}(\Delta W)=\Psi_{m}(0)=0 .
\end{aligned}
$$

Substituting (6.6) into (6.7) we obtain

$$
\Delta \Omega=d Z \cdot D_{Z} W\left(Z_{0}\right) \cdot D_{w} \Omega\left(\mathbb{W}_{0}\right)+d X \cdot \Gamma_{1}(d Z)+d Y \cdot \Gamma_{2}(d Z),
$$

where

$$
\begin{aligned}
& \Gamma_{1}(d Z)=\Phi_{1}(d Z) \cdot D_{w} \Omega\left(W_{0}\right)+\left[R_{2} D_{Z} W\left(Z_{0}\right)+h_{e} \Phi_{1}(d Z)\right] . \\
& \cdot \Psi_{1}(\Delta W)+\left[\ln D_{Z} W\left(Z_{0}\right)+\operatorname{lm} \Phi_{1}(d Z)\right] \cdot \Psi_{2}(\Delta w) \\
& \Gamma_{2}(d Z)=\Phi_{2}(d Z) \cdot D_{w} \Omega\left(W_{0}\right)+\left[-\ln D_{Z} W\left(Z_{0}\right)+R_{e} \Phi_{2}(d Z)\right] . \\
& \cdot \Psi_{1}(\Delta W)+\left[A_{e} D_{z} W\left(Z_{0}\right)+\ln \Phi_{2}(d Z)\right] \cdot \Psi_{2}(\Delta W) \text {. }
\end{aligned}
$$

The symbols Re and Im followed by a polyadic represent respectively the real and the imaginary components of the polyadic. Since every term of Γ_{1} and Γ_{2} contains an infinitesimal factor we have

$$
\lim _{d Z \rightarrow 0} \Gamma_{m}(d Z)=\Gamma_{m}(0)=0 \quad m=1,2,
$$

and our result is obtained.
It is readily shown that
(6.8) $\quad D_{Z}(a Z)=a I$,
(6.9) $\quad D_{Z} \Phi=0$,
where a is a complex number, I is the idemfactor (5, p. 58) and Φ is a constant polyadic.

GENERALIZATION OF THE CAUCHY-RIEMANN CONDITIONS

For a polyadic function $\Omega(Z)$, we may write

$$
\Omega(Z)=\Gamma(X, Y)+1 \Lambda(X, Y)
$$

where $Z=X+i Y$ and all the bivectors composing Γ and Λ are real.

Then by $(6,8)$ and (6.9)
(7.1) $\quad Z_{X}=I$
(7.2) $\quad Z_{Y}=1 I$.

By (6.5), (7.1) and (7.2)

$$
\begin{aligned}
& \Omega_{\mathrm{X}}=\mathrm{Z}_{\mathrm{X}} \cdot D_{\mathrm{Z}} \Omega=I \cdot D_{\mathrm{Z}} \Omega=D_{\mathrm{Z}} \Omega \\
& \Omega_{\mathrm{Y}}=Z_{\mathrm{Y}} \cdot D_{\mathrm{Z}} \Omega=i I \cdot D_{Z} \Omega=1 D_{Z} \Omega
\end{aligned}
$$

that is

$$
\mathrm{D}_{\mathrm{Z}} \Omega=\Omega_{\mathrm{X}}=-i \Omega_{\mathrm{Y}}
$$

Upon replacing $\Omega(Z)$ by $\Gamma(X, Y)+i \wedge(X, Y)$ we obtain

$$
D_{\mathrm{Z}} \Omega=\Gamma_{\mathrm{X}}+i \Lambda_{\mathrm{X}}=-i \Gamma_{\mathrm{Y}}+\Lambda_{\mathrm{Y}}
$$

Setting the real parts equal and the imaginary parts equal, we obtain

$$
\text { (7.3) } \quad \Gamma_{\mathrm{X}}=\Lambda_{\mathrm{Y}} \cdot \quad \Lambda_{\mathrm{X}}=-\Gamma_{\mathrm{Y}}
$$

which are the bivector equivalents of the Cauchy-Riemann conditions.

Definition 7A. A neighborhood of a point Z_{0} is a set of points satisfying

$$
\left|z-z_{0}\right|<c \quad c>0
$$

Theorem 7A. Consider a function

$$
\Omega(z)=\Gamma(x, y)+i \wedge(x, y)
$$

and let $\Gamma, \Lambda, \Gamma_{\mathrm{X}}, \Gamma_{\mathrm{Y}}, \Lambda_{\mathrm{X}}$, and Λ_{Y} exist and be continuous in a neighborhood of Z_{0}. Then for $D_{Z} \Omega$ to exist at Z in the neighborhood of Z_{0} it is necessary and sufficient that

$$
\Gamma_{\mathrm{X}}=\Lambda_{\mathrm{Y}}, \quad \Gamma_{\mathrm{Y}}=-\Lambda_{\mathrm{X}} .
$$

The necessary condition has already been proved.
For z and $\mathrm{z}+\mathrm{dz}$ in the neighborhood of Z_{0} write

$$
\text { (7.4) } \begin{aligned}
\Delta \Gamma & =\Gamma(\mathrm{x}+\mathrm{dx}, \mathrm{y}+\mathrm{dy})-\Gamma(\mathrm{x}, \mathrm{y})=\Gamma(\mathrm{x}+\mathrm{dx}, \mathrm{y}+\mathrm{dY}) \\
& -\Gamma(\mathrm{x}, \mathrm{y}+\mathrm{dY})+\Gamma(\mathrm{x}, \mathrm{y}+\mathrm{dy})-\Gamma(\mathrm{x}, \mathrm{y}) .
\end{aligned}
$$

But
(7.5) $\quad \Gamma(\mathrm{X}, \mathrm{Y}+\mathrm{dY})-\Gamma(\mathrm{X}, \mathrm{Y})=\mathrm{dY} \cdot \Gamma_{\mathrm{Y}}(\mathrm{X}, \mathrm{Y})+\mathrm{dY} \cdot \Phi_{2}(\mathrm{dY})$, where

$$
\lim _{d Z \rightarrow 0} \Phi_{1}(d Y)=\Phi_{1}(0)=0
$$

Also
(7.6)

$$
\begin{aligned}
& \Gamma(X+d X, Y+d Y)-\Gamma(X, Y+d Y)=d X \cdot \Gamma_{X}(X, Y+d Y) \\
& \quad+d X \cdot \Phi_{2}(d X),
\end{aligned}
$$

where

$$
\lim _{d z \rightarrow 0} \Phi_{2}(d x)=\Phi_{2}(0)=0
$$

Since Γ_{X} is continuous we have
(7.7) $\quad \Gamma_{\mathrm{X}}(\mathrm{x}, \mathrm{y}+\mathrm{dY})=\Gamma_{\mathrm{X}}(\mathrm{x}, \mathrm{y})+\Phi_{3}(\mathrm{dY})$,
where

$$
\lim _{d Z \rightarrow 0} \Phi_{3}(d Y)=\Phi_{3}(0)=0
$$

Substituting (7.7) into (7.6) and then (7.5) and (7.6) into (7.4) we obtain

$$
\begin{aligned}
\Delta \Gamma= & d x \cdot \Gamma_{X}(x, y)+d Y \cdot \Gamma_{Y}(x, y) \\
& +d x \cdot \Psi_{1}(d z)+d y \cdot \Psi_{2}(d Z),
\end{aligned}
$$

where

$$
\begin{aligned}
& \Psi_{1}(d Z)=\Phi_{2}(d X)+\Phi_{3}(d Y) \\
& \Psi_{2}(d Z)=\Phi_{1}(d Y)
\end{aligned}
$$

It immediately follows that

$$
\lim _{d z \rightarrow 0} \Psi_{m}(d z)=\Psi_{m}(0)=0 \quad m=1,2
$$

Similarly

$$
\begin{aligned}
\Delta \Lambda= & d X \cdot \Lambda_{X}(X, Y)+d Y \cdot \Lambda_{Y}(X, Y) \\
& +d X \cdot \Psi_{3}(d Z)+d Y \cdot \Psi_{4}(d Z),
\end{aligned}
$$

where

$$
\lim _{d Z \rightarrow 0} \Psi_{m}(d Z)=\Psi_{m}(0)=0 \quad m=3,4
$$

Therefore

$$
\begin{aligned}
\Delta \Omega= & \Omega(Z+d Z)-\Omega(Z)=\Delta \Gamma+i \Delta \Lambda \\
= & d X \cdot \Gamma_{X}+d Y \cdot \Gamma_{Y}+d X \cdot \Psi_{1}+d Y \cdot \Psi_{2} \\
& +i\left(d X \cdot \Lambda_{X}+d Y \cdot \Lambda_{Y}+d X \cdot \Psi_{3}+d Y \cdot \Psi_{4}\right) .
\end{aligned}
$$

Replace Γ_{Y} by $-\Lambda_{\mathrm{X}}$ and Λ_{Y} by Γ_{X} and obtain

$$
\begin{aligned}
\Delta \Omega & =(d X+i d Y) \cdot \Gamma_{X}+i(d X+i d Y) \cdot \Lambda_{X}+d X \cdot \Psi_{5}+d Y \cdot \Psi_{6} \\
& =d Z \cdot\left(\Gamma_{X}+1 \Lambda_{Y}\right)+d X \cdot \Psi_{5}+d Y_{6}, \Psi_{6},
\end{aligned}
$$

where

$$
\Psi_{5}=\Psi_{1}+i \Psi_{3}, \quad \Psi_{6}=\Psi_{2}+i \Psi_{4}
$$

Obviously

$$
\lim _{d z \rightarrow 0} \Psi_{m}=\Psi_{m}(0)=0 \quad m=5,6
$$

Therefore $D_{Z} \Omega$ exists and

$$
\mathrm{D}_{\mathrm{z}} \Omega=\Gamma_{\mathrm{X}}+1 \Lambda_{\mathrm{X}}
$$

GEOMETRICAL CONSIDERATIONS

Definition 8A. A line in W_{n} is a set of points Z described by the equation

$$
\mathrm{z}=\mathrm{A}+\mathrm{bB}
$$

where A and B are constant bivectors and b is a real parameter. It can be shown easily that two points determine a line.

Definition 8B. A manifold of type 1 in W_{n} is a set of points Z described by

$$
z=A+b B+c C
$$

where A, B, and C are constant bivectors, and b and c are real parameters.

It is evident that a line through any two points in a manifold of type 1 lies entirely in the manifold.

Definition 8C. A manifold of type 2 is a set
described by

$$
z=A+a B+b(i B)
$$

where A and B are constant bivectors and a and b are real parameters.

We may write $w=a+i b$ and put this equation in the form

$$
Z=A+w B,
$$

where w is a complex parameter.

Definition 8D. A regular curve in W_{n} is a set

$$
z=F(t) \quad-\infty \leq a \leq t \leq b \leq+\infty,
$$

where F is a continuous function with a continuous first derivative except possibly at a finite number of points in every finite interval of the variable t.

Definition 8E. A simple closed curve is a regular curve where a and b are finite and F gives a one to one correspondence between points on the curve and numbers t in the interval except that

$$
F(a)=F(b) .
$$

Definition 8F. A closed regular hypersurface is a set of points satisfying the condition that every intersection with a manifold of type I is a simple closed curve.

An example of such a surface is the one described by the equation

$$
|Z-B|=2,
$$

where B is a constant bivector.

ANALYTIC FUNCTIONS

Definition 9A. A polyadic function $\Omega(Z)$ is analytic at a point Z_{o} if and only if $D_{Z} \Omega$ exists at every point in some neighborhood of Z_{0}, Ω is analytic in a region if Ω is analytic at every point in the region.

Theorem 9A. If $f(Z)$ is analytic in the interior and on the boundary of a region bounded by a closed regular hypersurface, and if f is known on the boundary, its value at every point in the interior is determined.

For an arbitrary point $Z=A$ in the interior consider any manifold of type 2 passing through $Z=A$:

$$
Z=A+w B
$$

The manifold intersects the closed regular hypersurface in a simple closed curve

$$
\begin{aligned}
& Z=A+w(t) B t_{1} \leq t \leq t_{2} \\
& w\left(t_{1}\right)=w\left(t_{2}\right)
\end{aligned}
$$

where $w(t)$ is a simple closed curve about the origin in the complex number plane. We have

$$
f(Z)=f(A+w B)=g(w)
$$

Then

$$
\frac{d g}{d w}=B \cdot D_{Z} f
$$

in some neighborhood of every point in the complex plane inside and on the curve $w(t)$. Therefore $g(w)$ is analytic inside and on the curve, and by the Cauchy integral formula
$g(0)$ is determined. Since

$$
f(A)=g(0)
$$

$f(A)$ is determined.
Theorem 9B. Under the hypotheses of Theorem 9A
$f(Z)$ is continuous along every line in the interior of the region.

An arbitrary line

$$
z=A+b B \quad b \text { real }
$$

lies in some manifold of type 2 ,

$$
Z=A+w B
$$

Since $g(w)$ is continuous along the line $w=b$ (the line of reals) in the complex plane, $f(Z)$ is continuous along the Ine $\mathrm{z}=\mathrm{A}+\mathrm{bB}$.

SURFACE INPEGRALS

Consider the bivector space \mathbb{W}_{n}. In a complete Euclidean subset $\&$ of W_{n} there exists an orthonormal basis $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}(1, \mathrm{pp} .192-93$). We may regard \downarrow as being a subspace ($1, p, 164$) of a Euclidean vector space $\varepsilon_{2 n}$. Then the set $E_{1}, E_{2}, \ldots, E_{n}$ can form part of an orthonormal basis of $\varepsilon_{2 n}(1, p .193)$. Let $F_{1}, F_{2}, \ldots, F_{n}$ be a set of vectors in $\varepsilon_{2 n}$ which together with the set $E_{1}, E_{2}, \ldots, E_{n}$ form an orthonormal basis of $\varepsilon_{2 n}$. Then
(10.1)

$$
\begin{aligned}
& E_{i} \cdot E_{j}=\delta_{i j} \\
& E_{i} \cdot F_{j}=0
\end{aligned}
$$

$$
F_{i} \cdot F_{j}=\delta_{i j}
$$

$$
i, j=1,2, \ldots, n
$$

Let
(10.2)

$$
\begin{aligned}
I_{1} & =E_{1} E_{i} \\
\Phi & =F_{i} E_{1}
\end{aligned}
$$

$$
I_{2}=F_{i} F_{i}
$$

$$
I=I_{1}+I_{2}
$$

We observe that

$$
\begin{aligned}
& I_{1} \cdot \Phi=0 \quad \Phi \cdot I_{2}=0 \\
& I_{1} \cdot I_{2}=I_{2} \cdot I_{1}=0 .
\end{aligned}
$$

If R is an element of $\varepsilon_{2 n}$ and $Z=X+i Y$ is an element of W_{n}, a one to one correspondence between the elements of ψ_{n} and $\varepsilon_{2 n}$ is established by the relation (10.3) $R=X+\Phi \cdot Y$.

This makes E_{k} in W_{n} correspond to E_{k} in $\varepsilon_{2 n}$ and $i E_{k}$ in W_{n}
correspond to F_{k} in $\varepsilon_{2 n}, k=1,2, \ldots, n$. The inverse transformation is

$$
\begin{array}{ll}
(10.4)
\end{array} \quad \begin{aligned}
& X=R \cdot I_{I}, \\
& Y=\Phi_{T} \cdot R=R \cdot \Phi,
\end{aligned}
$$

Where Φ_{T} is the transpose of Φ; or we may write (10.5) $\quad Z=R \cdot\left(I_{1}+1 \Phi\right)$.

We shall call W_{n} and $E_{2 n}$ associated spaces and the elements Z and $\mathrm{R}=\mathrm{X}+\Phi \cdot \mathrm{Y}$ corresponding elements.

Consider $\Phi(R)$, a continuous real polyadic function of R in $\xi_{2 n}$; and $\Omega(Z)=\Gamma(X, Y)+i \Lambda(X, Y)$, an analytic polyadic function of $Z=X+i Y$ in W_{n}. We designate by
σ, a closed regular hypersurface in W_{n}
σ^{\prime}, surface in $\varepsilon_{2 n}$ corresponding to σ
σ_{i}^{\prime}, subdivisions of σ^{\prime}
σ_{i}, subdivisions of σ corresponding to σ_{i}^{\prime}
R_{1}, any point in σ_{i}^{\prime}
Z_{i}, any point in $\sigma_{i}\left(Z_{i}=X_{i}+i Y_{i}\right)$
Δa_{i}, the hyperarea of σ_{i}^{1}
N, the unit normal to σ^{\prime}
$I=N \cdot\left(I_{1}+1 \Phi\right)$, the element of W_{n} corresponding to
N. We shall call L the unit normal to σ.
Let z_{1}^{1} and z_{2}^{i} be points in σ_{1}, and R_{1}^{1} and R_{2}^{1} be points in σ_{1}^{\prime}. We define

$$
\begin{aligned}
& \Delta=\max _{1}\left(\sup \left|Z_{1}^{i}-Z_{2}^{i}\right| ; Z_{1}^{i}, z_{2}^{i} \text { in } \sigma_{1}\right) \\
& \Delta^{\prime}=\max _{1}\left(\sup \left|R_{1}^{i}-R_{2}^{i}\right| ; R_{1}^{i}, R_{2}^{i} \text { in } \sigma_{i}^{\prime}\right) .
\end{aligned}
$$

Then a surface integral of Ω over σ is
(10.6) $\quad \int_{\sigma} L \Omega d a=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} L\left(z_{i}\right) \Omega\left(z_{i}\right) \Delta a_{i}$

Also a surface integral of Ψ over σ^{\prime} is
(10.7) $\quad \int_{\sigma^{\prime}} N \Psi d a=\lim _{\Delta^{\prime} \rightarrow \infty} \sum_{i=1}^{k} N\left(R_{i}\right) \Psi\left(R_{i}\right) \Delta a_{i}$.

SOME DIFFERENTIAL IDENTITIES

Differentiating (10.4) we obtain
(11.1)

$$
\begin{aligned}
& D X=I_{1} \\
& D Y=\Phi,
\end{aligned}
$$

where the derivatives are understood to be taken with respect to R. Also

$$
\begin{aligned}
\mathrm{D} \Gamma & =\mathrm{DX} \cdot \Gamma_{\mathrm{X}}+D \mathrm{Y} \cdot \Gamma_{\mathrm{Y}}=I_{1} \cdot \Gamma_{\mathrm{X}}+\Phi \cdot \Gamma_{\mathrm{Y}} \\
& =\Gamma_{\mathrm{X}}+\Phi \cdot \Gamma_{\mathrm{Y}} .
\end{aligned}
$$

Therefore

$$
D \cdot \Gamma=\left(\Gamma_{\mathrm{X}}\right)_{\mathrm{S}}+\left(\Phi \cdot \Gamma_{\mathrm{Y}}\right)_{\mathrm{S}}
$$

where by the subscript s we indicate contraction on the first two vector files of the polyadic. Thus if

$$
\Gamma_{X}=A_{\alpha}^{1} A_{\alpha}^{2} A_{\alpha}^{3} \ldots A_{\alpha}^{k}
$$

then

$$
\left(\Gamma_{X}\right)_{s}=A_{\alpha}^{I} \cdot A_{\alpha}^{2} A_{\alpha}^{3} \ldots A_{\alpha}^{k} .
$$

When we write

$$
\Gamma_{Y} \equiv \gamma_{i_{1} i_{2} \ldots i_{k}} E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}
$$

we find that

$$
\begin{aligned}
\Phi \cdot \Gamma_{Y} & =\delta_{i_{1} j} \gamma_{i_{1} i_{2} \ldots i_{k}} F_{j} E_{i_{2}} E_{i_{3}} \ldots E_{i_{k}} \\
& =\gamma_{i_{1} i_{2} \ldots i_{k}}^{\prime} F_{i_{1}} E_{i_{2}} E_{i_{3}} \ldots E_{i_{k}}
\end{aligned}
$$

and

$$
\left(\Phi \cdot \Gamma_{Y}\right)_{s}=\gamma_{i_{1} i_{2}}^{\prime} \ldots i_{k} \quad F_{i_{1}} \cdot E_{i_{2}} E_{i_{3}} \ldots E_{i_{k}}=0
$$

Therefore
(11.2)

$$
D \cdot \Gamma=\left(\Gamma_{X}\right)_{\mathrm{S}}
$$

By Hostetter's method (8, pp, 46-48)

$$
\begin{aligned}
D(\Phi \Gamma) & =D[\Phi] \Gamma \\
D(\Phi \cdot \Gamma) & =D[\Phi \cdot] \Gamma=(I)(\Phi): D \Gamma \\
& =(I)(\Phi):\left(\Gamma_{X}+\Phi \cdot \Gamma_{Y}\right)
\end{aligned}
$$

If we set

$$
\begin{aligned}
& \Gamma_{X}=\gamma_{i_{1} i_{2} \ldots i_{k}} E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}, \\
& \Gamma_{Y}=\gamma_{i_{1}} i_{2} \ldots i_{k} E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}},
\end{aligned}
$$

then

$$
(I)(\Phi): r_{X}=\gamma_{i_{1}} i_{2} \ldots i_{k} E_{i_{1}} F_{i_{2}} E_{i_{3}} E_{1_{4} \ldots} E_{i_{k}},
$$

and

$$
\begin{aligned}
{\left[(I)(\Phi): \Gamma_{X}\right]_{s} } & =\gamma_{i_{1} i_{2} \ldots i_{k}} E_{i_{1}} \cdot F_{i_{2}} E_{i_{3}} E_{i_{4}} \ldots E_{i_{k}} \\
& =0
\end{aligned}
$$

Also

$$
\begin{aligned}
& \Phi \cdot \Gamma_{Y}=\gamma_{i_{1}}^{\prime} i_{2} \ldots i_{k} F_{i_{1}} E_{i_{2}} E_{i_{3}} \ldots E_{i_{k}} \\
& (I)(\Phi):\left(\Phi \cdot \Gamma_{Y}\right)=\gamma_{i_{1} i_{2}}^{\prime} \ldots i_{k} F_{i_{1}} F_{i_{2}} E_{i_{3}} E_{i_{4}} \ldots{ }_{E_{i}} \\
& {\left[(I)(\Phi):\left(\Phi \cdot \Gamma_{Y}\right)\right]_{s}=\gamma_{1_{1}}^{\prime} i_{2} \ldots i_{k} F_{i_{1}} \cdot F_{i_{2}} E_{i_{3}} E_{i_{4}} \ldots E_{i_{k}} .}
\end{aligned}
$$

But

$$
F_{i_{1}} \cdot F_{i_{2}}=E_{i_{i}} \cdot E_{i_{2}}
$$

and

$$
\begin{aligned}
{\left[(I)(\Phi):\left(\Phi \cdot \Gamma_{Y}\right)\right]_{s} } & =\gamma_{i_{1} i_{2}}^{\prime} \ldots i_{k} E_{1_{1}} \cdot E_{i_{2}} E_{i_{3}} E_{i_{4}} \ldots E_{i_{k}} \\
& =\left(\Gamma_{Y}\right)_{s} .
\end{aligned}
$$

Therefore
(11.3)

$$
D \cdot(\Phi \cdot \Gamma)=\left(\Gamma_{\mathrm{Y}}\right)_{\mathbf{s}}
$$

AN INTEGRAL THEOREM

We now prove a theorem that is an analogue of the Cauchy-Goursat Theorem (4, pp. 81-82).

Theorem 12A. If a polyadic function $\Omega(Z)$ is analytic inside and on a closed regular hypersurface σ in W_{n} then
(12.1)

$$
X_{1}=\int_{\sigma} L \cdot \Omega d a=0
$$

Proof:

$$
\begin{aligned}
r_{1}= & \lim _{\substack{k \rightarrow \infty \\
\Delta \rightarrow 0}} \sum_{i=1}^{k} L\left(z_{i}\right) \cdot \Omega\left(z_{i}\right) \Delta a_{i} \\
= & \lim _{\substack{k \rightarrow \infty \\
\Delta \rightarrow 0}} \sum_{i=1}^{k} N\left(R_{i}\right) \cdot(I+i \Phi) \cdot\left[\Gamma\left(x_{i}, Y_{i}\right)\right. \\
& \left.+i \wedge\left(x_{1}, x_{i}\right)\right] \Delta a_{1} \\
= & \Psi_{1}+i \Psi_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Psi_{1}=\lim _{\substack{\Delta^{\prime} \rightarrow \infty \\
\lim _{i}}} \sum_{i=1}^{k} N\left(R_{1}\right) \cdot\left[I_{1} \cdot \Gamma\left(x_{1}, Y_{1}\right)-\Phi \cdot \Lambda\left(X_{1}, Y_{1}\right)\right] \Delta a_{1}, \\
& \Psi_{2}=\lim _{\substack{ \\
\Delta^{\prime} \rightarrow \infty}} \sum_{i=1}^{k} N\left(R_{1}\right) \cdot\left[I_{1} \cdot \Lambda\left(X_{1}, Y_{1}\right)+\Phi \cdot \Gamma\left(X_{1}, Y_{1}\right)\right] \Delta a_{1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \Psi_{1}=\int_{\sigma} N \cdot(\Gamma-\Phi \cdot \Lambda) d a, \\
& \Psi_{2}=\int_{\sigma^{\prime}} N \cdot(\Lambda+\Phi \cdot \Gamma) d a .
\end{aligned}
$$

By the divergence theorem for polyadics in $\varepsilon_{2 n}$, the proof of
which is an immediate generalization of the proof given by Hostetter for ε_{3} (8 , pp. 96-971),

$$
\begin{aligned}
& \Psi_{1}=\int_{\tau} D \cdot(\Gamma-\Phi \cdot \Lambda) d \tau \\
& \Psi_{2}=\int_{\tau} D \cdot(\Lambda+\Phi \cdot \Gamma) d \tau
\end{aligned}
$$

where the integral is taken over the region τ inclosed by σ^{\prime} and $d \tau$ is an element of hypervolume.

By (11.2) and (11.3)

$$
\begin{aligned}
& \Psi_{\mathrm{I}}=\int_{\mathrm{r}}\left[\left(\Gamma_{\mathrm{X}}\right)_{\mathrm{s}}-\left(\Lambda_{\mathrm{Y}}\right)_{\mathrm{s}}\right] \mathrm{d} r \\
& \Psi_{2}=\int_{\tau}\left[\left(\Lambda_{\mathrm{X}}\right)_{\mathrm{s}}+\left(\Gamma_{\mathrm{Y}}\right)_{\mathrm{s}}\right] \mathrm{d} r .
\end{aligned}
$$

By the generalization of the Cauchy-Riemann condilions (7.3),

$$
\Gamma_{X}-\Lambda_{\mathrm{Y}}=0 \quad \Lambda_{\mathrm{X}}+\Gamma_{\mathrm{Y}}=0
$$

Therefore

$$
\left(\Gamma_{\mathrm{X}}\right)_{\mathrm{s}}-\left(\Lambda_{\mathrm{Y}}\right)_{\mathrm{s}}=0 \quad\left(\Lambda_{\mathrm{X}}\right)_{\mathrm{s}}+\left(\Gamma_{\mathrm{Y}}\right)_{\mathrm{s}}=0,
$$

and

$$
\Psi_{1}=0, \quad \Psi_{2}=0 .
$$

Therefore

$$
r_{1}=0,
$$

which completes the proof.
Since we can write

$$
\text { (12.2) } \begin{aligned}
Y_{2} & =\int_{\sigma} L \Omega d a=\int_{\sigma} L \cdot I_{1} \Omega d a \\
& =\int_{\sigma} L \cdot \theta d a,
\end{aligned}
$$

where

$$
\Theta=I_{1} \Omega,
$$

and since from (14.1)

$$
\int_{\sigma} L \cdot \theta d a=0,
$$

we have

$$
\text { (12.3) } \quad \Upsilon_{2}=0 \text {, }
$$

which is a more general result than $\boldsymbol{X}_{1}=0$.

BIBLIOGRAPHY

1. Birkhoff, Garrett and Saunders MacLane. A survey of modern algebra. Rev, ed. New York, Macmillan, 1953. 472p.
2. Bochner, Salmon and William Ted Martin. Several complex variables. Princeton, Princeton university, 1948. 216p. (Princeton mathematical series, no. 10.)
3. Brand, Louis. Vector and tensor analysis. New York, John Wiley, 1947. 439p.
4. Churchill, Ruell V. Introduction to complex variables and applications. New York, McGraw-Hill, 1948. 216p.
5. Gibbs, Josiah Willard. The collected works of Josiah Willard Gibbs. Vol. 2. Part 2. New Haven, Yale university, 1928. 284p.
6. Gibbs, J. Willard and Edwin Bidwell Wilson. Vector analysis. New Haven, Yale university, 1901. 436p.
7. Hostetter, I. M. Polyadic products. Journal of mathematics and physics 22: 93-114. June, 1943.
8. Hostetter, I. M. Notes on vector analysis. Corvallis, Oregon state college, 1952. 140p. (Mimeographed.)
9. Knopp, Konrad. Theory of functions. Tr. by Frederick Bagemihl. Vol. 1. New York, Dover, 1945. 146p.
10. Lohr, Erwin. Vektor-und Dyadenrechnung fthr Physiker und Techniker. Berlin, Walter De Gruyter, 1939. 411p.
11. Sommerville, Duncan McLaren Young. An introduction to the geometry of n dimensions. New York, E. P. Dutton, 1929. 196p.
