

AN ABSTRACT OF THE DISSERTATION OF

Jesse A. Hostetler for the degree of Doctor of Philosophy in Computer Science

presented on March 20, 2017.

Title: Monte Carlo Tree Search with Fixed and Adaptive Abstractions

Abstract approved:

Thomas G. Dietterich Alan P. Fern

Monte Carlo tree search (MCTS) is a class of online planning algorithms for Markov

decision processes (MDPs) and related models that has found success in challenging

applications. In the online planning approach, the agent makes a decision in the current

state by performing a limited forward search over possible futures and selecting the

course of action that is expected to lead to the best outcomes. This thesis proposes a

new approach to MCTS based on abstraction and progressive abstraction refinement that

makes better use of a limited number of samples. Our first contribution is an analysis

of state abstraction in the MCTS setting. We describe a class of state aggregation

abstractions that generalizes previously-proposed abstraction criteria and show that the

regret due to planning with such abstractions is bounded. We then adapt popular MCTS

algorithms to use fixed state abstractions. Our second contribution is a novel approach

to MCTS based on abstraction refinement. We propose the Progressive Abstraction

Refinement for Sparse Sampling (PARSS) algorithm, which begins by performing sparse

sampling with a coarse state abstraction and then refines the abstraction progressively

to make it more accurate. The PARSS algorithm provides the same formal guarantees as

ordinary sparse sampling, and we show experimentally that PARSS outperforms sparse

sampling in the ground state space and with fixed uninformed abstractions. Our third

contribution is an extension of the progressive refinement idea to incorporate other kinds

of abstraction. For this purpose, we introduce the formalism of abstraction diagrams

(ADs) and show that ADs can express diverse kinds of abstraction, including state

abstraction, temporal abstraction, and action pruning. We then describe refinement

operators for ADs, extending the progressive refinement search framework to abstractions

represented as ADs. Our fourth and final contribution is an application of online planning

algorithms to the problem of controlling electrical transmission grids to mitigate the

effects of equipment failures. Our work in this area is distinguished by the use of a

full dynamical model of the power grid, which captures more mechanisms of cascading

failure than simpler models. Because of the computational cost of the simulation, we

choose simple online planning algorithms that require a small number of simulation

trajectories. Our results demonstrate the superiority of the online planning approach

to fixed expert policies, while also highlighting the need for faster simulators to enable

more sophisticated solution algorithms.

c©Copyright by Jesse A. Hostetler
March 20, 2017

All Rights Reserved

Monte Carlo Tree Search with Fixed and Adaptive Abstractions

by

Jesse A. Hostetler

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented March 20, 2017

Commencement June 2017

Doctor of Philosophy dissertation of Jesse A. Hostetler presented on March 20, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Jesse A. Hostetler, Author

ACKNOWLEDGEMENTS

I have been fortunate to have had many mentors in my academic life. I could not have

hoped for better PhD advisors than Thomas Dietterich and Alan Fern. In my time as a

student both of you have always been generous with your knowledge and accomodating of

my interests and eccentricities. I am grateful to Ashok Samal, Leen-Kiat Soh, and Berthe

Choueiry for picquing my interest in computer science research as an undergraduate and

preparing me for my graduate education. I also owe a great deal to Anne Cognard, from

whom I learned intellectual rigor and how to write a research paper.

I am pleased to acknowledge the financial support of Caron and Larry Ogg for a

portion of my graduate education. Thank you for many enjoyable conversations.

I thank my parents, Mary Sawicki and Karl Hostetler, for their constant support and

for cultivating my love of science. Finally, I thank the members of Meatbomb – Aswin

Raghavan, Gayathry Lakshminarasimhan, and Dale Lawson – for keeping me sane and

giving me something to look forward to on the weekends.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Outline . 3

2 Background 5

2.1 Markov Decision Processes . 5

2.2 Solving MDPs . 6

2.2.1 Dynamic Programming . 6

2.2.2 Reinforcement Learning . 7

2.2.3 Online Planning . 8

2.3 Monte Carlo Tree Search . 8

2.3.1 MDPs over State-Action Histories 9

2.3.2 Sparse Sampling . 10

2.3.3 Trajectory Sampling . 11

3 State Aggregation Abstractions for Tree Search 12

3.1 Introduction . 12

3.2 History Aggregation . 12

3.3 A Regret Bound for State Abstraction in Tree Search 14

3.4 Abstract MDPs as Partially Observable MDPs 18

3.5 MCTS Algorithms using Fixed Abstractions 19

3.5.1 Framework and Notation . 20

3.5.2 Representing Abstractions in Tree Search 21

3.5.3 Abstract Sparse Sampling . 22

3.5.4 Abstract Forward Search Sparse Sampling 24

3.5.5 Abstract Trajectory Sampling . 27

3.5.6 Handling Action Constraints . 31

3.6 Related Work . 32

3.7 Summary . 33

4 Progressive Abstraction Refinement for Sparse Sampling 34

4.1 Introduction . 34

4.2 Abstraction Refinement . 34

4.3 Progressive Abstraction Refinement for Sparse Sampling 35

4.3.1 Analysis of PARSS . 37

TABLE OF CONTENTS (Continued)
Page

4.3.2 Optimizing Memory Usage . 40

4.3.3 Abstraction Refinement in Trajectory Sampling 41

4.4 Refinement Strategies . 42

4.4.1 State Node Selection . 42

4.4.2 State Abstraction Refinement . 44

4.5 Related Work . 45

4.6 Experiments . 47

4.6.1 Algorithms . 47

4.6.2 Domains . 48

4.6.3 Methods . 53

4.7 Results . 54

4.7.1 Performance of PARSS . 54

4.7.2 Performance of >-FSSS . 55

4.7.3 Performance of ⊥-FSSS . 55

4.7.4 Comparing PARSS Variations . 59

4.7.5 Performance of rand-FSSS . 60

4.7.6 Stochastic Branching Factor vs. Best Algorithm 61

4.7.7 On the Performance of >-FSSS 61

4.7.8 Memory Consumption and Large Action Spaces 63

4.7.9 Summary of Results . 63

4.8 Summary . 64

5 Extending PARSS: Abstraction Diagrams and Progressive Abstract Tree Search:

Joint work with Ankit Anand 67

5.1 Introduction . 67

5.2 MDP Abstractions as Policy Set Constraints 67

5.3 Abstraction Diagrams . 69

5.3.1 State Aggregation . 70

5.3.2 MDP Homomorphisms . 70

5.3.3 Temporal Abstraction . 72

5.3.4 Action Pruning . 72

5.3.5 History Abstractions . 73

5.4 Tree Search with ADs . 73

5.5 Refinements . 74

TABLE OF CONTENTS (Continued)
Page

5.5.1 State Node Splitting . 76

5.5.2 Action Set Expansion . 78

5.5.3 Unzipping . 78

5.5.4 Composing Refinement Operations 79

5.6 Progressive Abstract Tree Search . 79

5.7 Related Work . 80

6 Applying Online Planning to Blackout Mitigation in Power Transmission Grids 83

6.1 Introduction . 83

6.2 Background . 84

6.2.1 Power Grid Simulation . 85

6.2.2 The Cosmic Power Simulator . 85

6.2.3 Emergency Control for Transmission Systems 87

6.3 Online Planning for Mitigating Blackouts 88

6.3.1 MDP formulation . 88

6.3.2 Optimization Objective . 88

6.3.3 Stochasticity . 89

6.3.4 Baseline Policies . 90

6.3.5 Policy Rollout . 91

6.4 Experiments . 93

6.4.1 Transmission Grid Architectures 93

6.4.2 Identifying failure cases . 94

6.4.3 Common Random Numbers . 94

6.4.4 Baseline Policies . 94

6.5 Results . 95

6.6 Discussion and Future Work . 98

7 Conclusion and Future Work 99

Bibliography 101

Appendices 108

A Proofs . 109

LIST OF FIGURES
Figure Page

3.1 (a) An example of an MDP for which a (0,∞)-consistent abstraction is

unsound [Li et al., 2006]. The edge labels like “a/0.5” mean action a yields

immediate reward 0.5. (b) A history MDP for which a (0,∞)-consistent

abstraction 〈χ, µ〉 is unsound for some weighting functions µ 6= µ∗. Edge

labels denote transition probabilities. 15

4.1 (a) An abstract FSSS tree of width C = 2 and depth d = 2. The small

circles and squares represent ground state and action nodes, respectively.

Ground nodes are aggregated into abstract nodes, but the structure of the

ground tree is retained. The arrows show how value estimates propagate

in the abstract tree. Note that part of the tree was not expanded. (b) Af-

ter refining one state abstraction, the ground samples are re-partitioned

to respect the new abstraction. The abstract FSSS invariant (Defini-

tion 5) no longer holds. (c) After up-sampling and value backups, the

tree again satisfies the abstract FSSS invariant. The pruned subtree had

to be expanded because abstraction refinement changed the value estimates. 35

4.2 Domains where PARSS outperformed all other algorithms. 56

4.3 Domains where >-FSSS outperformed Ground and Random. Note that

all PARSS variants performed equally as well as >-FSSS. 57

4.4 Domains where ⊥-FSSS was best. Note that all PARSS variants per-

formed equally as well as ⊥-FSSS. In the Elevators domain, the best

performance occurred when the width parameter was C = 1. Since all the

algorithms are equivalent if C = 1, the results shown are identical. 58

4.5 A critical difference plot [Demšar, 2006] showing the pairwise differences

in performance among the PARSS variants. The horizontal scale shows

the average rank of each algorithm, with smaller ranks indicating better

performance. Algorithms connected by a dark line had statistically iden-

tical performance at the p = 0.05 level. This plot was produced by the R

package scmamp [Calvo and Santafe, 2015]. 59

4.6 Comparing all PARSS variations on the Saving domain. The BF order

performs poorly when Tm = 3 because it refines many abstraction relations

that are already sound. 60

LIST OF FIGURES (Continued)
Figure Page

5.1 Examples of abstraction diagrams . 71

5.2 Part of a tree-structured AD incorporating several kinds of abstraction. . 72

5.3 A sequence of two unzip operations applied to a fragment of an abstraction

diagram. 76

6.1 The IEEE39 grid topology [Athay et al., 1979]. The dark lines are buses,

the lighter lines are branches, the arrows are shunts (which connect to

loads), and the circles are generators. 86

6.2 Comparison of policy rollout to baseline policies in IEEE39. 95

6.3 Comparison of policy rollout to baseline policies in RTS96. 96

6.4 Comparison of policy rollout to baseline policies in the stochastic version

of IEEE39. Note that there are 10 times as many data points in this

experiment compared to deterministic IEEE39, because each failure case

was replicated 10 times with different random numbers. 97

LIST OF TABLES
Table Page

4.1 Minimum and maximum stochastic branching factors of the experimental

domains. Note that the maximum branching factor of Spanish Blackjack

might be higher than 524, but this occurs only when completing the

dealer’s hand and only extremely rarely. 62

6.1 Characteristics of the test domains under deterministic dynamics. The

values V , RH , and tblackout are calculated for the uncontrolled grid. 93

LIST OF ALGORITHMS
Algorithm Page

1 Abstract MCTS Framework . 20

2 Abstract Sparse Sampling . 22

3 Abstract Forward Search Sparse Sampling 28

4 Abstract Trajectory Sampling (with UCT Variation) 30

5 A generic abstraction refinement procedure 36

6 Modified Sample procedure for PARSS 37

7 Progressive Abstraction Refinement for SS 65

8 Modified Sample procedure for rand-FSSS 66

9 Abstract Sparse Sampling with an Abstraction Diagram 75

10 Abstract Trajectory Sampling with an Abstraction Diagram 81

11 Progressive Abstract Sparse Sampling . 82

Chapter 1: Introduction

Sequential decision making under uncertainty is the problem of deciding what to do in a

world that changes stochastically over time. Examples include choosing the fastest route

for a taxi to take or operating a power plant to maximize generation and minimize fuel

consumption. The goal is to obtain a controller or policy that prescribes the actions to

take to optimize some performance criterion. A policy is a function π that maps a state

of the world to an action. A taxi driving policy, for example, might take the destination

and the next street intersection as input and produce “left”, “right”, or “straight” as

output. An optimal taxi driving policy would reach the destination in the shortest time

possible.

Policies fall roughly into two categories — reactive policies and deliberative policies

— differentiated by whether evaluating the policy involves reasoning about the future.

A reactive policy is a more-or-less direct mapping from states to actions, such as a hash

table with states for keys and actions for values. A deliberative policy, by contrast,

explicitly reasons about the likely outcomes of different actions and selects the action

that produces the best outcomes. One can think of a deliberative policy as a lazy policy,

since it delays computing the result of π(s) until it is called for.

The two types of policies excel in different applications. Reactive policies are ex-

pensive to compute initially, because it is not known at which states the policy will be

evaluated and thus a complete policy that is defined in every state is required. Once

computed, however, reactive policies make decisions quickly, which makes them suitable

for real-time decision-making. Deliberative policies, on the other hand, do not waste

computation on states that are never actually encountered. There is no substantial up-

front computation and no large policy to represent and store. The price of laziness is

that each decision actually taken requires a significant amount of computation. Delib-

erative policies are needed when the problem is big enough that computing and storing

the action choice for all of the states is impractical.

Deliberative policies are realized via the process of online planning (OP). Given the

current state s, an OP algorithm evaluates π(s) by constructing a partial policy π̃ that

2

is expected to be effective for the immediate future following s and returning the action

choice π̃(s). For efficiency, the planning problem is typically simplified in some way, such

as by approximating the dynamics with a small number of samples or restricting the

action choices available to π̃. Although this means that each partial policy π̃ is unlikely

to be optimal, the process of continual re-planning allows the deliberative policy π(s) to

perform better than each partial policy.

Within the online planning family, Monte Carlo tree search (MCTS) algorithms

[Browne et al., 2012] and particularly the UCT algorithm [Kocsis and Szepesvári, 2006]

have risen to prominence, largely due to the success of UCT variants in the game of go

[Gelly and Silver, 2007; Silver et al., 2016] and in other complex domains (e.g. [Balla

and Fern, 2009; Guo et al., 2014]). MCTS algorithms estimate the values of the available

actions in the current state s by sampling a tree of possible future trajectories rooted

at s. The size of the search tree, and thus the number of transition samples necessary

to build it, is O((|A|B)d), where |A| is the size of the action set, B is the maximum

number of possible stochastic outcomes of any action (the stochastic branching factor),

and d is the search depth. The key property of MCTS algorithms like UCT and sparse

sampling (SS) [Kearns et al., 2002] is that they achieve bounded value estimation error

in the root state with a number of samples that does not depend on the state space size.

This property makes MCTS algorithms attractive choices for problems like go that have

large state spaces.

The primary disadvantage of MCTS and other OP algorithms is that they interleave

planning and execution. An online planning algorithm controlling a real system will

always face constraints on computational resources that limit how many samples can be

drawn before a decision must be made. The number of samples required theoretically to

guarantee meaningful error bounds is usually impractically large. In this anytime online

planning setting, the planner might have to halt and produce an answer at any time,

so it is important that the planner produces a reasonable initial solution quickly even if

that solution is not optimal. Any remaining planning time can then be spent improving

the initial solution.

The main focus of this thesis is an abstraction-based approach to improving the

practical performance of Monte Carlo tree search algorithms. An abstraction is a trans-

formation of the problem that simplifies it in some way. For example, we could create a

state abstraction by specifying a subset of the state variables that are “irrelevant” and

3

ignoring their values when making decisions. In effect, we treat states that differ only

on the irrelevant state variables as equivalent. This creates an abstract state space that

is smaller than the original. In the terminology of online planning, abstraction reduces

the sets of candidate policies from which the partial policies π̃ are drawn. Our main

contributions in this area are

1. A definition of a class of state abstractions that generalizes existing criteria for

sound (lossless) state abstraction to allow unsound abstractions (which allow greater

reductions in the state space),

2. A formal bound on the regret due to acting according to an abstract tree search

using abstractions from this class,

3. Versions of popular MCTS algorithms that exploit fixed state abstractions,

4. A novel MCTS algorithm based on progressive abstraction refinement, which ad-

dresses the problem of specifying the correct abstraction for tree serach,

5. A framework for generalizing the progressive refinement approach to incorporate

many additional abstraction modalities beyond state abstraction, such as temporal

abstraction and action pruning.

In addition to this primary focus, we also present an application of online planning

to the problem of controlling a power transmission grid to mitigate the detrimental

effects of component failures. This problem is just the type of problem that abstract

tree search is intended to solve: it has very large state and action spaces, a high degree

of stochasticity, and potentially long delays between actions and their consequences. We

employ a state-of-the-art power grid dynamics simulator designed specifically to capture

the dynamics of cascading failure to evaluate online planning algorithms in comparison to

fixed expert policies. Although the high computational cost of the simulations prevented

us from applying our new MCTS algorithms to the problem, we show experimentally

that simpler online planning algorithms are superior to expert policies.

1.1 Outline

We begin by introducing common notation for MDPs and MCTS algorithms in Chap-

ter 2. We view MCTS algorithms as methods for sampling an approximate model of an

4

MDP over state-action histories, and all of our algorithms and theory are presented in

this context. Chapter 3 formalizes state abstraction for tree search and presents our main

theoretical result, which decomposes the regret due to abstraction into three components

linked to different properties of the abstraction. Chapter 3 also describes how the two

main categories of MCTS algorithms can be modified to exploit fixed state abstractions.

We present and analyze the PARSS algorithm in Chapter 4, and describe several vari-

ations of PARSS based on different abstraction refinement strategies. Chapter 4 also

presents experiments with abstract MCTS algorithms and their results. We generalize

the PARSS algorithm framework to include other types of abstraction in Chapter 5

by introducing the abstraction diagram formalism. We then digress somewhat from the

main topic in Chapter 6 to present an application of online planning techniques to the

problem of controlling power transmission grids to mitigate blackouts following equip-

ment failures. We conclude with a summary and directions for future work in Chapter 7.

5

Chapter 2: Background

Our work focuses on Monte Carlo tree search (MCTS) algorithms for anytime online

planning in Markov decision processes (MDPs). We incorporate MDP state abstraction

and progressive abstraction refinement into MCTS algorithms to improve their anytime

performance. This section introduces notation and key concepts.

2.1 Markov Decision Processes

Markov decision processes are the standard model of decision making under uncertainty.

We consider MDPs of the formM = 〈S,A, P,R, γ〉, where S andA are finite sets of states

and actions, P (s′|s, a) is the transition probability function, R(s) gives the instantaneous

reward in s, and γ ∈ [0, 1] is the discount factor. We assume that rewards are bounded,

and without loss of generality that they lie in the unit interval, R(s) ∈ [0, 1].

A solution of an MDP is a policy π : S 7→ A that maps each state to an action. The

set of policies for an MDP M is denoted Π(M). An episode following policy π starting

from state s0 generates a sequence of states s0s1 . . . where each si ∼ P (·|si−1, π(si−1))

and a corresponding sequence of rewards rt = R(st). The value of a policy is the expected

discounted sum of future rewards when following the policy,

V π(s) = E
[∞∑
t=0

γtrt

∣∣∣s, π],
where the expectation is over episodes of π sampled from P . The value function is more

commonly expressed in the equivalent recursive form

V π(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′).

We require that the value is bounded, meaning that there exist finite constants Vmin and

Vmax such that Vmin ≤ V π(s) ≤ Vmax for all s ∈ S and π ∈ Π. We exploit the assumption

of bounded rewards to derive these value bounds. A trivial lower bound is Vmin = 0.

6

When γ < 1, we have the upper bound Vmax =
∑∞

t=0 γ
t. If γ = 1, this series diverges,

so we require M to be a finite horizon MDP, meaning that there exists a finite constant

D such that t ≥ D ⇒ rt = 0 with probability 1 for any π. In the finite horizon case,

Vmax = D is an upper bound.

A policy π is optimal if V π = V ∗, where V ∗ is the optimal value function

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′|s, a)V ∗(s′).

The optimal policy is greedy with respect to the optimal action-value function Q∗, mean-

ing that π∗(s) = arg maxa∈AQ
∗(s, a) where

Q∗(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′).

One can also define the Q-function of an arbitrary policy

Qπ(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a)V π(s′).

Many MDP algorithms, including the ones we consider, estimate the optimal policy by

estimating Q∗ and behaving greedily with respect to that estimate.

2.2 Solving MDPs

There are many approaches to solving MDPs. Key points of distinction between ap-

proaches include whether they compute a reactive or a deliberative policy and whether

they require access to the transition probability function P (·|s, a) (model-based ap-

proaches) or merely the ability to sample from it (model-free approaches). This section

briefly reviews some major categories of solution algorithms.

2.2.1 Dynamic Programming

Dynamic programming is a model-based approach that solves the problem globally.

Value iteration [Sutton and Barto, 1998] is a prototypical DP algorithm. The value

iteration algorithm consists of repeatedly applying the Bellman backup operator T to an

7

estimate of the value function to obtain an improved estimate

(TV)(s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′|s, a)V (s′). (2.1)

The optimal value function is the unique fixed point of T , and thus limn→∞ T
nV = V ∗.

The value iteration method has two major drawbacks. First, it requires access to

P (·|s, a). In many problems, the transition function is unknown. Second, it solves the

problem in every state, even though many of those states may not be reached from

typical starting states under reasonable policies. These observations motivate the need

for other approaches.

2.2.2 Reinforcement Learning

Reinforcement learning [Sutton and Barto, 1998] encompasses a diverse family of al-

gorithms with the common theme that optimization occurs only along the states and

actions in one or more particular trajectories. Reinforcement learning methods can of-

ten solve larger problems than DP because their computation is focused. Their most

important drawback is the need to balance exploration, in which under-explored actions

are tried in order to determine which action is best, with exploitation, in which the best

actions are taken to obtain the best reward.

A prototypical RL algorithm is Q-learning. Q-learning learns the state-action value

function with the iteration

Q(st, at)← Q(st, at) + η
[
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

]
, (2.2)

where η is the learning rate. Actions are chosen with an exploration policy π, which uses

Q to choose its actions. To ensure convergence of (2.2), π must explore adequately in the

long run. A simple way to achieve this is with an ε-greedy policy, which tries a random

action instead of the estimated optimal one with probability ε.

Although RL methods may avoid computing the entire value function, they still

calculate a fixed policy that must be represented. Even this may be problematic if the

state and action spaces are very large. The next category of algorithms avoids this issue

by computing the policy “lazily.”

8

2.2.3 Online Planning

Online planning (OP) is a family of solution techniques united by the common theme of

planning for only one state at a time, as those states are encountered during execution.

A prototypical OP algorithm is policy rollout [Bertsekas and Castañon, 1999]. Policy

rollout improves a fixed policy π by implementing a new policy

πpr(s) = arg max
a∈A

Q̂π(s, a) (2.3)

that acts greedily with respect to an estimate of the Q-function of π. More sophisticated

online planning algorithms can be thought of as replacing Q̂π(s, a) with a different action

ranking function. The parallel rollout algorithm of Chang et al. [2004] replaces the single

rollout policy with a set of rollout policies. Policy switching [Chang et al., 2004; King

et al., 2013] is a similar algorithm that chooses the action prescribed by the best policy

in the policy set rather than the greedy action with respect to the estimated Q-function.

Because online planning methods compute a policy only for those states that are

encountered during execution, their complexity is generally independent of the size of

the state space. This makes online planning a good fit for problems in which the state

space is large, especially if good decisions can be made based on local exploration. It

is also straightforward to incorporate diverse kinds of prior knowledge into the online

planning framework, including expert policies, action preferences, and state evaluation

heuristics.

In anytime online planning (AOP), we require that the planning algorithm can be

halted at any time to produce an answer. Typically, an AOP algorithm computes an

approximate solution quickly and then improves the solution incrementally until the

algorithm is stopped. Anytime algorithms are useful when the amount of time available

for deliberation is unknown or uncertain. For example, they can be combined with

metareasoning algorithms for allocating deliberation time across multiple decisions, such

as when playing chess or go with a full-game time limit.

2.3 Monte Carlo Tree Search

Our focus in this thesis is on Monte Carlo tree search (MCTS) [Browne et al., 2012], which

is an anytime online planning approach. MCTS has risen to prominence due largely to

9

the success of variations of the UCT algorithm [Kocsis and Szepesvári, 2006] in go [Gelly

and Silver, 2007; Silver et al., 2016] and other complex domains (e.g. [Balla and Fern,

2009; Guo et al., 2014]). MCTS algorithms simulate state-action histories starting from

the current state s0 and gather statistics of those history samples into a search tree. The

search tree is employed to guide further sampling and ultimately to estimate the optimal

Q function Q∗(s0, ·) in the root state. The specifics of how sampling is organized and

how the estimate of Q∗ is obtained differentiate different MCTS algorithms.

We begin this section by introducing the notion of an MDP over state-action histories.

The history MDP will be the basis of our formal descriptions of MCTS algorithms. We

then introduce the two dominant paradigms for MCTS: sparse sampling and trajectory

sampling.

2.3.1 MDPs over State-Action Histories

Given an MDP M = 〈S,A, P,R, γ〉 and a designated state s0 ∈ S, the set of state-action

histories beginning in s0 is the set H∗(M, s0) = {s0}×A×S×· · · . Note that H∗(M, s0)

may be infinite even though S is finite. The set of histories of length at most d is denoted

Hd(M, s0). Given a history h = s0a1s1 . . . atst, we write s(h)
def
= st and a(h)

def
= at for the

final state and action in the history, pre(h)
def
= s0a1s1 . . . at−1st−1 for the prefix of h, and

len(h)
def
= t for the length of h.

A history MDP is an MDP T = 〈H,A, P,R, γ, s0〉 whose state space H is a subset of

H∗(M, s0) for the ground MDP M with the restriction that h ∈ H ⇒ pre(h) ∈ H. The

dynamics of T are given by overloading the P and R functions to apply to histories,

P (h′|h, a)
def
= 1pre(h′)=h1a(h′)=aP (s(h′)|s(h), a),

R(h)
def
= R(s(h)).

A policy π for a history MDP maps histories to actions, π : H 7→ A. The set of all

policies for T is denoted Π(T). We overload the value functions V and Q for history

10

MDPs in the obvious way,

V π(h) = R(h) + γ
∑
h′∈H

P (h′|h, π(h))V π(h′),

Qπ(h, a) = R(h) + γ
∑
h′∈H

P (h′|h, a)V π(h′).

The state transition graph of a history MDP is a tree, and thus the search trees

generated by lookahead search algorithms can be viewed as finite history MDPs. The

classical expectimax search algorithm [Russell and Norvig, 2010], for example, solves the

history MDP 〈Hd,A, R, P, γ, s0〉 exactly for a fixed depth d. Because of our focus on

tree search algorithms, we will deal almost exclusively with finite history MDPs in this

thesis.

2.3.2 Sparse Sampling

Sparse sampling [Kearns et al., 2002] is a systematic approach to tree search. In the

SS algorithm, each action is sampled C times in the root state s0, yielding |A| · C
successors, some of which may be duplicates. Sampling is then carried out recursively

in each sampled successor state, and this is continued until the tree has uniform depth

d. The constants C and d can be chosen independently of the size of the state space to

achieve bounded error in the root state Q estimates, which ensures that the greedy action

choice at the root is near-optimal with high probability. Sparse sampling is essentially

an approximate expectimax search in which the transition distribution at each node is

approximated by an empirical distribution of C samples.

As suggested by Kearns et al. [2002], the practical sample complexity of SS can be im-

proved by incorporating a pruning mechanism. Forward search sparse sampling (FSSS)

[Walsh et al., 2010] realizes this idea. FSSS constructs the SS tree incrementally by

expanding nodes along one state-action trajectory at a time. The trajectories are guided

by upper and lower bounds on the value estimate of the full SS tree, in a manner similar

to Bounded Real-Time Dynamic Programming (BRTDP) [McMahan et al., 2005]. The

value bounds allow FSSS to avoid sampling portions of the tree that cannot affect the

choice of action in the root state, while providing the same worst-case guarantees as SS.

11

2.3.3 Trajectory Sampling

Trajectory sampling (TS) algorithms [Keller and Helmert, 2013] build a sample tree

from complete trajectories of a sampling policy. The sampling policy typically operates

in two phases. During the tree policy phase, which begins in s0 and continues until the

trajectory reaches a leaf node, the sampling policy is based on statistics of the search tree

combined with a mechanism to balance exploration and exploitation. Once the trajectory

reaches a leaf node, a new successor node is added and the sampling policy switches to

the evaluation phase. In the evaluation phase, an estimate of the new leaf’s value is

computed, typically either by sampling the return of a rollout policy or by evaluating

a heuristic function. Search trees built in this way are not of uniform width and depth

like SS trees. Statistics of the nodes near the root will be based on many more samples

than statistics of nodes near the leaves, and the search tree will be deeper in areas of the

state space that are more likely to be reached under the sampling policy.

Compared to sparse sampling, trajectory sampling imposes weaker requirements on

the generative model used for planning. Whereas SS algorithms require a strong simula-

tor, capable of generating a sample from P (·|h, a) for any h and a, TS algorithms require

only a weak simulator, which need only be capable of generating a complete episode fol-

lowing a fixed policy from the root state. This distinction has important implications

when using state abstraction in search (Section 3.5).

The most well-known TS algorithm is UCT [Kocsis and Szepesvári, 2006]. Keller

and Helmert [2013] formalized the generic trajectory sampling framework that we have

described here and of which UCT is a member. This basic TS algorithm structure as

pioneered by UCT is so ubiquitous in the literature that some authors (e.g., Browne

et al. [2012]) define Monte Carlo tree search to include only TS algorithms and not

SS algorithms. We define MCTS more broadly to include any algorithm that builds a

forward search tree through random sampling.

12

Chapter 3: State Aggregation Abstractions for Tree Search

3.1 Introduction

Our major focus in this thesis is on improving the anytime performance of MCTS al-

gorithms through the use of abstraction. This chapter focuses on state abstraction.

Broadly speaking, state abstraction includes any way of reducing the amount of infor-

mation needed to describe the states of an MDP. We adopt the simplest form of MDP

state abstraction, which is state aggregation [Li et al., 2006; Van Roy, 2006; Hostetler

et al., 2014]. State aggregation abstractions define abstract states as equivalence classes

of ground states. In our history MDP setting, the “states” are histories, and so the

abstract states are equivalence classes of ground histories in H.

3.2 History Aggregation

An equivalence relation on the set of histories H is a binary relation χ ⊆ H×H that is

reflexive, symmetric, and transitive. We say that two histories h and g are equivalent

with respect to χ, denoted h 'χ g, if and only if 〈h, g〉 ∈ χ. The equivalence class of

a history h with respect to χ, denoted [h]χ, is the set [h]χ = {g ∈ H : h 'χ g}. The

quotient set of H by χ, denoted H/χ, is the set of equivalence classes of H with respect

to χ. We use uppercase letters, e.g. H ∈ H/χ, to denote abstract histories, to emphasize

that abstract histories are sets of ground histories.

In order to plan in the abstract state space, we need to define the dynamics of the

abstract MDP in terms of the dynamics of the ground MDP. We do this by introducing

a weight function µ : H/χ×H 7→ [0, 1], where for each H ∈ H/χ, µ(H, ·) is a probability

mass function over the ground states in H. The abstract dynamics Pµ and Rµ are

13

defined as µ-weighted convex combinations of the ground dynamics,

Pµ(H ′|H, a) =
∑
h∈H

µ(H,h)
∑
h′∈H′

P (h′|h, a),

Rµ(H) =
∑
h∈H

µ(H,h)R(h).
(3.1)

A state abstraction, then, consists of two parts: an equivalence relation χ and a weight

function µ.

Definition 1. A history aggregation abstraction (hereafter called a state abstraction) is

a tuple 〈χ, µ〉 consisting of an abstraction relation χ and a weighting function µ, where

χ is an equivalence relation on H satisfying1 h 'χ g ⇒ [pre(h) 'χ pre(g)∧a(h) = a(g)]

and µ : H/χ × H 7→ [0, 1] defines, for each equivalence class H ∈ H/χ, a probability

mass function µ(H, ·) supported on H.

A state abstraction applied to a history MDP T = 〈H,A, P,R, γ, s0〉 induces an

abstract MDP T/〈χ, µ〉 = 〈H/χ,A,Pµ,Rµ, γ, s0〉. Given an abstraction α = 〈χ, µ〉, a

policy π for the abstract problem T = T/αmaps abstract states to actions, π : H/χ 7→ A.

The value of π in T is given by the abstract value function

Vπα(H) = Rµ(H) + γ
∑

H′∈H/χ

Pµ(H ′|H,π(H))Vπα(H ′),

and the Q-function of π in T is given by

Qπα(H, a) = Rµ(H) + γ
∑

H′∈H/χ

Pµ(H ′|H, a)Vπα(H ′).

The optimal abstract value functions are denoted V∗α and Q∗α.

Each abstract policy π induces a ground policy ↓π defined by

↓π(h) = π([h]χ). (3.2)

Using the induced policy, we can define the ground value function of an abstract policy

π as V ↓π. We say that an abstraction α is sound if every optimal policy π∗ for the

1The condition that h 'χ g ⇒ [pre(h) 'χ pre(g) ∧ a(h) = a(g)] ensures that the state transition
graph of T/〈χ, µ〉 remains a tree.

14

abstract problem T/α induces a ground policy ↓π∗ that achieves the optimal value in

the ground MDP, V ↓π
∗

= V ∗. Note that this need not imply that the abstract value of

π is equal to the optimal ground value. It may be the case that there are states h where

V ∗(h) 6= Vπα([h]χ) and yet V ↓π = V ∗.

3.3 A Regret Bound for State Abstraction in Tree Search

Naturally, state abstraction introduces a new source of value estimation error. The

magnitude of this abstraction error depends on the properties of the two components of

the abstraction: the abstraction relation χ and the weighting function µ.

We consider the abstraction relation χ first. Following Hostetler et al. [2014], we

define a class of state space partitions parameterized by p, q ∈ R≥0.

Definition 2. A partition H/χ is (p, q)-consistent if for all H ∈ H/χ,

∃a∗ ∈ A . ∀h ∈ H : V ∗(h)−Q∗(h, a∗) ≤ p (3.3)

∀h, g ∈ H :
∣∣V ∗(h)− V ∗(g)

∣∣ ≤ q. (3.4)

An abstraction relation χ is (p, q)-consistent if and only if H/χ is (p, q)-consistent.

The p condition (3.3) quantifies the “action homogeneity” of the partition. It requires

that in each abstract history H ∈ H/χ, there is an action a∗ that is near-optimal in every

ground history in h ∈ H. This bounds the loss from following an abstract policy that is

constrained to play the same action in all equivalent ground histories. The q condition

(3.4) quantifies the “value homogeneity.” It requires that the optimal values of all ground

histories h ∈ H are close to one another. The value of q is related to the error in value

estimation due to the different dynamics of the abstract and ground processes.

The (p, q)-consistency property is a generalization of the a∗-irrelevance and π∗-

irrelevance properties identified by Li et al. [2006] in their taxonomy of sound state ag-

gregation abstractions. The π∗-irrelevance property is equivalent to (0,∞)-consistency,

while a∗-irrelevance is equivalent to (0, 0)-consistency. The coarsest abstraction satis-

fying π∗-irrelevance is also the coarsest sound abstraction, and the hierarchy of sound

abstractions proposed by Li et al. [2006] consists of refinements of π∗-irrelevance.

Although abstractions satisfying π∗-irrelevance are sound, learning with these ab-

stractions can be problematic because it may be that the optimal ground value of a state s

15

s0

s1

s2

s3

a/0.5

b/0

a/1

a/2

S

(a)

h0

a1

a2

h1

h3

h2

hc

a0

a0

a0

a0

r = 1

r = 3

r = 2

r = c

0.5

0.5

0.5

0.5

H0

H1

H2

(b)

Figure 3.1: (a) An example of an MDP for which a (0,∞)-consistent abstraction is un-
sound [Li et al., 2006]. The edge labels like “a/0.5” mean action a yields immediate
reward 0.5. (b) A history MDP for which a (0,∞)-consistent abstraction 〈χ, µ〉 is un-
sound for some weighting functions µ 6= µ∗. Edge labels denote transition probabilities.

is not equal to the optimal abstract value of its equivalence class, that is V ∗(s) 6= V∗([s]χ).

A simple example due to Li et al. [2006] illustrates the problem (Figure 3.1a). When

s1 and s2 are aggregated into a single abstract state S, the value of S becomes non-

Markovian. If S was reached via action a, then V∗(S) = 1, while if S was reached via

action b, then V∗(S) = 2. Nevertheless, the estimated abstract value V(S) must be a

single number. The greedy policy with respect to the abstract value function is not

optimal in the ground problem because it chooses a in s0 due to its larger immediate

reward.

History aggregation abstractions (Definition 1) cannot create the structure in Fig-

ure 3.1a because they will not aggregate histories that result from different action se-

quences. Nevertheless, history aggregation abstractions are subject to a related problem

if the weight functions are not correct, illustrated in Figure 3.1b. If the weight function

µ is

µ(H1, h1) = 0 µ(H2, h2) = 1

µ(H1, h3) = 1 µ(H2, hc) = 0,

then Q∗α(H0, a1) = 3 and Q∗α(H0, a2) = 2, while the ground values are Q∗(h0, a1) = 2

and Q∗(h0, a2) = c/2 + 1. If on the other hand µ(H1, ·) = µ(H2, ·) = [0.5, 0.5], then

Q∗(H0, ·) = Q∗(h0, ·) and the abstraction is lossless.

The previous example illustrates the role of the weight function µ in determining the

16

accuracy of an abstraction. Intuitively, the second choice of weight function is superior

because it faithfully preserves the relative probability of the different ground histories

that are aggregated in the abstract history. The following definition formalizes this

property.

Definition 3. The optimal weight function for history MDP T , denoted µ∗T (or µ∗ if T

is clear from context), weights ground states by the conditional probability P(h|H) of

occupying ground state h given that the process followed the abstract history H:

µ∗T (H,h) =
1h∈HP(h)

P(H)
=

∏`(h)
i=1 P (hi|hi−1, a(hi))∑

g∈H
∏`(g)
i=1 P (gi|gi−1, a(gi))

=

∑
g∈pre(H) µ

∗
T (pre(H), g)P (h|g, a(h))

Pµ∗T (H|pre(H), a(H))
.

(3.5)

The recursive form of the last expression in Definition 3 is especially natural in the

tree search setting. We can view this recursive form as an operator [µ]∗ acting on a

weight function µ to give an exact update of µ,

[µ]∗(H,h) =

∑
g∈pre(H) µ(pre(H), g)P (h|g, a(h))

Pµ(H|pre(H), a(H))
. (3.6)

Using this notation, µ∗ is simply the weight function satisfying µ = [µ]∗. We can now

define the single-step divergence δT (H) of state H in the abstract problem T = T/〈χ, µ〉,

δT (H) =
1

2

∥∥∥µ(H, ·)− [µ]∗(H, ·)
∥∥∥

1
, (3.7)

to quantify the error introduced by µ in the single step pre(H)→ H. The divergence of

T is the maximum of δT ,

δT = max
H∈H/χ

δT (H), (3.8)

which bounds the error due to µ across all abstract states.

The simple regret due to acting in ground state h according to the optimal abstract

policy π∗ with respect to abstraction α = 〈χ, µ〉 is given by

Jα(h) = max
a∈A

Q∗(h, a)−Q∗(h, ↓π∗(h)). (3.9)

17

We now present our main theoretical result, which shows that for (p, q)-consistent

abstractions, this regret can be bounded. The statement of the theorem involves the

“discounted” depth of the MDP, given by the sum of the first d powers of the discount

factor,

βγ(d) =
d∑
i=1

γd. (3.10)

We actually prove the following stronger result, which shows that when we estimate

the value of any action using the abstract action-value function Q∗α, the error in that

estimate due to abstraction is bounded.

Theorem 1. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP such that the maximum length

of a history in H is d = maxh∈H len(h) (which may be infinite). Let α = 〈χ, µ〉 be an

abstraction of T where χ is (p, q)-consistent and let δ
def
= δT/α. For any action a ∈ A,∣∣∣Q∗(s0, a)−Q∗α(s0, a)

∣∣∣ ≤ βγ(d)(p+ δq).

Proof. Appendix A.1.

Our desired bound is an immediate consequence of Theorem 1.

Corollary 1. The simple regret due to acting in the ground problem greedily with respect

to Q∗α is bounded by

Jα(h) ≤ 2βγ(d)(p+ δq). (3.11)

Proof. Let a∗ = arg maxa∈AQ
∗(h, a) and let â = arg maxa∈AQ∗α(h, a). Acting greedily

with respect to Q∗α results in error if a∗ 6= â, which occurs when Q∗α(s0, a
∗) < Q∗α(s0, â).

By Theorem 1, in the worst case we have Q∗α(s0, â) = Q∗(s0, â) + βγ(d)(p + δq) and

Q∗α(s0, a
∗) = Q∗(s0, a

∗)− βγ(d)(p+ δq), for a combined error of 2βγ(d)(p+ δq).

It is apparent that if χ is a (0, 0)-consistent abstraction relation, then for any weight

function µ, J〈χ,µ〉(s0) = 0. This mirrors the result for general MDPs of Li et al. [2006]

that the optimal abstract policy with respect to an a∗-irrelevance abstraction induces an

optimal ground policy. If χ is (0, q)-consistent for q > 0, then we can still achieve zero

error if we have the optimal weight function µ∗, since in that case δq = 0. Thus we see

that π∗-irrelevance abstractions in the tree search setting have more favorable properties

18

compared to the general MDP setting. Namely, for any π∗-irrelevance abstraction χ

there is a weight function µ∗ such that the abstract value with respect to abstraction

α = 〈χ, µ∗〉 is equal to the ground value, that is Q∗α({s0}, ·) = Q∗(s0, ·). This is a

stronger guarantee than soundness of the abstraction, since it ensures that we can act

optimally in the ground problem by acting greedily with respect to an abstract value

function. Contrast this result with the counterexample MDP in Figure 3.1a, for which

no abstract value function has a greedy policy whose induced ground policy is optimal

in the ground problem.

Note that the bound of Theorem 1 is a formal bound, since actually computing p,

q, and δT would require solving the MDP. The purpose of Theorem 1 is to separate the

different sources of abstraction error and provide guidance for designing or computing

good abstractions. For example, we use it to design an abstraction refinement heuristic

in Section 4.4.2.2.

3.4 Abstract MDPs as Partially Observable MDPs

Bai et al. [2015], in their work on abstraction in MCTS, take the view that an abstract

MDP is a partially observable Markov decision process (POMDP), where the abstract

states are observations that give us information about the hidden ground state and the

weight function µ plays the role of a belief distribution. Our goal in this section is to

show how to translate between the two formalisms.

A POMDP is a tuple 〈S,A,Z, P,R,Ω, γ〉. The components 〈S,A, P,R, γ〉 define

an ordinary discounted MDP. The set Z is the set of observations, and Ω gives the

conditional probability of an observation given a state, Ω(z|s) : Z × S 7→ [0, 1]. A

policy for a POMDP cannot observe the state. Instead a policy is a mapping from an

observation-action sequence z0a0z1 . . . zk to an action.

Consider a history MDP T = 〈H,A, P,R, s0, γ〉 and an abstraction α = 〈χ, µ〉. The

abstract MDP T/α can be defined as a POMDP as follows. The state space is the set of

ground histories H, and the actions and dynamics are as in T . The observation set is the

set of abstract histories Z = H/χ. Finally the observation function is Ω(H|h) = 1h∈H .

The weight function µ appears via the definition of the belief state in the POMDP. A

POMDP has an equivalent formulation as a (fully observed) MDP over a continuous state

space called the belief space that represents the probability of being in each state given

19

an observation history. Let B denote the belief set. Its elements b ∈ B are probability

measures on the state set, b : S 7→ [0, 1]. The belief update operation F maps a belief b

and an action-observation pair 〈a, z〉 to a new belief F (b, a, z) defined by

F (b, a, z)(s′) =

∑
s∈S b(s)Ω(z|s′)P (s′|s, a)∑

s∈S b(s)
∑

s′′∈S Ω(z|s′′)P (s′′|s, a)
.

Compare this to Equation 3.6, which when the notation is expanded reads

[µ]∗(H,h) =

∑
g∈pre(H) µ(pre(H), g)P (h|g, a(h))∑

g∈pre(H) µ(pre(H), g)
∑

h∈H P (h|g, a(h))
.

Remembering that Ω(z|s) is just the indicator of whether s is “in” z, it is apparent that

the two updates are equivalent, with µ playing the role of the belief state b. Thus in the

POMDP view, [µ]∗ is an exact belief update of the belief µ, and the δ term in Theorem 1

is a measure of inaccuracy in belief updating.

Viewing abstraction in this way exposes a strong connection to POMDP solution

methods. Since the belief space of a POMDP is continuous and high-dimensional, a

common solution approach is to search in a structured space of policies whose complexity

can be controlled (e.g. [Hansen, 1998; Meuleau et al., 1999; Poupart and Boutilier, 2003]).

One can view abstract MCTS algorithms as searching for an evaluation policy within the

set of tree-shaped finite-state controllers that have one state for each history equivalence

class under the abstraction relation χ. Unlike in these works on POMDPs, which seek a

structured policy that is effective over the entire reachable portion of the belief space, in

abstract MCTS the policy is used only to evaluate the current state and thus need only

be effective locally.

3.5 MCTS Algorithms using Fixed Abstractions

Adapting MCTS algorithms to use state abstraction is straightforward. The main com-

plication is that we need to sample state transitions in the abstract problem T = T/α,

but we have access only to a simulator of the ground problem T . In this section, we

describe versions of SS and TS algorithms that sample abstract search trees given an

abstraction relation χ and a simulator of the ground problem. Ideally, these algorithms

would search in the abstract problem T/〈χ, µ∗〉 with respect to the optimal weight func-

20

tion µ∗, since then the δq term of the abstraction error would be 0 (Theorem 1). Our

analysis will show that this can be achieved in trajectory sampling (TS) algorithms, but

generally not in sparse sampling (SS) algorithms.

3.5.1 Framework and Notation

Algorithm 1 Abstract MCTS Framework

1: procedure AbstractMCTS(s0)
2: while not converged do
3: Choose sampling actions according to statistics of the abstract tree N
4: Draw samples from the ground simulator and add them to the sample tree n
5: Update the structure and statistics of N

We will view abstract MCTS algorithms as producing two structures. The first is

the sample tree, which is a search tree in the ground state space constructed in a similar

fashion to non-abstract MCTS algorithms. The second is the abstract tree, which is the

tree that results from applying some abstraction 〈χ, µ〉 to the sample tree and that is

used to guide sampling decisions.

The sample tree is a multiset of ground histories, defined by the multiplicity function

n : H 7→ Z≥0 giving the number of times that each history h ∈ H has been sampled. We

will sometimes treat n as an ordinary set, in which case we will write h ∈ n if and only if

n(h) > 0. Conceptually, the sample tree is a bipartite tree consisting of state nodes and

action nodes. State nodes correspond to histories h ∈ H, while action nodes correspond

to a history-action pair. We denote action nodes by juxtaposing a history and an action

like ha.

The tree structure of the sample tree is described by the successor relation kn, which

maps each state node h and action a ∈ A to a set of successors

kn(h, a) = {h′ ∈ n : pre(h′) = h, a(h′) = a}. (3.12)

State nodes that have no successors are called leaf nodes. The sample count for action

21

nodes, denoted mn(h, a), is given in terms of kn as

mn(h, a) =
∑

h′∈kn(h,a)

n(h′). (3.13)

We will normally omit the n subscripts when n is clear from context. Particular MCTS

algorithms will also record other statistics of the tree, which we will denote similarly as

functions taking histories as arguments.

The second product of abstract MCTS — the abstract tree — is the quotient mul-

tiset N = n/χ obtained by partitioning n according to an abstraction relation χ. The

multiplicity function of the quotient multiset is denoted N : H/χ 7→ Z≥0 and is defined

by

N(H) =
∑
h∈H

n(h) ∀H ∈ H/χ. (3.14)

As before, we write H ∈ N if and only if N(H) > 0. The successor relation KN and the

action sample count MN (H, a) for the abstract tree are defined analogously to those for

the sample tree,

KN (H, a) = {H ′ ∈ N : pre(H ′) = H, a(H ′) = a}, (3.15)

MN (H, a) =
∑

H′∈KN (H,a)

N(H ′), (3.16)

and as before we will usually omit the N subscripts.

We can now outline a generic abstract MCTS algorithm (Algorithm 1). Sampling

decisions are made according to the abstract tree (Line 3), but the ground samples

are retained in the sample tree (Line 4). In the following sections we instantiate this

algorithm skeleton to obtain abstract versions of TS and SS algorithms.

3.5.2 Representing Abstractions in Tree Search

In the tree search setting, it is natural to represent the monolithic abstraction relation

χ, which is defined on histories, as a collection of abstraction relations χ(H, a) on the

ground state space S. For each abstract action node Ha in the abstract tree, its abstract

successors are the abstract histories HaS, where each S ∈ S/χ(H, a). The equivalence

22

Algorithm 2 Abstract Sparse Sampling

1: procedure AbstractSS(s0, C, d, χ)
2: Expand({s0}, C, d, χ)
3: return arg maxa∈AQ({s0}, a)

4: procedure Expand(H, C, d, χ)
5: if H is terminal then
6: Q(H, a)← 0 for all a ∈ A
7: return
8: for all a ∈ A do
9: if d = 0 then

10: Q(H, a)← Rµ̄(H)
11: else
12: Sample(H, a, C)
13: for H ′ ∈ K(H, a) do
14: Expand(H ′, C, d− 1, χ)

15: Q(H, a)← Rµ̄(H) + γ
∑

H′∈K(H,a)
N(H′)
C maxa′∈AQ(H ′, a′)

16: procedure Sample(H, a, C)
17: for C times do
18: Let h ∼ µ̄(H, ·), where µ̄(H,h) = 1h∈H

n(h)
N(H)

19: Let h′ ∼ P (·|h, a)
20: n(h′)← n(h′) + 1

class of a ground history h = s0a0s1 . . . ad−1sd is the set

[h]χ = S0a0S1 . . . ad−1Sd, where Si = [si]χ(Si−1,ai−1), S0 = {s0}.

Any history aggregation abstraction can be represented in this fashion. Naturally, some

or all of these component abstraction relations could be the same. Decomposing the ab-

straction in this manner facilitates making “local” refinements to the abstraction (Chap-

ter 4).

3.5.3 Abstract Sparse Sampling

Sparse sampling [Kearns et al., 2002] is a systematic approach to MCTS. It is systematic

in the sense that the amount of sampling that takes place in different regions of the

23

state space is not related to the probability of reaching those regions from the start

state under any particular policy. To accomplish this type of sampling, it is necessary to

sample transitions 〈h, a, h′, r〉 from the single-step dynamics P and R. Sparse sampling

draws a constant number C of transition samples recursively for every action node ha in

the tree with `(h) < d. The algorithm achieves small error with high probability with a

sample complexity that does not depend on the size of the state space |S| (Theorem 1

of Kearns et al. [2002]). The AbstractSS algorithm (Algorithm 2) employs the same

systematic sampling strategy, but it operates in the abstract state space.

To implement AbstractSS, we need to sample transitions from Pµ for some µ. We

would like to sample from Pµ∗ , but in general we will have to settle for sampling from Pµ̂,

where µ̂ is our estimate of µ∗. The obvious choice of µ̂(H, ·) is the empirical probability

of the ground histories h ∈ H,

µ̄(H,h) = 1h∈H
n(h)

N(H)
. (3.17)

We will specify AbstractSS in terms of µ̄, but note that better estimators may be

available for particular problem domains.

Because AbstractSS must estimate µ∗, the algorithm might introduce abstraction

error via the δ term in Theorem 1. We analyze AbstractSS by separating the error

due to finite sampling from the error due to abstraction. In effect, AbstractSS is

performing ordinary sparse sampling in an abstract MDP for which we can characterize

the abstraction error. We can thus apply the same finite sample analysis as Kearns et al.

[2002] employed for SS in order to characterize the sampling error in AbstractSS.

There is a small technical difficulty in this analysis, which is that the abstract value

function V∗〈χ,µ̄〉 is not well-defined because µ̄ is only defined over a subset of the abstract

history set H/χ. We work around this by introducing a “completed” weight function

µ̄+ that is defined over the entire state space. Let dom(µ̄) ⊆ H/χ be the subset of the

abstract history set on which µ̄ is defined. Then µ̄+ is given by

µ̄+(H,h) =

{
µ̄(H,h) if H ∈ dom(µ̄),

µ∗(H,h) otherwise.
(3.18)

Clearly for any state node H ∈ dom(µ̄), we have Pµ̄(·|H, a) = Pµ̄+(·|H, a) for any

24

a ∈ A. We will denote the completed abstraction as α+ = 〈χ, µ̄+〉. Note that while µ̄+

is defined in terms of the exact weight function µ∗, we use this fact only for our analysis;

AbstractSS does not actually compute µ∗.

The analysis of Kearns et al. [2002] also requires an upper bound on the value achiev-

able in the problem. Define the quantity V d
max to be an upper bound on the value function

V ∗(h) for all histories h ∈ H of length len(h) = d. Since our rewards are bounded in

[0, 1], one possible definition of V d
max is

V d
max =

{ ∑∞
t=0 γ

t if γ < 1,

D − d if γ = 1,
(3.19)

where D is the maximum length of a trajectory in a finite-horizon problem.

We now have the tools we need to derive the following formal guarantee on the

performance of AbstractSS.

Proposition 2. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP and let χ be a (p, q)-

consistent history equivalence relation on H. Then the procedure AbstractSS(s0, C,

d, χ), with probability at least 1− (|A|C)d · 2e−2λ2C/(V dmax)2
, returns an action choice a∗

such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where δ is the divergence (3.7) of the completed empirical weight function µ̄+ derived

from the empirical weight function µ̄ computed by AbstractSS.

Proof. Appendix A.2.

This result combines Theorem 1 with the sample complexity result for sparse sam-

pling proven by Kearns et al. [2002]. It shows that AbstractSS achieves the same

error bounds as running ordinary SS in the abstract problem T/〈χ, µ̄〉, despite µ̄ being

computed “on the fly” by AbstractSS rather than being fixed beforehand.

3.5.4 Abstract Forward Search Sparse Sampling

Forward Search Sparse Sampling (FSSS) [Walsh et al., 2010] is an enhancement of SS

that incorporates pruning based on upper and lower bounds on the values of subtrees. It

provides the same performance guarantees as SS and often performs less computation.

25

Abstract FSSS (AFSSS; Algorithm 3) is a straightforward extension of FSSS. Its

structure is similar to AbstractSS. In addition to the data structures required by

AbstractSS, each abstract state node H in the AFSSS tree has associated upper and

a lower value bounds U(H) and L(H), and each action node Ha has similar bounds

U(H, a) and L(H, a). For state nodes, we maintain the Boolean value expanded(H),

which we use to identify non-terminal state nodes for which we have not sampled any

successors.

The addition of upper and lower value bounds allows us to define an early stopping

condition for the sampling procedure [Walsh et al., 2010]. We say that the search has

converged if

L(H0, a
∗) ≥ max

a6=a∗
U(H0, a), (3.20)

where a∗ = arg maxa∈A L(H0, a). For this early stopping criterion to be sound, the value

bounds L and U must bracket the value estimate that AbstractSS would compute.

We now define a condition on L and U that ensures that this is the case. We call

this condition admissibility, but note that our definition is somewhat different from the

typical definition of admissibility employed in algorithms like A∗ search.

Definition 4. Let α = 〈χ, µ〉 be a state abstraction of a history MDP T inducing an

abstract MDP T/α = 〈H/χ,A,Pµ,Rµ, s0, γ〉. Let ρπ(H) be a random variable giving the

return (sum-of-rewards) from following an abstract policy π ∈ Π(T/α) in T/α starting

from H, and let ρπ(H, a) be a random variable giving the return from doing a and then

following π. A pair of state value bounds L,U : H/χ 7→ R on the state space H/χ is

admissible with respect to α if for any policy π ∈ Π(T/α), with probability 1,

L(H) ≤ ρπ(H) ≤ U(H) for all H ∈ H/χ.

A pair of state-action value bounds L,U : H/χ×A 7→ R is admissible with respect to α

if for any policy π ∈ Π(T/α), with probability 1,

L(H, a) ≤ ρπ(H, a) ≤ U(H, a) for all 〈H, a〉 ∈ H/χ×A.

If the bounds U and L are admissible, then further sampling after convergence can-

not change the estimate of the optimal action in the root state H0. Any un-expanded

portions of the search tree at the time of convergence are effectively pruned away without

26

being sampled. Due to this pruning, AFSSS can give the same worst-case performance

guarantees as AbstractSS while often using fewer samples in practice.

The next definition formalizes the structural features of an abstract FSSS tree. Fig-

ures 4.1a and 4.1c illustrate the structure of two abstract FSSS trees. Note that we

continue to assume the use of the empirical weight function µ̄.

Definition 5. An abstract FSSS tree with respect to χ, or a χ-FSSS tree, is a tuple

F = 〈N,L,U,H0, χ〉, where N is an abstract tree, L and U are lower and upper value

bound functions, H0 ∈ N is the root state, and χ is an abstraction relation, such that

all of the following conditions are satisfied:

1. For each abstract history H ∈ N , ∀h, g ∈ H, h 'χ g;

2. For each abstract history H ∈ N , if expanded(H) then M(H, a) ≥ C ∀a ∈ A;

3. L and U are admissible with respect to α = 〈χ, µ̄+〉 (Definition 4);

4. F satisfies the convergence criterion (3.20).

If F satisfies at least conditions 1, 2, and 3, then F is a partial χ-FSSS tree.

The AFSSS algorithm (Algorithm 3) constructs a χ-FSSS(C, d) tree for a fixed

abstraction relation χ. Like FSSS, AFSSS proceeds in a series of top-down trials that

each traverse a path from the root node to a leaf state node. When extending a path,

the algorithm chooses action nodes optimistically (Line 13) and chooses state nodes with

the largest gap between U and L (Line 14). If the path reaches an unvisited state node

(Line 12), that node is expanded by initializing and sampling its action node successors.

The backup operation (Line 30) combines the average immediate reward over ground

states with the discounted future return bounds over abstract states weighted by their

empirical frequency. The additional parameters to AFSSS are the sparse sampling width

and depth C and d, admissible value bounds Vmin and Vmax, and a default abstraction

χ0 ⊆ S ×S that is used to initialize χ(H, a) when expanding a new state node H. Note

that χ0 is a relation on the state set S, not H.

The AFSSS implementation in Algorithm 3 is generalized to accept a partial χ-

FSSS(C, d) tree as input and transform it into a converged χ-FSSS(C, d) tree. Starting

from a partial tree allows us to use AFSSS without major changes as a building block

27

of the PARSS algorithm that we will introduce next (Section 4.3). To build an abstract

FSSS tree from scratch, one calls AFSSS with an empty tree as input. Given an initial

state s0 and admissible value bounds Vmin and Vmax, the empty χ-FSSS tree is defined

by

F0(s0, Vmin, Vmax) = 〈N0, L, U,H0, χ〉

where H0 = {s0}, N0(H) = 1H=H0 ,

L(H0) = Vmin, U(H0) = Vmax, χ = ∅.

(3.21)

Thus to build a χ-FSSS tree rooted at s0 according to abstraction relation χ, we call

AFSSS(F0(s0, Vmin, Vmax), C, d, Vmin, Vmax, χ).

Proposition 3. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP, and let χ be a (p, q)-

consistent history equivalence relation. The procedure AFSSS(s0, C, d, χ), with proba-

bility at least 1− (|A|C)d · 2e−2λ2C/(V dmax)2
, returns an action choice a∗ such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where δ is the divergence (3.7) of the completed empirical weight function µ̄+ derived

from the empirical weight function µ̄ computed by AFSSS.

Proof. The value bounds L(H) and U(H) for all leaf statesH are admissible because they

are initialized to Vmin and Vmax. The Backup operations (Algorithm 3, Lines 30 and 33)

preserve admissibility. Thus the root state action-value bounds L(H0, a) and U(H0, a)

are admissible with respect to α = 〈χ, µ̄+〉 for all a ∈ A. Since F satisfies the convergence

criterion (3.20), the action a∗ = arg maxa∈A L(H0, a) is such that L(H0, a
∗) ≥ U(H0, a)

for all a 6= a∗. By admissibility, we conclude Q(H0, a
∗) ≥ Q(H0, a) for all a 6= a∗, where

Q is the abstract Q-function of an arbitrary AbstractSS(C, d, χ) search tree that

contains the AFSSS tree as a subset. Thus AFSSS provides the same guarantees as

AbstractSS (Proposition 2).

3.5.5 Abstract Trajectory Sampling

Abstract TS algorithms have notably different properties from abstract SS algorithms.

The defining characteristic of TS algorithms is that they can be implemented in terms of

28

Algorithm 3 Abstract Forward Search Sparse Sampling

1: procedure AFSSS(F = 〈N,L,U,H0, χ〉, C, d, Vmin, Vmax, χ0)
2: global N,L,U,H0, χ, C, Vmin, Vmax, χ0

3: while not Converged(H) do
4: Visit(H0, d)

5: function Converged(H)
6: Let a∗ = arg maxa∈A L(H, a)
7: return L(H, a∗) ≥ maxa6=a∗ U(H, a)

8: procedure Visit(H, d)
9: if H is terminal or d = 0 then

10: L(H)← R(H), U(H)← R(H)
11: else
12: if not expanded(H) then Expand(H, χ0)

13: a∗ ← arg maxa U(H, a)
14: H∗ ← arg maxH′∈K(H,a∗)[U(H ′)− L(H ′)]
15: Visit(H∗, d− 1)
16: Backup(H, a∗)
17: Backup(H)

18: procedure Expand(H)
19: for all a ∈ A do
20: χ(H, a)← χ0

21: 〈L(H, a), U(H, a)〉 ← 〈Vmin, Vmax〉
22: Sample(H, a)
23: 〈L(H ′), U(H ′)〉 ← 〈Vmin, Vmax〉 ∀H ′ ∈ K(H, a)

24: expanded(H)← true

25: procedure Sample(H, a, C)
26: for C times do
27: Let h ∼ µ̄(H, ·)
28: Let h′ ∼ P (·|h, a)
29: n(h′)← n(h′) + 1

30: procedure Backup(H, a)

31: L(H, a)← R(H) + γ
∑

H′∈K(H,a)
N(H′)
M(H,a)L(H ′)

32: U(H, a)← R(H) + γ
∑

H′∈K(H,a)
N(H′)
M(H,a)U(H ′)

33: procedure Backup(H)
34: L(H)← maxa L(H, a)
35: U(H)← maxa U(H, a)

29

a weak simulator, which is a generative model from which complete state-action histories

can be sampled under a fixed sampling policy. We refer to the process of generating

a single history sample as a sampling episode. Because the sampled histories must be

of finite length, a TS algorithm also requires a stopping condition. We model this by

augmenting the action space with the special action ω, which causes the sampling episode

to be terminated but which is not appended to the sampled history. Given a history

h = s0a0s0 . . . ad−1sd, the probability of sampling h under sampling policy π starting

from h0 is denoted P π(h|h0) and given by

P π(h|h0) = π(h, ω)

d−1∏
t=0

π(ht, at)P (ht+1|ht, at). (3.22)

To implement an abstract TS algorithm, we need to sample abstract histories H =

S0a0S1 . . . ad−1Sd from the probability distribution over trajectories in T/α when exe-

cuting a fixed abstract policy ξ, which again uses the modified action space A∪{ω}. We

denote this probability by Pξα(H|h0), where

Pξα(H|h0) = ξ(H,ω)
d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at). (3.23)

We need to sample from Pξα but we have access only to P π. The obvious way forward

is to sample a ground history from P π and then apply the abstraction relation χ to it.

At the same time, we want the sampling process to be guided by the statistics of the

abstract tree N . Thus π should be the grounded version of an abstract policy ξ, that

is π =↓ ξ (3.2), where ξ = ξ(N) is parameterized by N . The following result shows

that this approach in fact yields a sample from Pξ〈χ,µ∗〉, which is the abstract trajectory

distribution with respect to χ and the optimal weight function µ∗.

Proposition 4. Consider a history MDP T augmented with the special action ω and an

abstraction α = 〈χ, µ∗〉 of T composed of equivalence relation χ and the corresponding

optimal weight function µ∗. Let H ′ be a random variable H ′ ∼ Pξα(·|h0) for a fixed

abstract policy ξ ∈ Π(T/α), and let h′ be a random variable such that h′ ∼ P ↓ξ(·|h0).

Then the random variable [h′]χ is equal in distribution to H ′.

Proof. Appendix A.3.

30

Algorithm 4 Abstract Trajectory Sampling (with UCT Variation)

1: procedure AbstractTS(s0)
2: while time remains do
3: Visit(s0)

4: return arg maxa∈AQ({s0}, ·)
5: procedure Visit(h)
6: if h is terminal then
7: return 0
8: Let H = [h]χ
9: if N(H) = 0 then

10: Let v = Evaluate(h)
11: else
12: Let a = Select(H)
13: Let h′ ∼ P (·|h, a)
14: Let q = Visit(h′)
15: Let v = R(h) + γq

16: Update(H, a, v)
17: n(h)← n(h) + 1
18: return v

19: procedure Select(H)
20: if ∃a ∈ A : M(H, a) = 0 then
21: return a
22: Let U(H, a) = Q(H, a) + c

√
logN(H)
M(H,a)

23: return arg maxa∈A U(H, a)

24: procedure Evaluate(h)
25: if len(H) = D then
26: return 0
27: else
28: Let a ∼ Uniform(A)
29: Let h′ ∼ P (·|h, a)
30: return R(h) + γ Evaluate(h′)

31: procedure Update(H, a, v)

32: Q(H, a)← Q(H, a) + v−Q(H,a)
n(H,a)

Proposition 4 shows that we can sample from Pξ〈χ,µ∗〉(·|h0) by sampling a history from

the ground dynamics P ↓ξ(·|h0) and then abstracting the ground history with χ, without

explicitly computing µ∗.

We give a generic abstract TS algorithm based on this approach in Algorithm 4.

We also show the concrete implementations of Select, Evaluate, and Update that

together create the abstract UCT algorithm. Note that all calls to Select happen

before all calls to Update. Thus the sampling policy is fixed while the next trajectory

is being generated and Proposition 4 applies. AbstractTS therefore operates in the

abstract state space T/〈χ, µ∗〉 for any choice of χ. Contrast this with AbstractSS, for

which µ is estimated and therefore subject to error.

31

3.5.6 Handling Action Constraints

If a problem has different legal action sets in different states, then the abstraction relation

χ might aggregate ground states with different legal action sets into the same abstract

state, so that there exist states h and g such that h 'χ g but A(h) 6= A(g). It is then

not obvious what the set of legal actions should be in the abstract state H = [h]χ = [g]χ.

We have identified three ways of addressing this issue.

1. Require χ to be such that h 'χ g ⇒ A(h) = A(g).

2. Set A(H) =
⋂
h∈H A(h) for each H ∈ H/χ.

3. Model “illegal” actions as having no effect and possibly giving a penalty.

Option 1 is reasonable if it is rare that two states with different action sets are

reached by the same sequence of actions. If different action sets are common, then it

becomes difficult to find nontrivial abstractions that satisfy condition 1, and the benefits

of abstraction are lost. The viability of option 2 depends on whether the intersection

of the ground action sets usually contains the actions necessary for good performance.

Option 2 also makes implementing abstraction refinement (Chapter 4) more difficult,

since refining the abstraction can expand the legal action sets for the aggregate states.

Note that option 3 with a penalty of −∞ for executing an illegal action has a similar

effect to option 2.

The problem of action constraints is a fundamental obstacle to state abstraction.

The framework of approximate MDP homomorphisms [Ravindran and Barto, 2004] ad-

dresses the problem by extending the notion of state abstraction to abstractions of 〈s, a〉
pairs. This allows action symmetries to be modeled, which is one way of enlarging the

intersection of action sets (option 2 above). Anand et al. [2015] developed abstract UCT

algorithms based on homomorphisms of history MDPs. The problem of identifying use-

ful subsets of the action set in MCTS was studied by Pinto and Fern [2014], and similar

methods could be used to identify a common action set or to determine that no useful

one exists.

32

3.6 Related Work

Much of the theory of state abstraction in MDPs is based on the framework of stochastic

bisimilarity [Givan et al., 2003]. Bisimilarity is a strong equivalence criterion; two states

are bisimilar if and only if they cannot be distinguished by observing reward sequences

received under any policy. Bisimilarity metrics [Ferns et al., 2004] generalize bisimilarity

to include approximate equivalence. Li et al. [2006] provided a taxonomy of state equiv-

alence criteria that are weaker than bisimilarity but still sound. Their criteria of π∗- and

a∗-irrelevance are the basis of our (p, q)-consistency criterion (Definition 2). Van Roy

[2006] derived regret bounds with a similar form to Theorem 1 for value iteration with

state aggregation.

Most other work on abstraction in MCTS has focused on trajectory sampling algo-

rithms. The AS-UCT algorithm proposed by Jiang et al. [2014] performs an abstract

UCT search with an approximate MDP homomophism [Ravindran and Barto, 2004]

computed from trajectory samples. The ASAP-UCT algorithm of Anand et al. [2015]

extends ASAP-UCT to abstract 〈h, a〉 pairs, which enables the abstraction to take ad-

vantage of action symmetries. OGA-UCT [Anand et al., 2016] is an incremental version

of ASAP-UCT that interleaves sampling and abstraction revision. We will revisit these

algorithms in Chapter 4.

State abstraction has also been applied in classical planning to create a class of

domain-independent admissible heuristics called abstraction heuristics. This work began

with pattern databases [Culberson and Schaeffer, 1998; Edelkamp, 2001] and has been

developed into methods such as merge-and-shrink heuristics [Helmert et al., 2007]. Ab-

straction heuristics compute a lower bound on the cost-to-go in the planning problem

by solving a “relaxed” version of the problem created through state abstraction. The

heuristic is used to guide search, but the search still takes place in the ground problem.

In addition to state abstraction, action abstraction and temporal abstraction have

also been applied in MCTS. The TLS algorithm [Van den Broeck and Driessens, 2011]

builds a search tree over action equivalence classes. Pinto and Fern [2014] use action

pruning to speed up UCT and are able to learn pruning functions for which the regret of

the tree search procedure is bounded. Bai et al. [2015] extended UCT to include temporal

abstraction in the form of options [Sutton et al., 1999]. Their algorithm is hierarchical,

so that options can invoke sub-options, and so on recursively until reaching a primitive

33

action. Hierarchical action decomposition is commonly used in classical planning in the

form of hierarchical task networks (HTNs) [Erol et al., 1994; Nau et al., 2003].

3.7 Summary

In this chapter we have developed a framework for state abstraction in MCTS. We defined

an abstraction criterion that adapts the sound state aggregation criteria of Li et al. [2006]

to history MDPs and generalizes these critera to include unsound abstractions. We then

showed that the regret due to using these unsound abstractions for decision making with

tree search is bounded. Finally, we showed how the MCTS algorithms sparse sampling,

forward search sparse sampling, and UCT / trajectory sampling, can be adapted to use

state abstraction. In the next chapter, we address the problem of discovering appropriate

state abstractions for tree search and evaluate abstract MCTS algorithms empirically.

34

Chapter 4: Progressive Abstraction Refinement for Sparse Sampling

4.1 Introduction

It is difficult to assess the quality of a state abstraction for tree search a priori because

of the complex interaction of abstraction size, abstraction accuracy, sample budget, and

search depth. Planning problems often have “critical horizons”, meaning that important

consequences of actions only manifest sufficiently far in the future. For example, a car

must begin decelerating well before entering a turn. If an online planning algorithm

cannot search to the critical horizon, it will not recognize the possibility of a crash until

it is too late to prevent it. Although abstractions may introduce error, the corresponding

increase in search depth may give an overall performance gain by allowing the search to

reach a critical horizon. Further, state abstraction reduces the space of policies, so that

even if the optimal policy is not representable in the abstract state space, many poor

policies may be excluded along with it, resulting in a net benefit.

We address the problem of abstraction specification by designing a sparse sampling

algorithm that refines its abstraction during search so that the abstraction becomes finer

as the number of samples increases. This allows the representation to adapt automati-

cally to the search budget.

4.2 Abstraction Refinement

To refine an abstraction relation χ means, intuitively, to define a new abstraction relation

ψ that preserves more detail about the ground state space than χ. Abstraction refinement

gives rise to an ordering of abstraction relations.

Definition 6. Abstraction ψ is finer than χ, denoted ψ � χ, if h 'ψ g ⇒ h 'χ g. If in

addition ψ 6= χ, then ψ is strictly finer than χ, denoted ψ ≺ χ.

State equivalence abstractions form a complete lattice under this ordering. The finest

abstraction is the bottom or ground abstraction ⊥, which maps all states to singleton

sets, [h]⊥ = {h} ∀h. The coarsest abstraction is the top abstraction >, which maps all

35

(a) (b) (c)

Figure 4.1: (a) An abstract FSSS tree of width C = 2 and depth d = 2. The small
circles and squares represent ground state and action nodes, respectively. Ground nodes
are aggregated into abstract nodes, but the structure of the ground tree is retained. The
arrows show how value estimates propagate in the abstract tree. Note that part of the
tree was not expanded. (b) After refining one state abstraction, the ground samples are
re-partitioned to respect the new abstraction. The abstract FSSS invariant (Definition 5)
no longer holds. (c) After up-sampling and value backups, the tree again satisfies the
abstract FSSS invariant. The pruned subtree had to be expanded because abstraction
refinement changed the value estimates.

ground histories of the same length and containing the same action sequence to the same

abstract history, [h]> = {g ∈ Hlen(h) : ai(h) = ai(g), i = 1, . . . , len(h)}. Searching in the

abstract problem T/> amounts to searching for the best open-loop policy in T , while

searching in T/⊥ is equivalent to searching in the ground space.

Given a refinement operator F such that F (χ) ≺ χ, the lattice structure implies that

repeated application of F eventually yields the bottom abstraction, that is F ∗(χ) =⊥.

The search algorithm we describe next relies on this property to enable it to exploit state

abstractions during search while still providing the performance guarantees of search in

the ground state space.

4.3 Progressive Abstraction Refinement for Sparse Sampling

The Progressive Abstraction Refinement for Sparse Sampling (PARSS) algorithm (Algo-

rithm 7) is an adaptation of AFSSS that refines its abstraction during search. PARSS

36

Algorithm 5 A generic abstraction refinement procedure

1: procedure PAR(F = 〈N,L,U,H0, χ〉)
2: Let H = Select(N)
3: if H 6= ∅ then
4: χ(pre(H), a(H))← Refine(χ(pre(H), a(H)))
5: Split(pre(H), a(H), χ)
6: UpdateTree(pre(H), a(H))

begins by building a complete >-FSSS tree. PARSS then iteratively refines the ab-

straction and revises the search tree to respect the new abstraction until there are no

more useful refinements to perform. We present an improved version of PARSS that

incorporates lessons learned from our experiences with the original PARSS algorithm.

PARSS combines a slightly modified AFSSS algorithm (Algorithm 3) with the

generic refinement procedure PAR described in Algorithm 5. The PAR procedure con-

sists of four steps. The Select function either returns a state node H whose associated

abstraction relation χ(pre(H), a(H)) should be refined or indicates that no refinement is

to be done. The Refine procedure performs the refinement of the selected abstraction

relation. After refinement, the subtree below the refined state node is Split recursively

according to the new abstraction. Finally, UpdateTree revises the part of the tree

affected by the refinement.

Algorithm 7 includes implementations of Split and UpdateTree. The Split proce-

dure traverses the subtree affected by an abstraction refinement and alters its structure to

respect the new abstraction. UpdateTree proceeds in two steps. First, the UpSample

procedure adds additional samples to the affected subtree so that each action node has

been sampled at least C times and recomputes the value bounds in the subtree with

Backup. Then, the value bounds of the affected subtree are propagated along the path

to the root of the search tree using Backup. The remaining two operations, Select and

Refine, can be realized in many ways, and we describe several possibilities in Section 4.4.

After each PAR operation, PARSS calls AFSSS on the refined tree. This is nec-

essary because refinement may have changed the value bounds of the root node such

that the tree no longer satisfies the convergence criterion. After AFSSS returns, the

resulting tree is an abstract FSSS tree with respect to the newly refined abstraction.

PARSS uses a modified version of AFSSS in which the Sample procedure is replaced

37

by the SampleModified procedure defined in Algorithm 6. In the modified version,

when sampling an abstract action node Ha, rather than sampling ground states from

µ̄(H, ·) as in AFSSS, we instead repeatedly sample one successor from P (·|h, a) for ev-

ery h ∈ H until we have at least C ground successor samples. We do this to ensure

that m(h, a) ≤ C at all times for all ground action nodes ha in the sample tree, which

guarantees that PARSS never draws more samples than ⊥-SS (Section 4.3.1).

Algorithm 6 Modified Sample procedure for PARSS

1: procedure SampleModified(H, a)
2: for all h ∈ H do
3: while m(h, a) < d C

N(H)e do

4: Let h′ ∼ P (·|h, a)
5: n(h′)← n(h′) + 1

4.3.1 Analysis of PARSS

The PARSS algorithm can be viewed as a different way of orchestrating the sampling

of a sparse tree. In this section, we establish that PARSS provides the same bounded

suboptimality guarantees with the same sample complexity as ordinary sparse sampling,

provided that the Select and Refine operations of PARSS satisfy some simple con-

ditions that ensure that the abstraction refinement procedure PAR continues to make

progress. Namely, Select must be complete, while Refine must be strict. To define

these terms, we first need some vocabulary for the different possible dispositions of state

nodes.

Definition 7 (Expanded state node). A state node H is expanded if expanded(H) is

true.

Definition 8 (Pure state node). A state node H is pure if H is expanded and for all

h, g ∈ H, h = g.

If a state node H is pure, then nothing is accomplished by further refining H. Note

that this need not imply that χ(pre(H), a(H)) =⊥, since it may be that not all ground

histories in the equivalence class H have been encountered during sampling.

We can now state the necessary conditions for the Select and Refine operations.

38

Definition 9. A Select implementation is complete if it returns a state node H, when-

ever such an H exists, such that H is expanded and H is not pure.

Definition 10. A Refine implementation is strict if Refine(χ) ≺ χ.

Definition 9 ensures that Select eventually selects every state node H such that

refining H could possibly change the optimal root action. We can exclude un-expanded

state nodes in Definition 9 because if H is un-expanded then L(H) = Vmin and U(H) =

Vmax (Algorithm 3, Line 23), so refining H cannot increase U(H) or decrease L(H) and

thus cannot change the optimal root action. Definition 10 simply requires that Refine

actually refines the abstraction, which is always possible when H is not pure.

Our analysis of PARSS will proceed as follows. We begin by observing that PARSS

produces a sequence of abstraction relations (χ0, χ1, . . .) with χt+1 � χt and a sequence

of abstract search trees (N0,N1, . . .), each with respect to its corresponding χt. Propo-

sition 5 establishes that Nt is an abstract FSSS tree with respect to χt for each t. Next,

Proposition 6 shows that there exists a finite τ such that Nτ is a ⊥-FSSS tree. Lemma 7

shows that ⊥-SS achieves the same performance guarantees as ordinary SS. Finally,

we combine these results in Proposition 8 to conclude that PARSS achieves the same

performance guarantees as ordinary SS.

Proposition 5. Consider a PARSS implementation where the Select and Refine

operations satisfy the conditions of Definitions 9 and 10. If the current search tree T is

a χ-FSSS tree, then after one iteration of the loop in Algorithm 7, Line 4, the resulting

tree T ′ is a ψ-FSSS tree for some ψ such that ψ ≺ χ.

Proof. By assumption, Refine(H) produces a new abstraction ψ with the property

ψ(pre(H), a(H)) ≺ χ(pre(H), a(H)), and therefore ψ ≺ χ. The Split operation

partitions the subtree rooted at H according to ψ, establishing condition (5.1). The

UpSample loop in UpdateTree (Line 15) adds samples and performs backups in the

subtree of H to establish (5.2) and (5.3) for the subtree. Then values are backed up from

H to the root node (Line 17), which establishes (5.3) for the rest of the tree. Finally,

the call to AFSSS (Line 6) establishes convergence (5.4).

Now that we have established that each iteration of refinement produces an ab-

stract FSSS tree with respect to a strictly refined abstraction, we can exploit the lattice

39

structure of abstraction relations to argue that this iterative refinement will eventually

produce a ⊥-FSSS tree.

Proposition 6. If PARSS does not exhaust its time budget, it terminates after drawing

at most (|A|C)d samples from the transition function P , and the resulting abstract tree

T is an abstract FSSS tree with respect to ⊥.

Proof. By Proposition 5, each iteration of the loop in Algorithm 7, Line 4 produces a

strictly refined AFSSS tree. Due to the lattice structure of aggregation abstractions

(Section 4.2), the abstraction relations χ(H, a) will be equal to ⊥ for all H, a after a

finite number of iterations. The tree at this point is an abstract FSSS tree with respect

to ⊥.

The worst-case sample complexity occurs if all abstract nodes H in the fully-refined

tree are singletons and no pruning takes place. In this case, each abstract state node is

a singleton set H = {h}, and its successors K(H, a) are the ground successors in k(h, a).

Note that the SampleModified procedure (Algorithm 6) samples sucessors for every

ground state h until |k(h, a)| = dC/|H|e. Since dC/|H|e achieves its maximum of C

when |H| = 1, the tree in which every abstract state node is a singleton represents the

worst-case sample complexity, and its size is (|A|C)d.

The next lemma formalizes the intuitive result that aggregating ⊥-equivalent states

in the SS algorithm does not affect its performance guarantees, that is that a ⊥-SS(C, d)

tree provides the same guarantees as an ordinary SS(C, d) tree. This result was stated

in Kearns et al. [2002], and we prove it here for completeness.

Lemma 7. Abstract sparse sampling with the bottom abstraction ⊥ achieves the same

sample complexity and bounded suboptimality guarantees as ordinary sparse sampling.

Proof. The⊥-SS tree incurs 0 value estimation error from state aggregation (Theorem 1).

The analysis of the probability of error for SS proceeds by bounding the probability of

error in a single tree node and then applying the union bound to derive the probability

that no tree node contains an error. The ⊥-SS tree never contains more nodes than the

ordinary SS tree, thus the overall probability of error is no larger for ⊥-SS.

We can now combine Proposition 6 and Lemma 7 to establish our desired result.

40

Proposition 8. PARSS achieves the same bounded suboptimality guarantees with the

same sample complexity as ordinary sparse sampling.

Proof. Proposition 6 establishes that PARSS yields a ⊥-FSSS tree T with the same

worst-case sample complexity as SS (ie. O((|A|C)d)). T is different from a ground

FSSS tree in that states that are equal in the ground representation are aggregated in

T . Because the FSSS pruning mechanism is sound when L and U are admissible, T
achieves the same error bounds as an SS tree in which identical states are aggregated. By

Lemma 7, such a ⊥-SS tree achieves the same guarantees as ordinary sparse sampling.

The conclusion follows.

From this analysis, we conclude that PARSS can be expected to perform as well as

SS and FSSS in terms of worst case sample complexity and error bounds if both searches

are run to completion. From a practical standpoint, the rate of performance improvement

during search is also important. This is a difficult issue to address theoretically because

of the complicated dynamics of tree search. Instead, we show empirically (Sections 4.6

and 4.7) that PARSS has an advantage compared to FSSS and AFSSS in this regard.

4.3.2 Optimizing Memory Usage

A drawback of PARSS is that for any abstract state node H that might later be refined,

the ground state samples s(h) for h ∈ H must be retained. This is because after refine-

ment, more successor samples might need to be drawn from Pµ̄(·|H, a), which involves

sampling a ground history h ∈ H from µ̄(H, ·) and then simulating action a in s(h).

The memory cost of retaining these ground state samples may be significant if there are

many state variables, so we would like to free the memory associated with samples that

are no longer needed. We will show that the ground state samples associated with an

abstract state node H can be discarded if H satisfies the following condition.

Definition 11 (Closed state node). A state node H is closed if H is pure and all state

node ancestors of H are pure.

If we know that a node H is closed, we can free the memory used to store the ground

states h ∈ H, due to the following fact.

Proposition 9. Sample is never called on a closed state node.

41

Proof. The Sample procedure (Algorithm 3 Line 25) is called only when either expand-

ing an un-expanded state node (Algorithm 3 Line 18) or when up-sampling a newly

refined subtree (Algorithm 7 Line 21). In the first case, a closed node will not be sam-

pled because it is pure and thus by definition already expanded. In the second case,

UpSample will not be called on a closed node or any of its ancestors because Select

never selects a pure node.

Since Sample is never called on a closed state node H, no further successor samples

will be drawn from Pµ̄(·|H, a). Thus memory used to store the ground states s(h) for

each h ∈ H can be freed. The algorithm need only retain the value estimates and upper

and lower bounds associated with H. We found this optimization to be important in

practice. Note that when doing sparse sampling with a fixed abstraction (including ⊥),

we can discard the ground state samples as soon as the abstract state that contains

them is expanded. This is a disadvantage of PARSS compared to AFSSS with a fixed

abstraction, since AFSSS with a fixed abstraction does not need to store the ground

state samples for non-leaf state nodes, while PARSS might need to retain every ground

state sample drawn so far. Thus PARSS has a larger memory footprint than AFSSS.

4.3.3 Abstraction Refinement in Trajectory Sampling

It is easy to imagine a “Progressive Abstraction Refinement for Trajectory Sampling” al-

gorithm designed along similar lines as PARSS. Besides the advantages of TS algorithms

compared to SS algorithms when abstractions are used (Section 3.5), TS algorithms are

more popular in applications [Browne et al., 2012]. We have not thoroughly investi-

gated such a “PARTS” algorithm, but our preliminary work raised some concerns that

prompted us to pursue the sparse sampling-based alternative.

One concern is that whereas an SS tree for fixed C and d contains a finite number

of nodes, in principle a TS algorithm could go on adding samples indefinitely. Thus one

must make a somewhat arbitrary choice of when to pause sampling and consider abstrac-

tion refinements. A second obstacle is that because TS algorithms are not systematic,

they might be slow to explore a newly-refined subtree, especially if it is not part of the

currently optimal subtree. Thus one might want to tweak the exploration parameters or

value estimates to encourage exploration. These considerations add degrees of freedom

42

to the design of the algorithm, making it harder to isolate the effect of abstraction from

the effects of particular design choices. Nevertheless, most other work on abstract MCTS

is based on TS algorithms, not SS algorithms (Section 4.5), and we feel that abstraction

refinement in TS is an important area for further work.

4.4 Refinement Strategies

To instantiate the PAR procedure, we need to implement the Select and Refine op-

erations. This section describes the strategies that we implemented for our experiments.

4.4.1 State Node Selection

Besides satisfying the conditions of Definition 9, the Select procedure should return a

state node in which a useful refinement is likely to be available. We investigated three

selection strategies in our experiments.

4.4.1.1 Breadth-First Selection

The first work with PARSS [Hostetler et al., 2015] used a breadth-first selection order.

The breadth-first order is a natural choice in discounted problems (γ < 1) because the

values of nodes near the root are less affected by discounting when calculating the root

value. Improving the value estimate in shallow nodes has an exponentially larger impact

on the root value than improving the estimate in deeper nodes. Since shallow nodes

also have exponentially more descendants than deep nodes, refining shallow nodes first

causes the refinement process to take large “steps” through the space of policy sets.

Each refinement adds many policies to the set of policies whose values the search tree

model can estimate. These large steps mean that more sampling will be done after

each refinement, since a large portion of the tree is affected. Breadth-first selection also

has the practical benefit that once a state node becomes pure, it never becomes impure

again since its ancestors have already been refined. This makes breadth-first selection

the easiest to implement.

43

4.4.1.2 Uniform Selection

Breadth-first selection is a poor choice if relevant randomness only occurs deep in the

tree. For example, an action might cause a value-relevant random event after a delay of

several time steps. Breadth-first selection would waste samples refining nodes at depths

less than the time delay, where the abstraction is already sound.

Uniform selection avoids this problem by selecting an active state node to refine

uniformly at random. An obvious shortcoming of uniform selection is that nodes at

greater depths are exponentially more likely to be selected and refinements to deep

nodes are less likely to affect the value estimate in the root node. We do not expect

uniform selection to be the best choice, but it provides a useful comparison due to its

naivete.

4.4.1.3 Heuristic Guided Selection

Most generally, we can define a priority ordering over the set of active abstract state

nodes and refine the highest-priority state nodes first. One obvious general-purpose

heuristic is to refine state nodes H in which there is high variance across the action

value estimates for the constituent ground states h ∈ H. Let q(h, a) denote the value

estimate for action a based on the subtree of the sample tree rooted at h. This quantity

is defined recursively in the usual way,

q(h, a) = R(h) +
1

m(h, a)

∑
h′∈k(h,a)

n(h′) max
a′∈A(h)

q(h′, a′). (4.1)

These values can be computed along with the statistics for the abstract states during

the Backup step (Algorithm 3, Line 30).

Let σ2(H, a) = 1
M(H,a)

∑
h∈H n(h)

(
q(h, a)− q̄(H, a)

)2
denote the sample variance of

the set {q(h, a) : h ∈ H}, where q̄(H, a) = 1
M(H,a)

∑
h∈H n(h)q(h, a) is the average value

of action a over the samples in H. We can define a priority heuristic for an abstract

state node H by taking the average of these variances over all actions,

fσ2(H) =
1∑

a∈AM(H, a)

∑
a∈A

M(H, a)σ2(H, a). (4.2)

44

Refining state nodes for which fσ2 is large makes sense in light of Theorem 1, since if

fσ2(H) = 0, then H is part of a (0, 0)-consistent partition of the sampled collection of

ground states and thus effectively sound.

Note that the breadth-first and uniform selection strategies can also be defined in

terms of heuristic functions,

fbf(H) =
1

len(H)
, (4.3)

funif(H) = 1, (4.4)

with ties being broken randomly.

4.4.2 State Abstraction Refinement

An abstraction relation is essentially a multilabel classifier, and many standard tech-

niques in classification or clustering could serve as a basis for refinement strategies. In

our experiments, we tried the following two approaches.

4.4.2.1 Random Refinement

Given an abstract state node H chosen by Select, the Random refinement strategy

randomly permutes the equivalence classes in H/⊥ and greedily divides them into two

sets of approximately equal size to form the refined abstraction. This option is fast to

compute and places no requirements on the ground state representation, but it does not

exploit structure in the ground state space. During search, previously unseen histories

h are added to the abstract state H that currently has the smallest value of N(H).

4.4.2.2 Decision Tree-based Refinement

If we have access to a set of features {φi(h)} for each state, we can take a more sophisti-

cated approach. The DT refinement strategy represents abstractions as incrementally-

constructed decision trees. Each abstraction relation χ(H, a) is defined by a decision tree

D. The leaves of D define the members of a partition of the successors of Ha. Interior

nodes are labeled with a feature i and a threshold θ. The refinement operation adds a

45

new split to D dividing the leaf node corresponding to H into two new sets X and Y ,

with i and θ chosen greedily to maximize an evaluation function f(X,Y).

The evaluation function f can be designed to encourage desired properties in the

partitions. For example, if χ is such that H/χ is (0, 0)-consistent (Definition 2) then χ is

sound in sparse sampling (Theorem 1). We define an evaluation function that encourages

(0, 0)-consistency using upper bounds u(h) and u(h, a) for ground state values, where

u(h) = R(h) + γ

{
maxa∈A([h]χ) u(h, a) h is not a leaf

0 otherwise
,

u(h, a) =
1

m(h, a)

∑
h′∈k(h,a)

n(h′)u(h′).

Like the ground state q-function (4.1), u(h, a) and u(h) can be computed during the

Backup step. Using these bounds on the ground states, we define the evaluation function

f(X,Y) = |ū(X)− ū(Y, a∗)|+ |ū(Y)− ū(X, b∗)|,

where ū(H) = 1
n(H)

∑
h∈H n(h)u(h) and ū(H, a) = 1

n(H)

∑
h∈H n(h)u(h, a) are averages

of the ground state upper bounds a∗ = arg maxa∈A ū(X, a) and b∗ = arg maxb∈A ū(Y, b).

Splits that maximize f will tend to put ground states that have different optimal actions

or different optimal values into different abstract states.

DT is similar to the mechanism used by Van den Broeck and Driessens [2011] in their

Tree Learning Search algorithm, as well as to the UTree mechanism [McCallum, 1996].

Variations on the DT theme could be created by replacing the “feature-value” splits

with a different decision rule. The decision tree could also be replaced with a different

clustering algorithm.

4.5 Related Work

The idea of adaptive refinement or revision of an abstraction has been the basis for

several MDP abstraction algorithms, including the G algorithm [Chapman and Kael-

bling, 1991], the Parti-Game algorithm [Moore and Atkeson, 1995], and the UTree

algorithm [McCallum, 1996]. Baum et al. [2012] propose an adaptive state abstraction

that is varied according to heuristics including proximity to the agent and differences in

46

action outcomes. The abstraction refinement heuristics in all of these works are based

on similar intuitions, and many are similar to the heuristics we use in PARSS (Sec-

tion 4.4). Unlike PARSS, these algorithms maintain a complete policy for the current

abstract problem and execute it, whereas PARSS is an OP algorithm and thus replans

every time step.

Most other work on abstraction in MCTS has focused on trajectory sampling algo-

rithms. PARSS is most similar to the TLS algorithm proposed by Van den Broeck and

Driessens [2011], which is based on UCT. TLS is targeted at continuous action spaces,

and it works by progressively refining the action continuum at individual state nodes in

the tree, exactly analogous to PARSS but applied to actions rather than states. The

AS-UCT algorithm proposed by Jiang et al. [2014], also based on UCT, differs by taking

a “batch” approach to abstraction construction, as opposed to the incremental approach

of TLS and PARSS. In this batch approach, a tree is first sampled under the current ab-

straction (which begins as ⊥). After the sampling period, an approximate abstraction is

calculated from the sampled tree. The process is then iterated using the new abstraction

for sampling. Jiang et al. [2014] derive suboptimality bounds for their abstractions using

the theory of MDP homomorphisms [Ravindran and Barto, 2004]. The ASAP-UCT

algorithm of Anand et al. [2015] extends ASAP-UCT to abstract 〈h, a〉 pairs, which

enables the abstraction to take advantage of action symmetries. OGA-UCT [Anand

et al., 2016] is an incremental version of ASAP-UCT that interleaves sampling and

abstraction revision.

Like PARSS, algorithms in the AS-UCT family maintain an abstract “view” of the

samples drawn so far and use it to guide sampling. The abstraction used to construct

these views is then periodically revised. Besides being based on a different MCTS algo-

rithm, the major difference between PARSS and these abstract UCT algorithms is that

in PARSS the abstraction revision is always a refinement, while the AS-UCT algorithms

revise their abstractions to more closely approximate a target abstraction χ �⊥ with

particular properties. A more minor difference is that in AS-UCT and its descendants,

the abstract “view” is a directed acyclic graph (DAG), while in PARSS it is a tree.

The POMDP view of abstraction illuminates a connection between abstract tree

search and policy search algorithms for POMDPs. Sparse sampling itself derives from

earlier work using sample trees to evaluate policies during policy search [Kearns et al.,

1999]. PARSS essentially enumerates and evaluates policies in a certain order deter-

47

mined by the order of abstraction refinements. By starting from the top abstraction >,

PARSS evaluates open-loop policies first, and then each abstraction refinement expands

the policy search set by including new policies that make more distinctions between

states. Several works have explored the use of open loop policies for value estimation in

POMDPs. Weinstein and Littman [2012] applied this idea in continuous action MDPs,

drawing on theory developed by Bubeck and Munos [2010]. Weinstein and Littman

[2013] later developed a related algorithm with a different optimization mechanism and

applied it to legged locomotion tasks. Hauser [2011] used forward search with open loop

policies to plan in partially observable continuous spaces.

The idea of aggregating histories rather than states also has roots in the study of

POMDPs. The UTree algorithm [McCallum, 1996] takes a progressive refinement ap-

proach to discovering an effective history abstraction. UTree constructs abstractions

that map histories to abstract states and builds an empirical model of the abstract MDP.

A policy for the abstract problem is then computed using standard methods. The theory

of such history-to-state abstractions has been further developed by Hutter [2014].

4.6 Experiments

Our experiments compare multiple variations of PARSS to one another and to AFSSS

with fixed abstractions on a variety of problem domains. The complete source code

used in our experiments is available at https://github.com/jhostetler/jmcplan/

releases/tag/v0.1.

4.6.1 Algorithms

We tested six different variations of PARSS which were obtained as the cross product

of the three node selection strategies Breadth-First (BF), Uniform, and Variance

(Section 4.4.1) and the two refinement strategies DT and Random (Section 4.4.2). We

compared these PARSS variants to ⊥-FSSS and >-FSSS, and also to AFSSS with two

random abstractions of different granularities (rand-FSSS).

The random abstraction search algorithm is obtained by changing the definition of

the Sample function of AFSSS (Algorithm 3) to the one in Algorithm 8. The modified

Sample(H, a) procedure places novel ground successor states into their own equivalence

48

class until |K(H, a)| = B, where B is a parameter of the algorithm. Once |K(H, a)| = B,

subsequent novel ground successor states are added to the member H ′ ∈ K(H, a) with

the smallest value of N(H ′). The resulting tree has a maximum stochastic branching

factor of B, but is likely to incur a high abstraction error since the abstractions are

random. The purpose of rand-FSSS is to provide a simple baseline abstraction that is

between ⊥ and > in granularity.

4.6.2 Domains

Our problem pool includes the domains used by Hostetler et al. [2015] as well as several

additional problems.

4.6.2.1 Saving

The Saving problem [Hostetler et al., 2015] is designed specifically to illustrate the effect

of certain structural features of the problem on the different tree search algorithms.

Saving is an episodic task in which the agent must accumulate wealth by choosing to

either save, invest, or borrow at each time step. The problem is parameterized by integers

〈pmin, pmax, Tb, Ti, Tm〉 where pmin ≤ pmax and Ti, Tb, Tm > 0. Its state space consists of

integers 〈p, tb, ti, tm〉, where p ∈ {pmin, pmax}, tb ∈ {0, Tb}, ti ∈ {0, Ti}, and tm ∈ {0, Tm}.
The save action always yields an immediate reward of 1. The borrow action takes

out a “loan”, which gives an immediate reward of 2 and starts a countdown timer tb

from Tb to 0. The agent cannot borrow again while tb > 0. When tb reaches 0, the agent

receives a reward of −3, representing repaying the loan with interest. Thus the value of

borrow is −1, unless the episode will end before the loan is repaid. The invest action

gives 0 immediate reward, but gives the agent the right to take the sell action during

a period of time in the future. If invest is played at time t, then tm first counts down

from Tm to 0, representing a “maturity” period. When tm reaches 0, ti begins counting

down from Ti to 0, and the sell action is available as long as ti > 0. The sell action gives

a reward of p, where p is a state variable that evolves randomly over time according to

p ∼ DiscreteUniform{pmin, pmax}. The agent can have only one investment at a time.

We instantiate the Saving problem with parameters pmin = −4, pmax = 4, Ti = 4,

and Tb = 4. With these parameters, invest is nearly always optimal, but only if the

49

agent takes advantage of the investment period Ti in order to sell the investment for

more than E
[
p
]

= 0. Borrow is almost always the worst action, but the agent must

search to a depth of at least Tb to discover its negative consequences.

These parameter choices achieve two goals. First, there is a critical planning horizon

of Tb before which the non-optimal borrow action appears to be optimal. This is expected

to cause >-FSSS to outperform ⊥-FSSS for small budgets, since >-FSSS can search

deeper with the same budget. Second, invest is optimal when it is available and thus

Q∗(s, invest) > Q∗(s, save), but there are some policies π — in particular, the optimal

policy π∗> under abstraction > — for which Qπ(s, invest) < Qπ(s, save). Because π∗>
cannot discriminate between states, it estimates the future value of sell as E

[
p
]

= 0.

Thus the optimal policy under > is to always save. When we estimate Q-values using this

policy, we find that Qπ
∗
>(s, invest) < Qπ

∗
>(s, save) because save gives a larger immediate

reward. This is the failure mode of open loop replanning noted by Weinstein and Littman

[2012].

The addition of the maturity period Tm extends the original Saving problem de-

scribed in [Hostetler et al., 2015], which is recovered when Tm = 1. Our experiments use

two versions of Saving, with Tm = 1 and Tm = 3 respectively. We expect that setting

Tm > 1 will negatively affect the performance of the breadth-first node selection order

(Section 4.4.1). Because the randomness in the problem is relevant only when the sell

action is available, refining the abstraction in state nodes where the investment has not

yet matured will decrease performance by increasing the size of the tree to no benefit.

We would expect the performance of the Uniform and Variance orderings not to be

so affected.

4.6.2.2 Sailing

Sailing is based on a test domain used by Kocsis and Szepesvári [2006] and Jiang et al.

[2014]. The agent controls a sailboat on a 10 × 10 grid and must navigate from the

starting position at (0, 0) to the goal at (9, 9). The boat can move in 8 directions, and

the cost of a move depends on the angle relative to the wind and the Euclidean distance

to the neighboring location. The wind blows in one of the same 8 directions, and either

stays the same or switches to a neighboring direction uniformly at random every step.

We used two variations of Sailing, one in which the grid is empty and one in which

50

random obstacles are placed independently in each square with probability 0.2. We use

the same random problem instances for all of the algorithms to reduce variance.

4.6.2.3 Racetrack

Racetrack is a classic domain introduced by Barto et al. [1995]. The agent controls a

racecar in a grid world. Actions alter the velocity of the car by applying accelerations in

{−1, 0, 1}×{−1, 0, 1}. Both components of the acceleration are subject independently to

a “slip” probability of 0.2, which causes no acceleration to be applied in that direction.

Each time step has a fixed cost of −1, so the agent must get from the start to the goal

in as few steps as possible, and crashing the car gives a penalty equal to the maximum

cumulative step cost, which means that crashing is always worse than not achieving the

goal. We used both the Small and Large grid topologies of Barto et al. [1995].

4.6.2.4 Spanish Blackjack

Spanish Blackjack is a more complicated version of the casino game Blackjack. The dif-

ferent rules of Spanish Blackjack cause episodes to be longer on average than in ordinary

Blackjack, but the gameplay is otherwise similar. We use an infinite deck so that card

counting is not helpful.

In Spanish Blackjack, not all actions are legal in all states. We thus require the

abstraction not to aggregate states with different legal action sets. This means that

wherever we would otherwise use the top abstraction >, we instead use the coarsest

abstraction that respects the action constraints.

4.6.2.5 Academic Advising

Academic Advising (“Advising”) is a modification of the IPC problem of the same name

[Guerin et al., 2012]. The agent must take and pass all of the required courses in an

academic program. The courses are linked by prerequisite relationships, and the chance

of passing a course depends on how many of its prerequisites have been passed. We used

MDP instance 1 from the IPC 2014. We implemented a generalized problem that has

integer grades in the range {0, . . . , g} to increase stochastic branching. The probability

51

of passing a course given prerequisite grades {p1, . . . , pn} is

P(pass|{pi}) = η + (1− η)

∑
i pi

(n+ 1)g
.

If a course has no prerequisites, the agent passes with probability η0. If the agent passes,

it receives a random grade from DiscreteUniform{1, g}. The agent receives a penalty of

−5 in each step if it has not achieved a grade of g∗ in all required courses, and there is

an action cost of −1 for taking a course for the first time and −2 for repeating a course.

In our experiments, we set g = 4, g∗ = 2, η = 0.2, and η0 = 0.8.

4.6.2.6 IPC Crossing Traffic

Crossing Traffic is a grid navigation problem in which the agent must cross several lanes

of traffic (obstacles that move right-to-left) without being hit. New obstacles spawn

randomly at the rightmost square of each lane, and obstacles exiting the leftmost square

are removed. The agent incurs a fixed step cost of −1. We used MDP instance 4 from

the IPC 2014.

The IPC Crossing Traffic problem is encoded in a way that is particularly difficult

for planning. Getting hit prevents the agent from moving for the rest of the episode but

gives no immediate penalty. Thus a planner cannot identify getting hit as a bad outcome

unless it has already found a policy that reaches the goal with non-zero probability.

4.6.2.7 IPC Elevators

In Elevators, the agent controls one or more elevator cars and must use them to pick up

and drop off passengers. Passengers arrive stochastically at each floor where they wait

until an elevator stops that is going in their desired direction (up or down). Passengers

going up get off at the top floor and passengers going down get off at the bottom floor.

The agent incurs a penalty for each passenger that is not at its destination. We used

MDP instance 7 from the IPC 2014.

Due to the limitations of the domain description language used for the IPC (RDDL;

[Sanner, 2010]), the Elevators domain does not track the number of passengers waiting

or in an elevator. Thus its stochastic branching factor is lower than might be expected.

52

The problem even becomes deterministic when all floors have passengers waiting, since

further arrival events at those floors have no effect.

4.6.2.8 IPC Tamarisk

In Tamarisk, the agent is trying to prevent the invasive tamarisk plant from colonizing

a river system. The world is a directed graph of reaches, each of which have a fixed

number of slots that each can be either empty, occupied with a native plant, or occupied

with a tamarisk plant. Plants spread stochastically to empty slots with a much higher

probability of spreading downriver. At each time step, the agent can eradicate a reach,

restore a reach, or do nothing. The eradicate action changes each tamarisk slot to empty

independently with a fixed probability. The restore action stochastically changes empty

slots to native, which prevents tamarisk plants from growing there. There is a per-slot

and per-reach penalty for the presence of tamarisk plants as well as action costs for

non-default actions. We used MDP instance 2 from the IPC 2014.

4.6.2.9 Tetris

Tetris is the classic videogame of stacking differently-shaped blocks. It has quite a long

history in AI research (e.g. [Bertsekas and Ioffe, 1996; Gabillon et al., 2013]). Whereas

in the Tetris video game the player’s actions translate or rotate the falling block by one

step, in our version the agent positions the block in the top row at any horizontal position

and with any rotation and the block then immediately drops to the bottom. This change

makes the problem easier for tree search because it greatly reduces plan lengths. The

agent receives a reward of 1 each time it “clears” a row of blocks. An episode terminates

if an action causes two blocks to overlap, which becomes unavoidable as the screen fills

with uncleared blocks. The shape and initial orientation of the next block to appear is

chosen uniformly at random, thus the agent must average over possible future sequences

in order to find the best location for the current block. We use the popular “Bertsekas

features” [Bertsekas and Ioffe, 1996] as the ground representation.

In Tetris, some types of blocks have more legal positions than others because they are

longer in the horizontal direction in certain orientations. In order to have the same legal

action set in every state, we map illegal positions to the nearest legal position, which

53

simply entails translating the block horizontally so that it is in bounds. This makes the

planning problem slightly harder, since there are now redundant actions that have the

same effect, and samples are wasted evaluating these actions. Similarly, some blocks

have only two distinct orientations while others have four, resulting in further action

redundancy.

4.6.3 Methods

Since we are interested in anytime online planning, we compare the algorithms on

each domain for a range of sample budgets. Let ρM (A, b; θ) denote the average re-

turn of algorithm A running on problem M with per-decision budget b and param-

eters θ. Given a problem M and range of budgets B = {b1, . . . , bn}, we compute

ρ∗M (A, b) = maxθ∈Θ ρM (A, b; θ) for each algorithm A and each b ∈ B. The parameter

search space Θ covers a range of values of the width parameter C and depth parameter d.

For the Random abstraction, Θ also covers different settings of the stochastic branching

factor B.

Hostetler et al. [2015] compared algorithms using a different criterion, similar in form

to ρ∗M (A) = maxθ∈Θ
∑

b∈B ρM (A, b; θ). The ρ∗M (A) criterion selects a single parameter

set that performs best over all budgets simultaneously, whereas ρ∗M (A, b) optimizes pa-

rameters separately for each budget. We have come to view ρ∗M (A, b) as the superior

criterion, primarily because in ρ∗M (A) the parameter selection is sensitive to the range of

values spanned by the budgets in B. It would be unusual in practice to require a planning

algorithm to perform well over multiple orders of magnitude of the search budget with

the same parameters. Thus we find the criterion ρ∗M (A, b) to be more realistic.

For most problems, C ∈ {1, 2, 5, 10, 20, 50}, and d ∈ {i, i+ 1, . . . , i+m} where i and

m are small integers. We expanded the range of C to {1, 2, 5, . . . , 100, 200} for Spanish

Blackjack due to its large stochastic branching factor. The specific ranges of d were

chosen based on pilot experiments. We attempted to expand the range of d until the

best value of d was not at either extreme of the range, but this was not feasible in all

domains due to memory limits. The random branching factor B was varied over either

{2, 3, 5} or {2, 4} depending on the domain. Early experiments used {2, 3, 5}, while in

later experiments we reduced this to {2, 4} to limit the parameter search space.

We chose not to perform any experiments with a time budget, and to instead use

54

sample budget as a proxy. This decision was based on earlier results indicating that the

relative performance of the algorithms was similar for both time and sample budgets

[Hostetler et al., 2015]. Time budget experiments take significantly longer to run due to

the expensive system calls needed to measure execution time accurately in our environ-

ment. Focusing on sample budgets allowed us to examine more domains and to more

thoroughly optimize the algorithm parameters.

4.7 Results

Our results support three main conclusions. First, that PARSS performed better over-

all than any of the algorithms that used static representations. Second, that >-FSSS

often but not always outperformed ⊥-FSSS, and thus that some (but not all) of the

advantage of PARSS likely comes from its utilization of >-FSSS as a starting point.

These results are consistent with earlier experimental results with PARSS [Hostetler

et al., 2015]. Third, the choice of Select and Refine implementations affects the per-

formance of PARSS. In particular, the combination Variance+DT appears to be best

when considering the entire problem set, while Uniform+Random is worst.

Note when interpreting the charts in Figures 4.2, 4.3, and 4.4 that some of the

algorithms are equivalent for certain parameterizations. For example, if C = 1 then

all of the algorithms are equivalent. Rather than conducting identical experiments for

multiple equivalent algorithms, we instead run a single experiment and proceed as though

all of the equivalent parameterizations produced exactly that result. When the lines in

the charts overlap exactly, it is because the overlapping algorithms are equivalent under

their best parameterization for that problem and budget.

4.7.1 Performance of PARSS

PARSS was the best algorithm overall in five problems: the two Saving problems,

the two Racetrack problems, and Advising (Figure 4.2). In all other domains (Fig-

ures 4.3 and 4.4), PARSS performed as well as the best alternative algorithm. In

Saving, we see that >-FSSS plateaus at a suboptimal value, while ⊥-FSSS converges

more slowly than PARSS. >-FSSS also plateaus in Racetrack Large but ⊥-FSSS

surpasses it only for the largest budgets. Presumably a similar pattern would be appar-

55

ent in Racetrack Small if that experiment were to be continued to larger budgets. In

Advising, all of the algorithms improve steadily with increasing budgets, but PARSS

is consistently best.

4.7.2 Performance of >-FSSS

There were five domains in which >-FSSS outperformed ⊥-FSSS over most of the range

of budgets (Figure 4.3). >-FSSS also performed well in the two Racetrack domains

(Figure 4.2), although its performance began to plateau at larger budgets. We would

expect this plateau to occur in most domains if we continued the experiments to suffi-

ciently large budgets, since the optimal ground policy usually will not be representable

in the >-abstract state space.

>-FSSS was generally inferior to ⊥-FSSS on the Saving and Sailing problems,

and to a small extent also in Advising. This was the expected result in Saving because

>-FSSS cannot estimate the value of the invest action correctly. Note however that

>-FSSS is superior to ⊥-FSSS for the smallest budgets because ⊥-FSSS estimates the

value of borrow incorrectly due to horizon effects. In Sailing, >-FSSS cannot account

for the randomly shifting wind and so its policy will always sail more or less directly

toward the goal. This accounts for its flat performance curve.

4.7.3 Performance of ⊥-FSSS

⊥-FSSS performed well on the two Sailing problems and on Elevators (Figure 4.4).

We attribute this performance to the fact that these domains have the smallest stochastic

branching factors. In Sailing, the branching factor is 3, while in Elevators it could be

as high as 26 if no passengers are waiting or as low as 1 if a passenger is waiting at every

floor. The fact that ⊥-FSSS with C = 1 was the best parameterization for Elevators

indicates that the latter, near-deterministic situation is much more common. Note that

PARSS did equally as well as ⊥-FSSS in these domains.

56

25.0

27.5

30.0

32.5

35.0

37.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Saving (m = 1)

25.0

27.5

30.0

32.5

35.0

37.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Saving (m = 3)

−55

−50

−45

−40

−35

−30

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Racetrack (Large)

−35

−30

−25

−20

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Racetrack (Small)

−200

−175

−150

−125

−100

−75

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Advising

Figure 4.2: Domains where PARSS outperformed all other algorithms.

57

−39

−36

−33

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Crossing

−1.00

−0.75

−0.50

−0.25

0.00

0.25

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Spanish Blackjack

−750

−700

−650

−600

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Tamarisk

0

2

4

6

8

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Tetris

Figure 4.3: Domains where >-FSSS outperformed Ground and Random. Note that
all PARSS variants performed equally as well as >-FSSS.

58

−3.0

−2.9

−2.8

−2.7

−2.6

−2.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Sailing Empty

−4.00

−3.75

−3.50

−3.25

−3.00

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Sailing Random

−130

−120

−110

−100

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Elevators

Figure 4.4: Domains where ⊥-FSSS was best. Note that all PARSS variants performed
equally as well as ⊥-FSSS. In the Elevators domain, the best performance occurred
when the width parameter was C = 1. Since all the algorithms are equivalent if C = 1,
the results shown are identical.

59

2 3 4 5

CD

Variance+DT

BF+Random

BF+DT

Variance+Random

Uniform+DT

Uniform+Random

Figure 4.5: A critical difference plot [Demšar, 2006] showing the pairwise differences in
performance among the PARSS variants. The horizontal scale shows the average rank of
each algorithm, with smaller ranks indicating better performance. Algorithms connected
by a dark line had statistically identical performance at the p = 0.05 level. This plot
was produced by the R package scmamp [Calvo and Santafe, 2015].

4.7.4 Comparing PARSS Variations

We can see from Figures 4.2, 4.3, and 4.4 that the gap between the best and worst

variations of PARSS tends to be small. Only in the two variations of Saving and

in Advising is the difference between PARSS variations comparable to the difference

between PARSS and ⊥-FSSS. In Saving, this is because the problem is designed to

favor PARSS in general, and to favor the Variance priority ordering specifically when

m > 1 (Figure 4.6).

We made a statistical comparison of the overall relative performance of the six

PARSS variations using Friedman’s test [Demšar, 2006], which detects an overall ef-

fect of the choice of algorithm on performance across multiple problems. We consider

each combination of problem domain plus sample budget as a separate “experiment”

for the purpose of the test, giving a total of 123 experiments. We thus compare the

PARSS variants on performance across all sample budgets and problem domains. The

test revealed strong support for an overall effect of PARSS variation on performance

(F (5, 610) = 10.06, p < 10−8).

After determining that an overall effect of algorithm choice exists in the results, we

examined the pairwise differences among the algorithms using Nemenyi’s test [Demšar,

2006] to correct for multiple comparisons. These pairwise comparisons are summarized

60

30

32

34

36

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

Variance+DT
Variance+Random
BF+DT

BF+Random
Uniform+DT
Uniform+Random

Saving (m = 1)

30

31

32

33

34

35

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

Variance+DT
Variance+Random
BF+DT

BF+Random
Uniform+DT
Uniform+Random

Saving (m = 3)

Figure 4.6: Comparing all PARSS variations on the Saving domain. The BF order
performs poorly when Tm = 3 because it refines many abstraction relations that are
already sound.

in Figure 4.5 using a critical difference plot [Demšar, 2006]. While there was no single

best or worst algorithm, we can see that in general the Uniform selection order per-

formed poorly. Variance+DT outperformed the largest number of other algorithms,

but both BF+DT and BF+Random had identical performance to Variance+DT

whereas Variance+Random was worse than Variance+DT. It may be that the

breadth-first selection order is less sensitive to the choice of refinement mechanism be-

cause the BF order results in a larger number of state nodes becoming fully-refined, and

in fully-refined state nodes the refinement mechanism is no longer relevant.

4.7.5 Performance of rand-FSSS

The random abstractions typically had intermediate performance between ⊥-FSSS and

>-FSSS. It is useful to compare these results to the performance of PARSS with the

Uniform+Random refinement strategy. The Uniform+Random strategy may well

produce intermediate trees with abstractions whose inaccuracies are similar to rand-

FSSS, but although Uniform+Random was the worst PARSS variant overall, rand-

FSSS seldom outperformed it on any given problem. This suggests that the tree explo-

ration dynamics of PARSS may be qualitatively different from those of AFSSS with a

fixed abstraction.

61

Specifically, since PARSS begins by building a >-FSSS tree until convergence, the

first state nodes to be refined by PARSS will be nodes that were not pruned by >-FSSS.

This results in an implicit bias in the order in which the progressivly more-complex trees

are examined. Each refinement occurs in a state that was not pruned (or that became

un-pruned) in a previous step. It is possible that the dynamics of PARSS result in more

effective pruning than the dynamics of search with a fixed abstraction, even if the final

search trees are similar in terms of abstraction accuracy and average branching factor.

4.7.6 Stochastic Branching Factor vs. Best Algorithm

The four domains where >-FSSS was (tied for) best were also the four domains with by

far the largest minimum stochastic branching factors (Table 4.1). This suggests that it is

the raw reduction in tree size that plays a key role in the strong performance of >-FSSS.

The >-FSSS search is able to average over more random outcomes while still searching

to a reasonably large depth. There is no clear trend between branching and algorithm

performance in the other domains, suggesting that the performance gap between PARSS

and ⊥-FSSS on some of these domains is due to other structural features of the problem

in addition to the branching factor.

4.7.7 On the Performance of >-FSSS

Some of the performance advantage of PARSS can be attributed to the fact that PARSS

begins as a >-FSSS search, and >-FSSS often performs well by itself. We expect >-

FSSS to do well when rollout with an open-loop policy will correctly rank the values of

root actions. We can interpret >-FSSS as a policy rollout algorithm (2.3) that uses an

approximately optimal open-loop policy as its evaluation policy. It is possible for the

policy rollout agent to behave optimally even if the evaluation policy π is not optimal,

provided that arg maxa∈AQ
∗(s, a) = arg maxa∈A Q̂

π(s, a). In Spanish Blackjack, for

example, the simple evaluation policy π(s) = pass will correctly evaluate the majority

of hit vs. pass decisions. Although optimal play may dictate hitting more than once, in

such cases hitting once and then passing is often still better than passing immediately.

PARSS improved upon >-FSSS in 7 of the 12 problems. To explain this improve-

ment, we can begin by noting that most of these domains exhibit aspects of the Weinstein-

62

Table 4.1: Minimum and maximum stochastic branching factors of the experimental
domains. Note that the maximum branching factor of Spanish Blackjack might be
higher than 524, but this occurs only when completing the dealer’s hand and only ex-
tremely rarely.

Branching
Problem Min Max

Saving 9 9
PARSS bestRacetrack 1 4

Advising 5 5

Crossing 25 25
PARSS = >-FSSS

Blackjack 52 ≈ 524

Tamarisk 212 312

Tetris 40 40

Sailing 3 3
}
PARSS = ⊥-FSSS

Elevators 1 26

Littman structure [Weinstein and Littman, 2012], which is problematic for open-loop re-

planning. The essence of the Weinstein-Littman structure is that the optimal action can

give worse return than a different action if it is not followed up by additional correct ac-

tions. Two of the domains — Saving(1) and Saving(3) — were designed to ensure that

>-FSSS could not be optimal by explicitly including this structure. In Racetrack, the

optimal agent accelerates to as high a speed as possible before braking for a turn. Since

braking actions fail stochastically, the best open-loop “braking policy” must be conser-

vative and plan to execute enough consecutive braking actions to stop the car even if

several actions fail. If these braking actions end up not failing, the car is left moving

slowly or even moving backwards. The result is that the agent underestimates the value

of driving in a riskier (i.e., faster) way. A similar effect occurs in Sailing, where it may

be optimal to sail away from the goal temporarily in order to align the remaining path

to the goal with the likely wind direction.

The results in Advising are somewhat different, in that both >-FSSS and ⊥-FSSS

have similar performance while PARSS is superior. Examining the best parameters for

each algorithm reveals that >-FSSS is able to search with larger width and depth pa-

rameters (C and d) than ⊥-FSSS for the same budgets. While >-FSSS incurs error due

to abstraction (Theorem 1), ⊥-FSSS estimates state node values from a smaller number

63

of samples and thus may incur error from the higher variance in its value estimates.

PARSS may get the best of both worlds in this domain, benefiting from the increased

depth of >-FSSS as well as the decreased abstraction error due to refinement.

4.7.8 Memory Consumption and Large Action Spaces

We encountered practical difficulties in Advising and especially in Tetris due to the

relatively large size of the action set (|A| = 10 in Advising and |A| = 40 in Tetris).

None of our algorithms make any attempt to reduce action branching. In the Tetris

experiments, the parameter search space Θ had to be curtailed because the search algo-

rithms were exceeding the 16GB memory limit of our hardware. Integrating both state

and action abstraction in the same algorithm is critical for scaling up to these types of

problems, and should be a focus of further work in abstract MCTS.

These difficulties also highlight the main disadvantage of PARSS compared to AFSSS

with a fixed abstraction, which is that PARSS must retain more ground states in mem-

ory in case the abstract state node that contains them is later chosen for refinement.

When searching with a fixed abstraction, the ground states associated with internal tree

nodes can be discarded, since no more successors will be drawn for those interior nodes

(Section 4.3.2). Algorithms like recursive best-first search [Korf, 1993] reduce memory

usage by discarding tree nodes that are not needed currently and regenerating them

later if they are needed. This idea could be incorporated into PARSS. It would be

best applied to nodes on the search frontier in PARSS, since a large proportion of state

nodes are on the frontier and such nodes have no descendants that would also need to

be resampled.

4.7.9 Summary of Results

The experimental results indicate that PARSS is superior or equal to ⊥-FSSS on a

range of problem domains in terms of performance with a sample budget. Although we

did not compare the algorithms’ performance with a time budget, previous experiments

[Hostetler et al., 2015] have indicated that this pattern of relative performance remains

the same in the time budget setting. Since PARSS provides the same bounded error

guarantees as ⊥-FSSS (Proposition 8), there seems to be little reason not to use PARSS

64

in preference to FSSS [Walsh et al., 2010] and ordinary SS [Kearns et al., 2002]. Among

the PARSS variants, Variance+DT was consistently the best combination of node

selection and refinement criteria, and thus seems to be a good default choice among

general-purpose heuristics.

4.8 Summary

This chapter described the Progressive Abstraction Refinement for Sparse Sampling

(PARSS) algorithm [Hostetler et al., 2015], which addresses the problem of choosing the

correct abstraction for MCTS by progressively refining an initially coarse abstraction

during search. Our analysis of PARSS showed that it provides the same asymptotic

performance guarantees as SS and FSSS. We compared the original PARSS algorithm

of Hostetler et al. [2015] as well as 5 new variants of PARSS to FSSS with a variety

of fixed abstractions (including the ground abstraction) on a set of 12 decision-making

problems and found that PARSS outperformed SS and FSSS. Drawbacks of PARSS

include additional implementation complexity and sometimes a higher memory footprint.

65

Algorithm 7 Progressive Abstraction Refinement for SS

1: procedure PARSS(h0, C, d)
2: Let F = F0(s0, Vmin, Vmax) (3.21)
3: AFSSS(F , C, d, >) . Using SampleModified
4: while time remains and some χ(H, a) �⊥ do
5: PAR(F)
6: AFSSS(F , C, d, >) . Using SampleModified

7: procedure Split(H, a, χ)
8: if H is a leaf then return
9: for all H ′ ∈ K(H, a) do

10: Let G′ = H ′/χ(H, a) . Refined partition
11: for all 〈G′, a′〉 ∈ G′ ×A do
12: χ(G′, a′)← χ(H ′, a′) . Copy old relation
13: Split(G′, a′, χ)

14: procedure UpdateTree(H, a)
15: for all H ′ ∈ K(H, a) do
16: UpSample(H ′)

17: for t from 0 to len(H) do . Backup path to root
18: for all a ∈ A do Backup(H, a)

19: Backup(H)
20: Let H = pre(H)

21: procedure UpSample(H)
22: if H is a leaf then
23: L(H)← Rµ̄(H), U(H)← Rµ̄(H)
24: else if expanded(H) then
25: for all a ∈ A do
26: SampleModified(H, a)
27: for all H ′ ∈ K(H, a) do UpSample(H ′)

28: Backup(H, a)

29: Backup(H)

66

Algorithm 8 Modified Sample procedure for rand-FSSS

1: procedure SampleRand(H, a)
2: for all h ∈ H do
3: while m(h, a) < d C

n(H)e do

4: Let h′ ∼ P (·|h, a)
5: n(h′)← n(h′) + 1

6: for all h′ ∈
⋃
h∈H k(h, a) do

7: if ∃G ∈ K(H, a), g ∈ G where h′ = g then
8: continue
9: else if |K(H, a)| < B then

10: Add new equivalence class {h′} to χ(H, a)
11: else
12: Let G = arg minH′∈K(H,a)N(H ′)
13: Modify χ(H, a) so that [h′]χ(H,a) = G.

67

Chapter 5: Extending PARSS: Abstraction Diagrams and

Progressive Abstract Tree Search

Joint work with Ankit Anand

5.1 Introduction

In the previous chapters we have focused on abstract MCTS algorithms that use state

abstraction. State abstraction, though, is only one form of MDP abstraction. In this

chapter, we introduce a more general framework for progressive abstract tree search. We

describe a formalism for expressing MDP abstractions called an abstraction diagram and

show how several forms of abstraction described in the literature can be expressed as

an AD. We then define abstract MCTS algorithms that build search trees with respect

to an arbitrary AD, which allows us to use all of these types of abstraction in tree

search. Finally, we show how to define refinement operators on ADs, which facilitates

the construction of MCTS algorithms based on abstraction refinement similar to the

PARSS algorithm.

5.2 MDP Abstractions as Policy Set Constraints

To allow us to place multiple abstraction modalities within a common formalism, we

require a slightly generalized setting. Let M = 〈S,A, P,R, s0〉 be an MDP with an

identified start state s0. We augment M with a set of base policies B = {bi}, where each

bi is a stationary stochastic policy bi : S × A 7→ [0, 1] over the ground state and action

sets. Denote by B(s) ⊆ B the set of base policies admissible in state s ∈ S. These base

policies will be treated as the primitive actions, and we define their dynamics as

P (s′|s, b) =
∑
a∈A

b(s, a)P (s′|s, a), (5.1)

R(s, b, s′) =
∑
a∈A

b(s, a)R(s, a, s′). (5.2)

68

Note that the original action space corresponds to a set of base policies BA = {ba : a ∈ A}
where each ba is a policy that only plays a, that is ba(s, a

′) = 1a′=a.

Solving an MDP entails finding the best policy in some set of candidate policies. An

abstraction of an MDP reduces the cost of computing a solution by reducing the size of

the candidate policy set. Only those policies that are consistent with the abstraction

are considered by the policy search. As in previous chapters, we define abstractions over

state-action histories. We will use the notation H(P,Q) to denote the set of histories

over “state” set P and “action” set Q. As before, histories always begin and end with

a state. Abstract histories will be denoted with the letter τ , rather than the capital H

we used previously. We use last(h) to denote the final element of h. Otherwise we will

continue to use the notation for histories defined in Chapter 2.3.1.

Definition 12 (MDP Abstraction). An abstraction of an MDP M = 〈S,A, B, P,R, γ〉
is a tuple 〈X,α, β〉 consisting of an abstract state set X, an abstraction function α :

H(S, B) 7→ H(X,B), and a function β : X 7→ 2B where β(x) gives the set of legal

actions in abstract state x.

Definition 13. Let π : H(S, B) 7→ B be a ground policy and let A = 〈X,α, β〉 be an

abstraction. Given an abstract history τ , let H(τ) = {h ∈ H(S, B) : α(h) = τ} be

the set of histories that map to τ . Then π is consistent with A if and only if for all

τ ∈ H(X,B) both of the following hold:

1. For all h ∈ H(τ), π(h) ∈ β(last(τ)), and

2. For all h, h′ ∈ H(τ), π(h) = π(h′).

The first condition requires that π plays only legal actions according to β. The second

condition requires that π plays the same action in histories that are considered equivalent

according to α.

The concept of a consistent policy is central to our approach to abstraction. View-

ing abstraction as a restriction of the policy space allows many different abstraction

modalities to be unified in one formalism.

69

5.3 Abstraction Diagrams

Our goal in this section is to unify the three main categories of abstraction — state

abstraction, action abstraction, and temporal abstraction — within a single formalism

called an abstraction diagram. We first define the formalism, then show how different

forms of abstraction are cast within it.

Definition 14. An abstraction diagram over state set S and action set B is a bipartite

deterministic finite automaton G = 〈I, X, Y,L, δ, y0〉, where I is a set of vertices, X ⊂ I
is the subset of state vertices, Y = I −X is the complimentary subset of action vertices,

L = S ∪ B is the set of edge labels, δ ⊆ (X × B × Y) ∪ (Y × S ×X) is the transition

relation, and y0 ∈ Y is a designated start vertex. The transition relation δ must be such

that in each action node y ∈ Y the union of the labels of the outgoing edges is the entire

state space S, and in each state node x ∈ X there is at least one outgoing edge.

Intuitively, an action node y ∈ Y encodes a state equivalence relation in its outgoing

edges. Two states s, s′ ∈ S are considered equivalent in action node y if there are edges

y
s→ x and y

s′→ x leading to the same state node x. Similarly, the outgoing edges of

state nodes x ∈ X encode the legal action sets in abstract states, and actions that lead

to the same action node y share the same abstraction over futures.

Formally, an abstraction diagram G = 〈I, X, Y,L, δ, y0〉 induces the MDP abstraction

〈X,αG, βG〉. The abstraction function αG(h)
def
= αG(h, y0) maps ground histories in

H(S, B) to abstract histories in H(X,B). It is defined recursively by

αG(s, y) = δ(y, s)

αG(sjbjsj+1 . . . , y) = x : bj : αG(sj+1 . . . , y
′)

where x = δ(y, sj), y
′ = δ(x, bj),

where the colon “:” denotes concatenation and x = δ(y, sj) is shorthand for x : 〈y, sj , x〉 ∈
δ. The legal action sets are defined by

β(x) = {b ∈ B : ∃y.〈x, b, y〉 ∈ δ}.

We now show how a wide range of abstractions from the literature can be expressed

in the AD framework. For this purpose we will employ a simple running example MDP,

70

in which the agent controls a heater and must keep the temperature near a set point.

The states of the problem contain a state variable t ∈ R giving the current temperature,

and we will refer to two different action spaces, either {off, on} or {off, low, high}.

5.3.1 State Aggregation

State aggregation abstractions, as we have seen in previous chapters, group multiple

ground states into a smaller number of equivalence classes. An abstraction diagram

encodes state aggregation via the successors of its action nodes. Each action node y

induces a state abstraction relation χy, which is an equivalence relation on S defined by

s1 'χy s2 ⇐⇒ δ(y, s1) = δ(y, s2). Figure 5.1a shows a state abstraction for our running

example, with two abstract states corresponding to temperatures above and below 72

degrees. Notice that this abstraction is stationary with respect to the ground process,

meaning that for h = s0b0s1 . . ., aG(h) = f(s0)b0f(s1) . . . where f = δ(·, y0). Most work

on MDP state abstraction deals with stationary abstractions.

5.3.2 MDP Homomorphisms

MDP homomorphisms [Ravindran and Barto, 2004] generalize the notion of state equiva-

lence to equivalence of state-action pairs. This allows for modeling of action symmetries.

An MDP homomorphism consists of a state abstraction function f and action abstraction

functions gs for each state s ∈ S, where f : S 7→ S̄ maps ground states to abstract states,

and gs : A 7→ Ā is a contextual mapping of ground actions to abstract actions. After

obtaining a policy π for the abstract problem, we act in ground state s by computing

ā∗ = π(f(s)) and then executing one of the actions in g−1
s (ā∗).

We can express the state abstraction function f in an AD as in the previous section.

The action abstraction functions gs are incorporated as base policies. For each abstract

action ā, define the base policy bā : S 7→ A, where bā(s, ·) is an arbitrary probability

measure over g−1
s (ā). The base policy set is then B = {bā : ā ∈ Ā}.

71

x0 x1

y0start

on off on
off

t < 72 t ≥ 72

(a) A stationary state abstraction with two abstract states, corresponding to temperatures below and
above 72 degrees.

x0y0

start
off

on

y00

y10

x01

x11

off

on

y01

y11

(b) A temporal abstraction representing a recurring decision to set the heater to either off or on for
the next two time steps.

x0y0

start
π0

π1

y00

y01

s 6∈ G0

s ∈ G0

s 6∈ G1

s ∈ G1

x01

x11

π0

π1

(c) A recurring choice between two options 〈π0,S, ω0〉 and 〈π1,S, ω1〉, where ωi(s) = 1s∈Gi for some
set of goal states Gi ⊆ S.

x0 x1

y0start

off low

high

off low

t < 72 t ≥ 72

(d) A version of (5.1a) for the 3-action Heater domain, where the high action has been pruned in
state node x1.

Figure 5.1: Examples of abstraction diagrams

72

x0y0

start

high

low

off

y00

y01

y02

t < 72
t ≥ 72

x00

x01

x10

x20

high

low

· · ·

· · ·

low · · ·

high
low

· · ·
· · ·

Figure 5.2: Part of a tree-structured AD incorporating several kinds of abstraction.

5.3.3 Temporal Abstraction

A temporal abstraction reduces the rate of decision-making by replacing atomic actions

with policies that are followed for more than one time step. The simplest example is

a macro-action, which is a sequence of actions a0a1 . . . ak to be followed regardless of

random outcomes. The AD in Figure 5.1b describes the set of open-loop policies that

choose between two macro-actions.

The options formalism [Sutton et al., 1999] generalizes temporal abstraction beyond

macro-actions. An option is a tuple 〈π, I, ω〉, where π is a policy, I ⊆ S is the set

of states where π can be initiated, and ω : S 7→ [0, 1] is the termination probability

function. When the termination function is deterministic, that is ω(s) ∈ {0, 1} for all

s ∈ S, the option can be expressed in an AD directly, as in Figure 5.1c. Stochastic

termination functions can be incorporated by augmenting the ground state s with a

sample t ∼ Bernoulli(ω(s)) from the termination function, using the modified dynamics

P (〈s′, t〉|s, a) =
[
tω(s′) + (1− t)(1− ω(s′))

]
P (s′|s, a).

With this modification, the option fits into an AD analogous to Figure 5.1c, with Gi =

{〈s, ti〉 : ti = 1}.

5.3.4 Action Pruning

Action pruning (e.g. Pinto and Fern [2014]) entails making the sets of permissible actions

B(s) smaller by removing actions deemed unlikely to be optimal. Action pruning is

expressed in an AD by restricting the action set β(x) in some state nodes x so that

73

β(x) (B. Temporal abstraction is actually an extreme case of action pruning, in which

|β(x)| = 1 while “committed” to following a policy (Figures 5.1b and 5.1c).

5.3.5 History Abstractions

Abstractions in the AD formalism can depend on the entire history, not only on the

current state. For example, the abstraction induced by the AD in Figure 5.1b is history-

dependent because given two states s, s′, in general α(sb0s
′) 6= α(sb1s

′). While temporal

abstraction is inherently history-dependent, MDP state abstractions are often assumed to

be stationary because MDPs have stationary optimal policies. History-dependent state

abstractions are encountered more often in POMDPs (e.g. McCallum [1996]; Hansen

[1998]; Meuleau et al. [1999]), because the belief state is a function of the entire observa-

tion history. In the extreme case, the AD may have a tree structure, in which case every

path through the AD could induce a different abstraction (Figure 5.2). In the algorithms

described in Chapters 3 and 4, abstraction relations were associated with nodes in the

search tree, implicitly creating an AD with a tree structure. However, policies that are

consistent with an AD need not have the same structure as the AD. We can use the

abstract MCTS algorithms we describe next with any AD, regardless of whether the AD

is a tree.

5.4 Tree Search with ADs

We represent a search tree over the ground problem as a multiset of ground histories.

Let n : H(S, B) 7→ N≥0 be the multiplicity function. We use the notation h ∈ n ⇐⇒
n(h) > 0 to indicate membership. The tree structure implies that h ∈ n⇒ pre(h) ∈ n.

An abstract search tree is a “view” of n in which nodes correspond to sets of histories.

The nodes of the abstract tree are identified with abstract histories τ ∈ H(X,B), and

each abstract node τ has a corresponding set of ground histories H(τ). The abstract tree

is also a multiset, this time of abstract histories, and we denote its multiplicity function

by N : H(X,B) 7→ N≥0. We will describe these algorithms using notation similar to that

introduced in Chapters 3 and 4, except that now everything will be defined in terms of n

and H. From these two objects, we define the ground tree successor relation and action

74

counts

k(h, b)
def
= {h′ ∈ n : pre(h′) = hb}

m(h, b)
def
=

∑
h′∈k(h,b)

n(h′),

the abstract tree visit counts and successor relation

N(τ)
def
=

∑
h∈H(τ)

n(h)

K(τ, b)
def
= {τ ′ ∈ N : pre(τ ′) = τb}

M(τ, b)
def
=

∑
τ ′∈K(τ,b)

N(τ ′),

and the empirical weight function and abstract reward function

µ̄(τ, h)
def
= 1h∈H(τ)

n(h)

N(τ)

R̄(τ)
def
=

1

N(τ)

∑
h∈H(τ)

n(h)R(h).

Note that since all of these are determined by n and H, in our pseudocode we show up-

dates to n and H only. Abstract SS with an AD (ADSS) is implemented in Algorithm 9,

and Abstract TS with an AD (ADTS) is implemented in Algorithm 10. An ADFSSS

algorithm can be implemented by adapting AFSSS (Algorithm 3) in a similar way.

5.5 Refinements

An abstraction refinement operation F maps an abstraction α to a new abstraction F (α)

that is “closer” to the ground representation. In Chapter 4 we saw that progressive

refinement of state abstractions shows promise as a design principle for new kinds of

MCTS algorithms. Our primary objective in this chapter is to generalize abstraction

refinement to other kinds of abstraction besides state abstraction in order to create

new progressive abstract search algorithms. We begin by giving a slightly generalized

definition of refinement.

75

Algorithm 9 Abstract Sparse Sampling with an Abstraction Diagram

1: procedure ADSS(G, s0, C, d)
2: Let x0 = αG(s0)
3: H(x0)← {s0}
4: Expand(G, x0, C, d)
5: return arg maxb∈βG(x0)Q(x0, b)

6: procedure Expand(G, τ , C, d)
7: Let x = last(τ)
8: if τ is terminal then
9: Q(τ, b)← 0 for all b ∈ βG(x)

10: return
11: for all b ∈ βG(x) do
12: if d = 0 then
13: Q(τ, b)← R̄(τ)
14: continue
15: for C times do
16: Let h ∼ µ̄(τ, ·)
17: Let h′ ∼ P (·|h, b)
18: n(h′)← n(h′) + 1

19: Let K ← [
⋃
h∈H k(h, b)]/αG

20: for H ′ ∈ K do
21: Let h′ be any element of H ′

22: Let τ ′ = αG(h′)
23: H(τ ′)← H ′

24: Expand(G, τ ′, C, d− 1)

25: Q(τ, b)← R̄(τ) + γ
∑

τ ′∈K(τ,b)

[N(τ ′)
C maxb′∈βG(last(τ ′))Q(τ ′, b′)

]
Definition 15. Let Π and Φ be policy sets. We say that Φ refines Π, denoted Φ � Π,

if for all s ∈ S,

max
φ∈Φ

V φ(s) ≥ max
π∈Π

V π(s). (5.3)

This definition generalizes the intuitive idea that refinement expands the policy set.

Lemma 10. If Φ ⊇ Π, then Φ � Π.

Proof. Since Π ⊆ Φ, the optimal policy π∗ = arg maxπ∈Π in Π is also an element of Φ.

Thus maxφ∈Φ V
φ(s) ≥ V π∗(s) = maxπ∈Π V

π(s) for all s ∈ S.

76

x0 x1

y

on off on off

t < 72 t ≥ 72

x2 x3

x0 x1

y y′

on off on off

t < 72 t ≥ 72 t < 72 t ≥ 72

x2 x3

x0 x1

y y′

on off on off

t < 72 t ≥ 72 t < 72 t ≥ 72

x2 x3 x′2 x′3

ν(·, x1) ν(·, y′)

Figure 5.3: A sequence of two unzip operations applied to a fragment of an abstraction
diagram.

The converse of Lemma 10 does not hold. For example, if π∗ is the unique optimal

policy in Π, then {π∗} 6⊇ Π \ {π∗} but clearly {π∗} � Π \ {π∗}. As a more practical

example, suppose that in a domain with continuous actions we simplify the action space

by creating the base policy set B = {b} where b(s, ·) = Uniform(A) for some A ⊆ A. We

might now want to refine this abstraction by partitioning A into two parts C and D and

adding the actions c(s, ·) = Uniform(C) and d(s, ·) = Uniform(D). Let B′ = {c, d} and

let U = B ∪B′. Clearly U � B by Lemma 10. But it is also true that B′ � B, because

either c or d must have a higher value than b. This is the motivation for Definition 15.

In the remainder of this section, we define some basic transformations of abstraction

diagrams and show that they are refinements. We will use the following notation to

describe operations on abstraction diagrams.

in(j) = {〈i, `, j〉 : i ∈ I, ` ∈ L, 〈i, `, j〉 ∈ δ}
out(i) = {〈i, `, j〉 : j ∈ I, ` ∈ L, 〈i, `, j〉 ∈ δ}
cp.out(i, i′) = {〈i′, `, j〉 : j ∈ I, ` ∈ L, 〈i, `, j〉 ∈ δ}.

The sets in(i) and out(i) contain the in- and out-edges of i, and the set cp.out(i, i′)

contains “copies” of the out-edges of i in which i is replaced by i′.

5.5.1 State Node Splitting

For a given action node y, the successors of y define a partition of the state space. Each

successor x is identified with an equivalence class Sx ∈ S/χy. Splitting a successor

77

node x into two nodes x1 and x2 represents splitting the equivalence class Sx into two

equivalence classes S1 and S2. The split operation is denoted by σ(G, y, x, S1, S2), and

it makes the following changes to the AD:

X → X \ {x} ∪ {x1, x2}

δ → δ \ in(x) \ out(x) ∪
⋃
s∈S1

〈y, s, x1〉 ∪
⋃
s∈S2

〈y, s, x2〉

∪ cp.out(x, x1) ∪ cp.out(x, x2).

Proposition 11. Let G = 〈I, X, Y,L, δ, y0〉 be an abstraction diagram, and let G′ =

σ(G, y, x, S1, S2). Then G′ � G.

Proof. Let x1 and x2 denote the two nodes that replace x in G′. By construction,

last(αG(h)) = last(αG′(h)) except when last(αG(h)) = x. If last(αG(h)) = x, then

either last(αG′(h)) = x1 or last(αG′(h)) = x2. A policy π that is consistent with G

plays the same action in every h such that last(αG(h)) = x and therefore plays the

same action in every h1 s.t. last(αG′(h1)) = x1 and every h2 s.t. last(αG′(h2)) = x2.

Thus every policy that is consistent with G is also consistent with G′, and we conclude

G′ � G.

Proposition 12. Let G = 〈I, X, Y,L, δ, y0〉 be an abstraction diagram, and let G′ =

σ(G, y, x, S1, S2). If |β(x)| > 1, then ΠG′ ⊃ ΠG.

Proof. By the same reasoning as Proposition 11 we have ΠG′ ⊇ ΠG. Consider some

π ∈ ΠG. Let b = π(h) where h is such that last(αG(h)) = x. Let φ be a policy that

is identical to π except that in all states h′ s.t. last(αG′(h
′)) = x2, π(h′) = b′ where

b′ ∈ β(x) and b′ 6= b. We have φ ∈ ΠG′ but φ 6∈ ΠG. Therefore ΠG′ ⊃ ΠG.

Note that splitting a choice node x in which |β(x)| = 1 does not expand the policy

set because the single available action must be played in both resulting states.

78

5.5.2 Action Set Expansion

The action set expansion operator ρ(G, x, b, y) makes a new action b available in node x.

It adds an edge labeled with b to the AD,

δ → δ ∪ {〈x, b, y〉}.

Clearly Πρ(G,x,b,y) ⊃ ΠG, since ρ adds a new action and removes nothing.

The action set expansion operation is sufficient to realize both temporal abstraction

refinement and action unpruning. Recall that a temporal abstraction is represented by a

chain of AD vertices in which there is only one action choice available in the state vertices.

In Figure 5.1b, for example, the AD represents a temporal abstraction. Applying the

action set expansion operators ρ(·, x01, on, y01) and ρ(·, x11, off, y11) to this AD produces

a refined temporal abstraction in which the decision time scale has been reduced from 2

to 1.

5.5.3 Unzipping

Modifications such as the two just described alter the result of αG(h) for any h that

passes through the altered nodes. We might thus want to alter the structure of the

AD to permit making localized changes that affect a smaller number of histories. The

unzip operation ν(G, i) endows node i with its own exclusive copy of its successor nodes.

Suppose the successor set of i is succ(i) = {j1, . . . , jk}. Let {j′1, . . . , j′k} be a set of

new nodes of the same size and let mv(i, n) = {〈i, `, j′n〉 : ` ∈ L, 〈i, `, jn〉 ∈ δ} for

n ∈ {1, . . . , k}. Unzipping entails making the following changes to the AD.

I → I ∪ {j′1, . . . , j′k}

δ → δ \ out(i) ∪
k⋃

n=1

mv(i, n) ∪
k⋃

n=1

cp.out(jn, j
′
n)

The set X or Y is also updated as appropriate depending on the type of i.

The unzip operation does not alter the policy set, that is Πν(G,i) = ΠG. However,

it causes subsequent mutating operations to have a different effect. For example, in

Figure 5.3, if we split the choice node x2 in the left-most diagram, histories that pass

79

through x0 or x1 are affected by the split. After applying two unzip operations, we

obtain the right-most diagram. Splitting x2 in this diagram affects histories that pass

through x0, but not those that pass through x1.

5.5.4 Composing Refinement Operations

Naturally, the refinement operations we have just described can be composed to create

more complicated refinements. An important case of this is the tree structure-preserving

state refinements used in the PARSS algorithm (Chapter 4). To perform PARSS-style

refinements, we first apply the state splitting operator σ, and then recursively apply the

unzip operator ν to restore the tree structure.

5.6 Progressive Abstract Tree Search

Progressive abstract tree search with an AD follows the same general pattern as the

PARSS algorithm (Chapter 4). The main difference is that because the AD need not

have the same structure as the search tree, making one refinement to the AD may af-

fect more than one search tree node. To account for this possibility, we simply need

to ensure that the UpdateTree procedure updates every affected tree node. Because

UpdateTree recursively updates all descendants of the node it is called on, it is suf-

ficient to call UpdateTree on some set of nodes A that contains an ancestor of every

tree node affected by the refinement. This is the approach taken in Algorithm 11.

To fully realize the PATS framework, new refinement selection strategies need to be

developed. State abstraction refinements can be chosen in a manner similar to how this

is done in PARSS. New heuristics are needed for choosing between state splitting and

action set expansion, and for choosing which actions to add when action expansion is

chosen. Choosing an action to add is fundamentally different from choosing a state split

because we have no information about the actions that are not present currently. Thus a

heuristic for adding an action might consider the statistics of that action in other parts of

the search tree, or even statistics from previous searches. We could also exploit domain

knowledge to make the choice. For example, we might know that certain actions are

more “specialized” than others and thus less likely to be good actions in an arbitrary

state. One possible heuristic for choosing where to expand the action set is to look for a

80

state where the value abruptly decreases and add new actions in the states that precede

it, the intuition being that the new actions might allow the agent to avoid the decrease

in value.

5.7 Related Work

The abstraction diagram formalism is a small adaptation of the well-known idea of using

a finite automaton to represent a structured policy. The POMDP solvers of Hansen

[1998] and Meuleau et al. [1999], for example, search for policies represented as FAs. The

HAM framework of Parr and Russell [1998] uses hierarchical FAs to encode temporal

abstractions for reinforcement learning. The novelty of the progressive abstract tree

search framework is in the interpretation of the FA as a policy constraint rather than

as the policy itself. This allows the structure of the solution to be decoupled from

the structure of the AD. The two are linked via the concept of policy consistency. The

abstract MCTS algorithms that we consider build tree-shaped policies that are consistent

with a given AD, but the AD need not also be tree-shaped. The MCTS component could

be replaced by a different solution algorithm. For example, one could find an FA policy

with the same topology as the AD using policy search methods, and such a policy would

also be consistent with the AD.

The idea of incremental temporal refinement is inspired by the iterative refinement

search algorithm of Neller [2002]. In this algorithm a search tree over durative actions

is first constructed assuming that all actions are followed until the planning horizon T .

Then, as time permits, further trees are built with decision intervals of T/2, T/3, and

so on. Note, however, that these abstraction revisions are not necessarily refinements in

our sense of the word. For example, the abstraction with ∆t = T/3 is not a refinement

of the abstraction with ∆t = T/2 because each abstraction allows choices at times when

the other abstraction does not. The abstraction with ∆t = T/4, on the other hand, is a

refinement of ∆t = T/2.

81

Algorithm 10 Abstract Trajectory Sampling with an Abstraction Diagram

1: procedure ADTS(G, s0)
2: Let x0 = αG(s0)
3: while time remains do
4: Visit(G, x0, s0)

5: return arg maxb∈βG(x0)Q(x0, b)

6: procedure Visit(G, τ , h)
7: if τ is terminal then
8: Let v = 0
9: else if n(τ) = 0 then

10: Let v = Evaluate(h)
11: else
12: Let b∗ = Select(τ , G)
13: Let h′ ∼ P (·|h, b∗)
14: Let τ ′ = αG(h′)
15: Let q = Visit(τ ′, h′, G)
16: Let v = R(h) + γq
17: Update(τ , b∗, v)

18: H(τ)← H(τ) ∪ {h}
19: n(h)← n(h) + 1
20: return v
21: procedure Select(G, τ)
22: Let x = last(τ)
23: if ∃b ∈ βG(x) : M(τ, b) = 0 then
24: return b
25: Let U(τ, b) = Q(τ, b) + c

√
logN(τ)
M(τ,b)

26: return arg maxb∈βG(x) U(τ, b)

27: procedure Update(τ , b, v)

28: Q(τ, b)← Q(τ, b) + v−Q(τ,b)
M(τ,b)

82

Algorithm 11 Progressive Abstract Sparse Sampling

1: procedure PASS(G, h0, C, d)
2: Let F = F0(s0, Vmin, Vmax) (3.21)
3: ADFSSS(G, F , C, d)
4: while time remains do
5: Refine the abstraction diagram G
6: Find a set of abstract tree state nodes A such that all tree nodes affected by

the refinement are either in A or are a descendant of a node in A.

7: Rebuild the abstract subtrees rooted in A by applying the refined abstraction
to the corresponding parts of the ground tree. Let A′ be the nodes that
replace the nodes in A in the rebuilt tree.

8: for 〈H, a〉 ∈ A′ ×A do
9: UpdateTree(H, a)

10: ADFSSS(G, F , C, d)

83

Chapter 6: Applying Online Planning to Blackout Mitigation in

Power Transmission Grids

6.1 Introduction

We now digress from the main topic of the thesis to examine an interesting application of

OP algorithms to the problem of power grid control. Large failures of power transmission

systems, such as the 2003 blackout in the Northeastern USA or the historic 2012 blackout

in India, are often the result of a cascade of failures initiated by smaller events [Pahwa

et al., 2013a]. The potential for localized failures to have such a dramatic widespread

effect makes power transmission grids uniquely vulnerable to rare events such as natural

disasters or terrorist attacks. Increasing the transmission grid’s robustness to cascading

failure is thus a pressing concern.

Robustness has been achieved historically through redundancy. Transmission grids

are designed with sufficient redundancy to tolerate the loss of any single component.

This property of the network is called N − 1 security. Further robustness could be

achieved through further redundancy, but this requires significant capital investment in

equipment that will not be fully utilized under normal conditions.

Intelligent control of the system is an alternative approach to robustness. Prompt

control response to a failure may allow the grid to recover and prevent a cascading failure

[Amin and Wollenberg, 2005; Meier et al., 2014]. Yet emergency control is typically

carried out largely by human operators taking manual actions at the time scale of minutes

[Amin and Wollenberg, 2005]. A great deal of work has been done developing expert

emergency control policies, based on strategies such as load shedding (e.g. [Pahwa et al.,

2013a]) or islanding (e.g. [Pahwa et al., 2013b]), but these strategies tend to be fixed

policies that are derived from heuristics or from solving optimization problems. Recent

work has demonstrated the effectiveness of hybrid policies that combine several of these

strategies [Meier et al., 2014]. We extend this line of work by fully automating the

process of selecting among emergency response strategies using automated simulation-

based online planning.

84

Validating an emergency control policy requires that we are able to simulate its effects

in realistic emergency scenarios. Power system researchers commonly rely on simplified

models of power grid dynamics when designing and testing control policies. One ap-

proach is to ignore the time-dependent aspects of the system’s behavior to produce a

quasi-steady state model; another approach neglects certain aspects of the AC power flow

equations to produce the so-called “DC” power flow approximation [Frank and Reben-

nack, 2012]. While these simplified models have attractive numerical and computational

properties, they do not capture all of the mechanisms of cascading failure [Song et al.,

2016]. For example, only the full AC dynamical model captures the phenomenon of

voltage collapse due to reactive power shortage.

The work presented in this chapter is a step toward fully automated emergency con-

trol planning based on high-fidelity simulation of the power grid’s dynamics. We adapt

the Cosmic power simulator [Song et al., 2016], which is specifically designed for simu-

lating cascading failures, for use in simulation-based online planning. Cosmic simulates

the full AC power flow dynamics of the system, and includes physical models of genera-

tors and their control systems, loads, and emergency protection relays. We apply policy

rollout algorithms [Bertsekas and Castañon, 1999] to both deterministic and stochastic

versions of emergency control problems in two standard benchmark transmission grid

architectures, and compare them to typical examples of expert control policies. In de-

terministic simulations, we find that policy rollout outperforms our baseline policies in

both grid architectures. In stochastic simulations, we find that the addition of ran-

domness dramatically increases the computational cost of the simulation. For practical

sample budgets, policy rollout has median performance similar to the best fixed policies,

but with smaller variability. We conclude the chapter with an overview of outstanding

obstacles to applications of automated planning to power system control on a large scale.

6.2 Background

The relevant background includes previous work on intelligent control of power systems,

as well as Markov decision process (MDP) planning methods, specifically online planning.

85

6.2.1 Power Grid Simulation

The dynamics of the transmission grid are given by a system of differential algebraic

equations [Song et al., 2016]. The state of the system at time t encompasses three

vectors, s(t) = 〈x(t),y(t), z(t)〉. The vector x contains the dynamical variables, which

evolve according to a non-linear differential equation

dx

dt
= f(t,x(t),y(t), z(t)).

The vector y contains algebraic variables determined by

g(t,x,y, z) = 0.

Finally, z contains Boolean state variables that represent discrete events such as the

triggering of protective relays. It is common for certain state variables such as the

voltage magnitude to be specified in a per-unit system, so that a value of 1pu indicates

that the variable is at its nominal value.

Solving or approximating these equations is a central task in the analysis of power

systems. Models of power flow can be divided broadly into steady state models, which

neglect the dynamics of the problem, and time-domain models. Time-domain models can

be further subdivided into those that solve the full alternating current (AC) power flow,

versus those that solve a linearized or “DC” power flow. In general, steady state models

are simplest to compute, while full AC dynamical models allow for more detailed models

of, for example, generator and load dynamics. The MATPOWER simulator [Zimmer-

man et al., 2011] is one example of a steady-state simulator. Examples of time-domain

simulators include PowerWorld [PowerWorld Corporation, 2016], PSS/E [Siemens,

2015], RAMSES [Aristidou et al., 2014], and COSMIC [Song et al., 2016].

6.2.2 The Cosmic Power Simulator

Since we are concerned with controlling the power grid in an emergency situation, it

is critical that we choose a model that properly captures both the behavior of the grid

in highly perturbed states and the dynamics of cascading failure. We therefore use the

Cosmic simulator [Song et al., 2016], which was designed specifically to model cascading

86

Figure 6.1: The IEEE39 grid topology [Athay et al., 1979]. The dark lines are buses,
the lighter lines are branches, the arrows are shunts (which connect to loads), and the
circles are generators.

failure accurately, for our experiments.

The power grid models used by Cosmic consist of 7 types of components: buses,

branches, shunts, machines, exciters, governors, and generators [Song et al., 2016]. We

will be concerned mainly with buses, branches, and shunts. We denote the set of buses

by bu, the set of branches by br, and the set of shunts by sh. The power grid structure is

an undirected graph (Figure 6.1). Buses are the nodes of the graph, and they may have

associated shunts and generators. Branches are the edges of the graph, and each branch

connects two buses. Shunts represent connections to loads, which draw power from the

system. Power is supplied by the generators, which are driven by machines and controlled

by exciters and governors. The Cosmic simulator implements dynamical models of all

of these components in addition to the dynamics of AC power flow. Crucially for our

purposes, Cosmic also implements discrete events such as the triggering of automatic

protective relays. The cascading activation of protective systems is the actual mechanism

behind cascading blackouts, and Cosmic is able to model this phenomenon.

Compared to steady state models, the distributions of cascading failure events pro-

duced by Cosmic are notably different [Song et al., 2016]. Specifically, large cascading

failures are more common in the Cosmic model.

87

6.2.3 Emergency Control for Transmission Systems

There are two major strategies for stabilizing transmission grids in response to faults:

load shedding and islanding [Meier et al., 2014]. Load shedding approaches respond

to faults by disconnecting loads from the network. This reduces the flow of energy

through the network, potentially preventing overloading of lines or voltage collapse due

to excessive demand. Islanding approaches separate a failing network into multiple

independent components in order to isolate the fault from the rest of the network. A

cascading failure in an isolated component will not spread to the rest of the network.

Load shedding is a popular approach. Pahwa et al. [2013a] alone cite 14 examples

of load shedding strategies. Proposed load shedding criteria tend to be heuristic. Some

are based purely on domain knowledge (e.g., [Seethalekshmi et al., 2011]). Others are

derived as solutions to various optimization problems, with objectives such as minimizing

cost of shed load [Xu and Girgis, 2001; Aponte and Nelson, 2005; Faranda et al., 2007].

For islanding approaches, the key question is how the grid should be partitioned.

Each connected component after islanding should be stable and self-sufficient, and there

should be relatively few of them. Strategies for finding good partitions include clustering

according to electrical distance [Cotilla-Sanchez et al., 2013], according to generator

coherency in the islands [Yang et al., 2007; Sun et al., 2011], and according to generation-

load imbalance in the resulting islands [Li et al., 2010]. Islanding schemes also differ

in whether the islands to be formed are computed offline or online [Sun et al., 2011].

Islanding and load shedding can also be combined to create hybrid schemes [Dola and

Chowdhury, 2006; Meier et al., 2014].

The proliferation of different load shedding and islanding strategies is evidence that

no single approach is clearly best. This is one of the key advantages of online planning

with policies as an approach to power grid control. Meier et al. [2014] demonstrated that

load shedding and islanding policies both can be incorporated easily within this frame-

work. If consensus emerges that certain heuristic load shedding or islanding strategies

are superior, those policies can be added to the set of available policies from which the

planner can choose.

88

6.3 Online Planning for Mitigating Blackouts

Our main contribution is an evaluation of simple online planning techniques for con-

trolling power grids to prevent cascading outages. We formulate the control problem as

an MDP in discrete time, and we keep the action space to a manageable size by using

expert actions inspired by previous work on power grid control. Our work builds upon

the work of Meier et al. [2014], which examined an “offline” policy switching approach

to the power grid control problem.

6.3.1 MDP formulation

We construct an MDP in discrete time by adopting a fixed time step ∆t = 1sec. We will

denote the states at discrete times using subscripts st = 〈xt,yt, zt〉. The actions make

instantaneous changes to the algebraic variables y. A successor state st+1 ∼ P (·|st, a) is

obtained by applying action a in st and then integrating the dynamical equations from

t to t+ ∆t using Cosmic. We consider both deterministic and stochastic versions of P .

The choice of the action space A is an important design decision. We begin with two

kinds of primitive control actions: open one branch, or decrease power consumption at

one shunt by a specified percentage. In principle, these actions could be taken concur-

rently for every branch and shunt, giving an action space of size O(2|br|+|sh|). Clearly

this primitive action space is too large for exhaustive search. We reduce the action space

by defining smaller sets of expert actions. These fall into the two categories of load

shedding and islanding [Meier et al., 2014]. Load shedding strategies reduce demand

by disconnecting some of the loads from the network. Islanding strategies partition the

network into multiple connected components so that failures are isolated from the rest

of the grid.

6.3.2 Optimization Objective

A control policy π running from initial state s0 generates a distribution over trajectories

through the state space. Among the state variables st = 〈xt,yt, zt〉 are the variables

pi,t giving the real power flow through shunt i at time t in state st. We define the

optimization objective in terms of the real power flow. If there is stochasticity in the

model, then the real power flow is a random variable, which we denote with a capital

89

letter Pi,t. The total power delivered at time t is the sum of the power at each shunt,

Pt =
∑

i∈sh Pi,t.

A control policy should satisfy as much power demand as possible, while avoiding

large outages. Naturally, outages cause large losses of satisfied demand, so a natural

figure of merit for a controller π is the expected total energy delivered,

E(π, s0) = EP,π
[H∑
t=0

Pt
]
.

This basic objective could be supplemented by constraints on acceptable operating

ranges, by attaching different weights to different loads, or in many other ways. Since

we are interested in cascading failure scenarios, we might also want to minimize the

probability of total blackout,

B(π, s0) = P
(

min
t
Pt = 0

)
.

We define our reward function as a modification of the total energy criterion,

R(st) =
∑
i∈sh

min(pi,t, p
∗
i,t), (6.1)

where p∗i,t is the real power demand at shunt i at time t when the voltage at shunt i

is 1pu. Taking the minimum prevents the agent from being rewarded for artificially

increasing power demand by driving the voltage away from 1pu.

6.3.3 Stochasticity

Although the dynamics of the transmission grid are deterministic, stochasticity is present

in real control problems due to uncertainty in future demand, the possibility of equipment

failure, and other factors. In the stochastic version of our experiments, we incorporated

randomness from two sources:

Load fluctuations – For each load i, the real and reactive power demands P i and Qi

90

follow a bounded random walk with Gaussian increments,

P it+1 ∼ proj[`,u](P
i
t +N (0, σ2)),

Qit+1 ∼ proj[`,u](Q
i
t +N (0, σ2)),

(6.2)

where proj[`,u](x) = max(`,min(u, x)). We set ` = 0.8 and u = 1.2 for all problems.

We selected the variance σ2 to produce a qualitative match of the whole-grid power

fluctuation to the empirical results of Karlsson and Hill [1994]. This resulted in

σ = 0.01 for the IEEE39 grid architecture that we consider in our experiments.

Random delays in relay activation – Protection relays in real systems may not op-

erate exactly as expected. They could be mis-programmed or mis-calibrated, or the

mechanical devices they control may not operate perfectly due to environmental

conditions. A full model of the many possible failure modes is beyond the scope

of this work, but we attempt to capture some of the variability that results by

adding a random delay between the triggering of a protective relay and the actual

application of the protective function that it controls. For example, consider a

relay that disconnects a load when some parameter x exceeds a critical value x∗.

If x first exceeds x∗ at time t, then the load will be disconnected after a random

delay,

tdisconnect ∼ ttrigger + Exp(λ), (6.3)

where λ is the exponential rate parameter. We set λ = 1
2 in our experiments.

6.3.4 Baseline Policies

We evaluated a set of simple fixed policies to establish a baseline of performance. These

included policies based on load shedding and on islanding.

Isolate : The Isolate policy immediately isolates any zones in which a failure occurred

from the rest of the grid. We consider a failure to have occurred in a zone z if the

bus at either end of the failed branch b was in z.

ShedGlobal : The ShedGlobal(p) policy immediately sheds a fixed proportion p ∈
[0, 1] of the load at every shunt simultaneously.

91

HLS : We also designed a more sophisticated expert policy that we call “hysteretic load

shedding” and denote by HLS(p, `, u, δ). HLS prescribes load shedding near a

bus b ∈ bu if the voltage magnitude |V b| at that bus dropped below ` at least δ

units of time in the past and has stayed below u since then. More formally, for

each bus b ∈ bu, if there exists a time in the past t′ < t − δ such that both 1)

|V b
t | < ` and 2) |V b

τ | < u for all τ ∈ [t′, t], then HLS prescribes a load shedding

action that affects bus b. Since loads are associated with shunts and not all buses

are connected directly to a shunt with a load, HLS finds the shunt with an active

load that is nearest to each bus b in the sense of electrical distance [Cotilla-Sanchez

et al., 2013]. At every unique shunt identified in this manner, a proportion p of

the per-unit load is shed.

The load shedding policies assume that any proportion of the load can be shed.

This assumption is not entirely realistic, since load shedding is implemented by opening

discrete circuit breakers and thus some proportions may not be feasible. However, it

should hold approximately since the loads on a transmission grid actually represent

entire distribution grids serving many customers, and we can approximate shedding a

proportion p of the load by disconnecting a proportion p of the customers. Analogous

policies could be defined that respect any constraints on load shedding.

6.3.5 Policy Rollout

Due to the complexity of the problem domain and the large cost of generating samples, we

focused on simple planning algorithms that can perform well with small sample budgets.

The policy rollout algorithm [Bertsekas and Castañon, 1999] is one of the simplest. Policy

rollout implements a control policy πpr by estimating the action-value function Qπ of a

rollout policy π and acting greedily according to this estimate,

πpr(s) = arg max
a∈A

Q̂π(s, a). (6.4)

92

Let τ = s0a0s1 . . . sH denote a trajectory of length H starting from state s0. The

probability of generating τ under policy π is given by

P π(τ) =
H−1∏
t=0

1at=π(st)P (st+1|st, at).

The return of a trajectory is the total reward received,

ρ(τ) =
H∑
i=0

R(si).

The estimated Q-function Q̂πk after sampling k trajectories is

Q̂πk(s, a) =
1

nk(a)

nk(a)∑
i=1

ρ(τ ia), (6.5)

where nk(a) is the number of times that action a has been sampled and τ ia is the ith

sampled trajectory that begins with sa. The policy rollout objective is to minimize

Rpr(s) = max
a∈A

Qπ(s, a)−Qπ(s, πpr(s)). (6.6)

Since the space of primitive actions is prohibitively large, we make the action search

space A a small set of “expert” actions. These actions are of one of three parameterized

types:

ShedGlobal(p) : Sheds a proportion p ∈ [0, 1] of the load at every shunt simultane-

ously.

ShedZone(z, p) : Sheds a proportion p ∈ [0, 1] of the load simultaneously at every

shunt in zone z.

Island(z) : Opens (disconnects) all branches between a bus in zone z and a bus in any

zone z′ 6= z.

These actions are similar in spirit to the expert policies we use in policy switching. In

93

Domain
N − 2
faults |bu| |br| |sh| Blackouts

IEEE39 972 39 46 19 520 (53.5%)

RTS96 7140 73 120 51 2023 (28.3%)

Domain

V (kWh)

mean (σ)

RH (W)

mean (σ)

tblackout (sec)

mean (σ)

IEEE39 303 (220) 2785 (2998) 183 (132)

RTS96 639 (247) 6434 (4046) 257 (99)

Table 6.1: Characteristics of the test domains under deterministic dynamics. The values
V , RH , and tblackout are calculated for the uncontrolled grid.

our experiments we use the action set

A = {ShedGlobal(p = 0.05),ShedZone(z, p = 0.05), Island(z) : z ∈ zones}.

Policy rollout also requires one or more rollout policies. Due to the high cost of

sampling trajectories from the Cosmic simulator, we use a single deterministic rollout

to evaluate each action. We use this strategy in both the deterministic and stochastic

versions of the problem. Thus the decisions made by policy rollout in the stochastic

problem are based on simulating without stochsticity starting from the current state.

We use the DoNothing policy for the rollout policy, and the rollout procedure follows

it for a fixed number of steps d.

6.4 Experiments

Our experiments evaluated the performance of online planning approaches as well as

fixed baseline control policies in comparison to performance without control.

6.4.1 Transmission Grid Architectures

We used two standard transmission grid architectures for our experiments. The first,

called IEEE39 [Athay et al., 1979], was used for the earlier work of Meier et al. [2014]. We

use the 4 zones defined for this problem by Meier et al. [2014]. The second architecture,

94

called RTS96 [Grigg et al., 1999], consists of a common subgrid replicated three times

with different interconnections. We define 3 zones for this problem corresponding to

these 3 subgrids.

6.4.2 Identifying failure cases

We first evaluated the effect of all N − 2 contingencies when no control policy is used

in deterministic simulation. We then excluded those N − 2 contingencies for which a

total blackout occurred immediately after the initial N − 2 event before the agent has a

chance to act. We call the remaining contingencies the recoverable contingencies. In the

IEEE39 domain, we included all recoverable contingencies for which any load was lost

under the DoNothing policy. This resulted in a set of 534 contingencies. For RTS96,

due to the overall larger number of contingencies, we included only those recoverable

contingencies that led to a total blackout. This resulted in a set of 1764 contingencies.

6.4.3 Common Random Numbers

To reduce variance in our stochastic experiment, we used identical random number

streams during simulation when evaluating the policies (but not for making action choices

within the policies). More precisely, when being evaluated on the ith trajectory, all of

the control policies see the same sequence of random loads and the same sequence of

random relay delays. This implies that control policies that choose the same sequence

of actions will see exactly the same outcomes.

6.4.4 Baseline Policies

We selected parameterizations of the baseline ShedGlobal and HLS policies based

on a small pilot experiment in the stochastic version of the IEEE39 domain. In all of

our experiments we use the three baseline policies Isolate, ShedGlobal(p = 0.1), and

HLS(p = 0.05, ` = 0.95, u = 0.98, δ = 5). In the context of the experiments, we will

refer to these parameterizations as Isolate, ShedGlobal, and HLS.

95

●●●● ●●●●●●● ●●●● ●●●● ●●●● ●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●● ●● ●●●●●●●● ●●● ●●●●● ●●●● ●●● ●● ●●●●

●
●●

●● ●
●●●

● ●●●●●
● ●● ●●

●●

●

●●
●
●●●●

●●
●
●

● ●●●● ●
●●
●

●
●●
●

●

●

●
●

●
● ●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●● ●●●● ●●●●●●● ●●● ●● ●●● ●●●●●●● ●●

●

●●
●

●
●●

●

●

●

●

● ●

●

●

●

●
● ●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●●●

0

100

200

300

400

500

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

E
ne

rg
y

(k
W

h)

Total energy

●● ●●● ●●●●●● ●●●●● ●●● ●●●●●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●
●●

●

●

●

●● ●● ●●● ●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●● ●●●●● ●●●●● ●●●●● ●●● ●●●● ●●● ●● ●●●●●● ●● ●●● ●● ●●●● ●● ●● ●●● ●● ●●●● ●●● ● ●●● ●● ●●● ●●●●●● ●● ●●●●●● ●●●

●

●

●

●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●● ●● ●●●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●● ●●●●● ●●● ●●●●

●

●●●●

●

●●

●

●●●●● ●

●

0

2000

4000

6000

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

P
ow

er
 (

kW
)

Power supplied at end of episode

0

200

400
600

0 60 120 180 240 300
Time (sec)

C
ou

nt

Algorithm

Policy Rollout

HLS

ShedGlobal

Isolate

Nothing

Time until blackout

Figure 6.2: Comparison of policy rollout to baseline policies in IEEE39.

6.5 Results

The solution algorithms are evaluated using three criteria: total energy supplied, power

supplied during the last time step of the simulation, and time until blackout. The total

energy supplied is the primary figure of merit and the one most closely related to the

optimization objective for the OP algorithms. The last step power criterion allows us to

see how much demand has been lost over the course of the episode. If a blackout has

occurred, the last step power will be equal to 0. The time until blackout criterion gauges

the agent’s ability to prolong stable operation of the grid, which is desireable even if a

blackout eventually occurs. Results for the first two criteria are presented as box plots

in which the “whiskers” show ±1.5 times the inter-quartile range (IQR). Data points

outside this range are shown as points in the charts and are considered outliers. Results

for the time until blackout criterion are presented as histograms showing the number of

96

●●●● ●●● ●● ●●●●●●●●●●●●● ●●●● ●● ●●● ●●●●●●● ●

●

●● ●● ●●●● ●●●● ●●●●●●● ●● ●● ●● ●● ●● ● ●●●●●●● ●●● ●●●● ●● ●● ●●

●

●

●
●

●
●

●● ●●
● ●●● ●●

●
●●●● ●●●●

●

●●●●●●●● ●●●●● ● ●● ●●●

●

●● ●●●●●●●● ●●● ●●●●● ●●●● ●●● ●● ●●●

●

●
●

●●●
●
●●● ●●● ●● ● ●●●●●● ●

●
●●●● ●●● ●● ●●●●● ●●●

●

●

●

●
●●

●
● ●●● ●●●●● ●

●

●

● ●●

●

●

●● ●●

●

● ●●●

●

● ●●●●

●

●● ●●●●● ●● ●

●

●

●

●

●

●●●●●●●●● ●●

●

●
●

●

●

●

●

●●● ●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●●● ●●●●●●● ●

●●

● ●

●●●●●●●

●● ●
●
●●●●● ●●●●●● ●● ●●● ●●●●● ●● ●●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●● ●●●●● ●●●● ●●● ●● ●● ●● ●●●● ●●●●● ●●●● ●

●

●● ●●●● ●●●● ●● ●●●●● ●● ●● ●●●● ●●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●●●●●●● ●● ●●● ● ●
●●

●
●●

●●●● ●●●● ●● ●●●●●●●●●● ●●●●●● ●●● ●●●●● ●●●● ●●●● ●

●

●●● ●●●●● ●● ●● ●●● ●●● ●●●●●● ●●
●

●●
●●
●
●● ●● ●●●●●●● ●●●●●● ●●●●●● ●●● ● ●●●●● ●●●● ●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●● ●●●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●● ●

●

●●● ●●●●

●

●●●● ●●●

●

●●●● ●● ●●●● ●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●●● ●●● ●●●●● ● ●●●● ● ●● ●●● ●●
●●●●●● ●

●
●●

●

●

●

●
●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●●

● ●

● ●●

●●● ●●

● ●

●●●● ●●●

0

200

400

600

800

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

E
ne

rg
y

(k
W

h)

Total energy

●

●● ●●●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●

●

●●● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●● ● ●●● ●● ●●●●●●●●●●● ● ●●●

●

●

●
● ●

●
●●

●●

●●●●● ●
●
●●● ●●● ●●

●

●●●● ●●●●● ●●●●●● ●●●●● ●●●●●●●●●● ●●● ● ●●● ●●●●● ●●●● ●●● ●

●

●

●
●
●●
●

●●● ●● ●●●●●● ●●● ●●

●

●● ●●● ●● ● ●●●●● ●● ●●

●

●

●
●

●●
●

●● ●

●

●●●●●●

●

●

●●●

●

●

●●●●●●● ●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●● ●●●● ●●●●●

●

●

●

●

●

● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●●● ●●●● ●●●●●● ●●●● ●

● ●

●●

●

●●●● ●●●

●
●

●

●
●

● ●●● ●● ● ●●● ●●●●●● ●●●●● ●● ●● ●●

●

●

●

●

●

● ●● ●●●

●● ●●●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ● ●●● ●● ●●● ●● ●●● ●●● ●●●●●● ●●●● ●● ●●●● ●●●●● ●●●● ●● ●● ●● ●●●● ●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●●●●● ●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●

●

●●● ●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ●● ●●●●●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●● ●●● ●●● ●● ●● ●

●

●●

●

●● ●●● ●

●

●●●●●●● ●● ●● ●●●● ● ●●● ●●●● ●● ●●●●●●● ●● ●●●● ●●●●●● ●● ●●● ●●● ●●●●●● ●●● ●●● ●●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●●● ●●●●● ●●●●●●● ●●● ●●●●0

2500

5000

7500

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

P
ow

er
 (

kW
)

Power supplied at end of episode

0

1000
2000
3000
4000

0 60 120 180 240 300
Time (sec)

C
ou

nt

Algorithm

Policy Rollout

HLS

ShedGlobal

Isolate

Nothing

Time until blackout

Figure 6.3: Comparison of policy rollout to baseline policies in RTS96.

failure cases for each range of times. Note the logarithmic scale on the vertical axis in

these histograms.

In IEEE39 (Figure 6.2), policy rollout and both of the fixed load shedding policies

performed well in comparison to the DoNothing policy. Policy rollout was the best

algorithm overall, especially in terms of the number of total blackouts. The Isolate

policy performed poorly, but was able to prevent a total blackout in a small number of

cases.

In RTS96 (Figure 6.3), the pattern of results is very different. Here Isolate per-

forms extremely well, often successfully responding to the contingency without losing

any load. The ShedGlobal policy also prevents most blackouts, but apparently sheds

more load than necessary. Policy rollout performed as well as Isolate but with smaller

variability, and there is not much room for further improvement. HLS was clearly the

worst policy; under HLS, 542 contingencies progressed to total blackouts, compared to

97

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

● ●● ●●●●●

●

●

●

●
●●

●●

●
●

●

●

● ●
● ●●●

●
●●

●●●●
●

●●●

●

●●
●

●

●
●

●
●

●● ●●●

●

●
●

0

100

200

300

400

500

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

E
ne

rg
y

(k
W

h)

Total energy

●

●

●

●

●

●

●
● ●● ●

●● ●●●● ●●

●

● ●

●

●

●●

●

●

●

●●

● ●●●

●
●●

●●
●
●

●
●

●

●

●●●●

●
●

●

●●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

● ●

●
●●●

●
● ●

● ●●
●

0

2000

4000

6000

Policy Rollout HLS ShedGlobal Isolate Nothing
Algorithm

P
ow

er
 (

kW
)

Power supplied at end of episode

0

100

200

0 60 120 180 240 300
Time (sec)

C
ou

nt

Algorithm

Policy Rollout

HLS

ShedGlobal

Isolate

Nothing

Time until blackout

Figure 6.4: Comparison of policy rollout to baseline policies in the stochastic version of
IEEE39. Note that there are 10 times as many data points in this experiment compared
to deterministic IEEE39, because each failure case was replicated 10 times with different
random numbers.

only 3 contingencies under each of the other three policies. It seems that the zones

defined for the RTS96 architecture are better able to tolerate being isolated than the

zones in IEEE39. It is unclear why the performance of HLS is so different between the

two cases. Possibly the buses that tend to depart from their nominal voltages are not

good candidates for load shedding in RTS96.

In the stochastic version of IEEE39 (Figure 6.4), Isolate continued to perform

poorly while HLS and ShedGlobal had comparable performance. Policy rollout achieves

similar median energy and last-step power as these two policies, but with less variability.

Strangely, however, policy rollout was less likely to completely avoid a blackout, as seen

in the time-until-blackout chart (Figure 6.4). This could be due in part to the perfor-

98

mance criterion used by policy rollout (6.1), which does not directly penalize the agent

for allowing a blackout. It could also be due to the use of deterministic simulations in

policy rollout. Since half of all random futures will have greater power demand than

the deterministic scenario, the estimates based on deterministic simulation may be too

optimistic, resulting in insufficient corrective action.

6.6 Discussion and Future Work

Our results in simulation demonstrate the promise of OP algorithms for emergency con-

trol of transmission grids. Nevertheless, advances in several areas are required before

similar approaches can be implemented in real systems. The most pressing need is for

faster simulation of emergency scenarios. Greater exploitation of parallel computation

is vital, such as applied in the RAMSES simulator of Aristidou et al. [2014]. Parallel

execution of simulation trajectories is also easily implemented in OP algorithms, and this

would provide an easy and effective speedup. It would also be worthwhile to experiment

with the use of simplified simulations for decision-making. Although high-fidelity sim-

ulation is necessary for evaluating decision-making algorithms for this problem, it may

be possible for OP algorithms to make good decisions using simpler models. We have

explored this idea somewhat already, when we used a deterministic model for simulation

even though the real model is stochastic.

Further work is also needed to create realistic models of the sensing and control

systems of the transmission grid. The state variables of real networks are not fully

observable, due to the limitations of the sensors deployed in the network. Incomplete

knowledge of the system state means that OP algorithms would need to sample several

possible “current states” from the state distribution and plan for all of them. This

increases the computational burden significantly.

The high cost of simulation forced us to choose very simple OP algorithms for our

experiments in order to reduce the simulation requirements as much as possible. If

the efficiency of the simulator can be significantly improved, it will become feasible to

apply more sophisticated OP algorithms such as the abstract MCTS algorithms we have

described in this thesis to the power grid control problem.

99

Chapter 7: Conclusion and Future Work

This thesis has presented a new approach to Monte Carlo tree search based on pro-

gressive abstraction refinement. We first analyzed state abstraction in the tree search

setting and derived a regret bound for decision making using abstract tree search with a

class of state aggregation abstractions. We then presented the Progressive Abstraction

Refinement for Sparse Sampling algorithm, which is the prototypical example of the pro-

gressive refinement framework for MCTS. PARSS was demonstrated experimentally to

be superior to tree search with fixed abstractions – including the ground representation –

for a range of problem domains. We then introduced abstraction diagrams, which unify

several types of abstraction besides state abstraction in a single formalism, and used

ADs to generalize the basic idea of PARSS to create the progressive abstract tree search

framework. The ultimate goal of this work is to allow MCTS algorithms to scale up to

problems with large state and action spaces.

In the final chapter, we applied online planning techniques to the problem of control-

ling an electrical transmission grid during abnormal conditions to mitigate the possibility

of cascading failure and blackout. This is the type of problem for which progressive ab-

stract tree search is intended – it has very large state and action spaces and the effects

of actions unfold over relatively long time scales. Unfortunately the limitations of state-

of-the-art simulators for this domain forced us to use simpler algorithms that require

fewer samples to make a decision. Although even these simple algorithms were better

than fixed expert policies, there is likely plenty of room for improvement.

There are several interesting directions for further work on progressive abstract tree

search. One interesting possibility is to learn to control the abstraction refinement pro-

cess to achieve better performance. This represents a new way of learning to plan,

complimenting methods such as learning the leaf evaluation function. The space of re-

finement strategies would need to be describe in a formalism that is amenable to learning,

such as by creating a stochastic grammar that generates refinement sequences and opti-

mizing its parameters. Feedback for the learner could come from measuring the change

in value estimates obtained from search with the old and new abstractions.

100

A second possibility is to use raw data about the effectiveness of different abstractions

gathered from the search trees to inform the construction of a single, fixed abstraction,

which could then be used for learning a reactive policy. Long-term learning of the

sort that humans do seems to involve compiling behaviors that once required conscious

thought into reflexive behaviors that are executed almost automatically. This could be

realized in an agent architecture that builds up a library of reactive policies for solving

common tasks and uses these policies as the primitive actions for higher-level planning.

Examining the abstractions produced by progressive abstract tree search algorithms

as they solve these subtasks could provide valuable guidance for choosing the correct

abstractions to enable subtask policies to be learned effectively.

101

Bibliography

Amin, S. and Wollenberg, B. (2005). Toward a smart grid: Power delivery for the 21st
century. IEEE Power and Energy Magazine, 3(5):34–41.

Anand, A., Grover, A., Mausam, and Singla, P. (2015). ASAP-UCT: Abstraction of
state-action pairs in UCT. In International Joint Conference on Artificial Intelligence
(IJCAI).

Anand, A., Noothigattu, R., Mausam, and Singla, P. (2016). OGA-UCT: On-the-go ab-
stractions in UCT. In International Conference on Automated Planning and Scheduling
(ICAPS).

Aponte, E. and Nelson, J. (2005). Time optimal load shedding for distributed power
systems. IEEE Transactions on Power Systems, 21(1):269–277.

Aristidou, P., Fabozzi, D., and Van Cutsem, T. (2014). Dynamic simulation of large-
scale power systems using a parallel schur-complement-based decomposition method.
IEEE Transactions on Parallel and Distributed Systems, 25(10):2561–2570.

Athay, T., Podmore, R., and Virmani, S. (1979). A practical method for the direct
analysis of transient stability. IEEE Transactions on Power Apparatus and Systems,
98(2):573–584. See also: http://publish.illinois.edu/smartergrid/ieee-39-bus-system/
(Accessed 18-May-2015).

Bai, A., Srivastava, S., and Russell, S. (2015). Markovian state and action abstractions
for MDPs via hierarchical MCTS. In International Joint Conference on Artificial
Intelligence (IJCAI).

Balla, R.-K. and Fern, A. (2009). UCT for tactical assault planning in real-time strategy
games. In International Joint Conference on Artificial Intelligence (IJCAI).

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1-2):81–138.

Baum, J., Nicholson, A. E., and Dix, T. I. (2012). Proximity-based non-uniform abstrac-
tions for approximate planning. Journal of Artificial Intelligence Research, 43:477–522.

Bertsekas, D. P. and Castañon, D. A. (1999). Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5(1):89–108.

102

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy iteration and ap-
plications in neuro-dynamic programming. Technical report, Massachusetts Institute
of Technology.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of Monte
Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI
in Games, 4(1):1–43.

Bubeck, S. and Munos, R. (2010). Open loop optimistic planning. In Conference on
Learning Theory (COLT).

Calvo, B. and Santafe, G. (2015). scmamp: Statistical comparison of multiple algorithms
in multiple problems. The R Journal, Accepted for publication.

Chang, H. S., Givan, R., and Chong, E. K. (2004). Parallel rollout for online solution
of partially observable Markov decision processes. Discrete Event Dynamic Systems,
14(3):309–341.

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforce-
ment learning: An algorithm and performance comparisons. In International Joint
Conference on Artificial Intelligence (IJCAI).

Cotilla-Sanchez, E., Hines, P., Barrows, C., Blumsack, S., and Patel, M. (2013). Multi-
attribute partitioning of power networks based on electrical distance. IEEE Transac-
tions on Power Systems, 28(4):4978–4987.

Culberson, J. C. and Schaeffer, J. (1998). Pattern databases. Computational Intelligence,
14(3).

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research (JMLR), 7:1–30.

Dola, H. and Chowdhury, B. (2006). Intentional islanding and adaptive load shedding
to avoid cascading outages. In IEEE Power Engineering Society General Meeting.

Edelkamp, S. (2001). Planning with pattern databases. In European Conference on
Planning (ECP).

Erol, K., Hendler, J., and Nau, D. S. (1994). HTN planning: Complexity and expressiv-
ity. In AAAI Conference on Artificial Intelligence.

Faranda, R., Pievatolo, A., and Tironi, E. (2007). Load shedding: A new proposal. IEEE
Transactions on Power Systems, 22(4):2086–2093.

103

Ferns, N., Panangaden, P., and Precup, D. (2004). Metrics for finite Markov decision
processes. In Conference on Uncertainty in Artificial Intelligence (UAI).

Frank, S. and Rebennack, S. (2012). A primer on optimal power flow: Theory, formula-
tion, and practical examples. Technical Report 14, Colorado School of Mines.

Gabillon, V., Ghavamzadeh, M., and Scherrer, B. (2013). Approximate dynamic pro-
gramming finally performs well in the game of Tetris. In Advances in neural informa-
tion processing systems (NIPS).

Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in UCT. In
International Conference on Machine Learning (ICML).

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 147(1):163–223.

Grigg, C., Wong, P., Albrecht, P., Allan, R., Bhavaraju, M., Billinton, R., Chen, Q.,
Fong, C., Haddad, S., Kuruganty, S., et al. (1999). The IEEE reliability test system-
1996: A report prepared by the reliability test system task force of the applica-
tion of probability methods subcommittee. IEEE Transactions on Power Systems,
14(3):1010–1020.

Guerin, J. T., Hanna, J. P., Ferland, L., Mattei, N., and Goldsmith, J. (2012). The aca-
demic advising planning domain. In Workshop on the International Planning Compe-
tition (WS-IPC) at ICAPS.

Guo, X., Singh, S., Lee, H., Lewis, R. L., and Wang, X. (2014). Deep learning for real-
time Atari game play using offline Monte-Carlo tree search planning. In Advances in
Neural Information Processing Systems.

Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In Conference on
Uncertainty in Artificial Intelligence (UAI).

Hauser, K. (2011). Randomized belief-space replanning in partially-observable continu-
ous spaces. In Algorithmic Foundations of Robotics IX, pages 193–209. Springer.

Helmert, M., Haslum, P., and Hoffmann, J. (2007). Flexible abstraction heuristics for
optimal sequential planning. In International Conference on Automated Planning and
Scheduling (ICAPS).

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30.

Hostetler, J., Fern, A., and Dietterich, T. (2014). State aggregation in Monte Carlo tree
search. In AAAI Conference on Artificial Intelligence.

104

Hostetler, J., Fern, A., and Dietterich, T. (2015). Progressive abstraction refinement for
sparse sampling. In Conference on Uncertainty in Artificial Intelligence (UAI).

Hutter, M. (2014). Extreme state aggregation beyond MDPs. In International Confer-
ence on Algorithmic Learning Theory.

Jiang, N., Singh, S., and Lewis, R. (2014). Improving UCT planning via approximate
homomorphisms. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

Karlsson, D. and Hill, D. J. (1994). Modelling and identification of nonlinear dynamic
loads in power systems. IEEE Transactions on Power Systems, 9(1):157–166.

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. Machine Learning, 49(2-
3):193–208.

Kearns, M. J., Mansour, Y., and Ng, A. Y. (1999). Approximate planning in large
POMDPs via reusable trajectories. In Advances in Neural Information Processing
Systems (NIPS).

Keller, T. and Helmert, M. (2013). Trial-based heuristic tree search for finite horizon
MDPs. In International Conference on Automated Planning and Scheduling (ICAPS).

King, B., Fern, A., and Hostetler, J. (2013). On adversarial policy switching with
experiments in real-time strategy games. In International Conference on Automated
Planning and Scheduling (ICAPS).

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In European
Conference on Machine Learning (ECML).

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1):41–78.

Li, J., Liu, C.-C., and Schneider, K. (2010). Controlled partitioning of a power net-
work considering real and reactive power balance. IEEE Transactions on Smart Grid,
1(3):261–269.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state ab-
straction for MDPs. In International Symposium on Artificial Intelligence and Math-
ematics.

McCallum, A. K. (1996). Reinforcement learning with selective perception and hidden
state. PhD thesis, University of Rochester.

105

McMahan, H. B., Likhachev, M., and Gordon, G. J. (2005). Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In
International Conference on Machine learning.

Meier, R., Cotilla-Sanchez, E., and Fern, A. (2014). A policy switching approach to con-
solidating load shedding and islanding protection schemes. In Power Systems Com-
putation Conference (PSCC).

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. (1999). Solving
POMDPs by searching the space of finite policies. In Conference on Uncertainty
in Artificial Intelligence (UAI).

Moore, A. W. and Atkeson, C. G. (1995). The parti-game algorithm for variable res-
olution reinforcement learning in multidimensional state-spaces. Machine Learning,
21(3):199–233.

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.
(2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence Research
(JAIR), 20:379–404.

Neller, T. W. (2002). Iterative-refinement for action timing discretization. In AAAI
Conference on Artificial Intelligence.

Pahwa, S., Scoglio, C., Das, S., and Schulz, N. (2013a). Load-shedding strategies for
preventing cascading failures in power grid. Electric Power Components and Systems,
41:879–895.

Pahwa, S., Youssef, M., Schumm, P., Scoglio, C., and Schulz, N. (2013b). Optimal
intentional islanding to enhance the robustness of power grid networks. Physica A:
Statistical Mechanics and its Applications, 392(17):3741–3754.

Parr, R. and Russell, S. (1998). Reinforcement learning with hierarchies of machines.
Advances in Neural Information Processing Systems (NIPS).

Pinto, J. and Fern, A. (2014). Learning partial policies to speedup MDP tree search. In
Conference on Uncertainty in Artificial Intelligence (UAI).

Poupart, P. and Boutilier, C. (2003). Bounded finite state controllers. In Advances in
Neural Information Processing Systems (NIPS).

PowerWorld Corporation (2016). Power world simulator. [Online; accessed 21-Nov-2016].

Ravindran, B. and Barto, A. (2004). Approximate homomorphisms: A framework for
nonexact minimization in Markov decision processes. In International Conference on
Knowledge-Based Computer Systems.

106

Russell, S. and Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice
Hall.

Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language
description. Technical report, Australian National University.

Seethalekshmi, K., Singh, S. N., and Srivastava, S. C. (2011). A synchrophasor assisted
frequency and voltage stability based load shedding scheme for self-healing of power
system. IEEE Transactions on Smart Grid, 2(2):221–230.

Siemens (2015). Psse: Power transmission system planning. [Online; accessed 18-May-
2015].

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

Song, J., Cotilla-Sanchez, E., Ghanavati, G., and Hines, P. D. (2016). Dynamic mod-
eling of cascading failure in power systems. IEEE Transactions on Power Systems,
31(3):2085–2095.

Sun, K., Hur, K., and Zhang, P. (2011). A new unified scheme for controlled power
system separation using synchronized phasor measurements. IEEE Transactions on
Power Systems, 26(3):1544–1554.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. Cam-
bridge University Press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1):181–211.

Van den Broeck, G. and Driessens, K. (2011). Automatic discretization of actions and
states in Monte-Carlo tree search. In ECML/PKDD Workshop on Machine Learning
and Data Mining in and around Games.

Van Roy, B. (2006). Performance loss bounds for approximate value iteration with state
aggregation. Mathematics of Operations Research, 31(2):234–244.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). Integrating sample-based planning
and model-based reinforcement learning. In AAAI Conference on Artificial Intelli-
gence.

107

Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learning in
continuous-action Markov decision processes. In International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Weinstein, A. and Littman, M. L. (2013). Open-loop planning in large-scale stochastic
domains. In AAAI Conference on Artificial Intelligence.

Xu, D. and Girgis, A. A. (2001). Optimal load shedding strategy in power systems with
distributed generation. In IEEE Power Engineering Society Winter Meeting, volume 2,
pages 788–793.

Yang, B., Vittal, V., Heydt, G. T., and Sen, A. (2007). A novel slow coherency based
graph theoretic islanding strategy. In IEEE Power Engineering Society General Meet-
ing.

Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2011). MATPOWER:
Steady-state operations, planning and analysis tools for power systems research and
education. IEEE Transactions on Power Systems, 26(1):12–19.

108

APPENDICES

109

Appendix A: Proofs

A.1 Proof of Theorem 1

Theorem 1. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP such that the maximum length

of a history in H is d = maxh∈H len(h) (which may be infinite). Let α = 〈χ, µ〉 be an

abstraction of T where χ is (p, q)-consistent and let δ
def
= δT/α. For any action a ∈ A,∣∣∣Q∗(s0, a)−Q∗α(s0, a)

∣∣∣ ≤ βγ(d)(p+ δq).

Proof. The proof is by structural induction on the tree of abstract histories, from the leaf

states upwards. Let Ω denote the set of leaf states, Ω = {H ∈ H/χ : ∀H ′ ∈ H/χ . H 6=
p(H ′)}. We generalize the desired error bound to apply to abstract states,

E(H, a) =
∣∣∣Q∗α(H, a)−

∑
h∈H

µ(H,h)Q∗(h, a)
∣∣∣.

Note that E({s0}, a) = |Q∗({s0}, a)−Q∗(s0, a)|.

Base case Consider a terminal state H ∈ Ω. Since terminal states have no successors,

we have

E(H, a) =
∣∣∣Q∗α(H, a)−

∑
h∈H

µ(H,h)Q∗(h, a)
∣∣∣ =

∣∣∣Rµ(H)−
∑
h∈H

µ(H,h)R(H)
∣∣∣ = 0.

(A.1)

Inductive step We now consider interior states H ∈ Ω and assume the inductive

hypothesis E(H ′, a′) ≤ βγ(k)(p + δq) for all H ′ ∈ K(H, a) and all a′ ∈ A, where

K(H, a) = {H ′ ∈ H/χ : p(H ′) = H, a(H ′) = a} is the set of successors of Ha. Since the

immediate reward terms do not affect E(H, a) (A.1), the difference between the optimal

value in the abstract tree and the true optimal value is the error in the discounted future

110

return estimates,

E(H, a) = γ
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)V∗α(H ′)−
∑
h∈H

µ(H,h)
∑
h′∈H

P (h′|h, a)V ∗(h′)
∣∣∣.

We decompose the error as E(H, a) ≤ γ(EQ + Eχ), where,

EQ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)V∗α(H ′)−
∑

H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

µ(H ′, h′)V ∗(h′)
∣∣∣

Eχ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h∈H

µ(H,h)
∑
h′∈H

P (h′|h, a)V ∗(h′)
∣∣∣.

EQ is the error due to using the abstract value function below the current node. Eχ is

the error introduced by aggregating states at the current level.

We analyze EQ first. By (p, ·)-consistency of χ, we have the bound∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)−max
a′∈A

∑
h′∈H′

µ(H ′, h′)Q∗(h′, a′) ≤ p. (A.2)

Note that this difference is always non-negative. We relate this to E(H ′, a′) by observing

that for any H ′ ∈ H/χ,∣∣∣max
a′∈A
Q∗α(H ′, a′)−max

a′∈A

∑
h′∈H′

µ(H ′, h′)Q∗(h′, a′)
∣∣∣ ≤ max

a′∈A
E(H ′, a′), (A.3)

because of the general fact that |maxx f(x)−maxx g(x)| ≤ maxx |f(x)− g(x)| for real-

valued functions f and g on the same domain. Combining (A.2) and (A.3) with the

triangle inequality, we have∣∣∣max
a′∈A
Q∗α(H ′, a′)−

∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)
∣∣∣ ≤ p+ max

a′∈A
E(H ′, a′).

Applying the inductive hypothesis, we conclude that∣∣∣max
a′∈A
Q∗α(H ′, a′)−

∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)
∣∣∣ ≤ p+ βγ(k)(p+ δq)

111

for any h′ ∈ H. We then plug this bound into EQ to obtain

EQ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)
[
V∗α(H ′)−

∑
h′∈H′

µ(H ′, h′)V ∗(h′)
]∣∣∣ ≤ p+ βγ(k)(p+ δq).

We now analyze the single-step abstraction error Eχ. This error comes from assigning

incorrect weights to ground states within the current abstract state. We can write the

second part of Eχ in terms of the exact update of the weight function (3.6),∑
h∈H

µ(H,h)
∑
h′∈H

P (h′|h, a)V ∗(h′)

=
∑

H′∈H/χ

∑
h′∈H′

[∑
h∈H

µ(H,h)P (h′|h, a)
]
V ∗(h′)

=
∑

H′∈H/χ

∑
h′∈H′

Pµ(H ′|H, a)

[∑
h∈H µ(H,h)P (h′|h, a)

]
Pµ(H ′|H, a)

V ∗(h′)

=
∑

H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′).

We can then express Eχ as

Eχ =
∑

H′∈H/χ

Pµ(H ′|H, a)
∣∣∣ ∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′)
∣∣∣.

Let D(H ′) denote the difference in values that appears in Eχ,

D(H ′) =
∣∣∣ ∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′)
∣∣∣.

Let v(H) = minh∈H V
∗(h) be the minimum value among states inH. By (·, q)-consistency

of χ, we have V ∗(h)− v(H) ≤ q for all h ∈ H. Let ∆(H,h) = V ∗(h)− v(H)− q
2 denote

this difference in value shifted to lie in the interval [−q/2, q/2]. We now express D(H ′)

112

in terms of ∆,

D(H ′) =
∣∣∣ ∑
h′∈H′

µ(H ′, h′)[v(H ′) +
q

2
+ ∆(H ′, h′)]

−
∑
h′∈H′

[µ]∗(H ′, h′)[v(H ′) +
q

2
+ ∆(H ′, h′)]

∣∣∣
=
∣∣∣ ∑
h′∈H′

µ(H ′, h′)∆(H ′, h′)−
∑
h′∈H′

[µ]∗(H ′, h′)∆(H ′, h′)
∣∣∣

≤
∑
h′∈H′

∣∣∣∆(H ′, h′)
[
µ(H ′, h′)− [µ]∗(H ′, h′)

]∣∣∣
≤ q

2

∑
h′∈H′

∣∣∣µ(H ′, h′)− [µ]∗(H ′, h′)
∣∣∣

= q · 1

2

∥∥µ(H ′, ·)− [µ]∗(H ′, ·)
∥∥

1
= qδ(µ,H ′) ≤ δq.

Since Eχ is a convex combination of D(H ′) for different H ′, we conclude that Eχ ≤ δq.
Combining the two sources of error, we obtain,

EQ + Eχ ≤ βγ(k)(p+ δq) + p+ δq = (1 + βγ(k))(p+ δq). (A.4)

Since E(H, a) ≤ γ(EQ + Eχ), we multiply (A.4) by the discount factor γ to obtain

E(H, a) ≤ γ(1 + βγ(k))(p+ δq) = βγ(k + 1)(p+ δq)

for all H ∈ H/χ and all a ∈ A. This completes the inductive argument.

A.2 Proof of Proposition 2

Proposition 2. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP and let χ be a (p, q)-

consistent history equivalence relation on H. Then the procedure AbstractSS(s0, C,

d, χ), with probability at least 1− (|A|C)d · 2e−2λ2C/(V dmax)2
, returns an action choice a∗

such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

113

where δ is the divergence (3.7) of the completed empirical weight function µ̄+ derived

from the empirical weight function µ̄ computed by AbstractSS.

Proof. The proof is a small modification of the analysis of SS by Kearns et al. [2002].

Let Q̂ and V̂ denote the value functions estimated by AbstractSS(s0, C, d, χ). Recall

the definition of the completed empirical weight function (3.18),

µ̄+(H,h) =

{
µ̄(H,h) if H ∈ dom(µ̄),

µ∗(H,h) otherwise,

where dom(µ̄) ⊆ H/χ is the subset of the abstract history set on which µ̄ is defined.

The error due to finite sampling in AbstractSS is given by

E(H, a) =
∣∣∣V̂(H)− V∗α(H)

∣∣∣
=
∣∣∣[∑
h∈H

n(h)R(h) +
1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
]

−
[
Rµ̄(H) +

∑
H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
]∣∣∣

=
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)−
∑

H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
∣∣∣

Following the proof of Kearns et al. [2002], we introduce the quantity

U∗(H, a) = Rµ̄(H, a) + γ
1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′).

The difference |Q∗α(H, a)−U∗(H, a)| captures the error due to finite sampling. Expanding

this difference and canceling the immediate reward terms gives∣∣∣Q∗α(H, a)− U∗(H, a)
∣∣∣ = γ

∣∣∣EH′∼Pµ̄(·|H,a)V∗α(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)
∣∣∣,

which is the absolute difference between an expectation and an empirical average of C

iid samples. We can thus apply Hoeffding’s inequality (Hoeffding [1963], Theorem 2) to

114

conclude that

P
(∣∣∣Q∗α(H, a)− U∗(H, a)

∣∣∣ ≤ λ ≤ λ

γ

)
≤ 1− 2e−2λ2C/(V dmax)2

. (A.5)

Using this result, we decompose the sampling error in terms of U∗ as

E(H, a) ≤
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)
∣∣∣

+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)−
∑

H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
∣∣∣

≤ λ+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)
∣∣∣.

Now we need to bound the difference between V∗ and the actual estimate V̂ that

we obtain from search. We bound this difference by bounding the difference in action

values,

F (H, a) =
∣∣∣Q∗α(H, a)− Q̂(H, a)

∣∣∣.
We argue by induction that F (H0, a) ≤ βγ(d)λ.

Base case Consider an arbitrary leaf node H ∈ Ω. Since H has no successors,

F (H, a) = 0 ≤ λ for all a ∈ A.

Inductive step Now consider an arbitrary interior node H ∈ Ω and action a ∈ A and

assume the inductive hypothesis F (H ′, a′) ≤ βγ(k)λ for all H ′ ∈ K(H, a) and a′ ∈ A.

We have

F (H, a) = γ
∣∣∣EH′∼Pµ̄(·|H,a)[V∗α(H ′)]− 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
∣∣∣

≤ γ
(∣∣∣EH′∼Pµ̄(·|H,a)[V∗α(H ′)]− 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)
∣∣∣

+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
∣∣∣)

≤ γ(λ+ βγ(k)λ) = βγ(k + 1)λ.

115

This completes the inductive argument.

To obtain a probability bound in the root node, we require that the bound in (A.5)

holds in all action nodes simultaneously. Applying the union bound as in Lemma 4 of

Kearns et al. [2002] we conclude that with probability at least 1−(|A|C)d·2e−2λ2C/(V dmax)2
,

we have ∣∣∣Q̂(H0, a)−Q∗α(H0, a)
∣∣∣ ≤ βγ(d)λ (A.6)

in the root state H0 for all a ∈ A. This bounds the error due to finite sampling.

To complete the proof, we combine (A.6) with Theorem 1. We have∣∣∣Q̂(H0, a)−Q∗(h0, a)
∣∣∣ ≤ ∣∣∣Q̂(H0, a)−Q∗α(H0, a)

∣∣∣+
∣∣∣Q∗α(H0, a)−Q∗(h0, a)

∣∣∣
≤ βγ(d)λ+ βγ(d)(p+ δq)

= βγ(d)(λ+ p+ δq).

By the same reasoning as in Corrolary 1, the above value estimation error bound implies

the regret bound

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where a∗ = arg maxa∈A Q̂(H0, a).

A.3 Proof of Proposition 4

Proposition 4. Consider a history MDP T augmented with the special action ω and an

abstraction α = 〈χ, µ∗〉 of T composed of equivalence relation χ and the corresponding

optimal weight function µ∗. Let H ′ be a random variable H ′ ∼ Pξα(·|h0) for a fixed

abstract policy ξ ∈ Π(T/α), and let h′ be a random variable such that h′ ∼ P ↓ξ(·|h0).

Then the random variable [h′]χ is equal in distribution to H ′.

Proof. Recall that the probability of an abstract history H = H0a0H1 . . . adHd under

abstraction α and abstract sampling policy ξ is

Pξα(H|h0) = ξ(H,ω)

d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at),

116

and the probability of a ground history h = h0a1h1 . . . adhd under sampling policy π is

P π(h|h0) = π(h, ω)

d−1∏
t=0

π(ht, at)P (ht+1|ht, at).

We need to show that for h ∼ P ↓ξ and H ∼ Pξα, [h]χ =d H. This is equivalent to the

condition that
∑

h∈H P
↓ξ(·|h0) = Pξα(·|h0).

The proof is simpler when we consider a slightly different pair of distributions,

Wξ
α(H|h0) =

d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at),

W π(h|h0) =
d−1∏
t=0

π(ht, at)P (ht+1|ht, at).

We call these the prefix distributions because they give the probability of generating a

history that starts with H or h. They are related to the history distributions by

Pξα(H|h0) = ξ(H,ω)Wξ
α(H|h0),

P π(h|h0) = π(h, ω)W π(h|h0).

By assumption, the ground policy is ↓ξ. For this choice of policy, we have that for all

h ∈ H, ↓ ξ(h, ω) = ξ([h]χ, ω) = ξ(H,ω). Thus
∑

h∈H P
↓ξ(h) = Pξα(H) if and only if∑

h∈HW
↓ξ(h) = Wξ

α(H). We prove the latter fact by induction on the length of the

history prefix.

Base case Let H0 = {h0} be the initial state. Since H0 is a singleton we have trivially

that Wξ
α(H0) = 1 = W ↓ξ(h0).

Inductive step Consider a history H = H0a1H1 . . . akHk. Assume the inductive

hypothesis
∑

hk−1∈Hk−1
W ↓ξ(hk−1|h0) =Wξ

α(Hk−1|h0). Again using the definition of ↓ξ,

117

we have ∑
hk∈Hk

W ↓ξ(hk) =
∑
hk∈Hk

∑
hk−1∈Hk−1

W ↓ξ(hk−1)ξ([hk−1]χ, ak)P (hk|hk−1, ak)

= ξ(Hk−1, ak)
∑

hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak).

Now we want to isolate a factor of
∑

hk−1∈Hk−1
W ↓ξ(hk−1) so that we can use the induc-

tive hypothesis. We do this by multiplying by 1:

ξ(Hk−1, ak)
∑

hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak)

= ξ(Hk−1, ak)

∑
g∈Hk−1

W ↓ξ(g)∑
g∈Hk−1

W ↓ξ(g)

∑
hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak)

= ξ(Hk−1, ak)Wξ
α(Hk−1)

∑
hk−1∈Hk−1

W ↓ξ(hk−1)∑
g∈Hk−1

W ↓ξ(g)

∑
hk∈Hk

P (hk|hk−1, ak) (*)

= ξ(Hk−1, ak)Wξ
α(Hk−1)

∑
hk−1∈Hk−1

µ∗(Hk−1, hk−1)
∑
hk∈Hk

P (hk|hk−1, ak) (**)

=Wξ
α(Hk−1)ξ(Hk−1, ak)Pµ∗(Hk|Hk−1, ak)

=Wξ
α(Hk),

where in (*) we used the inductive hypothesis and in (**) we used the definition of µ∗

(Definition 3),

µ∗(H,h) = P(h|H) =
P(H,h)

P(H)
= 1h∈H

W ↓ξ(h)∑
g∈HW

↓ξ(g)
.

This completes the inductive argument, and we conclude that for H ′ ∼ Pξα(·|h0) and

h′ ∼ P ↓ξ(·|h0), we have [h′]χ =d H ′, where α = 〈χ, µ∗〉.

