


AN ABSTRACT OF THE THESIS OF

David N. Glennon for the degree of Master of Science in Electrical and Computer

Engineering presented on September 19, 2019.

Title: Design and Simulation of Nonlinear Control Strategies for Heaving Point

Wave Energy Converters in WEC-Sim

Abstract approved:

Ted K.A. Brekken

As the sources of our electricity shift from centralized and carbon emitting, to a

portfolio of distributed, clean-energy sources, the wave energy converter (WEC)

has become a topic of exploration and development for providing coastal commu-

nities electric power. Part of this trend has included an effort to create open source

WEC modeling and simulation software. The Wave Energy Converter Simulator

(WEC-Sim) provides a software solution for designing and simulating the various

aspects related to wave energy, using linear wave theory and control strategies.

This thesis represents a continuation of that effort and a contribution to WEC-Sim,

demonstrating the use of nonlinear control strategies on wave energy converters.

A fuzzy logic controller is designed and implemented in WEC-Sim, as well as a

generally nonlinear control strategy for power-take-off (PTO) force. The nonlin-

ear control models are intended for incorporation into WEC-Sim, as tutorials to



provide WEC researchers an introduction to nonlinear control methods.



c©Copyright by David N. Glennon
September 19, 2019
All Rights Reserved



Design and Simulation of Nonlinear Control Strategies for Heaving
Point Wave Energy Converters in WEC-Sim

by

David N. Glennon

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 19, 2019
Commencement June 2020



Master of Science thesis of David N. Glennon presented on September 19, 2019.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

David N. Glennon, Author



ACKNOWLEDGEMENTS

I would like to express my gratitude my advisor, Dr. Brekken, for his role mentoring

through this project and general guidance throughout graduate school.

I would like to thank my committee members, Dr. Eduardo Cotilla-Sanchez

and Dr. Bret Bosma for all your help in my learning over the past few years.

A special thanks to Dr. Lewis Semprini for his availability and service as my

Graduate Committee Representative.

I want to acknowledge the online WEC-Sim community, which laid the founda-

tion for this work, as well as the Pacific Marine Energy Center for being a source

of experience and knowledge.

Additionally, I must thank my cohort in the energy systems research group, for

being a source of inspiration and friendship. It is a group I’m honored to be a part

of.

Finally, thank you to my wife Blaire, for her continual support in my education,

and my son Milo for being a constant motivation.



TABLE OF CONTENTS

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Control Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Passive Damping Control . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Reactive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Nonlinear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Parameter Sweeps . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Simple Hill Climbing . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Parameter Optimization Using fmincon . . . . . . . . . . . . 17
2.3.4 Output Power Comparison . . . . . . . . . . . . . . . . . . . 19

3 Overview: Fuzzy Control Systems . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Fuzzy Concepts: Sets, Membership, Rules . . . . . . . . . . . . . . . 23

3.2 Fuzzy Inference Process . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Fuzzy Control for Over Travel Protection . . . . . . . . . . . . . . . . . . 34

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 A 2-level Nonlinear WEC Control Scheme . . . . . . . . . . . . . . . . . 42

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Custom Fuzzy Logic Function Library . . . . . . . . . . . . . . . . . 55



TABLE OF CONTENTS (Continued)

Page

B Mechanical Impedance Analogy to Electrical Domain . . . . . . . . . 61

C Limit for PTO Counter-Restoring Force . . . . . . . . . . . . . . . . 65



LIST OF FIGURES

Figure Page

1.1 WEC-Sim workflow diagram. . . . . . . . . . . . . . . . . . . . . . 4

2.1 RM3 model in tank testing. . . . . . . . . . . . . . . . . . . . . . . 6

2.2 RM3 tank testing setup. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 A flowchart for the random walk algorithm used to find the optimal
Bpto, Cpto, α, and β parameters for the nonlinear control law. . . . . 18

2.4 Flowchart for script using fmincon with WEC-Sim’s power output
as an objective function. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Comparison of power take-off at the optimal parameters for the
control strategies described in Chapter 2. . . . . . . . . . . . . . . . 21

3.1 General flow chart of the fuzzy inference process. . . . . . . . . . . 24

3.2 Membership function for warm temperatures. . . . . . . . . . . . . 25

3.3 Membership functions for full temperature input allowed range. . . 25

3.4 Membership functions for a fan speed output. . . . . . . . . . . . . 26

3.5 Additional input for the example system indicating the fan does not
need to operate from the hours of 10 to 17, with partial membership
as early as 6 and late as 19. . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Top: base output membership function for the medium RPM fuzzy
set, determined by rule 2. For 88◦ F temperature input the an-
tecedent firing strength for this rule is 0.4. Center: The clipped
membership function using the minimum implication method. Bot-
tom: The scaled membership function using the product implication
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Implicated membership functions for each fuzzy set of the RPM out-
put, assuming an input of 88◦F and a product implication method.
These functions are the input to the aggregation step. . . . . . . . . 32

3.8 Top: Aggregation of the consequent membership functions in Fig. 3.7
using a maximum aggregation method. Bottom: The same aggre-
gation using a sum aggregation method. . . . . . . . . . . . . . . . 33



LIST OF FIGURES (Continued)

Figure Page

3.9 Comparison of defuzzification methods on two example output mem-
bership functions. It is also of note that if the membership function
is symmetric, the bisector and centroid values will be equal. . . . . 33

4.1 A block diagram for the system. Using the position and velocity
states of the WEC, the Fuzzy Controller supplies a damping value
which is used to calculate the motor’s commanded PTO force. . . . 35

4.2 The Membership Functions for relative position of the float and spar. 37

4.3 The Membership Functions for relative velocity of the float and spar. 37

4.4 Relative position of spar and float of RM3 in the selected nomi-
nal (left) and high (right) sea states. Passively damped control is
compared with fuzzy over travel protection. . . . . . . . . . . . . . 40

4.5 Comparison of over-travel protection position limiting using the
Fuzzy Logic Toolbox vs the custom fuzzy script under the identical
simulation conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Relative position of spar and float of RM3 in the high sea states with
irreguar wave spectra. Passively damped control (blue) is compared
with fuzzy over travel protection (magenta.) . . . . . . . . . . . . . 41

5.1 Supervisory level for the 2 level system, using fuzzy logic to set
optimal values for Bpto and Cpto and enforcing over-travel protection. 43

5.2 Hourly samples for average period and waveheight in 2018 at the
Stonewall Bank bouy. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Membership functions for average period input, based on quartile
values in Fig. 5.2 from one year worth of hourly sample data. . . . . 44

5.4 Impulse membership functions for Bpto as calculated according to
the intrinsic impedance in appendix B and optimal Bpto determined
by equation 2.11 for the given period. . . . . . . . . . . . . . . . . . 45

5.5 Impulse membership functions for Cpto as calculated according to
the intrinsic impedance in appendix B and optimal Cpto determined
by equation 2.12 for the given period. . . . . . . . . . . . . . . . . . 45



LIST OF FIGURES (Continued)

Figure Page

5.6 Comparison of the optimal Bpto and Cpto control values determined
by the fuzzy interpolation controller vs. using the hydrodynamic
properties and linear interpolation. . . . . . . . . . . . . . . . . . . 46

5.7 Comparison of the combined fuzzy over-travel protection and opti-
mal reactive control script under nominal wave conditions (top) and
high wave conditions (bottom) using a Bretschneider irregular wave
spectrum (left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF TABLES

Table Page

2.1 Optimal parameters for the various control strategies described in
Chapter 2, and the respective optimal power, also shown in Fig. 2.5.
Parameters for the nonlinear control law in equation 2.13 were de-
termined by fmincon. Gain is calculated with respect to the passive
damping strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



LIST OF APPENDIX FIGURES

Figure Page

A.1 Flowchart of function calls for the custom fuzzy script. . . . . . . . 56

B.1 Mechanical circuit for 2-body point absorber with a PTO between
the bodies, using the mechanical impedance analogy. . . . . . . . . 63



Chapter 1: Introduction

As the transition to renewable sources of energy continues, the role wave energy

can play in the energy mix is becoming more clear. The Electric Power Research

Institute put the available wave energy resource on the outer continental shelf of

the west coast of the United States at 590 TWh/yr, with at least 31% of that re-

coverable [1]. The high energy density in ocean waves, or incident power per unit

width of wavefront, means a smaller footprint device can harvest more energy when

compared to, for example, the blade-span of a wind turbine. [2] While the hurdle

of renewable energy resources remains their indeterminacy, wave energy is gener-

ally more predictable and reliable. Despite these and other advantages, inhibitors

to widespread investment include high capital cost of construction, maintenance

costs exacerbated by corrosive seawater environments, and extreme wave events

demanding design robustness to relatively rare conditions. These factors prevent

rapid investment, leaving much of the industry at lower technology readiness lev-

els (TRLs.) [3] These early stages of development have been identified as in need

of critical support to encourage the adoption of wave energy converter technol-

ogy [4]. Looking to the competitiveness and rapid growth of wind technology, one

contributing factor is modeling software made available through United States De-

partment of Energy (DOE) research. [5] In order to attempt to replicate the growth

in the wind industry, The Wave Energy Converter Simulator (WEC-Sim) has been
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developed in MATLAB. WEC-Sim is an open source code to provide numerical

modeling and simulation tools to wave energy developers, thus lowering the capital

barrier to designing and deploying wave energy converters. This work presents an

exploration of nonlinear control strategies for power extraction in WEC-Sim.

1.1 Objective

The stated objective of the WEC-Sim project is to accelerate the pace of WEC

technology development by releasing an open source, modular, WEC modeling

code to meet the emerging needs of the industry and encourage a cooperative re-

search community. [5] The objective of this thesis is to explore nonlinear methods

for controlling power in WECs, and incorporate examples of these methods into

WEC-Sim, so they can be reproduced and adapted, providing utility to develop-

ers. A two-level framework for nonlinear control is introduced, with a fuzzy logic

supervisory control system supplying control parameters to a generally nonlinear

control law. This thesis does not attempt to fully optimize or explain the gener-

ally nonlinear control law, and control parameters are determined experimentally,

by data collection through simulation sweeps and exploratory optimization algo-

rithms. While the nonlinear control law was found to be capable of providing more

power than existing linear methods, to fully explain how was deemed out of scope

of the intended purpose of providing wave energy researchers an introduction to

and examples for well-understood nonlinear control systems.
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1.2 Background

WEC-Sim v1.0 was released in December of 2015, and since that time updates

and improvements have been managed through the collaboration focused software

development and version control software platform GitHub.com. While requiring

licenses for MATLAB, Simulink, as well as the Simscape and Multibody Simulink

libraries, WEC-Sim itself is free to download and install, and has a detailed doc-

umentation website wec-sim.github.io/. Any GitHub visitor can download, use,

and modify the code. Through GitHub, users can also propose changes to the

code base. The project management for WEC-Sim is still funded by the DOE Wa-

ter Power Technologies Office as a collaboration between the National Renewable

Energy Laboratory (NREL) and Sandia National Laboratories (Sandia), which ad-

minister the GitHub repository. WEC-Sim is currently in version 3.0, with an array

of tutorial models and examples in the main release, and a supplemental repos-

itory WEC-Sim Applications containing numerous additional researcher-created

demonstration models.

In order to model WEC performance, WEC-Sim uses the Simulink dynamic

solver capabilities to solve the equations of motion for floating bodies. WEC-Sim

is capable of employing different wave models to WEC systems composed of various

physical bodies, power take-off (PTO), and Mooring systems. A high level diagram

of the process is shown in Fig. 1.1 [6]. In its simplest application, a 3d model of

the WEC geometry must be created (Fig. 1.1, top left) and an external boundary

element method software generates the hydrodynamics coefficients of the model
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geometry. Any necessary additional information and components such as the wave

properties, PTO models, control models, and mooring are defined in a series of

MATLAB input scripts which are called by the WecSim.m (main) function prior

to running the Simulink simulation.

Figure 1.1: WEC-Sim workflow diagram.

The presented research is part of the Marine and Hydrokinetic Research and

Development University Consortium, in a task investigating nonlinear PTO strate-

gies in WEC-Sim. Outside of WEC-Sim, nonlinear strategies have been used on

point absorber and other WEC types. Nueral networks have been used with the

Archimedes Wave Swing submerged WEC to employ several control strategies [7],

and a reactive control strategy based on wave period sampling for a point ab-

sorber [8]. A reactive strategy for a two-body point absorber was also implemented
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using reinforcement learning [9]. A fuzzy logic controller was used to implement

several control strategies for maximum power capture in a point absorber in [10]. A

nonlinear passive control model for a damping coefficient was compared to a linear

passive control model in [11]. A nonlinear model predictive control control method-

ology was applied to a point absorber with a permanent-magnet linear generator

PTO [12]. The work presented in this thesis uses nonlinear fuzzy logic control

to optimize power output under additional, protective, motion constraints. Addi-

tionally, a general nonlinear control law is established, and investigated, though

conclusions are not drawn about the conditions which create optimal power us-

ing this control law. The next chapter details the underlying control methods for

optimal power take-off of the point absorber WEC, these underlying laws are aug-

mented by the fuzzy controller in later chapters 4 and 5, after a brief introduction

to fuzzy control in Chapter 3. Conclusions are presented in Chapter 6.
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Chapter 2: Control Overview

This chapter spends time developing the core control strategy for power extracted,

from a passive damping control, to a linear reactive control, and a fully nonlinear

control law. The example control system was applied to the RM3 model, a WEC

model which is included the WEC-Sim tutorials. RM3 is a heaving point wave

energy converter consisting of a floating body and a spar. A 1/100 scale model of

RM3 is pictured in tank testing in Fig. 2.1 along with the tank setup in Fig. 2.2,

as used in the validation of WEC-Sim [3]. In an effort to make the control system

fully nonlinear, this control law was expanded to allow for nonlinear conditions,

and was compared to simpler linear strategies to determine if it was possible to

improve the power output of the WEC.

Figure 2.1: RM3 model in tank
testing.

Figure 2.2: RM3 tank testing setup.
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2.1 Passive Damping Control

Linear damping PTO control is often favored as a introduction for basic linear

control of a heaving point absorber. For the purpose of developing the model,

assume a heaving point absorber WEC, similar to RM3, is operating with a direct

drive linear generator as a PTO type. The float body contains permanent magnets,

which induce current in coils in the spar to generate power. Using Newton’s second

law an expression summing the forces acting on the WEC can be written.

Fe + Fr + Fh + Fpto = mz̈ (2.1)

Where:

· Fe is the wave excitation force on the bodies,

· Fpto is the force of the linear generator (or other PTO machine)

· m is the WEC mass

· z̈ is the relative acceleration between the bodies using the dot notation for

the second time derivative of displacement, z

Fh in this expression is a result of the gravitational and buoyancy forces, referred to

as the net restoring force, and is described by linear a relationship to displacement

Fh = −Cz (2.2)
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where C is known as the restoring stiffness, and is affected by water density, ac-

celeration of gravity, and device geometry. Fr refers to the radiation force:

Fr = −Az̈ −Bż (2.3)

Where:

· A is the added mass term

· B is the mechanical resistance, referred to as radiation damping.

The radiation force is due to waves generated by the movement of the WEC body

reacting with the body itself [13, pg. 125]. For the control purpose, A, B and C are

hydrodynamic properties depending on the WEC geometry and wave period, and

are determined by WEC-Sim as part of the simulation process. Fpto is the control

variable, and the control objective is to maximize power take-off: Ppto. Assuming

the PTO allows for bi-directional power flow, the generator can invest energy in

the system to increase the overall average energy extracted. Substituting and

arranging terms, equation 2.1 becomes the mechanical linear differential equation

with constant coefficients [13, pg. 4]

Fe + Fpto = (m+ A)z̈ +Bż + Cz
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Noting that in the frequency domain, the time varying z(t) becomes z(ω), and

that ż becomes jωz(ω), we can write

Fe(ω) + Fpto(ω) = (m+ A)(jω)2z(ω) +B(jω)z(ω) + Cz(ω)

Fe(ω) + Fpto(ω) = (j(ω(m+ A)− C/ω) +B) · jωz(ω)

For simplicity, let the intrinsic impedance of the WEC body, Zi(ω) be defined as

Zi(ω) = j(ω(m+ A)− C/ω) +B (2.4)

then the relation can be written simply [14]

Fe(ω) + Fpto(ω) = Zi(ω) · jωz(ω) (2.5)

using the mechanical impedance analogy which relates harmonic forces with ve-

locities: F (ω) = Z(ω)v(ω). More detail about the mechanical impedance analogy

is provided in Appendix B.

This intrinsic impedance is composed of a resistance component Ri(ω) = B

and a reactance Xi(ω) = ω(m+ A)− C/ω, such that

Zi(ω) = Ri(ω) + jXi(ω) (2.6)

If a linear control law is selected which commands a force linearly related to and
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in phase with velocity Fpto = −Bptoż the frequency domain relation becomes

Fe(ω) +−Bptojωz(ω) = (j(ω(m+ A)− C/ω) +B) · jωz(ω)

Fe(ω) = (j(ω(m+ A)− C/ω) +B +Bpto) · jωz(ω)

Which, using (2.4) and (2.5) this expression can be written

Fe(ω) = (jXi +Ri +Bpto) · jωz(ω) (2.7)

Fe(ω) = Z(ω) · ż(ω) (2.8)

Observe the control variable Bpto is able to affect the resistance portion of the

system impedance, Z = Zi + Bpto. The power transfer at the PTO generator can

be written

Ppto = Fptoż

Ppto = −Bptoż · ż

Ppto = −Bpto|ż|2
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Substituting ż = Fe

Z
, from (2.7) and (2.8)

Ppto = −Bpto

∣∣∣Fe
Z

∣∣∣2
Ppto =

−Bpto|Fe|2

|Z|2

Ppto =
−Bpto|Fe|2

|Xi + (Ri +Bpto)|2

Ppto =
−Bpto|Fe|2

X2
i + (Ri +Bpto)2

Noting again that the components of Zi as well as the excitation force Fe are not

control variables, we differentiate Ppto with respect to Bpto, and set to 0 in order

to find the extrema.

∂Ppto
∂Bpto

= |Fe|

[
−(X2

i + (Ri +Bpto)
2) + 2Bpto(Ri +Bpto))

(X2
i + (Ri +Bpto)2)2

]

0 = |Fe|

[
−(X2

i + (Ri +Bpto)
2) + 2Bpto(Ri +Bpto))

(X2
i + (Ri +Bpto)2)2

]

0 =
[
−(X2

i + (Ri +Bpto)
2) + 2Bpto(Ri +Bpto))

]
B2
pto = X2

i +R2
i

Bpto =
√
R2
i +X2

i

Recalling Zi = Ri + jXi = B+ j(ω(m+A)−C/ω), power is maximized under the
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passive damping strategy when

Bpto =
√

(ω(m+ A)− C/ω)2 +B2

Bpto = |Zi|

2.2 Reactive Control

As noted, in the passive damping strategy the PTO generator does not handle

reactive power, such as the mechanical power related to forces of buoyancy and in-

ertia (refer to Appendix B for a complete description of the mechanical impedance

analogy). If we instead define the control law

Fpto = −Bptoż − Cptoz (2.9)

the expression for the excitation force becomes

Fe = (j(ω(m+ A)− 1/ω(C + Cpto)) +B +Bpto) · jωz(ω) (2.10)
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where the PTO impedance is positioned to also affect the reactance portion of the

intrinsic impedance. That is

Fe = Z · ż

Fe = (Zi + Zpto) · ż

Fe = (Ri +Rpto + j(Xi +Xpto)) · ż

Fe = (j(ω(m+ A)− 1/ω(C + Cpto)) +B +Bpto) · ż

Where the PTO impedance has been defined

Zpto = Rpto + jXpto

= Bpto − jCpto/ω

As in electronics, the maximum useful power transfer will occur when the load

impedance magnitude is matched and complex portions are canceled by the con-

jugate: Zi + Zpto = 2 Re{Zi}, [13, pg. 202] or

Rpto = Ri

Rpto = B

Bpto = B (2.11)
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and,

Xi +Xpto = 0

(ω(m+ A)− C/ω)− (Cpto/ω) = 0

Cpto/ω = ω(m+ A)− C

ω

Cpto = ω2(m+ A)− C (2.12)

Under this condition the reactive component of the impedance, representing wasted

energy exchanged via the mass and restoring stiffness, are cancelled. Despite the

analogy to impedance matching in electronic circuits, this is sometimes called

complex conjugate control, or reactive control when applied to wave energy con-

verters [15] [16]. Note that not all negative values for Cpto will produce a stable

result. The stability limit for this term is explained further in Appendix C.

2.3 Nonlinear Control

Reviewing the control law, Fpto = −Bptoż − Cptoz it is evident that this meets the

definition of a linear control law: the control variable Fpto is dependent on linear

polynomial combinations of z and its orders of time derivative. To generalize this

linear case to a nonlinear law, control variables for the exponents of ż and z can

be added, the general rule becomes:

Fpto = −Bpto · sign(ż) · |ż|α − Cpto · sign(z) · |z|β (2.13)
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where the sign of ż and z have been accounted for to prevent even numbered

exponents reversing motion in the negative direction. Determining the maximum

power condition presents a 4 dimensional optimization problem, where we would

like to maximize power given the freedom to vary the impedance coefficients as

well as the powers of position and velocity. In order to investigate this control

strategy, several methods were employed to determine the optimal parameters

experimentally in WEC-Sim.

2.3.1 Parameter Sweeps

Initial attempts to define the control space involved sweeping each of the 4 parame-

ters. The impedance values were swept through values in the neighborhood of their

optimum values for the reactive control strategy, and the exponents were swept

through values near 1. This was done under a series of sea states in an attempt to

map the surface and try to establish some patterns with respect to power. Since

a selection of plausible waveheights and average periods were also being swept,

simulating even a low resolution in each parameter became a prohibitively long

computation time, for example, even just 3 values for each parameter results in

36 = 729 simulations in WEC-Sim. One outcome of this strategy was that the

waveheight, while affecting the total power output, did not influence the selection

of the optimal parameters as much as wave period. This was expected based on

the parameter’s relationship to period in the linear reactive control law.
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2.3.2 Simple Hill Climbing

The brute force sweep approach was exchanged for a more sophisticated random-

walk hill-climbing algorithm. A simplified flowchart for this algorithm is shown in

Fig. 2.3. While it did not travel the path of steepest gradient to the maximum

power, this algorithm was used for its speed of implementation. Several design

decisions for the algorithm were unclear. The random increments to the parameters

were determined from a Gaussian random variable, which had a standard deviation

of 5% of the current value of the variable. For example, if for an iteration i,

Bpto(i) = 100

the next iteration would be determined by

Bpto(i+ 1) = 100 + N(µ = 0, σ2 = 25)

The algorithm’s success is highly sensitive to this increment size, which represents

a key design trade-off. If too small an increment is used, the time to converge to a

maxima would be too long, since each increment involves a WEC-Sim model simu-

lation. However, too large an increment might cause the algorithm to overstep the

maxima, decreasing accuracy and converging far from an optimal value. Another

unclear parameter is the number of iterations required without a new solution be-

fore the algorithm exits. Since there are four variables randomly incrementing,

this number of iterations must be sufficient to give a high probability that a step
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in every direction was tried, 16 possible step directions, without finding a point

which produced more power. Finally, this algorithm is sensitive to local extrema,

and in order to overcome this, it would need to be initialized with different starting

points to ensure the space was thoroughly explored, significantly increasing the to-

tal computation time. There are programming options to address these drawbacks,

such as lowering the step size as the number of iterations without a new solution

increases, and occasionally trying much larger steps to try to shake the algorithm

out of local maxima. However, it was decided that making these improvements

might confound the real goal of exploring nonlinear control strategies. For this

reason a more off-the-shelf optimization solution was sought.

2.3.3 Parameter Optimization Using fmincon

While improvements could have been made to the hill climbing algorithm, it was

abandoned in favor of MATLAB’s Optimization Toolbox, specifically the fmincon

function for constrained optimization problems. Constrained optimization seeks

the minimum of a function for a given vector of inputs, and a set of constraints on

the inputs. The fmincon function represents a set of optimization algorithms, the

Interior Point Algorithm was specifically used for this problem. The Interior Point

Algorithm is recommended for general cases in fmincon, due to handling both

sparse and dense problems. It is a large-scale algorithm, performing linear algebra

computations quickly and using less memory than alternatives. The interior point

approach attempts to solve a sequence of easier to solve approximate minimizations
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Figure 2.3: A flowchart for the random walk algorithm used to find the optimal
Bpto, Cpto, α, and β parameters for the nonlinear control law.
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of the objective function [17] [18] [19].

A flowchart of the script which employed fmincon to optimize the power output

over a series of wave conditions is shown in Fig. 2.4. By repeatedly calling WEC-

Sim, modifying parameters based on the results and constraints, the algorithm

sought to find the set of damping, stiffness, and exponents for velocity and position

which produced the minimum power1 for a given sea state. The constraints for

the optimization initially limited the exponents to between one and three, to limit

simulation time. Bpto was initially allowed a large range, several times the range of

values used in the reactive damping strategy, since there were no stability concerns.

Eventually the limits for Bpto were tightened to reduce the simulation time, since

they were not converging in the extreme values. Stiffness was more difficult to

select limits for, since too negative a value could affect the control system’s stability.

Initially, the limit was set to the same limit as was used for reactive damping. That

lower limit was sufficient for most sea states to converge, and was the final value

for many of the tested conditions. The final parameters for a range of sea states is

shown in table 2.1, along with the respective parameters and optimal power using

the other strategies.

2.3.4 Output Power Comparison

A summary of the control parameters used for each strategy is shown in table 2.1,

across a range of regular wave periods and heights. The Bpto and Cpto parameters

1where power extracted is defined as negative, thus the minimum represents most power
captured



20

Figure 2.4: Flowchart for script using fmincon with WEC-Sim’s power output as
an objective function.
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used in passive damping and reactive strategies were calculated using the point

absorber’s intrinsic impedance at the given period, as described in Appendix B.

The Bpto, Cpto, α, and β parameters used in the nonlinear strategy were determined

by fmincon. A graphical comparison of the PTO power is shown in Fig. 2.5. Using

fmincon to optimize the nonlinear control law was able to achieve an average 11%

improvement in power captured over the passive damping strategy.

Figure 2.5: Comparison of power take-off at the optimal parameters for the control
strategies described in Chapter 2.
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Control T (s) H (m) Bpto Cpto α β Avg PTO (W) Gain

Passive

6
1.5 1.02E+06 8.21E+04 1
2 1.02E+06 1.46E+05 1
2.5 1.02E+06 2.28E+05 1

8
1.5 2.59E+06 1.09E+05 1
2 2.59E+06 1.93E+05 1
2.5 2.59E+06 3.02E+05 1

10
1.5 5.92E+06 1.31E+05 1
2 5.92E+06 2.33E+05 1
2.5 5.92E+06 3.65E+05 1

Reactive

6
1.5 8.90E+05 -2.25E+05 8.87E+04 1.08
2 8.90E+05 -2.25E+05 1.58E+05 1.08
2.5 8.90E+05 -2.25E+05 2.46E+05 1.08

8
1.5 2.33E+06 -2.25E+05 1.17E+05 1.07
2 2.33E+06 -2.25E+05 2.07E+05 1.07
2.5 2.33E+06 -2.25E+05 3.24E+05 1.07

10
1.5 5.58E+06 -2.25E+05 1.37E+05 1.04
2 5.58E+06 -2.25E+05 2.44E+05 1.04
2.5 5.58E+06 -2.25E+05 3.81E+05 1.04

Nonlinear

6
1.5 9.37E+05 -2.24E+05 1.04 0.66 9.11E+04 1.11
2 7.78E+05 -2.25E+05 0.82 0.49 1.62E+05 1.11
2.5 7.44E+05 -2.25E+05 0.59 0.39 2.52E+05 1.10

8
1.5 1.41E+06 -2.20E+05 0.62 0.50 1.22E+05 1.13
2 1.58E+06 -2.25E+05 0.62 0.39 2.18E+05 1.13
2.5 1.76E+06 -2.25E+05 0.62 0.36 3.37E+05 1.12

10
1.5 3.12E+06 -2.25E+05 0.66 0.38 1.44E+05 1.10
2 3.60E+06 -2.25E+05 0.69 0.37 2.54E+05 1.09
2.5 3.83E+06 -2.25E+05 0.65 0.31 3.94E+05 1.08

Table 2.1: Optimal parameters for the various control strategies described in Chap-
ter 2, and the respective optimal power, also shown in Fig. 2.5. Parameters for
the nonlinear control law in equation 2.13 were determined by fmincon. Gain is
calculated with respect to the passive damping strategy.
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Chapter 3: Overview: Fuzzy Control Systems

This chapter briefly sets aside the topic of wave energy converters to give a general

explanation of fuzzy logic control. Fuzzy logic is paradigm which allows for a

linguistic and intuitive design of control systems. Fuzzy logic is classified with

multi-valued logic systems. In contrast with the typical digital binary of true and

false, in multi-valued logic, truth may take on an analog value between totally false,

zero, and totally true, one. Because of this, a fuzzy system input’s classification

becomes imprecise, and control laws can be described using basic language in a

way which still encompasses the range of a control space. This section gives an

overview of the components and process of fuzzy systems, using a simple control

example: controlling home room temperature using a temperature sensor to set

fan speed.

3.1 Fuzzy Concepts: Sets, Membership, Rules

A simplified diagram of a fuzzy logic controller is shown in Fig. 3.1. The inputs of

a fuzzy system are crisp quantitative values, such as temperature measurements

from a sensor. Fuzzy sets are descriptive groups of the possible values of an input,

where a given input value may be a partial member of more than one set. For

example, the set of indoor temperatures considered warm may range from 82 to 85
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degrees Fahrenheit, while hot is a temperature above 90 degrees Fahrenheit. The

in-between temperature of 88◦F may belong to both sets, considered for instance,

60% (0.6) a member of hot and 40% (0.4) warm1.

For every fuzzy temperature set, every allowed temperature value across the

input range can be assigned a level of membership truth between zero and one.

These values are assigned based on a membership function (MF) defined for each

set, which plots the membership truth across the input range. The membership

function for the example definition of warm is shown in Fig. 3.2. Expanding

the example, input temperature may be defined across a range of possible values

from 64-100◦F, and membership functions for cold and comfortable are added,

as in Fig. 3.3. Both cold and comfortable would evaluate a 0% membership for

the previous input of 88◦F. Similarly, fuzzy sets and corresponding membership

functions are defined for the output variables, such as, if the output for the example

control system is the rotational speed of a fan blowing cold air, the RPM fuzzy

sets’ membership functions may be defined as shown in Fig. 3.4.

Figure 3.1: General flow chart of the fuzzy inference process.

1Hereinafter, descriptor words will be italicized when they refer to a specifically defined fuzzy
set, as opposed to the colloquial meaning.
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Figure 3.2: Membership function for warm temperatures.

Figure 3.3: Membership functions for full temperature input allowed range.

While thus far this process may seem contrived and somewhat arbitrary, it

provides a means for a computer to interpret a set of linguistic if-then rules which

are also easy to understand for human operators. The set of rules which could

define this example control system is:
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Figure 3.4: Membership functions for a fan speed output.

1. If temperature is hot, then fan speed is high.

2. If temperature is warm, then fan speed is medium.

3. If temperature is comfortable, then fan speed is low.

4. If temperature is cold, then fan speed is off.

The “If” portion of each rule is referred to as the antecedent, it is a conditional

clause corresponding to one or more of the input fuzzy sets. The “then” portion is

called the consequent, it is a clause related to a fuzzy set of an output. Note that

multiple rules may correspond to the same output set, for example multiple rules

may result in seting the fan speed to medium.

3.2 Fuzzy Inference Process

A fuzzy logic controller evaluates its inputs according to their membership func-

tions and determines the output based on these if-then rules. This is called the
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fuzzy inference process, and has the following steps:

1. Fuzzify System Inputs

2. Apply Fuzzy Operators

3. Rule Weighting

4. Apply Implication Method

5. Aggregate Rules

6. Defuzzify System Outputs

the remainder of this section details these steps and some of their options, main-

taining the example system and instantaneous input of 88◦F.

1. Fuzzification is the process described above by which the crisp system input

values are passed to a series of membership functions and assigned a truth value for

each one: it is the process by which 88◦F is interpreted as 0% cold, 0% comfortable,

40% warm and 60% hot. In this example, and many applications, it is a matter

of design decision where the exact boundaries of the partial member ranges are.

However, there is value in selecting them according to a general trend that would

be widely agreed upon for the given context. In particular, the membership ranges

should be agreed upon by those who would be operating or interacting with the

system, to ensure its operation is understood.

2. The application of fuzzy operators to the inputs is not always a neces-

sary step; it is only required for system rules which have more than one in-

put. Suppose a second input to the example system is created, for a schedule

of times for which the fan does not need to operate as the occupants are away.

The membership function for the single away set is shown in Fig. 3.5, and corre-
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sponds to a typical working hours, with fuzzy edges. Rule 4 is modified to state

4. If temperature is cold OR schedule is away, then fan speed is off.

Now the logical operator OR needs to be clarified. In typical digital logic, a clear

truth table exists for the OR operator, however for the multi-valued logic used in

fuzzy systems there are potentially infinitely many input combinations. To pro-

duce a similar effect of the digital OR, a MAX (maximum) function can be used to

resolve the conditional. The antecedent will evaluate to completely true if either

input is completely true. In the case neither are fully true, the highest partially

true value is selected, regardless if other inputs are completely false, which is also

in accordance with the digital OR. Similarly, a fuzzy AND can be accomplished

with the MIN (minimum) function, resolving to false if any input is completely

false, or resolving to the most false partial value. Depending on the application, a

number different fuzzy operators might be used to resolve a rule’s antecedent to a

single analog truth value. This is referred to as the rule antecedent truth, or rule

firing strength, and is required for the next steps in the fuzzy inference process.

3. In the case there is more than one rule affecting the same set, or same

output, it is possible to reduce the influence of some rules by assigning a rule

weight less than one. If a weighting less than one were assigned, the weighting

would simply be multiplied by the firing strength, reducing the rule’s impact on

the later aggregation step. The outcome of the weighting step is a single analog

truth value for the antecedent of each rule, now modified by the rule weight. This is

an optional step, and is disregarded for the fuzzy systems presented in this work:

all rules are weighted equally to the default value of 1, and so this step is not
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Figure 3.5: Additional input for the example system indicating the fan does not
need to operate from the hours of 10 to 17, with partial membership as early as 6
and late as 19.

shown.

4. The output membership function for medium shown in Fig. 3.4 gives the

truth for each output value when the conditions of the antecedent are completely

true, or 1. If the antecedent is partially true, what does that imply about the

output membership function? The antecedent value is used to shape the output

membership function, using an implication method. Two common methods are

to take the product of the firing strength and the output membership function,

scaling the function, or to take the minimum of both, clipping the membership

function. For the example input of 88◦F, the result of both of these methods on the

medium output membership function (warm antecedent = 0.4) is shown in Fig. 3.6.

The result of this step is a collection of membership functions, each representing a

fuzzy set found in the consequent of a rule, referred to as a consequent membership

function. Note that a given output fuzzy set may have more than one consequent
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membership function, if it appears in the consequent of more than one rule.

Figure 3.6: Top: base output membership function for the medium RPM fuzzy set,
determined by rule 2. For 88◦ F temperature input the antecedent firing strength
for this rule is 0.4. Center: The clipped membership function using the minimum
implication method. Bottom: The scaled membership function using the product
implication method.

5. The next step in the fuzzy inference process is to aggregate the consequent



31

membership functions for each output. This step combines MFs for each fuzzy sets’

rules, then combines the MFs for each outputs’ fuzzy sets, resulting in a single,

combined, consequent membership function for each system output. Aggregation

methods include summing the function sets, taking the maximum of the functions,

or averaging the functions. The implicated membership functions for each output

set in the running example input of 88◦F are shown in Fig. 3.7, assuming a product

implication method, and neglecting the schedule input. The aggregation of these

membership functions for the fan speed output is shown Fig. 3.8, comparing the

sum and max aggregation methods. The output of this process is a single mem-

bership function for each output, providing a truth value for every possible output

value across the allowed range.

6. The final step in the process is to select a single, most-true crisp output value

from the aggregated membership function. This value is deemed representative of

the function. The maximum is one seemingly obvious choice, though the use of

trapezoidal membership functions can result in the maximum truth value may

occurring in multiple places, or as a plateau. To circumvent this, a series of

“maxima” defuzzification methods exist, to select the highest or lowest output

value corresponding to the maximum truth, or the average of the maxima range.

The bisector method selects the output value that divides the area under the

output membership function into two equal areas. Similarly, the centroid method

selects the output value corresponding to the centroid of the area, that is the

line along which the shape would balance if it were a plate of uniform density.

Fig. 3.9 compares these defuzzification methods on some example final, aggregated
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Figure 3.7: Implicated membership functions for each fuzzy set of the RPM output,
assuming an input of 88◦F and a product implication method. These functions are
the input to the aggregation step.

membership functions.
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Figure 3.8: Top: Aggregation of the consequent membership functions in Fig. 3.7
using a maximum aggregation method. Bottom: The same aggregation using a
sum aggregation method.

Figure 3.9: Comparison of defuzzification methods on two example output mem-
bership functions. It is also of note that if the membership function is symmetric,
the bisector and centroid values will be equal.
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Chapter 4: Fuzzy Control for Over Travel Protection

In this chapter, a fuzzy control system is implemented for a wave energy converter

in WEC-Sim.

4.1 Motivation

In exploring nonlinear control techniques, fuzzy logic control was selected for WEC-

Sim as a typical user may not have controls experience or expertise, but may still

need to have a nuanced control strategy. While maximizing the power extracted

is an obvious priority for a generation device, other concerns exist when designing

for marine applications. Considerations for operator and wildlife safety, protec-

tion from extreme weather events, minimizing stress, environmental responsibility,

shipping lanes and fishing grounds may compete with the objective of extracting

energy. Also, when in early development, researchers may want to account for

these types of requirements as much as possible, but may be lacking the data or

need for precise implementations of the control system. Further, WEC prototyping

in the early design cycle may need the control systems to adapt to sudden changes

in the WEC body design, or the intended environment. A fuzzy logic controller

offers a way to quickly build control systems nuanced enough to handle competing,

possibly nonlinear objectives, but flexible enough to handle changes during early
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development.

In order to incorporate fuzzy control into WEC-Sim, an in-application example

for a WEC was created which could be adapted as needed to other applications.

The objective of the fuzzy logic controller was to limit the movement of the float of

the RM3 model within an expected nominal range in addition to an optimal passive

linear damping strategy if the float was within the nominal range. The theory

for this control assumes that a rated range of motion exists for the device, and

during out-of-specification wave conditions, the PTO drive could be operated to

shed power in order to maintain operation within the limits. This power shedding

operation would be preferable to having to come offline completely to avoid out of

specification operation. This example is analogous to a wind turbine pitching its

blades in high wind speeds, shedding power in order to slow rotation to within the

limits of the generator. A block diagram for this WEC control system is shown in

Fig. 4.1.

Fuzzy 
Controller

WEC 
Plant

StatesGenerator/ 
Motor×

,x x

x,x x

ˆ
PTOF

PTOFB

Figure 4.1: A block diagram for the system. Using the position and velocity
states of the WEC, the Fuzzy Controller supplies a damping value which is used
to calculate the motor’s commanded PTO force.
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4.2 Methods

Fig. 4.2 and 4.3 show the input membership functions used for position and ve-

locity, respectively. The operating range for these inputs are selected based on

the performance of the linearly damped point absorber under nominal wave con-

ditions, which were assumed as a 2 meter wave height and a period of 8 seconds.

The relative velocity of the float is considered “too fast” when it reaches the max-

imum speed achieved at the expected wave conditions, as such both membership

functions, the positive and negative directions, become fully true at this time. The

position membership functions include the “middle,” considered anywhere in the

expected operating range, and upper and lower over-travel limits, which become

fully true at the edges of the nominal range. When the float begins to travel out-

side the nominal range, the controller should respond by over-damping the float,

increasing mechanical impedance, to keep it within the limits. The following rules

will achieve this
1. If position is middle, then PTO force is linearly damped

2. If position is too high and velocity is too fast up, then PTO force is over-

damped

3. If position is too low and velocity is too fast down, then PTO force is over-

damped

The damping value provided by the controller will either be the predetermined

optimal passive-damping value1, for the nominal wave conditions (overdamping

multiplier = 1) or an increasingly over-damped value as the float travels out of the

1derived in section 2.1
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Figure 4.2: The Membership Functions for relative position of the float and spar.

Figure 4.3: The Membership Functions for relative velocity of the float and spar.

allowed range, and the overdamping multiplier increases. An assumption of the

simulation is that the PTO can act upon the bodies anywhere along their range

of motion. For example, if the PTO is achieved via a linear generator, the model

assumes there are sufficient coils along the RM3’s spar to affect the float anywhere

waves might take it, and it will never be out of reach of the generator. This model

was simulated under several conditions to evaluate the effectiveness of the fuzzy

controller.
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This fuzzy logic controller was implemented using MATLAB’s Fuzzy Logic

Toolbox for Simulink, however to prevent requiring additional expensive MAT-

LAB licensing, a custom fuzzy library of functions was created and the system was

implemented using this as well. The custom functions allow for an arbitrary num-

ber of inputs, membership functions, rules and outputs, and have clear instructions

along with the example for the function expectations. Many of the operations and

methods available in the Fuzzy Logic Toolbox were implemented, and any addi-

tional options desired could be implemented on top of the existing framework. A

further description of the custom fuzzy logic script can be found in Appendix A.

4.3 Results

Six initial simulations in Simulink were run for comparison, basic linear damping

without over-travel protection was compared with the fuzzy controller for at the

nominal and high sea states, using the Fuzzy Logic Toolbox and the custom fuzzy

function script. Each simulation used the ‘regular’ wave class in WEC-Sim for a

total simulation time of 500 seconds with 100 seconds of wave ramp time. This wave

class assumes steady state waves with constant added mass and radiation damping

coefficients to avoid performing the convolution integral. The reactive portion of

PTO impedance was also assumed to be 0. The left plot of Fig. 4.4 shows the

float’s relative position under the nominal, two meter waves sea state using the

custom fuzzy script. The linearly damped model (blue, covered) is plotted with

the model including the fuzzy control (orange). The result of the over-damping



39

for position control is a compromise of 7.31% of the captured energy over the 500

seconds of the simulation. It may be possible to decrease the losses incurred while

in the nominal range through tuning, with the trade-off of subjecting the PTO to

more sudden forces. A similar plot is shown for a wave height of three meters on

the right of Fig. 4.4. This plot shows that the fuzzy logic controller is capable of

limiting the motion of the float in high wave heights, while maintaining comparable

power performance to a linearly damped PTO when waves are in the nominal

operating range. This figure was also generated using the custom fuzzy logic

script as opposed to the toolbox. For comparison, the position using the toolbox

to implement the identical control system for regular waves is shown in Fig. 4.5.

The two systems perform similarly in limiting the relative position of the float

and spar for the early simulation, however for longer simulation times the system

implemented using MATLAB’s Fuzzy Logic Toolbox displays a ringing effect on

the position. This can be tuned out by increasing the sensitivity of the output

damping-multiplier, and is likely due to differences in the implementation of limits

for the system inputs, and default output values when no rule fires. An irregular

wave simulation using a Bretschnieder wave spectrum with identical waveheight

and period conditions is shown in Fig. 4.6.
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Figure 4.4: Relative position of spar and float of RM3 in the selected nominal (left)
and high (right) sea states. Passively damped control is compared with fuzzy over
travel protection.

Figure 4.5: Comparison of over-travel protection position limiting using the Fuzzy
Logic Toolbox vs the custom fuzzy script under the identical simulation conditions.
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Figure 4.6: Relative position of spar and float of RM3 in the high sea states with
irreguar wave spectra. Passively damped control (blue) is compared with fuzzy
over travel protection (magenta.)
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Chapter 5: A 2-level Nonlinear WEC Control Scheme

In order to create a system which could respond optimally to real-time wave con-

ditions, the fuzzy logic controller described in Chapter 4 was modified. Since

period was determined to be the biggest factor in setting the control parameters

for the reactive control strategies described in Section 2.2, an additional input was

added to the system for the average wave period. The resulting system is shown

in Fig. 5.1, with the added function of setting optimal PTO damping and stiffness

using fuzzy logic. This input was estimated by taking a 10 second rolling sample

window of waveheight and using a Fast Fourier Transform to determine the pri-

mary frequency and thus period. The period was used in a set of rules dictating

Bpto and Cpto. The fuzzy sets and membership functions for this input period were

determined based on the quartiles of measurements from the National Data Bouy

Center, using Station 46050, Stonewall Bank, 20NM West of Newport, OR for the

year of 2018. The period and waveheight for the samples are shown in Fig. 5.2,

with the values used for the edges of the fuzzy sets indicated.

The input and output membership functions are shown in Fig. 5.3, and the

additional rules for the system are:
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Figure 5.1: Supervisory level for the 2 level system, using fuzzy logic to set optimal
values for Bpto and Cpto and enforcing over-travel protection.

Figure 5.2: Hourly samples for average period and waveheight in 2018 at the
Stonewall Bank bouy.

1. If period is min, damping is min Damping

2. If period is q1, damping is q1 Damping

3. If period is median, damping is median damping

4. If period is q3, damping is q3 Damping

5. If period is max, damping is max Damping

6. If period is min, Cpto is min-Pd Cpto value

7. If period is q1 or med or q3, Cpto is Cpto limit

8. If period is max, Cpto is max-Pd Cpto value
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The output membership functions are shown in Fig. 5.4 and 5.5. Note that these

membership functions are impulse type. The implication method is the product,

multiplying the impulse value by the rule firing strength, and the aggregation

type is summation. The input MFs are organized such that the implication and

aggregation methods achieve defuzzification via a weighted average of the fired

impulse functions. The result of this system is a sort of interpolation between set

lookup values which were calculated based on representing the wave sample space.

While some of the readability and linguistic intuition is lost, Fig. 5.6 compares the

accuracy of the fuzzy system to the complete process of calculating the optimum

parameters based on interpolation of the hydrodynamic parameters produced by

the BEM solver. It is clear in Fig. 5.6 that the Fuzzy system accurately selects

Bpto and Cpto for the most common operating regions present in the bouy period

data, while not performing as well at the more extreme periods.

Figure 5.3: Membership functions for average period input, based on quartile
values in Fig. 5.2 from one year worth of hourly sample data.
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Figure 5.4: Impulse membership functions for Bpto as calculated according to the
intrinsic impedance in appendix B and optimal Bpto determined by equation 2.11
for the given period.

Figure 5.5: Impulse membership functions for Cpto as calculated according to the
intrinsic impedance in appendix B and optimal Cpto determined by equation 2.12
for the given period.

5.1 Results

The plot of the spar and float’s relative positions is shown in Fig. 5.7, using a

Bretschnieder irregular wave spectrum with a 9s primary period. The top left
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Figure 5.6: Comparison of the optimal Bpto and Cpto control values determined
by the fuzzy interpolation controller vs. using the hydrodynamic properties and
linear interpolation.

plots show the wave elevation, which were seeded identically so the only difference

is the primary elevation. In the higher wave condition the system limits the motion

of the WEC while still using the optimal control values for power take-off, based

on the real time period estimation.
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Figure 5.7: Comparison of the combined fuzzy over-travel protection and opti-
mal reactive control script under nominal wave conditions (top) and high wave
conditions (bottom) using a Bretschneider irregular wave spectrum (left).
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Chapter 6: Conclusion

While a fuzzy system which approximates the nonlinear control law might have

captured more power, the lack of understanding of the behavior of this law pre-

vented complete implementation. In order to accurately apply the law for optimal

power take-off, fmincon would need to be used to optimize the parameters as the

sea state changed. Since the computation time for fmincon to arrive at the optimal

parameters was too high, real time tracking of the period to set the nonlinear con-

trol law is not practical until the law is better understood, or computation time can

be significantly reduced. As stated in section 1.1, finding the exact mechanism by

which the nonlinear control law is able to perform better than the linear strategies

was not deemed in scope for this work. Whereas the pursued exploration of ap-

plying nonlinear fuzzy logic controls to a wave energy converter in WEC-Sim was

accomplished. A pull request was created to add the fuzzy over-travel protection

script and Fuzzy Logic Toolbox implementations to the WEC-Sim Applications

repository. Possible future improvements to this contribution include changing the

implementation of the fuzzy script to define a separate class for membership func-

tions and rules. This is closer to how the Fuzzy Logic Toolbox is implemented, and

leaves less room for error when designing systems, though may be partially respon-

sible for the slightly longer computation time when using the toolbox. Similarly,

some of the design decisions for the controller may be better suited to exist in the
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wecSimInputFile.m which is run prior to for every simulation. This change would

consolidate where modifications to the simulation are done, and prevent the fuzzy

system’s design parameters from being redefined every time step of the simulation.

Other future improvements include expanding the nonlinear control strate-

gies employed, adding examples to WEC-Sim Applications implementing control

strategies using nueral networks, or reinforcement learning, as other researchers

have already demonstrated for WEC simulations outside of WEC-Sim.

The model discussed in Chapter 5 may also be helpful to provide as a nonlin-

ear control example, however, as shown in Fig. 5.6, using a script which directly

calculates the optimal Bpto and Cpto provides better accuracy without a loss in

computation time, and the use of fuzzy logic to interpolate between predeter-

mined lookup values may not be the best instructive example for those unfamiliar

with fuzzy logic.

Presented is an application of nonlinear control strategies to a heaving point

absorber wave energy converters in WEC-Sim, as a contribution the WEC-Sim

community. A generally nonlinear control law was extended from the established

reactive linear control strategy. Several methods were used to experimentally op-

timize the nonlinear law, eventually determining that it was capable of producing

more power than the linear reactive control strategy. A simple fuzzy logic con-

troller was used to add a competing objective to a typical passive damping control

strategy for optimizing power. This controller was implemented using the off-the

shelf Fuzzy Logic Toolbox, as well as in a custom script not requiring additional

licensing. A real time period tracking model was created, using a fuzzy controller
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to set the optimal parameters for the reactive damping control strategy, and this

framework could be valuable if extended to the generally nonlinear control law,

once that law can be better described. The findings of these experiments were

packaged as a set of tutorials in the WEC-Sim Applications repository, so that

they might be beneficial to the research community, and support the adoption of

WEC technology to meet electricity needs.
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Appendix A: Custom Fuzzy Logic Function Library

This section provides a description of the functions and main script expectations

of the custom fuzzy logic script. Since the fuzzy code was implemented with the

Simulink “MATLAB Function” block, all design decisions had to support code

generation. In particular, great care had to be taken to preallocate all variables,

which presented a significant design challenge for writing functions that could be

used to support fuzzy systems with an arbitrary number of system inputs and

outputs. The script is generally organized with a main script following the fuzzy

inference process as outlined in Chapter 3, with functions defined for each step in

the process. Fuzzy sets’ membership functions are organized into structures with

fields defining their types and the important values, which are then substructed

under the relevant inputs. Similarly, rules and their antecedants, output mem-

bership functions, aggregation methods and consequent membership functions are

organized into structures. This organization is expected by the functions used to

evaluate the system. A complete figure of the flow of the function calls of the main

script is shown in Fig. A.1, and the following section is an index of the functions

and their requirements.
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Figure A.1: Flowchart of function calls for the custom fuzzy script.

A.1 Fuzzy Script Function Index

A.1.1 fuzzifyInputs

The fuzzifyInputs function takes the system input values and evaluates the relevant

membership functions to return the truth value for each function. Calls any of a

number of evaluation functions based on membership function type.

Inputs:

1. inValue: a crisp system input value
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2. MFs: struct of fuzzy set membership functions for an input. supported values

for MFs.type: ‘triangle’,‘step’,‘down step’,‘trap’

Outputs:

1. fuzzifiedInput: the same struct MFs, with the percentTrue field set according

to the crisp input and memberhsip function

A.1.2 applyFuzzyOperator

This function applies a fuzzy operator to produce a single antecedent value for

multi-input fuzzy rules.

Inputs:

1. inputMembershipTruth: vector of analog truth values for input membership

function values relevant to rule

2. : fuzzyOperator: supported values: ‘minAnd’, ‘prodAnd’, ‘sumOr’, ‘maxOr’,

‘average’

Outputs:

1. antecedentTruth: the same struct MFs, with the percentTrue field set ac-

cording to the crisp input and memberhsip function

A.1.3 applyImplicationMethod

This function implicates a fuzzy rule according to the specified implication method.
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Inputs:

1. antecedent: single truth value for the rule’s antecedent

2. outputMembership: membership function structure for output

3. implicationMethod: an implication method, supported values {‘prod’, ‘min’}

Outputs:

1. consequentMF: system output membership function shaped by the antecedent

A.1.4 evalMF

General function to evaluate membership functions, which may have a max value

less than 1. This function calls from a set of supporting functions based on the

MF.type field.

Inputs:

1. inValue - value to evaluate membership for

2. MF: membership function struct which expects a ‘maxVal’ field. Supported

values for MF.type: {‘triangle’,‘step’,‘down step’,‘trap’}

Outputs:

1. Single analog truth value
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A.1.5 performAgg

Function to aggregate consequent membership function’s for fuzzy sets’ relevant

rules, and outputs’ relevant fuzzy sets. Inputs:

1. truthMatrix: matrix where each row represents the truth value of the cor-

responding rule’s membership function, evaluated at the necessary points to

get a complete detailed aggregation

2. aggregationMethod: Supported values for aggregationMethod: {‘max’,‘min’,

‘mean’,‘prod’,‘sum’}

Outputs:

1. singleTruthFunction: a row matrix aggregated according to the aggregation-

Method, along the row dimension

A.1.6 defuzzify

A function to defuzzify the final membership functions and set the fuzzy controller’s

outputs. A call to this function is not required in the output membership functions

are the impulse type. Inputs:

1. outputFun : struct for a system output with a field containing the 2-row

vector of the aggregated membership functions, and a range field

2. defuzzificationMethod : Supported values for aggregationMethod: {‘centroid’,‘bisector’,‘LOM’,‘MOM’,‘SOM’}



60

Outputs:

1. crisp: crisp value for system output
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Appendix B: Mechanical Impedance Analogy to Electrical Domain

The mechanical impedance analogy is one of several analogies which exploit the

fact that the differential equations describing many natural phenomenon are of the

same form. In particular, the mechanical impedance analogy applies the concepts

and representation of electrical systems via the complex generalization of Ohm’s

law, to analogous mechanical systems, using the concept of mechanical impedance,

a term relating harmonic forces with velocities acting on the mechanical system:

F (ω) = Z(ω) · u(ω)

Where,

· F (ω) is force, analogous to voltage

· u(ω) is velocity, analogous to current

· Z(ω) is mechanical impedance, analogous to electrical impedance

In this relation, Z(ω) is composed of mechanical resistance Rm and mechanical

reactance Xm, such that

Z(ω) = Rm(ω) + jXm(ω)
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Where the analogous Rm refers to damping within mechanical systems. Mechanical

reactance can be used to extend the analogy further to inductance and capacitance.

Voltage in an inductor is written v = Ldi
dt

, which when the analogy is applied, gives

the relation for Newton’s Second law of motion

F = m
du

dt

Thus the mass, m can be treated as inductance, with mechanical impedance Zm =

jωm. For the mechanical analog of capacitance, compliance, the inverse of stiffness

gives the direct analogy, but it is important to note that the convention used in

this work is to relate stiffness, for which C is used. Thus, the relation for stiffness

is written

Zm =
C

jω
= −jC

ω

Finally, an advantage for our case, is the conversion between electrical and me-

chanical power, the goal of our wave energy converter.

P = Fu

When applied to the heaving point wave energy converter, consisting of the

float, spar, and linear generator PTO between them, we can represent the system

with the circuit in Fig. B.1.

Where

· Fpto is force applied by the PTO generator
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Figure B.1: Mechanical circuit for 2-body point absorber with a PTO between the
bodies, using the mechanical impedance analogy.

· Fe is the wave excitation force on each respective body

· m is the respective body’s mass

· A is the respective body’s added mass

· B is the respective body’s damping

· C is the respective body’s stiffness

For the purpose of defining a control law, we would like to derive an expression

for the impedance “seen” at the terminals of the PTO generator, terminals 1 and

2. Applying Thévenin’s Theorem, Fpto is removed, Fe1 and Fe2 are shorted, and

the Thévenin Impedance seen across terminals 1 and 2 is Zi = Zfloat||Zspar, where

Zfloat = Bfloat + j(ω(mfloat + Afloat)−
C

ω
)

Zspar = Bspar + j(ω(mspar + Aspar)−
C

ω
)
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It is this expression which is meant by the intrinsic impedance of a heaving point

absorber, used in derivations for the control laws Described in Section 2.1 and

Section 2.2. The values for added mass, radiation damping and linear restoring

stiffness for a range of excitation frequencies are provided by the BEMIO pro-

cess prior to running WEC-Sim. These values are used to calculate the intrinsic

impedance, Zi, directly leading to the control values of Bpto and Cpto.



65

Appendix C: Limit for PTO Counter-Restoring Force

Focusing on the reactive portion of the control impedance, Cpto, a stability con-

straint becomes clear. The restoring force of the point absorber has been defined

Fh = −Cz (C.1)

and is defined by convention so that it is opposed to the excitation force Fe. A

positive excitation force, produces a positive change in the relative position z: the

float moves up in relation to the spar, and proportional to how much it moves up,

a restoring force is applied to return it to the stable origin position. However, the

PTO force, Fpto is defined in phase with the excitation force, meaning a positive

excitation force, produces a positive change in relative position, which in turn

creates a component of the PTO force proportional to and in the same direction

as the displacement. If this component is not overwhelmed by the other forces

present, a positive feedback will create runaway force on the float. To determine

the limit for Cpto at which this occurs, let Fpto = Cpto(z1 − z2), be defined by the

relative position of the bodies. Then, using Newton’s second law, the sum of forces
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on the float (body 1) and spar (body 2) can be expressed

m1z̈1 = −B1ż1 + C1z1 + Cpto(z1 − z2)

m2z̈2 = −B2ż2 + C2z2 + Cpto(z1 − z2)

Since they do not affect the stability we are interested in, to simplify we can assume

z̈1 = z̈2 = 0 and B1 = B2 = 1.

ż1 = C1z1 + Cpto(z1 − z2) (C.2)

ż2 = C2z2 + Cpto(z1 − z2) (C.3)

Now assuming the velocity of the spar is relatively small compared to the float, let

ż2 = 0, then (C.3) can be rewritten

z2 =
z1Cpto

C2 + Cpto
(C.4)

and substituting (C.4) into (C.2)

ż1 = z1(C1 + Cpto −
C2
pto

C2 + Cpto
)

This expresses the unstable condition when (C1 + Cpto −
C2

pto

C2+Cpto
) > 0, or when

Cpto >
−C1C2

C1 + C2

(C.5)
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The expression (C.5) is used for the lower limit for Cpto in Section 2.2 and Sec-

tion 2.3 as well as Chapter 5.




