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AN ITERATIVE PROCEDURE FOR THE SOLUTION OF NONLINEAR
EQUATIONS IN A BANACH SPACE

CHAPTER I

INTRODUCTION

§1. Historical Introduction

In a paper by Birkhoff, Young and Zarantonello[ 5], a pro-

cedure for solving a particular equation of the form

Hx = x

was proposed. In this paper, H was a nonlinear mapping of a real

Hilbert space into itself satisfying certain conditions. This method

of solving (1) was called "contractive averaging" by Zarantonello

[25] . It is an iterative procedure based on the recursion relation

xk+i (1 - Oxic + a Hxk,

where a is a scalar and co is the set of nonnegative integers.0

In [5], contractive averaging is used to solve a nonlinear

equation arising in conformal mapping problems. Later, the pro-

cedure was used by Birkhoff and Zarantonello [ 6, p. 216] to solve

equations associated with free boundary problems. In 1960,

Zarantonello [25] gave a theoretical discussion of contractive
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averaging. In his paper he dealt with mappings having domains and

ranges in a real Hilbert space. To prove that the iterates converge,

he showed that an associated mapping was contractive.

In 1964, Zarantonello 23;24] generalized the method of

contractive averaging working in a complex Hilbert space. He dealt

with the nonlinear equation Gx - X x = y. In the framework of

solving (1), the more general method depends on recursion relations

of the form

(3)

1-a xk akH xk'

where r, is a scalar valued function. This new procedure could

be called the method of "averaged iterations" . Convergence of the

iterates has not yet been established by means of the contractive map-

ping principle. Thus, there appears to be some distinction between

the theory of the two methods.

In the sequel, a revealing geometric interpretation of the

method of averaged iterations is given. Also, we show that this pro-

cedure can be carried out in a Banach space setting. Instead of con-

sidering a nonlinear equation of the form (1), we shall consider the

equation

(4) Fx0

ke coo,

kE
w0
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where F is a nonlinear mapping of a Banach space *. into itself

and F satisfies conditions below. Another case where

X and te Banach spaces, is mentioned.

Equation (1) can be transformed to equation (4) by defining

F I - H

where I is the identity operator on . The respective recursion

relations then become

xk+ 1
xk + a F xk, k E 0'

and

xk+ 1 xk ak F xk' k E
(4)0'

ak = (xk), k E
0

where r, is as above. In this form the recursion relations no

longer appear as averages.

§2. Banach Space Geometry

In this section and the next, basic ideas and notation are

introduced. Let F,G,H, be mappings of "X into where

X and III are real or complex Banach spaces. The elements of



the Banach spaces are denoted by x, y, x' , y' , etc. The scalar

field is denoted by and the elements of by a, I, y,

An open ball of radius p > 0 and center x is denoted by

(x, P). For brevity, (3(0, p) = C3(p).

For each XE 3E, let [xl denote the linear subspace

spanned by x. If x 0, the Hahn-Banach Theorem implies the

existence of at least one continuous linear projection
Px of 3E

onto [ x1 with II P = 1. By the axiom of choice or other means,

we associate a unique P with each [ x], x 0. The axiom of

choice need not be invoked if the Banach space has a smooth unit ball

[ 14, p. 111]; e.g. , in 1 with 1 < p < 00 there is only one

linear projection of norm one corresponding to each [ ], x 0 .

If the Banach space is strictly convex (1. e. II x+y < 114 +11- yll

if 11x11 = II y 11 0 and xjL y), then [ 3] for each [x1, x4 0,

there is a unique metric projection
Qx mapping onto [ x]

such that

QxY-Y = inf {11y' -Y y' [ x } y E

Q2 = Q ,x x

Q(ay) = a Qx(y), yE.)E, aE a

Qx(Y ) = Qx(Y'
yEr 1, y'E3E

4

(v) 11QxY-Yll <IIiI and 11QxYll <2y1, y E .



In general Qx is nonlinear, and continuous [ 18, P. 40]. If X

is a Hilbert space and x L 0, then Q = P = 0 , the orthogonalx x x

projection onto [x]:

In general,

I1yH II PxY 4- YOE ;

II Y II QxY II + II ('-Q,)viI Ye

if X is strictly convex; and

y 112 = 11°x II + 11(1-0 )YII 2,

if X is a Hilbert space. Inequalities (7) and (8) are strict if X

is strictly convex and yi[ x] [ 15, p. 458].

§3. Continuity Properties

In this section assumptions on the operator F are intro-

duced. The domain and range of F are denoted by 1)(F) and

t$2(F) respectively. Let A, , A" , be subsets of the set

A of continuous nonnegative increasing functions which are defined

on the nonnegative real numbers and vanish at zero. Elements of A

(y, x)Oxy - x,
H xil2

y E 'X

5



are denoted 5, 6' , 6" ,

A map on into "Lt is continuous fff it is continuous

with respect to the strong topologies on X and . It is

s -w (strong-weak) continuous iff it is continuous with respect

to the strong topology on X and the weak topology on 'V .

Definition 1. Let 5E A . Then a map F on X, into 14 is

5-continuous if

11Fx-Fyll < 6(11x- yll),

Special cases are Lipschitz and HOlder continuous mappings.

Definition 2. Let F: X., A C A and R = P or Q .x x

Then F is A-cross continuous relative to {Rx: x 0 } iff

for each [xl, x L 0, there exists 5 E A such that

II (I-R )(Fy-Fy' )11 < 5x(II)r-y' II)

for y, y' E 21(F) and y-y' E [ X] .

Definition 3. Let F: CA and R = P or
Qx.x x

Then F is A-monotone relative to
{Rx:x 0} iff for each

[ x] , x 4 0, there exists 6x e A such that

5 OR (Fy-Fyl HI) > Y-y'x x

6
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for y, y'E Sji ( F ) and y-yiE [x].

In [161 the modulus of continuity, modulus of cross-

continuity and the parallel modulus of continuity were defined for

operators having domains and ranges in a Hilbert space. Zarantonello,

in [23;241, uses particular forms of is-cross continuity and

A-monotonicity. Browder also mentions types of A-monotonicity in

[7;8; 91. Both Browder and Zarantonello assume that the associ-

ated 5 are independent of the direction [ ].x

An example of an operator which is A-cross continuous with

A = 01, 6(s) =Ws, but not Lipschitz continuous has been given

in [ 16].

The following condition is derived from A'-cross continuity

and A"-monotonicity.

Definition 4. Let F: , A C A and R =P or Qx.x x

Then F satisfies a A-condition relative to {Rx: x j 0 } iff for

each [ x1, x 0, there exists 6 E A such that

(I-R )(Fy-Fy1)11 < 8(JR(Fy-F " )11 )x

for y, y' E ( F ) and y-y-' E [ X 1 .

If F is At-cross continuous and &'-monotone, then F

satisfies a A-condition with

6 6' 0 611x x x



for each {.I, x 0. Thus the A-condition and An-monotonicity

are weaker than Al-cross continuity and A"-monotonicity.

These are the principal concepts studied in this thesis.

§4. Summary

In the next two chapters, further historical comments are

made. For example in Chapter II, which is concerned with qualitative

aspects of the theory, the existence theorems of Browder and

Zarantonello are discussed. Also conditions yielding continuous

dependence of the solution of F x = 0 on the operator F are

given. In Chapter III, relations between the method of averaged

iterations and the contractive mapping principle are explored. Other

forms of monotonicity occur in these two chapters. For examples

of these see [2; 10; 11;20; 21;23; 24;25]. The term monotone operator

is used to describe any of the properties given in these references.

In Chapters IV and V, the theory of the method of averaged

iterations is discussed in a Hilbert space setting. The improvement

of approximate solutions to F x = 0 is studied in Chapter IV using

the concepts introduced in §3. A geometric interpretation of these

concepts is introduced there. The iterative procedure is defined in

Chapter V. Also, conditions implying convergence of the iterates are

given in this chapter.

In Chapter VI, the ideas necessary to carry out the theory of
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Chapters IV and V in a Banach space setting are given. The geom-

etry of the unit ball in a Banach space is examined. Further remarks

about certain aspects of the Banach space theory are made.

In the sequel, a symbol such as (11,3) refers to formula (3)

in Chapter II and (3) refers to formula (3) in the current chapter.



CHAPTER II

QUALITATIVE THEORY

§1. Historical Remarks

In this chapter, existence, uniqueness and continuous de-

pendence of solutions of F x = 0 are discussed. The notions of

A-monotonicity and other forms of monotonicity appear in the dis-

cus sion.

Prior to 1964, there had been considerable work in the

qualitative theory of nonlinear monotone operator equations by

Browder and Minty. In [ 10; 11; 12; 13] , Browder dealt with a map-

ping from a Hilbert space into itself. This mapping satisfied the

condition

(1) R e(Fx - Fy, x - y) > x - Yll2 x,yE ef)(F)

where t > 0. The theory he developed was used to obtain

existence and uniqueness for solutions of quasi-linear elliptic dif-

ferential equations. Minty [ 20] , using a similar condition, dealt

with the existence of solutions of F x = 0 where the operator map-

ped a reflexive Banach space into its conjugate space. In [ 23; 24]

Zarantonello gave an existence theorem for operator equations in a

Hilbert space setting. He required the operators to satisfy

10
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l(Fx -Fy, x-y)1 > /411x-Y-112, x,ye j)(F)

where It > 0. This is a A-monotonicity condition on F with

= 161 where 6(t) = t/f< . Prior to the publication of this theorem,

Zarantonello's theorem and its proof were communicated to Browder

by Minty (cf. [7, p. 985;23; 24]). Then Browder generalized

Zarantonello's theoremto the case of a mapping of a reflexive Banach

space 3E into its dual X* (also see [ 8; 91). Precise statements

of these theorems follow in the next section.

§2. Existence and Uniqueness

In this section the existence theorems of Zarantonello and

Browder are stated. A local existence theorem and its proof are

given. The proof illustrates ideas developed by Zarantonello and

Browder.

We remark in passing that all of the stronger forms of

monotonicity used in other papers imply an inequality of the form

80IFX-FYII > 11X Yll X, YE 0(F)

where SE A. Thus with any of these types of conditions, F is

one-to-one and the solution to F x = 0 is unique. The study of

monotone operators has therefore focused on the ranges of these

operators.
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Zarantello's existence theorem is stated for a mapping F

having its domain and range in a Hilbert space 9# . To state this

theorem, the notions of demiclosed and locally cross-bounded map-

pings must be introduced. A mapping F is demiclosed iff for any

net Ix
a

} such that xa converges strongly to x and Fxa
converges weakly to y, we have xe (F) and Fx y. A

mapping F is locally cross-bounded if for each X E (F) there

exists a neighborhood V of x and k = k(V) > 0 such that for

each [ y], y 0,

11 (I-0 )(Fy' -Fy" )11 < k

for y', y" e V and y' -y" E [ y].

Theorem 1. (Zarantonello) Let be a dense linear subspace of

/14 . Suppose that Ow) = 43- (p) F is continuous on each

finite dimensional, convex set in 4)(F), F is locally cross-

bounded, F is A-monotone where 6(t) = t/it for each 5 e

11F (0)11 < pX, and F is sequentially demiclos ed. Then there

exists a unique solution to Fx = 0.

Browder's extension of this theorem is stated for a reflexive

Banach space X with dual 1* . Let

< y, x > , xeX, ye X*



denote the functional relation between x and y.

Theorem 2. (Browder) Let F: X X * be s-w continuous.

Assume:

there exists a continuous real function c(t), 0 <t <00,

with c(t) co as t 00, for which

l<Fx, x> I > c(114)11x11,

for each > 0 there exists 6 e A such that

(2)

13

< Fx - Fy, x - y > > 6 (II= p -YII)11x-Y11

for x,yE (p). Then F is a one-to-one mapping of X onto X*

with a continuous inverse.

These two theorems are not directly comparable since the

first is a local result and the second is global. In order to compare

them, a local existence theorem is stated and its proof is given. The

proof is established with the aid of the following lemma.

Lemma 1. Let X. be a finite dimensional Banach space. Sup-

pose that F: X. is a homeomorphism of ce, (p) onto F( (p))

such that F(0) = yo and

II F x - yoll > 6(114), x



where 6 6 A. Then dk(F) (y0, (13)) 610

Proof By the Brouwer Domain Invariance Theorem [ 1, p. 164J,

interior (boundary) points of (P) are mapped onto interior

(boundary) points of the closed set F(11-6(p)). Assume that there

exists X06 F(ii(p)) (the set theoretic difference of0 0

and F(ii(p))). Let

B = it: y0+t(x0 - yo)eF(e(p)), 0< t< 1 } .= =

Then by using the Invariance of Domain Theorem and a standard

homotopy argument, the contradiction that B = [ 0, 1] is reached.

Theorem 3. Let F :14 N. have domain ta(p), F be s -w

continuous and

(F - Fy, x-y)1 > 8(1Ix - Yll)11x-Y11 x,yeta(p)

where 5 6 A, and F(0)11 < 6(p). Then there exists a unique

solution
xoe

ja",(p) to F x = 0.

Proof Let M be a finite dimensional subspace of 17)4' and

FM = 0 F 0M M

14

where °M is the orthogonal projection of 94 onto M. Then

FM is a continuous mapping of M onto M For x, yE M r\ 6 (p),



I (F x-Fmy, x-y)I = I (Fx -Fy, x-Y)I > 6(11x-Y11)11x-Y11

By the Schwarz inequality,

IIF x -Fm01 > 8(IIX x, yE MrTh (p),

and

IlFmx -Fm(o)11 > xEM(Th tes (p).

Thus by the lemma

(Fm) 'D {YE M: < 6(P)

Since IIFm(0)11 < < 6(p), there exists XMEMr (p)

such that

( 3 ) FMxM = 0.

Let A be the set of all finite dimensional subspaces of .4

directed by inclusion. For each MA, let x eMcm 01?) (P)

satisfy (3). Then {xm : ME A } and {Fxm :ME} are nets.
--By the weak compactness of CB (p), there exists a subnet

{Xm: MEN) , A0 C. A, and an X0E8 (p) such that this subnet

converges to xo.

Let E > 0 and {xi: i = 1 , - ,n}

Then the set

15



V = c { X EI/4 I (X,
X.)

<E
i=1 1

is a fundamental neighborhood of the origin in the weak topology. Let

N be the linear span of {xi : i = 1, 2, n } . Then for M N

and xEN,

(FxM' x) = (FxM' 0Mx) =
(FM xM ,x) = 0.

Thus FxM EV and the net
{FxM

:ME A} converges weakly to zero.

Let M, N E A0 and M "D N. By an argument given above,

(Fxm-FxN, xm-xN) = -(FxN, xm).

Thus

I (FxN, xm) I > 6(11 xm-xN ) II xm-xN

By the continuity of 6, this holds for x0
xm.in place of As

the weak limit of {F N: N E A 0 } is zero, {xN : NEN)} converges

strongly to xo. Then s-w continuity implies that F x0 = 0 .

Corollary. If no restrictions are made on F(0), then F

16

is a one-to-one mapping of
-and F1 is continuous.

Proof Let Gx = Fx-y. Then G satisfies the hypothesis of the

theorem if - F(0) < 5(P).

By using essentially the same arguments this theorem and

its corollary can be established for a mapping of a reflexive Banach

space into its dual. Thus, it is a local version of Browder's theorem.

OT. (ID) onto 51.(F), (F(0),5(P))
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Therefore the essential difference between the two theorems is that

Zarantonello only requires F to be densely defined and locally

cross-bounded while Browder requires F to be everywhere

defined. However Browder does not require F to be (cross-)

bounded.

These theorems depend on the reflexivity of the Banach space

and thus cannot be used to yield existence theorems for A-monotone

mappings on a non-reflexive Banach space.

§3. Continuous Dependence

In this section the dependence of the solution of F x = 0

on the operator F is discussed. This discussion is given in

detail for operators which are A-monotone relative to {Px: x o

To show continuous dependence it must be established that

there exists a mapping from some class of operators into the set

of solutions to the equations Fx = 0 and that this mapping is con-

tinuous. In particular a class of operators must be defined and

suitably topologized. Let D and

r = {F: F: DX, 3 a solution of Fx 0 for each FEr}.

A mapping from r into the set of solutions to the equations Fx = 0

can be defined by the axiom of choice or in special cases, by other

means. Thus for each F e r, there exists a unique x(F) E D
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satisfying Fx = 0. The reason for treating the problem in this

manner is indicated by an example given below.

A topology on r is determined by a subbase of open sets

V(Fo,S,y,E) = {FE r:1<y,Fx-Fox>I <E,yE X*, Ilyll = 1, xES C D} .

This is the topology of weak uniform convergence on S.

The following proposition yields the continuity of the mapping

of r onto { x(F):F E } at F E F. Before stating this propo-

sition, the following notation is introduced. For each x 4 0, let

X*E * be defined by

pxy = x*(y) x/ II XII yE .

Then II x*II = 1.

Proposition 1. Let Fo be A-monotone relative to IP : y 0 1
Y

where A = {6}, FE V(Fo, S, X*, E) where x = x(F)- (F0) and

X(F)ES. Then

II x(F 0) - x(F ) II < 6(E ) .

Proof By hypothesis,
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II x(F) - x(F0)11 = 6(11 P Fox(F) - F0x(F0))11 )

, 8( 1 < x*, Fox(F) > )

6(kx Fox(F) - F (F) > )

< 6(e) .

Thus, the mapping from onto { x(F):F E r} is con-

tinuous at F0 from the given topology to the norm topology on

{x(F):Fel-} if S= D.

The following proposition is a useful application of the

structure which has been introduced.

Proposition 2. If xoES, 11Fx011 < E/ 2, Fo is A-monotone

relative to { Py :y L o} where A = {6} and F EV(Fo"S x* E/ 2)

where x = xo - x(F0), then

Ilx(F -x0 II < 6(e).=

Proof Since F is A-monotone,

II x(F 0) x0 11 5(1<

<6(1<x*,F x -Fx >1 + 1<x*,Fxo>I)= o o o

< 6(E/2 + e/ 2) = 6(E).



This proposition asserts that if xo is an approximate

solution of Fx = 0 and F is close to F0' then x0 is close

to the solution x(F0 ) of F0 x 0.

For operators which are A-monotone relative to {Px:x 0 }

on a non-reflexive Banach space, the open sets in the topology of r
need not involve all yE such that YII = 1. The set of x*e)(,*

corresponding to the set of projections Px suffices to establish the

propositions given above. This set of functionals is a total subset of

Similar propositions can be established for operators which

are A-monotone relative to {Qx:x 0 }. But the topology on r
generated by the open sets

IIQx(Fy-F0y)I1 E, X 0, ye S CD)

apparently has not yet been investigated. This topic will not be

pursued further.

Next two examples are given. The first indicates a reason

for defining the set r as above. The second example illustrates

further properties of r and is of historical interest.

20

Example 1. Let F -.# b defined on (p), be uniformly

continuous, bounded and is-monotone with A = { 6 }. Let 1'# be

separable with an orthonormal basis { Ok co} ( w is the set of
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positive integers) and 0k be the orthogonal projection of IN

onto the linear span of { 95.: j = 1, 2, ,k}. The mappings

Fk = 0kF0 0k' kE 0),

approach Fo uniformly on 63 (p). By previous arguments there

exist unique solutions xk E Oke'el)r C(p) to the equation

(4) F x = 0, k E CO.

If xkE0074.) is a solution, then any xEl+ such that Okx = X.k

is also a solution to (4). For purposes of computation, an obvious

choice of x(Fk) is xk. In this case, let

yk = (x(Fk)-x(F0))/x(Fk ) - x(F0)II.Then

F0) II < 6(1 (Fox(Fk), Yk)I)

= 6(1 (F ox(F ) - Fkx(Fk), yk) 1)

0

as 00

Example 2. Let G -1+ be defined on the unit ball and be

s -w continuous. Let



ftn(G) (Gx-Gy, x-y)
2 .x y,

If do = inf { I X 0 - p.E0kn(G)} > 0 and

F0 x = Gx X 0x - y

then for each , x 0,

It 0(F Y FOY' ) II > do II Y-Y'

for y, y' E et) (G) and y -y' E [ x1 . Thus there exists a solution

x(F0 ) to F0 x 0. Let E/2 <do <E, 1X-X.01 <E and

Fxx = Gx - Xx - y.

Since it can happen that X E
n(G), there may not exist x(F)

such that FXx(F ) = 0. Nevertheless

Fx = X. XII <E .

Thus the nearness of Fx to
FOE

r does not imply that FXErF.

The set R. (G) is called the numerical range by Zarantonello

[ 23; 24]. Zarantonello asserts that the spectrum of G is contained

in fk. n(G). This example also shows where a A-monotone condition

may arise.

x,ye 1)(G)}

22



CHAPTER III

THE CONTRACTIVE MAPPING PRINCIPLE AND
MONOTONE OPERATORS

Introduction

As mentioned in Chapter I, Zarantonello [ 25] gave a proof

that the iterative method of contractive averaging converges by

showing that a related operator is contractive. In [ 24], he states

that under suitable conditions on the operator F, the method of

averaged iterations converges with a constant mapping . This

second result can also be established by showing that a related

operator is contractive. This is a generalization of the earlier result

[ 25] which is stated and proved in the next section.

Contractive Mappings

In this section it is demonstrated that certain monotonicity

conditions on an operator imply that a related operator is contractive.

Theorem 1 below is essentially the above mentioned result which is

given in [ 24] In the discussion F is an operator having its

domain and range in a Hilbert space lit

Theorem 1. (Zarantonello) Let F : 0-5-(p) .54" satisfy a is-condition

with 6(t),---1(t for each 8 E A ,

23



( 1 )

24

Re(Fx -Fy, x-y) > d 11 x - y11 2, x, yE G (p),

II F(011 < p pd, p <1 and

I (Fx - Fy, x-y)1 < x - yll 2, x, y E (p).

Let Ga= I + aF, a E .

Then there exists a 0 such that Ga is a contractive mapping

of 6 ( p ) into

Proof For each [ xl , x L 0,

IIFY FYTII 2 = 11 0 (FY FY911 2 4" 11(1-0 )(Fy-Fy9 11 2
x x

22 II 2
< k (1{, + 1)11 Y II

y, y' E ) and y - y' Further

1

II

2
GaY-0aYt II = II Y - 11 2 + 2R e a(Fy-FyI ,y-y')+ al2 11 FY-FYI 112

Thus if a < 0,

G y-G y' 11 < y-y' II 2(1+2ad + a2 k2 +1)).
a a =

ZdFor < a < 0 ,
2 2k + 1)

0< 0(a) 1 + 2ad + a2k2ex.2+1) < 1 .



Further

11 Gax 11 11Gax-Ga(0)II + IIGa(0)11 < 81(011x11 + 1 al 11F(0)11

< (02 (a) + lain d)p.

For a < 0,

0(a) ==- 82(a) + I al nd = 02(a) - and

and for a < 0, 0(a) < 1 iff

1

02(a) < 1 + an d.

The latter inequality holds for

or

there exists a 0 such that
Ga

is contractive and

G (I)) eT (P).a

The fixed point of Ga is also the solution of Fx = 0. Thus

this theorem provides an iterative procedure for finding the solution

of Fx = O.

The contractive mapping principle can be used in another

manner to investigate the existence of solutions to Fx = 0. It

follows from the consideration of continuous mappings of the real

line into itself. If such a mapping satisfies either

F (x) - F (y) < elx- YI, 0 < 1,

2d(1-n)

k2(1e+1) -(3 2d
< a < O. Thus

IF(x) -F(y)1> Oix-yi, °> 1
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H 2Re(Fx - Fy, x - y) > d x - Y II ,

and II F (0) II < pd. Let Ga = I + aF , CE . Then there exists
-a 0 such that 6 t (G) and

G1a is contractive.

Proof If

Re(Gax-G , x - y) = x - 2 + Re a(Fx - Fy, x - y)

> (1+ad) Ilx-Y112

This implies that

(2) II G ax-Gayll > (1 + ad) II x-y -

The corollary to Theorem (II, 3) yields

CR(Ga)D -6(Ga(0), (1+ ad)p) = tS(aF(0), (1+ ad)p).

Then for a > 0 and xet(P),

II x - aF (0)11 < 114 + a (0) II < (1 + ad)p .

x,yEtfec(P),

26

then F has a fixed point. In the first case F is contractive

while in the second, F-1 is contractive. A similar result can

be established for monotone operators.

Theorem 2. Let F: (i(p) ei4 be s -w continuous,



Further (2) implies

II G-1 X - G-1 Y II < 1a a 1+ad

for x, y E (Ga(0), (1+ad)p).

The problem of inverting G or F is equivalently difficult.
a

Thus this theorem and others similar to it are not particularly useful

in finding a constructive means of obtaining the solution to Fx = 0.

In later chapters, the approximate inversion of F can be carried

out under less restrictive monotonicity conditions than used in this

theorem. Thus the parallels between the method of averaged itera-

tions and the contractive mapping principle are not pursued further.

An example given by Wong [221 also discourages further investiga-

tion. His example shows that there exist mappings such that the

iterates converge while the operator is noncontractive.
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CHAPTER IV

IMPROVING APPROXIMATIONS

§1. Preliminary Remarks

In this chapter sufficient conditions for improving an arbitrary

approximate solution are given. These conditions are of interest

relative to iterative procedures. If an arbitrary approximate solu-

tion can be sufficiently improved, then it can be established that an

iterative procedure converges.

In this chapter and the next, F is a mapping of a Hilbert

space 14' into itself. The global case where Sti ) = 6)4. and the

local case where (F) = are considered. It is assumed that

F is s -w continuous, satisfies a A-condition and is Ai-monotone.

In the following sections, the roles of the Es-condition and A'-monotoni-

city are considered. A revealing geometric interpretation of the

A-condition is given.

Using the results of this chapter, the convergence of an

iterative procedure will be established in a Hilbert space setting

and the iterative procedure will be generalized to a Banach space

setting.

The problem is as follows. Given an approximate solution



Fx = 0 ,

find a better approximation of the form

x =x + a Fx
0 0'a

Also a measure of the improvement is sought.

A necessary and sufficient condition for the existence of

better approximations of the form (2) is that

F(x0 + [F

(cf. Figure 1). Since this condition is not very useful, the inter-

section of ec(lFx011 ) with a larger set determined by the

A-condition is studied.

§2. The A-condition

For each 5 E A and x L 0, let

K(6 , x = {y: < ocRoxy-xo} .

We call this set the 5-cone with vertex x and axis [x] (cf. Figure

2). If y E K(5, x) and

62(110xy-x11)
2 2

< 114 ,(3)

a e

29



Figure 2

30

x0+ [ Fxo I F (xo +[ Fxo])



I I (I-00)Fxal

CK(6, 2(114)

where C = {P} and Oxy = 13x (cf. Figure 2).

The following considerations indicate the significance of the

6-cones. Let
Xa

E X [FX0] . Then

Fxa =(I-00 a
)Fx+ 0 Fxa

where 00 = OFx . If F satisfies a A-condition with SE A

0

corresponding to [ Fxo], then

=II (I-00 )(Fx -Fx0 )11
a

31

< 5 (II 00(Fxa-Fx0),11 ) = 5(11 00Fxa-Fxo ).

Thus F (xo + [ Fxo]) K(6, Fxo). If

CK(6 , Fxo) c e(liFx011)

then YE (114

Inequality (3) implies more than yE tb(11

For each C $ , let

CK(6, = y:0 y = , 13EC} (Th K(6,x).

We call this set a C-cross section of the 6-cone with vertex x.

Thus (3) implies that



for some C, the next problem is to insure that there exists a

such that

(4) Fxa E {y :00y = (3 Fx0' p E C

This leads to the study of A'-monotonicity.

. The AI -monotonicity Condition

To insure that there exists a such that (4) holds, the

following conditions are assumed:

(i) S5(F)

) F is s -w continuous ;

(iii) F is At-monotone where the 6' E A' corresponding

to [Fxo] is strictly increasing and (6')-1(t) cc as

The analysis involves a function which is used to study the behavior of

0 Fx as a function of a .0 a

Definition 1. Given F and x0' define by

y(a)Fx0 = 00 Fxa

where xa = x0 + aFx .
0
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Note that

((a) -
11Fx0112

and y is continuous whenever F is s-w continuous.

To show that suitable exists, CR. (y) must be studied.

The following proposition gives information about the range of y.

Proposition 1. Let F satisfy (i), (ii) and (iii) above and suppose

that Fxo 0. Then for every p > 0,

(R.(y) ta

-1(5') (p 11Fx0

I a-1 1 11Fx0IJ

Proof Let x. x + aiFx0' i = 1, 2. Then
1 0

Mai) - Y(a2))Fx0 = Fx1 -Fx2 ) .

This implies

81(IY(a )1 11Fx011) > Ilx1-x211 la -a I

Thus y is one-to-one and the inverse is S'-continuous. Also

33

(Fxa, Fxo)



-
(6' ) 1(lal 11Fx011)

Ht(a)-11
II

Since {a: la I < p} S(y) = $ for every p > 0, the result

follows by Lemma (II, 1).

Corollary. y is one-to-one, y-1 is 6'-continuous and 6t(y)

Thus there exists a such that (4) holds for any C.

The case where Z(F) =6-6(p) is discussed in §5.

§4. Improving Approximations

The following proposition summarizes the results obtained

above.

Proposition 2. Let F satisfy (i), (ii) and (iii) of §3 and a

A-condition with 6 E A corresponding to [Fx0 ]. Suppose there

exists C $ such that

CK(6, Fxo) C ( (1Fx0 ).

Then where y(a) = p EC,

IlFxa 112<= 62( -p I ) op 1 vx0 11)2 < liFx0

Thus Fx is a better approximation.a

It is desirable to know for which 6 there exist c

34



such that (5) holds. Before providing an answer, a lemma is needed.

Lemma 1. Let 6 E A. There exist p., t such that 0 <1.1 <oo,

0 < < 1 and

-2(p.+1)=min{1,1, ,T)}.

).

62 (Otr- ) < 0.01+2

iff there exist -PC ,v,ri such that 0 < 00 , < v < co, O<i and

6(s) <ltsv, 0 < s <

1

+21 [1 1Proof Necessity: Let = ) v - /I= t andt 2(p.+1)'

s = 0L+1. Then lt , v, t satisfy the appropriate inequalities and

1 11+2

p.+1 2 p.+1
62(s) < st = =1(,7s

Equivalently,

6(s) <1(s11,

Sufficiency: Suppose 1 < v < 1. Let p. -2 2v -1

equalities andfor 0 < 0 < 0 < t < 1,

2v
62(0 t11+1) < I2t (0 tp,+1 ) =lc2021)-1 Ot2v(11+1)

1

=leo 11+1 Ot11+2 <

0 < t < 1, 0 < 0 < t= = =

0 < s

35

and

Then p. and t satisfy the appropriate in-

0 < s <

2(1-v)



Suppose 1 < v . Let 11 = 0 and = min { 1 ,,C2, ri} . Then for

< < , 0 < t < 1,= =

62(00 <I2C (At)2v .

Since t < 1, 0 < 1 and 2v > ,

62(00 <lee Ot2 < Ot2 .

Proposition 3. Let 5E A.

(i) If 6(s) <10v, > 0, v >

then there exists C % such that

CK(5,x) e(11x11)

for each x 0, Ilx ii < 1 .

1

(ii) If 6(s ) > 2, 0 < s and some 1, , 0 <"K,< 1, then

there exists x 0 such that

CK(6 , x) 11)=0

for every

Proof Note that CK(5 , x)C CB ( II x ) iff

62(11Px-x11) + (IP I 114)2 < Ilx 12

36

and 0 <s < ri> 0 ,= =



for each p EC.

Let x 0 and II x II < 1. Let be as in the

lemma and

P = 1-0 11x1I11, 0 < < .

Then

62(0x-x11)+(lPillx11)2 =62(0 ilxr+1)+(1-911x1411x112

(1-041r(1-611411))11x112 < 1142

Thus the assertion holds for

C = {13:13 Irj", o < < } .

Let K(x) be the 61-cone determined by x and
1

61(s) s 2 . Then

K(x) CK(6, x).

Thus if the assertion is established for K(x), it holds for K(6, x).

2Let x be such that II x = , 0 <X <5. Then

[61(11Px-x11)12 + OP I 114)2 = 1142 -W!-1-+ IP 12)

II (211-P1 + IP I2)
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If 113 I > 1, then

[6t(11Px-xli)]2 + (IP I Ilx11)2a ilxil2

If 1(3 < 1, then

[5'(11Px-x11)12 + (I(3 I 114)2 > 11x112(2(1-IPI) ip 2

= 11x112(l +(1-1P 1)2)

11 112

This implies (ii) of the proposition.

In (i) of Proposition 3, it is required that 6(s) <Itsv for

0 < s < This indicates that the ability to improve any approxima-

tion depends on the shape of the 6-cone near the vertex. In (ii) of the

proposition it is required that 6(s) >1C. s 2 for 0 < s. This condi--
1

tion can be relaxed. To establish (ii) it is sufficient that 6(s) >1.s2

for 0 < s ri> 0 . This fact also reflects the importance of the= =
shape of the cone near the vertex.

In [24], Zarantonello examines a mapping F which is

As-monotone and A"-cross continuous. He assumes that A' = 16'

and A" = {5" } where 6' (s) = ds and 6" (s) =/(sv, v > 0 .

He asserts [24, p. 15] that he could obtain results only for v >

Part (ii) of Proposition 3 explains this fact as F satisfies a

A-condition with A = {5} where 6(s) ="Kdvsv.
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considered.

§5. 25(F) = eT3(P)

(F) = (P), then the domain of y and, hence, the

range of y are restricted. In particular 35 (y) is determined

by the condition that

xa = xo + a Fxo E (p).

Equivalently,

2
(Fxo, x0)

)("N/)= fa:la+ 2 1

11 Fxo 11

CK(6,Fx )C, (IIFx011)

2
(Fx0' x0'

4- I

11 Fx 11
2 I

39

Propositions 2 and 3 answer the question concerning the

ability to improve any approximation0 in the case that a(F)

Inequality (6) gives a measure of the improvement. In the next

section, the effect on the theory of restricting the domain of F is

If 11 x0 11 = P and (Fxo, xo) = 0, then (y ) = {0} which implies

that (R.(y) = }. This difficulty can be avoided by requiring that

11 xo II < P.

It is desirable to find conditions such that C C 6t(y)

(C C %) and



Proposition 4. If X0 EA, then C* (5, xo)C 641(y ).

40

where b(s) <Itsv, 0 < s < v > 4.

The set

C(6, xo) = {P 62(1 p Fxo 1 11Fx0 11) 11Fx
2}

is the largest subset of such that (5) holds. The continuity of

implies that C(5, xo) is open. Proposition 3 implies that

xo) contains an interval of the form {13:p = - e II Fx0r, 0<e <0.

However it has not been established that C(6, x0) is connected. Let

C*(6, xo) denote the component of C(6, x0) containing

{P:R = 1 - 0 11 Fxo 1111, 0< 0< } .

If the approximate solution xo is required to be in a certain

set, then an interesting result can be obtained concerning

C*(15, xo)r- tit (y ).

Let F be s'-monotone where b' E ,6! corresponds to [Fxo]

and let 5' be strictly increasing. Let

A = fx: Ilx11 < P, 11F(0)11) < P

Elements of A are called admissable approximations by

Zarantonello [24].
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Proof Since < p, 0 is an interior point ofa(y). There-

fore by the Brouwer Domain Invariance Theorem, 1 is an interior

point of & (y ). Thus

6vy C*(6,x0) j 0

Let p e (R,(y C*(8, xo) and y (a) = f3. Then

xa 8' (1)Fxa -F (0) II) < 6 '( Fxa + II F(o) )

< 8' (11Fx0ll + HF(0)11)< p.

Hence a is an interior point of 0 (y ) and by the Domain Invariance

Theorem, p is an interior point of IL (y ).

Since C*(6, xo) and (S,( y) are connected and the boundary

of (k(y) does not intersect C*(8,x0), the conclusion follows.

Corollary 1. If x0eA and y(a) = 13 e C*(8, x0), then

xa = xo + aFxo EA.

Corollary 2. If xo < p, then (P.(y ) C*(6, x0) 0

Corollary 1 asserts that membership in A is inherited by

improvements of approximations. This fact is useful in the discus-

sion of iterative procedures. Corollary 2 insures that the approxi-

mate solution x0 can be improved. However if x/ A, a more
0



complicated set (i. e. the intersection) must be examined to find

suitable C-cross sections.

The set A contains only the solution to Equation (1) if

(UF(0)11) = P. Thus to obtain a satisfactory set A, stronger

conditions are placed on F.

We remark that if 62(0s) < 062(s) for each s, then it

can be shown that C(6, x0) is connected and thus

C(6, x0) = C*(6, xo) .

We end this section with an example of C(6, x0). Let

6(s) = s. Then

C(8, xo) I R <D.

Note that in this case C(6, xo) is a connected open set which is

independent of xo. Since this set is nice, the problem of finding,
-1for example, y (I) can be done approximately. This example

illustrates the desirability of haying
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CHAPTER V

ITERATION

§1. Preliminary Remarks

In this chapter, an iterative procedure of the form (I, 6) is

defined. A proposition stating sufficient conditions for the con-

vergence of the iterates is given. Also an upper bound on the number

of iterations required to obtain an accuracy. e > 0 is given.

We continue considering an operator F having its domain

and range in a Hilbert space 14. In order to define the iterative

procedure certain conditions on F are assumed. The form of the

conditions depends on whether (F) or (F) = 18-(p).

These conditions are:

F is s -w continuous

F(0) is in the interior of 2 (F);

F satisfies a A-condition where the family {5 :x 0}

1is bounded above by 6(s) and 6(s) < sv , 0 < s < , >2

if (F) = 34-, then F is A' -monotone where the family

{6;c : x 0 } is bounded above by 5' (t), 5' is strictly increasing

and (69-I(t) co as t

43
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(v) if (F) (B(p), then F is AI-monotone where the

family 16' :x L 0} is bounded above by 6' (t) and 6' is

strictly increasing.

If 1.1, (F) =6*,

{x:Fx } n A

Assumption (iii) implies that for each xe {x:Fx L 0 } A that

1-0 r E C *(6 X), 0 < 0 < g

where 11, are given by Lemma (IV, 1). Define

X 16 (F {x:Fx 0 } 1 a by

y(a, x)Fx = 0 (F (x + a Fx)).Fx

Then conditions (i) and either (iv) or (v) imply that

C*(6, x) c ,x))

for each xEAr {x:Fx 0 } .

Let

kk,
Xk+ 1

+ aFx ice co0'

(1)

we let A =afri . Condition (ii) implies that

and a (F) =-4(P).for the cases

(1-0 a-:)Fxk = Ok(F(xk + ak Fxk)), k E

where crk = 11Fxkli is fixed, 0 < 0 < , and Ok is the
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orthogonal projection of 14 onto [ F Xk . Then if

xo E A {x : Fx 0 } , II Fxo II < 1, (1) defines an iterative

sequence which is either finite or infinite. The sequence is finite

iff there exists ke coo such that F Xk = 0.

§2. Convergence

From (IV, 6),

2 2 2<6 cr11+1) + (1-0 o-k)
o-k

.
k+1 =--

Without loss of generality, let o-k > 0, kE coo. Then (2) may be

rewritten as

2 2
k+1 k

p.-F 2
cr

2
< o- [ (6 (O

1crk )/ o-k)
+ (1 - 0 o-)2k

By induction,

2 2 2 11+1 2

+crk+1

[ (6 (Ocr )/ ) (1-0o-4 )]
j=0 3

Inequality (2) implies that crk+1 < k, ke (40, Thus the sequence

{crk:keco0 } converges. The following proposition shows that

o-k 0. This proposition is stated for mappings F such that

(F) Elf or (F) = (p).

0-

Proposition 1. Suppose that F satisfies (i), (ii), (iii) and either



Now

Proof Assume that o- E E > 0. By the monotonicity of {TO,

e <
o-k

< 1' k e coo .= =

By (3),

k
2 2 7 [ (6 ) - 121cr < o- 0.1.1.+1)/ + (100.2.
k+1 ..- 0 .

3=0

[1-00-11.
j=0

r = min { 10E/1(l-04)1, 10(1-0)1 } > 0

and

Thus o-
2 < (1 -r)k, k E (00 which implies that E < 0. Thisk+1 =

contradiction implies that E = 0.

By either (iv) or (v),

II xk-x II < 6' (II FX.k - FXj ) < (r(k +

1-0o-. (1-0a11)< 1-r,
=

0 and there exists y0 such

i"o

46

(iv) or (v). Let x0EA, 111'301 < 1 and define the sequence

{xk:kEO} by (1). Then
Cr

that xk yo and Fy0= 0 .
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Hence Ixic 1 is Cauchy and there existsYO such that xk yo .

Since F is closed,

Fyo =

Corollary. If r = min I 1311(1-0E1-51, I0(l-e)I} and

k' = min 4 k : (1 -r) 21, then ck'r <E and= II xk-Yo II < 6' (E ).

The corollary gives an upper bound on the number of steps

required to obtain an accuracy E > 0, i.e. , II Fxk II < E. Note=

that if p. = 0, then r is independent of E.
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CHAPTER VI

BANACH SPACE THEORY

Preliminary Remarks

In this chapter, results are obtained which can be used to

generalize the theory given in Chapters IV and V to a Banach space

setting. The geometry of the unit ball is examined more carefully

in order to obtain conditions for the improvement of approximations.

Most of the concepts introduced in Chapter IV can be used in

the present context. The differences between the Banach and Hilbert

space settings are pointed out in the discussions below. As in Chap-

ters IV and V, most of the analysis is devoted to geometric concepts

and to improving approximations.

Improving Approximations

The problem to be discussed is the same one posed in Section

(IV, 1). Let R = P (or Q if X is strictly convex). Thenx x

to solve this problem when $(F) =X, the following conditions

are assumed:

F is s-w continuous (continuous if R =Q );x x

(ii) F satisfies a A-condition relative to {Rx:x 0 }

48



with 6 E A corresponding to [ Fx0 I;

(iii) F is A' -monotone relative to {R
X:

x 0 } with

61E& Corresponding to [ Fxo I where 6' is strictly increasing

and (6' )- l(t) 00 as t 00

Given 6 E A, XE X and C c 2 , the 6-cone and C-cross

section are defined as in Section (IV, 2) (substituting Px or Qx

for 0x). The major difference in the theory occurs in the condition

used to show that a C-cross section is contained in 65( II x11). In

(I, 7) or (I, 8) is used in the derivation of a general condi-

tion which implies that

C K(6, x) C 63(11 xli )

for some CC S, . This general condition is

6(1 1-13 1 11 x11 ) 113 1 11 x11 < 11 x11

There exists f3 such that (2) holds if 6(s) <1(s, 0 < s < "1<.< 1

(if X is strictly convex ut < 1 suffices). The use of the triangle

inequality in the derivation of (2) reflects the "worst possible shape"

of CB(11x ) at x. This shape occurs, for example, on the unit

ball of
1

at x = (1, 0, 0, If P() x* )x/ lxii and

x*E (I 1)* corresponds to (1 , 0, 0, -)E/00 , then

Y (Y 1 Y2' K(6 , x) iff

49



Hence

(3) HAI 5_ 6(1y1-11)1- Iy11.

Inequality (3) implies that yII < 1 if 6(s) </ts, 0 < s <

1C< 1 and 0 < ly1 -11 <=

Further examples show that the worst possible shape does not,

in general, occur at every point on the boundary of a(ixli ). Let

X = , p> 1, and x= (xi, 0,0, Then y E K(6, x) iff

IlylIP< 613(11Py-x11)+ 11PylIP.

1If 6(s) <1s", 0 < s < v > , then for each x1
0, there=

exists C 0 such that (1) holds. For large p, this condition

on 6 begins to look like

6(s) < 0 < s <

Figure 3 illustrates the "best" and the worst possible shape of

x.

i> 1
< 6(ly

50
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(a) (b)
Figure 3

The shape of e(IIxII) is described further in §3 below.

The function y: 43, is defined as in Section (IV, 3)

(replacing 00 by Po or Q0). Using (i) and (iii), the results

of Section (IV, 3) follow in a Banach space setting. Hence, we may

state the following proposition which summarizes the above remarks.

Proposition 1. Let F:1 ")( have 51)(F) =I.

Suppose that F satisfies (i), (ii) and (i and there exists C C

such that

CK(8,Fx0)G (IIFx II).

Let y(a) = (3 EC and xa = xo + aFxo. Then

11Fxall < liFx011.

Thus xa is a better approximation.



-
13x+ P1( O)

Figure 4

This figure illustrates one of the problems encountered in Banach

spaces. That is, if yo3 (II x11), then it may be the case that

x-(y-f3 x)/(IxJI). This, asymmetry is dealt \vrith by means of the

following function. For each [x], x 0, define

kx:{13:1P1 < 2 by

fixil 41x(P) = inf II (I-Px)Y II Px(Y) = 11x11 = II yll }

(If is strictly convex, Px may be replaced by Qx). Note

52

This proposition parallels Proposition (IV, 2). A measure of

the improvement (cf. (IV, 6)) is given in §3.

§3. Further Banach Space Geometry

In this section conditions weaker than (2) which imply (1) are

given. The investigation yields a measure for the improvement.

Consider the following figure.
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that 4ix(13 ) > 1 - I pi . The following propositions indicate the use

of

Proposition 2. Let 5( I 1 I II xll) < xll gix(P) for PECC{P: I PI <1 }

Then

CK(5, x) c 12(i14).

Proof Let y K(6, x) and Pxy = 13x, 13,e C(Qxy Px, P e C if

strictly convex). Suppose IlII > II xli Then there exists

s, 0 < s < 1 such that II = II x II where

y' = sy + (1-s)13x .

Now Pxy' = 13x. (Note that (iii) and (iv) of Section (1,2) imply

Qxy' = 13x if X strictly convex. ) Hence

II II 4) (P) < Y' = s II Y-13x11 < s x II qix(P )-

This contradiction implies II Yll < II xll and

CK(5,x)C 63( II ).

Proposition 3. Let 5( 1 1 -(3
I II < xII 1Px(P),-1( < 1, for

I 13 < 1. Then ye{f3 } K(5, x) implies that

(4) II Yll < + ('-1() 113 1 ] 114



Proof Let yE {f3 } K(S, x). Then 11 Yll < 114 Choose s > 0

such that 113r' 11 = II xll where

(5) y' = s(y - 13 x) + 13 x.

Since PxY' = P x (note that Qxy' = 13 x by (iii) and (iv) of

Section (I, 2)),

II x LIJ(i3) < x II < s II y-13 x II < sil xf iiix(P ).

Hence 1/s < .

By (5),

1
y +(1 --)Px

Thus

IIYII <[ (1 - I] II II

< [It+ 040 IP 1] 11x11

Formula (4) provides a measure for the error.

Using the ideas introduced above, the theory could now be

developed paralleling Section (IV, 5). In particular,

xo) = {P : 6(1 1-P 1 11 Fxo ) < 11 Fxo 11 LPFx0(13)}

Extending the above ideas, an iterative procedure can be
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defined and shown to converge. We observe that to carry out this

procedure, the family {5 :x 0 } given by the A-condition on F

does not need to be uniformly bounded above by a particular SE A .

Instead, each E.xE A must be bounded above by Llix which may

vary considerably for each , x 0 (cf. Figure 3). It is in

the Banach space setting that the definitions given in Section (I, 3)

are used in their greatest generality.

It is interesting to note that if is a Hilbert space, then

the above notions yield the theory of Chapter W. For example,

X
) - 1 P

12

for each [ x1 , x 0. Thus C(5, x0) is as defined in Section

(IV, 5). Further the requirement that

6( 11 x 11 t) < 11 4 iPxo -t) = 11 x11 Ni[ 2t-t2 I, 0 < t <

for each x, 0< II xil < 1, implies that 6(t) < tv, 0 <t <

v>4z

Another example which is of interest is = Cr 0, 11, the

Banach space of continuous functions on the unit interval with the

supremum norm. Let et E C "41 0, 1 be defined by

et(x) = x(t), X E C[ 0, 11. Let x L 0 and t E ft: I X(t) = II XII

Then



(7) IIII II xll tiix(13 )
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(6) Pt(- ) = et(' )x/II xll

is a projection of norm one onto [x} . Simple arguments show that

= t, 0 <t < 1. Thus, using the set of projections given by

(6), the ball adixii, has the worst possible shape at every point

of its boundary.

§4. Further Remarks

We note that the conditions which imply that (1) holds are not

related to the study of Fx = 0. They yield some insight into the

shape of the unit ball in two dimensional subspaces of

From these conditions, finer estimates than those obtained

by using the triangle inequality can be realized. That is, if

y = (I-Px)y + Pxy,

then the triangle inequality yields

II Y II < II (I - Px)Y II + II PxY II

We are not able to compare II y II and 114 by means of this

inequality. If



(8)

Figure 4 illustrates the difficulties which may be

encountered.

Finally we note that the theory can be applied in special case'

ofmappings F having IL (F) C. X and 6?..(F) C rti . Let X and

be such that there exists a continuous one-to-one mapping J

of r4 into .4 . Instead of considering recursion relations of the

form (I, 6), we consider the relations,

The development is the same as above if JF satisfies the usual

conditions. In the case that X = the effect is to compare

with J instead of the identity I.
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where Pxy = 13 x, then II Y II < II x II Thus (7) yields a finer

estimate of ilyil than the triangle inequality gives. This may

prove useful in applications, since vectors are often decomposed in

terms of their projections onto subspaces.

In the development of the theory, uniform convexity was not

useful since it is stated in terms of the norms of two vectors, the

norm of their sum and the norm of their difference. In our discus,-

sion, these norms are II PxY II II (I-Px)Y II Y and
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The geometrical ideas presented above are an accurate

picture of what occurs when iterative procedures of the form

(I, 2), (I, 3), (I, 5), (I, 6) or (8) are used for operators which are even

Lipschitz continuous and monotone.



EPILOGUE

Although this report is essentially theoretical, we should like

to mention some examples. As indicated in Section (I, 1), the origin

of the theory was in problems of conformal mapping and fluid flow

[ 5; 6; 25] . Other applications [ 11; 12; 13 1 have been to existence

and uniqueness problems for solutions of elliptic partial differential

equations.

The theory developed by quite a number of investigators over

the past few years is now in a reasonably definitive state. Thus, in

the future, the emphasis should be on further applications.

59



BIBLIOGRAPHY

Alexandroff, P. S. Combinatorial topology. Vol. I. Rochester,
N. Y., Graylock, 1956. 225 p.

An.selone, Philip M. (ed). , Nonlinear integral equations.
Madison, University of Wisconsin, 1964. 378 p.

Aronszajin, N. and K. T. Smith. Invariant subspaces of
completely continuous operators. Annals of Mathematics
60: 345-350. 1954.

Birkhoff, Garrett, D. M. Young and E. H. Zarantonello.
Effective conformal transformation of smooth simply
connected domains. Proceedings of the National Academy
of Sciences 37:411-414. 1951.

Numerical methods in conformal mapping.
In: Fluid dynamics; Proceedings of the Fourth Symposium
in Applied Mathematics of the American Mathematical
Society, New York, McGraw-Hill, 1953, p. 117-140.

Birkhoff, Garrett and E. H. Zarantonello. Jets, wakes, and
cavities. New York, Academic, 1957. 353 p.

Browder, Felix E. Remarks on nonlinear functional equations.
Proceedings of the National Academy of Sciences. 51: 95-
989. 1964.

Remarks on nonlinear functional equations II.

60

Illinois Journal of Mathematics 9: 608-616. 1965.

Remarks on nonlinear functional equations III.
Illinois Journal of Mathematics 9: 617-622. 1965.

The solvability of nonlinear functional
equations. Duke Mathematical Journal 30: 557-566. 1963.

Variational boundary value problems for
quasi-linear elliptic equations of arbitrary order. Pro-
ceedings of the National Academy of Sciences 50:31-37.
1963.



Variational boundary value problems for
quasi-linear equations, II. Proceedings of the National
Academy of Sciences 50: 592-598. 1963.

Variational boundary value problems for
quasi-linear equations, III. Proceedings of the National
Academy of Sciences 50:794-798. 1963.

Day, Mahlom M. Normed linear spaces. New York, Academic,
1962. 139 p.

Dunford, Nelson and Jacob T. Schwartz. Linear operators.
Part I. New York, Interscience, 1964. 858p.

Grunbaurn, F. and E. H. Zarantonello. Cross-continuity vs.
continuity. Studia Mathematica 27: 273-288. 1966.

Kantorovich, L. V. and G. P. Akilov. Functional analysis in
normed spaces. New York, MacMillan, 1964. 773 p.

Klee, Victor L. Convex bodies and periodic homeomorphisms
in Hilbert space. Transactions of the American Mathematical
Society 74: 10-43. 1953.

Krasnosel'skii, M. A. Topological methods in the theory of
nonlinear integral equations. New York, MacMillan, 1964.
395 p.

Minty, George J. On a "rnonotonicity" method for the solution
of nonlinear equations in Banach space. Proceedings of the
National Academy of Sciences 50: 1038-1041. 1963.

21, Petryshen, W. V. Construction of fixed-points of demi-compact
mappings in Hilbert space. Journal of Mathematical Analysis
and Applications 14: 1-9. 1966.

Wong, James S. W. Some remarks on transformations in metric
spaces. Canadian Mathematical Bulletin 8: 659-665. 1965.

Zarantonello, E. H. The closure of the numerical range contains
the spectrum. Bulletin of the American Mathematical Society
70:781-787. 1964.

The closure of the numerical range contains
the spectrum. Lawrence, _Kan., University of Kansas,
Department of Mathematics, July 1964. (Technical report,
new ser. , no. 7)

61



25. Solving functional equations by contractive
averaging. Madison, Wisc. , University of Wisconsin,
Mathematics Research Center, June, 1960. (Technical
Summary Report, no. 160)

62




