

AN ABSTRACT OF THE THESIS OF

Cary R. Maunder for the degree of Master of Science in Mechanical Engineering presented on

September 22, 2006.

Title: Model Predictive Control For Sagittal Plane Locomotion.

Abstract approved:

John M. Schmitt

A distinct characteristic of legged locomotion is its periodic nature. This periodic motion, in the

form of a periodic orbit, has been the target of many walking and running control strategies. The

spring loaded inverted pendulum (SLIP) has become a popular model of sagittal plane locomotion,

exhibiting behavior characteristic of a variety of legged animals. In this work, a model predictive

control scheme is developed for the rigid body SLIP to drive the system to a periodic orbit. This is

accomplished by defining a Poincaré map from one stride to the next and using numerical

optimization each stride to select a leg touchdown angle that will best deliver the system to a desired

fixed point of this map. The scheme is tested on both the point mass and rigid body SLIP models

using parameter values that are characteristic of the cockroach, Blaberus discoidalis. It is found to

increase the region of stability for both, as well as greatly improving the systems ability to recover

from energy conservative perturbations.

Copyright by Cary R. Maunder
September 22, 2006
All Rights Reserved

Model Predictive Control For Sagittal Plane Locomotion

by
Cary R. Maunder

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 22, 2006
Commencement June 2007

Masters of Science thesis of Cary R. Maunder Presented on September 22, 2006.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the Department of Mechanical Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University

libraries. My signature below authorizes release of my thesis to any reader upon request.

Cary R. Maunder, Author

ACKNOWLEDGEMENTS

 I thank my advisor, Dr. John Schmitt for his guidance and support of my research over the

past two years, for investing his time and resources into my growth and learning, and for his

encouragement or at least tolerance of my “independent” research techniques. I thank Jason Kyle

for his companionship in the study of optimization and his advice on my research. I thank my

father, Dr. Richard Maunder for his unconditional support of my interests, my mother Lucinda

Maunder for helping me through tough times, and my stepmother Karen Maunder for giving me the

drive to get things done.

TABLE OF CONTENTS
 Page

1 Introduction ...1

2 Mathematical Background...3

2.1 Optimization..3

2.2 Constrained Optimization..4

2.2.1 Parameter Constraints ..4

2.2.2 Differential Constraints..6

2.2.3 Inequality Constraints ..7

2.3 Variation vs. Differential ...8

2.4 Leibnitz’ Rule..9

2.5 Collocation ..10

2.5.1 Differential Constraints at the Collocation Point ... 11

2.5.2 Connection Constraints..12

2.5.3 Change of Variables ...14

2.5.4 Differential Match With New Polynomials..18

2.6 Newton-Raphson Solver..20

2.7 Poincaré Map...22

3 Model...23

3.1 Flight Phase Dynamics..24

3.2 Ground Phase Dynamics ...26

4 Solution..30

4.1 Optimal Criterion ..30

4.1.1 Unconstrained Cost Function...31

4.1.2 Constrained Cost Function...32

TABLE OF CONTENTS (Continued)
 Page

4.1.3 First Derivative ..38

4.1.4 Evaluation of Boundary Conditions...40

4.2 Structure of the Numerical Method ...46

4.2.1 Residual ...46

4.2.2 Collocation State Vector ..48

4.2.3 Nondimensionalization of the Residual Vector..49

4.3 Initial Conditions...50

4.3.1 Bounds on Leg Touchdown Angle for Zero Horizontal Velocity...............................50

4.3.2 Bounds on Leg Touchdown Angle for Positive Horizontal Velocity50

4.3.3 Bounds on Leg Touchdown Angle for Negative Horizontal Velocity........................50

4.3.4 Modified Limits Due to Insufficient Height ..50

4.3.5 Calculation of Other States ..50

5 Results ...50

5.1 Point Mass SLIP..50

5.1.1 Stability of Point Mass Fixed Points..50

5.1.2 Perturbation Returnability of Point Mass System..50

5.2 Rigid Body SLIP ...50

5.2.1 Stability of Rigid Body Fixed Points ...50

5.2.2 Perturbation Returnability of Rigid Body System ...50

6 Conclusion...50

Bibliography ..50

Appendices ..50

LIST OF FIGURES
Figure Page
2.1 Illustration of constrained minimization. ..5

2.2 The optimal path, ()x t , and neighboring path, ()x t∗ . ..8

2.3 Collocation segment break up...10

2.4 Polynomial coefficient labeling scheme. ..12

3.1 The system at spring touchdown...23

4.1 Relation of maximum β to δ at touchdown. ...50

5.1 Periodic orbit’s relation to its fixed point. ..50

5.2 Floquet multipliers of the periodic orbits in the nominal gait family for the
 point mass SLIP with a fixed angle reset policy. ..50

5.3 Floquet multipliers of the periodic orbits in the nominal gait family for the
 point mass SLIP with model predictive control. ...50

5.4 Stability of point mass SLIP gait families with a fixed angle reset policy................................50

5.5 Stability of point mass SLIP gait families with model predictive control.................................50

5.6 The control system’s ability to return from a perturbation to oδ ..50

5.7 The magnitudes of the Floquet multiplier of the periodic orbits in the nominal
 gait family for the rigid body SLIP with a fixed angle reset policy. ...50

5.8 The magnitudes of the Floquet multiplier of the periodic orbits in the nominal
 gait family for the rigid body SLIP with model predictive control...50

LIST OF APPENDICES
 Page

APPENDIX A Residual and Hessian Development Code ..50

A.1 euler_param_calc_ad1 ..50

A.2 residual_formatter...50

A.3 hessian_ formatter ..50

APPENDIX B Control Scheme Code ...50

B.1 collocation4 ..50

B.2 ic_prep5 ..50

B.2.1 ic_prep_range_test ...50

B.2.2 ic_prep_cost_finder ...50

B.2.3 ic_final_prep1 ..50

B.2.4 rk_step ...50

B.3 gc_newton ..50

B.4 Residual and Hessian Codes...50

APPENDIX C Simulation Code..50

C.1 rb_slip_sim ...50

C.2 Front End Codes ...50

C.2.1 auto_rb_fixed_point_find1 ..50

C.2.2 rb_perterbation_return1 ...50

C.2.3 rb_eig_fam1...50

C.2.4 rb_auto_perterbation_return1 ..50

C.3 Simulation Ending Criterion...50

C.3.1 default_end_criterion ...50

C.3.2 perturbation_end_criterion...50

1 INTRODUCTION

For centuries humans have looked to biology for inspiration in the development of machinery. The

development of walking and running machines is no exception. Of particular interest is the

cockroach, which has been found to move extremely fast for its size, taking rough terrain at full

speed without falling [1]. Such locomotion characteristics would be very desirable for the creation

of nimble robots. Extensive investigation into how the cockroach, Blaberus descoidalis walks and

runs has shown that although it uses three legs per stance to walk and run, the legs act together to

produce force and moment patterns similar to those of a biped [2], [3]. This in conjunction with

similar findings from studies of creatures of other morphologies has resulted in the use of reduced

order models to describe the motion of more complex systems. These simple models are called

templates [4]. Two such templates are the point mass spring loaded inverted pendulum (point mass

SLIP) and the rigid body SLIP. Both model sagittal plane locomotion by idealizing the combination

of legs used by an animal in each stance to a single effective leg modeled by a spring and have been

shown to accurately represent the motion of these animals [5], [6]. The obvious difference is that

the point mass SLIP reduces the body to a point mass while the rigid body SLIP goes on to model

sagittal rotation.

 Extensive research has been done on control of the point mass SLIP. Because the model is

unactuated, control is limited to variations in parameters. The most popular parameter to vary has

been the leg touchdown angle. Although some control schemes do not directly specify a leg

touchdown angle, almost all affect the leg touchdown angle in a way that increases stability. The

simplest control scheme is the fixed leg angle reset policy where the touchdown angle is held fixed

relative to the inertial frame at each period. This scheme has been shown to have a small region of

stability [7],[8]. With model parameters taken from Blaberus descoidalis however, this region

becomes extremely small [9] indicating that this would be a poor control scheme for robots of this

morphology.

 An increased region of stability was found using swing leg retraction [10] where the leg is

swung toward the ground at a constant angular velocity starting at the apex of the flight phase. This

allows the system to counteract disturbances in the touchdown state better than a fixed touchdown

angle policy.

2

 Similar methods use prescribed motion to increase stability via open loop control [11],

[12]. The advantage of these schemes is that all leg angles are relative to the body so the only

sensors needed for implementation are clocks and well-tuned servos. Because of their practicality

these schemes have been implemented with great success on the robot, RHex [13].

 Neither fixed angle reset, swing leg retraction, nor prescribed motion take advantage of the

system’s previous behavior to direct its future behavior. Adaptive control schemes have be

developed to take advantage of this information [9],[14]. These control schemes rely on the

previous leg lift off and touchdown angle to choose its next touchdown angle. They greatly improve

the region of stability found for the fixed angle reset policy while requiring little knowledge of the

desired gait. Since the input parameter is the desired touchdown angle it is easy to switch between

gaits.

 Many of the control schemes developed for the point mass case have been extended into

rigid body SLIP model with limited success. Partially asymptotically stable gaits having three

Floquet multipliers of unity magnitude have been found for the fixed angle reset policy, although the

number of such gaits is apparently very small and dependent on the system parameters used in

simulation [15]. In addition the prescribed motion scheme developed for RHex has exhibited

partially asymptotically stable gaits in certain parameter regions [16].

 All the schemes presented thus far use an understanding of the behavior of the system to

determine criterion for a leg placement protocol, but none use the model itself in the protocol. The

work of Mombaur et al. [17] uses knowledge of the model and numerical optimization to predict

optimally stable open-loop gaits for a 4 DOF monopod and a 5 DOF biped. We apply model

predictive control to the point mass and rigid body SLIP using the model and the state at lift off to

predict the optimal leg touchdown angle to drive the system to a periodic orbit. The feed-back at lift

off assists the control system in recovering the system from otherwise catastrophic perturbations.

Because control is applied once per stride, this scheme will be well suited for implementation on

microcontrollers which operate in a discrete fashion.

 The work is structured as follows. In section 2, we review some mathematical concepts

that are crucial to development of the control scheme include unconstrained (2.1) and constrained

optimization (2.2), distinction between variations and differentials (2.3), Leibnitz’ Rule (2.4),

Collocation (2.5), Newton-Raphson Routines (2.6), and Poincaré Maps (2.7). In section 3, we

3

describe the rigid body SLIP model developing its equations of motion for its flight (3.1) and

ground phases (3.2). In section 4, we outline the solution, by developing the criterion for an optimal

trajectory (4.1), based on the penalization of undesired end states (4.1.1) and the trajectory’s

adherence to some physical constraints (4.1.2). This constrained penalization function is then

differentiated and analyzed to yield the optimal criterion (4.1.3). These are then distilled into

boundary conditions for a boundary value ODE (4.1.4). Collocation is employed to turn the

boundary value problem into a system on nonlinear equations which must be driven to zero (4.2). A

scheme for developing an acceptable guess at the initial conditions of the system of nonlinear

equations is developed (4.3). The idea is that the system of nonlinear equations is solved between

the lift off and touchdown events to determine an optimal touchdown angle. In section 5 the control

scheme is tested numerically for the point mass case (5.1), where the Floquet multipliers of different

gait families are determined both with the model predictive control scheme and the fixed leg

touchdown angle (5.1.1). The systems ability to return from an energy conservative perturbation is

also tested for the nominal gait family (5.1.2). The control scheme is also tested against the fixed

angle reset policy in the rigid body case to a lesser extent (5.2). At last, in section 6 we summarize

the work and suggest further studies.

2 MATHEMATICAL BACKGROUND

 This section reviews and summarizes mathematical concepts that are critical to the development of

the research presented in this work. Readers familiar with the material may bypass this section, or

refer to it as needed.

2.1 Optimization

Optimization is achieved through the creation of a performance index and its extremization. The

performance index consists of a cost function that attains either a maximum or minimum value

when a desired result occurs [18]. While many cost functions consist of quadratic forms balancing

the weighting of state variables and control parameters, they may also include terms that penalize

undesired behavior. Cost functions utilized in this work take the form,

4

 () (),f

o

t

s t
J t L t u dtφ= + ∫ , (2.1)

where φ is the performance index applied at a specific time, st , and L is the performance index

with input, u , applied over an interval of time ot to ft . Finding cost function extrema requires

equating the total differential of the cost function to zero. Points where the derivative of the cost

function is zero represent either extrema, such as minimum or maximum values, or an inflection

point of the function. Examining the second derivative of the function at the identified point

determines whether the point is a minimum, maximum or an inflection point of the cost function.

Minimum, maximum, and inflection points have second derivatives that are positive, negative and

zero, respectively. In some cases it is easy to see at what kind of extremum the cost function is. In

these cases, the often quite expensive computation of the second derivative is forgone.

2.2 Constrained Optimization

An optimization is often desired that is constrained to an equation or inequality that cannot be

substituted into the performance index directly. These constraints can be limited to a specific time

or applied over an interval.

2.2.1 Parameter Constraints

To illustrate how constraints are applied to an optimization problem, consider the cost function

 (),J x yφ= , (2.2)

which is to be minimized constrained to,

 (), 0x yψ = (2.3)

 where x and y are optimization parameters and φ is continuous in x and y . Consider Figure

2.1.

5

Figure 2.1 Illustration of constrained minimization. The dotted line is the contour of () 1,x y cφ = .
The dashed line is the contour of () 2,x y cφ = . The solid line is the function (), 0x yψ = .

Let us suppose that φ has no local extrema, only a global minimum somewhere within the dotted

contour. If at an intersection of a contour of φ and ψ , the two functions are not tangent, then

movement in the correct direction along ψ will decrease the cost, J . However, if the two are

tangent, then movement in any direction along ψ will result in an increase in J . It follows that the

minimum of J constrained to ψ is where φ and ψ are tangent [18]. That is, their gradients must

be parallel. This is expressed as

 ()() ()(), ,x y x yφ ν ψ∇ = ∇ , (2.4)

where ν is a constant, denoted as a Lagrange multiplier, which scales the magnitude of ψ∇ to

match the magnitude of φ∇ . Rearranging eq. (2.4) and absorbing a negative sign into ν yields,

 () ()(), , 0x y x yφ νψ∇ + =
v

. (2.5)

Taking the gradient yields,

0
0
0

x x

y y

φ νψ
φ νψ

ψ

+
 + =

. (2.6)

(), 0x yψ =

() 1,x y cφ =

() 2,x y cφ =

6

 Creating a constrained cost function 'J , which equals the quantity inside the gradient

operator in eq. (2.5), is equivalent to adding zero to the original unconstrained cost function, J ,

since ψ is defined to equal zero when the constraint is satisfied. Evaluating the total differential of

'J , as is done to find the minimum in unconstrained optimization, results in

 () () ()' 0x x y ydJ dx dy dφ νψ φ νψ ψ ν= + + + + = . (2.7)

Since dx , dy , and dν are arbitrary, the partial derivatives must each independently equal zero

[18], resulting in the same equations as presented previously in eq. (2.6). It can be concluded then,

that the addition of a constraint to the optimization of a system, is as simple as adding the constraint,

in the 0ψ = form, scaled by a Lagrange multiplier, to the unconstrained cost function. That is,

 'J J νψ= + . (2.8)

The optimization therefore proceeds as before, by taking the derivative of the new cost function and

setting it equal to zero. The time specific part of the cost function, including all the time specific

constraints, is sometimes denoted as, G .

2.2.2 Differential Constraints

Differential constraints can be applied to the system in much the same way as parameter constraints.

Instead of a constant Lagrange multiplier to scale the gradients to match magnitudes, the constraint

is multiplied by a continuous function which varies with time. This function is called a costate. For

example in,

 (), ,f

o

t

t
J L t y u dt= ∫ , (2.9)

subject to

 (), ,y f t y u=& , (2.10)

over ot to ft , the constrained cost function would be,

7

 () ()()' , , ,f

o

t T

t
J L t y u f t y y dtλ = + − ∫ & , (2.11)

where y is a column vector of states, u is a column vector of inputs, and λ is a column vector of

costates. For ease of differentiation eq. (2.11) is rearranged to yield

 ()' , , ,f

o

t

t
J H t y u y dtλ λ= − ∫ & , (2.12)

where H is called the Hamiltonian and takes the form,

 () (), , ,TH L t y u f t yλ= + . (2.13)

Because L , f , and y& continuously change with time, so must λ . A general cost function with a

time-specific portion as well as an integral portion is usually written in the form,

 () (), , , ,f

o

t

f f t
J G t y H t y u y dtλ λ= + − ∫ & , (2.14)

where G is the time-specific constrained cost and H is the Hamiltonian introduced previously.

 Note, the costs and constraints that comprise G need not be applied at the final time or

even at a common time. The integral costs and constraints may be applied at any time interval and

additional integrals can be added to apply costs and constraints over multiple time intervals. The

costs and constraints applied over one interval need not be the same as those applied over another.

2.2.3 Inequality Constraints

It is often necessary to bound optimization parameters to a certain region. This is done using

inequality constraints. Inequality constraints require adding an extra parameter to the system. If we

desire,

 x c≥ , (2.15)

where x is a parameter, input, or state, and c is a constant, then the constraint is,

8

 () 2,x a x a cψ = − − , (2.16)

where a is the extra parameter [18]. Since

 2 0a ≥ , (2.17)

 0x c− ≥ , (2.18)

and

 x c≥ , (2.19)

therefore bounding x to a specific region, as desired.

2.3 Variation vs. Differential

A variation is a differential taken at a fixed time. Referring to Figure 2.2, if fx represents a point

on the optimal path ()x t where an event, () 0xψ = , has occurred and fx∗ is a point on an

infinitesimally close neighboring path ()x t∗ where the same event has occurred, then dx is the

difference between fx∗ and fx . However, if fx∗% represents the point on ()x t∗ that occurs at the

same time as fx , then xδ is the difference between fx∗ and fx% because time is fixed [18].

Figure 2.2 The optimal path, ()x t , and neighboring path, ()x t∗ . Paths are infinitesimally close
together. The points fx∗ occurs at a value dx greater than fx and an infinitesimally small time,

dt , after fx while the point fx∗% occurs at a value xδ greater than fx but at the same time.

fx

fx∗

()x t

()x t∗

dt

dxxδ

 fx∗%

9

Let us assume now that fx occurs at time, ft . Then xδ can be expressed,

 () ()f fx x t x tδ ∗= − , (2.20)

and dx can be expressed

 () ()f fdx x t dt x t∗= + − . (2.21)

Since dt is infinitesimally small, ()fx t dt∗ + can be expressed as a first order Taylor series about

ft . Substituting this into eq. (2.21) yields,

 () ()f f
dxdx x t dt x t
dt∗= + − . (2.22)

Substituting in eq. (2.20), eq. (2.22) becomes

 dxdx x dt
dt

δ= + , (2.23)

and we obtain a relationship between differentials and variations.

2.4 Leibnitz’ Rule

Since many cost functions contain integrals and the minimization of a cost function requires the

evaluation of its derivative, it is often necessary to evaluate the derivative of an integral. For fixed

limits the derivative of an integral is simply the integral of the derivative. If

 ()(),f

o

t

t
I F t y t dt= ∫ (2.24)

then

 f

o

t

t
dI Fdtδ= ∫ , (2.25)

10

for ot and ft constant. Note that derivatives taken inside an integral are taken with time fixed

and therefore represent variations. Remember an integral is a continuous sum of the integrand

evaluated at every time between and including the limits. Even though the limits may not be fixed

the individual times at which the integrand is evaluated are.

 If the limits are not fixed an extra term must be added to the derivative. The differential of

the integral becomes,

 [] ff

o o

tt

t t
dI Fdt Fdtδ= + ∫ . (2.26)

This is Leibnitz’ rule [18].

2.5 Collocation

Collocation is a numerical method for solving boundary value problems. It is carried out by

breaking the full time interval into N segments and approximating each state over each time

segment as a sum of linearly independent trial functions [19]. See Figure 2.3.

Figure 2.3 Collocation segment break up. State y from ct to ft broken into N segments, iS ,
with 1N + nodes and N collocation points.

ct
ft

y

t
1S 2S NS 1NS −

Node 1

Collocation Point 1

Node N +1

Collocation Point N

11

In this work a cubic polynomial was used for the sole trial function for each state over each

segment because it was the lowest order polynomial that allowed us to enforce constraints at the

endpoints through substitution [20]. For the rest of this work we will employ a trial function of this

nature. While collocation points may be selected anywhere inside each time segment, we opted to

utilize collocation points in the center of the segment in this work. Matching the function with the

approximation substituted into it to the derivative of the approximation at these points ensures that

the polynomial approximation accurately represents the solution. The resulting cubic polynomial

takes the form,

 () 0 1 2 2 3 3j j j j jy t C C t C t C t= + + + , (2.27)

where i jC is the coefficient in the j th polynomial approximation corresponding with it for i = 0 to

3. To ensure that the polynomial accurately approximates the real solution, we choose the

coefficients such that the resulting polynomials satisfy some conditions that the real solution must

also satisfy:

1. The endpoints of each polynomial must coincide with the endpoint of any adjacent

polynomial.

2. The polynomials must obey the differential constraints at the end points.

3. The polynomials must obey the differential constraints at the collocation point.

We can use these conditions to write equations that will help us determine the coefficients of our

polynomial.

2.5.1 Differential Constraints at the Collocation Point

We can use the polynomial to approximate the state of the system at the collocation points in the

middle of each segment. If our polynomial approximation yields the correct state, we should be

able to substitute it into the differential constraints and obtain the derivatives of our approximation

polynomials [20]. That is,

12

 ()() () (1) (),..., for 1 to and 1 to
j j j

j j j
c i i c c My f y y i M j N= = =& , (2.28)

where ()()if x is the differential constraint function for state i , ()j

j
c iy is the j th polynomial

approximation of the i th state at the j th collocation point, ()j

j
c iy& is the derivative of the j th

polynomial approximation of the i th state at the j th collocation point, M is the number of states,

and N is the number of segments.

The derivative of the polynomial is given by,

 ()
1

1 2 3 2
() 2 3 for

j j

j j j j
i i i i n ny t C C t C t t t t

+
= + + ≤ ≤& , (2.29)

with i and j on the same intervals as in eq. (2.28), where ()
j
iy& is the derivative of the polynomial

approximation of the i th state in segment j ,
jnt is the starting time of the j th segment, the time of

the j th node, and the ending time of the 1j − th segment, and the coefficients are as labeled in

Figure 2.4.

Figure 2.4 Polynomial coefficient labeling scheme.

Substituting eq. (2.29) into (2.28) yields,

 ()
1 2 3 2

0 1 2 2 3 3 0 1 2 2 3 3
() 1 1 1 1

2 3

 ,..., ,

j j j
i i i

j j j j j j j j
i M M M M

C C t C t

f C C t C t C t C C t C t C t

+ +

= + + + + + +
 (2.30)

with i , j , and t on the same intervals as in eq. (2.29).

2.5.2 Connection Constraints

As mentioned earlier we would like to be able to constrain the value of polynomial and its derivative

at the endpoints. To accomplish this, the polynomial and its derivative must be evaluated at the

endpoints, yielding,

1 j
iC segment j coefficient number

state i

13

 0 1 2 2 3 3
()j j j j

j j j j j
n i i i n i n i ny C C t C t C t= + + + , (2.31)

1 1 1 1

0 1 2 2 3 3
()j j j j

j j j j j
n i i i n i n i ny C C t C t C t

+ + + +
= + + + , (2.32)

 1 2 3 2
() 2 3

j j j

j j j j
n i i i n i ny C C t C t= + +& , (2.33)

and

1 1 1

1 2 3 2
() 2 3

j j j

j j j j
n i i i n i ny C C t C t

+ + +
= + +& , (2.34)

where ()j

j
n iy is the j th polynomial approximation of the i th state evaluated at the j th node, ()j

j
n iy& is

the derivative of the j th polynomial approximation of the i th state evaluated at the j th node, and

jnt is the time at the j th node.

Rearranging equations (2.31), (2.32), (2.33), and (2.34) into a single vector equation yields

1 1 1 1

1 1 1

2 3
0 ()

2 1
()

22 3
()

32
()

1

0 1 2 3

1

0 1 2 3

j j j j

j j j

j j j j

j j j

j
jn n n n i

i
jj

n n n ii
j j

in n n n i
j j

in n n i

t t t yC
t t yC

Ct t t y
Ct t y

+ + + +

+ + +

 =

&

&

, (2.35)

where the square matrix is called the time matrix whose inverse is denoted by []K [20].

Multiplying both sides of eq. (2.35) by []K results in,

1

1

0 ()

1
()

2
()

3

()

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C y
C y

K
+

+

 =

&

&

, (2.36)

an equation for the coefficients of the approximation polynomial in terms of the end states and their

derivatives.

14

2.5.3 Change of Variables

If the final and initial times are free to change based on geometric events, it follows that the time

matrix will also change. To simplify computation, we desire known, fixed values for the time

matrix such that K remains invariant with respect to initial or final time changes. This can be

achieved through a change in variables. Let us assume a form for the integral part of the derivative

of our cost function as

 () ()f

o

t T T T
yt

H y f y dtλ δ δλ + + − ∫ & & , (2.37)

where yδ is the variation of the state vector, y , δλ is the variation of the costate vector, λ , y& is

the time derivative of y , λ& is the time derivative of λ , yH is the differential constraint function

for λ& , and f is the differential constraint function for y . Since no part of this equation depends

explicitly on time, the starting time of the integral is immaterial as long as it is over the same

amount of time. So let us define an intermediate time nt such that,

 n f ot t t= − . (2.38)

Then eq. (2.37) becomes,

 () ()
0

nt T T T
yH y f y dtλ δ δλ + + − ∫ & & . (2.39)

Let us now define a nondimensionalized time, τ , which is scaled by nt so that when t is zero, τ is

zero, and when t is nt , τ is 1. This leads to

1 0 0n

t
t

τ
=

− −
. (2.40)

Rearranging we obtain

 nt t τ= . (2.41)

Differentiating eq. (2.41) yields

15

 ndt t dτ= . (2.42)

Substituting eq. (2.42) into eq. (2.39) for dt yields,

1

0
.

T T
T

y n
n n

d dyH y f t d
t d t d
λ δ δλ τ
τ τ

 + + −
∫ (2.43)

Distributing we get,

1

0
.

T T
T

n y n
d dyt H y t f d
d d
λ δ δλ τ
τ τ

 + + −
∫ (2.44)

Since we are integrating with respect to τ , we will still obtain values for y and λ , as desired [18].

We define the following quantities for simplicity:

 T
y n y yH t H fλ= = %% , (2.45)

 nf t f=% , (2.46)

 d
d
λλ
τ

′ = , (2.47)

and

 dyy
dτ

′ = . (2.48)

Our new Euler equations become

 yHλ′ = − % (2.49)

and

16

 y f′ = % . (2.50)

Computational simplification would also arise if we did not have to find a unique time matrix

inverse for every time segment. Since the polynomials approximate values within the time segment

only, it does not matter at what time the segment started, it only matters how much time has passed

since the segment began. If we set τ to start at zero at every segment beginning and we restrict the

segments to be equally spaced, then our time and K matrix will not change between the segments.

Such a protocol would yield

 0
jnτ = (2.51)

and

1

1
jn N

τ
+
= . (2.52)

Substituting eq. (2.41) into (2.27) yields

 () 0 1 2 2 2 3 3 3
()
j j j j j
i i i n i n i ny C C t C t C tτ τ τ τ= + + + (2.53)

Since nt does not depend on time, its factors can be absorbed into the constants, yielding,

 () 0 1 2 2 3 3
()
j j j j j
i i i i iy C C C Cτ τ τ τ= + + +% % % . (2.54)

Taking the derivative with respect to τ gives,

 () 1 2 3
() 2 3j j j j
i i i iy C C Cτ τ τ′ = + +% % % (2.55)

The vector equation therefore becomes,

17

1

1

0 ()

1
()

22 3
()

3

()
2

1 0 0 0
0 1 0 0

1 1 11

1 10 1 2 3

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C yN N N
C y

N N

+

+

 ′ =

 ′

%

%

%

. (2.56)

Inverting our new time matrix yields,

1

1

0 ()

1
()

2
()

3

()

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C y
C y

K
+

+

 ′ =
 ′

%

%

%

% , (2.57)

where K% is the inverse of the nondimensionalized time matrix. Equation (2.54) can now be written

in vector form as,

 ()
1

1

0 ()

1
()2 3 2 3

() 2
()

3

()

1 1

j

j

j

j

j
j n i

i
jj

n ij i
i j j

i n i
j j

i n i

yC
yC

y
C y
C y

Kτ τ τ τ τ τ τ
+

+

 ′ = =
 ′

%

%

%

% . (2.58)

We can simply specify a state, ()jn iy , that serves as the end state of the 1j − th segment and the

beginning state of the j th segment. Our differential constraints should hold not only at the

collocation point but at the nodes too. So we can replace the derivatives of the states with the

differential constraints shown in eqs. (2.49) and (2.50) to yield

 ()
()

()
1

1

()

()2 3
()

()

()

,
1

,

j

j

j

j

n i

i n nj
i

n i

i n n

y

f y t
y

y

f y t

Kτ τ τ τ
+

+

 =

%

%

% , (2.59)

and

18

 ()
()

()
1

1 1

()

()2 3
()

()

()

, ,
1

, ,

j

j j

j

j j

n i

y i n n nj
i

n i

y i n n n

H y t

H y t

K

λ

λ
λ τ τ τ τ

λ

λ

+

+ +

 − =

−

%

%

% . (2.60)

2.5.4 Differential Match With New Polynomials

To satisfy the differential constraint at the collocation point developed in eq. (2.28), we must obtain

the derivative of the polynomials in eqs. (2.59) and (2.60). Note, even though eq. (2.28) was only

developed for the states, because the costates must follow similar differential constraints, a similar

equation can be used. It is,

 ()() () , for 1 to
j j j

j j
c i y i c cH y j Nλ λ= − =& . (2.61)

In both instances the derivative with respect to τ is being used instead of t . Because of this ()f y

is replaced with (), nf y t% and (),yH y λ− is replaced with (), ,y nH y tλ− % . The derivatives are

 ()
()

()
1

1

()

()2
()

()

()

,
0 1 2 3

,

j

j

j

j

n i

i n nj
i

n i

i n n

y

f y t
y

y

f y t

Kτ τ τ
+

+

 ′ =

%

%

% , (2.62)

and

 ()
()

()
1

1 1

()

()2
()

()

()

, ,
0 1 2 3

, ,

j

j j

j

j j

n i

y i n n nj
i

n i

y i n n n

H y t

H y t

K

λ

λ
λ τ τ τ

λ

λ

+

+ +

 − ′ =

−

%

%

% . (2.63)

19

These derivatives are evaluated at the collocation points. Tau can be thought of as the percentage

of the ground phase that has been completed. So when τ is 1, 100% of the ground phase is

complete. However inside each segment τ starts over at zero and ends at what ever percent of the

total ground phase that segment represents. Since there are N segments, τ starts at zero and ends

the segment at 1
N

. In the middle of the segment where the collocation point is, τ would be 1
2N

.

Substituting this into the polynomial derivatives yields,

()

()
1

1

()

()

() 2
()

()

,1 30 1
4

,

j

j

j

j

j

n i

i n n

c i
n i

i n n

y

f y t
y

yN N

f y t

K
+

+

 ′ =

%

%

% , (2.64)

and

()

()
1

1 1

()

()

() 2
()

()

, ,1 30 1
4

, ,

j

j j

j

j

j j

n i

y i n n n

c i
n i

y i n n n

H y t

N N

H y t

K

λ

λ
λ

λ

λ

+

+ +

 − ′ =

−

%

%

% (2.65)

for i = 1 to 6. The polynomial approximations of the states themselves at the collocation points

must also be evaluated. This leads to,

()

()
1

1

()

()

() 2 3
()

()

,1 1 11
2 4 8

,

j

j

j

j

j

n i

i n n

c i
n i

i n n

y

f y t
y

yN N N

f y t

K
+

+

 =

%

%

% , (2.66)

and

20

 ()
()

()
1

1 1

()

()

() 2 3
()

()

, ,1 1 11
2 4 8

, ,

j

j j

j

j

j j

n i

y i n n n

c i
n i

y i n n n

H y t

N N N

H y t

K

λ

λ
λ τ

λ

λ

+

+ +

 − =

−

%

%

% , (2.67)

for i = 1 to 6. We substitute these values into (), nf y t% and (), ,y nH y tλ− % and set them equal to the

polynomial derivative eqs. (2.64) and (2.65). This quantity will go to zero as the polynomial

approximations approach the actual solution.

2.6 Newton-Raphson Solver

A typical residual is composed of partial derivatives of the cost function with respect to every

variable parameter. Therefore it is the gradient of the cost function. Because the differential

constraints are enforced using collocation, the components of the residual vector enforcing the

differential constraints are not partial derivatives of the cost function. As a result, the residual is not

a pure gradient. In driving the residual to zero, the gradient of each of the residuals must be

determined, requiring the determination of the second partial derivatives of the cost function with

respect to the every variable parameter. Organizing these gradients into a matrix produces a

resultant matrix referred to as the Hessian. Because in this implementation the residual is not

exactly the gradient of the cost function, the gradient of the residual vector is not exactly the Hessian

of the cost function.

 The objective is to drive the elements of the residual, ()kR , to zero by correctly selecting

the variables on which the residual is dependent , Χ .

 () 0kR Χ = , (2.68)

for 1k = to the size of the residual. To do this an initial guess oΧ is chosen and refined based on

criteria that will be developed shortly. First the Χ vector must be defined. In the Newton-Raphson

routine, the term state vector refers to the state of the routine. That is it refers to all the parameters,

states at the nodes, and costates at the nodes assembled into a vector.

 By approximating kR as a truncated Taylor series we find,

21

 () ()
1

P
k

k k l
l l

R
R Rδ δ

=

∂
Χ + Χ = Χ + Χ

∂Χ∑ . (2.69)

The goal is to force ()kR δΧ + Χ to zero by picking the correct δΧ . If we assume that eq. (2.69) is

a good approximation for ()kR δΧ + Χ , then substituting zero for ()kR δΧ + Χ should yield an

equation which can be solved for δΧ [19]. That is,

 ()
1

P
k

l k
l l

R
Rδ

=

∂
Χ = − Χ

∂Χ∑ . (2.70)

The sum can be written,

 ()

1

2

1 2

k k k
k

P

P

R R R
R

δ
δ

δ

Χ
 Χ ∂ ∂ ∂ = − Χ ∂Χ ∂Χ ∂Χ
 Χ

L
M

. (2.71)

This equation can be written for 1k = to size of the residual by concatenating partial derivative row

vectors such that,

()
()

()

1 1 1

1 2
1 1

2 2 2
2 2

1 2

1 2

P

P

P P
P P P

P

R R R

R
R R R

R

R
R R R

δ
δ

δ

∂ ∂ ∂
 ∂Χ ∂Χ ∂Χ Χ Χ
 ∂ ∂ ∂ Χ Χ ∂Χ ∂Χ ∂Χ = −

 Χ Χ ∂ ∂ ∂

 ∂Χ ∂Χ ∂Χ

L

L

M M
M M O M

L

. (2.72)

The matrix of partial derivatives in eq. (2.72) is the Hessian of the cost function, when the residual

is the gradient but is often referred to as the Hessian in other instances as well. Inverting this matrix

numerically yields a relationship for δΧ . In those instances where the Hessian is singular, the

pseudo-inverse is taken instead. A new guess, newΧ , is formed by adding δΧ to the old guess.

 new old δΧ = Χ + Χ (2.73)

22

This is repeated until ()R Χ is zero.

2.7 Poincaré Map

If ()y = f y& is an -dimentionaln system, S is an 1n − dimensional surface of section, and all

trajectories starting at S flow through it, then the Poincaré Map P is the mapping from one of the

trajectories intersections of S to the next. Let ky denote the k th intersection of S . The Poincaré

map is then defined as

 ()1k k+y = P y . (2.74)

 For a specific point, ∗y , if

 ()∗ ∗y = P y , (2.75)

then ∗y is a fixed point of P . A trajectory starting at ∗y will end up at ∗y in a finite amount of

time. This is a closed orbit of the system ()y = f y& . The stability of the closed orbit can be

determined by examining the behavior of the system in a region around ∗y .

 To determine the behavior of the system in the region about the fixed point, we perturb the

fixed point with a vector resulting in

 ()1 0
∗ ∗+ +y v = P y v , (2.76)

where 0v is an ()1 -dimentionaln − vector. Expanding eq. (2.76) in a first order Taylor series

expansion yields,

 () ()()1 0D∗ ∗ ∗+ +y v = P y P y v (2.77)

for 0v of small magnitude where DP is an ()1n − x ()1n − matrix. Substituting eq. (2.75) into eq.

(2.77) yields

 ()()1 0D ∗v = P y v . (2.78)

23

The stability of fixed point ∗y is determined by the eigenvalues, iλ , of DP [21]. The

eigenvalues of this matrix are called the Floquet multipliers of the periodic orbit. Technically there

is one extra unity Floquet multiplier associated with a perturbation directly along the periodic orbit.

This multiplier is trivial since a perturbation along it would just amount to a translation in time.

Because of this it is ignored.

 The matrix DP can be determined by perturbing each state individually and using a

difference formula to obtain the column vector of partial derivatives taken with respect to the

individual state [19]. These vectors are then concatenated so they form DP .

3 MODEL

The model considered in this work is illustrated in Figure 3.1. It consists of a rigid body of mass m

and moment of inertia yyI , with a spring attached at point A , a distance d above the center of mass

in the negative Bk
v

 direction. The spring makes contact with the ground intermittently at its end

point, labeled C .

Figure 3.1 The system at spring touchdown.

θ

-x

z-

Ii
v

Bi
v

Ik
v

Bk
v

β

gF
v

sF
v

B

A

C

d

24

Unit vectors Ii
v

, Ij
v

, and Ik
v

 are mutually perpendicular and inertially fixed with Ii
v

 pointing to the

right, Ij
v

 pointing out of the page and Ik
v

 point directly downward. Unit vectors Bi
v

, Bj
v

, and Bk
v

 are

also mutually perpendicular, but are fixed to the rigid body and aligned with its principal axes. Unit

vectors Ij
v

 and Bj
v

 are aligned and Bi
v

 makes an angle, θ , with Ii
v

. The center of mass, is a distance

z- and x- , above the ground and to the left of the foot placement respectively. These coordinates

are assigned in this way so z and x increase in the positive Ik
v

 and Ii
v

 directions respectively. The

constant gravitational force, gF
v

, acts in the Ik
v

 direction.

 Because the governing equations of motion of the body change depending upon whether or

not the leg is in contact with the ground, the model is a hybrid system. As a result, the equations of

motion are defined in a piecewise manner with discrete events that determine when the reign of one

set stops and the next starts. We will refer to these segments of continuity as phases. The events

that switch between phases are spring lift off and touchdown.

 The flight phase starts when the spring lifts off the ground and ends when it first makes

contact again. During the flight phase, the spring remains an angle β from horizontal in the inertial

frame. The only force acting on the body is the gravitational force, gF
v

. The ground phase starts,

with the spring undeflected, when the spring makes contact with the ground, and ends when the

spring returns to its initial length and lifts off from the ground. At touchdown the spring remains at

the angle, β , with respect to the horizontal but after the first instant, the angle changes as required

by the dynamics of the system. During this phase, in addition to the gravitational force, a spring

force, sF
v

, is present.

3.1 Flight Phase Dynamics

In flight, the gravitational force is the only force on the body. It given by

 g IF mgk=
vv

, (3.1)

where g is the gravitational constant. Applying Newton’s Second law yields

 ()I I Im xi zk mgk+ =
v vv

&& && , (3.2)

25

where x&& and z&& are the second derivatives with respect to time of x and z . Canceling the m on

both sides of the equation and dotting with Ii
v

 and Ik
v

 yields

 0x =&& , (3.3)

and

 z g=&& , (3.4)

respectively.

 Since there are no applied couples and gravity acts only on the center of mass, there is no

angular acceleration. So

 0θ =&& . (3.5)

Organizing x , z , θ , and their derivatives in a vector yields

x
z

x
z

θ

θ

 =

y
&

&
&

. (3.6)

This is the state space representation of the system. We can take the derivative of eq. (3.6) and

substitute in eqns. (3.3) through (3.6), to obtain

()

()

()

4

5

6

0

0

y

y

y

g

 =

y& . (3.7)

26

These are the first order equations of motion. Equation (3.7) can be integrated analytically

resulting in,

 ()

() ()

() ()

() ()

()

()

()

1 4

2
2 5

3 6

4

5

6

1
2

o o

o o

o o

o

o

o

y y t

y y t gt

y y t
t

y

y gt

y

+

 + +

+
=

 +

y , (3.8)

where ()o iy is the initial value of ()iy for 1i = to 6 .

3.2 Ground Phase Dynamics

During the ground phase, the spring force, sF
v

, acts on the body in addition to the gravitational

force. The spring is linear so sF
v

 will be proportional to the change in spring length. We will refer

to the spring length as η and the uncompressed spring length as oη . To obtain equations of motion

utilizing sF
v

, we must define η in terms of our generalized coordinates, x , z , and θ . Referring to

Figure 3.1, since C and A are the endpoints of the spring, it follows that the length of the spring,

η , is the magnitude of the position vector from C to A . That is,

 C Arη →= v . (3.9)

This position vector can be expressed as

 C A C Ar r r→ → →= +v v v
Å Å , (3.10)

where Cr →
v

Å is the position vector from C to the center of mass and Ar →
v
Å is the position vector

from the center of mass to A .

 The generalized coordinate, x , is defined as the distance in the Ii
v

 direction from the leg

touchdown point to the center of mass. The generalized coordinate, z , is defined as the distance in

the Ik
v

 direction from the leg touchdown point to the center of mass. Since the vectors are being

27

defined for the ground phase we can assume the leg touchdown point and the spring end point, C ,

to be coincident. So the position vector from C to the center of mass is,

 C I Ir xi zk→ = +
vvv

Å . (3.11)

As mentioned earlier, the spring attachment point, A , is held a fixed distance d above the center of

mass. Above, in this case, means above relative to the body. So,

 A Br dk→ = −
vv

Å . (3.12)

Converting this to the inertial reference frame so we can combine it with eq. (3.11) yields,

 () ()()sin cosA B I Ir dk d i kθ θ→ = − = − +
v vvv

Å . (3.13)

Substituting eqs. (3.11) and (3.13) into (3.10), we obtain,

 ()() ()()sin cosC A I Ir x d i z d kθ θ→ = − + −
vvv . (3.14)

The leg length is just the magnitude of this vector, which may be computed as

 ()() ()()2 2
sin cosx d z dη θ θ= − + − . (3.15)

We represent the leg with a linear spring such that the magnitude of the spring force is a function of

the leg length and the spring constant, k . So,

 ()s oF k η η= −
v

. (3.16)

Substituting eq. (3.15) into eq. (3.16) yields,

 () ()() ()()2 2
sin coss o oF k k x d z dη η η θ θ = − = − − + −

v
. (3.17)

28

The spring force always acts along the spring. That is sF
v

 acts in the direction of the position

vector from C to A , C Ar →
v . Multiplying the sF

v
 with a unit vector in the direction of C Ar →

v yields

sF
v

. Unitizing C Ar →
v and multiplying by eq. (3.16) yields

 () C A
s o

C A

r
F k

r
η η →

→

= −

vv
v . (3.18)

Substituting eqs. (3.14) and (3.9) in for the position vector and its magnitude respectively yields,

 ()() ()()()1 sin coso
s I IF k x d i z d k

η
θ θ

η

= − − + −

vv v
. (3.19)

While η can be calculated in terms of the generalized coordinates with eq. (3.15), for simplicity, we

refrain from utilizing this relationship in the next calculations. Using Newton’s Second Law to

obtain the equations of motion, we sum the two forces on the body, sF
v

 and gF
v

, and divide by the

mass yielding

 ()() ()()1 sin 1 coso o
I I I I

k kxi zk x d i z d g k
m m

η η
θ θ

η η

+ = − − + − − +

v vv v
&& && (3.20)

Evaluating the dot product of this expression with Ii
v

 and Ik
v

 yields

 ()()1 sinokx x d
m

η
θ

η

= − −

&& (3.21)

 and

 ()()1 cosokz z d g
m

η
θ

η

= − − +

&& (3.22)

respectively. We identify the last equation of motion using the change in angular momentum. Since

we have the moment of inertia about the center of mass, it would be easiest to sum the moments

29

about the center of mass as well. Since, spring force, sF
v

, is the only force that is not applied at

the center of mass and there are no applied couples, the total moment about the center of mass is,

 sM r F→= ×
v vv

Å A . (3.23)

Substituting eqs (3.13) and (3.19) into eqn. (3.23) yields,

()

() ()
()

()

()

0 cos 0 sin
1 cos 0 sin 0

0 sin 0 cos

o

x d
M dk

z d

θ θ
η

θ θ
η

θ θ

− −
 = − − − −

v
. (3.24)

Multiplying the skewsymmetric cross product with the vector and simplifying yields,

 () ()()1 cos sino
IM dk x z j

η
θ θ

η

= − − −

v v
. (3.25)

The change in angular momentum with respect to time is,

 B I
yy I

dH
I j

dt
θ=

v
v&& . (3.26)

Equating (3.26) to the moment in eq. (3.25), dotting both sides with Ij
v

, and dividing by the moment

of inertia yields the rotational equation of motion,

 () ()()1 sin coso

yy

dk z x
I

η
θ θ θ

η

= − −

&& . (3.27)

Arranging the ground phase equations of motion into state space form yields,

30

()()

()()

() ()()

(4)

(5)

(6)

(1) (3)

(2) (3)

(2) (3) (1) (3)

1 sin

1 cos

1 sin cos

o

o

o

yy

y
y
y

k y d y
my

k y d y g
m

dk y y y y
I

η
η

η
η

η
η

 − − =
 − − +

 − −

& , (3.28)

where

 ()() ()()2 2

(1) (3) (2) (3)sin cosy d y y d yη = − + − . (3.29)

4 SOLUTION

The ultimate goal is for the system to move forward with an asymptotically stable periodic gait,

such that perturbations applied to the system that shift it away from the periodic orbit simply result

in the system returning to the original periodic gait. Because a periodic orbit ends where it began,

we can represent the continuous periodic orbit discretely with a single fixed point of the associated

Poincaré map. The fixed point contains all the states sampled at a particular instant in the periodic

orbit. For our system, the sampling is taken when the leg lifts off the ground and the flight phase

begins. It is called the lift off state.

4.1 Optimal Criterion

Our goal is to drive the lift off state to the fixed point each period. Since our only control over the

system is selection of the leg touchdown angle, β , we look into the future one stride and determine

the β that sends the lift off state, fy , the closest to the fixed point, fixedy . We accomplish this by

writing a cost function that penalizes deviations of fy from fixedy and finding the β which

minimizes this cost. The cost function is minimized by taking its derivative and driving it to zero.

31

4.1.1 Unconstrained Cost Function

As detailed previously, the cost function must penalize the final state if it deviates from the fixed

point. It will take the form,

 ()fJ yφ= , (4.1)

where ()fyφ is a positive semidefinite function which is zero when fy is equal to fixedy and

greater than zero when fy is not equal to fixedy . The latter is accomplished by using,

 fixed fY y y∆ = − . (4.2)

We nondimensionalize this quantity so that deviations of different quantities are treated equally.

This yields,

(1)

(2)

(3)

(4)

(5)

(6)

o

o

o

o

o

o

Y

Y

Y
Y

Y
v
Y
v

Y
v

η

η

η

∆

 ∆

 ∆
 ∆ = ∆

∆

 ∆

, (4.3)

where oη is the uncompressed spring length and ov is the speed of the center of mass at the

beginning of the period. Positive definiteness of φ is then assured with

 () () ()T

fy Y Q Yφ = ∆ ∆ , (4.4)

32

where Q is a diagonal weighting matrix. The elements of Q are positive and act as tuners for

the control system. Note that since the system will move forward with every stride, the first state, x

or (1)fy , will not be periodic. Therefore it is taken out of the cost function by setting (1,1)Q to zero.

4.1.2 Constrained Cost Function

Unfortunately the minimization of eq. (4.1) cannot help us in its current form since the system has

constraints it must follow. It must start at the initial conditions, follow the equations of motion for

flight, touch down at the right time, follow equations of motion for the ground phase, and lift off at

the correct time. These constraints are broken up into two categories.

 The first category includes the time specific constraints. Together with φ , from eq. (4.4),

these constraints comprise G , the time specific cost. They include the touchdown condition

constraints and lift-off constraints. Since the equations of motion for the flight phase can be

integrated analytically, instead of using an integral constraint to constrain this motion, we constrain

the touchdown state, cy , to equal the preintegrated function for y in terms of the initial conditions,

oy , and the touchdown time, ct .

 The second category includes the integral constraints. The only integral constraint that

needs to be applied is the one constraining the ground phase to follow its equations of motion.

There are no unconstrained costs applied over a time interval.

 The constrained cost function takes the form,

 f

c

t T

t
J G H y dtλ′ = + − ∫ & (4.5)

where G is the time specific constrained cost, y& is a 6 x 1 vector of the derivatives of the states,

y , λ is a 6 x 1 vector of the costates associated with the states, and H is the Hamiltonian given by

 (),TH f t yλ= , (4.6)

where (),f t y the a 6 x 1 vector of the equations of motion for the ground phase shown in eq.

(3.28).

33

 As mentioned previously, the time specific function, G , is broken into the end cost, φ ,

touchdown state constraints, θ , the touchdown condition constraints, χ , and the lift off condition

constraints, ψ .

 The touchdown state constraints form a 6 x 1 column vector. They constrain the states at

the touchdown time to equal the analytical solution to the equations of motion of the flight phase,

presented in eq. (3.8), evaluated at the touchdown time, ct . That is,

 ()c cy y t= . (4.7)

This ensures that the equations of motion for the flight phase are obeyed. Note in Figure 3.1, that

the coordinate, x , which corresponds to (1)y , is measured from the foot placement. This definition

simplifies the ground phase equations of motion, but it makes it difficult to define (1)y when the leg

has not touched down. Since (1)y does not appear in the unconstrained cost function and this

calculation is only being done over the ground phase, we do not care how (1)y is defined as long as

the rest of the states satisfy the equations of motion. So even though (1)oy may be defined from

some other point, we redefine (1)y for the ground phase to be measured from the foot placement.

Constraining (1)cy is done by defining C Ar →
v evaluated at the touchdown state in two different ways.

The first is using eq. (3.14). The second is using the angle β and the length oη to express C Ar →
v in

the I frame. That is,

 () ()()cos sinC A o I Ir i kη β β→ = − −
vvv . (4.8)

Equating these expressions yields,

 ()() ()() () ()(1) (3) (2) (3)sin cos cos sinc c I c c I o I o Iy d y i y d y k i kη β η β− + − = − −
v vv v

. (4.9)

Evaluating the dot product of this expression with Ii
v

 and rearranging yields,

 () ()(1) (1) (3)sin cos 0c c oy d yθ η β= − + = . (4.10)

The whole initial state constraint vector then becomes,

34

 ()

() ()(1) (3)

2
(2) (2) (5)

(3) (3) (6)

(4) (4)

(5) (5)

(6) (6)

sin cos

1
2

, ,

c c o

c o o c c

c o o c

c c

c o

c o c

c o

y d y

y y y t gt

y y y t
y t

y y

y y gt

y y

η β

θ β

 − +

 − − −

 − − =

−

 − −

 −

. (4.11)

 The touchdown condition constraint vector, χ , determines when the system must switch

from the flight phase to the ground phase in addition to limiting the touchdown time to be positive.

The first condition that must be satisfied for the system to go from flight phase to ground phase is

the height of the foot from the ground must be zero, indicating foot touch-down. This condition is

satisfied by expressing C Ar →
v in two different and equating as before in eq. (4.9). We then dot both

sides with Ik
v

 and reverse signs to obtain

 () ()(3) (2)sin coso c cd y yη β = − . (4.12)

Bringing everything to one side yields,

 () () ()(1) (3) (2), cos sinc c c oy d y yχ β η β= − − . (4.13)

 The second condition that must be satisfied is the leg must be entering compression. If, for

example, the foot was below the ground at the beginning of the flight phase and moved up so it was

at the same height as the ground, the first constraint would hold, but if the center of mass is not

moving forward fast enough, the distance between the foot placement and the leg attachment point

would increase. If the ground phase starts, this will put the leg in tension. Since the foot must never

grip the ground, leg tension should be impossible. In order to eliminate this problem we will specify

that the time derivative of the leg length be negative at touchdown. That is the leg length must be

decreasing as the leg touches down, forcing compression to occur. Equation (3.15) shows the leg

length in terms of the states. We square this quantity for simplicity. This is an acceptable step

because the time derivative of the square of a positive definite real quantity has the same sign as the

derivative of the quantity itself. This yields,

35

 ()() ()()2 22 sin cosx d z dη θ θ= − + − . (4.14)

Taking the time derivative yields,

()

()() ()() ()() ()()
2

2 sin cos 2 cos sin
d

x d x d z d z d
dt

η
θ θ θ θ θ θ= − − + − +& && & . (4.15)

This quantity must be less than or equal to zero. Dividing by 2 and substituting the state space

variables in eq. (3.6) evaluated at touchdown yields,

()() ()()
()() ()()

(1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

 sin cos

cos sin 0

c c c c c

c c c c c

y d y y d y y

y d y y d y y

− −

+ − + ≤
. (4.16)

Using the eq. (2.16) we form the constraint,

() ()() ()()

()() ()()
(2) (1) (3) (4) (3) (6)

2
(2) (3) (5) (3) (6) (1)

, sin cos

 cos sin

c c c c c c

c c c c c

y a y d y y d y y

y d y y d y y a

χ = − −

+ − + +
, (4.17)

where (1)a is the first element of a 4 x 1 bounding vector, a . The touchdown time, ct , must be

constrained to be positive. Again using eq. (2.16) we form the constraint,

 () 2
(3) (2),c ct a t aχ = − , (4.18)

where (2)a is the second element of the 4 x 1 bounding vector, a . Equations (4.13), (4.17), and

(4.18) form the 3 x 1 vector of touchdown condition constraints,

 ()

() ()

()() ()()
()() ()()

(3) (2)

2
(1) (1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

2
(2)

cos sin

sin cos
, , ,

 cos sin

c c o

c c c c c

c c

c c c c c

c

d y y

a y d y y d y y
y t a

y d y y d y y

t a

η β

χ β

 − −

 + − −

=
+ − +

 −

. (4.19)

36

 The lift off condition constraint vector, ψ , determines when the system must switch

from the ground phase to the flight phase in addition to limiting the ground phase time, nt , to be

positive. The ground phase time is,

 n f ct t t= − . (4.20)

 In order for the system to switch from the ground phase to the flight phase, the leg must be

fully extended. That is

 oη η= . (4.21)

Substituting this into the left side of eq. (3.15), squaring both sides for simplicity, and arranging

everything on one side yields the constraint equation,

 () ()() ()()2 22
(1) (1) (3) (2) (3)sin cosf o f f f fy y d y y d yψ η= − − − − . (4.22)

 The next condition is the leg must be leaving compression. The first condition, (1)ψ , is

satisfied both when the leg touches down and when it lifts off. So if we do not specify that the

derivative of the spring length is positive, then the ground phase could be cut off where it started.

We already calculated the derivative of the leg length in eq. (4.15). Dividing by 2 and substituting

the state space coordinates in eq. (3.6) evaluated at the end state yields,

()() ()()
()() ()()

(1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

 sin cos

cos sin 0.

f f f f f

f f f f f

y d y y d y y

y d y y d y y

− −

+ − + ≥
 (4.23)

Using the eq. (2.16) we form the constraint,

() ()() ()()

()() ()()
(2) (1) (3) (4) (3) (6)

2
(2) (3) (5) (3) (6) (3)

, = sin cos

 cos sin

f f f f f f

f f f f f

y a y d y y d y y

y d y y d y y a

ψ − −

+ − + −
, (4.24)

where (3)a is the third element of the 4 x 1 bounding vector, a .

37

 The ground phase time, nt , must be constrained to be positive. Again using eq. (2.16)

we form the constraint,

 () 2
(3) (4),n nt a t aψ = − , (4.25)

where (4)a is the fourth element of the 4 x 1 bounding vector, a .

 Equations (4.22), (4.24), and (4.25) form the 3x1 vector of lift off condition constraints,

 ()

()() ()()

()() ()()
()() ()()

2 22
(1) (3) (2) (3)

2
(3) (1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

2
(4)

sin cos

 sin cos
, ,

 cos sin

o f f f f

f f f f f

f n

f f f f f

n

y d y y d y

a y d y y d y y
y t a

y d y y d y y

t a

η

ψ

 − − − −

 + − −

=
+ − +

 −

-
. (4.26)

 The time-specific function is assembled to yield,

 () () () (), , , , , , ,T T T
f c c c c f nG y y t y t a y t aφ ξ θ β υ χ β ν ψ= + + + . (4.27)

where ξ is a 6 x 1 vector of the Lagrange multipliers associated with the touchdown state constraint

vector, θ , υ is a 3 x 1 vector of the Lagrange multipliers associated with the touchdown condition

constraint vector, χ , and ν is a 3 x 1 vector of Lagrange multipliers associated with the lift off

condition constraint vector, ψ . The constraint equations are zero when the constraints are satisfied.

Now that each part of the constrained cost function has been derived, it can be assembled displaying

its parameter dependencies. This will make is easy to take its total derivative. The final constrained

cost function is,

 () () , , , , , , , , ,f

c

t T
c f c n t

J G y y t t a H y y dtβ ξ υ ν λ λ′ = + − ∫ & . (4.28)

38

4.1.3 First Derivative

The minimum of a function is found where the functions total derivative is zero. To find the

minimum of our cost function, eq. (4.28), we take its total derivative. Using Leibniz’ Rule for

differentiating the integral, this yields

()

 ,

c f c f

f f

cc

y c y f t c t f

t tT T T
a ytt

dJ G dy G dy G dt G dt G d G d G d G d

G da H y dt H y H y y dt

β ξ υ ν

λ

β ξ υ ν

λ δ δλ δλ λ δ

′ = + + + + + + +

 + + − + + − − ∫& & &
 (4.29)

where

 x
GG
x

∂
=
∂

 (4.30)

for x equal to every variable on which G is dependent and

 x
HH
x

∂
=
∂

 (4.31)

for x equal to every variable on which H is dependent. See eq. (4.28) for dependencies. Note

from eq. (4.27) that

 TGξ θ= , (4.32)

 TGυ χ= , (4.33)

and

 TGν ψ= . (4.34)

Since θ , χ , and ψ were defined to be zero vectors, the G dξ ξ , G dν ν , and G dυ υ terms are zero.

Even though these terms are zero and they will be removed from dJ ′ for simplicity, they are still

requirements for the total derivative to be zero.

 Note from eq. (4.6) that

39

 TH fλ = . (4.35)

 Substituting eq. (4.35) into eq. (4.29) as well as eliminating the terms we established as zero leaves

() ()

 .

c f c f

f f

cc

y c y f t c t f a

t tT T T T
ytt

dJ G dy G dy G dt G dt G d G da

H y dt H y y f y dt

β β

λ δ λ δ δλ

′ = + + + + +

 + − + − + − ∫& & &
 (4.36)

We now integrate the T yλ δ & term by parts by selecting,

 T Tu λ= (4.37)

and

 ()dv dy d y
dt dt dt

δ δ= = . (4.38)

This results in

 2 22

11 1

t ttT T T

tt t
y dt y y dtλ δ λ δ λ δ − = − + ∫ ∫ && . (4.39)

Substituting this into eq. (4.36) yields,

() () ()

 .

c f c f

f f

cc

y c y f t c t f a

t tT T T T T
ytt

dJ G dy G dy G dt G dt G d G da

H y dt y H y f y dt

β β

λ λ δ λ δ δλ

′ = + + + + +

 + − − + + + − ∫ && &
 (4.40)

Since y f=& , the term ()T Tf y δλ− & is zero. Substituting in the limits we obtain

() () ()

 .

c f c f

f

c

y c y f t c t f a

tT T T T T
f f f f f f c c c c c c yt

dJ G dy G dy G dt G dt G d G da

H y dt y H y dt y H y dt

β β

λ λ δ λ λ δ λ δ

′ = + + + + +

 + − − − − + + + ∫ && &
 (4.41)

Using eq. (2.23) we relate yδ to dy eliminating yδ outside of the integral to obtain,

40

()

 .

c f c f

f

c

y c y f t c t f a

tT T T
f f f f c c c c yt

dJ G dy G dy G dt G dt G d G da

H dt dy H dt dy H y dt

β β

λ λ λ δ

′ = + + + + +

 + − − + + + ∫ &
 (4.42)

Rearranging yields,

() () ()
() ()

 .

c f c

f

f
c

T T
y c c y f f t c c

t T
t f f a yt

dJ G dy G dy G H dt

G H dt G d G da H y dtβ

λ λ

β λ δ

′ = + + − + −

 + + + + + + ∫ &
 (4.43)

Since dJ ′ must equal zero and cdy , fdy , cdt , fdt , dβ , da , and yδ are arbitrary, their

coefficients must be zero yielding the boundary conditions

, , 0, 0,

 , ,

 0, 0, 0,

f c

c f

T T
f y c y a

c t f t

G G G G

H G H G
βλ λ

θ ψ χ

= = − = =

= = −

= = =

 (4.44)

and differential constraint equations,

,

.T
y

y f

Hλ

=

= −

&

& (4.45)

4.1.4 Evaluation of Boundary Conditions

We have established all the conditions that must be satisfied for dJ ′ to be zero but further

computation must be done to make these conditions useful. We begin by evaluating the partial

derivatives in eq. (4.44). In evaluating
fyG we refer to eq. (4.27) to see that

f f f

T
y y yG φ ν ψ= + . (4.46)

Referring to eq. (4.4) we observe that

 () ()f f

T

y yY Q Yφ = ∆ ∆ . (4.47)

41

Equation (4.2) establishes that Y∆ is linear in fy and each element of Y∆ is only dependent on

the corresponding element in fy . As a result
fyY∆ is a negative identity matrix. We can convert

fyY∆ to
fyY∆ by simply multiplying by a diagonal matrix of the nondimensionalization parameters.

Substituting this into eq. (4.47) yields,

()

()

()

()

()

2 (2) (2)
2

3 (3) (3)

4 (4) (4)
2

5 (5) (5)
2

2
6 (5) (5)

2

0

2

2

2

2

2

f

f fixed

o

f fixed
T

y

f fixed

o

f fixed

o

f fixed o

o

q y y

q y y

q y y

v

q y y

v

q y y

v

η

φ

η

−

 −

=
−

 −

−

, (4.48)

where iq for i = 2 through 6 are the diagonal elements of the weighting matrix Q . Referring to eq.

(4.26) we see that

42

()() ()()

()() ()

()() ()
()() ()

() ()
() ()

()

(3) (1) (4) (3) (6)

(3) (2) (5) (3) (6)

(1) (3) (3) (2) (6) (4) (3)

(1) (6) (5) (3)(2) (3) (3)

(1) (3)

2 sin cos 0

2 cos sin 0

2 sin cos cos
0

sin2 cos sin

0 sin 0

0

f

f f f f f

f f f f f

f f f f f f f

f f f ff f fT
y

f f

d y y y d y y

d y y y d y y

d y d y y d y y y y

d y y y yd y d y y

y d y

ψ

− −

− +

− −

+ +− −
=

−

()

() ()()

(2) (3)

(2) (3) (1) (3)

cos 0

0 sin cos 0

f f

f f f f

y d y

d y y y y

−

 −

. (4.49)

 In evaluating
cyG we refer to eq. (4.27) to observe that

c c c

T T
y y yG ξ θ υ χ= + . (4.50)

Differentiating eq. (4.11) with respect to cy yields

()(3)1 0 cos 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

c

c

y

d y

θ

 =

-

. (4.51)

Differentiating eq. (4.19) with respect to cy yields

43

()()

()

() () ()
() ()

()

()

() ()()

(4) (3) (6)

(5) (3) (6)

(2) (6) (4) (3)

(3)

(1) (6) (5) (3)

(1) (3)

(2) (3)

(2) (3) (1) (3)

0 cos 0

1 sin 0

cos
sin 0

sin

0 sin 0

0 cos 0

0 sin cos 0

c

c c c

c c c

c c c c

c

c c c cT
y

c c

c c

c c c c

y d y y

y d y y

d y y y y
d y

d y y y y

y d y

y d y

d y y y y

χ

 −

 +

 −

 + +
=

 −

 −

 −

-

-

. (4.52)

 In evaluating Gβ we refer to eq. (4.27) to see that

 T TGβ β βξ θ υ χ= + . (4.53)

Differentiating eq. (4.11) with respect to β yields

()sin
0
0
0
0
0

o

β

η β

θ

 =

-

. (4.54)

Differentiating eq. (4.19) with respect to β yields

()cos

0
0

o

β

η β
χ

 =

-
. (4.55)

Substituting eqs. (4.54) and (4.55) into (4.53) yields

44

 () ()(1) (1)sin coso oGβ ξ η β υ η β= − − . (4.56)

 In evaluating aG we refer to eq. (4.27) to see

 T T
a a aG υ χ ν ψ= + . (4.57)

Differentiating eq. (4.19) with respect to a yields

 (1)

(2)

0 0 0 0
2 0 0 0

0 2 0 0
a a

a
χ

 =
 −

. (4.58)

Differentiating eq. (4.26) with respect to a yields

 (3)

(4)

0 0 0 0
0 0 2 0
0 0 0 2

a a
a

ψ

 = −
 −

. (4.59)

Substituting eqs. (4.58) and (4.59) into (4.57) yields

 (2) (1) (3) (2) (2) (3) (3) (4)2 2 2 2aG a a a aυ υ ν ν = − − − . (4.60)

 In evaluating
ct

G we refer to eq. (4.27) to see

c c c

T T
t t tG ξ θ υ χ= + . (4.61)

Differentiating eq. (4.11) with respect to ct yields

(5)

(6)

0

0

0

c

o c

o
t

y gt
y

g

θ

 − −
 − =

 −

. (4.62)

45

Differentiating eq. (4.19) with respect to ct yields

0
0
1

ct
χ

 =

. (4.63)

Substituting eqs. (4.62) and (4.63) into (4.61) yields

 ()(2) (5) (3) (6) (5) (3)ct o c oG y gt y gξ ξ ξ υ= − − − − + . (4.64)

 We now evaluate the Hamiltonian at touchdown to obtain

 T
c c cH fλ= . (4.65)

Since at the touch down state the spring remains uncompressed, the equations of motion for the

flight phase can still be used for cf . Therefore

 (1) (4) (2) (5) (3) (6) (5)c c c c c c c cH y y y gλ λ λ λ= + + + . (4.66)

 In evaluating
ftG we refer to eq. (4.27) to see that

f f

T
t tG ν ψ= . (4.67)

Differentiating eq. (4.26) with respect to ft yields

0
0
1

ftψ

 =

. (4.68)

Substituting eqs. (4.68) into (4.67) yields

 (3)ftG ν= . (4.69)

46

 We can evaluate the Hamiltonian at lift off in a manner similar to that at touchdown.

That is,

 T
f f fH fλ= . (4.70)

Since at the final state the spring is uncompressed, the equation of motion vector f reduces to the

equations of motion for the flight phase again yielding,

 (1) (4) (2) (5) (3) (6) (5)f f f f f f f fH y y y gλ λ λ λ= + + + . (4.71)

4.2 Structure of the Numerical Method

Now that we have developed the necessary conditions for the minimization of our cost function, we

must develop a method to drive the system to these conditions. To do this we form a vector called a

residual which is driven to zero using a least squares method. This vector contains all the boundary

conditions presented in eq. (4.44) with all the terms moved to one side so that the equation is zero

when the conditions are satisfied. In addition to this, the residual vector contains the polynomial

approximation constraints developed with collocation to enforce the differential constraints in eq.

(4.45). These constraints were developed in section 2.5.

4.2.1 Residual

We will now use the constraints that have been developed to form the residual vector, where the

constraint equation is satisfied when its corresponding component in the residual vector is zero. In

order to impose some kind of order to the residual we will try to organize the components in order

of what time they are evaluated. The first part of the residual will be the boundary conditions that

are applied at touchdown. These take the form

 () ()(1) , , ,
cc c c t cR H y G tλ ξ υ= − , (4.72)

 ()(2:3) (1:2) (1:2) ,aR G a υ= , (4.73)

47

 ()(4) , ,R Gβ ξ β υ= , (4.74)

 ()(5:7) (1:2), , ,c cR y t aχ β= , (4.75)

 ()(8:13) , ,c cR y tθ β= , (4.76)

and

 ()(14:19) (3), ,
c

T

c y cR G yλ ξ υ= + . (4.77)

 The next section of the residual vector is made up of the differential constraints at the

collocation points of each section for every state. We developed these constraint equations in such a

way that they automatically satisfy the differential constraints at the nodes and continuity between

sections. These residuals take the form

 () ()()1 1(12 8:12 13) , , , , ,
j j j j j jj j c n n n c n n n nR y y y t f y y y t t

+ ++ + ′= − % , (4.78)

and

()

() ()()
1 1

1 1 1

(12 14:12 19) , , , ,

 , , , , , , , , ,

j j j j j

j j j j j j j j

j j c n n n n n

y c n n n c n n n n n n

R y y t

H y y y t y y t t

λ λ λ

λ λ λ

+ +

+ + +

+ + ′=

+ %
 (4.79)

for 1j = to N where
jcy′ is the 6 1x vector found using eq. (2.64), f% is the modified equation of

motion vector found in eq. (2.46) where f is the original equation of motion vector found in eq.

(3.28),
jcy is the 6 1x vector found using eq. (2.66),

jcλ′ is the 6 1x vector found using eq. (2.65),

yH% is the modified differential constraint vector for the costates found in eq. (2.45) where yH is

the derivative of the Hamiltonian, found in eq. (4.6), with respect to the states,
jcλ is the 6 1x vector

given by eq. (2.67), and nt is the ground phase time given by eq. (4.20).

The last elements of the residual are the boundary conditions applied at ft . They take the

form

48

 ()(12 20:12 25) ,
f

T

N N f y fR G yλ ν+ + = − , (4.80)

 ()(12 26:12 28) (3:4), ,N N f nR y t aψ+ + = , (4.81)

 ()(12 29) ,N f f fR H yλ+ = , (4.82)

and

 ()(12 30:12 31) (3:4) (3:4) ,N N aR G a ν+ + = . (4.83)

 The MATLAB code for developing the three pieces of the residual is presented in appendix

A.

4.2.2 Collocation State Vector

In a dynamic system the state vector refers to the vector of parameters defining its position and

velocity at some instant in time. In a collocation scheme the state vector refers to a vector of all the

parameters that are varied in the scheme. In our case this means all the parameters, the Lagrange

multiplier, and the states and costates evaluated at the nodes. This vector is then updated to drive

the residual vector to zero. Just like the residual vector, the state vector is broken up into three

sections. The first contains quantities that are used in the flight phase and at touchdown. They are

 (1) ctΧ = , (4.84)

 (2:3) (1:2)aΧ = , (4.85)

 (4) βΧ = , (4.86)

 (5:7) υΧ = , (4.87)

and

49

 (8:13) ξΧ = . (4.88)

The next part of the state vector contains quantities that are used during the ground phase. These are

the states and costates at every node. They are

 (12 2:12 7) jj j ny+ +Χ = (4.89)

and

 (12 8:12 13) jj j nλ+ +Χ = (4.90)

for 1j = to 1N + . The last part of the state vector contains quantities that are used at lift off.

These are,

 (12 26:12 28)N N ν+ +Χ = , (4.91)

 (12 29)N nt+Χ = , (4.92)

and

 (12 30:12 31) (3:4)N N a+ +Χ = . (4.93)

4.2.3 Nondimensionalization of the Residual Vector

To improve the convergence properties of the Newton Raphson routine it can be advantageous to

nondimensionalize the residual. We do this by multiplying each residual by a

nondimensionalization parameter that has units that are the inverse of that of the residual. For

organizational purposes, these nondimensionalization parameters are put together to form

nondimensionalization vector, κ .

50

 Equation (4.72) says that the first residual has units equal to those of
ct

G . Since G is

unitless and ct has units of time,
ct

G has units of the inverse of time. This leaves the

nondimensionalization parameter

 (1)
o

ov
η

κ = , (4.94)

where oη is the uncompressed leg length and ov is the speed of the center of mass at lift off.

Equation (4.73) says that the second residual is equal to (1)aG . The constraint parameter, (1)a , has

units of the square root of velocity. The derivative of G with respect to (1)a has units of the inverse

of the square root of velocity. The nondimensionalization parameter then becomes,

 (2) ovκ = . (4.95)

 Equation (4.73) also says that the third residual is equal to (2)aG . Since the constraint

parameter, (2)a , has units of the square root of time, the derivative of G with respect to (2)a has

units of the inverse of the square root of time. The nondimensionalization parameter then becomes,

 (3)
o

ov
η

κ = . (4.96)

 According to eq. (4.74) the next residual is equal to Gβ . Since both G and β have no

units Gβ is unitless. The nondimensionalization constant for (4)R is then,

 (4) 1κ = . (4.97)

 Equation (4.75) shows that (5) (1)R χ= which as shown in eq. (4.19) has units of length. So,

 (5)
1

o

κ
η

= . (4.98)

Similarly (6) (2)R χ= which has units of velocity. So,

51

 (6)
1

ov
κ = . (4.99)

Finally (7) (3)R χ= which has units of time. So,

 (7)
o

o

v
κ

η
= . (4.100)

 According to eq. (4.76), (8)R through (13)R have the same units as the constraint equation

vector, θ . Since θ constrains the states directly, it will have units equal to those of the states. The

nondimensionalization constants corresponding to these residuals will have the inverse units. That

is

(8)

(9)

(10)

(11)

(12)

(13)

1

1

1

1

1

o

o

o

o

o

o

v

v

v

η

κ η
κ
κ
κ
κ
κ

η

 =

. (4.101)

 According to eq. (4.77), (14)R through (19)R have the same units as λ . The costates have

units inverse to those of the states. The nondimensionalization constants corresponding to these

residuals will have units equal to those of the states. That is,

52

(14)

(15)

(16)

(17)

(18)

(19)

1

o

o

o

o

o

o

v

v

v

η

ηκ
κ
κ
κ
κ
κ

η

 =

. (4.102)

 The next residuals are matching the state derivatives at the collocation points. The

nondimensionalization constants will be defined for a general collocation point. Equation (4.78)

shows that the residuals have units of the time normalized equations of motion. This means they

have units the same as the states. So,

(12 8)

(12 9)

(12 10)

(12 11)

(12 12)

(12 13)

1

1

1

1

1

o

j
o

j

j

j

o
j

j
o

o

o

v

v

v

η

κ η
κ
κ
κ
κ
κ

η

+

+

+

+

+

+

 =

, (4.103)

for j =1 to N .

 Equation (4.79) shows that the residuals have units of the derivative of the costates with

respect to τ . Since τ is unitless, these residuals have the same units as the costates. So,

53

(12 14)

(12 15)

(12 16)

(12 17)

(12 18)

(12 19)

1

o

oj

j

j

j
o

j

j o

o

o

v

v

v

η

ηκ
κ
κ
κ
κ
κ

η

+

+

+

+

+

+

 =

. (4.104)

for j =1 to N .

 Equation (4.80) shows that the next 6 residuals have the same units as λ . So,

(12 20)

(12 21)

(12 22)

(12 23)

(12 24)

(12 25)

1

o

oN

N

N

N
o

N

N o

o

o

v

v

v

η

ηκ
κ
κ
κ
κ
κ

η

+

+

+

+

+

+

 =

. (4.105)

 Equation (4.81) shows that the next 3 residuals have units the same as the ψ vector.

Since the first, second, and third components of ψ have units of length squared, velocity, and time,

respectively, we obtain,

2

(12 26)

(12 27)

(12 28)

1

1
o

N

N
o

N
o

o

v
v

η
κ
κ
κ

η

+

+

+

 =

. (4.106)

54

 According to eq. (4.82), the next residual has the same units as the Hamiltonian, which

has units of the inverse of time. So,

 (12 29)
o

N
ov

η
κ + = . (4.107)

 From eq. (4.83) we see that since G is unitless and 3a has units of the square root of

velocity, the next residual has units of the inverse of the square root of velocity. So,

 12 30N ovκ + = . (4.108)

Also from eq. (4.83) we see that since 4a has units of the square root of time, the last residual has

units of the inverse of the square root of time. So,

 12 31
o

N
ov

η
κ + = . (4.109)

4.3 Initial Conditions

We are using a Newton-Raphson solver drive the parameters to the optimal solution. The

performance of such a solver is closely linked with how close the initial guess is to the solution. It

will be beneficial to make this guess as educated as possible.

 There is no physical intuition to aid in determining initial assumptions of the magnitude of

the costates or Lagrange multipliers. However, we do have information regarding the values of our

states. Formulating the unoptimized system as an initial value problem provides an approximation

for the states. The only parameter we must pick is the leg touch down angle, β . This will be done

by calculating a range in which β could be and calculating the value of the unconstrained cost

function for β at a few values inside of that range. Assuming the body is supposed to move in the

positive x direction there are three cases for which a range must be developed. The three cases are

set apart by the initial velocity in the Ii
v

 direction, ox& . The first case is if ox& is positive. In such a

situation the velocity is forward and should remain forward at the end of the stride. The second case

55

is if ox& is zero. The velocity in the Ii
v

 direction must be increased so that it is going forward.

The third case is if ox& is negative. The velocity in the Ii
v

 direction must be reduced if not reversed.

4.3.1 Bounds on Leg Touchdown Angle for Zero Horizontal Velocity

The middle case is easiest to deal with. If ox& is zero, a leg angle of less than
2
π radians will yield a

negative horizontal body velocity. Since we are assuming a target horizontal velocity that is

positive, this is counter productive. So for this case, β must be at least
2
π radians. Every angle

greater than this value would yield some velocity in the Ii
v

 direction until β was increased to π

radians. Touch down at this angle would yield no compression in the spring leading to no change in

motion and falling. So for this case, β must be no more than π radians.

4.3.2 Bounds on Leg Touchdown Angle for Positive Horizontal Velocity

In the case where ox& is positive, if β is too small, the body will not make it over the foot placement

point. The angle the velocity vector of the center of mass makes with the horizontal, Ii
v

, (see Figure

3.1) measured positive counterclockwise will be defined as δ and cδ will be δ at touchdown. In

the point mass case, if β is less than cδ- , then x& will reverse direction and the system is in danger

of falling. The minimum quantity that β can be is where it equals cδ- at touchdown. This quantity

is determined by writing both β and cδ in terms of ct , setting the negative of one equal to the

positive of the other, and solving for ct . The goal is,

 min cβ δ= − . (4.110)

It is easier to express the sines of the angles rather than the angles themselves in terms of ct . Taking

the sine of both sides yields,

 () ()minsin sin cβ δ= − . (4.111)

Expressing the sine of cδ in terms of a ratio of speeds at touchdown yields,

56

 ()
2 2

sin c
c

c c

z

x z
δ

−
=

+

&

& &
. (4.112)

Substituting quantities from eq. (3.8) into eq. (4.112) yields,

 ()
()22

sin o c

o o c

z gt

x z gt
δ

− −
=

+ +

&

& &
 (4.113)

We would like to express the sine of β in terms of a ratio of lengths. The first length we need is the

distance between the foot placement, C , and the leg attachment point, A , in the Ik−
v

 direction.

This can be found by evaluating the dot product of eq. (3.14) and Ik−
v

, yielding,

 ()cosI C A c ck r d zθ→− = −
v v (4.114)

Substituting the quantities from eq. (3.8) into eq. (4.114) yields

 ()21 cos
2I C A o o c c o o ck r z z t gt d tθ θ→− = − − − + +

v v && (4.115)

The second length is the uncompressed leg length, oη . Expressing the sine as ratio of these lengths

yields,

 ()
()22 2 2 cos

sin
2

o o c c o o c

o

z z t gt d tθ θ
β

η

− − − + +
=

&&
. (4.116)

Combining eqs. (4.113) and (4.116) with eq. (4.111) and rearranging yields,

()

()

2

22

2 2 2 cos
0

2
o o c c o o c o c

o o o c

z z t gt d t z gt

x z gt

θ θ

η

− − − + + +
= −

+ +

&& &

& &
. (4.117)

While we cannot solve this equation explicitly for ct , by using some bounds that we will develop

later on ct we can use the False Position method to solve for it numerically [19]. Since this

equation is defined for a case when ox& is nonzero there is no danger attaining an infinite value.

57

Because the False Position method requires a bound on either side of the root it is trying

to find, we must find a lower limit and an upper limit on ct . The leg should never touch down while

the attachment point is still moving upward. So the minimum ct is where the leg attachment point,

A (see Figure 3.1), is at the maximum height. The right side of eq. (4.115) is equal to the height of

A . Assuming that θ& is small enough in magnitude that point A does not make a full rotation

about the center of mass, B , while it is in the air, the minimum ct is where the derivative of this

equation is zero. This value will be called tt . Taking the derivative yields,

 ()0 sino t o o o tz gt d tθ θ θ= − − − +& && . (4.118)

Taking a second order Taylor series expansion of the sine term yields the quadratic polynomial,

 () () ()2 3 20 sin cos sin
2o t o o o o t o o t
dz gt d d t tθ θ θ θ θ θ= − − − − +& & && . (4.119)

The solution to this is found using the quadratic formula. Organizing the terms yields,

 () ()() ()3 2 20 sin cos sin
2 o o t o o t o o o

cba

d t g d t z dθ θ θ θ θ θ= − + − −& & &&
1444244431444244431442443

. (4.120)

Because when 0d = , the coefficient of 2
tt goes to zero and the typical quadratic formula goes to

infinity, we use the rationalized quadratic equation given by,

2

2

4
t

ct
b b ac

= −
± −

 [19]. (4.121)

Substituting the quantities from eq. (4.120) into eq. (4.121) yields,

()()

()() ()() ()() ()()22 2 3

2 sin

cos cos 2 sin sin

o o o
t

o o o o o o o o o

z d
t

g d g d d z d

θ θ

θ θ θ θ θ θ θ θ

+
= −

+ ± + + +

&&

& & & &&

. (4.122)

If oθ& is set to zero the subtraction of the square root leads to an infinite value for tt . This means

that adding the square root is the correct choice for calculation of tt . The final expression is,

58

()()

() ()() ()() ()()22 2 3

2 sin

cos cos 2 sin sin

o o o
t

o o o o o o o o o

z d
t

g d g d d z d

θ θ

θ θ θ θ θ θ θ θ

+
= −

+ + + + +

&&

& & & &&

. (4.123)

 We must also establish a maximum bound on ct such that eq. (4.117) is satisfied. If the

attachment point was at ground level, β would be zero. This would mean that cδ would have to be

zero to satisfy eq. (4.110), but such a situation would be impossible at this height because there

would have to be some vertical velocity for the system to reach this state. If the leg attachment

point were slightly above the ground, then β would be slightly greater than zero and cδ would be

slightly less than zero. This situation would certainly be possible. The equation we have for height

of the leg attachment point is eq. (4.115). Setting this to zero and solving for t will give us the time

at which the leg attachment point is at zero height. This time will be referred to as gt . Taking a

second order Taylor series expansion of the cosine term yields,

 () ()() ()2 21 10 cos sin cos
2 2 o o g o o o g o og d t z d t d zθ θ θ θ θ = − − + − − + −

& && . (4.124)

Plugging this into the quadratic formula yields,

()() ()() ()() ()()

()()

2 2

2

sin sin 2 cos cos

cos
o o o o o o o o o o

g
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ

θ θ

− + ± + + + −
=

+

& & && &

&
.(4.125)

The term ()cos o od zθ − represents the attachment height at lift off. This must be positive. As long

as oθ remains between
2
π and

2
π- radians, ()cos oθ is positive. Since 2

oθ& is positive, g is

positive and d is positive, () 2cos o og d θ θ+ & is positive. This means the magnitude of the square

root term is greater than the magnitude of ()sino o oz d θ θ+ && . Since gt must be positive and the

denominator is positive, the positive root is the correct value of gt . That is,

()() ()() ()() ()()

()()

2 2

2

sin sin 2 cos cos

cos
o o o o o o o o o o

g
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ

θ θ

− + + + + + −
=

+

& & && &

&
.(4.126)

59

 Using the False Position method with tt and gt as bounds, eq. (4.117) is solved for ct .

This is then substituted into eq. (4.116) and the arcsine is taken to get the minimum touchdown

angle, minβ .

 The maximum angle that β can be must also be established for this case. If the

touchdown angle is such that the leg is perpendicular to the direction of the velocity, the leg will not

be compressed at touchdown. Instead it will simply touch and lift off again immediately. If β is

any greater than this, it will do the same thing. If it is less, it will touch down. This state can be

quantified using β and cδ . See Figure 4.1.

 Figure 4.1 Relation of maximum β to δ at touchdown. The angle β is measured between the
horizontal and the leg at touchdown in a clockwise direction. The angle δ is measured between the

velocity vector and the horizontal counterclockwise direction.

The equation relating these quantities is,

2 c
π π β δ= − − . (4.127)

Simplifying yields,

2
πβ δ= − . (4.128)

As before we write these both in terms of ct and solve. It is easier to write both in terms of their

sine. Taking the sine of both sides yields,

δ-

β

π β−

60

 ()sin sin
2 c
πβ δ = −

. (4.129)

Simplifying using trigonometry gives,

 () ()sin cos cβ δ= . (4.130)

Expressing the cosine in terms of a ratio of lengths gives,

 ()
()22

cos o

o o c

x

x z gt
δ =

+ +

&

& &
 (4.131)

Substituting eqs. (4.116) and (4.131) into eq. (4.130) and rearranging yields,

()

()

2

22

2 2 2 cos
0

2
o o c c o o c o

o o o c

z z t gt d t x

x z gt

θ θ

η

− − − + +
= −

+ +

&& &

& &
 (4.132)

Since this equation is defined for a case when ox& is nonzero there is no danger attaining an infinite

value. False Position method must again be used to calculate the proper touchdown time. The

bounds from before (eqs. (4.123) and (4.126)) are still valid in this situation. The touchdown time,

ct , is then substituted into eq. (4.116) and the arcsine is taken to get the maximum leg touchdown

angle, maxβ .

4.3.3 Bounds on Leg Touchdown Angle for Negative Horizontal Velocity

For the d equal zero case, if ox& is negative, touchdown angles of greater than or equal to

δ- and less than π will reverse the velocity in the x direction in one step. But this could be at

such a cost to the lift off height and vertical velocity that it is better to slow the horizontal velocity in

one step and change its direction in the next. For this reason, the lower bound on β is left as low as

2
π radians. The upper bound remains π radians.

61

4.3.4 Modified Limits Due to Insufficient Height

In any of the three cases, if the height of the leg attachment point at the top of the flight phase is

such that it cannot accommodate the full range of values, the angle at which the uncompressed leg

will fit is the maximum value of β in the positive ox& case and the minimum value of β in the

cases where ox& is less than or equal to zero. To determine if the height at the top of the flight phase

will be sufficient, the right side of eq. (4.116) is evaluated at tt . If this is greater than or equal to

one, the full range of β can be used as defined previously. If it is less than one, a new limit must be

found. It is either a new maximum or new minimum depending of the sign of ox& .

 For the ox& positive case, eq. (4.116) is solved for β and evaluated at c tt t= . That is,

()2

1
max

2 2 2 cos
sin

2
o o t t o o t

o

z z t gt d tθ θ
β

η
−
 − − − + +
 =

&&
. (4.133)

For the ox& less than or equal to zero case, eq. (4.133) is subtracted from π to get the minimum

touchdown angle that is possible. That is,

()2

1
min

2 2 2 cos
sin

2
o o t t o o t

o

z z t gt d tθ θ
β π

η
−
 − − − + +
 = −

&&
. (4.134)

 The MATLAB code that calculates the limits on β and selects the range of leg angles to

test is presented in appendix B.2.1.

4.3.5 Calculation of Other States

Simulations are evaluated using the range of β defined previously and the initial conditions. Since

the flight phase is integrated analytically, an estimation of the touchdown time, ct , is determined

and substituted into the integrated equations, eq. (3.8). The estimation of ct is found by rearranging

eq. (4.116) to yield,

 () ()210 sin cos
2o o o o oz z t gt d tη β θ θ= − − − − + + && . (4.135)

62

Determining a second order Taylor series expansion of the cosine term about 0t = and evaluating

it at ct , yields,

 () ()() () ()2 21 10 cos sin cos sin
2 2c o o c o o o o o o

cb
a

t g d t z d z dθ θ θ θ θ η β = − − + − − − + −

& &&
144444244444314442444314444244443

 (4.136)

This can be substituted into the quadratic formula to obtain,

()() ()() ()() () ()()

()()

2 2

2

sin sin 2 cos cos sin

cos
o o o o o o o o o o o

c
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ η β

θ θ

− + ± + + + − −
=

+

& & && &

&
.(4.137)

Since the flight time should be a positive quantity, we must select the sign in the quadratic formula

to ensure that this happens. Since the denominator of eq. (4.137) is positive, the only way to use the

negative root and still have positive ct is if b in eq. (4.136) is positive and the square root term in

eq. (4.137) is less than b . The square root term can only be less than b if the product of a and c

is positive. As long as oθ remains between
2
π

− and
2
π , a is guaranteed to be negative. So c

must also be negative. However looking more closely at c we can see that ()coso oz d θ− + is

simply the height of the leg attachment point at the initial time and ()sinoη β is the vertical distance

from the foot to the leg attachment point. The subtraction of the two yields the height of the foot

above the ground at the initial time. If c is negative then when the foot first reaches the ground, it

will be coming up through the ground. We would like the foot to continue past this until it is

coming down to the ground from above. This means that even if we could have a positive ct by

subtracting the square root we would rather have the greater positive ct . So,

()() ()() ()() () ()()

()()

2 2

2

sin sin 2 cos cos sin

cos
o o o o o o o o o o o

c
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ η β

θ θ

− + + + + + − −
=

+

& & && &

&
.(4.138)

 The ground phase is simply integrated using a Runge-Kutta routine. This Runge-Kutta

routine is presented in appendix B.2.4. The final conditions, fy , from the simulations that provide

the lowest unconstrained cost are then used to calculate quantities at the final time. The MATLAB

code that is used to find the leg angle with the lowest unconstrained cost is presented in appendix

63

B.2.2. The ground phase time, nt , can be found from the simulation. We have a boundary

condition,

 (),
f

T

f y fG yλ ν= . (4.139)

We have another condition,

 0
ff tH G− = , (4.140)

where

 (1) (4) (2) (5) (3) (6) (5)f f f f f f f fH y y y gλ λ λ λ= + + + (4.141)

and

 (3)ftG ν= . (4.142)

Substituting (1)fyG through (3)fyG and (5)fyG into eq. (4.141) for the costates yeilds

 ()(1) (2) (3), , 0f fH y ν ν ν− = . (4.143)

We still do not know the value of (1)ν , (2)ν and (3)ν . From equation (4.60) we obtain the

relationships

 (2) (3)2 0aν− = , (4.144)

and

 (3) (4)2 0aν− = . (4.145)

As a result, if (3)a is nonzero then (2)ν must be zero and if (4)a is nonzero then (3)ν must equal

zero. From eq. (4.24) we get

64

()() ()()
()() ()()

(1) (3) (4) (3) (6)

(3)

(2) (3) (5) (3) (6)

 sin cos
=

cos sin

f f f f f

f f f f f

y d y y d y y
a

y d y y d y y

− −

+ − +
. (4.146)

That is (3)a is the square root of the derivative of the leg length at lift off. As long as the leg length

is increasing at lift off (which it should) then (3)a is nonzero. From eq. (4.25) we get

 (4) na t= . (4.147)

If the ground phase time, nt , was zero then there would be no ground phase. This would not be

acceptable so (4)a is also nonzero. Since (2)ν and (3)ν are zero, eq. (4.143) reduces to

()() ()()()
()() () ()() ()()

() () ()

(1) (3) (1) (4) (3) (2) (5)

(1) (6) (1) (3) (3) (2) (3) (3)

2 (2) (2) 5 (5) (5)
(5) 3 (3) (3) (6)2 2

0 sin cos

 sin cos cos sin

f f f f f f

f f f f f f f

f fixed f fixed
f f fixed f

o o

d y y y d y y y

y d y d y y y d y y

q y y q y y
y q y y y g

v

ν

ν

η

= − + −

+ − − −

− −
+ + − +

. (4.148)

From this reduced form (1)ν can be solved for to yield

 () () ()
()() ()()

()() () ()() ()()

2 2 2 2
2 (2) (2) (5) 3 (3) (3) (6) 5 (5) (5)

(1)

(1) (3) (4) (2) (3) (5)
2 2

(1) (3) (3) (2) (3) (3) (6)

sin cos

sin cos cos sin

f fixed o f f fixed f o o f fixed o

f f f f f f

o o

f f f f f f f

q y y v y q y y y v q y y g

y d y y y d y y
v

d y d y y y d y y y

η η
ν

η

− + − + −
=
 − + −

 − − − −

. (4.149)

Substituting (1)ν into eq. (4.139) provides an initial guess for the final costates. We can use the

differential constraint for the costates to numerically integrate backwards, yielding initial guesses

for all the costates at the nodes. The numerical integration technique used is the same Runge-Kutta

routine used to integrate the states forward in time before. It is presented in appendix B.2.4. While

we are integrating the costates backward, we also integrate the states backward using a time step

that ensures that the states are evaluated at each node. These evaluations are used as the initial

guesses for the states at the nodes.

 The costates at the touchdown node are, cλ . The boundary condition from eq. (4.44) is

65

 ()(1:2), ,
c

T

c y cG yλ ξ υ= − . (4.150)

From eq. (4.60) we get the relationship

 (2) (1)2 0aυ = . (4.151)

From eq. (4.17) we get,

()() ()()
()() ()()

(1) (3) (4) (3) (6)

(1)

(2) (3) (5) (3) (6)

- sin cos

cos sin

c c c c c

c c c c c

y d y y d y y
a

y d y y d y y

− −
=

− +-
. (4.152)

This means if the derivative of the leg length is nonzero at touchdown, then (2)υ is zero. If the

derivative of the leg length at touchdown is zero, then (2)υ is nonzero. Since the leg must compress

to touchdown, the leg length should be decreasing from uncompressed to compressed and (2)υ is

zero.

 We have another constraint equation,

 ()()(1)1 , , 0Gβ ξ β υ = . (4.153)

Because

 (1) (1)cyG ξ= , (4.154)

we know from eq. (4.150) that

 () (1)1 cξ λ= − . (4.155)

Equation (4.56) can be solved for (1)υ to yield,

 ()(1) (1) tancυ λ β= . (4.156)

66

This is then substituted into eq. (4.150) and we can solve for the remaining initial guesses for the

elements of the ξ . This yields,

()
() () ()

(1)

(1) (2)

(1) (3) (1) (3) (3)

(4)

(5)

(6)

tan

tan sin cos

c

c c

c c c c c

c

c

c

d y d y

λ

λ β λ

λ β λ λ
ξ

λ

λ

λ

 −

 −

 − − =

−

−

−

. (4.157)

 Equation (4.60) shows us,

 (3) (2)2 0aυ− = , (4.158)

and eq. (4.18) shows us that

 (2) ca t= . (4.159)

In most cases the flight time is nonzero so (3)υ is zero, but in some cases the optimal trajectory does

not leave room for a flight phase. In this case (2)a is zero and (3)υ can be solved for using the

constraint,

cc tH G= (4.160)

where cH is given by eq. (4.66) and
ct

G is given by eq. (4.64). This yields,

 (3) (1) (4) (2) (5) (3) (6) (5) (2) (5) (3) (6) (5)c c c c c c c o oy y y g y y gυ λ λ λ λ ξ ξ ξ= + + + + + + . (4.161)

The MATLAB code used to calculate all the states presented in this section is in appendix B.2.3.

67

5 RESULTS

A requirement of the control system is that it must have known fixed points to which it drives the

system. Since the model conserves energy, the control system must drive the system to a fixed point

that is at the same energy level as its current state. This means that the system must have a

continuum of known fixed points to choose from, spanning a range of energies. Such a map could

easily be created and a fixed point picking code, written, to select a fixed point based on the energy

of the system at the time of selection.

 The goal of this work was to develop and test the control system over a range of fixed

points to determine its effect on gait stability. The control system was tested on both the point mass

SLIP model and the rigid body SLIP model using parameters similar to those of Blaberus

discoidalis, the death head cockroach. These parameters included a spring stiffness, k , of 20 N/m,

a leg length, oη , of 0.015 m [9], leg attachment distance, d , of 0.004 m, a body mass, m , of 0.0025

kg, a sagital moment of inertia, yyI , of 1.86× 10-7 kg ⋅ m2 [22]. The range of leg touchdown angles,

β , tested, were centered around the leg touchdown angle that allowed the system to match

experimental stride lengths in [9], [23]. This will be referred to as the nominal touchdown angle,

nβ and was 1.2 radians.

5.1 Point Mass SLIP

For the point mass SLIP model, fixed points were found for 21 gait families where the touchdown

β was held fixed at 21 different values between 1.1 and 1.3 radians. The initial velocity angle, oδ ,

was then varied between 0 and 1 radians. An initial speed, ov , and initial height, oz , were found for

the specific oδ that yielded the same state at the end of a stride as at the beginning. See Figure 5.1.

This resulted in 101 fixed points for every touchdown angle, β . The periodic orbits found had a lift

off height equal to their touchdown height. Because the spring was attached at the center of mass,

this meant that the lift off angle was equal to the touchdown angle.

68

Figure 5.1 Periodic orbit’s relation to its fixed point. On the left the point mass SLIP is at lift off
entering the stride. On the right the point mass SLIP is at lift off leaving the stride. The
combination of oz , oδ , and ov is a fixed point because f oz z= , f oδ δ= , and f ov v= .

5.1.1 Stability of Point Mass Fixed Points

The eigenvalues of the Poincaré map linearized about these fixed points were tested for a fixed

touchdown angle reset policy and then again using the control system to calculate the optimal

touchdown angle. The eigenvalues were determined as described in section 2.7. The Poincaré

section used to determine the Poincaré Map was

 2 2
o x zη = + . (5.1)

Since all points on the Poincaré Map are on this surface, ox could be determined by oz with eq.

(5.1) and was therefore omitted from all the points in the map. The difference formula used to find

DP was,

() () () ()2 8 8 2

12
i i i i

i
i

d
y

∗ ∗ ∗ ∗− ∆ − − ∆ + + ∆ − + ∆
=

∆

P y v P y v P y v P y v
P (5.2)

for i = 1 to 3 where idP is the column vector of partial derivatives with respect to the i th state, P is

the Poincaré Map, ∗y is the fixed point, and i∆v a vector with all elements zero except the i th

element which is a small nonzero quantity, iy∆ [19]. The column vectors, idP for i = 1 to 3, were

then concatenated to form DP and the eigenvalues of this matrix were found. As mentioned in

C

oδovv

Ik
v

 Ii
v

B

C

fvv
B fδ

oz− fz−

69

section 2.7 the eigenvalues of this matrix are the eigenvalues of the Poincaré map linearized about

the fixed point, ∗y and the nontrivial Floquet multipliers of the periodic orbit associated with ∗y .

 The Floquet multipliers of the periodic orbits for the nβ gait family, using the fixed angle

reset policy where the leg touchdown angle is set fixed to the leg angle associated with the gait

family are shown in Fig. 5.2.

0.2 0.3 0.4 0.5 0.6 0.7
-10

0

10

20

30

40

50

60

70

v (m/s)

λ

Figure 5.2 Floquet multipliers of the periodic orbits in the nominal gait family for the point mass
SLIP with a fixed angle reset policy.

For a periodic orbit to be asymptotically stable, the magnitudes of all its nontrivial Floquet

multipliers must be below one. However, because the system is energy conservative there will be at

least one nontrivial Floquet multiplier equal to one. This is apparent when looking at Fig. 5.2. In

addition there is one Floquet multiplier that is very close to zero and another that is consistently

above one, rendering the system at this gait family completely unstable.

 The Floquet multipliers of the periodic orbits in the nβ gait family, using model predictive

control, are shown in Fig. 5.3. They were found using control weightings (1,1)Q through (6,6)Q , of 0,

4, 0, 1, 3, and 0. These weightings appeared to work well in initial tests. Once again, since the

system is energy conservative, there is a nontrivial Floquet multiplier of one. Since the rest of the

multipliers have magnitude of less than one, the system displays partial asymptotic stability, as has

70

been found in the SLIP model for several different leg touchdown protocols [10], [15]. The

eigenvector associated with the unity eigenvalue of the Poincaré map points in the direction of

increasing energy. The plane that is perpendicular to this eigenvector is a constant energy surface.

If the system is perturbed from the surface it cannot get back to the energy surface with the target

fixed point because it can neither dissipate nor generate the energy required to get there. Because

model predictive control exhibits partial asymptotic stability for many energy levels the system

could easily assume a new partially asymptotically stable gait at its new energy surface.

0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.5

0

0.5

1

1.5

v (m/s)

λ

Figure 5.3 Floquet multipliers of the periodic orbits in the nominal gait family for the point mass
SLIP with model predictive control.

 As outlined above, the stability of each gait was determined by the magnitude of the

eigenvalues of the Poincaré map linearized about fixed point associated with the gait. If there was a

single eigenvalue of magnitude greater than one, the gait was said to be unstable. The stability of

the gaits in all 21 of the gait families tested using a fixed angle reset policy can be found in Fig. 5.4.

This figure shows a small area of stable gaits for the β =1.1 and 1.11 gait families using a small oδ .

71

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v (m/s)

δ
(r

ad
)

Figure 5.4 Stability of point mass SLIP gait families with a fixed angle reset policy for β = 1.1 to
1.3 radians. The dotted lines represent unstable gaits. The solid lines represent stable gaits. The
right most gait family is that associated with β = 1.1. Gait families associated with increasing β
are found by moving toward the left. The gait family associated with the nominal leg touchdown

angle, β = 1.2 is indicated by the thicker line.

While this is impressive because with essentially no control applied, the system can maintain a

forward pace without falling, it does not leave much freedom in terms of choice of speed or energy

surface. Also note that for the nominal leg angle the system is never stable.

 The stability of the gaits in all 21 of the gait families tested using model predictive control

can be found in Fig. 5.5. The figure shows all gait families to be stable provided a sufficient

velocity angle, oδ , is used. This allows for great freedom in speed and energy surface.

72

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v (m/s)

δ
(r

ad
)

Figure 5.5 Stability of point mass SLIP gait families with model predictive control for β = 1.1 to
1.3 radians. The dotted lines represent unstable gaits. The solid lines represent stable gaits. The
right most gait family is that associated with β = 1.1. Gait families associated with increasing β
are found by moving toward the left. The gait family associated with the nominal leg touchdown

angle, β = 1.2 is indicated by the thicker line.

5.1.2 Perturbation Returnability of Point Mass System

The control scheme was also tested to see if it could return the system from large perturbations to

the fixed points. Because the system conserves energy the perturbations had to leave the system at

the same energy level as the fixed point itself or there would be no hope of return. Perturbations

were made to the initial velocity angle, oδ , and it was left to the control scheme to pick touchdown

angles that drove the system back to the target fixed point and of course the periodic orbit associated

with it. Fig. 5.6 shows a map of the returnability. All the fixed points in the nominal gait family

were tested, from oδ =0 to 1 radian. The initial conditions given to the system were the fixed points

with oδ perturbed from - 31
32
π to π radians in increments

32
π radians. The system was able to

return from almost any perturbation to oδ , even in some cases where the initial conditions sent the

body directly into the ground. The vein of no return, shown in black, was due to a combination of

the initial velocity angle sending the body into the ground and the initial speed being too great. It

73

can be seen in Fig. 5.5 that as oδ increases so does the initial speed, ov . This combination led the

system to fall before it could return itself to its fixed point.

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

δ (rad)

Pe
rtu

rb
at

io
n

to
 δ

 (r
ad

)

Figure 5.6 The control system’s ability to return from a perturbation to oδ . Returnability was
measured for the gate family associated with β =1.2. The system was perturbed from the velocity

angle associated with the fixed point (shown on the abscissa) by the angle shown on the ordinate. In
grey is the region for which the system was returned to the fixed point. In black is the region for

which the system fell.

5.2 Rigid Body SLIP

For the rigid body SLIP model, fixed points were found in the nominal gait family. This was done

using the fsolve function in MATLAB in conjunction with a simulation of the system over one

stride. A code for the simulation of the system is presented in appendix C.1. First fsolve was run

with the simulation starting with the ground phase and ending with the flight phase. In this case the

touchdown angle, β , was held at 1.2 radians and the touchdown velocity angle, cδ , was held at

values between 0 and 1 radian, while the touchdown speed, cv , body pitch, cθ , and angular velocity,

cθ& , were varied to produce a fixed point. Since the touchdown height, cz , can be calculated from

β and cθ this quantity did not need to be varied. Then fsolve was run again with the simulation

starting with the flight phase and ending with the ground phase. The initial conditions for the

routine were obtained from the lift off conditions of the results of the first fsolve routine. Here the

74

touchdown angle was held fixed again but the velocity angle at lift off instead of touchdown was

held fixed, with β the same as before and oδ equal to cδ− . The parameters that were varied were

ov , oθ , oθ& . Since β does not necessarily constrain oz , it was varied as well. Since the periodic

orbits found were very close to symmetric about the middle of the ground phase and flight phase,

the first ground phase – flight phase routine got the fixed point very close to the flight phase –

ground phase fixed point. The second fsolve routine was more of a refinement of the fixed point

than anything else. The MATLAB code used to find the fixed points is presented in appendix C.2.1.

5.2.1 Stability of Rigid Body Fixed Points

The Floquet multipliers of the periodic orbits in the nominal gait family were tested for the rigid

body case using the same method as the point mass case with the addition of, θ and θ& to the fixed

point vectors. The MATLAB code used to calculate the Floquet multipliers is presented in

appendix C.2.3. This resulted in five nontrivial Floquet multipliers for every periodic orbit. The

magnitudes of the Floquet multipliers of the periodic orbits in the nominal gait family using the

fixed angle reset policy can be found in Fig. 5.7.

0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

v (m/s)

| λ
|

Figure 5.7 The magnitudes of the Floquet multiplier of the periodic orbits in the nominal gait
family for the rigid body SLIP with a fixed angle reset policy.

75

The most noticeable feature is the sweeping Floquet multiplier that seems to reach an asymptote

at around v =0.22. This is reminiscent of Fig. 5.2 where the same thing occurred for the point mass

case. This Floquet multiplier again maintains a magnitude greater than one for the entire gait

family, rendering the entire gait family unstable.

 The Floquet multipliers of the periodic orbits in the nominal gait family were also tested

using model predictive control. Their magnitudes can be found in Fig. 5.8.

0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

v (m/s)

| λ
|

Figure 5.8 The magnitudes of the Floquet multiplier of the periodic orbits in the nominal gait
family for the rigid body SLIP with model predictive control.

The Floquet multipliers were found using control weightings (1,1)Q through (6,6)Q , of 0, 4, 8, 1, 3,

and 7. These weightings appeared to work the best in initial tests but further study should include a

more thorough investigation of how the weightings affect performance. From this plot it is clear

that many of the Floquet multipliers were complex for portions of the gait family. Just as before, the

unity Floquet multiplier is present throughout the gait family. For v values less than 0.26 m/s the

magnitude of a second Floquet multiplier is just above one, rendering all gaits below v =0.26 m/s

unstable. Another Floquet multiplier shoots past the unity marker at v =0.47 m/s, making

76

everything above it unstable. This leaves stable gaits in the nominal gait family for lift off speeds

from 0.26 to 0.47 m/s.

5.2.2 Perturbation Returnability of Rigid Body System

Returnability was tested in the rigid body case for a gait in the nominal gait family with a δ of 0.5

radians. The MATLAB code for this test is presented in appendix C.2.4. The control system

recovered consistently from perturbations to δ as low as
2
π

− and as high as 35
32
π but fell

intermittently for perturbations outside that region.

6 CONCLUSION

In this work we used the point mass and rigid body spring loaded inverted pendulums to model

sagittal plane locomotion. Since the key to stable locomotion is running the system at a periodic

orbit, we developed a cost function that achieved a minimum when the lift off state was at a desired

fixed point of the Poincaré map and increased as the lift off state moved away from the fixed point.

We constrained the cost function to follow the model and developed a boundary value problem

through its minimization. We then converted the boundary value problem into a system of nonlinear

equation using Collocation. Each stride this set of nonlinear equations was solved using Newton’s

method to determine the next optimal touchdown angle. The performance of this model predictive

control scheme along with a fixed leg touchdown angle reset policy was investigated when applied

to the SLIP with parameters typical of the cockroach Blaberus discoidalis.

 In the point mass case, we found that for the parameter range tested, the fixed angle reset

policy yielded gaits that were widely unstable for a large range of leg touchdown angles and gait

speeds, although a limited number of stable gaits were found. When the model predictive control

scheme was applied, almost all the gaits in every gait family were stable, although a limited number

of unstable gaits were found. The control scheme’s ability to return the point mass SLIP from large

energy conservative perturbations was found to be very impressive. It could return the system from

every perturbation tested that it was physically possible to return from.

 The gait family tested in the rigid body case with the fixed angle reset policy showed no

stable gaits while the same gait family tested with the model predictive control scheme showed

77

stable gaits for roughly half the gait family. For the gait tested, the control scheme consistently

returned the rigid body SLIP from large energy conservative perturbations within a region but only

had intermittent success outside that region.

 It is unfair to compare model predictive control to other control schemes developed for the

SLIP, because this formulation requires greatly increased computation over other schemes.

Boundary value problems can be extremely hard to solve and the one we ask the controller to solve

every flight phase is not trivial. The computation of an optimal leg angle in MATLAB takes about

25 seconds on average (although it can be much more), while for the parameters found in a

cockroach, the flight phase is about 35 milliseconds (although it can be zero). The code must be

optimized and translated into compiled language but a huge gap remains between theory and

implementation. Using Moore’s Law we can predict that if the code is optimized and translated into

C, this control method will be viable for use on robots of cockroach morphology in 15 years. This

time would be significantly reduced if it were implemented on a larger robot.

 The solution of the set of nonlinear equations not only yields the optimal leg touchdown

angle but also the lift off state. This could be used to run Newton iterations during the ground phase

to predict better initial conditions for the Newton iterations in the flight phase using the real lift off

state. In addition the flight time could be constrained to be at least a certain length so as to allow

time for computation, although the longer the flight phase is constrained to be, the less robust the

system will be. This is a necessary step however because aside from computational time, an issue

that was not addressed in this formulation was how the spring gets from its position at lift off to the

next touchdown angle. Because the spring was considered to be massless, theoretically it would be

able to move instantaneously from one place to another. Although relative to the body, the mass of

the spring is negligible, trying to move it from one position to the next in zero time is not realistic.

In addition to giving the spring some time to position itself for the next stride, a method for it to do

so must be developed.

 Another drawback is that this scheme requires full state feedback at the lift off state.

Although this is better than requiring continuous full state feedback, for something this small

moving this rapidly, this is not very realistic. With additional formulation an observer could be used

to eliminate some of the feedback requirements but a control system that does not require so much

feedback to begin with would be much easier to implement.

78

 Given that this scheme will not be practical for implementation for quite some time, and

that it outperforms most other schemes in terms of leg angle choice, we suggest that it be used as a

target from which to gain insight in developing other control schemes, rather than being taken

seriously as a control scheme itself. It certainly turns the point mass SLIP into a savvy monopode,

and although more development should be done for the rigid body implementation, it has shown

more than limited success in stabilizing rigid body gaits. This scheme should be easily extendable

to the three dimensional spring loaded inverted pendulums, known as the spatial SLIP, and the rigid

body spatial SLIP, which includes rolling, pitching and yawing of the body. These models better

approximate the gaits of higher dimensional robots at the expense of being more complicated.

Because of the latter, there has been little success in controlling such models. The application of

model predictive control to these models would help to give some insight into how a successful leg

angle reset policy should act even though it would have the same if not greater computational

drawbacks.

79

BIBLIOGRAPHY
[1] R.J. Full, K. Autumn, J.I. Chung, and A. Ahn, “Rapid negotiation of rough terrain by the

death-head cockroach,” American Zoologist, Vol. 38, pp. 81A, 1998

[2] Full, R.J., Blickhan, R., Ting, L.H., “Leg Design In Hexapedal Runners”, The Journal of
Experimental Biology, Vol. 158, pp. 369-390, 1991.

[3] Full, R.J., Tu, M.S., “Mechanics of Six-Legged Runners”, The Journal of Experimental
Biology, Vol. 148, pp. 129-146, 1990.

[4] Full, R.J., Koditschek, D.E., “Templates and Anchors: Neuromechanical Hypotheses of
Legged Locomotion On Land”, The Journal of Experimental Biology, Vol. 202, pp. 3325-
3332, 1999.

[5] Blickhan, R., “The spring-mass model for running and hopping”, Journal of Biomechanics,
Vol. 22, pp. 1217-1227, 1989

[6] Blickhan, R., Full, R.J. “Similarity in multi-legged locomotion: bouncing like a
monopode”, Journal of Comparative Physiology A, Vol. 173, pp. 509-517, 1993

[7] Seyfarth, A., Geyer, H., Günther, M., Blickhan, R., “A Movement Criterion For Running”,
Journal of Biomechanics, Vol. 35, pp. 649-655, 2002.

[8] Geyer, H., Seyfarth, A., Blickhan, R., “Spring-mass running: simple approximate solution
and application to gait stability”, Journal of Theoretical Biology, Vol. 232, pp. 315-328,
2005.

[9] Schmitt, J.M., “A Simple Stabilizing Control for Sagittal Plane Locomotion”, Journal of
Computational and Nonlinear Dynamics, in press, Oct. 2006.

[10] Sayfarth, A., Geyer, H., Herr, H., “Swing-leg Retraction: A Simple Control Model for
Stable Running”, The Journal of Experimental Biology, Vol. 206, pp. 2547-2555, 2003.

[11] Saranli, U., Schwind, W.J., Koditschek, D.E., “Toward the Control of a Multi-Jointed,
Monoped Runner” Proceedings of IEEE International Conference on Robotics and
Automation, Leuven, Belgium, Vol. 3, pp. 2676-2682.

[12] Saranli U., Koditschek, D.E., “Template Based Control of Hexapedal Running”,
Proceedings of 2003 IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, Vol. 1, pp. 1374-1379.

[13] Saranli, U., Buehler, M., Koditschek, D.E., “RHex - A Simple Highly Mobile Hexapod
Robot”, The International Journal of Robotics Research, Vol. 20, pp. 616-631, 2001.

[14] Schmitt, J.M., “Simple Feedback Control of Running”, Lecture Notes on Control and
Information Sciences, to appear.

[15] Ghigliazza, R.M., Altendorfer, R., Holmes, P., Koditschek, D., “A Simply Stabilized
Running Model”, SIAM Review, Vol. 47, pp. 519-549, 2005.

80

[16] Altendorfer, R., Koditscheck, D.E., Holmes, P., “Stability Analysis of Legged
Locomotion Models, by Symmetry-Factored Return Maps”, The International Journal of
Robotics Research, Vol. 23, pp. 979-999, 2004.

[17] Mombaur, K.D., Longman, R.W., Bock, H.G., Schlöder, J.P., “Open-Loop Stable Running”,
Robotica, Vol. 23, pp. 21-33, 2005.

[18] Hull, D.G., Optimal Control Theory for Applications, Springer-Verlag Inc., New York, NY,
2003.

[19] Hoffman, J.D., Numerical Methods for Engineers and Scientists, Marcel Dekker, Inc., New
York, NY, 2001.

[20] Costello, M.F. Personal Communication, 2005.

[21] Strogatz, S. H., Nonlinear Dynamics and Chaos, Perseus Books Publishing, LLC.,
Cambridge, MA, 1994.

[22] Kram, R., Wong, B., Full, R.J., “Three-Dimensional Kinematics And Limb Kinetic Energy
Of Running Cockroaches”, The Journal of Experimental Biology, Vol. 200, pp. 1919-1929,
1997.

[23] Ting, L., Blickhan, R., and Full, R.J., “Dynamic and Static Stability in Hexapedal
Runners”, The Journal of Experimental Biology, Vol. 197, pp. 251-269, 1994.

[24] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes in C: The
Art of Scientific Computing, Cambridge University Press, New York, NY, 1992.

81

APPENDICES

82

APPENDIX A

Residual and Hessian Development Code

Because they were so complicated, the residual and the Hessian were calculated using a code. This

code not only calculated them, but put them in a form that could easily be augmented by a

formatting code which made them into pieces of MATLAB code themselves to be used in the

residual8 and analytical_hessian1 codes themselves.

A.1 euler_param_calc_ad1

The function euler_param_calc_ad1 calculates the residual vector and Hessian matrix. Since this

task takes lots of time and memory, the code only calculates one section of the residual and the

Hessian at a time. The calculation of the middle of the residual and the Hessian was the most

daunting task. These were defined iteratively so that the collocation scheme could be broken up into

any number of segments.

function euler_param_calc_ad1(calc)
%==
% euler_param_calc
%
% Calculates one of the three pieces of the residual vector
% as well as the hessian matrix and saves them to text files for
% formatting.
%
% Inputs:
% calc Depending on the value the function calculates the begining,
% middle, or end of the residual and hessian: 1 for begining, 2
% for middle, and 3 for end.
%
% Cary R. Maunder, Oregon State University, 2006
%==

 clc

%--
% Declare the symbolic parameters used in the euler parameter calculation
%--

83

% Render all symbolic parameters that are used in a subfunction global
 global g m I k tc tn d etao vo betaTD dHdy

% Model Constant Parameters
 syms g m I k d etao vo betaTD positive

% Nondimensionalization parameter - initial speed of the body at the last
% lift off.
% Note, this is constant for each application of the control.
 syms vo positive

% Variable Parameters
 syms tc tn betaTD positive

% Numerical Approximation quantities.
 syms N integer

% Defining States, Coestates, and Lagrange Multipliers
 for i = 1:6
 %Physical States
 y(i,1) = sym(['y' num2str(i)],'real');
 ym(i,1) = sym(['ym' num2str(i)],'real');
 yp(i,1) = sym(['yp' num2str(i)],'real');
 yo(i,1) = sym(['yo' num2str(i)],'real');
 yc(i,1) = sym(['yc' num2str(i)],'real');
 yf(i,1) = sym(['yf' num2str(i)],'real');
 yfixed(i,1) = sym(['yfixed' num2str(i)],'real');
 lambda(i,1) = sym(['lambda' num2str(i)],'real');
 lambdam(i,1) = sym(['lambdam' num2str(i)],'real');
 lambdap(i,1) = sym(['lambdap' num2str(i)],'real');
 lambdac(i,1) = sym(['lambdac' num2str(i)],'real');
 lambdaf(i,1) = sym(['lambdaf' num2str(i)],'real');
 xi(i,1) = sym(['xi' num2str(i)],'real');
 end

% Define constraint parameters a
 for i = 1:4
 a(i,1) = sym(['a' num2str(i)],'real');

 end

% Define the Lagrange multiplier vectors upsilon and nu
 for i = 1:3
 upsilon(i,1) = sym(['upsilon' num2str(i)],'real');
 nu(i,1) = sym(['nu' num2str(i)],'real');
 end

% The weighting matrix is mostly zeros
 Q = sym(zeros(6,6));

% Defining the weightings of the penalties for each state's deviation
% and putting them in their place in the weighting matrix.
% Note q1 equals 0 because we do not want x to return to the same value
 for i = 2:6
 Q(i,i) = sym(['q' num2str(i)],'real');
 end

% The deviation of the final state from the desired fixed state yfixed
 devYlo = yf-yfixed

84

% nondimensionalizing
 devYlobar = nondimensionalizer(devYlo)

% penalty function
 phi = devYlobar'*Q*devYlobar

% Starting State Constraints.
 theta = yc-[d*sin(yc(3))-etao*cos(betaTD);...
 yo(2)+yo(5)*tc+1/2*g*tc^2;...
 yo(3)+yo(6)*tc;...
 yo(4);...
 yo(5)+g*tc;...
 yo(6)]

% End State Constraint
 psi = [etao^2-(yf(1)-d*sin(yf(3)))^2-(yf(2)-d*cos(yf(3)))^2;...
 -a(3)^2+(yf(1)-d*sin(yf(3)))*(yf(4)-d*cos(yf(3))*yf(6))+...
 (yf(2)-d*cos(yf(3)))*(yf(5)+d*sin(yf(3))*yf(6));...
 tn-a(4)^2];

% Parameter Constraint
 chi = [d*cos(yc(3))-yc(2)-etao*sin(betaTD);...
 a(1)^2+(yc(1)-d*sin(yc(3)))*(yc(4)-d*cos(yc(3))*yc(6))+...
 (yc(2)-d*cos(yc(3)))*(yc(5)+d*sin(yc(3))*yc(6));...
 tc-a(2)^2];

% The Time-specific function
 G = phi+xi.'*theta+nu.'*psi+upsilon.'*chi

% Hamiltonian
 H = lambda.'*fg(y)

% Hamiltonian evaluated at the touchdown point
 Hc = lambdac.'*ff(yc)

% Hamiltonian evaluated at the lift of point
 Hf = lambdaf.'*ff(yf)

% Taking partial derivatives for the boundary conditions
 Gyf = jake(G,yf)

 Gyc = jake(G,yc)

 Gbeta = jake(G,betaTD)

 Ga = jake(G,a)

 Gtc = jake(G,tc)

% Euler equation
 dHdy = jake(H,y).'

%--
% Develop Differential Constraints
%--
% Make Ktilda matrix
 TM = [1 0 0 0; 0 1 0 0; 1 1/N 1/N^2 1/N^3; 0 1 2/N 3/N^2]
 Ktilda = inv(TM)

85

% Make the time vectors for creation of the polynomial approximation
 tauc = 1/(2*N)
 tau_vec = [1 tauc tauc^2 tauc^3]
 tau_vec_prime = [0 1 2*tauc 3*tauc^2]

% Evaluate the derivative of the polynomial approximation at the
% collocation point.
 ycol_prime = (tau_vec_prime*Ktilda*[ym.';...
 tn*fg(ym).';...
 yp.';...
 tn*fg(yp).']).';

 lambdacol_prime = (tau_vec_prime*Ktilda*[lambdam.';...
 -tn*Hy(ym,lambdam).';...
 lambdap.';...
 -tn*Hy(yp,lambdap).']).';

% Evaluate the polynomial approximation at the collocation point.
 ycol = (tau_vec*Ktilda*[ym.';...
 tn*fg(ym).';...
 yp.';...
 tn*fg(yp).']).';

 lambdacol = (tau_vec*Ktilda*[lambdam.';...
 -tn*Hy(ym,lambdam).';...
 lambdap.';...
 -tn*Hy(yp,lambdap).']).';

% Plug the polynomial approximations into the the differential constraints.
% Subract the differential constraints from the derivative of the
% polynomial constraint found above.
 Ryi = ycol_prime-tn*fg(ycol);
 Rlambdai = lambdacol_prime+tn*Hy(ycol,lambdacol);

%--
% Substitution Definitions for Residual Vector
%--
 subsvec1 = {'tc','a1','a2','betaTD','upsilon1','upsilon2',...
 'upsilon3'};
 subsvec2 = {'X1','X2','X3','X4','X5','X6','X7'};
 subsvec3 = {'X(1)','X(2)','X(3)','X(4)','X(5)','X(6)','X(7)'};
 for i = 1:6
 subsvec1(i+7) = xi(i);
 subsvec2(i+7) = {['X' num2str(i+7)]};
 subsvec3(i+7) = {['X(' num2str(i+7) ')']};

 %State at connection time substitution
 subsvec1(i+13) = yc(i);
 subsvec2(i+13) = {['X' num2str(i+13)]};
 subsvec3(i+13) = {['X(' num2str(i+13) ')']};

 subsvec1(i+19) = lambdac(i);
 subsvec2(i+19) = {['X' num2str(i+19)]};
 subsvec3(i+19) = {['X(' num2str(i+19) ')']};

 %State at first node substitution.
 subsvec1(i+25) = ym(i);

86

 subsvec2(i+25) = {['X12ip' num2str(i+1)]};
 subsvec3(i+25) = {['X(12*i+' num2str(i+1) ')']};

 subsvec1(i+31) = lambdam(i);
 subsvec2(i+31) = {['X12ip' num2str(i+7)]};
 subsvec3(i+31) = {['X(12*i+' num2str(i+7) ')']};

 %State at second node substitution
 subsvec1(i+37) = yp(i);
 subsvec2(i+37) = {['X12ip' num2str(i+13)]};
 subsvec3(i+37) = {['X(12*i+' num2str(i+13) ')']};

 subsvec1(i+43) = lambdap(i);
 subsvec2(i+43) = {['X12ip' num2str(i+19)]};
 subsvec3(i+43) = {['X(12*i+' num2str(i+19) ')']};

 %State at final time substitution
 subsvec1(i+49) = yf(i);
 subsvec2(i+49) = {['X12Np' num2str(i+13)]};
 subsvec3(i+49) = {['X(12*N+' num2str(i+13) ')']};

 subsvec1(i+55) = lambdaf(i);
 subsvec2(i+55) = {['X12Np' num2str(i+19)]};
 subsvec3(i+55) = {['X(12*N+' num2str(i+19) ')']};

 %Initial state substitution
 subsvec1(i+61) = yo(i);
 subsvec2(i+61) = yo(i);
 subsvec3(i+61) = {['yo(' num2str(i) ')']};

 %Fixed point state substitution
 subsvec1(i+67) = yfixed(i);
 subsvec2(i+67) = yfixed(i);
 subsvec3(i+67) = {['yfix(' num2str(i) ')']};

 end
 for i = 2:6
 subsvec1(i+72) = Q(i,i);
 subsvec2(i+72) = Q(i,i);
 subsvec3(i+72) = {['q(' num2str(i) ')']};
 end
 %Last Lagrange Multiplier substitution
 for i = 1:3
 subsvec1(i+78) = nu(i);
 subsvec2(i+78) = {['X12Np' num2str(i+25)]};
 subsvec3(i+78) = {['X(12*N+' num2str(i+25) ')']};
 end
 subsvec1(82) = {'tn'};
 subsvec2(82) = {'X12Np29'};
 subsvec3(82) = {'X(12*N+29)'};
 %Last constraint parameter substitution
 for i = 1:2
 subsvec1(i+82) = a(i+2);
 subsvec2(i+82) = {['X12Np' num2str(i+29)]};
 subsvec3(i+82) = {['X(12*N+' num2str(i+29) ')']};
 end
 %Substitution of Model Constants
 subsvec1(85:91) = {k,etao,d,m,I,g,vo};
 subsvec2(85:91) = {k,etao,d,m,I,g,vo};
 subsvec3(85:91) = {'c.k','c.etao','c.d','c.m','c.I','c.g','c.vo'};

87

%--
% Nondimensionalization Vector for the Residual
%--
 dimstate = [etao; etao; 1; vo; vo; vo/etao];
 dimcoestate = 1./dimstate;
 kappao = [etao/vo; sqrt(vo); sqrt(etao/vo); 1; 1/etao; 1/vo; vo/etao;...
 dimcoestate; dimstate];

 kappai = [dimcoestate; dimstate];

 kappaf = [dimstate; 1/(etao^2); 1/vo; vo/etao; etao/vo; sqrt(vo);...
 sqrt(etao/vo)];

 switch calc
 case 1
 % The first part of the residual vector consists of the boundary
 % conditions at the touchdown time.
 R(1,1) = subs(kappao(1).*(Hc-Gtc),subsvec1,subsvec2,0);
 R(2:3,1) = subs(kappao(2:3).*Ga(1:2).',subsvec1,subsvec2,0);
 R(4,1) = subs(kappao(4).*Gbeta,subsvec1,subsvec2,0);
 R(5:7,1) = subs(kappao(5:7).*chi,subsvec1,subsvec2,0);
 R(8:13,1) = subs(kappao(8:13).*theta,subsvec1,subsvec2,0);
 R(14:19,1) = subs(kappao(14:19).*(lambdac+Gyc.'),subsvec1,...
 subsvec2,0);

 % The first section of the Hessian.
 varvec = [];
 for i = 1:25
 varvec = [varvec;sym(['X' num2str(i)])];
 end
 heso = jake(R,varvec);
 delete('Ro.txt')
 diary('Ro.txt')
 Ro = subs(R,subsvec2,subsvec3,0)
 diary off
 delete('heso.txt')
 diary('heso.txt')
 heso = subs(heso,subsvec2,subsvec3,0)
 diary off
 case 2
 % The middle of the residual vector is defined using a for loop.
 % It consists of the differential constraints applied at each
 % collocation point for all the states and coestates.
 Ri = subs(kappai.*[Ryi;Rlambdai],subsvec1,subsvec2,0);

 % The middle section of the residual is dependent on only the
 % states and coestates at the endpoints of each segment and the the
 % ground phase time, tn, known as X(14) in the collocation state
 % vector. A column vector of the derivatives of this part of the
 % residual with respect to tn will be made and a jacobian will be
 % made of this part of the residual with respect to the endpoint
 % state.
 varvec = sym('X12Np29');
 hestni = jake(Ri,varvec);
 varvec = [];
 for i = 1:24
 varvec = [varvec;sym(['X12ip' num2str(i+1)])];
 end
 hesi = jake(Ri,varvec);

88

 delete('Ri.txt')
 diary('Ri.txt')
 Ri = subs(Ri,subsvec2,subsvec3,0)
 diary off
 delete('hestni.txt')
 diary('hestni.txt')
 hestni = subs(hestni,subsvec2,subsvec3,0)
 diary off
 delete('hesi.txt')
 diary('hesi.txt')
 hesi = subs(hesi,subsvec2,subsvec3,0)
 diary off
 case 3
 % The last part of the residual vector consists of the boundary
 % conditions at the liftoff time.
 Rf(1:6,1) = subs(kappaf(1:6).*(lambdaf-Gyf.'),subsvec1,...
 subsvec2,0);
 Rf(7:9,1) = subs(kappaf(7:9).*psi,subsvec1,subsvec2,0);
 Rf(10,1) = subs(kappaf(10).*Hf,subsvec1,subsvec2,0);
 Rf(11:12,1) = subs(kappaf(11:12).*Ga(3:4).',subsvec1,subsvec2,0);
 % Last part of the Hessian.
 varvec = [];
 for i = 1:18
 varvec = [varvec;sym(['X12Np' num2str(i+13)])];
 end
 hesf = jake(Rf,varvec);
 delete('Rf.txt')
 diary('Rf.txt')
 Rf = subs(Rf,subsvec2,subsvec3,0)
 diary off
 delete('hesf.txt')
 diary('hesf.txt')
 hesf = subs(hesf,subsvec2,subsvec3,0)
 diary off
 otherwise
 %--
 % Prepare the Equations of motion for ic_prep3
 %--
 clear subsvec1 subsvec2
 % Substitution Defenition
 for i = 1:6
 subsvec1(i) = y(i);
 subsvec2(i) = {['y(' num2str(i) ')']};

 subsvec1(i+6) = lambda(i);
 subsvec2(i+6) = {['y(' num2str(i+6) ')']};
 end
 % Substitution of Model Constants
 subsvec1(13:18) = [k,etao,d,m,I,g];
 subsvec2(13:18) = {'c.k','c.etao','c.d','c.m','c.I','c.g'};

 func(1:6,1) = subs(fg(y),subsvec1,subsvec2,0);
 func(7:12,1) = subs(-dHdy,subsvec1,subsvec2,0)

 %--
 % Prepare equation for nu and -Gyc.' for calculating lambdaf in
 % ic_prep3
 %--
 clear subsvec1 subsvec2
 % Substitution Defenition

89

 for i = 1:6
 % State at final time substitution
 subsvec1(i) = yf(i);
 subsvec2(i) = {['Y(' num2str(i) ',N+1)']};
 % Fixed point state substitution
 subsvec1(i+6) = yfixed(i);
 subsvec2(i+6) = {['yfix(' num2str(i) ')']};
 end

 % Final State Weightings
 for i = 2:6
 subsvec1(i+11) = Q(i,i);
 subsvec2(i+11) = {['q(' num2str(i) ')']};
 end
 % Substitution of Model Constants
 subsvec1(18:21) = [etao,d,g,vo];
 subsvec2(18:21) = {'c.etao','c.d','c.g','c.vo'};
 nusubbed = subs(nusolved,subsvec1,subsvec2,0)
 Gyfsubbed = subs(Gyf.',subsvec1,subsvec2,0)
 end
end

function fybar = nondimensionalizer(y)
%==
% fybar = nondimensionalizer(y))
%
% This function nondimensionalizes a 6x1 state vector
%
% Inputs:
% y 6x1 state vector.
%
% Output:
% fybar 6x1 nondimensionalized state vector.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global etao vo
 fybar = [y(1)/etao; y(2)/etao; y(3); y(4)/vo; y(5)/vo; y(6)*etao/vo];
end

function f = ff(y)
%==
% f = ff(y)
%
% This calcualates the flight phase equations of motion evaluated at the
% state y.
%
% Inputs:
% y 6x1 state vector.
%
% Output:
% f 6x1 vector of the derivative of y.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global g m I k tc tn
 f = [y(4);y(5);y(6);0;g;0];
end

90

function f = fg(y)
%==
% f = fg(y)
%
% This calcualates the ground phase equations of motion evaluated at the
% state y.
%
% Inputs:
% y 6x1 state vector.
%
% Output:
% f 6x1 vector of the derivative of y.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global g m I k tc tn d etao betaTD
 eta = sqrt((y(1)-d*sin(y(3)))^2+(y(2)-d*cos(y(3)))^2);
 f = [y(4); y(5); y(6); k/m*(etao/eta-1)*(y(1)-d*sin(y(3)));...
 k/m*(etao/eta-1)*(y(2)-d*cos(y(3)))+g;...
 d*k/I*(etao/eta-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))];
end

function f = Hy(y_of_t,lambda_of_t)
%==
% Hy(y_of_t,lambda_of_t)
%
% Takes the derivative of the Hamiltonian with respect to the physical
% variables as defined by the code and returns the Hamiltonian derivative
% evaluated for a specific set of parameters y_of_t and lambda_of_t.
%
% Inputs:
% y_of_t 6x1 state vector.
%
% lambda_of_t 6x1 coestate vector.
%
% Output:
% f Derivative of the hamiltonian evaluated at y_of_t and lambda_of_t.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global dHdy
 for i = 1:6
 y(i,1) = sym(['y' num2str(i)],'real');
 lambda(i,1) = sym(['lambda' num2str(i)],'real');
 end
 f=subs(dHdy,[y;lambda],[y_of_t;lambda_of_t],0);
end

function fy=jake(f,y)
%==
% fy=jake(f,y)
%
% Takes the jacobian of a vector.
%
% Inputs:
% f an Nx1 vector of functions of the parameters in vector y where N

91

% may equal 1.
%
% y an Mx1 vector of parameters where M may equal 1.
%
% Output:
% fy an NxM matrix of derivatives where fy(i,j) is the derivative of
% f(i) with respect to y(j).
%
% Cary R. Maunder, Oregon State University, 2006
%==

 for i=1:length(f)
 for j = 1:length(y)
 fy(i,j)=diff(f(i),y(j));
 end
 end
end

A.2 residual_formatter

The script residual_formatter formatted the residual output of euler_param_calc_ad1 to be pasted

into a residual code which calculated the residual for a given collocation state.

%==
% residual_formatter
%
% This script formats symbolic column vector MATLAB outputs written to a
% text file.
%
% Cary R. Maunder, Oregon State University, 2006
%==
%This script formats stuff
clear all
width_of_line = [58,61,65];

if(1)
% start pre-search
 frid = fopen('hestni.txt', 'r');
 fwid = fopen('temp.txt', 'w');
 subsvec1 = {'yo(','q(','yfix('};
 subsvec2 = {'c.yo(','c.q(','c.yfix('};
 while(~feof(frid))
 A = fread(frid, 1, 'char');
 i=1;
 whole_file = [];
 while (~feof(frid))&&(A~=')')&&(A~=13)
 whole_file(i) = char(A);
 A = fread(frid, 1, 'char');
 i = i + 1;
 end
 if ~feof(frid)
 whole_file(i) = char(A);
 end
 whole_file = char(whole_file);
 for i = 1:3

92

 whole_file = strrep(whole_file,subsvec1(i),subsvec2(i));
 whole_file = whole_file{1};
 end
 fwrite(fwid,whole_file,'char');
 end
 fclose('all');
% end pre-search
end

frid = fopen('temp.txt', 'r');
fwid = fopen('hestni_f.txt', 'w');

operators = {'^', '/', '*', '-', '+', '(', ',','{'};

in_vector = 0;
after_eq_sgn = 0;
col_count = 0;
eq_count = 0;
stack_count = 1;
burst = [];

while(~feof(frid))
 A = fread(frid, 1, 'char');
 if in_vector
 if after_eq_sgn
 if isstrprop(A, 'wspace')
 else
 after_eq_sgn = 0;
 col_count = 1;
 fwrite(fwid,A,'char');
 end
 elseif stack_count~=1|A==char(13)
 stack(stack_count) = A;
 if stack_count == 4
 fwrite(fwid,burst,'char');
 burst = [];
 if stack == [char(13) char(10) char(32) char(13)]
 fprintf(fwid,'];\r\n\r\n\r\n');
 in_vector = 0;
 else
 fprintf(fwid,';...\r\n\r\n');
 for i = 1:(72-width_of_line(eq_count))
 fwrite(fwid,' ','uchar');
 end
 if ~isstrprop(A, 'wspace')
 fwrite(fwid,A,'char');
 col_count = 1;
 end
 end
 col_count = 0;
 stack_count = 1;
 else
 stack_count = stack_count+1;
 end
 elseif isstrprop(A, 'wspace')
 elseif isempty(strmatch(char(A),operators,'exact'))
 burst = [burst A];
 else
 burst = [burst A];
 if col_count+length(burst) >= width_of_line(eq_count)

93

 fprintf(fwid,'...\r\n');
 for i = 1:(72-width_of_line(eq_count))
 fwrite(fwid,' ','uchar');
 end
 col_count = 0;
 end
 col_count = col_count+length(burst);
 fwrite(fwid,burst,'char');
 burst = [];
 end
 else
 if isstrprop(A, 'wspace')
 elseif A=='='
 in_vector = 1;
 after_eq_sgn = 1;
 eq_count = eq_count+1;
 fprintf(fwid,' = [');
 else
 fwrite(fwid,A,'char');
 end
 end
end
fclose('all');

A.3 hessian_ formatter

The script hessian_formatter formatted the Hessian output of euler_param_calc_ad1 to be pasted

into a Hessian code which calculated the Hessian for a given collocation state.

%==
% hessian_formatter
%
% This script formats symbolic matrix MATLAB outputs written to a text
% file.
%
% Cary R. Maunder, Oregon State University, 2006
%==
%This script formats stuff
clear all
width_of_line = [62,61,65];
if(1)
%start pre-search
 frid = fopen('hesf.txt', 'r');
 fwid = fopen('tempf.txt', 'w');
 subsvec1 = {'yo(','q(','yfix('};
 subsvec2 = {'c.yo(','c.q(','c.yfix('};
 while(~feof(frid))
 A = fread(frid, 1, 'char');
 i=1;
 whole_file = [];
 while (~feof(frid))&&(A~=')')&&(A~=13)
 whole_file(i) = char(A);
 A = fread(frid, 1, 'char');
 i = i + 1;
 end

94

 if ~feof(frid)
 whole_file(i) = char(A);
 end
 whole_file = char(whole_file);
 for i = 1:3
 whole_file = strrep(whole_file,subsvec1(i),subsvec2(i));
 whole_file = whole_file{1};
 end
 fwrite(fwid,whole_file,'char');
 end
 fclose('all');
%end pre-search
end
frid = fopen('tempf.txt', 'r');
fwid = fopen('hesf_f.txt', 'w');

operators = {'^', '/', '*', '-', '+', '(', ',', '{'};

in_vector = 0;
after_eq_sgn = 0;
col_count = 0;
eq_count = 0;
stack_count = 1;
burst = [];

while(~feof(frid))
 A = fread(frid, 1, 'char');
 if in_vector
 if after_eq_sgn
 if isstrprop(A, 'wspace')
 else
 after_eq_sgn = 0;
 col_count = 1;
 fwrite(fwid,A,'char');
 end
 elseif stack_count~=1|A==']'
 stack(stack_count) = A;
 if stack_count == 4
 fwrite(fwid,burst,'char');
 burst = [];
 if stack == [']' char(13) char(10) '[']
 fprintf(fwid,';...\r\n\r\n');
 for i = 1:(72-width_of_line(eq_count))
 fwrite(fwid,' ','uchar');
 end
 else
 fprintf(fwid,'];\r\n\r\n\r\n');
 in_vector = 0;
 end
 col_count = 0;
 stack_count = 1;
 else
 stack_count = stack_count+1;
 end
 elseif isstrprop(A, 'wspace')
 elseif isempty(strmatch(char(A),operators,'exact'))
 burst = [burst A];
 else
 burst = [burst A];
 if col_count+length(burst) >= width_of_line(eq_count)

95

 fprintf(fwid,'...\r\n');
 for i = 1:(72-width_of_line(eq_count))
 fwrite(fwid,' ','uchar');
 end
 col_count = 0;
 end
 col_count = col_count+length(burst);
 fwrite(fwid,burst,'char');
 burst = [];
 end
 else
 if isstrprop(A, 'wspace')
 elseif A=='='
 elseif A=='['
 in_vector = 1;
 after_eq_sgn = 1;
 eq_count = eq_count+1;
 fprintf(fwid,' = [');
 else
 fwrite(fwid,A,'char');
 end
 end
end
fclose('all');

96

APPENDIX B

Control Scheme Code

The control scheme was set up to run separately from the simulation so as to simulate its use on a

real system. The main code, collocation4, is called by the simulation at the end of the ground phase.

It returns its choice of leg angles as well as the time of touchdown to the simulation and the flight

phase simulation is started.

B.1 collocation4

The collaction4 function calculates the optimal touchdown angle from lift off conditions. It calls

many sub-functions to accomplish this task. These are presented in subsequent sections.

function [beta, tc] = collocation4(yo,c)
%==
% [beta, tc] = collocation4(yo,c)
%
% This function calculates the optimal touchdown for the SLIP based on the
% lift off conditons.
%
% Inputs:
% yo 6x1 lift off conditions vector
% [x; z; theta; xdot; zdot; thetadot];
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% beta The optimal touchdown angle
%
% tc The optimal touchdown time
%
% Cary R. Maunder, Oregon State University, 2006
%==
 c.yo = yo;
 c.vo = sqrt(c.yo(4)^2+c.yo(5)^2);
 c.nondim = [1/c.etao;1/c.etao;1;1/c.vo;1/c.vo;c.etao/c.vo];
 c.max_error = 1e-6;
 % Program Constants

97

 N = 5
 h = 1/N;
 itteration_max = 100;
 max_small_lambda = 8;
 % Progam Counters
 lambda_too_small = 0;
 refine_count = 0;
 i = 1;
 % Find General Area of Minimum Through Several Short Simulations
 % Use Initial Conditions of best short Simulation.
 % Initial Conditions
 rdat.refine = 0;
 [X{i},rdat] = ic_prep5(N,c,rdat);
 % Calculate Residual
 R{i} = residual8(X{i},N,c);
 % Square of the norm of the residual is an indication of convergence.
 RTR = (R{i}.'*R{i})/2; %Square of norm.
 fprintf('RTR is %9.8g. Beta is %9.8g.\n',RTR,X{i}(4))
 % Test if routine has converged
 not_done = unsatesfactroy(R{i},c);
 % Start itterations
 while(not_done & i<=itteration_max)
 refine_time = 1;
 % Runs iteration once unless the initial conditions had to be refined
 while refine_time
 refine_time = 0;
 % Compute the Hessian analytically
 dRa = analytical_hessian1(X{i},N,c);
 % Newton step taken
 [X{i+1},R{i+1},lambda] = gc_newton(dRa,R{i},X{i},N,c);
 % If step is too small, take note.
 if lambda < 1e-3
 lambda_too_small = lambda_too_small + 1;
 fprintf('%i small steps until refine.\n',...
 max_small_lambda-lambda_too_small+1)
 % If too many small steps were taken, refine ic's
 if lambda_too_small > max_small_lambda
 refine_time = 1;
 lambda_too_small = 0;
 rdat.refine = 1;
 % Recompute initial conditions for more leg angles
 [X{i},rdat] = ic_prep5(N,c,rdat);
 % Recompute residual with better initial conditions
 R{i} = residual8(X{i},N,c);
 RTR = (R{i}.'*R{i})/2; %Square of norm.
 fprintf('Refining initial conditions.\n')
 fprintf('RTR is %9.8g. Beta is %9.8g.\n',RTR,X{i}(4))
 end
 end
 end
 i = i+1;
 % Sets tc to 0 when it is negative
 if X{i}(1)<0
 X{i}(1) = 0;
 X{i}(3) = 0;
 X{i}(7) = X{i}(20)*X{i}(17)+X{i}(21)*X{i}(18)+X{i}(22)*...
 X{i}(19)+X{i}(24)*c.g-X{i}(9)*(-c.yo(5)-c.g*...
 X{i}(1))+X{i}(10)*c.yo(6)+X{i}(12)*(c.g);
 R{i} = residual8(X{i},N,c);
 disp('Switching to tc = 0')

98

 end
 % Since angles of greater than 2pi are really angles of less than 2pi
 % plus a full rotation, the full rotation is taken out.
 if X{i}(4)>=2*pi||X{i}(4)<0
 X{i}(4) = mod(X{i}(4),2*pi);
 disp('Truncating beta')
 end
 % Report on Progress
 RTR = R{i}'*R{i}/2;
 fprintf('RTR is %9.8f. Beta is %9.8f. Omega is %9.8f.\n',...
 RTR,X{i}(4),lambda);
 not_done = unsatesfactroy(R{i},c);
 end
 if not_done
 % If Newton routine did not converge in itteration_max itterations
 % use the best guess so far.
 beta = rdat.betas(rdat.min.i)
 tc = rdat.min.tc
 elseif (X{i}(1) <= 1e-6)
 % Corrects for numirical error if flight time is intended to be zero
 if X{i}(4)<pi/2
 beta = asin((c.d*cos(c.yo(3))-c.yo(2))/c.etao)
 else
 beta = pi-asin((c.d*cos(c.yo(3))-c.yo(2))/c.etao)
 end
 tc = 0
 else
 % If everything goes as planned routine returns the optimal leg angle
 beta = real(X{i}(4))
 % And the optimal flight time
 tc = X{i}(1);
 end
end

function yes_or_no = unsatesfactroy(R,c)
%==
% yes_or_no = unsatesfactroy(R,c)
%
% This function checks to see if the residual meets the tollerance
% requirements to end the routine
%
% Inputs:
% R Residual vector.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% yes_or_no If unsatesfactory 1. If satesfactory 0.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 yes_or_no = 0;
 % Test every part of the residual to make sure it is within tolerance
 for j=1:length(R)
 if abs(R(j))> c.max_error
 yes_or_no = 1;
 end

99

 end
end

B.2 ic_prep5

The function ic_prep5 is called in collocation4 to prepare an initial guess of the collocation state

vector.

function [X,rdat] = ic_prep5(N,c,rdat)
%==
% [X,rdat] = ic_prep5(N,c)
%
% This function sets up the necessary variables for collocation4.
% It makes an initial guess at the values of the parameters in the X
% vector. These initial guesses are called the initial conditions of the
% collocation scheme even though they are not just for the state at the
% initial time.
%
% This funciton uses a folder of functions ic_prep. It cannot run without
% them.
%
% Inputs:
% N Number of segments into which the collocation scheme will be
% broken.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% rdat This is a structure containing everything ic_prep5 needs to know
% about its previous calls.
% rdat.betas Is a vector of the angles that have already been
% explored by ic_prep
%
% rdat.min Is a structure containing data about initial
% conditions for the colloaction function that yield
% the minimum end cost, J. It also includes the cost
% itself.
%
% rdat.min.i This is the index number of the touchdown
% angle that yields the minimum cost in rdat.J
%
% rdat.min.J Is a vector of the final costs associated with
% the angles in rdat.betas
%
% rdat.min.Y This is the state of the collocation function
% for which the cost is rdat.J
%
% rdat.min.tc Is the flight time of the collocation state
% rdat.min.Y.
%
% rdat.min.tn Is the ground phase time of the collocation
% state rdat.min.Y.
%

100

% rdat.refine Is a variable simply telling the ic_prep funciton
% if it is creating initial condition for a new
% collocation scheme or refining some initial
% conditons that have already been developed.
%
% Outputs:
% X The initial guess for the collocation state vector.
%
% rdat This is a structure containing everything ic_prep5 will need to
% know if it is called again to refine the initial conditons
% about this and previous calls this function calls.
%
% Cary R. Maunder, Oregon State University, 2006
%==

 % Error Acceptable in the initial conditions
 c.ic_error = 0.0001;
 % Change to the ic_prep directory
 cd ic_prep
 if ~rdat.refine
 % If ic_prep is starting form scratch, it must calculate a range to
 % test in.
 rdat.betas = ic_prep_range_test(c);
 rdat.min = ic_prep_cost_finder(rdat.betas,inf,c,c.nondim);
 else
 % If ic_prep has been called before it mus refine its search for the
 % best initial guess of an optimal leg angle because the original
 % guess converged to a local minimum.
 minn.i = 0;
 while minn.i == 0
 M = length(rdat.betas);
 % Tests leg angles half way in between all the previously tested
 % leg angles and half again as close to to the max and min beta
 % values.
 beta(1)=.25*(rdat.betas(1)-rdat.betas(2))+rdat.betas(1);
 for i = 1:M-1
 beta(i+1) = (rdat.betas(i+1)+rdat.betas(i))/2;
 end
 beta(M+1) = 0.25*(rdat.betas(M)-rdat.betas(M-1))+...
 rdat.betas(M);
 minn = ic_prep_cost_finder(beta,rdat.min.J,c,c.nondim);
 % Organize Betas.
 betas(1) = beta(1);
 for i = 1:length(rdat.betas)
 betas(2*i) = rdat.betas(i);
 betas(2*i+1) = beta(i+1);
 end
 rdat.betas = betas;
 end
 rdat.min = minn;
 rdat.min.i = 2*minn.i-1;
 end
 rdat.refine = 0;
 X = ic_final_prep1(N,c,rdat);
 cd ..
end

101

B.2.1 ic_prep_range_test

The function ic_prep_range_test calculates the range in which it would be acceptable to find a leg

touchdown angle and proceeds to select the leg angles to try.

function beta = ic_prep_range_test(c)
%==
% beta = ic_prep_range_test(c)
%
% This function calculates the initial guesses of leg angles that should be
% tested.
%
% Inputs:
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% beta Vector of leg angles to try.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 M = 7;
 % Time of Max height of leg attachment point (Min Time)
 tmin = -2*(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))/...
 ((c.g+c.d*c.yo(6)^2*cos(c.yo(3)))+...
 sqrt((c.g+c.d*c.yo(6)^2*cos(c.yo(3)))^2+...
 2*c.d*c.yo(6)^3*sin(c.yo(3))*...
 (c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))));
 if tmin < 0
 tmin = 0;
 end
 hmax = -c.yo(2)-c.yo(5)*tmin-1/2*c.g*tmin^2+...
 c.d*cos(c.yo(3)+c.yo(6)*tmin)-c.etao;
 % Determin the bounds for beta.
 if c.yo(4)>0
 % Time of Min height of leg attachment point (Max Time)
 tmax = (-(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))+...
 sqrt((c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))^2+...
 2*(c.g+c.d*c.yo(6)^2*cos(c.yo(3)))*...
 (c.d*cos(c.yo(3))-c.yo(2))))/...
 (c.g+c.d*c.yo(6)^2*cos(c.yo(3)));
 if hmax < 0
 beta_max = asin((-2*c.yo(2)-2*c.yo(5)*tmin-c.g*tmin^2+...
 2*c.d*cos(c.yo(3)+c.yo(6)*tmin))/(2*c.etao));
 else
 % Find the time at which the leg touch at touchdown is
 % perpendicular to the direction of the touchdown velocity.
 tbetamax = RegulaFalsi(tmin,tmax,@MaxBetat,c);
 beta_max = pi-asin((-c.yo(2)-c.yo(5)*tbetamax-1/2*c.g*...
 tbetamax^2+c.d*cos(c.yo(3)+c.yo(6)*tbetamax))...
 /c.etao);
 end
 % Find the time at which the leg touch at touchdown is
 % parallel to the direction of the touchdown velocity.
 tbetamin = RegulaFalsi(tmin,tmax,@MinBetat,c);

102

 if tbetamin < 0
 tbetamin = 0;
 end
 beta_min = asin((-c.yo(2)-c.yo(5)*tbetamin-1/2*c.g*...
 tbetamin^2+c.d*cos(c.yo(3)+c.yo(6)*...
 tbetamin))/c.etao);
 else
 if hmax < 0
 beta_min = pi-asin((-2*c.yo(2)-2*c.yo(5)*tmin-c.g*tmin^...
 2+2*c.d*cos(c.yo(3)+c.yo(6)*tmin))/...
 (2*c.etao));
 else
 beta_min = pi/2;
 end
 beta_max = pi;
 end
 mid = pi/2;
 test_pi_over_2 = 1;
 if test_pi_over_2
 % Cost Test Aligns Spread of Beta's to hit pi/2 in the middle.
 if beta_min >= beta_max
 beta(1) = beta_min;
 M = 1;
 elseif c.yo(4)>0 && beta_max>mid
 Mf = ceil((M-1)/2);
 Mb = floor((M-1)/2);
 scalef = (mid-beta_min)/(Mf+.5);
 scaleb = (beta_max-mid)/(Mb+.5);
 beta(1) = beta_min+scalef*.5;
 for i=2:Mf+1
 beta(i) = beta(i-1)+scalef;
 end
 for i=Mf+2:M
 beta(i) = beta(i-1)+scaleb;
 end
 else
 scale = (beta_max-beta_min)/M;
 beta(1) = beta_min + scale*.5;
 for i=2:M
 beta(i) = beta(i-1)+scale;
 end
 end
 else
 % Cost Test Aligns Spread of Beta's to hit before and after pi/2.
 if beta_min >= beta_max
 beta(1) = beta_min;
 M = 1;
 elseif c.yo(4)>0 && beta_max>mid
 Mf = ceil(M/2);
 Mb = floor(M/2);
 scalef = (mid-beta_min)/(Mf);
 scaleb = (beta_max-mid)/(Mb);
 beta(1) = beta_min+scalef*.5;
 for i=2:Mf
 beta(i) = beta(i-1)+scalef;
 end
 beta(Mf+1) = mid+scaleb*.5;
 for i=Mf+2:M
 beta(i) = beta(i-1)+scaleb;
 end

103

 else
 scale = (beta_max-beta_min)/M;
 beta(1) = beta_min + scale*.5;
 for i=2:M
 beta(i) = beta(i-1)+scale;
 end
 end
 end
end

function tmaybe = RegulaFalsi(tmin,tmax,func,c)
%==
% tmaybe = RegulaFalsi(tmin,tmax,func,c)
%
% This function finds the input value, tmaybe, for which func is 0.
%
% Inputs:
%
% tmin The minimum input value for which func could be 0.
%
% tmax The maximum input value for which func could be 0.
%
% func A function handle for a function. The input of this function
% must be found such that the function's value is 0.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% tmaybe The input value for which func is 0.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 ftmax = func(tmax,c);
 ftmin = func(tmin,c);
 ftmaybe = ftmin;
 tmaybe = tmin;
 while abs(ftmaybe)>c.ic_error
 gprime = (ftmax-ftmin)/(tmax-tmin);
 tmaybe = tmax-ftmax/gprime;
 ftmaybe = func(tmaybe,c);
 if ftmaybe < 0
 tmax = tmaybe;
 ftmax = ftmaybe;
 else
 tmin = tmaybe;
 ftmin = ftmaybe;
 end
 end
end

function f = MinBetat(t,c)
%==
% f = MinBetat(t,c)
%
% This function is 0 when the input is the time at which the system would
% touchdown if it were touching down at the minimum leg touchdown angle.
%
% Inputs:

104

%
% t Input time.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% f Function value.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 if c.yo(4) == 0
 f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*...
 cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-1;
 else
 f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*...
 cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-...
 (c.yo(5)+c.g*t)/sqrt(c.yo(4)^2+(c.yo(5)+c.g*t)^2);
 end
end

function f = MaxBetat(t,c)
%==
% f = MaxBetat(t,c)
%
% This function is 0 when the input is the time at which the system would
% touchdown if it were touching down at the maximum leg touchdown angle.
%
% Inputs:
%
% t Input time.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% f Function value.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*...
 cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-...
 c.yo(4)/sqrt(c.yo(4)^2+(c.yo(5)+c.g*t)^2);
end

B.2.2 ic_prep_cost_finder

The ic_prep_cost_finder function determines the unconstrained cost associated with each leg angle

suggested by ic_prep_range_test and passes on the leg angle with the lowest cost associated with it.

function minn = ic_prep_cost_finder(beta,jmin,c,nondim)
%==
% minn = ic_prep_cost_finder(beta,jmin,c,nondim)

105

%
% This function selects the leg angle out of an input vector of leg angles
% that produces the lowest cost as determined by the unconstrained cost
% function. It then records information about its findings.
%
% Inputs:
%
% beta A vector of leg angles to test.
%
% jmin The best cost found so far.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% nondim 6x1 vector of nondimensionalization parameters for the states.
%
% Outputs:
% minn A structure containing data about about the best beta chosen.
% The elements are:
% minn.i The index number of the best leg angle chosen in the
% vector.
%
% minn.J The unconstrained cost associated with the best
% choice of leg angle.
%
% minn.Y 6x2 touchdown state and end state associated with
% the best leg angle found concatenated together in
% that order.
%
% minn.tc The touchdown time associated with the best leg
% angle found.
%
% minn.tn The ground phase time associated with the best leg
% angle found.
%
% Cary R. Maunder, Oregon State University, 2006
%==

 % Angles to test, Cost to test against,
 % For each new angle find the cost.
 minn.J = jmin;
 minn.i = 0;
 for i = 1:length(beta)
 % Approximate the touchdown time.
 tc(i) = (-(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))+...
 sqrt((c.yo(5)+c.yo(6)*c.d*sin(c.yo(3)))^2+...
 2*(c.g+c.yo(6)^2*c.d*cos(c.yo(3)))*...
 (c.d*cos(c.yo(3))-c.yo(2)-c.etao*sin(beta(i)))))/...
 (c.g+c.yo(6)^2*c.d*cos(c.yo(3)));
 % Use the Approximated touchdown time to get the touchdown state.
 Y{i}(3,1) = c.yo(3)+c.yo(6)*tc(i);
 Y{i}(1,1) = c.d*sin(Y{i}(3,1))-c.etao*cos(beta(i));
 Y{i}(2,1) = c.yo(2)+c.yo(5)*tc(i)+1/2*c.g*tc(i)^2;
 Y{i}(4,1) = c.yo(4);
 Y{i}(5,1) = c.yo(5)+c.g*tc(i);
 Y{i}(6,1) = c.yo(6);
 % Loosely approximated the ground phase time so the time step for the
 % rk4 is not too big.
 tn_est = c.etao/c.vo;

106

 % For approximating tn and Yn use runge_N steps.
 runge_N = 50;
 % Make sure runge_tn_find runs once
 true_ratio = 0;
 % Rerun runge_tn_find if the time step was too large last time
 while true_ratio < .5
 [Y{i}(:,2),tn(i)] =...
 runge_tn_find(Y{i}(:,1),tn_est,runge_N,c);
 true_ratio = tn(i)/tn_est;
 tn_est = tn(i)*1.5;
 end
 % Calculate Cost of end State
 deltaYbar = [Y{i}(:,2)-c.yfix].*nondim;
 J(i) = deltaYbar.'*(c.q.*deltaYbar);
 if J(i)<minn.J
 minn.i = i;
 minn.J = J(i);
 minn.Y = Y{i};
 minn.tc = tc(i);
 minn.tn = tn(i);
 end
 end
end

function [endspresh,tn] = runge_tn_find(Y,tn_est,N,c)
%==
% [endspresh,tn] = runge_tn_find(Y,tn_est,N,c)
%
% This function uses a 4th order runge-kutta scheme to numerically
% integrate forward in time until the leg is no longer in compression. It
% procedes finds the exact lift off state and returns it with the ground
% phase time.
%
% Inputs:
%
% Y 6x1 touchdown state vector.
%
% tn_est A guess of what the final time will be so a good step size can
% be picked.
%
% N The number of time steps to shoot for.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% endsprech 6x1 lift off state vector.
%
% tn Ground phase time.
%
% Cary R. Maunder, Oregon State University, 2006
%==

 % Step size
 h = tn_est/N;
 % Make sure integration starts
 eta = 0;
 etaprime = -1;

107

 % Initialize index
 i=1;
 % Start time
 tn = 0;
 while (eta <= c.etao || etaprime < 0)
 % Take Step
 [Y(:,i+1),tn] = rkstep(Y(:,i),tn,h,'half',c);
 i = i+1;
 % Calculate conditions for end
 eta = sqrt((Y(1,i)-c.d*sin(Y(3,i)))^2+(Y(2,i)-c.d*cos(Y(3,i)))^2);
 etaprime = 1/(2*eta)*...
 (2*(Y(1,i)-c.d*sin(Y(3,i)))*(Y(4,i)-c.d*cos(Y(3,i))*Y(6,i))+...
 2*(Y(2,i)-c.d*cos(Y(3,i)))*(Y(5,i)+c.d*sin(Y(3,i))*Y(6,i)));
 end
 % Lower bracket end condtion
 eta2 = sqrt((Y(1,i-1)-c.d*sin(Y(3,i-1)))^2+(Y(2,i-1)-c.d*...
 cos(Y(3,i-1)))^2);
 % False Position method to find end.
 gprime = (eta-eta2)/h;
 h = -(eta-c.etao)/gprime;
 while (1-eta/c.etao)^2 > c.ic_error^2
 [Y(:,i+1),tn] = rkstep(Y(:,i),tn,h,'half',c);
 eta2 = sqrt((Y(1,i+1)-c.d*sin(Y(3,i+1)))^2+(Y(2,i+1)-c.d*...
 cos(Y(3,i+1)))^2);
 i = i+1;
 gprime = (eta2-eta)/h;
 eta=eta2;
 h = -(eta-c.etao)/gprime;
 end
 endspresh = Y(:,i);
end

B.2.3 ic_final_prep1

The function ic_final_prep1 uses the best leg angle determined by ic_prep_cost_finder and

calculates guesses for the values of all the collocation states based on it.

function X = ic_final_prep1(N,c,rdat)
%==
% X = ic_final_prep1(N,c,rdat)
%
% This function uses the best leg angle found, and the lift off state and
% ground phase time associated with it to determine estimates for the rest
% of the parameters in the collocation scheme.
%
% Inputs:
% N Number of segments into which the collocation scheme will be
% broken.
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See rb_slip_sim for structure
% explanation.
%
% rdat This is a structure containing everything ic_final_prep needs to
% know about the findings of the current call the ic_prep function

108

% and its previous calls.
%
% Outputs:
% X The initial guess for the collocation state vector.
%
% Cary R. Maunder, Oregon State University, 2006
%==

 betaTD = rdat.betas(rdat.min.i);
 Y(:,1) = rdat.min.Y(:,1);
 Y(:,N+1) = rdat.min.Y(:,2);
 tc = rdat.min.tc;
 tn = rdat.min.tn;
 % Calculate nu from end states
 nu(1,1) = (Y(5,N+1)*(c.vo)^2*c.q(2)*Y(2,N+1)-Y(5,N+1)*(c.vo)^2*...
 c.q(2)*c.yfix(2)+Y(6,N+1)*(c.etao)^2*(c.vo)^2*c.q(3)*Y(...
 3,N+1)-Y(6,N+1)*(c.etao)^2*(c.vo)^2*c.q(3)*c.yfix(3)+...
 c.q(5)*(c.g)*(c.etao)^2*Y(5,N+1)-c.q(5)*(c.g)*(c.etao)^...
 2*c.yfix(5))/(c.etao)^2/(c.vo)^2/((Y(4,N+1)-Y(6,N+1)*(...
 c.d)*cos(Y(3,N+1)))*Y(1,N+1)-Y(4,N+1)*(c.d)*sin(Y(3,N+...
 1))+Y(5,N+1)*Y(2,N+1)-Y(5,N+1)*(c.d)*cos(Y(3,N+1))+Y(6,...
 2)*(c.d)*sin(Y(3,N+1))*Y(2,N+1));

 nu(2:3,1) = [0;0];
 % Plug nu into Gyf.' to find the final coestates
 Y(7:12,N+1) = [nu(1)*(-2*Y(1,N+1)+2*(c.d)*sin(Y(3,N+1)));...

 2*(Y(2,N+1)-c.yfix(2))/(c.etao)^2*c.q(2)+nu(1)*(-2*...
 Y(2,N+1)+2*(c.d)*cos(Y(3,N+1)));...

 2*(Y(3,N+1)-c.yfix(3))*c.q(3)+nu(1)*(2*(Y(1,N+1)-...
 c.d*sin(Y(3,N+1)))*(c.d)*cos(Y(3,N+1))-2*(...
 Y(2,N+1)-c.d*cos(Y(3,N+1)))*(c.d)*sin(Y(3,N+1)));...

 2*(Y(4,N+1)-c.yfix(4))/(c.vo)^2*c.q(4);...

 2*(Y(5,N+1)-c.yfix(5))/(c.vo)^2*c.q(5);...

 2*(Y(6,N+1)-c.yfix(6))*(c.etao)^2/(c.vo)^2*c.q(6)];

 % Set the time step to go backwards
 h = -tn/N;
 ti(N+1) = tn;
 % Integrate backward until a step before the touch down time, tc
 for i=N:-1:2
 [Y(:,i),ti(i)] = rkstep(Y(:,i+1),ti(i+1),h,'full',c);
 end
 [temp1,ti(1)] = rkstep(Y(:,2),ti(2),h,'full',c);
 % Fill in the touchdown coestates in the Y matrix (we already have
 % the state).
 Y(7:12,1) = temp1(7:12);

 % Using A polynominal to carry it over the asimptote.
 max_upsilon = 50;
 beta_region = pi/2-atan(max_upsilon);
 min_reg = pi/2-beta_region;
 max_reg = pi/2+beta_region;
 if min_reg <= betaTD && betaTD <= max_reg
 K = [1 min_reg min_reg^2 min_reg^3; 0 1 2*min_reg 3*min_reg^2;...
 1 max_reg max_reg^2 max_reg^3; 0 1 2*max_reg 3*max_reg^2];

109

 Cs = inv(K)*[max_upsilon;1/(cos(min_reg))^2;...
 -max_upsilon;1/(cos(max_reg))^2];
 upsilon(1) = Y(7,1)*[1 betaTD betaTD^2 betaTD^3]*Cs;
 else
 upsilon(1) = Y(7,1)*tan(betaTD);
 end
 % Gyc.' = -lambdac
 xi(1:6,1) = -Y(7:12,1)+[0;upsilon(1);upsilon(1)*c.d*sin(Y(3,1))-...
 Y(7,1)*c.d*cos(Y(3,1));0;0;0];
 % Find upsilon(2)
 upsilon(2,1) = 0;
 % Find a's
 asqrd(1) = -(Y(1,1)-c.d*sin(Y(3,1)))*(Y(4,1)-c.d*cos(Y(3,1))*Y(6,1))...
 -(Y(2,1)-c.d*cos(Y(3,1)))*(Y(5,1)+c.d*sin(Y(3,1))*Y(6,1));
 asqrd(2) = tc;
 asqrd(3) = (Y(1,N+1)-c.d*sin(Y(3,N+1)))*...
 (Y(4,N+1)-c.d*cos(Y(3,N+1))*Y(6,N+1))+...
 (Y(2,N+1)-c.d*cos(Y(3,N+1)))*...
 (Y(5,N+1)+c.d*sin(Y(3,N+1))*Y(6,N+1));
 asqrd(4) = tn;
 for i = 1:4
 if asqrd(i) > 0
 a(i,1) = sqrt(asqrd(i));
 else
 a(i,1) = 0;
 end
 end
 % find Best upsilon(3)
 upsilon(3,1) = Y(7,1)*Y(4,1)+Y(8,1)*Y(5,1)+Y(9,1)*Y(6,1)+Y(11,1)*...
 c.g-xi(2)*(-c.yo(5)-c.g*tc)+xi(3)*c.yo(6)+xi(5)*c.g;
 res1 = 1/(c.vo)*(c.etao)*upsilon(3);
 res2 = -2*(1/(c.vo)*(c.etao))^(1/2)*a(2)*upsilon(3);...
 if abs(res2) >= abs(res1)
 upsilon(3,1) = 0;
 end
 % Now asign the variables to the collocation state vector X
 X = [tc;a(1:2);betaTD;upsilon;xi];
 for i = 1:N+1
 X(12*i+2:12*i+13) = Y(:,i);
 end
 X(12*N+26:12*N+31) = [nu; tn; a(3:4)];
end

B.2.4 rk_step

The function rk_step is called in some of the sub-functions of ic_prep5. It moves the system

forward of backward the amount specified in its input.

function [yplus,tn] = rkstep(y,tn,h,func_style,c)
%==
% [yplus,tn] = rkstep(y,tn,h,func_style,c)
%
% This function integrates the equations of motion of the system forward or
% backward in time the amount specified by h.
%

110

% Inputs:
% y 6x1 or 12x1 state or state and costate vector at time tn.
%
% tn Time passed since the start of the ground phase.
%
% h Time step (positive or negative).
%
% func_style String containing directions to either integrate both the
% states and the costates or just the states.
%
% c The model constants. See rb_slip_sim for structure
% explanation.
%
% Outputs:
% yplus 6x1 or 12x1 state or state and costate vector and the new
% time tn.
%
% tn New time passed since the ground phase started.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 if func_style == 'half'
 k1 = h*funcG(y,c);
 k2 = h*funcG(y+k1/2,c);
 k3 = h*funcG(y+k2/2,c);
 k4 = h*funcG(y+k3,c);
 elseif func_style == 'full'
 k1 = h*fullfuncG(y,c);
 k2 = h*fullfuncG(y+k1/2,c);
 k3 = h*fullfuncG(y+k2/2,c);
 k4 = h*fullfuncG(y+k3,c);
 end
 tn = tn+h;
 yplus = y+(k1+2*k2+2*k3+k4)/6;
end

function dy = funcG(y,c)
%==
% dy = funcG(y,c)
%
% This function contains the ground phase equations of motion for the
% states. It evaluates these given the state of the system.
%
% Inputs:
% y 6x1 state vector.
%
% c The model constants. See rb_slip_sim for structure explanation.
%
% Outputs:
% dy 6x1 vector of the EOMs evaluated at state y.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 dy = [y(4);...

 y(5);...

 y(6);...

111

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));...

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;...

 c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*...
 cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))];
end

function dy = fullfuncG(y,c)
%==
% dy = fullfuncG(y,c)
%
% This function contains the ground phase equations of motion for the
% states and costates. It evaluates these given the state of the system.
%
% Inputs:
% y 12x1 state and costate vector.
%
% c The model constants. See rb_slip_sim for structure explanation.
%
% Outputs:
% dy 12x1 vector of the EOMs evaluated at state y.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 dy = [y(4);...

 y(5);...

 y(6);...

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));...

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;...

 c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*...
 cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)));...

 1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-...
 c.d*cos(y(3)))^2)^(3/2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(1)-c.d*...
 sin(y(3)))-y(10)*(c.k)/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+...
 (y(2)-c.d*cos(y(3)))^2)^(1/2)-1)+1/2*y(11)*(c.k)/(c.m)*(...
 c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/...
 2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(2)-c.d*cos(y(3)))+1/2*y(12)*...
 (c.d)*(c.k)/(c.I)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*...
 cos(y(3)))^2)^(3/2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(2)*sin(y(...
 3))-y(1)*cos(y(3)))+y(12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-...
 c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1)*cos(y(3));...

 1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-...
 c.d*cos(y(3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(3)))*(y(1)-c.d*...
 sin(y(3)))-y(11)*(-1/2*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(...
 3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(...
 3)))*(y(2)-c.d*cos(y(3)))+c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(...
 3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1))+1/2*y(12)*(c.d)*(...

112

 c.k)/(c.I)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(3)))*(y(2)*sin(y(3))-y(...
 1)*cos(y(3)))-y(12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(...
 y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1)*sin(y(3));...

 1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-...
 c.d*cos(y(3)))^2)^(3/2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(...
 3))+2*(y(2)-c.d*cos(y(3)))*(c.d)*sin(y(3)))*(y(1)-c.d*sin(y(...
 3)))+y(10)*(c.k)/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-...
 c.d*cos(y(3)))^2)^(1/2)-1)*(c.d)*cos(y(3))-y(11)*(-1/2*(c.k)/...
 (c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^...
 2)^(3/2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(3))+2*(y(2)-...
 c.d*cos(y(3)))*(c.d)*sin(y(3)))*(y(2)-c.d*cos(y(3)))+c.k/(...
 c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^...
 (1/2)-1)*(c.d)*sin(y(3)))+1/2*y(12)*(c.d)*(c.k)/(c.I)*(...
 c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/...
 2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(3))+2*(y(2)-c.d*cos(...
 y(3)))*(c.d)*sin(y(3)))*(y(2)*sin(y(3))-y(1)*cos(y(3)))-y(...
 12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-...
 c.d*cos(y(3)))^2)^(1/2)-1)*(y(2)*cos(y(3))+y(1)*sin(y(3)));...

 -y(7);...

 -y(8);...

 -y(9)];
end

B.3 gc_newton

The function gc_newton takes the system of nonlinear equations one step in the Newton direction.

It decides the size of the step by making sure that the residual is reduced sufficiently by it. The

algorithm was inspired by [24].

function [Xp,Rp,lambda1] = gc_newton(dR,R,X,N,c)
%==
% [Xp,Rp,lambda1] = gc_newton(dR,R,X,N,c)
%
% This function moves a system of nonlinear equations one step in the
% Newton direction. It decides how far to move in the step by ensuring
% that the residual is decreased sufficiently by the step.
%
% Inputs:
% dR Hessian matrix.
%
% R Old residual vector.
%
% X Old state vector
%
% N Number of collocation segments
%
% c The model constants. These will stay constant throughout the
% applicatoin of the control. See collocation4 for structure
% explanation.

113

%
% Outputs:
% Xp New state vector
%
% Rp New residual vector
%
% lambda1 Newton step size
%
% Cary R. Maunder, Oregon State University, 2006
%==
 g0 = R'*R/2;
 gp0 = -2*g0;
 alpha = 1e-4;
 M = length(R);
 [U,S,V] = svd(dR);
 dRinv = V*inv(S)*U';
 dX = -dRinv*R;
 Xp = X+dX;
 Rp = residual8(Xp,N,c);
 g1 = Rp'*Rp/2;
 lambda1 = 1;
 if g1 > g0-2*alpha*g0
 lambda2 = lambda1;
 lambda1 = min(max(-gp0/(2*(g1+g0)),0.1*lambda2),0.5*lambda2);
 Xp = X+lambda1*dX;
 Rp = residual8(Xp,N,c);
 g2 = g1;
 g1 = Rp'*Rp/2;
 while g1 > g0-2*alpha*lambda1*g0 && lambda1 >= 1e-3
 a = 1/(lambda1-lambda2)*[1/lambda1^2, -1/lambda2^2;...
 -lambda2/lambda1^2, lambda1/lambda2^2]*...
 [g1-gp0*lambda1-g0; g2-gp0*lambda2-g0];
 lambda2 = lambda1;
 lambda1 = min(max((-a(2)+sqrt(a(2)^2-3*a(1)*gp0))/(3*a(1)),...
 0.1*lambda2),0.5*lambda2);
 Xp = X+lambda1*dX;
 Rp = residual8(Xp,N,c);
 g2 = g1;
 g1 = Rp'*Rp/2;
 end
 end
end

B.4 Residual and Hessian Codes

The residual and Hessian codes were too long to include in this text. Since they were both written

by a series of MATLAB codes those were included in appendix A.

114

APPENDIX C

Simulation Code

A general simulation code was written which could simulate with model predictive control, with

fixed leg angle touchdown, or with a leg angle prescribed by a vector. It could run for a prescribed

number of steps or until a certain criterion was met. Various front ends were written to accomplish

all the tests that were done in this work.

C.1 rb_slip_sim

The function rb_slip_sim is the general simulation code. It works for both the point mass SLIP and

the rigid body SLIP.

function [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c)
%==
% [v,vlo,vtd,return_status] = rb_slip_sim(yo,fp,sp,c)
%
% This function simulates the rigid body SLIP.
%
% Inputs:
% yo 6x1 lift off conditions vector
% [x; z; theta; xdot; zdot; thetadot];
%
% sp Simulation parameter structure containting:
% sp.control Switches control on and off (1/0)
%
% sp.max_steps The maximum number of steps the system
% takes before stopping.
%
% sp.max_step_size Maximum stepsize the simulation will take
%
% sp.beta Scalar or vector of leg angles
%
% sp.beta_const Determines if the leg angle should be held
% fixed at sp.beta(1) for every stride or
% change each step.
%
% sp.end_criterion Function handle for a function to determine
% when to end the simulaiton
%

115

% sp.skip_flight_1 Switch to tell the simulation to skip the
% first flight phase
%
% c The model constants. These will stay constant throughout the
% applicatoin fo the control. This is a structure containing:
% c.k Spring constant
%
% c.etao Nominal leg length
%
% c.d The distance above the center of mass at which the
% spring is attached
%
% c.m The mass of the body
%
% c.I Iyy moment of inertia
%
% c.g Gravitational constant
%
% c.vo The speed of the body at initial lift off
%
% c.yfix The desired lift off conditions
%
% c.yo The initial lift off conditions
%
% c.q The weighting vector
%
% c.nondim 6x1 vector of nondimensionalization parameters for
% the states
%
% Outputs:
% v Vector of structures containing system data for a each
% time step. The elements of these structures are:
% v.t Time of data
%
% v.y 6x1 vector of states at time v.t
%
% v.fp 2x1 vector giving the x and z position of the
% foot
%
% vtd Vector of structures containing system data at each
% touchdown condition. This structures has the same
% elements as v.
%
% vlo Vector of structures containing system data at each lift
% off condition. This structures has the same
% elements as v.
%
% return_status How the simulaiton ended. (returned, unretruned, fallen)
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global beta_now tc_now i controlled nv returned unreturned fallen;
 % Handy constants
 returned = 1;
 unreturned = 2;
 fallen = 3;
 % if c is not specified use default
 if isnumeric(c)
 clear c
 global c

116

 c.k = 20; %spring constant
 c.etao = 0.015; %nominal leg length
 c.d = 0.004; %distance of leg attachment point from COM 0.004
 c.m = 0.0025; %mass
 c.I = 1.86e-7; %moment of inertia Iyy 1.86e-7
 c.g = 9.81; %gravitational acceleration
 c.yfix = [0.0059; -0.0107; 0.0051; 0.1289; -0.0984; -0.5056];
 c.q = [0; 4; 8; 1; 3; 7];
 c.max_period = 0.5;
 end
 % If sp is not specified, use default
 if isnumeric(sp)
 clear sp
 sp.control = 1; %use controler y/n?
 sp.max_steps = 10; %number of steps to take
 sp.max_step_size = 1e-4; %max step size
 sp.beta = [1.2, 1.2, 1.2]; %leg angles if uncontroled
 sp.beta_const = 1; %vary leg angle?
 sp.end_criterion = @default_end_criterion;
 sp.skip_flight_1 = 0;
 end
 controlled = sp.control;
 % Set simulation options
 ground_options = odeset('Events',@lift_off_event,'Refine',2,...
 'AbsTol',1e-12,'RelTol',1e-12,'InitialStep',...
 1e-15,'MaxStep',sp.max_step_size);
 flight_options = odeset('Events',@touch_down_event,'Refine',2,...
 'AbsTol',1e-12,'RelTol',1e-12,'InitialStep',...
 1e-15,'MaxStep',sp.max_step_size);

 i = 1;
 % State recording variables
 v.y = yo;
 v.t = 0;
 vlo = v;
 return_status = unreturned;
 keep_it_up = 1;
 % Simulate stride if
 while(keep_it_up)
 if sp.control
 [beta(i),tc] = collocation4(vlo(i).y,c);
 else
 if sp.beta_const
 beta(i) = sp.beta(1);
 else
 beta(i) = sp.beta(i);
 end
 % tc not 0
 tc = 1;
 end
 % Foot placement point
 vlo(i,1).fp = [vlo(i).y(1)-c.d*sin(vlo(i).y(3))+...
 c.etao*cos(beta(i));...
 vlo(i).y(2)-c.d*cos(vlo(i).y(3))+...
 c.etao*sin(beta(i))];
 v(length(v)).fp = vlo(i,1).fp;
 % If there is a flight phase
 if (tc > 0)&~(sp.skip_flight_1&i==1)
 % Set global variables
 beta_now = beta(i);

117

 tc_now = tc;
 % Flight Phase
 clear vadd
 vadd = flight_phase(vlo(i),beta(i),c,flight_options);
 vtd(i,1) = vadd(length(vadd));
 v = [v;vadd];
 else
 % If there is no flight phase
 vtd(i,1) = vlo(i);
 end
 if((vtd(i).y(2)>=0)&(vtd(i).y(5)>0))
 return_status = fallen;
 else
 % Ground Phase
 clear vadd
 vadd = ground_phase(vtd(i),c,ground_options);
 v = [v;vadd];
 i = i+1;
 vlo(i,1) = vadd(length(vadd));
 end
 % Decide if simulation should stop running.
 [keep_it_up,return_status] = ...
 sp.end_criterion(v,vlo,vtd,sp,c,return_status);
 end
end

function v = flight_phase(vlo,beta,c,flight_options)
%==
% function v = flight_phase(vlo,beta,c,flight_options)
%
% This function runs flight phase simulations.
%
% Inputs:
% vlo Structure containing system data at the lift off
% condition. See rb_slip_sim for structure explanation.
%
% beta Leg touchdown angle.
%
% c Structure model constants. See rb_slip_sim for
% structure info.
%
% flight_options Vector of settings for ode45. See odeset of more info.
%
% Outputs:
% v Vector of structures containing system data for each
% time step in the current flight phase. See rb_slip_sim
% for structure explanation.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 tspan = [0 c.max_period];
 [t,y] = ode45(@flight_dynamics,tspan,vlo.y,flight_options);
 for j = 1:length(t)-1
 v(j,1).y = y(j+1,:).';
 v(j,1).t = t(j+1,:)+vlo.t;
 v(j,1).fp = [v(j).y(1)-c.d*sin(v(j).y(3))+c.etao*cos(beta);...
 v(j).y(2)-c.d*cos(v(j).y(3))+c.etao*sin(beta)];
 end
end

118

function y = flight_dynamics(t,x)
%==
% function y = flight_dynamics(t,x)
%
% This function calculates flight dynamics from the state.
%
% Inputs:
% t Time.
%
% x State vector at time t.
%
% Outputs:
% y Derivative of the state vector calculated with the equations of
% motion.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c;
 y(1,:) = x(4); %x
 y(2,:) = x(5); %z
 y(3,:) = x(6); %theta

 y(4,:) = 0; %xdot
 y(5,:) = c.g; %zdot
 y(6,:) = 0; %thetadot
end

function v = ground_phase(vtd,c,ground_options)
%==
% function v = ground_phase(vtd,c,ground_options)
%
% This function runs ground phase simulations.
%
% Inputs:
% vtd Structure containing system data at the touchdown
% condition. See rb_slip_sim for structure explanation.
%
% c Structure model constants. See rb_slip_sim for
% structure info.
%
% ground_options Vector of settings for ode45. See odeset of more info.
%
% Outputs:
% v Vector of structures containing system data for each
% time step in the current ground phase. See rb_slip_sim
% for structure explanation.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 vtd.y(1) = vtd.y(1)-vtd.fp(1);
 tspan = [vtd.t vtd.t+c.max_period];
 [t,y] = ode45(@ground_dynamics, tspan, vtd.y, ground_options);
 for j=1:length(t)-1
 v(j,1).y = y(j+1,:).';
 v(j,1).y(1) = y(j+1,1)+vtd.fp(1);
 v(j,1).t = t(j+1);
 v(j,1).fp = [vtd.fp(1);0];
 end
end

119

function dy = ground_dynamics(t,y)
%==
% function dy = ground_dynamics(t,y)
%
% This function calculates ground phase dynamics from the state.
%
% Inputs:
% t Time.
%
% y State vector at time t.
%
% Outputs:
% dy Derivative of the state vector calculated with the equations of
% motion.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c;
 dy = [y(4);...

 y(5);...

 y(6);...

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));...

 c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(...
 3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;...

 c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*...
 cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))];
end

function [value,isterminal,direction] = touch_down_event(t,y)
%==
% function [value,isterminal,direction] = touch_down_event(t,y)
%
% This function determines when the flight phase should end.
%
% Inputs:
% t Time.
%
% y State vector at time t.
%
% Outputs:
% value Vector of values. When a value is 0, an event occurs.
%
% isterminal Vector of switches to tell if an event ends the simulation
% or not.
%
% direction Vector of switches. For direction = -1 the derivative of a
% 0 value must be nevative for the event to trigger. For a
% direction = 1 the derivative of a 0 value must be positive
% for the event to trigger. For a direction = 0 the event
% can be triggered from any direction.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c beta_now tc_now i controlled

120

 % Detect touchdown
 value(1) = (y(2)-c.d*cos(y(3))+c.etao*sin(beta_now));
 % Detect fall
 value(2) = (y(2)-c.d*cos(y(3)));
 % Make sure a fall is not missed
 if value(2)>0
 value(2) = sin(1e4*t);
 end
 % x as measured in the ground phase
 x = -c.etao*cos(beta_now);
 if controlled
 % If the system is controlled, the flight phase can end any time the
 % foot is on the ground and the leg is entering compression.
 dervy = (x-c.d*sin(y(3)))*(y(4)-c.d*cos(y(3))*y(6))+...
 (y(2)-c.d*cos(y(3)))*(y(5)+c.d*sin(y(3))*y(6));
 else
 % If there is a fixed angle reset policy, the leg touches down only
 % when the foot is on the ground and has a vertical velocity
 % downward.
 dervy = -y(5)-c.d*sin(y(3))*y(6);
 end
 % If the system is controlled and there is more than one point in time
 % the foot could touch down at the angle specified, the control system
 % deciedes when the leg should touch down.
 if dervy <=0 & (~controlled|(t>=.8*tc_now & t<=1.2*tc_now))
 isterminal = [1,1]; % stop the integration
 else
 isterminal = [0,1];
 end
 direction = [0,0];
end

function [value,isterminal,direction] = lift_off_event(t,y)
%==
% [value,isterminal,direction] = lift_off_event(t,y)
%
% This function determines when the ground phase should end.
%
% Inputs:
% t Time.
%
% y State vector at time t.
%
% Outputs:
% value Vector of values. When a value is 0, an event occurs.
%
% isterminal Vector of switches to tell if an event ends the simulation
% or not.
%
% direction Vector of switches. See touch_down_event for details.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c;
 % Spring length during the ground phase
 eta = sqrt((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2);
 % Detect lift off
 value(1,1) = (c.etao-eta);
 % Detect fall
 value(2,1) = (y(2)-c.d*cos(y(3)));

121

 % Make sure a fall is not missed
 if value(2)>0
 value(2) = sin(1e4*t);
 end
 isterminal = [1;1]; % stop the integration
 direction = [-1;0];
end

C.2 Front End Codes

The simulation code is very general and therefore requires an enormous amount of input. It also

outputs almost every piece of data from the simulation. In order to organize the inputs and outputs

to and from the rb_slip_sim front end codes were developed as an interface.

C.2.1 auto_rb_fixed_point_find1

The function auto_rb_fixed_point_find1 finds rigid body fixed points in a specified gait family

using a similar point mass fixed point as a starting point. It should be started in the middle of the

gait family and run in either direction for best results.

function auto_rb_fixed_point_find1
%==
% auto_rb_fixed_point_find1
%
% This function works with rb_slip_sim to find rigid body fixed points
% using similar point mass fixed points as initial guesses.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 clear all
 global c sp delta xlo
 format long
 % Model Parameters
 c.k = 20; %spring constant
 c.etao = 0.015; %nominal leg length
 c.d = 0.004; %distance of leg attachment point from COM 0.004
 c.m = 0.0025; %mass
 c.I = 1.86e-7; %moment of inertia Iyy 1.86e-7
 c.g = 9.81; %gravitational acceleration
 c.yfix = [0;0;0;0;0;0];
 c.q = [0; 0; 0; 0; 0; 0];
 c.max_period = 0.5;

 % Simulation Parameters
 sp.control = 0;
 sp.max_step_size = 1e-4;
 sp.beta = 1.2;
 sp.beta_const = 1;
 sp.end_criterion = @default_end_criterion;

122

 % Load point mass fixed points.
 load(['FixedPoints/fproachparamb' num2str(sp.beta*100)])

 for n = 51:101
 delta = -fvtot(n,2);
 % [zo ;vo ; thetao; thetadoto]
 thetao = 0;
 if n==51
 % [vo ; thetao; thetadoto]
 x0 = [fvtot(n,1);thetao; 0]
 else
 x0 = [fvtot(n,1);fvtot_rb(n+1,4:5)']
 end
 sp.skip_flight_1 = 1;
 sp.max_steps = 2;
 options = optimset('MaxFunEvals',10e7,'TolFun',10e-15);
 [xp,fval] = fsolve(@fsolve_io,x0,options)
 F = fsolve_io(xp)
 sp.skip_flight_1 = 0;
 sp.max_steps = 1;
 xro = [xlo(1:2);xlo(4:5)]
 [xrf,fval] = fsolve(@fsolve_io,xro,options)
 %[zo; vo; delta; thetao; thetadoto]
 xlop = [xrf(1:2);-delta;xrf(3:4)];
 fvtot_rb(n,:) = xlop';
 save(['FixedPoints/fproachparamb' num2str(beta*100)],'fvtot_rb',...
 '-append')
 end
end

function F = fsolve_io(x)
%==
% F = fsolve_io(x)
%
% This function interfaces between the simulation and the fsolve routine.
%
% Inputs:
% x The states that are being varied by fsolve.
%
% Outputs:
% F The difference between the beginning state and the end state.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c sp delta xlo
 if length(x)==3
 %[vo ; thetao; thetadoto]
 zstart = -0.015*sin(sp.beta)+0.004*cos(x(2));
 yo = [0;zstart;x(2);x(1)*cos(delta);-x(1)*sin(delta);x(3)];
 elseif length(x)==4
 yo = [0;x(1);x(3);x(2)*cos(delta);-x(2)*sin(delta);x(4)];
 else
 yo = [0;x(1);x(4);x(2)*cos(x(3));-x(2)*sin(x(3));x(5)];
 end
 [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c);
 vtyp = 0.3;
 if length(x)==3
 xlo = [vlo(2,1).y(2); sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);...
 atan(-
vlo(2,1).y(5)/vlo(2,1).y(4));vlo(2,1).y(3);vlo(2,1).y(6)];

123

 F = [zstart-vtd(2,1).y(2);...
 x(1)-sqrt(vtd(2,1).y(4)^2+vtd(2,1).y(5)^2);...
 atan(-vtd(2,1).y(5)/vtd(2,1).y(4))-delta;...
 x(2)-vtd(2,1).y(3); x(3)-vtd(2,1).y(6)]...
 .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp];
 post = [[zstart;x(1);delta;x(2:3)],F]
 elseif length(x)==4
 if i<2
 F = [x(1)-vtd(1,1).y(2);...
 x(2)-sqrt(vtd(1,1).y(4)^2+vtd(1,1).y(5)^2);...
 atan(-vtd(1,1).y(5)/vtd(1,1).y(4))+delta;...
 x(3)-vtd(1,1).y(3); x(4)-vtd(1,1).y(6)]...
 .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp];
 else
 F = [x(1)-vlo(2,1).y(2);...
 x(2)-sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);...
 atan(-vlo(2,1).y(5)/vlo(2,1).y(4))+delta;...
 x(3)-vlo(2,1).y(3); x(4)-vlo(2,1).y(6)]...
 .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp];
 end
 post = [[x(1:2);delta;x(3:4)],F]
 else
 vend = vlo(2,1);
 F = [x(1)-vlo(2,1).y(2);...
 x(2)-sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);...
 atan(-vlo(2,1).y(5)/vlo(2,1).y(4))-x(3);...
 x(4)-vlo(2,1).y(3); x(5)-vlo(2,1).y(6)]...
 .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp];
 post = [x,F]
 end
end

C.2.2 rb_perterbation_return1

The function rb_perterbation_return1 is a front end for rb_slip_sim which allows the user to observe

system behavior at a specified rigid body fixed point or perturbed from it in a specified fashion. A

similar code was used to observe the point mass system in the same way.

function rb_perterbation_return1
%==
% rb_perterbation_return
%
% This function is a front end for rb_slip_sim which allows for general
% observation of system behavior with control and without.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 clear all
 global c
 beta = 1.2;
 load(['FixedPoints/fproachparamb' num2str(beta*100)])
 format long
 %[v delta theta thetadot]
 n = 51

124

 pstate = 3
 % [zo;vo;deltao;theato,thetadoto]
 fp = fvtot_rb(n,:);
 pt = 0.3;
 so = fp;
 so(pstate) = fp(pstate)+pt
 % Convert from polar velocity to rectangular
 yo = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)];

 % Model Parameters
 c.k = 20; %spring constant
 c.etao = 0.015; %nominal leg length
 c.d = 0.004; %distance of leg attachment point from COM 0.004
 c.m = 0.0025; %mass
 c.I = 1.86e-7; %moment of inertia Iyy 1.86e-7
 c.g = 9.81; %gravitational acceleration
 c.yfix = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)];
 c.q = [0; 4; 8; 1; 3; 7];
 c.max_period = 0.5;

 % Simulation Parameters
 sp.control = 1;
 sp.max_steps = 2;
 sp.max_step_size = 1e-4;
 sp.beta = [1.2, 1.2, 1.2];
 sp.beta_const = 1;
 sp.end_criterion = @default_end_criterion;
 sp.skip_flight_1 = 0;

 % Simulation
 [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c);
 % Animation
 Elipse2d(v,c);
 % Plot
 Y = [v.y];
 Ylo = [vlo.y];
 Ytd = [vtd.y];
 figure
 subplot(5,1,1)
 plot([vlo.t],Ylo(2,:),'b.')
 set(gca,'YDir','reverse');
 ylabel('z')
 subplot(5,1,2)
 plot([vlo.t],Ylo(3,:),'b.')
 ylabel('\theta')
 subplot(5,1,3)
 plot([vlo.t],Ylo(4,:),'b.')
 ylabel('xdot')
 subplot(5,1,4)
 plot([vlo.t],Ylo(5,:),'b.')
 set(gca,'YDir','reverse');
 ylabel('zdot')
 subplot(5,1,5)
 plot([vlo.t],Ylo(6,:),'b.')
 xlabel('time')
 ylabel('\thetadot')
end

125

C.2.3 rb_eig_fam1

The function rb_eig_fam1 finds the eigenvalues of the Poincaré map linearized about fixed points of

a specified gait family for the rigid body SLIP. A similar code was used to find eigenvalues for the

point mass SLIP.

function rb_eig_fam1(book_beta,start_over,timed)
%==
% rb_eig_fam1(book_beta,start_over,timed)
%
% This function calculates the eigenvalues of the Poincare map linearized
% about the fixed points of a gait family and records them in a .mat file.
%
% Inputs:
% beta_book An integer between 110 and 130 which is 100 times the value
% of beta associated with the gait family to be tested.
%
% start_over Start from the last saved set of eigenvalues (0) or start
% from the begining (1)
%
% timed Stop calculations before computer lab opens in the morning
% (1) or continue calculations regardless of the time (0).
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global gait_family
 %load fixed points of beta from file
 load(['FixedPoints/fproachparamb' num2str(book_beta)])
 beta = book_beta/100;
 gait_family = beta;
 if start_over
 clear eigs_for_col4_q_4_5_1_3_3
 end
 format long
 %[v delta theta thetadot]
 global pt
 pt = 10^-7;
 min_mult = 1e-2;
 if exist('eigs_for_col4_q_4_5_1_3_3')
 size_of_eigs = size(eigs_for_col4_q_4_5_1_3_3);
 starti = size_of_eigs(1)+1;
 else
 i = 1;
 fp = fvtot_rb(i,:)
 eigs_for_col4_q_4_5_1_3_3(i,:) = hocd_eig(fp,pt,min_mult,i);
 starti = i+1;
 end
 for i = starti:length(fvtot_rb)
 fp = fvtot_rb(i,:);
 eigs_out = hocd_eig(fp,pt,min_mult,i);
 for j =1:5
 [Y,I] = min(abs(eigs_out(:)-eigs_for_col4_q_4_5_1_3_3(i-1,j)));
 eigs_for_col4_q_4_5_1_3_3(i,j) = eigs_out(I(1));
 eigs_out(I(1)) = inf;
 end
 save(['FixedPoints/fproachparamb' num2str(book_beta)],...

126

 'eigs_for_col4_q_4_5_1_3_3','-append')
 keyboard
 time = clock;
 if(timed & ((time(4)>=6 & time(5)>0) & (time(4)<=20 & time(5)>0)))
 exit
 end
 end
 exit
end

function eigs = hocd_eig(fp,pt,min_mult,j)
%==
% eigs = hocd_eig(fp,pt,min_mult,j)
%
% This function calculates eigenvalues of the Poincare map linearized about
% a particular fixed point.
%
% Inputs:
% fp The fixed point in [z,v,delta,theta,thetadot] form.
%
% pt The amount of perturbation to use for the difference formula.
%
% min_mult The minimum scaleing to use on the perturbation.
%
% j The index of the fixed point.
%
% Outputs:
% eigs The eigenvalues of the linearized Poincare map.
%
%
% Cary R. Maunder, Oregon State University, 2006
%==
 controlled = 1;
 for i = 1:5
 if abs(fp(i)) < min_mult
 pts = pt*min_mult;
 else
 pts = pt*abs(fp(i));
 end
 so = fp;
 so(i) = fp(i)-2*pts;
 fprintf(['Calculation for fp %d, perterbing state %d, minus 2pt'...
 '\n'],j,i)
 sfmm = Vertical_Plane_Fixed_Point_Test(so,fp,controlled);
 so(i) = fp(i)-pts;
 fprintf(['Calculation for fp %d, perterbing state %d, minus pt'...
 '\n'],j,i)
 sfm = Vertical_Plane_Fixed_Point_Test(so,fp,controlled);
 so(i) = fp(i)+pts;
 fprintf(['Calculation for fp %d, perterbing state %d, plus pt'...
 '\n'],j,i)
 sfp = Vertical_Plane_Fixed_Point_Test(so,fp,controlled);
 so(i) = fp(i)+2*pts;
 fprintf(['Calculation for fp %d, perterbing state %d, plus 2pt'...
 '\n'],j,i)
 sfpp = Vertical_Plane_Fixed_Point_Test(so,fp,controlled);
 A(:,i) = (sfmm-8*sfm+8*sfp-sfpp)./(12*pts);
 end
 eigs = eig(A)'

127

end

function sf = Vertical_Plane_Fixed_Point_Test(so,fp,control)
%==
% sf = Vertical_Plane_Fixed_Point_Test(so,fp,control)
%
% This function starts a one stride simulation with the given initial
% condtions and retuns the results in polar velocity form.
%
% Inputs:
% so The initial conditions in [z,v,delta,theta,thetadot] form.
%
% fp The fixed point in [z,v,delta,theta,thetadot] form.
%
% control Control on/off (1/0)
%
% Outputs:
% sf The final state in [z,v,delta,theta,thetadot] form.
%
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c gait_family
 % Model Parameters
 c.k = 20; %spring constant
 c.etao = 0.015; %nominal leg length
 c.d = 0.004; %distance of leg attachment point from COM 0.004
 c.m = 0.0025; %mass
 c.I = 1.86e-7; %moment of inertia Iyy 1.86e-7
 c.g = 9.81; %gravitational acceleration
 c.yfix = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)];
 c.q = [0; 4; 8; 1; 3; 7];
 c.max_period = 0.5;

 % Simulation Parameters
 sp.control = control;
 sp.max_steps = 1;
 sp.max_step_size = 1e-4;
 sp.beta = gait_family;
 sp.beta_const = 1;
 sp.end_criterion = @default_end_criterion;
 sp.skip_flight_1 = 0;

 yo = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)];
 [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c);
 j = length(vlo);
 sf(:,1) = [vlo(j).y(2);sqrt(vlo(j).y(4)^2+vlo(j).y(5)^2);...
 atan(-vlo(j).y(5)/vlo(j).y(4));vlo(j).y(3);vlo(j).y(6)];
end

C.2.4 rb_auto_perterbation_return1

The function rb_auto_perterbation_return1 systematically tests to see if, for a given rigid body fixed

point, the control scheme can return the system to the fixed point if the velocity angle is perturbed

128

by an angle between 31
32
π

− and π . A similar code was used to test the perturbation

returnability for the point mass case.

function rb_auto_perterbation_return1(n,start_over,timed)
%==
% rb_auto_perterbation_return1(n,start_over,timed)
%
% Test the control system to see if it can return the system from various
% large energy conservative perturbations.
%
% Inputs:
% n The index number of the fixed point in a spacific gait
% family to be tested.
%
% start_over Start from the last saved perturbation (0) or start
% from the begining (1)
%
% timed Stop calculations before computer lab opens in the morning
% (1) or continue calculations regardless of the time (0).
%
% Cary R. Maunder, Oregon State University, 2006
%==
 beta = 1.2
 format long
 %[v delta theta thetadot]
 pstate = 3
 success = 1;
 try
 load(['FixedPoints/pert_ret_beta_',num2str(beta*100),'_n_',...
 num2str(n)])
 catch
 success = 0;
 end
 if (start_over==1 || ~success)
 load(['FixedPoints/fproachparamb' num2str(beta*100)])
 %[zo;vo;deltao]
 fp = fvtot_rb(n,:);
 starti = 1;
 elseif (start_over == 0)
 starti = size(return_for_col2G_q_4_5_1_3_3,1)+1;
 else
 starti = start_over
 end
 pt = -31*pi/32:pi/32:pi;
 if start_over > 1
 lengthpt = start_over;
 else
 lengthpt = length(pt)
 end
 for i = starti:lengthpt
 fprintf('Going from perterbation of %9.8g.\n',pt(i));
 so = fp;
 so(pstate) = fp(pstate)+pt(i)
 return_for_col2G_q_4_5_1_3_3(i,3) = pt(i);
 [return_for_col2G_q_4_5_1_3_3(i,1),...
 return_for_col2G_q_4_5_1_3_3(i,2)] =...
 Vertical_Plane_Fixed_Point_Test(so,fp,1,timed);
 save(['FixedPoints/pert_ret_beta_',num2str(beta*100),...

129

 '_n_' num2str(n)],'return_for_col2G_q_4_5_1_3_3', 'fp',...
 '-append')
 time = clock;
 if (timed & ((time(4)>=6 & time(5)>0) & (time(4)<=20 & time(5)>0)))
 exit
 end
 end
 if ((start_over <= 1) & (timed == 1))
 exit
 end
 %Centered difference for the rest of the fixed points.
end

function [return_status,i]...
 = Vertical_Plane_Fixed_Point_Test(so,fp,control,timed)
%==
% [return_status,i] = Vertical_Plane_Fixed_Point_Test(so,fp,control,timed)
%
% This function starts simulations which determine if the system returned
% to a fixed point, did not return to a fixed point, or just fell.
%
% Inputs:
% so The initial conditions in [z,v,delta,theta,thetadot] form.
%
% fp The fixed point in [z,v,delta,theta,thetadot] form.
%
% control Control on/off (1/0)
%
% timed Stop calculations before computer lab opens in the morning
% (1) or continue calculations regardless of the time (0).
%
% Outputs:
% return_status How the simulaiton ended. (returned, unretruned, fallen)
%
% i The number of steps the simulation took to do what ever
% it did.
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global c
 % Model Parameters
 c.k = 20; %spring constant
 c.etao = 0.015; %nominal leg length
 c.d = 0.004; %distance of leg attachment point from COM 0.004
 c.m = 0.0025; %mass
 c.I = 1.86e-7; %moment of inertia Iyy 1.86e-7
 c.g = 9.81; %gravitational acceleration
 c.yfix = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)];
 c.q = [0; 4; 8; 1; 3; 7];
 c.max_period = 0.5;

 % Simulation Parameters
 sp.control = 1;
 sp.max_steps = 100;
 sp.max_step_size = 1e-4;
 sp.beta = 1.2;
 sp.beta_const = 1;
 sp.end_criterion = @perturbation_end_criterion;
 sp.skip_flight_1 = 0;

130

 yo = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)];
 [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c);
 i = length(vtd);
end

C.3 Simulation Ending Criterion

For different applications the simulation needed to end for different reasons. For this reason,

functions were made to determine when the simulation should end based on the needs of the specific

application. Handles to these functions were passed to the simulation and it called them at the end

of each stride.

C.3.1 default_end_criterion

The function default_end_criterion was used when the basic end criterion were needed. The

simulation was ended if the system fell or if the system had reached the maximum number of steps

if was supposed to take.

function [k_i_u,r_status] = default_end_criterion(v,vlo,vtd,sp,c,r_status)
%==
% [k_i_u,r_status] = default_end_criterion(v,vlo,vtd,r_status)
%
% This function determines if the simulation should stop.
%
% Inputs:
% v Vector of structures containing system data for a each
% time step. See rb_slip_sim for structure explanation.
%
% vlo Vector of structures containing system data at each
% touchdown condition. See rb_slip_sim for structure
% explanation.
%
% vtd Vector of structures containing system data at each lift
% off condition. See rb_slip_sim for structure explanation.
%
% sp Simulation parameter structure. See rb_slip_sim for
% structure info.
%
% c Structure model constants. See rb_slip_sim for structure
% info.
%
% r_status Tells function if the system has fallen.
%
% Outputs:
% k_i_u Tells the simulation to keep it up (1) or stop (0)
%
% r_status How the simulaiton ended. (returned, unretruned, fallen)

131

%
% Cary R. Maunder, Oregon State University, 2006
%==
 global returned unreturned fallen
 k_i_u = 1;
 if r_status == fallen || length(vtd) >= sp.max_steps
 k_i_u = 0;
 end
end

C.3.2 perturbation_end_criterion

The function perturbation_end_criterion was used as the end function when the simulation needed to

end if the system returned to within 1% of the fixed point from a perturbation.

function [k_i_u,r_status] = ...
 perturbation_end_criterion(v,vlo,vtd,sp,c,r_status)
%==
% [k_i_u,r_status] = perturbation_end_criterion(v,vlo,vtd,sp,c,r_status)
%
% This function determines if the simulation should stop.
%
% Inputs:
% v Vector of structures containing system data for a each
% time step. See rb_slip_sim for structure explanation.
%
% vlo Vector of structures containing system data at each
% touchdown condition. See rb_slip_sim for structure
% explanation.
%
% vtd Vector of structures containing system data at each lift
% off condition. See rb_slip_sim for structure explanation.
%
% sp Simulation parameter structure. See rb_slip_sim for
% structure info.
%
% c Structure model constants. See rb_slip_sim for structure
% info.
%
% r_status Tells function if the system has fallen.
%
% Outputs:
% k_i_u Tells the simulation to keep it up (1) or stop (0)
%
% r_status How the simulaiton ended. (returned, unretruned, fallen)
%
% Cary R. Maunder, Oregon State University, 2006
%==
 global returned unreturned fallen nv
 k_i_u = 1;
 if r_status == fallen || length(vtd) >= sp.max_steps
 k_i_u = 0;
 end
 if r_status ~= fallen

132

 if exist('nv')
 start = size(nv,1)+1;
 else
 start = 1;
 end
 for j=start:length(v)
 nv(j,:) = [v(j).y(2),sqrt(v(j).y(4)^2+v(j).y(5)^2),...
 atan(-v(j).y(5)/v(j).y(4)),v(j).y(3),v(j).y(6)];
 end
 r_status = returned;
 k_i_u = 0;
 fp = [c.yfix(2),sqrt(c.yfix(4)^2+c.yfix(5)^2),...
 atan(-c.yfix(5)/c.yfix(4)),c.yfix(3),c.yfix(6)]
 for j=1:5
 nvmag(j) = max(nv(:,j))-min(nv(:,j));
 enddif(j) = abs(nv(length(v),j)-fp(j));
 if enddif(j)>0.01*nvmag(j)
 r_status = unreturned;
 k_i_u = 1;
 end
 end
 exc = nv(length(v),:)
 enddif
 end
end

