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A distinct characteristic of legged locomotion is its periodic nature.  This periodic motion, in the 

form of a periodic orbit, has been the target of many walking and running control strategies.  The 

spring loaded inverted pendulum (SLIP) has become a popular model of sagittal plane locomotion, 

exhibiting behavior characteristic of a variety of legged animals.  In this work, a model predictive 

control scheme is developed for the rigid body SLIP to drive the system to a periodic orbit.  This is 

accomplished by defining a Poincaré map from one stride to the next and using numerical 

optimization each stride to select a leg touchdown angle that will best deliver the system to a desired 

fixed point of this map.  The scheme is tested on both the point mass and rigid body SLIP models 

using parameter values that are characteristic of the cockroach, Blaberus discoidalis.  It is found to 

increase the region of stability for both, as well as greatly improving the systems ability to recover 

from energy conservative perturbations.   
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1 INTRODUCTION  

For centuries humans have looked to biology for inspiration in the development of machinery.  The 

development of walking and running machines is no exception.  Of particular interest is the 

cockroach, which has been found to move extremely fast for its size, taking rough terrain at full 

speed without falling [1].  Such locomotion characteristics would be very desirable for the creation 

of nimble robots.  Extensive investigation into how the cockroach, Blaberus descoidalis walks and 

runs has shown that although it uses three legs per stance to walk and run, the legs act together to 

produce force and moment patterns similar to those of a biped [2], [3].  This in conjunction with 

similar findings from studies of creatures of other morphologies has resulted in the use of reduced 

order models to describe the motion of more complex systems.  These simple models are called 

templates [4].  Two such templates are the point mass spring loaded inverted pendulum (point mass 

SLIP) and the rigid body SLIP.  Both model sagittal plane locomotion by idealizing the combination 

of legs used by an animal in each stance to a single effective leg modeled by a spring and have been 

shown to accurately represent the motion of these animals [5], [6].  The obvious difference is that 

the point mass SLIP reduces the body to a point mass while the rigid body SLIP goes on to model 

sagittal rotation. 

 Extensive research has been done on control of the point mass SLIP.  Because the model is 

unactuated, control is limited to variations in parameters.  The most popular parameter to vary has 

been the leg touchdown angle.  Although some control schemes do not directly specify a leg 

touchdown angle, almost all affect the leg touchdown angle in a way that increases stability.  The 

simplest control scheme is the fixed leg angle reset policy where the touchdown angle is held fixed 

relative to the inertial frame at each period.  This scheme has been shown to have a small region of 

stability [7],[8].  With model parameters taken from Blaberus descoidalis however, this region 

becomes extremely small [9] indicating that this would be a poor control scheme for robots of this 

morphology.   

 An increased region of stability was found using swing leg retraction [10] where the leg is 

swung toward the ground at a constant angular velocity starting at the apex of the flight phase.  This 

allows the system to counteract disturbances in the touchdown state better than a fixed touchdown 

angle policy. 
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 Similar methods use prescribed motion to increase stability via open loop control [11], 

[12].  The advantage of these schemes is that all leg angles are relative to the body so the only 

sensors needed for implementation are clocks and well-tuned servos.  Because of their practicality 

these schemes have been implemented with great success on the robot, RHex [13]. 

 Neither fixed angle reset, swing leg retraction, nor prescribed motion take advantage of the 

system’s previous behavior to direct its future behavior.  Adaptive control schemes have be 

developed to take advantage of this information [9],[14].  These control schemes rely on the 

previous leg lift off and touchdown angle to choose its next touchdown angle.  They greatly improve 

the region of stability found for the fixed angle reset policy while requiring little knowledge of the 

desired gait.  Since the input parameter is the desired touchdown angle it is easy to switch between 

gaits. 

 Many of the control schemes developed for the point mass case have been extended into 

rigid body SLIP model with limited success.  Partially asymptotically stable gaits having three 

Floquet multipliers of unity magnitude have been found for the fixed angle reset policy, although the 

number of such gaits is apparently very small and dependent on the system parameters used in 

simulation [15].  In addition the prescribed motion scheme developed for RHex has exhibited 

partially asymptotically stable gaits in certain parameter regions [16]. 

 All the schemes presented thus far use an understanding of the behavior of the system to 

determine criterion for a leg placement protocol, but none use the model itself in the protocol.  The 

work of Mombaur et al. [17] uses knowledge of the model and numerical optimization to predict 

optimally stable open-loop gaits for a 4 DOF monopod and a 5 DOF biped.  We apply model 

predictive control to the point mass and rigid body SLIP using the model and the state at lift off to 

predict the optimal leg touchdown angle to drive the system to a periodic orbit.  The feed-back at lift 

off assists the control system in recovering the system from otherwise catastrophic perturbations.  

Because control is applied once per stride, this scheme will be well suited for implementation on 

microcontrollers which operate in a discrete fashion. 

 The work is structured as follows.  In section 2, we review some mathematical concepts 

that are crucial to development of the control scheme include unconstrained (2.1) and constrained 

optimization (2.2), distinction between variations and differentials (2.3), Leibnitz’ Rule (2.4), 

Collocation (2.5), Newton-Raphson Routines (2.6), and Poincaré Maps (2.7).  In section 3, we 
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describe the rigid body SLIP model developing its equations of motion for its flight (3.1) and 

ground phases (3.2).  In section 4, we outline the solution, by developing the criterion for an optimal 

trajectory (4.1), based on the penalization of undesired end states (4.1.1) and the trajectory’s 

adherence to some physical constraints (4.1.2).  This constrained penalization function is then 

differentiated and analyzed to yield the optimal criterion (4.1.3).  These are then distilled into 

boundary conditions for a boundary value ODE (4.1.4).  Collocation is employed to turn the 

boundary value problem into a system on nonlinear equations which must be driven to zero (4.2).  A 

scheme for developing an acceptable guess at the initial conditions of the system of nonlinear 

equations is developed (4.3).  The idea is that the system of nonlinear equations is solved between 

the lift off and touchdown events to determine an optimal touchdown angle.  In section 5 the control 

scheme is tested numerically for the point mass case (5.1), where the Floquet multipliers of different 

gait families are determined both with the model predictive control scheme and the fixed leg 

touchdown angle (5.1.1).  The systems ability to return from an energy conservative perturbation is 

also tested for the nominal gait family (5.1.2).  The control scheme is also tested against the fixed 

angle reset policy in the rigid body case to a lesser extent (5.2).  At last, in section 6 we summarize 

the work and suggest further studies. 

  

2 MATHEMATICAL BACKGROUND 

 This section reviews and summarizes mathematical concepts that are critical to the development of 

the research presented in this work.  Readers familiar with the material may bypass this section, or 

refer to it as needed.   

  

2.1 Optimization 

Optimization is achieved through the creation of a performance index and its extremization.  The 

performance index consists of a cost function that attains either a maximum or minimum value 

when a desired result occurs [18].  While many cost functions consist of quadratic forms balancing 

the weighting of state variables and control parameters, they may also include terms that penalize 

undesired behavior.  Cost functions utilized in this work take the form, 
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 ( ) ( ),f

o

t

s t
J t L t u dtφ= + ∫ , (2.1) 

where φ  is the performance index applied at a specific time, st , and L  is the performance index 

with input, u , applied over an interval of time ot  to ft .  Finding cost function extrema requires 

equating the total differential of the cost function to zero.  Points where the derivative of the cost 

function is zero represent either extrema, such as minimum or maximum values, or an inflection 

point of the function.  Examining the second derivative of the function at the identified point 

determines whether the point is a minimum, maximum or an inflection point of the cost function.  

Minimum, maximum, and inflection points have second derivatives that are positive, negative and 

zero, respectively.  In some cases it is easy to see at what kind of extremum the cost function is.  In 

these cases, the often quite expensive computation of the second derivative is forgone.   

 

2.2 Constrained Optimization 

An optimization is often desired that is constrained to an equation or inequality that cannot be 

substituted into the performance index directly.  These constraints can be limited to a specific time 

or applied over an interval. 

 

2.2.1 Parameter Constraints 

To illustrate how constraints are applied to an optimization problem, consider the cost function 

 ( ),J x yφ= , (2.2) 

which is to be minimized constrained to, 

 ( ), 0x yψ =  (2.3) 

 where x  and y  are optimization parameters and φ  is continuous in x  and y .  Consider Figure 

2.1. 
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Figure 2.1    Illustration of constrained minimization.  The dotted line is the contour of ( ) 1,x y cφ = .  
The dashed line is the contour of ( ) 2,x y cφ = .  The solid line is the function ( ), 0x yψ = . 

Let us suppose that φ  has no local extrema, only a global minimum somewhere within the dotted 

contour.  If at an intersection of a contour of φ  and ψ , the two functions are not tangent, then 

movement in the correct direction along ψ  will decrease the cost, J .  However, if the two are 

tangent, then movement in any direction along ψ  will result in an increase in J .  It follows that the 

minimum of J  constrained to ψ  is where φ  and ψ  are tangent [18].  That is, their gradients must 

be parallel.  This is expressed as 

 ( )( ) ( )( ), ,x y x yφ ν ψ∇ = ∇ , (2.4) 

where ν  is a constant, denoted as a Lagrange multiplier, which scales the magnitude of ψ∇  to 

match the magnitude of φ∇ .  Rearranging eq. (2.4) and absorbing a negative sign into ν  yields, 

 ( ) ( )( ), , 0x y x yφ νψ∇ + =
v

. (2.5) 

Taking the gradient yields, 

 
0
0
0

x x

y y

φ νψ
φ νψ

ψ

+   
   + =   
   
   

. (2.6) 

( ), 0x yψ =

( ) 1,x y cφ =

( ) 2,x y cφ =
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 Creating a constrained cost function 'J , which equals the quantity inside the gradient 

operator in eq. (2.5), is equivalent to adding zero to the original unconstrained cost function, J , 

since ψ  is defined to equal zero when the constraint is satisfied.  Evaluating the total differential of 

'J , as is done to find the minimum in unconstrained optimization, results in 

 ( ) ( ) ( )' 0x x y ydJ dx dy dφ νψ φ νψ ψ ν= + + + + = . (2.7) 

Since dx , dy , and dν  are arbitrary, the partial derivatives must each independently equal zero 

[18], resulting in the same equations as presented previously in eq. (2.6).  It can be concluded then, 

that the addition of a constraint to the optimization of a system, is as simple as adding the constraint, 

in the 0ψ =  form, scaled by a Lagrange multiplier, to the unconstrained cost function.  That is, 

 'J J νψ= + . (2.8) 

The optimization therefore proceeds as before, by taking the derivative of the new cost function and 

setting it equal to zero.  The time specific part of the cost function, including all the time specific 

constraints, is sometimes denoted as, G . 

 

2.2.2 Differential Constraints 

Differential constraints can be applied to the system in much the same way as parameter constraints.  

Instead of a constant Lagrange multiplier to scale the gradients to match magnitudes, the constraint 

is multiplied by a continuous function which varies with time.  This function is called a costate.  For 

example in, 

 ( ), ,f

o

t

t
J L t y u dt= ∫ , (2.9) 

subject to 

 ( ), ,y f t y u=& , (2.10) 

over ot  to ft , the constrained cost function would be, 
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 ( ) ( )( )' , , ,f

o

t T

t
J L t y u f t y y dtλ = + − ∫ & , (2.11) 

where y  is a column vector of states, u  is a column vector of inputs, and λ  is a column vector of 

costates.  For ease of differentiation eq. (2.11) is rearranged to yield 

 ( )' , , ,f

o

t

t
J H t y u y dtλ λ= −  ∫ & , (2.12) 

where H  is called the Hamiltonian and takes the form, 

 ( ) ( ), , ,TH L t y u f t yλ= + . (2.13) 

Because L , f , and y&  continuously change with time, so must λ .  A general cost function with a 

time-specific portion as well as an integral portion is usually written in the form, 

 ( ) ( ), , , ,f

o

t

f f t
J G t y H t y u y dtλ λ= + −  ∫ & , (2.14) 

where G  is the time-specific constrained cost and H  is the Hamiltonian introduced previously. 

 Note, the costs and constraints that comprise G  need not be applied at the final time or 

even at a common time.  The integral costs and constraints may be applied at any time interval and 

additional integrals can be added to apply costs and constraints over multiple time intervals. The 

costs and constraints applied over one interval need not be the same as those applied over another. 

 

2.2.3 Inequality Constraints 

It is often necessary to bound optimization parameters to a certain region.  This is done using 

inequality constraints.  Inequality constraints require adding an extra parameter to the system.  If we 

desire, 

 x c≥ , (2.15) 

where x  is a parameter, input, or state, and c  is a constant, then the constraint is, 
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 ( ) 2,x a x a cψ = − − , (2.16) 

where a  is the extra parameter [18].  Since 

 2 0a ≥ , (2.17) 

 0x c− ≥ , (2.18) 

and 

 x c≥ , (2.19) 

therefore bounding x  to a specific region, as desired. 

 

2.3 Variation vs. Differential 

A variation is a differential taken at a fixed time.  Referring to Figure 2.2, if fx  represents a point 

on the optimal path ( )x t  where an event, ( ) 0xψ = , has occurred and fx∗  is a point on an 

infinitesimally close neighboring path ( )x t∗  where the same event has occurred, then dx  is the 

difference between fx∗  and fx .  However, if fx∗%  represents the point on ( )x t∗  that occurs at the 

same time as fx , then xδ  is the difference between fx∗  and fx%  because time is fixed [18]. 

 

Figure 2.2    The optimal path, ( )x t , and neighboring path, ( )x t∗ .  Paths are infinitesimally close 
together.  The points fx∗  occurs at a value dx  greater than fx  and an infinitesimally small time, 

dt , after fx  while the point fx∗%  occurs at a value xδ  greater than fx  but at the same time. 

fx

fx∗

( )x t

( )x t∗

dt

dxxδ

 fx∗%
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Let us assume now that fx  occurs at time, ft .  Then xδ  can be expressed, 

 ( ) ( )f fx x t x tδ ∗= − , (2.20) 

and dx  can be expressed 

 ( ) ( )f fdx x t dt x t∗= + − . (2.21) 

Since dt  is infinitesimally small, ( )fx t dt∗ +  can be expressed as a first order Taylor series about 

ft .  Substituting this into eq. (2.21) yields, 

 ( ) ( )f f
dxdx x t dt x t
dt∗= + − . (2.22) 

Substituting in eq. (2.20), eq. (2.22) becomes 

 dxdx x dt
dt

δ= + , (2.23) 

and we obtain a relationship between differentials and variations. 

 

2.4 Leibnitz’ Rule 

Since many cost functions contain integrals and the minimization of a cost function requires the 

evaluation of its derivative, it is often necessary to evaluate the derivative of an integral.  For fixed 

limits the derivative of an integral is simply the integral of the derivative.  If 

 ( )( ),f

o

t

t
I F t y t dt= ∫  (2.24) 

then 

 f

o

t

t
dI Fdtδ= ∫ , (2.25) 
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for ot  and ft  constant.  Note that derivatives taken inside an integral are taken with time fixed 

and therefore represent variations.  Remember an integral is a continuous sum of the integrand 

evaluated at every time between and including the limits.  Even though the limits may not be fixed 

the individual times at which the integrand is evaluated are. 

 If the limits are not fixed an extra term must be added to the derivative.  The differential of 

the integral becomes, 

 [ ] ff

o o

tt

t t
dI Fdt Fdtδ= + ∫ . (2.26) 

This is Leibnitz’ rule [18]. 

 

2.5 Collocation 

Collocation is a numerical method for solving boundary value problems.  It is carried out by 

breaking the full time interval into N  segments and approximating each state over each time 

segment as a sum of linearly independent trial functions [19].  See Figure 2.3. 

 

Figure 2.3    Collocation segment break up.   State y  from ct  to ft  broken into N  segments, iS , 
with 1N +  nodes and N  collocation points. 

ct  
ft  

y  

t
1S  2S  NS  1NS −

Node  1

Collocation Point 1

Node N +1

Collocation Point N
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In this work a cubic polynomial was used for the sole trial function for each state over each 

segment because it was the lowest order polynomial that allowed us to enforce constraints at the 

endpoints through substitution [20].  For the rest of this work we will employ a trial function of this 

nature.   While collocation points may be selected anywhere inside each time segment, we opted to 

utilize collocation points in the center of the segment in this work.  Matching the function with the 

approximation substituted into it to the derivative of the approximation at these points ensures that 

the polynomial approximation accurately represents the solution.  The resulting cubic polynomial 

takes the form, 

 ( ) 0 1 2 2 3 3j j j j jy t C C t C t C t= + + + , (2.27) 

where i jC  is the coefficient in the j th polynomial approximation corresponding with it  for i = 0 to 

3.  To ensure that the polynomial accurately approximates the real solution, we choose the 

coefficients such that the resulting polynomials satisfy some conditions that the real solution must 

also satisfy: 

 

1. The endpoints of each polynomial must coincide with the endpoint of any adjacent 

polynomial. 

2. The polynomials must obey the differential constraints at the end points. 

3. The polynomials must obey the differential constraints at the collocation point. 

 

We can use these conditions to write equations that will help us determine the coefficients of our 

polynomial. 

 

2.5.1 Differential Constraints at the Collocation Point 

We can use the polynomial to approximate the state of the system at the collocation points in the 

middle of each segment.  If our polynomial approximation yields the correct state, we should be 

able to substitute it into the differential constraints and obtain the derivatives of our approximation 

polynomials [20].  That is, 
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 ( )( ) ( ) (1) ( ),...,     for  1 to  and  1 to 
j j j

j j j
c i i c c My f y y i M j N= = =& , (2.28) 

where ( )( )if x  is the differential constraint function for state i , ( )j

j
c iy  is the j th polynomial 

approximation of the i th state at the j th collocation point, ( )j

j
c iy&  is the derivative of the j th 

polynomial approximation of the i th state at the j th collocation point, M  is the number of states, 

and N  is the number of segments. 

The derivative of the polynomial is given by, 

 ( )
1

1 2 3 2
( ) 2 3        for  

j j

j j j j
i i i i n ny t C C t C t t t t

+
= + + ≤ ≤& , (2.29) 

with i  and j  on the same intervals as in eq. (2.28), where ( )
j
iy&  is the derivative of the polynomial 

approximation of the i th state in segment j , 
jnt  is the starting time of the j th segment, the time of 

the j th node, and the ending time of the 1j − th segment,  and the coefficients are as labeled in 

Figure 2.4. 

 

Figure 2.4    Polynomial coefficient labeling scheme. 

Substituting eq. (2.29) into (2.28) yields, 

 ( )
1 2 3 2

0 1 2 2 3 3 0 1 2 2 3 3
( ) 1 1 1 1

2 3

                ,..., ,

j j j
i i i

j j j j j j j j
i M M M M

C C t C t

f C C t C t C t C C t C t C t

+ +

= + + + + + +
 (2.30) 

with i , j , and t  on the same intervals as in eq. (2.29). 

 

2.5.2 Connection Constraints 

As mentioned earlier we would like to be able to constrain the value of polynomial and its derivative 

at the endpoints.  To accomplish this, the polynomial and its derivative must be evaluated at the 

endpoints, yielding, 

1 j
iC segment j  coefficient number

state i
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 0 1 2 2 3 3
( )j j j j

j j j j j
n i i i n i n i ny C C t C t C t= + + + , (2.31) 

 
1 1 1 1

0 1 2 2 3 3
( )j j j j

j j j j j
n i i i n i n i ny C C t C t C t

+ + + +
= + + + , (2.32) 

 1 2 3 2
( ) 2 3

j j j

j j j j
n i i i n i ny C C t C t= + +& , (2.33) 

and 

 
1 1 1

1 2 3 2
( ) 2 3

j j j

j j j j
n i i i n i ny C C t C t

+ + +
= + +& , (2.34) 

where ( )j

j
n iy  is the j th polynomial approximation of the i th state evaluated at the j th node, ( )j

j
n iy&  is 

the derivative of the j th polynomial approximation of the i th state evaluated at the j th node, and 

jnt  is the time at the j th node. 

Rearranging equations (2.31), (2.32), (2.33), and (2.34) into a single vector equation yields 

 
1 1 1 1

1 1 1

2 3
0 ( )

2 1
( )

22 3
( )

32
( )

1

0 1 2 3

1

0 1 2 3

j j j j

j j j

j j j j

j j j

j
jn n n n i

i
jj

n n n ii
j j

in n n n i
j j

in n n i

t t t yC
t t yC

Ct t t y
Ct t y

+ + + +

+ + +

              =     
     
            

&

&

, (2.35) 

where the square matrix is called the time matrix whose inverse is denoted by [ ]K  [20].  

Multiplying both sides of eq. (2.35) by [ ]K  results in, 

 
1

1

0 ( )

1
( )

2
( )

3

( )

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C y
C y

K
+

+

           =        
       

&

&

, (2.36) 

an equation for the coefficients of the approximation polynomial in terms of the end states and their 

derivatives. 
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2.5.3 Change of Variables 

If the final and initial times are free to change based on geometric events, it follows that the time 

matrix will also change.  To simplify computation, we desire known, fixed values for the time 

matrix such that K  remains invariant with respect to initial or final time changes.  This can be 

achieved through a change in variables.  Let us assume a form for the integral part of the derivative 

of our cost function as 

 ( ) ( )f

o

t T T T
yt

H y f y dtλ δ δλ + + − ∫ & & , (2.37) 

where yδ  is the variation of the state vector, y , δλ  is the variation of the costate vector, λ , y& is 

the time derivative of y , λ&  is the time derivative of λ , yH  is the differential constraint function 

for λ& , and f  is the differential constraint function for y .  Since no part of this equation depends 

explicitly on time, the starting time of the integral is immaterial as long as it is over the same 

amount of time.  So let us define an intermediate time nt  such that, 

 n f ot t t= − . (2.38) 

Then eq. (2.37) becomes, 

 ( ) ( )
0

nt T T T
yH y f y dtλ δ δλ + + − ∫ & & . (2.39) 

Let us now define a nondimensionalized time, τ , which is scaled by nt so that when t  is zero, τ  is 

zero, and when t  is nt , τ  is 1.  This leads to 

 
1 0 0n

t
t

τ
=

− −
. (2.40) 

Rearranging we obtain 

 nt t τ= . (2.41) 

Differentiating eq. (2.41) yields 
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 ndt t dτ= . (2.42) 

Substituting eq. (2.42) into eq. (2.39) for dt  yields, 

 
1

0
.

T T
T

y n
n n

d dyH y f t d
t d t d
λ δ δλ τ
τ τ

           + + −              
∫  (2.43) 

Distributing we get, 

 
1

0
.

T T
T

n y n
d dyt H y t f d
d d
λ δ δλ τ
τ τ

       + + −                  
∫  (2.44) 

Since we are integrating with respect to τ , we will still obtain values for y  and λ , as desired [18].  

We define the following quantities for simplicity: 

 T
y n y yH t H fλ= = %% , (2.45) 

 nf t f=% , (2.46) 

 d
d
λλ
τ

′ = , (2.47) 

and 

 dyy
dτ

′ = . (2.48) 

Our new Euler equations become 

 yHλ′ = − %  (2.49) 

and  
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 y f′ = % . (2.50) 

Computational simplification would also arise if we did not have to find a unique time matrix 

inverse for every time segment.  Since the polynomials approximate values within the time segment 

only, it does not matter at what time the segment started, it only matters how much time has passed 

since the segment began.  If we set τ  to start at zero at every segment beginning and we restrict the 

segments to be equally spaced, then our time and K  matrix will not change between the segments.  

Such a protocol would yield 

 0
jnτ =  (2.51) 

and 

 
1

1
jn N

τ
+
= . (2.52) 

Substituting eq. (2.41) into (2.27) yields 

 ( ) 0 1 2 2 2 3 3 3
( )
j j j j j
i i i n i n i ny C C t C t C tτ τ τ τ= + + +  (2.53) 

Since nt  does not depend on time, its factors can be absorbed into the constants, yielding, 

 ( ) 0 1 2 2 3 3
( )
j j j j j
i i i i iy C C C Cτ τ τ τ= + + +% % % . (2.54) 

Taking the derivative with respect to τ  gives, 

 ( ) 1 2 3
( ) 2 3j j j j
i i i iy C C Cτ τ τ′ = + +% % %  (2.55) 

The vector equation therefore becomes, 
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1

1

0 ( )

1
( )

22 3
( )

3

( )
2

1 0 0 0
0 1 0 0

1 1 11

1 10 1 2 3

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C yN N N
C y

N N

+

+

 
          ′      =    

    
     ′      

%

%

%

. (2.56) 

Inverting our new time matrix yields,   

 
1

1

0 ( )

1
( )

2
( )

3

( )

j

j

j

j

j
j n i

i
jj

n ii
j j

i n i
j j

i n i

yC
yC

C y
C y

K
+

+

      ′     =        
   ′    

%

%

%

% , (2.57) 

where K%  is the inverse of the nondimensionalized time matrix.  Equation (2.54) can now be written 

in vector form as, 

 ( )
1

1

0 ( )

1
( )2 3 2 3

( ) 2
( )

3

( )

1 1

j

j

j

j

j
j n i

i
jj

n ij i
i j j

i n i
j j

i n i

yC
yC

y
C y
C y

Kτ τ τ τ τ τ τ
+

+

      ′        = =            
   ′    

%

%

%

% . (2.58) 

We can simply specify a state, ( )jn iy , that serves as the end state of the 1j − th segment and the 

beginning state of the j th segment.  Our differential constraints should hold not only at the 

collocation point but at the nodes too.  So we can replace the derivatives of the states with the 

differential constraints shown in eqs. (2.49) and (2.50) to yield 

 ( )
( )

( )
1

1

( )

( )2 3
( )

( )

( )

,
1

,

j

j

j

j

n i

i n nj
i

n i

i n n

y

f y t
y

y

f y t

Kτ τ τ τ
+

+

 
 
    =        
 
  

%

%

% , (2.59) 

and 
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 ( )
( )

( )
1

1 1

( )

( )2 3
( )

( )

( )

, ,
1

, ,

j

j j

j

j j

n i

y i n n nj
i

n i

y i n n n

H y t

H y t

K

λ

λ
λ τ τ τ τ

λ

λ

+

+ +

 
 
 −   =        
 
−  

%

%

% . (2.60) 

 

2.5.4 Differential Match With New Polynomials 

To satisfy the differential constraint at the collocation point developed in eq. (2.28), we must obtain 

the derivative of the polynomials in eqs. (2.59) and (2.60).  Note, even though eq. (2.28) was only 

developed for the states, because the costates must follow similar differential constraints, a similar 

equation can be used.  It is, 

 ( )( ) ( ) ,     for  1 to 
j j j

j j
c i y i c cH y j Nλ λ= − =& . (2.61) 

In both instances the derivative with respect to τ  is being used instead of t .  Because of this ( )f y  

is replaced with ( ), nf y t%  and ( ),yH y λ−  is replaced with ( ), ,y nH y tλ− % .  The derivatives are 

 ( )
( )

( )
1

1

( )

( )2
( )

( )

( )

,
0 1 2 3

,

j

j

j

j

n i

i n nj
i

n i

i n n

y

f y t
y

y

f y t

Kτ τ τ
+

+

 
 
   ′  =        
 
  

%

%

% , (2.62) 

and 

 ( )
( )

( )
1

1 1

( )

( )2
( )

( )

( )

, ,
0 1 2 3

, ,

j

j j

j

j j

n i

y i n n nj
i

n i

y i n n n

H y t

H y t

K

λ

λ
λ τ τ τ

λ

λ

+

+ +

 
 
 −  ′  =        
 
−  

%

%

% . (2.63) 
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These derivatives are evaluated at the collocation points.  Tau can be thought of as the percentage 

of the ground phase that has been completed.  So when τ  is 1, 100% of the ground phase is 

complete.  However inside each segment τ  starts over at zero and ends at what ever percent of the 

total ground phase that segment represents.  Since there are N  segments, τ  starts at zero and ends 

the segment at 1
N

.  In the middle of the segment where the collocation point is, τ  would be 1
2N

.  

Substituting this into the polynomial derivatives yields, 

 
( )

( )
1

1

( )

( )

( ) 2
( )

( )

,1 30 1
4

,

j

j

j

j

j

n i

i n n

c i
n i

i n n

y

f y t
y

yN N

f y t

K
+

+

 
 
     ′ =         
 
  

%

%

% , (2.64) 

and 

 
( )

( )
1

1 1

( )

( )

( ) 2
( )

( )

, ,1 30 1
4

, ,

j

j j

j

j

j j

n i

y i n n n

c i
n i

y i n n n

H y t

N N

H y t

K

λ

λ
λ

λ

λ

+

+ +

 
 
 −    ′ =         
 
−  

%

%

%  (2.65) 

for i = 1 to 6.  The polynomial approximations of the states themselves at the collocation points 

must also be evaluated.  This leads to, 

 
( )

( )
1

1

( )

( )

( ) 2 3
( )

( )

,1 1 11
2 4 8

,

j

j

j

j

j

n i

i n n

c i
n i

i n n

y

f y t
y

yN N N

f y t

K
+

+

 
 
     =         
 
  

%

%

% , (2.66) 

and 
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 ( )
( )

( )
1

1 1

( )

( )

( ) 2 3
( )

( )

, ,1 1 11
2 4 8

, ,

j

j j

j

j

j j

n i

y i n n n

c i
n i

y i n n n

H y t

N N N

H y t

K

λ

λ
λ τ

λ

λ

+

+ +

 
 
 −    =         
 
−  

%

%

% , (2.67) 

for i = 1 to 6.  We substitute these values into ( ), nf y t%  and ( ), ,y nH y tλ− %  and set them equal to the 

polynomial derivative eqs. (2.64) and (2.65).  This quantity will go to zero as the polynomial 

approximations approach the actual solution. 

 

2.6 Newton-Raphson Solver 

A typical residual is composed of partial derivatives of the cost function with respect to every 

variable parameter.  Therefore it is the gradient of the cost function.  Because the differential 

constraints are enforced using collocation, the components of the residual vector enforcing the 

differential constraints are not partial derivatives of the cost function.  As a result, the residual is not 

a pure gradient.  In driving the residual to zero, the gradient of each of the residuals must be 

determined, requiring the determination of the second partial derivatives of the cost function with 

respect to the every variable parameter.  Organizing these gradients into a matrix produces a 

resultant matrix referred to as the Hessian.  Because in this implementation the residual is not 

exactly the gradient of the cost function, the gradient of the residual vector is not exactly the Hessian 

of the cost function. 

 The objective is to drive the elements of the residual, ( )kR , to zero by correctly selecting 

the variables on which the residual is dependent , Χ . 

 ( ) 0kR Χ = , (2.68) 

for 1k =  to the size of the residual.  To do this an initial guess oΧ  is chosen and refined based on 

criteria that will be developed shortly.  First the Χ  vector must be defined.  In the Newton-Raphson 

routine, the term state vector refers to the state of the routine.  That is it refers to all the parameters, 

states at the nodes, and costates at the nodes assembled into a vector.   

 By approximating kR  as a truncated Taylor series we find, 
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 ( ) ( )
1

P
k

k k l
l l

R
R Rδ δ

=

∂
Χ + Χ = Χ + Χ

∂Χ∑ . (2.69) 

The goal is to force ( )kR δΧ + Χ  to zero by picking the correct δΧ .  If we assume that eq. (2.69) is 

a good approximation for ( )kR δΧ + Χ , then substituting zero for ( )kR δΧ + Χ  should yield an 

equation which can be solved for δΧ  [19].  That is, 

 ( )
1

P
k

l k
l l

R
Rδ

=

∂
Χ = − Χ

∂Χ∑ . (2.70) 

The sum can be written, 

 ( )

1

2

1 2

k k k
k

P

P

R R R
R

δ
δ

δ

Χ 
 Χ ∂ ∂ ∂   = − Χ  ∂Χ ∂Χ ∂Χ   
 Χ 

L
M

. (2.71) 

This equation can be written for 1k =  to size of the residual by concatenating partial derivative row 

vectors such that, 

 

( )
( )

( )

1 1 1

1 2
1 1

2 2 2
2 2

1 2

1 2

P

P

P P
P P P

P

R R R

R
R R R

R

R
R R R

δ
δ

δ

∂ ∂ ∂ 
 ∂Χ ∂Χ ∂Χ  Χ  Χ  
 ∂ ∂ ∂   Χ Χ    ∂Χ ∂Χ ∂Χ = −    

    
   Χ Χ     ∂ ∂ ∂ 

 ∂Χ ∂Χ ∂Χ 

L

L

M M
M M O M

L

. (2.72) 

The matrix of partial derivatives in eq. (2.72) is the Hessian of the cost function, when the residual 

is the gradient but is often referred to as the Hessian in other instances as well.  Inverting this matrix 

numerically yields a relationship for δΧ .  In those instances where the Hessian is singular, the 

pseudo-inverse is taken instead.  A new guess, newΧ , is formed by adding δΧ  to the old guess. 

 new old δΧ = Χ + Χ  (2.73) 
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This is repeated until ( )R Χ  is zero. 

 

2.7 Poincaré Map 

If ( )y = f y&  is an -dimentionaln  system, S  is an 1n −   dimensional surface of section, and all 

trajectories starting at S  flow through it, then the Poincaré Map P  is the mapping from one of the 

trajectories intersections of S  to the next.  Let ky  denote the k th intersection of S .  The Poincaré 

map is then defined as 

 ( )1k k+y = P y . (2.74) 

 For a specific point, ∗y , if 

 ( )∗ ∗y = P y , (2.75) 

then ∗y  is a fixed point of P .  A trajectory starting at ∗y  will end up at ∗y  in a finite amount of 

time.  This is a closed orbit of the system ( )y = f y& .  The stability of the closed orbit can be 

determined by examining the behavior of the system in a region around ∗y . 

 To determine the behavior of the system in the region about the fixed point, we perturb the 

fixed point with a vector resulting in 

 ( )1 0
∗ ∗+ +y v = P y v , (2.76) 

where 0v  is an ( )1 -dimentionaln −  vector.  Expanding eq. (2.76) in a first order Taylor series 

expansion yields, 

 ( ) ( )( )1 0D∗ ∗ ∗+ +y v = P y P y v  (2.77) 

for 0v  of small magnitude where DP  is an ( )1n − x ( )1n −  matrix.  Substituting eq. (2.75) into eq. 

(2.77) yields 

 ( )( )1 0D ∗v = P y v . (2.78) 
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The stability of fixed point ∗y  is determined by the eigenvalues, iλ , of DP  [21].  The 

eigenvalues of this matrix are called the Floquet multipliers of the periodic orbit.  Technically there 

is one extra unity Floquet multiplier associated with a perturbation directly along the periodic orbit.  

This multiplier is trivial since a perturbation along it would just amount to a translation in time.  

Because of this it is ignored. 

 The matrix DP  can be determined by perturbing each state individually and using a 

difference formula to obtain the column vector of partial derivatives taken with respect to the 

individual state [19].  These vectors are then concatenated so they form DP . 

 

3 MODEL 

The model considered in this work is illustrated in Figure 3.1.  It consists of a rigid body of mass m  

and moment of inertia yyI , with a spring attached at point A , a distance d  above the center of mass 

in the negative Bk
v

 direction.  The spring makes contact with the ground intermittently at its end 

point, labeled C .  

 

Figure 3.1    The system at spring touchdown. 
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Unit vectors Ii
v

, Ij
v

, and Ik
v

 are mutually perpendicular and inertially fixed with Ii
v

 pointing to the 

right, Ij
v

 pointing out of the page and Ik
v

 point directly downward.  Unit vectors Bi
v

, Bj
v

, and Bk
v

 are 

also mutually perpendicular, but are fixed to the rigid body and aligned with its principal axes.  Unit 

vectors Ij
v

 and Bj
v

 are aligned and Bi
v

 makes an angle, θ , with Ii
v

.  The center of mass, is a distance 

z-  and x- , above the ground and to the left of the foot placement respectively.  These coordinates 

are assigned in this way so z  and x  increase in the positive Ik
v

 and Ii
v

 directions respectively.  The 

constant gravitational force, gF
v

, acts in the Ik
v

 direction.   

 Because the governing equations of motion of the body change depending upon whether or 

not the leg is in contact with the ground, the model is a hybrid system.  As a result, the equations of 

motion are defined in a piecewise manner with discrete events that determine when the reign of one 

set stops and the next starts.  We will refer to these segments of continuity as phases.  The events 

that switch between phases are spring lift off and touchdown. 

 The flight phase starts when the spring lifts off the ground and ends when it first makes 

contact again.  During the flight phase, the spring remains an angle β  from horizontal in the inertial 

frame.  The only force acting on the body is the gravitational force, gF
v

.  The ground phase starts, 

with the spring undeflected, when the spring makes contact with the ground, and ends when the 

spring returns to its initial length and lifts off from the ground.  At touchdown the spring remains at 

the angle, β , with respect to the horizontal but after the first instant, the angle changes as required 

by the dynamics of the system. During this phase, in addition to the gravitational force, a spring 

force, sF
v

, is present. 

 

3.1 Flight Phase Dynamics 

In flight, the gravitational force is the only force on the body.  It given by 

 g IF mgk=
vv

,  (3.1) 

where g  is the gravitational constant.  Applying Newton’s Second law yields 

 ( )I I Im xi zk mgk+ =
v vv

&& && , (3.2) 
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where x&&  and z&&  are the second derivatives with respect to time of x  and z .  Canceling the m  on 

both sides of the equation and dotting with Ii
v

 and Ik
v

 yields 

 0x =&& , (3.3) 

and 

 z g=&& , (3.4) 

respectively. 

 Since there are no applied couples and gravity acts only on the center of mass, there is no 

angular acceleration.  So 

 0θ =&& . (3.5) 

Organizing x , z , θ , and their derivatives in a vector yields 

 

x
z

x
z

θ

θ

 
 
 
  =  
 
 
 
  

y
&

&
&

. (3.6) 

This is the state space representation of the system.  We can take the derivative of eq. (3.6) and 

substitute in eqns. (3.3) through (3.6), to obtain 

 

( )

( )

( )

4

5

6

0

0

y

y

y

g

 
 
 
 
 =  
 
 
 
  

y& . (3.7) 
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These are the first order equations of motion.  Equation (3.7)  can be integrated analytically 

resulting in, 

 ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

1 4

2
2 5

3 6

4

5

6

1
2

o o

o o

o o

o

o

o

y y t

y y t gt

y y t
t

y

y gt

y

+ 
 
 + +
 

+ 
=  
 
 + 
 
 

y , (3.8) 

where ( )o iy  is the initial value of ( )iy  for 1i =  to 6 . 

 

3.2 Ground Phase Dynamics 

During the ground phase, the spring force, sF
v

, acts on the body in addition to the gravitational 

force.  The spring is linear so sF
v

 will be proportional to the change in spring length.  We will refer 

to the spring length as η  and the uncompressed spring length as oη .  To obtain equations of motion 

utilizing sF
v

, we must define η  in terms of our generalized coordinates, x , z , and θ .  Referring to 

Figure 3.1, since C  and A  are the endpoints of the spring, it follows that the length of the spring, 

η , is the magnitude of the position vector from C  to A .  That is, 

 C Arη →= v . (3.9) 

This position vector can be expressed as 

 C A C Ar r r→ → →= +v v v
Å Å , (3.10) 

where Cr →
v

Å  is the position vector from C  to the center of mass and Ar →
v
Å  is the position vector 

from the center of mass to A . 

 The generalized coordinate, x , is defined as the distance in the Ii
v

 direction from the leg 

touchdown point to the center of mass.  The generalized coordinate, z , is defined as the distance in 

the Ik
v

 direction from the leg touchdown point to the center of mass.  Since the vectors are being 
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defined for the ground phase we can assume the leg touchdown point and the spring end point, C , 

to be coincident.  So the position vector from C  to the center of mass is, 

 C I Ir xi zk→ = +
vvv

Å . (3.11) 

As mentioned earlier, the spring attachment point, A , is held a fixed distance d  above the center of 

mass.  Above, in this case, means above relative to the body.  So, 

 A Br dk→ = −
vv

Å . (3.12) 

Converting this to the inertial reference frame so we can combine it with eq. (3.11) yields, 

 ( ) ( )( )sin cosA B I Ir dk d i kθ θ→ = − = − +
v vvv

Å . (3.13) 

Substituting eqs. (3.11) and (3.13) into (3.10), we obtain, 

 ( )( ) ( )( )sin cosC A I Ir x d i z d kθ θ→ = − + −
vvv . (3.14) 

The leg length is just the magnitude of this vector, which may be computed as 

 ( )( ) ( )( )2 2
sin cosx d z dη θ θ= − + − . (3.15) 

We represent the leg with a linear spring such that the magnitude of the spring force is a function of 

the leg length and the spring constant, k .  So, 

 ( )s oF k η η= −
v

. (3.16) 

Substituting eq. (3.15) into eq. (3.16) yields, 

 ( ) ( )( ) ( )( )2 2
sin coss o oF k k x d z dη η η θ θ = − = − − + − 

 

v
. (3.17) 



 
28

The spring force always acts along the spring.  That is sF
v

 acts in the direction of the position 

vector from C  to A , C Ar →
v .  Multiplying the sF

v
 with a unit vector in the direction of C Ar →

v  yields 

sF
v

.  Unitizing C Ar →
v  and multiplying by eq. (3.16) yields 

 ( ) C A
s o

C A

r
F k

r
η η →

→

 
= −   

 

vv
v . (3.18) 

Substituting eqs. (3.14) and (3.9) in for the position vector and its magnitude respectively yields, 

 ( )( ) ( )( )( )1 sin coso
s I IF k x d i z d k

η
θ θ

η
 

= − − + − 
 

vv v
. (3.19) 

While η  can be calculated in terms of the generalized coordinates with eq. (3.15), for simplicity, we 

refrain from utilizing this relationship in the next calculations.  Using Newton’s Second Law to 

obtain the equations of motion, we sum the two forces on the body, sF
v

 and gF
v

, and divide by the 

mass yielding 

 ( )( ) ( )( )1 sin 1 coso o
I I I I

k kxi zk x d i z d g k
m m

η η
θ θ

η η
    

+ = − − + − − +    
    

v vv v
&& &&  (3.20) 

Evaluating the dot product of this expression with Ii
v

 and Ik
v

 yields 

 ( )( )1 sinokx x d
m

η
θ

η
 

= − − 
 

&&  (3.21) 

 and 

 ( )( )1 cosokz z d g
m

η
θ

η
 

= − − + 
 

&&  (3.22) 

respectively.  We identify the last equation of motion using the change in angular momentum.  Since 

we have the moment of inertia about the center of mass, it would be easiest to sum the moments 



 
29

about the center of mass as well.  Since, spring force, sF
v

, is the only force that is not applied at 

the center of mass and there are no applied couples, the total moment about the center of mass is, 

 sM r F→= ×
v vv

Å A . (3.23) 

Substituting eqs (3.13) and (3.19) into eqn. (3.23) yields, 

 
( )

( ) ( )
( )

( )

( )

0 cos 0 sin
1 cos 0 sin 0

0 sin 0 cos

o

x d
M dk

z d

θ θ
η

θ θ
η

θ θ

− −   
    = − − −          −   

v
. (3.24) 

Multiplying the skewsymmetric cross product with the vector and simplifying yields, 

 ( ) ( )( )1 cos sino
IM dk x z j

η
θ θ

η
 

= − − − 
 

v v
. (3.25) 

The change in angular momentum with respect to time is, 

 B I
yy I

dH
I j

dt
θ=

v
v&& . (3.26) 

Equating (3.26) to the moment in eq. (3.25), dotting both sides with Ij
v

, and dividing by the moment 

of inertia yields the rotational equation of motion, 

 ( ) ( )( )1 sin coso

yy

dk z x
I

η
θ θ θ

η
 

= − − 
 

&& . (3.27) 

Arranging the ground phase equations of motion into state space form yields, 
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( )( )

( )( )

( ) ( )( )

(4)

(5)

(6)

(1) (3)

(2) (3)

(2) (3) (1) (3)

1 sin

1 cos

1 sin cos

o

o

o

yy

y
y
y

k y d y
my

k y d y g
m

dk y y y y
I

η
η

η
η

η
η

 
 
 
 
 

  − −  =   
   − − +   
 

  − −    

& , (3.28) 

where 

 ( )( ) ( )( )2 2

(1) (3) (2) (3)sin cosy d y y d yη = − + − . (3.29) 

 

4 SOLUTION 

The ultimate goal is for the system to move forward with an asymptotically stable periodic gait, 

such that perturbations applied to the system that shift it away from the periodic orbit simply result 

in the system returning to the original periodic gait.  Because a periodic orbit ends where it began, 

we can represent the continuous periodic orbit discretely with a single fixed point of the associated 

Poincaré map.  The fixed point contains all the states sampled at a particular instant in the periodic 

orbit.  For our system, the sampling is taken when the leg lifts off the ground and the flight phase 

begins.  It is called the lift off state. 

 

4.1 Optimal Criterion 

Our goal is to drive the lift off state to the fixed point each period.  Since our only control over the 

system is selection of the leg touchdown angle, β , we look into the future one stride and determine 

the β  that sends the lift off state, fy , the closest to the fixed point, fixedy .  We accomplish this by 

writing a cost function that penalizes deviations of fy  from fixedy  and finding the β  which 

minimizes this cost.  The cost function is minimized by taking its derivative and driving it to zero. 
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4.1.1 Unconstrained Cost Function 

As detailed previously, the cost function must penalize the final state if it deviates from the fixed 

point.  It will take the form, 

 ( )fJ yφ= , (4.1) 

where ( )fyφ  is a positive semidefinite function which is zero when fy  is equal to fixedy  and 

greater than zero when fy  is not equal to fixedy .  The latter is accomplished by using, 

 fixed fY y y∆ = − . (4.2) 

We nondimensionalize this quantity so that deviations of different quantities are treated equally.  

This yields, 

 

(1)

(2)

(3)

(4)

(5)

(6)

o

o

o

o

o

o

Y

Y

Y
Y

Y
v
Y
v

Y
v

η

η

η

∆ 
 
 
 ∆
 
 
 
 ∆
  ∆ =  ∆ 
 
 
∆ 

 
 
 ∆
 
  

, (4.3) 

where oη  is the uncompressed spring length and ov  is the speed of the center of mass at the 

beginning of the period.  Positive definiteness of φ  is then assured with  

 ( ) ( ) ( )T

fy Y Q Yφ = ∆ ∆ , (4.4) 
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where Q  is a diagonal weighting matrix.  The elements of Q  are positive and act as tuners for 

the control system.  Note that since the system will move forward with every stride, the first state, x  

or (1)fy , will not be periodic.  Therefore it is taken out of the cost function by setting (1,1)Q  to zero. 

 

4.1.2 Constrained Cost Function 

Unfortunately the minimization of eq. (4.1) cannot help us in its current form since the system has 

constraints it must follow.  It must start at the initial conditions, follow the equations of motion for 

flight, touch down at the right time, follow equations of motion for the ground phase, and lift off at 

the correct time.  These constraints are broken up into two categories. 

 The first category includes the time specific constraints.  Together with φ , from eq. (4.4), 

these constraints comprise G , the time specific cost.  They include the touchdown condition 

constraints and lift-off constraints.  Since the equations of motion for the flight phase can be 

integrated analytically, instead of using an integral constraint to constrain this motion, we constrain 

the touchdown state, cy , to equal the preintegrated function for y  in terms of the initial conditions, 

oy , and the touchdown time, ct . 

 The second category includes the integral constraints.  The only integral constraint that 

needs to be applied is the one constraining the ground phase to follow its equations of motion.  

There are no unconstrained costs applied over a time interval. 

 The constrained cost function takes the form, 

    f

c

t T

t
J G H y dtλ′  = + − ∫ &  (4.5) 

where G  is the time specific constrained cost, y&  is a 6 x 1 vector of the derivatives of the states, 

y , λ  is a 6 x 1 vector of the costates associated with the states, and H  is the Hamiltonian given by 

 ( ),TH f t yλ= , (4.6) 

where ( ),f t y  the a 6 x 1 vector of the equations of motion for the ground phase shown in eq. 

(3.28). 
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 As mentioned previously, the time specific function, G , is broken into the end cost, φ , 

touchdown state constraints, θ , the touchdown condition constraints, χ , and the lift off condition 

constraints, ψ . 

 The touchdown state constraints form a 6 x 1 column vector.  They constrain the states at 

the touchdown time to equal the analytical solution to the equations of motion of the flight phase, 

presented in eq. (3.8), evaluated at the touchdown time, ct .  That is, 

 ( )c cy y t= . (4.7) 

This ensures that the equations of motion for the flight phase are obeyed.  Note in Figure 3.1, that 

the coordinate, x , which corresponds to (1)y , is measured from the foot placement.  This definition 

simplifies the ground phase equations of motion, but it makes it difficult to define (1)y  when the leg 

has not touched down.  Since (1)y  does not appear in the unconstrained cost function and this 

calculation is only being done over the ground phase, we do not care how (1)y  is defined as long as 

the rest of the states satisfy the equations of motion.  So even though (1)oy  may be defined from 

some other point, we redefine (1)y  for the ground phase to be measured from the foot placement.  

Constraining (1)cy  is done by defining C Ar →
v  evaluated at the touchdown state in two different ways.  

The first is using eq. (3.14).  The second is using the angle β  and the length oη  to express C Ar →
v  in 

the I  frame.  That is, 

 ( ) ( )( )cos sinC A o I Ir i kη β β→ = − −
vvv . (4.8) 

Equating these expressions yields, 

 ( )( ) ( )( ) ( ) ( )(1) (3) (2) (3)sin cos cos sinc c I c c I o I o Iy d y i y d y k i kη β η β− + − = − −
v vv v

. (4.9) 

Evaluating the dot product of this expression with Ii
v

 and rearranging yields, 

 ( ) ( )(1) (1) (3)sin cos 0c c oy d yθ η β= − + = . (4.10) 

The whole initial state constraint vector then becomes, 
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 ( )

( ) ( )(1) (3)

2
(2) (2) (5)

(3) (3) (6)

(4) (4)

(5) (5)

(6) (6)

sin cos

1
2

, ,

c c o

c o o c c

c o o c

c c

c o

c o c

c o

y d y

y y y t gt

y y y t
y t

y y

y y gt

y y

η β

θ β

 − +
 
 − − −
 
 − − =  

− 
 
 − −
 
 − 

. (4.11) 

 The touchdown condition constraint vector, χ , determines when the system must switch 

from the flight phase to the ground phase in addition to limiting the touchdown time to be positive.  

The first condition that must be satisfied for the system to go from flight phase to ground phase is 

the height of the foot from the ground must be zero, indicating foot touch-down.  This condition is 

satisfied by expressing C Ar →
v  in two different and equating as before in eq. (4.9).  We then dot both 

sides with Ik
v

 and reverse signs to obtain 

 ( ) ( )(3) (2)sin coso c cd y yη β = − . (4.12) 

Bringing everything to one side yields, 

 ( ) ( ) ( )(1) (3) (2), cos sinc c c oy d y yχ β η β= − − . (4.13) 

 The second condition that must be satisfied is the leg must be entering compression.  If, for 

example, the foot was below the ground at the beginning of the flight phase and moved up so it was 

at the same height as the ground, the first constraint would hold, but if the center of mass is not 

moving forward fast enough, the distance between the foot placement and the leg attachment point 

would increase. If the ground phase starts, this will put the leg in tension.  Since the foot must never 

grip the ground, leg tension should be impossible.  In order to eliminate this problem we will specify 

that the time derivative of the leg length be negative at touchdown.  That is the leg length must be 

decreasing as the leg touches down, forcing compression to occur.   Equation (3.15) shows the leg 

length in terms of the states.  We square this quantity for simplicity.  This is an acceptable step 

because the time derivative of the square of a positive definite real quantity has the same sign as the 

derivative of the quantity itself.  This yields, 
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 ( )( ) ( )( )2 22 sin cosx d z dη θ θ= − + − . (4.14) 

Taking the time derivative yields, 

 
( )

( )( ) ( )( ) ( )( ) ( )( )
2

2 sin cos 2 cos sin
d

x d x d z d z d
dt

η
θ θ θ θ θ θ= − − + − +& && & . (4.15) 

This quantity must be less than or equal to zero.  Dividing by 2 and substituting the state space 

variables in eq. (3.6) evaluated at touchdown yields, 

 
( )( ) ( )( )
( )( ) ( )( )

(1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

  sin cos

cos sin 0

c c c c c

c c c c c

y d y y d y y

y d y y d y y

− −

+ − + ≤
. (4.16) 

Using the eq. (2.16) we form the constraint, 

 
( ) ( )( ) ( )( )

( )( ) ( )( )
(2) (1) (3) (4) (3) (6)

2
(2) (3) (5) (3) (6) (1)

,   sin cos

                     cos sin

c c c c c c

c c c c c

y a y d y y d y y

y d y y d y y a

χ = − −

+ − + +
, (4.17) 

where (1)a  is the first element of a 4 x 1 bounding vector, a .  The touchdown time, ct , must be 

constrained to be positive.  Again using eq. (2.16) we form the constraint, 

 ( ) 2
(3) (2),c ct a t aχ = − , (4.18) 

where (2)a  is the second element of the 4 x 1 bounding vector, a .  Equations (4.13), (4.17), and 

(4.18) form the 3 x 1 vector of touchdown condition constraints, 

 ( )

( ) ( )

( )( ) ( )( )
( )( ) ( )( )   

(3) (2)

2
(1) (1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

2
(2)

cos sin

sin cos
, , ,

    cos sin

c c o

c c c c c

c c

c c c c c

c

d y y

a y d y y d y y
y t a

y d y y d y y

t a

η β

χ β

 
 − −
 
 
 + − − 

=  
+ − + 

 
 
 −
 
 

. (4.19) 
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 The lift off condition constraint vector, ψ , determines when the system must switch 

from the ground phase to the flight phase in addition to limiting the ground phase time, nt , to be 

positive.  The ground phase time is, 

 n f ct t t= − . (4.20) 

 In order for the system to switch from the ground phase to the flight phase, the leg must be 

fully extended.  That is  

 oη η= . (4.21) 

Substituting this into the left side of eq. (3.15), squaring both sides for simplicity, and arranging 

everything on one side yields the constraint equation,  

 ( ) ( )( ) ( )( )2 22
(1) (1) (3) (2) (3)sin cosf o f f f fy y d y y d yψ η= − − − − . (4.22) 

 The next condition is the leg must be leaving compression.  The first condition, (1)ψ , is 

satisfied both when the leg touches down and when it lifts off.  So if we do not specify that the 

derivative of the spring length is positive, then the ground phase could be cut off where it started.  

We already calculated the derivative of the leg length in eq. (4.15).  Dividing by 2 and substituting 

the state space coordinates in eq. (3.6) evaluated at the end state yields, 

 
( )( ) ( )( )
( )( ) ( )( )

(1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

  sin cos

cos sin 0.

f f f f f

f f f f f

y d y y d y y

y d y y d y y

− −

+ − + ≥
 (4.23) 

Using the eq. (2.16) we form the constraint, 

 
( ) ( )( ) ( )( )

( )( ) ( )( )
(2) (1) (3) (4) (3) (6)

2
(2) (3) (5) (3) (6) (3)

, =    sin cos

                       cos sin

f f f f f f

f f f f f

y a y d y y d y y

y d y y d y y a

ψ − −

+ − + −
, (4.24) 

where (3)a  is the third element of the 4 x 1 bounding vector, a .   
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 The ground phase time, nt , must be constrained to be positive.  Again using eq. (2.16) 

we form the constraint, 

 ( ) 2
(3) (4),n nt a t aψ = − , (4.25) 

where (4)a  is the fourth element of the 4 x 1 bounding vector, a . 

 Equations (4.22), (4.24), and (4.25) form the 3x1 vector of lift off condition constraints, 

 ( )

( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )  

2 22
(1) (3) (2) (3)

2
(3) (1) (3) (4) (3) (6)

(2) (3) (5) (3) (6)

2
(4)

sin cos

 sin cos
, ,

       cos sin

o f f f f

f f f f f

f n

f f f f f

n

y d y y d y

a y d y y d y y
y t a

y d y y d y y

t a

η

ψ

 
 − − − −
 
 
 + − − 

=  
+ − + 

 
 
 −
 
 

-
. (4.26) 

 The time-specific function is assembled to yield, 

 ( ) ( ) ( ) ( ), , , , , , ,T T T
f c c c c f nG y y t y t a y t aφ ξ θ β υ χ β ν ψ= + + + . (4.27) 

where ξ  is a 6 x 1 vector of the Lagrange multipliers associated with the touchdown state constraint 

vector, θ , υ  is a 3 x 1 vector of the Lagrange multipliers associated with the touchdown condition 

constraint vector, χ , and ν  is a 3 x 1 vector of Lagrange multipliers associated with the lift off 

condition constraint vector, ψ .  The constraint equations are zero when the constraints are satisfied.  

Now that each part of the constrained cost function has been derived, it can be assembled displaying 

its parameter dependencies.  This will make is easy to take its total derivative.  The final constrained 

cost function is, 

 ( ) ( )   , , , , , , , , ,f

c

t T
c f c n t

J G y y t t a H y y dtβ ξ υ ν λ λ′  = + − ∫ & . (4.28) 
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4.1.3 First Derivative 

The minimum of a function is found where the functions total derivative is zero.  To find the 

minimum of our cost function, eq. (4.28), we take its total derivative.  Using Leibniz’ Rule for 

differentiating the integral, this yields 

 
( )     

   

        ,

c f c f

f f

cc

y c y f t c t f

t tT T T
a ytt

dJ G dy G dy G dt G dt G d G d G d G d

G da H y dt H y H y y dt

β ξ υ ν

λ

β ξ υ ν

λ δ δλ δλ λ δ

′ = + + + + + + +

   + + − + + − −   ∫& & &
 (4.29) 

where  

 x
GG
x

∂
=
∂

 (4.30) 

for x  equal to every variable on which G  is dependent and 

 x
HH
x

∂
=
∂

 (4.31) 

for x  equal to every variable on which H  is dependent.  See eq. (4.28) for dependencies.  Note 

from eq. (4.27) that 

 TGξ θ= , (4.32) 

 TGυ χ= , (4.33) 

and 

 TGν ψ= . (4.34) 

Since θ , χ , and ψ  were defined to be zero vectors, the G dξ ξ , G dν ν , and G dυ υ  terms are zero.  

Even though these terms are zero and they will be removed from dJ ′  for simplicity, they are still 

requirements for the total derivative to be zero. 

 Note from eq. (4.6) that  
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 TH fλ = . (4.35) 

 Substituting eq. (4.35) into eq. (4.29) as well as eliminating the terms we established as zero leaves 

 
( ) ( )     

   

        .

c f c f

f f

cc

y c y f t c t f a

t tT T T T
ytt

dJ G dy G dy G dt G dt G d G da

H y dt H y y f y dt

β β

λ δ λ δ δλ

′ = + + + + +

   + − + − + −   ∫& & &
 (4.36) 

We now integrate the T yλ δ &  term by parts by selecting, 

 T Tu λ=  (4.37) 

and 

 ( )dv dy d y
dt dt dt

δ δ= = . (4.38) 

This results in 

 2 22

11 1

t ttT T T

tt t
y dt y y dtλ δ λ δ λ δ    − = − +     ∫ ∫ && . (4.39) 

Substituting this into eq. (4.36) yields, 

 
( ) ( ) ( )     

   

        .

c f c f

f f

cc

y c y f t c t f a

t tT T T T T
ytt

dJ G dy G dy G dt G dt G d G da

H y dt y H y f y dt

β β

λ λ δ λ δ δλ

′ = + + + + +

  + − − + + + −   ∫ && &
 (4.40) 

Since y f=& , the term ( )T Tf y δλ− &  is zero.  Substituting in the limits we obtain 

 
( ) ( ) ( )  

   

        .

c f c f

f

c

y c y f t c t f a

tT T T T T
f f f f f f c c c c c c yt

dJ G dy G dy G dt G dt G d G da

H y dt y H y dt y H y dt

β β

λ λ δ λ λ δ λ δ

′ = + + + + +

 + − − − − + + + ∫ && &
 (4.41) 

Using eq. (2.23) we relate yδ  to dy  eliminating yδ  outside of the integral to obtain, 
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( )  

   

        .

c f c f

f

c

y c y f t c t f a

tT T T
f f f f c c c c yt

dJ G dy G dy G dt G dt G d G da

H dt dy H dt dy H y dt

β β

λ λ λ δ

′ = + + + + +

 + − − + + + ∫ &
 (4.42) 

Rearranging yields, 

 
( ) ( ) ( )
( ) ( )  

   

         .

c f c

f

f
c

T T
y c c y f f t c c

t T
t f f a yt

dJ G dy G dy G H dt

G H dt G d G da H y dtβ

λ λ

β λ δ

′ = + + − + −

 + + + + + + ∫ &
 (4.43) 

Since dJ ′  must equal zero and cdy , fdy , cdt , fdt , dβ , da , and yδ  are arbitrary, their 

coefficients must be zero yielding the boundary conditions 

 

,    ,    0,    0,

                 ,    ,

                0,    0,    0,

f c

c f

T T
f y c y a

c t f t

G G G G

H G H G
βλ λ

θ ψ χ

= = − = =

= = −

= = =

 (4.44) 

and differential constraint equations, 

 
,

.T
y

y f

Hλ

=

= −

&

&  (4.45) 

4.1.4 Evaluation of Boundary Conditions 

We have established all the conditions that must be satisfied for dJ ′  to be zero but further 

computation must be done to make these conditions useful.  We begin by evaluating the partial 

derivatives in eq. (4.44).    In evaluating 
fyG  we refer to eq. (4.27) to see that 

 
f f f

T
y y yG φ ν ψ= + . (4.46) 

Referring to eq. (4.4) we observe that 

 ( ) ( )f f

T

y yY Q Yφ = ∆ ∆ . (4.47) 
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Equation (4.2) establishes that Y∆  is linear in fy  and each element of Y∆  is only dependent on 

the corresponding element in fy .  As a result 
fyY∆  is a negative identity matrix.  We can convert 

fyY∆  to 
fyY∆  by simply multiplying by a diagonal matrix of the nondimensionalization parameters.  

Substituting this into eq. (4.47) yields, 

 

( )

( )

( )

( )

( )

2 (2) (2)
2

3 (3) (3)

4 (4) (4)
2

5 (5) (5)
2

2
6 (5) (5)

2

0

2

2

2

2

2

f

f fixed

o

f fixed
T

y

f fixed

o

f fixed

o

f fixed o

o

q y y

q y y

q y y

v

q y y

v

q y y

v

η

φ

η

 
 
 
 

− 
 
 
 
 −
 

=  
− 

 
 
 − 
 
 

− 
 
 

, (4.48) 

where iq  for i = 2 through 6 are the diagonal elements of the weighting matrix Q .  Referring to eq. 

(4.26) we see that 
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( )( ) ( )( )

( )( ) ( )

( )( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

( )

(3) (1) (4) (3) (6)

(3) (2) (5) (3) (6)

(1) (3) (3) (2) (6) (4) (3)

(1) (6) (5) (3)(2) (3) (3)

(1) (3)

2 sin cos 0

2 cos sin 0

2 sin cos cos
0

sin2 cos sin

0 sin 0

0

f

f f f f f

f f f f f

f f f f f f f

f f f ff f fT
y

f f

d y y y d y y

d y y y d y y

d y d y y d y y y y

d y y y yd y d y y

y d y

ψ

− −

− +

− −

+ +− −
=

−

( )

( ) ( )( )

(2) (3)

(2) (3) (1) (3)

cos 0

0 sin cos 0

f f

f f f f

y d y

d y y y y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 
 
 
 − 
  

. (4.49) 

 In evaluating 
cyG  we refer to eq. (4.27) to observe that 

 
c c c

T T
y y yG ξ θ υ χ= + . (4.50) 

Differentiating eq. (4.11) with respect to cy  yields 

 

( )(3)1 0 cos 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

c

c

y

d y

θ

 
 
 
 
 
 =
 
 
 
 
 
 

-

. (4.51) 

Differentiating eq. (4.19) with respect to cy  yields 
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( )( )

( )

( ) ( ) ( )
( ) ( )

( )

( )

( ) ( )( )

(4) (3) (6)

(5) (3) (6)

(2) (6) (4) (3)

(3)

(1) (6) (5) (3)

(1) (3)

(2) (3)

(2) (3) (1) (3)

0 cos 0

1 sin 0

cos
sin 0

sin

0 sin 0

0 cos 0

0 sin cos 0

c

c c c

c c c

c c c c

c

c c c cT
y

c c

c c

c c c c

y d y y

y d y y

d y y y y
d y

d y y y y

y d y

y d y

d y y y y

χ


 −



 +


 −

 + +
=

 −



 −



 −


-

-


























. (4.52) 

 In evaluating Gβ  we refer to eq. (4.27) to see that 

 T TGβ β βξ θ υ χ= + . (4.53) 

Differentiating eq. (4.11) with respect to β  yields 

 

( )sin
0
0
0
0
0

o

β

η β

θ

 
 
 
  =  
 
 
 
  

-

. (4.54) 

Differentiating eq. (4.19) with respect to β  yields 

 
( )cos

0
0

o

β

η β
χ

 
 =  
 
 

-
. (4.55) 

Substituting eqs. (4.54) and (4.55) into (4.53) yields 
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 ( ) ( )(1) (1)sin coso oGβ ξ η β υ η β= − − . (4.56) 

 In evaluating aG  we refer to eq. (4.27) to see 

 T T
a a aG υ χ ν ψ= + . (4.57) 

Differentiating eq. (4.19) with respect to a  yields 

 (1)

(2)

0 0 0 0
2 0 0 0

0 2 0 0
a a

a
χ

 
 =  
 − 

. (4.58) 

Differentiating eq. (4.26) with respect to a  yields 

 (3)

(4)

0 0 0 0
0 0 2 0
0 0 0 2

a a
a

ψ
 
 = − 
 − 

. (4.59) 

Substituting eqs. (4.58) and (4.59) into (4.57) yields 

 (2) (1) (3) (2) (2) (3) (3) (4)2 2 2 2aG a a a aυ υ ν ν = − − −  . (4.60) 

 In evaluating 
ct

G  we refer to eq. (4.27) to see 

 
c c c

T T
t t tG ξ θ υ χ= + . (4.61) 

Differentiating eq. (4.11) with respect to ct  yields 

 

(5)

(6)

0

0

0

c

o c

o
t

y gt
y

g

θ

 
 − − 
 − =  
 
 −
 
  

. (4.62) 
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Differentiating eq. (4.19) with respect to ct  yields 

 
0
0
1

ct
χ

 
 =  
 
 

. (4.63) 

Substituting eqs. (4.62) and (4.63) into (4.61) yields 

 ( )(2) (5) (3) (6) (5) (3)ct o c oG y gt y gξ ξ ξ υ= − − − − + . (4.64) 

 We now evaluate the Hamiltonian at touchdown to obtain 

 T
c c cH fλ= . (4.65) 

Since at the touch down state the spring remains uncompressed, the equations of motion for the 

flight phase can still be used for cf .  Therefore 

 (1) (4) (2) (5) (3) (6) (5)c c c c c c c cH y y y gλ λ λ λ= + + + . (4.66) 

 In evaluating 
ftG  we refer to eq. (4.27) to see that 

 
f f

T
t tG ν ψ= . (4.67) 

Differentiating eq. (4.26) with respect to ft  yields 

 
0
0
1

ftψ
 
 =  
 
 

. (4.68) 

Substituting eqs. (4.68) into (4.67) yields 

 (3)ftG ν= . (4.69) 
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 We can evaluate the Hamiltonian at lift off in a manner similar to that at touchdown.  

That is, 

 T
f f fH fλ= . (4.70) 

Since at the final state the spring is uncompressed, the equation of motion vector f  reduces to the 

equations of motion for the flight phase again yielding, 

 (1) (4) (2) (5) (3) (6) (5)f f f f f f f fH y y y gλ λ λ λ= + + + . (4.71) 

 

4.2 Structure of the Numerical Method 

Now that we have developed the necessary conditions for the minimization of our cost function, we 

must develop a method to drive the system to these conditions.  To do this we form a vector called a 

residual which is driven to zero using a least squares method.  This vector contains all the boundary 

conditions presented in eq. (4.44) with all the terms moved to one side so that the equation is zero 

when the conditions are satisfied.  In addition to this, the residual vector contains the polynomial 

approximation constraints developed with collocation to enforce the differential constraints in eq. 

(4.45).  These constraints were developed in section 2.5. 

  

4.2.1 Residual 

We will now use the constraints that have been developed to form the residual vector, where the 

constraint equation is satisfied when its corresponding component in the residual vector is zero.  In 

order to impose some kind of order to the residual we will try to organize the components in order 

of what time they are evaluated.  The first part of the residual will be the boundary conditions that 

are applied at touchdown.  These take the form 

 ( ) ( )(1) , , ,
cc c c t cR H y G tλ ξ υ= − , (4.72)  

 ( )(2:3) (1:2) (1:2) ,aR G a υ= , (4.73) 
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 ( )(4) , ,R Gβ ξ β υ= , (4.74) 

 ( )(5:7) (1:2), , ,c cR y t aχ β= , (4.75) 

 ( )(8:13) , ,c cR y tθ β= , (4.76) 

and 

 ( )(14:19) (3), ,
c

T

c y cR G yλ ξ υ= + . (4.77) 

 The next section of the residual vector is made up of the differential constraints at the 

collocation points of each section for every state.  We developed these constraint equations in such a 

way that they automatically satisfy the differential constraints at the nodes and continuity between 

sections.  These residuals take the form 

 ( ) ( )( )1 1(12 8:12 13) , , , , ,
j j j j j jj j c n n n c n n n nR y y y t f y y y t t

+ ++ + ′= − % , (4.78) 

and 

 
( )

( ) ( )( )
1 1

1 1 1

(12 14:12 19)   , , , ,

                       , , , , , , , , ,

j j j j j

j j j j j j j j

j j c n n n n n

y c n n n c n n n n n n

R y y t

H y y y t y y t t

λ λ λ

λ λ λ

+ +

+ + +

+ + ′=

+ %
 (4.79) 

for 1j =  to N  where 
jcy′  is the 6 1x  vector found using eq. (2.64), f%  is the modified equation of 

motion vector found in eq. (2.46) where f  is the original equation of motion vector found in eq. 

(3.28), 
jcy  is the 6 1x  vector found using eq. (2.66), 

jcλ′  is the 6 1x  vector found using eq. (2.65), 

yH%  is the modified differential constraint vector for the costates found in eq. (2.45) where yH  is 

the derivative of the Hamiltonian, found in eq. (4.6), with respect to the states, 
jcλ  is the 6 1x  vector 

given by eq. (2.67), and nt  is the ground phase time given by eq. (4.20). 

The last elements of the residual are the boundary conditions applied at ft .  They take the 

form 
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 ( )(12 20:12 25) ,
f

T

N N f y fR G yλ ν+ + = − , (4.80) 

 ( )(12 26:12 28) (3:4), ,N N f nR y t aψ+ + = , (4.81) 

 ( )(12 29) ,N f f fR H yλ+ = , (4.82) 

and 

 ( )(12 30:12 31) (3:4) (3:4) ,N N aR G a ν+ + = . (4.83) 

 The MATLAB code for developing the three pieces of the residual is presented in appendix 

A. 

 

4.2.2 Collocation State Vector 

In a dynamic system the state vector refers to the vector of parameters defining its position and 

velocity at some instant in time.  In a collocation scheme the state vector refers to a vector of all the 

parameters that are varied in the scheme.  In our case this means all the parameters, the Lagrange 

multiplier, and the states and costates evaluated at the nodes.  This vector is then updated to drive 

the residual vector to zero.  Just like the residual vector, the state vector is broken up into three 

sections.  The first contains quantities that are used in the flight phase and at touchdown.  They are 

 (1) ctΧ = , (4.84) 

 (2:3) (1:2)aΧ = , (4.85) 

 (4) βΧ = , (4.86) 

 (5:7) υΧ = , (4.87) 

and 
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 (8:13) ξΧ = . (4.88) 

The next part of the state vector contains quantities that are used during the ground phase.  These are 

the states and costates at every node.  They are 

 (12 2:12 7) jj j ny+ +Χ =  (4.89) 

and 

 (12 8:12 13) jj j nλ+ +Χ =  (4.90) 

 

for 1j =  to 1N + .  The last part of the state vector contains quantities that are used at lift off.  

These are, 

 (12 26:12 28)N N ν+ +Χ = , (4.91) 

 (12 29)N nt+Χ = , (4.92) 

and 

 (12 30:12 31) (3:4)N N a+ +Χ = . (4.93) 

 

4.2.3 Nondimensionalization of the Residual Vector 

To improve the convergence properties of the Newton Raphson routine it can be advantageous to 

nondimensionalize the residual.  We do this by multiplying each residual by a 

nondimensionalization parameter that has units that are the inverse of that of the residual.  For 

organizational purposes, these nondimensionalization parameters are put together to form 

nondimensionalization vector, κ .  
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 Equation (4.72) says that the first residual has units equal to those of 
ct

G .  Since G  is 

unitless and ct  has units of time, 
ct

G  has units of the inverse of time.  This leaves the 

nondimensionalization parameter 

 (1)
o

ov
η

κ = , (4.94) 

where oη  is the uncompressed leg length and ov  is the speed of the center of mass at lift off.  

Equation (4.73) says that the second residual is equal to (1)aG .  The constraint parameter, (1)a , has 

units of the square root of velocity.  The derivative of G  with respect to (1)a  has units of the inverse 

of the square root of velocity.  The nondimensionalization parameter then becomes, 

 (2) ovκ = . (4.95) 

 Equation (4.73) also says that the third residual is equal to (2)aG .  Since the constraint 

parameter, (2)a , has units of the square root of time, the derivative of G  with respect to (2)a  has 

units of the inverse of the square root of time. The nondimensionalization parameter then becomes, 

 (3)
o

ov
η

κ = . (4.96) 

 According to eq. (4.74) the next residual is equal to Gβ .  Since both G  and β  have no 

units Gβ  is unitless.  The nondimensionalization constant for (4)R is then, 

 (4) 1κ = . (4.97) 

 Equation (4.75) shows that (5) (1)R χ=  which as shown in eq. (4.19) has units of length.  So, 

 (5)
1

o

κ
η

= . (4.98) 

Similarly (6) (2)R χ=  which has units of velocity.  So, 
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 (6)
1

ov
κ = . (4.99) 

Finally (7) (3)R χ=  which has units of time.  So, 

 (7)
o

o

v
κ

η
= . (4.100) 

 According to eq. (4.76), (8)R  through (13)R  have the same units as the constraint equation 

vector, θ .  Since θ  constrains the states directly, it will have units equal to those of the states.  The 

nondimensionalization constants corresponding to these residuals will have the inverse units.  That 

is 

 

(8)

(9)

(10)

(11)

(12)

(13)

1

1

1

1

1

o

o

o

o

o

o

v

v

v

η

κ η
κ
κ
κ
κ
κ

η

 
 
 
  
  
  
     =   

   
   
   
    

 
 
  

. (4.101) 

 According to eq. (4.77), (14)R  through (19)R  have the same units as λ .  The costates have 

units inverse to those of the states.  The nondimensionalization constants corresponding to these 

residuals will have units equal to those of the states.  That is, 
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(14)

(15)

(16)

(17)

(18)

(19)

1

o

o

o

o

o

o

v

v

v

η

ηκ
κ
κ
κ
κ
κ

η

 
 
 
  
  
  
     =   

   
   
   
    

 
 
  

. (4.102) 

 The next residuals are matching the state derivatives at the collocation points.  The 

nondimensionalization constants will be defined for a general collocation point.  Equation (4.78) 

shows that the residuals have units of the time normalized equations of motion.  This means they 

have units the same as the states.  So, 

 

(12 8)

(12 9)

(12 10)

(12 11)

(12 12)

(12 13)

1

1

1

1

1

o

j
o

j

j

j

o
j

j
o

o

o

v

v

v

η
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, (4.103) 

for j =1 to N . 

 Equation (4.79) shows that the residuals have units of the derivative of the costates with 

respect to τ .  Since τ  is unitless, these residuals have the same units as the costates.  So, 
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for j =1 to N . 

 Equation (4.80) shows that the next 6 residuals have the same units as λ .  So, 
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 Equation (4.81) shows that the next 3 residuals have units the same as the ψ  vector.  

Since the first, second, and third components of ψ  have units of length squared, velocity, and time, 

respectively, we obtain, 
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 According to eq. (4.82), the next residual has the same units as the Hamiltonian, which 

has units of the inverse of time.  So, 

 (12 29)
o

N
ov

η
κ + = . (4.107) 

 From eq. (4.83) we see that since G  is unitless and 3a  has units of the square root of 

velocity, the next residual has units of the inverse of the square root of velocity.  So, 

 12 30N ovκ + = . (4.108) 

Also from eq. (4.83) we see that since 4a  has units of the square root of time, the last residual has 

units of the inverse of the square root of time. So,  

 12 31
o

N
ov

η
κ + = . (4.109) 

 

4.3 Initial Conditions 

We are using a Newton-Raphson solver drive the parameters to the optimal solution.  The 

performance of such a solver is closely linked with how close the initial guess is to the solution.  It 

will be beneficial to make this guess as educated as possible.   

 There is no physical intuition to aid in determining initial assumptions of the magnitude of 

the costates or Lagrange multipliers.  However, we do have information regarding the values of our 

states.  Formulating the unoptimized system as an initial value problem provides an approximation 

for the states.  The only parameter we must pick is the leg touch down angle, β .  This will be done 

by calculating a range in which β  could be and calculating the value of the unconstrained cost 

function for β  at a few values inside of that range.  Assuming the body is supposed to move in the 

positive x  direction there are three cases for which a range must be developed.  The three cases are 

set apart by the initial velocity in the Ii
v

 direction, ox& .  The first case is if ox&  is positive.  In such a 

situation the velocity is forward and should remain forward at the end of the stride.  The second case 



 
55

is if ox&  is zero.  The velocity in the Ii
v

 direction must be increased so that it is going forward.  

The third case is if ox&  is negative.  The velocity in the Ii
v

 direction must be reduced if not reversed. 

 

4.3.1 Bounds on Leg Touchdown Angle for Zero Horizontal Velocity 

The middle case is easiest to deal with.  If ox&  is zero, a leg angle of less than 
2
π  radians will yield a 

negative horizontal body velocity.  Since we are assuming a target horizontal velocity that is 

positive, this is counter productive.  So for this case, β  must be at least 
2
π  radians.  Every angle 

greater than this value would yield some velocity in the Ii
v

 direction until β  was increased to π  

radians.  Touch down at this angle would yield no compression in the spring leading to no change in 

motion and falling.  So for this case, β  must be no more than π  radians. 

 

4.3.2 Bounds on Leg Touchdown Angle for Positive Horizontal Velocity 

In the case where ox&  is positive, if β  is too small, the body will not make it over the foot placement 

point.  The angle the velocity vector of the center of mass makes with the horizontal, Ii
v

, (see Figure 

3.1) measured positive counterclockwise will be defined as δ  and cδ  will be δ  at touchdown.  In 

the point mass case, if β  is less than cδ- , then x&  will reverse direction and the system is in danger 

of falling.  The minimum quantity that β  can be is where it equals cδ-  at touchdown.  This quantity 

is determined by writing both β  and cδ  in terms of ct , setting the negative of one equal to the 

positive of the other, and solving for ct .  The goal is, 

 min cβ δ= − . (4.110) 

It is easier to express the sines of the angles rather than the angles themselves in terms of ct .  Taking 

the sine of both sides yields, 

 ( ) ( )minsin sin cβ δ= − . (4.111) 

Expressing the sine of cδ  in terms of a ratio of speeds at touchdown yields, 
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 ( )
2 2

sin c
c

c c

z

x z
δ

−
=

+

&

& &
. (4.112) 

Substituting quantities from eq. (3.8) into eq. (4.112) yields, 

 ( )
( )22

sin o c

o o c

z gt

x z gt
δ

− −
=

+ +

&

& &
 (4.113) 

We would like to express the sine of β  in terms of a ratio of lengths.  The first length we need is the 

distance between the foot placement, C , and the leg attachment point, A , in the Ik−
v

 direction.  

This can be found by evaluating the dot product of eq. (3.14) and Ik−
v

, yielding, 

 ( )cosI C A c ck r d zθ→− = −
v v
�  (4.114) 

Substituting the quantities from eq. (3.8) into eq. (4.114) yields 

 ( )21 cos
2I C A o o c c o o ck r z z t gt d tθ θ→− = − − − + +

v v &&�  (4.115) 

The second length is the uncompressed leg length, oη .  Expressing the sine as ratio of these lengths 

yields, 

 ( )
( )22 2 2 cos

sin
2

o o c c o o c

o

z z t gt d tθ θ
β

η

− − − + +
=

&&
. (4.116) 

Combining eqs. (4.113) and (4.116) with eq. (4.111) and rearranging yields, 

 
( )

( )

2

22

2 2 2 cos
0

2
o o c c o o c o c

o o o c

z z t gt d t z gt

x z gt

θ θ

η

− − − + + +
= −

+ +

&& &

& &
. (4.117) 

While we cannot solve this equation explicitly for ct , by using some bounds that we will develop 

later on ct  we can use the False Position method to solve for it numerically [19].  Since this 

equation is defined for a case when ox&  is nonzero there is no danger attaining an infinite value. 
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Because the False Position method requires a bound on either side of the root it is trying 

to find, we must find a lower limit and an upper limit on ct .  The leg should never touch down while 

the attachment point is still moving upward.  So the minimum ct  is where the leg attachment point, 

A  (see Figure 3.1), is at the maximum height.  The right side of eq. (4.115) is equal to the height of 

A .  Assuming that θ&  is small enough in magnitude that point A  does not make a full rotation 

about the center of mass, B , while it is in the air, the minimum ct  is where the derivative of this 

equation is zero.  This value will be called tt .  Taking the derivative yields, 

 ( )0 sino t o o o tz gt d tθ θ θ= − − − +& && . (4.118) 

Taking a second order Taylor series expansion of the sine term yields the quadratic polynomial, 

 ( ) ( ) ( )2 3 20 sin cos sin
2o t o o o o t o o t
dz gt d d t tθ θ θ θ θ θ= − − − − +& & && . (4.119) 

The solution to this is found using the quadratic formula.  Organizing the terms yields, 

 ( ) ( )( ) ( )3 2 20 sin cos sin
2 o o t o o t o o o

cba

d t g d t z dθ θ θ θ θ θ= − + − −& & &&
1444244431444244431442443

. (4.120) 

Because when 0d = , the coefficient of 2
tt  goes to zero and the typical quadratic formula goes to 

infinity, we use the rationalized quadratic equation given by,  

 
2

2

4
t

ct
b b ac

= −
± −

 [19]. (4.121) 

Substituting the quantities from eq. (4.120) into eq. (4.121) yields, 

 
( )( )

( )( ) ( )( ) ( )( ) ( )( )22 2 3

2 sin

cos cos 2 sin sin

o o o
t

o o o o o o o o o

z d
t

g d g d d z d

θ θ

θ θ θ θ θ θ θ θ

+
= −

+ ± + + +

&&

& & & &&

. (4.122) 

If oθ&  is set to zero the subtraction of the square root leads to an infinite value for tt .  This means 

that adding the square root is the correct choice for calculation of tt .  The final expression is, 
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( )( )

( ) ( )( ) ( )( ) ( )( )22 2 3

2 sin

cos cos 2 sin sin

o o o
t

o o o o o o o o o

z d
t

g d g d d z d

θ θ

θ θ θ θ θ θ θ θ

+
= −

+ + + + +

&&

& & & &&

. (4.123) 

 We must also establish a maximum bound on ct  such that eq. (4.117) is satisfied.  If the 

attachment point was at ground level, β  would be zero.  This would mean that cδ  would have to be 

zero to satisfy eq. (4.110), but such a situation would be impossible at this height because there 

would have to be some vertical velocity for the system to reach this state.  If the leg attachment 

point were slightly above the ground, then β  would be slightly greater than zero and cδ  would be 

slightly less than zero.  This situation would certainly be possible.  The equation we have for height 

of the leg attachment point is eq. (4.115).  Setting this to zero and solving for t  will give us the time 

at which the leg attachment point is at zero height.  This time will be referred to as gt .  Taking a 

second order Taylor series expansion of the cosine term yields, 

 ( ) ( )( ) ( )2 21 10 cos sin cos
2 2 o o g o o o g o og d t z d t d zθ θ θ θ θ = − − + − − + − 

 
& && . (4.124) 

Plugging this into the quadratic formula yields, 

 
( )( ) ( )( ) ( )( ) ( )( )

( )( )

2 2

2

sin sin 2 cos cos
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o o o o o o o o o o

g
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ

θ θ

− + ± + + + −
=

+

& & && &

&
.(4.125) 

The term ( )cos o od zθ −  represents the attachment height at lift off.  This must be positive.  As long 

as oθ  remains between 
2
π  and 

2
π-  radians, ( )cos oθ  is positive.  Since 2

oθ&  is positive, g  is 

positive and d  is positive, ( ) 2cos o og d θ θ+ &  is positive.  This means the magnitude of the square 

root term is greater than the magnitude of ( )sino o oz d θ θ+ && .  Since gt  must be positive and the 

denominator is positive, the positive root is the correct value of gt .  That is, 

 
( )( ) ( )( ) ( )( ) ( )( )

( )( )

2 2

2

sin sin 2 cos cos

cos
o o o o o o o o o o

g
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ

θ θ

− + + + + + −
=

+

& & && &

&
.(4.126) 
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 Using the False Position method with tt  and gt  as bounds, eq. (4.117) is solved for ct .  

This is then substituted into eq. (4.116) and the arcsine is taken to get the minimum touchdown 

angle, minβ . 

 The maximum angle that β  can be must also be established for this case.  If the 

touchdown angle is such that the leg is perpendicular to the direction of the velocity, the leg will not 

be compressed at touchdown.  Instead it will simply touch and lift off again immediately.  If β  is 

any greater than this, it will do the same thing.  If it is less, it will touch down.  This state can be 

quantified using β  and cδ .  See Figure 4.1. 

 

 Figure 4.1    Relation of maximum β  to δ at  touchdown.  The angle β  is measured between the 
horizontal and the leg at touchdown in a clockwise direction.  The angle δ  is measured between the 

velocity vector and the horizontal counterclockwise direction. 

The equation relating these quantities is, 

 
2 c
π π β δ= − − . (4.127) 

Simplifying yields, 

 
2
πβ δ= − . (4.128) 

As before we write these both in terms of ct and solve.  It is easier to write both in terms of their 

sine.  Taking the sine of both sides yields, 

δ-

β

π β−
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 ( )sin sin
2 c
πβ δ = − 
 

. (4.129) 

Simplifying using trigonometry gives, 

 ( ) ( )sin cos cβ δ= . (4.130) 

Expressing the cosine in terms of a ratio of lengths gives, 

 ( )
( )22

cos o

o o c

x

x z gt
δ =

+ +

&

& &
 (4.131) 

Substituting eqs. (4.116) and (4.131) into eq. (4.130) and rearranging yields, 

 
( )

( )

2

22

2 2 2 cos
0

2
o o c c o o c o

o o o c

z z t gt d t x

x z gt

θ θ

η

− − − + +
= −

+ +

&& &

& &
 (4.132) 

Since this equation is defined for a case when ox&  is nonzero there is no danger attaining an infinite 

value.  False Position method must again be used to calculate the proper touchdown time.  The 

bounds from before (eqs. (4.123) and (4.126)) are still valid in this situation. The touchdown time, 

ct , is then substituted into eq. (4.116) and the arcsine is taken to get the maximum leg touchdown 

angle, maxβ . 

 

4.3.3 Bounds on Leg Touchdown Angle for Negative Horizontal Velocity 

For the d equal zero case, if ox&  is negative, touchdown angles of greater than or equal to 

δ-  and less than π  will reverse the velocity in the x  direction in one step.  But this could be at 

such a cost to the lift off height and vertical velocity that it is better to slow the horizontal velocity in 

one step and change its direction in the next.  For this reason, the lower bound on β  is left as low as 

2
π  radians.  The upper bound remains π  radians. 
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4.3.4 Modified Limits Due to Insufficient Height 

In any of the three cases, if the height of the leg attachment point at the top of the flight phase is 

such that it cannot accommodate the full range of values, the angle at which the uncompressed leg 

will fit is the maximum value of β  in the positive ox&  case and the minimum value of β  in the 

cases where ox&  is less than or equal to zero.  To determine if the height at the top of the flight phase 

will be sufficient, the right side of eq. (4.116) is evaluated at tt .  If this is greater than or equal to 

one, the full range of β  can be used as defined previously.  If it is less than one, a new limit must be 

found.  It is either a new maximum or new minimum depending of the sign of ox& . 

 For the ox&  positive case, eq. (4.116) is solved for β  and evaluated at c tt t= .  That is, 

 

 
( )2

1
max

2 2 2 cos
sin

2
o o t t o o t

o

z z t gt d tθ θ
β

η
−
 − − − + +
 =
 
 

&&
. (4.133) 

For the ox&  less than or equal to zero case, eq. (4.133) is subtracted from π  to get the minimum 

touchdown angle that is possible.  That is, 

 
( )2

1
min

2 2 2 cos
sin

2
o o t t o o t

o

z z t gt d tθ θ
β π

η
−
 − − − + +
 = −
 
 

&&
. (4.134) 

 The MATLAB code that calculates the limits on β  and selects the range of leg angles to 

test is presented in appendix B.2.1. 

 

4.3.5 Calculation of Other States 

Simulations are evaluated using the range of β  defined previously and the initial conditions.  Since 

the flight phase is integrated analytically, an estimation of the touchdown time, ct , is determined 

and substituted into the integrated equations, eq. (3.8).  The estimation of ct  is found by rearranging 

eq. (4.116) to yield, 

 ( ) ( )210 sin cos
2o o o o oz z t gt d tη β θ θ= − − − − + + && . (4.135) 
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Determining a second order Taylor series expansion of the cosine term about 0t =  and evaluating 

it at ct , yields,  

 ( ) ( )( ) ( ) ( )2 21 10 cos sin cos sin
2 2c o o c o o o o o o

cb
a

t g d t z d z dθ θ θ θ θ η β = − − + − − − + − 
 

& &&
144444244444314442444314444244443

 (4.136) 

This can be substituted into the quadratic formula to obtain, 

 
( )( ) ( )( ) ( )( ) ( ) ( )( )

( )( )

2 2

2

sin sin 2 cos cos sin

cos
o o o o o o o o o o o

c
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ η β

θ θ

− + ± + + + − −
=

+

& & && &

&
.(4.137) 

Since the flight time should be a positive quantity, we must select the sign in the quadratic formula 

to ensure that this happens.  Since the denominator of eq. (4.137) is positive, the only way to use the 

negative root and still have positive ct  is if b  in eq. (4.136) is positive and the square root term in 

eq. (4.137) is less than b .  The square root term can only be less than b  if the product of a  and c  

is positive.  As long as oθ  remains between 
2
π

−  and 
2
π , a  is guaranteed to be negative.  So c  

must also be negative.  However looking more closely at c  we can see that ( )coso oz d θ− +  is 

simply the height of the leg attachment point at the initial time and ( )sinoη β  is the vertical distance 

from the foot to the leg attachment point.  The subtraction of the two yields the height of the foot 

above the ground at the initial time.  If c  is negative then when the foot first reaches the ground, it 

will be coming up through the ground.  We would like the foot to continue past this until it is 

coming down to the ground from above.  This means that even if we could have a positive ct  by 

subtracting the square root we would rather have the greater positive ct .  So, 

 
( )( ) ( )( ) ( )( ) ( ) ( )( )

( )( )

2 2

2

sin sin 2 cos cos sin

cos
o o o o o o o o o o o

c
o o

z d z d g d d z
t

g d

θ θ θ θ θ θ θ η β

θ θ

− + + + + + − −
=

+

& & && &

&
.(4.138) 

 The ground phase is simply integrated using a Runge-Kutta routine.  This Runge-Kutta 

routine is presented in appendix B.2.4.  The final conditions, fy , from the simulations that provide 

the lowest unconstrained cost are then used to calculate quantities at the final time.  The MATLAB 

code that is used to find the leg angle with the lowest unconstrained cost is presented in appendix 
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B.2.2.  The ground phase time, nt , can be found from the simulation.  We have a boundary 

condition, 

 ( ),
f

T

f y fG yλ ν= . (4.139) 

We have another condition, 

 0
ff tH G− = , (4.140) 

where 

 (1) (4) (2) (5) (3) (6) (5)f f f f f f f fH y y y gλ λ λ λ= + + +  (4.141) 

and 

 (3)ftG ν= . (4.142) 

Substituting (1)fyG  through (3)fyG  and (5)fyG  into eq. (4.141) for the costates yeilds 

 ( )(1) (2) (3), , 0f fH y ν ν ν− = . (4.143) 

We still do not know the value of (1)ν , (2)ν  and (3)ν .  From equation (4.60) we obtain the 

relationships 

 (2) (3)2 0aν− = , (4.144) 

and 

 (3) (4)2 0aν− = . (4.145) 

As a result, if (3)a  is nonzero then (2)ν  must be zero and if (4)a  is nonzero then (3)ν  must equal 

zero.  From eq. (4.24) we get 
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( )( ) ( )( )
( )( ) ( )( )

(1) (3) (4) (3) (6)

(3)

(2) (3) (5) (3) (6)

 sin cos
=    

cos sin

f f f f f

f f f f f

y d y y d y y
a

y d y y d y y

− −

+ − +
. (4.146) 

That is (3)a  is the square root of the derivative of the leg length at lift off.  As long as the leg length 

is increasing at lift off (which it should) then (3)a  is nonzero.  From eq. (4.25) we get 

 (4) na t= . (4.147) 

If the ground phase time, nt , was zero then there would be no ground phase.  This would not be 

acceptable so (4)a  is also nonzero.  Since (2)ν  and (3)ν  are zero, eq. (4.143) reduces to  

 

( )( ) ( )( )( )
( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

(1) (3) (1) (4) (3) (2) (5)

(1) (6) (1) (3) (3) (2) (3) (3)

2 (2) (2) 5 (5) (5)
(5) 3 (3) (3) (6)2 2

0   sin cos

     sin cos cos sin

     

f f f f f f

f f f f f f f

f fixed f fixed
f f fixed f

o o

d y y y d y y y

y d y d y y y d y y

q y y q y y
y q y y y g

v

ν

ν

η

= − + −

+ − − −

− −
+ + − +

. (4.148) 

From this reduced form (1)ν  can be solved for to yield 

 ( ) ( ) ( )
( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

2 2 2 2
2 (2) (2) (5) 3 (3) (3) (6) 5 (5) (5)

(1)

(1) (3) (4) (2) (3) (5)
2 2

(1) (3) (3) (2) (3) (3) (6)

sin cos

sin cos cos sin

f fixed o f f fixed f o o f fixed o

f f f f f f

o o

f f f f f f f

q y y v y q y y y v q y y g

y d y y y d y y
v

d y d y y y d y y y

η η
ν

η

− + − + −
=
 − + −
 
 − − − − 
 

. (4.149) 

Substituting (1)ν  into eq. (4.139) provides an initial guess for the final costates.  We can use the 

differential constraint for the costates to numerically integrate backwards, yielding initial guesses 

for all the costates at the nodes.  The numerical integration technique used is the same Runge-Kutta 

routine used to integrate the states forward in time before.  It is presented in appendix B.2.4.  While 

we are integrating the costates backward, we also integrate the states backward using a time step 

that ensures that the states are evaluated at each node.  These evaluations are used as the initial 

guesses for the states at the nodes. 

 The costates at the touchdown node are, cλ .  The boundary condition from eq. (4.44) is 
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 ( )(1:2), ,
c

T

c y cG yλ ξ υ= − . (4.150) 

From eq. (4.60) we get the relationship  

 (2) (1)2 0aυ = . (4.151) 

From eq. (4.17) we get, 
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- sin cos
  

cos sin

c c c c c

c c c c c

y d y y d y y
a

y d y y d y y

− −
=

− +-
. (4.152) 

This means if the derivative of the leg length is nonzero at touchdown, then (2)υ  is zero.  If the 

derivative of the leg length at touchdown is zero, then (2)υ  is nonzero. Since the leg must compress 

to touchdown, the leg length should be decreasing from uncompressed to compressed and (2)υ  is 

zero. 

 We have another constraint equation, 

 ( )( )(1)1 , , 0Gβ ξ β υ = . (4.153) 

Because 

 (1) (1)cyG ξ= , (4.154) 

we know from eq. (4.150) that 

 ( ) (1)1 cξ λ= − . (4.155) 

Equation (4.56) can be solved for (1)υ  to yield, 

 ( )(1) (1) tancυ λ β= . (4.156) 
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This is then substituted into eq. (4.150) and we can solve for the remaining initial guesses for the 

elements of the ξ .  This yields, 
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. (4.157) 

 Equation (4.60) shows us, 

 (3) (2)2 0aυ− = , (4.158) 

and eq. (4.18) shows us that  

 (2) ca t= . (4.159) 

In most cases the flight time is nonzero so (3)υ  is zero, but in some cases the optimal trajectory does 

not leave room for a flight phase.  In this case (2)a  is zero and (3)υ  can be solved for using the 

constraint, 

 
cc tH G=  (4.160) 

where cH  is given by eq. (4.66) and 
ct

G  is given by eq. (4.64).  This yields, 

 (3) (1) (4) (2) (5) (3) (6) (5) (2) (5) (3) (6) (5)c c c c c c c o oy y y g y y gυ λ λ λ λ ξ ξ ξ= + + + + + + . (4.161) 

The MATLAB code used to calculate all the states presented in this section is in appendix B.2.3.  
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5 RESULTS 

A requirement of the control system is that it must have known fixed points to which it drives the 

system.  Since the model conserves energy, the control system must drive the system to a fixed point 

that is at the same energy level as its current state.  This means that the system must have a 

continuum of known fixed points to choose from, spanning a range of energies.  Such a map could 

easily be created and a fixed point picking code, written, to select a fixed point based on the energy 

of the system at the time of selection.   

 The goal of this work was to develop and test the control system over a range of fixed 

points to determine its effect on gait stability.  The control system was tested on both the point mass 

SLIP model and the rigid body SLIP model using parameters similar to those of Blaberus 

discoidalis, the death head cockroach.  These parameters included a spring stiffness, k , of 20 N/m, 

a leg length, oη , of 0.015 m [9], leg attachment distance, d , of 0.004 m, a body mass, m , of 0.0025 

kg, a sagital moment of inertia, yyI , of 1.86× 10-7 kg ⋅ m2 [22]. The range of leg touchdown angles, 

β , tested, were centered around the leg touchdown angle that allowed the system to match 

experimental stride lengths in [9], [23].  This will be referred to as the nominal touchdown angle, 

nβ  and was 1.2 radians. 

 

5.1 Point Mass SLIP 

For the point mass SLIP model, fixed points were found for 21 gait families where the touchdown 

β  was held fixed at 21 different values between 1.1 and 1.3 radians.  The initial velocity angle, oδ , 

was then varied between 0 and 1 radians.  An initial speed, ov , and initial height, oz , were found for 

the specific oδ  that yielded the same state at the end of a stride as at the beginning. See Figure 5.1. 

This resulted in 101 fixed points for every touchdown angle, β .  The periodic orbits found had a lift 

off height equal to their touchdown height.  Because the spring was attached at the center of mass, 

this meant that the lift off angle was equal to the touchdown angle. 



 
68

 

Figure 5.1    Periodic orbit’s relation to its fixed point.  On the left the point mass SLIP is at lift off 
entering the stride.  On the right the point mass SLIP is at lift off leaving the stride.  The 
combination of oz , oδ , and ov  is a fixed point because f oz z= , f oδ δ= , and f ov v= . 

 

5.1.1 Stability of Point Mass Fixed Points 

The eigenvalues of the Poincaré map linearized about these fixed points were tested for a fixed 

touchdown angle reset policy and then again using the control system to calculate the optimal 

touchdown angle.  The eigenvalues were determined as described in section 2.7.  The Poincaré 

section used  to determine the Poincaré Map was  

 2 2
o x zη = + . (5.1) 

Since all points on the Poincaré Map are on this surface, ox  could be determined by oz  with eq. 

(5.1) and was therefore omitted from all the points in the map.  The difference formula used to find 

DP  was, 
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for i = 1 to 3 where idP  is the column vector of partial derivatives with respect to the i th state, P  is 

the Poincaré Map, ∗y  is the fixed point, and i∆v  a vector with all elements zero except the i th 

element which is a small nonzero quantity, iy∆  [19].  The column vectors, idP  for i = 1 to 3, were 

then concatenated to form DP  and the eigenvalues of this matrix were found.  As mentioned in 
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section 2.7 the eigenvalues of this matrix are the eigenvalues of the Poincaré map linearized about 

the fixed point, ∗y  and the nontrivial Floquet multipliers of the periodic orbit associated with ∗y .   

 The Floquet multipliers of the periodic orbits for the nβ  gait family, using the fixed angle 

reset policy where the leg touchdown angle is set fixed to the leg angle associated with the gait 

family are shown in Fig. 5.2.   
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Figure 5.2    Floquet multipliers of the periodic orbits in the nominal gait family for the point mass 
SLIP with a fixed angle reset policy. 

For a periodic orbit to be asymptotically stable, the magnitudes of all its nontrivial Floquet 

multipliers must be below one.  However, because the system is energy conservative there will be at 

least one nontrivial Floquet multiplier equal to one.  This is apparent when looking at Fig. 5.2.  In 

addition there is one Floquet multiplier that is very close to zero and another that is consistently 

above one, rendering the system at this gait family completely unstable.  

 The Floquet multipliers of the periodic orbits in the nβ  gait family, using model predictive 

control, are shown in Fig. 5.3.  They were found using control weightings (1,1)Q  through (6,6)Q , of 0, 

4, 0, 1, 3, and 0.  These weightings appeared to work well in initial tests.  Once again, since the 

system is energy conservative, there is a nontrivial Floquet multiplier of one.  Since the rest of the 

multipliers have magnitude of less than one, the system displays partial asymptotic stability, as has 



 
70

been found in the SLIP model for several different leg touchdown protocols [10], [15].  The 

eigenvector associated with the unity eigenvalue of the Poincaré map points in the direction of 

increasing energy.  The plane that is perpendicular to this eigenvector is a constant energy surface.  

If the system is perturbed from the surface it cannot get back to the energy surface with the target 

fixed point because it can neither dissipate nor generate the energy required to get there.  Because 

model predictive control exhibits partial asymptotic stability for many energy levels the system 

could easily assume a new partially asymptotically stable gait at its new energy surface. 
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Figure 5.3    Floquet multipliers of the periodic orbits in the nominal gait family for the point mass 
SLIP with model predictive control. 

 As outlined above, the stability of each gait was determined by the magnitude of the 

eigenvalues of the Poincaré map linearized about fixed point associated with the gait.  If there was a 

single eigenvalue of magnitude greater than one, the gait was said to be unstable.  The stability of 

the gaits in all 21 of the gait families tested using a fixed angle reset policy can be found in Fig. 5.4.  

This figure shows a small area of stable gaits for the β =1.1 and 1.11 gait families using a small oδ .  
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Figure 5.4    Stability of point mass SLIP gait families with a fixed angle reset policy for β = 1.1 to 
1.3 radians.  The dotted lines represent unstable gaits.  The solid lines represent stable gaits.  The 
right most gait family is that associated with β = 1.1.  Gait families associated with increasing β  
are found by moving toward the left.  The gait family associated with the nominal leg touchdown 

angle, β = 1.2 is indicated by the thicker line. 

While this is impressive because with essentially no control applied, the system can maintain a 

forward pace without falling, it does not leave much freedom in terms of choice of speed or energy 

surface.  Also note that for the nominal leg angle the system is never stable. 

 The stability of the gaits in all 21 of the gait families tested using model predictive control 

can be found in Fig. 5.5.  The figure shows all gait families to be stable provided a sufficient 

velocity angle, oδ , is used.  This allows for great freedom in speed and energy surface. 
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Figure 5.5    Stability of point mass SLIP gait families with model predictive control for β = 1.1 to 
1.3 radians.  The dotted lines represent unstable gaits.  The solid lines represent stable gaits.  The 
right most gait family is that associated with β = 1.1.  Gait families associated with increasing β  
are found by moving toward the left.  The gait family associated with the nominal leg touchdown 

angle, β = 1.2 is indicated by the thicker line. 

 

5.1.2 Perturbation Returnability of Point Mass System 

The control scheme was also tested to see if it could return the system from large perturbations to 

the fixed points.  Because the system conserves energy the perturbations had to leave the system at 

the same energy level as the fixed point itself or there would be no hope of return.  Perturbations 

were made to the initial velocity angle, oδ , and it was left to the control scheme to pick touchdown 

angles that drove the system back to the target fixed point and of course the periodic orbit associated 

with it.  Fig. 5.6 shows a map of the returnability.  All the fixed points in the nominal gait family 

were tested, from oδ =0 to 1 radian.  The initial conditions given to the system were the fixed points 

with oδ  perturbed from - 31
32
π  to π  radians in increments 

32
π  radians.  The system was able to 

return from almost any perturbation to oδ , even in some cases where the initial conditions sent the 

body directly into the ground.  The vein of no return, shown in black, was due to a combination of 

the initial velocity angle sending the body into the ground and the initial speed being too great.  It 
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can be seen in Fig. 5.5 that as oδ  increases so does the initial speed, ov .  This combination led the 

system to fall before it could return itself to its fixed point. 
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Figure 5.6    The control system’s ability to return from a perturbation to oδ .  Returnability was 
measured for the gate family associated with β =1.2.  The system was perturbed from the velocity 

angle associated with the fixed point (shown on the abscissa) by the angle shown on the ordinate.  In 
grey is the region for which the system was returned to the fixed point.  In black is the region for 

which the system fell. 

5.2 Rigid Body SLIP 

For the rigid body SLIP model, fixed points were found in the nominal gait family.  This was done 

using the fsolve function in MATLAB in conjunction with a simulation of the system over one 

stride.  A code for the simulation of the system is presented in appendix C.1.  First fsolve was run 

with the simulation starting with the ground phase and ending with the flight phase.  In this case the 

touchdown angle, β , was held at 1.2 radians and the touchdown velocity angle, cδ , was held at 

values between 0 and 1 radian, while the touchdown speed, cv , body pitch, cθ , and angular velocity, 

cθ& , were varied to produce a fixed point.  Since the touchdown height, cz , can be calculated from 

β  and cθ  this quantity did not need to be varied.  Then fsolve was run again with the simulation 

starting with the flight phase and ending with the ground phase.  The initial conditions for the 

routine were obtained from the lift off conditions of the results of the first fsolve routine.  Here the 
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touchdown angle was held fixed again but the velocity angle at lift off instead of touchdown was 

held fixed, with β  the same as before and oδ  equal to cδ− .  The parameters that were varied were 

ov , oθ , oθ& .  Since β  does not necessarily constrain oz , it was varied as well.  Since the periodic 

orbits found were very close to symmetric about the middle of the ground phase and flight phase, 

the first ground phase – flight phase routine got the fixed point very close to the flight phase – 

ground phase fixed point.  The second fsolve routine was more of a refinement of the fixed point 

than anything else.  The MATLAB code used to find the fixed points is presented in appendix C.2.1. 

 

5.2.1 Stability of Rigid Body Fixed Points 

The Floquet multipliers of the periodic orbits in the nominal gait family were tested for the rigid 

body case using the same method as the point mass case with the addition of, θ  and θ&  to the fixed 

point vectors.   The MATLAB code used to calculate the Floquet multipliers is presented in 

appendix C.2.3. This resulted in five nontrivial Floquet multipliers for every periodic orbit.  The 

magnitudes of the Floquet multipliers of the periodic orbits in the nominal gait family using the 

fixed angle reset policy can be found in Fig. 5.7. 
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Figure 5.7    The magnitudes of the Floquet multiplier of the periodic orbits in the nominal gait 
family for the rigid body SLIP with a fixed angle reset policy. 



 
75

The most noticeable feature is the sweeping Floquet multiplier that seems to reach an asymptote 

at around v =0.22.  This is reminiscent of Fig. 5.2 where the same thing occurred for the point mass 

case.  This Floquet multiplier again maintains a magnitude greater than one for the entire gait 

family, rendering the entire gait family unstable. 

 The Floquet multipliers of the periodic orbits in the nominal gait family were also tested 

using model predictive control.  Their magnitudes can be found in Fig. 5.8. 
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Figure 5.8    The magnitudes of the Floquet multiplier of the periodic orbits in the nominal gait 
family for the rigid body SLIP with model predictive control. 

The Floquet multipliers were found using control weightings (1,1)Q  through (6,6)Q , of 0, 4, 8, 1, 3, 

and 7.  These weightings appeared to work the best in initial tests but further study should include a 

more thorough investigation of how the weightings affect performance.  From this plot it is clear 

that many of the Floquet multipliers were complex for portions of the gait family.  Just as before, the 

unity Floquet multiplier is present throughout the gait family.  For v  values less than 0.26 m/s the 

magnitude of a second Floquet multiplier is just above one, rendering all gaits below v =0.26 m/s 

unstable.  Another Floquet multiplier shoots past the unity marker at v =0.47 m/s, making 
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everything above it unstable.  This leaves stable gaits in the nominal gait family for lift off speeds 

from 0.26 to 0.47 m/s.   

 

5.2.2 Perturbation Returnability of Rigid Body System 

Returnability was tested in the rigid body case for a gait in the nominal gait family with a δ  of 0.5 

radians.  The MATLAB code for this test is presented in appendix C.2.4.  The control system 

recovered consistently from perturbations to δ  as low as 
2
π

−  and as high as 35
32
π  but fell 

intermittently for perturbations outside that region.      

 

6 CONCLUSION 

In this work we used the point mass and rigid body spring loaded inverted pendulums to model 

sagittal plane locomotion.  Since the key to stable locomotion is running the system at a periodic 

orbit, we developed a cost function that achieved a minimum when the lift off state was at a desired 

fixed point of the Poincaré map and increased as the lift off state moved away from the fixed point.  

We constrained the cost function to follow the model and developed a boundary value problem 

through its minimization.  We then converted the boundary value problem into a system of nonlinear 

equation using Collocation.  Each stride this set of nonlinear equations was solved using Newton’s 

method to determine the next optimal touchdown angle.  The performance of this model predictive 

control scheme along with a fixed leg touchdown angle reset policy was investigated when applied 

to the SLIP with parameters typical of the cockroach Blaberus discoidalis.   

 In the point mass case, we found that for the parameter range tested, the fixed angle reset 

policy yielded gaits that were widely unstable for a large range of leg touchdown angles and gait 

speeds, although a limited number of stable gaits were found.  When the model predictive control 

scheme was applied, almost all the gaits in every gait family were stable, although a limited number 

of unstable gaits were found.  The control scheme’s ability to return the point mass SLIP from large 

energy conservative perturbations was found to be very impressive.  It could return the system from 

every perturbation tested that it was physically possible to return from. 

 The gait family tested in the rigid body case with the fixed angle reset policy showed no 

stable gaits while the same gait family tested with the model predictive control scheme showed 
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stable gaits for roughly half the gait family.  For the gait tested, the control scheme consistently 

returned the rigid body SLIP from large energy conservative perturbations within a region but only 

had intermittent success outside that region. 

 It is unfair to compare model predictive control to other control schemes developed for the 

SLIP, because this formulation requires greatly increased computation over other schemes.  

Boundary value problems can be extremely hard to solve and the one we ask the controller to solve 

every flight phase is not trivial.  The computation of an optimal leg angle in MATLAB takes about 

25 seconds on average (although it can be much more), while for the parameters found in a 

cockroach, the flight phase is about 35 milliseconds (although it can be zero).  The code must be 

optimized and translated into compiled language but a huge gap remains between theory and 

implementation.  Using Moore’s Law we can predict that if the code is optimized and translated into 

C, this control method will be viable for use on robots of cockroach morphology in 15 years.  This 

time would be significantly reduced if it were implemented on a larger robot. 

 The solution of the set of nonlinear equations not only yields the optimal leg touchdown 

angle but also the lift off state.  This could be used to run Newton iterations during the ground phase 

to predict better initial conditions for the Newton iterations in the flight phase using the real lift off 

state.  In addition the flight time could be constrained to be at least a certain length so as to allow 

time for computation, although the longer the flight phase is constrained to be, the less robust the 

system will be.  This is a necessary step however because aside from computational time, an issue 

that was not addressed in this formulation was how the spring gets from its position at lift off to the 

next touchdown angle.  Because the spring was considered to be massless, theoretically it would be 

able to move instantaneously from one place to another.  Although relative to the body, the mass of 

the spring is negligible, trying to move it from one position to the next in zero time is not realistic.  

In addition to giving the spring some time to position itself for the next stride, a method for it to do 

so must be developed. 

 Another drawback is that this scheme requires full state feedback at the lift off state.  

Although this is better than requiring continuous full state feedback, for something this small 

moving this rapidly, this is not very realistic.  With additional formulation an observer could be used 

to eliminate some of the feedback requirements but a control system that does not require so much 

feedback to begin with would be much easier to implement. 
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 Given that this scheme will not be practical for implementation for quite some time, and 

that it outperforms most other schemes in terms of leg angle choice, we suggest that it be used as a 

target from which to gain insight in developing other control schemes, rather than being taken 

seriously as a control scheme itself.  It certainly turns the point mass SLIP into a savvy monopode, 

and although more development should be done for the rigid body implementation, it has shown 

more than limited success in stabilizing rigid body gaits.  This scheme should be easily extendable 

to the three dimensional spring loaded inverted pendulums, known as the spatial SLIP, and the rigid 

body spatial SLIP, which includes rolling, pitching and yawing of the body.  These models better 

approximate the gaits of higher dimensional robots at the expense of being more complicated.  

Because of the latter, there has been little success in controlling such models.  The application of 

model predictive control to these models would help to give some insight into how a successful leg 

angle reset policy should act even though it would have the same if not greater computational 

drawbacks.   
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APPENDIX A  

Residual and Hessian Development Code 

Because they were so complicated, the residual and the Hessian were calculated using a code.  This 

code not only calculated them, but put them in a form that could easily be augmented by a 

formatting code which made them into pieces of MATLAB code themselves to be used in the 

residual8 and analytical_hessian1 codes themselves.  

A.1 euler_param_calc_ad1 

The function euler_param_calc_ad1 calculates the residual vector and Hessian matrix.  Since this 

task takes lots of time and memory, the code only calculates one section of the residual and the 

Hessian at a time.  The calculation of the middle of the residual and the Hessian was the most 

daunting task.  These were defined iteratively so that the collocation scheme could be broken up into 

any number of segments.  

function euler_param_calc_ad1(calc) 
%========================================================================== 
% euler_param_calc 
% 
% Calculates one of the three pieces of the residual vector 
% as well as the hessian matrix and saves them to text files for 
% formatting. 
% 
% Inputs: 
%   calc   Depending on the value the function calculates the begining, 
%          middle, or end of the residual and hessian:  1 for begining, 2 
%          for middle, and 3 for end. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
  clc 
 
%-------------------------------------------------------------------------- 
% Declare the symbolic parameters used in the euler parameter calculation  
%-------------------------------------------------------------------------- 
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% Render all symbolic parameters that are used in a subfunction global 
  global g m I k tc tn d etao vo betaTD dHdy 
   
% Model Constant Parameters 
  syms g m I k d etao vo betaTD positive 
     
% Nondimensionalization parameter - initial speed of the body at the last 
% lift off. 
% Note, this is constant for each application of the control. 
  syms vo positive 
     
% Variable Parameters 
  syms tc tn betaTD positive 
   
% Numerical Approximation quantities. 
  syms N integer 
 
% Defining States, Coestates, and Lagrange Multipliers 
  for i = 1:6 
    %Physical States 
      y(i,1)       = sym(['y' num2str(i)],'real'); 
      ym(i,1)      = sym(['ym' num2str(i)],'real'); 
      yp(i,1)      = sym(['yp' num2str(i)],'real'); 
      yo(i,1)      = sym(['yo' num2str(i)],'real'); 
      yc(i,1)      = sym(['yc' num2str(i)],'real'); 
      yf(i,1)      = sym(['yf' num2str(i)],'real'); 
      yfixed(i,1)  = sym(['yfixed' num2str(i)],'real'); 
      lambda(i,1)  = sym(['lambda' num2str(i)],'real'); 
      lambdam(i,1) = sym(['lambdam' num2str(i)],'real'); 
      lambdap(i,1) = sym(['lambdap' num2str(i)],'real'); 
      lambdac(i,1) = sym(['lambdac' num2str(i)],'real'); 
      lambdaf(i,1) = sym(['lambdaf' num2str(i)],'real'); 
      xi(i,1)      = sym(['xi' num2str(i)],'real'); 
  end 
   
% Define constraint parameters a 
  for i = 1:4 
      a(i,1) = sym(['a' num2str(i)],'real'); 
       
  end 
   
% Define the Lagrange multiplier vectors upsilon and nu 
  for i = 1:3 
      upsilon(i,1) = sym(['upsilon' num2str(i)],'real'); 
      nu(i,1)      = sym(['nu' num2str(i)],'real'); 
  end 
   
     
% The weighting matrix is mostly zeros 
  Q   = sym(zeros(6,6)); 
 
% Defining the weightings of the penalties for each state's deviation 
% and putting them in their place in the weighting matrix. 
% Note q1 equals 0 because we do not want x to return to the same value 
  for i = 2:6 
      Q(i,i)    = sym(['q' num2str(i)],'real'); 
  end 
 
% The deviation of the final state from the desired fixed state yfixed 
  devYlo      = yf-yfixed 
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% nondimensionalizing 
  devYlobar   = nondimensionalizer(devYlo) 
     
% penalty function 
  phi         = devYlobar'*Q*devYlobar 
     
% Starting State Constraints. 
  theta = yc-[d*sin(yc(3))-etao*cos(betaTD);... 
              yo(2)+yo(5)*tc+1/2*g*tc^2;... 
              yo(3)+yo(6)*tc;... 
              yo(4);... 
              yo(5)+g*tc;... 
              yo(6)] 
     
% End State Constraint 
  psi   = [etao^2-(yf(1)-d*sin(yf(3)))^2-(yf(2)-d*cos(yf(3)))^2;... 
           -a(3)^2+(yf(1)-d*sin(yf(3)))*(yf(4)-d*cos(yf(3))*yf(6))+... 
                   (yf(2)-d*cos(yf(3)))*(yf(5)+d*sin(yf(3))*yf(6));... 
           tn-a(4)^2]; 
     
% Parameter Constraint  
  chi   = [d*cos(yc(3))-yc(2)-etao*sin(betaTD);... 
           a(1)^2+(yc(1)-d*sin(yc(3)))*(yc(4)-d*cos(yc(3))*yc(6))+... 
                  (yc(2)-d*cos(yc(3)))*(yc(5)+d*sin(yc(3))*yc(6));... 
           tc-a(2)^2]; 
 
% The Time-specific function 
  G     = phi+xi.'*theta+nu.'*psi+upsilon.'*chi 
     
% Hamiltonian 
  H     = lambda.'*fg(y) 
     
% Hamiltonian evaluated at the touchdown point 
  Hc    = lambdac.'*ff(yc) 
     
% Hamiltonian evaluated at the lift of point 
  Hf    = lambdaf.'*ff(yf) 
     
% Taking partial derivatives for the boundary conditions 
  Gyf   = jake(G,yf) 
 
  Gyc   = jake(G,yc) 
   
  Gbeta = jake(G,betaTD) 
   
  Ga    = jake(G,a) 
   
  Gtc   = jake(G,tc) 
   
% Euler equation 
  dHdy    = jake(H,y).' 
 
%-------------------------------------------------------------------------- 
% Develop Differential Constraints 
%-------------------------------------------------------------------------- 
% Make Ktilda matrix 
  TM = [1 0 0 0; 0 1 0 0; 1 1/N 1/N^2 1/N^3; 0 1 2/N 3/N^2] 
  Ktilda = inv(TM) 
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% Make the time vectors for creation of the polynomial approximation 
  tauc          = 1/(2*N) 
  tau_vec       = [1 tauc tauc^2 tauc^3] 
  tau_vec_prime = [0 1 2*tauc 3*tauc^2] 
   
% Evaluate the derivative of the polynomial approximation at the 
% collocation point. 
  ycol_prime      = (tau_vec_prime*Ktilda*[ym.';... 
                                           tn*fg(ym).';... 
                                           yp.';... 
                                           tn*fg(yp).']).'; 
                                         
  lambdacol_prime = (tau_vec_prime*Ktilda*[lambdam.';... 
                                           -tn*Hy(ym,lambdam).';... 
                                           lambdap.';... 
                                           -tn*Hy(yp,lambdap).']).'; 
   
   
% Evaluate the polynomial approximation at the collocation point. 
  ycol      = (tau_vec*Ktilda*[ym.';... 
                               tn*fg(ym).';... 
                               yp.';... 
                               tn*fg(yp).']).'; 
 
  lambdacol = (tau_vec*Ktilda*[lambdam.';... 
                               -tn*Hy(ym,lambdam).';... 
                               lambdap.';... 
                               -tn*Hy(yp,lambdap).']).'; 
                              
% Plug the polynomial approximations into the the differential constraints. 
% Subract the differential constraints from the derivative of the 
% polynomial constraint found above. 
  Ryi       = ycol_prime-tn*fg(ycol); 
  Rlambdai  = lambdacol_prime+tn*Hy(ycol,lambdacol); 
   
 
 
%-------------------------------------------------------------------------- 
% Substitution Definitions for Residual Vector 
%-------------------------------------------------------------------------- 
  subsvec1     = {'tc','a1','a2','betaTD','upsilon1','upsilon2',... 
                  'upsilon3'}; 
  subsvec2     = {'X1','X2','X3','X4','X5','X6','X7'}; 
  subsvec3     = {'X(1)','X(2)','X(3)','X(4)','X(5)','X(6)','X(7)'}; 
  for i = 1:6 
      subsvec1(i+7)  = xi(i); 
      subsvec2(i+7)  = {['X' num2str(i+7)]}; 
      subsvec3(i+7)  = {['X(' num2str(i+7) ')']}; 
       
      %State at connection time substitution 
      subsvec1(i+13) = yc(i); 
      subsvec2(i+13) = {['X' num2str(i+13)]}; 
      subsvec3(i+13) = {['X(' num2str(i+13) ')']}; 
       
      subsvec1(i+19) = lambdac(i); 
      subsvec2(i+19) = {['X' num2str(i+19)]}; 
      subsvec3(i+19) = {['X(' num2str(i+19) ')']}; 
 
      %State at first node substitution. 
      subsvec1(i+25) = ym(i); 
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      subsvec2(i+25) = {['X12ip' num2str(i+1)]}; 
      subsvec3(i+25) = {['X(12*i+' num2str(i+1) ')']}; 
       
      subsvec1(i+31) = lambdam(i); 
      subsvec2(i+31) = {['X12ip' num2str(i+7)]}; 
      subsvec3(i+31) = {['X(12*i+' num2str(i+7) ')']}; 
       
      %State at second node substitution 
      subsvec1(i+37) = yp(i); 
      subsvec2(i+37) = {['X12ip' num2str(i+13)]}; 
      subsvec3(i+37) = {['X(12*i+' num2str(i+13) ')']}; 
       
      subsvec1(i+43) = lambdap(i); 
      subsvec2(i+43) = {['X12ip' num2str(i+19)]}; 
      subsvec3(i+43) = {['X(12*i+' num2str(i+19) ')']}; 
 
      %State at final time substitution 
      subsvec1(i+49)  = yf(i); 
      subsvec2(i+49)  = {['X12Np' num2str(i+13)]}; 
      subsvec3(i+49)  = {['X(12*N+' num2str(i+13) ')']}; 
       
      subsvec1(i+55)  = lambdaf(i); 
      subsvec2(i+55)  = {['X12Np' num2str(i+19)]}; 
      subsvec3(i+55)  = {['X(12*N+' num2str(i+19) ')']}; 
       
      %Initial state substitution 
      subsvec1(i+61)  = yo(i); 
      subsvec2(i+61)  = yo(i); 
      subsvec3(i+61)  = {['yo(' num2str(i) ')']}; 
       
      %Fixed point state substitution 
      subsvec1(i+67)  = yfixed(i); 
      subsvec2(i+67)  = yfixed(i); 
      subsvec3(i+67)  = {['yfix(' num2str(i) ')']}; 
       
  end 
  for i = 2:6 
      subsvec1(i+72)  = Q(i,i); 
      subsvec2(i+72)  = Q(i,i); 
      subsvec3(i+72)  = {['q(' num2str(i) ')']}; 
  end 
  %Last Lagrange Multiplier substitution 
  for i = 1:3 
      subsvec1(i+78) = nu(i); 
      subsvec2(i+78) = {['X12Np' num2str(i+25)]}; 
      subsvec3(i+78) = {['X(12*N+' num2str(i+25) ')']}; 
  end 
  subsvec1(82) = {'tn'}; 
  subsvec2(82) = {'X12Np29'}; 
  subsvec3(82) = {'X(12*N+29)'}; 
  %Last constraint parameter substitution 
  for i = 1:2 
      subsvec1(i+82)  = a(i+2); 
      subsvec2(i+82)  = {['X12Np' num2str(i+29)]}; 
      subsvec3(i+82)  = {['X(12*N+' num2str(i+29) ')']}; 
  end 
  %Substitution of Model Constants 
  subsvec1(85:91) = {k,etao,d,m,I,g,vo}; 
  subsvec2(85:91) = {k,etao,d,m,I,g,vo}; 
  subsvec3(85:91) = {'c.k','c.etao','c.d','c.m','c.I','c.g','c.vo'}; 
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%-------------------------------------------------------------------------- 
% Nondimensionalization Vector for the Residual 
%-------------------------------------------------------------------------- 
  dimstate      = [etao; etao; 1; vo; vo; vo/etao]; 
  dimcoestate   = 1./dimstate; 
  kappao = [etao/vo; sqrt(vo); sqrt(etao/vo); 1; 1/etao; 1/vo; vo/etao;... 
            dimcoestate; dimstate]; 
   
  kappai = [dimcoestate; dimstate]; 
   
  kappaf = [dimstate; 1/(etao^2); 1/vo; vo/etao; etao/vo; sqrt(vo);... 
            sqrt(etao/vo)]; 
 
  switch calc 
      case 1  
        % The first part of the residual vector consists of the boundary 
        % conditions at the touchdown time. 
          R(1,1)     = subs(kappao(1).*(Hc-Gtc),subsvec1,subsvec2,0); 
          R(2:3,1)   = subs(kappao(2:3).*Ga(1:2).',subsvec1,subsvec2,0); 
          R(4,1)     = subs(kappao(4).*Gbeta,subsvec1,subsvec2,0); 
          R(5:7,1)   = subs(kappao(5:7).*chi,subsvec1,subsvec2,0); 
          R(8:13,1)  = subs(kappao(8:13).*theta,subsvec1,subsvec2,0); 
          R(14:19,1) = subs(kappao(14:19).*(lambdac+Gyc.'),subsvec1,... 
                            subsvec2,0); 
           
        % The first section of the Hessian. 
          varvec = []; 
          for i = 1:25 
              varvec = [varvec;sym(['X' num2str(i)])]; 
          end 
          heso = jake(R,varvec); 
          delete('Ro.txt') 
          diary('Ro.txt') 
          Ro    = subs(R,subsvec2,subsvec3,0) 
          diary off 
          delete('heso.txt') 
          diary('heso.txt') 
          heso = subs(heso,subsvec2,subsvec3,0) 
          diary off 
      case 2 
        % The middle of the residual vector is defined using a for loop. 
        % It consists of the differential constraints applied at each 
        % collocation point for all the states and coestates. 
          Ri        = subs(kappai.*[Ryi;Rlambdai],subsvec1,subsvec2,0); 
  
        % The middle section of the residual is dependent on only the 
        % states and coestates at the endpoints of each segment and the the  
        % ground phase time, tn, known as X(14) in the collocation state  
        % vector.  A column vector of the derivatives of this part of the 
        % residual with respect to tn will be made and a jacobian will be  
        % made of this part of the residual with respect to the endpoint 
        % state. 
          varvec = sym('X12Np29'); 
          hestni = jake(Ri,varvec); 
          varvec = []; 
          for i = 1:24 
              varvec = [varvec;sym(['X12ip' num2str(i+1)])]; 
          end 
          hesi   = jake(Ri,varvec); 
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          delete('Ri.txt') 
          diary('Ri.txt') 
          Ri     = subs(Ri,subsvec2,subsvec3,0) 
          diary off 
          delete('hestni.txt') 
          diary('hestni.txt') 
          hestni = subs(hestni,subsvec2,subsvec3,0) 
          diary off 
          delete('hesi.txt') 
          diary('hesi.txt') 
          hesi   = subs(hesi,subsvec2,subsvec3,0)   
          diary off 
      case 3 
        % The last part of the residual vector consists of the boundary 
        % conditions at the liftoff time. 
          Rf(1:6,1)   = subs(kappaf(1:6).*(lambdaf-Gyf.'),subsvec1,... 
                                                          subsvec2,0); 
          Rf(7:9,1)   = subs(kappaf(7:9).*psi,subsvec1,subsvec2,0); 
          Rf(10,1)    = subs(kappaf(10).*Hf,subsvec1,subsvec2,0); 
          Rf(11:12,1) = subs(kappaf(11:12).*Ga(3:4).',subsvec1,subsvec2,0); 
        % Last part of the Hessian. 
          varvec = []; 
          for i = 1:18 
              varvec = [varvec;sym(['X12Np' num2str(i+13)])]; 
          end 
          hesf   = jake(Rf,varvec); 
          delete('Rf.txt') 
          diary('Rf.txt') 
          Rf     = subs(Rf,subsvec2,subsvec3,0) 
          diary off 
          delete('hesf.txt') 
          diary('hesf.txt') 
          hesf   = subs(hesf,subsvec2,subsvec3,0) 
          diary off 
      otherwise 
        %------------------------------------------------------------------ 
        % Prepare the Equations of motion for ic_prep3 
        %------------------------------------------------------------------ 
          clear subsvec1 subsvec2 
        % Substitution Defenition 
          for i = 1:6 
              subsvec1(i)   = y(i); 
              subsvec2(i)   = {['y(' num2str(i) ')']}; 
       
              subsvec1(i+6) = lambda(i); 
              subsvec2(i+6) = {['y(' num2str(i+6) ')']}; 
          end 
        % Substitution of Model Constants 
          subsvec1(13:18) = [k,etao,d,m,I,g]; 
          subsvec2(13:18) = {'c.k','c.etao','c.d','c.m','c.I','c.g'}; 
   
          func(1:6,1)     = subs(fg(y),subsvec1,subsvec2,0); 
          func(7:12,1)     = subs(-dHdy,subsvec1,subsvec2,0) 
   
        %------------------------------------------------------------------ 
        % Prepare equation for nu and -Gyc.' for calculating lambdaf in 
        % ic_prep3 
        %------------------------------------------------------------------  
          clear subsvec1 subsvec2 
        % Substitution Defenition 
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          for i = 1:6 
            % State at final time substitution 
              subsvec1(i)   = yf(i); 
              subsvec2(i)   = {['Y(' num2str(i) ',N+1)']}; 
            % Fixed point state substitution 
              subsvec1(i+6)  = yfixed(i); 
              subsvec2(i+6)  = {['yfix(' num2str(i) ')']}; 
          end 
 
        % Final State Weightings 
          for i = 2:6 
              subsvec1(i+11)  = Q(i,i); 
              subsvec2(i+11)  = {['q(' num2str(i) ')']}; 
          end 
        % Substitution of Model Constants 
          subsvec1(18:21) = [etao,d,g,vo]; 
          subsvec2(18:21) = {'c.etao','c.d','c.g','c.vo'};  
          nusubbed  = subs(nusolved,subsvec1,subsvec2,0) 
          Gyfsubbed = subs(Gyf.',subsvec1,subsvec2,0) 
  end 
end 
 
 
function fybar = nondimensionalizer(y) 
%========================================================================== 
% fybar = nondimensionalizer(y)) 
% 
% This function nondimensionalizes a 6x1 state vector 
% 
% Inputs: 
%   y   6x1 state vector. 
%    
% Output: 
%   fybar  6x1 nondimensionalized state vector. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global etao vo 
    fybar   = [y(1)/etao; y(2)/etao; y(3); y(4)/vo; y(5)/vo; y(6)*etao/vo]; 
end 
 
 
function f = ff(y) 
%========================================================================== 
% f = ff(y) 
% 
% This calcualates the flight phase equations of motion evaluated at the 
% state y. 
% 
% Inputs: 
%   y   6x1 state vector. 
%    
% Output: 
%   f   6x1 vector of the derivative of y. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global g m I k tc tn 
    f   = [y(4);y(5);y(6);0;g;0]; 
end 
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function f = fg(y) 
%========================================================================== 
% f = fg(y) 
% 
% This calcualates the ground phase equations of motion evaluated at the 
% state y. 
% 
% Inputs: 
%   y   6x1 state vector. 
%    
% Output: 
%   f   6x1 vector of the derivative of y. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global g m I k tc tn d etao betaTD 
    eta = sqrt((y(1)-d*sin(y(3)))^2+(y(2)-d*cos(y(3)))^2); 
    f   = [y(4); y(5); y(6); k/m*(etao/eta-1)*(y(1)-d*sin(y(3)));... 
                       k/m*(etao/eta-1)*(y(2)-d*cos(y(3)))+g;... 
                       d*k/I*(etao/eta-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))]; 
end 
 
 
function f = Hy(y_of_t,lambda_of_t) 
%========================================================================== 
% Hy(y_of_t,lambda_of_t) 
% 
% Takes the derivative of the Hamiltonian with respect to the physical 
% variables as defined by the code and returns the Hamiltonian derivative 
% evaluated for a specific set of parameters y_of_t and lambda_of_t. 
% 
% Inputs: 
%   y_of_t       6x1 state vector. 
%    
%   lambda_of_t  6x1 coestate vector. 
% 
% Output: 
%   f   Derivative of the hamiltonian evaluated at y_of_t and lambda_of_t. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global dHdy 
    for i = 1:6 
        y(i,1)       = sym(['y' num2str(i)],'real'); 
        lambda(i,1)  = sym(['lambda' num2str(i)],'real'); 
    end 
    f=subs(dHdy,[y;lambda],[y_of_t;lambda_of_t],0); 
end 
 
 
function fy=jake(f,y) 
%========================================================================== 
% fy=jake(f,y) 
% 
% Takes the jacobian of a vector. 
% 
% Inputs: 
%   f   an Nx1 vector of functions of the parameters in vector y where N 
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%       may equal 1. 
% 
%   y   an Mx1 vector of parameters where M may equal 1. 
%    
% Output: 
%   fy  an NxM matrix of derivatives where fy(i,j) is the derivative of 
%       f(i) with respect to y(j). 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
    for i=1:length(f) 
        for j = 1:length(y) 
            fy(i,j)=diff(f(i),y(j)); 
        end 
    end 
end 
 
 

A.2 residual_formatter 

The script residual_formatter formatted the residual output of euler_param_calc_ad1 to be pasted 

into a residual code which calculated the residual for a given collocation state. 

%========================================================================== 
% residual_formatter 
%  
% This script formats symbolic column vector MATLAB outputs written to a 
% text file. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
%This script formats stuff 
clear all 
width_of_line = [58,61,65]; 
 
if(1) 
% start pre-search 
    frid = fopen('hestni.txt', 'r'); 
    fwid = fopen('temp.txt', 'w'); 
    subsvec1 = {'yo(','q(','yfix('}; 
    subsvec2 = {'c.yo(','c.q(','c.yfix('}; 
    while(~feof(frid)) 
        A = fread(frid, 1, 'char'); 
        i=1; 
        whole_file = []; 
        while (~feof(frid))&&(A~=')')&&(A~=13) 
            whole_file(i) = char(A); 
            A = fread(frid, 1, 'char'); 
            i = i + 1; 
        end 
        if ~feof(frid) 
            whole_file(i) = char(A); 
        end 
        whole_file = char(whole_file); 
        for i = 1:3 
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            whole_file = strrep(whole_file,subsvec1(i),subsvec2(i)); 
            whole_file = whole_file{1}; 
        end 
        fwrite(fwid,whole_file,'char'); 
    end 
    fclose('all'); 
% end pre-search 
end 
 
frid = fopen('temp.txt', 'r'); 
fwid = fopen('hestni_f.txt', 'w'); 
 
operators = {'^', '/', '*', '-', '+', '(', ',','{'}; 
 
in_vector = 0; 
after_eq_sgn = 0; 
col_count = 0; 
eq_count = 0; 
stack_count = 1; 
burst = []; 
 
while(~feof(frid)) 
    A = fread(frid, 1, 'char'); 
    if in_vector 
        if after_eq_sgn 
            if isstrprop(A, 'wspace') 
            else 
                after_eq_sgn = 0; 
                col_count    = 1; 
                fwrite(fwid,A,'char'); 
            end 
        elseif stack_count~=1|A==char(13) 
            stack(stack_count) = A; 
            if stack_count == 4 
                fwrite(fwid,burst,'char'); 
                burst = []; 
                if stack == [char(13)  char(10) char(32) char(13)] 
                    fprintf(fwid,'];\r\n\r\n\r\n'); 
                    in_vector = 0; 
                else 
                    fprintf(fwid,';...\r\n\r\n'); 
                    for i = 1:(72-width_of_line(eq_count)) 
                        fwrite(fwid,' ','uchar'); 
                    end 
                    if ~isstrprop(A, 'wspace') 
                        fwrite(fwid,A,'char'); 
                        col_count    = 1; 
                    end 
                end 
                col_count = 0; 
                stack_count = 1; 
            else 
                stack_count = stack_count+1; 
            end 
        elseif isstrprop(A, 'wspace') 
        elseif isempty(strmatch(char(A),operators,'exact')) 
            burst = [burst A]; 
        else 
            burst = [burst A]; 
            if col_count+length(burst) >= width_of_line(eq_count) 
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                fprintf(fwid,'...\r\n'); 
                for i = 1:(72-width_of_line(eq_count)) 
                 fwrite(fwid,' ','uchar'); 
                end 
                col_count = 0; 
            end 
            col_count = col_count+length(burst); 
            fwrite(fwid,burst,'char'); 
            burst = []; 
        end 
    else 
        if isstrprop(A, 'wspace') 
        elseif A=='=' 
            in_vector    = 1; 
            after_eq_sgn = 1; 
            eq_count     = eq_count+1; 
            fprintf(fwid,' = ['); 
        else 
            fwrite(fwid,A,'char'); 
        end 
    end 
end 
fclose('all'); 
 
 

A.3 hessian_ formatter 

The script hessian_formatter formatted the Hessian output of euler_param_calc_ad1 to be pasted 

into a Hessian code which calculated the Hessian for a given collocation state. 

%========================================================================== 
% hessian_formatter 
%  
% This script formats symbolic matrix MATLAB outputs written to a text 
% file. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
%This script formats stuff 
clear all 
width_of_line = [62,61,65]; 
if(1) 
%start pre-search 
    frid = fopen('hesf.txt', 'r'); 
    fwid = fopen('tempf.txt', 'w'); 
    subsvec1 = {'yo(','q(','yfix('}; 
    subsvec2 = {'c.yo(','c.q(','c.yfix('}; 
    while(~feof(frid)) 
        A = fread(frid, 1, 'char'); 
        i=1; 
        whole_file = []; 
        while (~feof(frid))&&(A~=')')&&(A~=13) 
            whole_file(i) = char(A); 
            A = fread(frid, 1, 'char'); 
            i = i + 1; 
        end 



 
94

        if ~feof(frid) 
            whole_file(i) = char(A); 
        end 
        whole_file = char(whole_file); 
        for i = 1:3 
            whole_file = strrep(whole_file,subsvec1(i),subsvec2(i)); 
            whole_file = whole_file{1}; 
        end 
        fwrite(fwid,whole_file,'char'); 
    end 
    fclose('all'); 
%end pre-search 
end 
frid = fopen('tempf.txt', 'r'); 
fwid = fopen('hesf_f.txt', 'w'); 
 
operators = {'^', '/', '*', '-', '+', '(', ',', '{'}; 
 
in_vector = 0; 
after_eq_sgn = 0; 
col_count = 0; 
eq_count = 0; 
stack_count = 1; 
burst = []; 
 
while(~feof(frid)) 
    A = fread(frid, 1, 'char'); 
    if in_vector 
        if after_eq_sgn 
            if isstrprop(A, 'wspace') 
            else 
                after_eq_sgn = 0; 
                col_count    = 1; 
                fwrite(fwid,A,'char'); 
            end 
        elseif stack_count~=1|A==']' 
            stack(stack_count) = A; 
            if stack_count == 4 
                fwrite(fwid,burst,'char'); 
                burst = []; 
                if stack == [']' char(13) char(10) '['] 
                    fprintf(fwid,';...\r\n\r\n'); 
                    for i = 1:(72-width_of_line(eq_count)) 
                        fwrite(fwid,' ','uchar'); 
                    end 
                else 
                    fprintf(fwid,'];\r\n\r\n\r\n'); 
                    in_vector = 0; 
                end 
                col_count = 0; 
                stack_count = 1; 
            else 
                stack_count = stack_count+1; 
            end 
        elseif isstrprop(A, 'wspace') 
        elseif isempty(strmatch(char(A),operators,'exact')) 
            burst = [burst A]; 
        else 
            burst = [burst A]; 
            if col_count+length(burst) >= width_of_line(eq_count) 
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                fprintf(fwid,'...\r\n'); 
                for i = 1:(72-width_of_line(eq_count)) 
                 fwrite(fwid,' ','uchar'); 
                end 
                col_count = 0; 
            end 
            col_count = col_count+length(burst); 
            fwrite(fwid,burst,'char'); 
            burst = []; 
        end 
    else 
        if isstrprop(A, 'wspace') 
        elseif A=='='    
        elseif A=='[' 
            in_vector    = 1; 
            after_eq_sgn = 1; 
            eq_count     = eq_count+1; 
            fprintf(fwid,' = ['); 
        else 
            fwrite(fwid,A,'char'); 
        end 
    end 
end 
fclose('all'); 
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APPENDIX B  

Control Scheme Code 

The control scheme was set up to run separately from the simulation so as to simulate its use on a 

real system.  The main code, collocation4, is called by the simulation at the end of the ground phase.  

It returns its choice of leg angles as well as the time of touchdown to the simulation and the flight 

phase simulation is started.  

B.1 collocation4 

The collaction4 function calculates the optimal touchdown angle from lift off conditions.  It calls 

many sub-functions to accomplish this task.  These are presented in subsequent sections. 

function [beta, tc] = collocation4(yo,c) 
%========================================================================== 
% [beta, tc] = collocation4(yo,c) 
%  
% This function calculates the optimal touchdown for the SLIP based on the 
% lift off conditons. 
% 
% Inputs: 
%   yo    6x1 lift off conditions vector 
%         [x; z; theta; xdot; zdot; thetadot]; 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See rb_slip_sim for structure 
%         explanation. 
% 
% Outputs: 
%   beta    The optimal touchdown angle 
% 
%   tc      The optimal touchdown time 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    c.yo    = yo; 
    c.vo    = sqrt(c.yo(4)^2+c.yo(5)^2); 
    c.nondim = [1/c.etao;1/c.etao;1;1/c.vo;1/c.vo;c.etao/c.vo]; 
    c.max_error      = 1e-6; 
  % Program Constants 
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    N = 5 
    h = 1/N; 
    itteration_max   = 100; 
    max_small_lambda = 8; 
  % Progam Counters 
    lambda_too_small  = 0;  
    refine_count     = 0; 
    i                = 1; 
  % Find General Area of Minimum Through Several Short Simulations 
  % Use Initial Conditions of best short Simulation. 
  % Initial Conditions 
    rdat.refine = 0; 
    [X{i},rdat] = ic_prep5(N,c,rdat); 
  % Calculate Residual 
    R{i}    = residual8(X{i},N,c); 
  % Square of the norm of the residual is an indication of convergence. 
    RTR = (R{i}.'*R{i})/2;  %Square of norm. 
    fprintf('RTR is %9.8g. Beta is %9.8g.\n',RTR,X{i}(4)) 
  % Test if routine has converged 
    not_done =  unsatesfactroy(R{i},c); 
  % Start itterations 
    while(not_done & i<=itteration_max) 
        refine_time = 1; 
      % Runs iteration once unless the initial conditions had to be refined 
        while refine_time 
            refine_time = 0; 
          % Compute the Hessian analytically 
            dRa = analytical_hessian1(X{i},N,c); 
          % Newton step taken 
            [X{i+1},R{i+1},lambda] = gc_newton(dRa,R{i},X{i},N,c); 
          % If step is too small, take note. 
            if lambda < 1e-3 
                lambda_too_small = lambda_too_small + 1; 
                fprintf('%i small steps until refine.\n',... 
                                       max_small_lambda-lambda_too_small+1) 
              % If too many small steps were taken, refine ic's 
                if lambda_too_small > max_small_lambda 
                    refine_time      = 1; 
                    lambda_too_small = 0; 
                    rdat.refine      = 1; 
                  % Recompute initial conditions for more leg angles  
                    [X{i},rdat]      = ic_prep5(N,c,rdat); 
                  % Recompute residual with better initial conditions 
                    R{i}             = residual8(X{i},N,c); 
                    RTR = (R{i}.'*R{i})/2;  %Square of norm. 
                    fprintf('Refining initial conditions.\n') 
                    fprintf('RTR is %9.8g. Beta is %9.8g.\n',RTR,X{i}(4)) 
                end 
            end 
        end 
        i = i+1; 
      % Sets tc to 0 when it is negative 
        if X{i}(1)<0 
           X{i}(1) = 0; 
           X{i}(3) = 0; 
           X{i}(7) = X{i}(20)*X{i}(17)+X{i}(21)*X{i}(18)+X{i}(22)*... 
                     X{i}(19)+X{i}(24)*c.g-X{i}(9)*(-c.yo(5)-c.g*... 
                     X{i}(1))+X{i}(10)*c.yo(6)+X{i}(12)*(c.g); 
           R{i}    = residual8(X{i},N,c); 
           disp('Switching to tc = 0') 
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        end 
      % Since angles of greater than 2pi are really angles of less than 2pi 
      % plus a full rotation, the full rotation is taken out. 
        if X{i}(4)>=2*pi||X{i}(4)<0 
           X{i}(4) = mod(X{i}(4),2*pi); 
           disp('Truncating beta') 
        end 
      % Report on Progress 
        RTR = R{i}'*R{i}/2; 
        fprintf('RTR is %9.8f. Beta is %9.8f. Omega is %9.8f.\n',... 
                RTR,X{i}(4),lambda); 
        not_done =  unsatesfactroy(R{i},c); 
    end 
    if not_done 
      % If Newton routine did not converge in itteration_max itterations  
      % use the best guess so far. 
        beta = rdat.betas(rdat.min.i) 
        tc   = rdat.min.tc 
    elseif (X{i}(1) <= 1e-6) 
      % Corrects for numirical error if flight time is intended to be zero 
        if X{i}(4)<pi/2 
            beta = asin((c.d*cos(c.yo(3))-c.yo(2))/c.etao) 
        else 
            beta = pi-asin((c.d*cos(c.yo(3))-c.yo(2))/c.etao) 
        end 
        tc = 0 
    else 
      % If everything goes as planned routine returns the optimal leg angle 
        beta = real(X{i}(4)) 
      % And the optimal flight time 
        tc   = X{i}(1); 
    end 
end 
 
 
function yes_or_no = unsatesfactroy(R,c) 
%========================================================================== 
% yes_or_no = unsatesfactroy(R,c) 
%  
% This function checks to see if the residual meets the tollerance 
% requirements to end the routine 
% 
% Inputs: 
%   R     Residual vector. 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See rb_slip_sim for structure 
%         explanation. 
% 
% Outputs: 
%   yes_or_no   If unsatesfactory 1. If satesfactory 0. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    yes_or_no = 0; 
  % Test every part of the residual to make sure it is within tolerance 
    for j=1:length(R) 
        if abs(R(j))> c.max_error 
            yes_or_no = 1; 
        end 
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    end 
end 
 
 
 

B.2 ic_prep5 

The function ic_prep5 is called in collocation4 to prepare an initial guess of the collocation state 

vector. 

function [X,rdat] = ic_prep5(N,c,rdat) 
%========================================================================== 
% [X,rdat] = ic_prep5(N,c) 
%  
% This function sets up the necessary variables for collocation4. 
% It makes an initial guess at the values of the parameters in the X 
% vector. These initial guesses are called the initial conditions of the 
% collocation scheme even though they are not just for the state at the 
% initial time. 
% 
% This funciton uses a folder of functions ic_prep.  It cannot run without 
% them. 
% 
% Inputs: 
%   N     Number of segments into which the collocation scheme will be 
%         broken. 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See rb_slip_sim for structure 
%         explanation. 
%    
%   rdat  This is a structure containing everything ic_prep5 needs to know 
%         about its previous calls. 
%           rdat.betas  Is a vector of the angles that have already been 
%                       explored by ic_prep 
% 
%           rdat.min    Is a structure containing data about initial 
%                       conditions for the colloaction function that yield 
%                       the minimum end cost, J.  It also includes the cost 
%                       itself. 
% 
%               rdat.min.i   This is the index number of the touchdown 
%                            angle that yields the minimum cost in rdat.J 
% 
%               rdat.min.J   Is a vector of the final costs associated with  
%                            the angles in rdat.betas 
% 
%               rdat.min.Y   This is the state of the collocation function 
%                            for which the cost is rdat.J 
%                
%               rdat.min.tc  Is the flight time of the collocation state 
%                            rdat.min.Y. 
% 
%               rdat.min.tn  Is the ground phase time of the collocation 
%                            state rdat.min.Y. 
% 
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%           rdat.refine Is a variable simply telling the ic_prep funciton 
%                       if it is creating initial condition for a new 
%                       collocation scheme or refining some initial 
%                       conditons that have already been developed. 
% 
% Outputs: 
%   X       The initial guess for the collocation state vector. 
% 
%   rdat    This is a structure containing everything ic_prep5 will need to 
%           know if it is called again to refine the initial conditons  
%           about this and previous calls this function calls. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
  % Error Acceptable in the initial conditions 
    c.ic_error = 0.0001; 
  % Change to the ic_prep directory 
    cd ic_prep 
    if ~rdat.refine 
      % If ic_prep is starting form scratch, it must calculate a range to 
      % test in. 
        rdat.betas = ic_prep_range_test(c); 
        rdat.min = ic_prep_cost_finder(rdat.betas,inf,c,c.nondim); 
    else 
      % If ic_prep has been called before it mus refine its search for the 
      % best initial guess of an optimal leg angle because the original 
      % guess converged to a local minimum. 
        minn.i = 0; 
        while minn.i == 0 
            M = length(rdat.betas); 
          % Tests leg angles half way in between all the previously tested 
          % leg angles and half again as close to to the max and min beta 
          % values. 
            beta(1)=.25*(rdat.betas(1)-rdat.betas(2))+rdat.betas(1); 
            for i = 1:M-1 
                beta(i+1) = (rdat.betas(i+1)+rdat.betas(i))/2; 
            end 
            beta(M+1) = 0.25*(rdat.betas(M)-rdat.betas(M-1))+... 
                        rdat.betas(M); 
            minn = ic_prep_cost_finder(beta,rdat.min.J,c,c.nondim); 
          % Organize Betas. 
            betas(1) = beta(1); 
            for i = 1:length(rdat.betas) 
                betas(2*i)   = rdat.betas(i); 
                betas(2*i+1) = beta(i+1); 
            end 
            rdat.betas = betas; 
        end 
        rdat.min = minn; 
        rdat.min.i = 2*minn.i-1; 
    end 
    rdat.refine = 0; 
    X = ic_final_prep1(N,c,rdat); 
    cd .. 
end 
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B.2.1 ic_prep_range_test 

The function ic_prep_range_test calculates the range in which it would be acceptable to find a leg 

touchdown angle and proceeds to select the leg angles to try. 

function beta = ic_prep_range_test(c) 
%========================================================================== 
% beta = ic_prep_range_test(c) 
%  
% This function calculates the initial guesses of leg angles that should be 
% tested. 
% 
% Inputs: 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See rb_slip_sim for structure 
%         explanation. 
% 
% Outputs: 
%   beta  Vector of leg angles to try. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    M = 7; 
  % Time of Max height of leg attachment point (Min Time) 
    tmin    = -2*(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))/... 
              ((c.g+c.d*c.yo(6)^2*cos(c.yo(3)))+... 
              sqrt((c.g+c.d*c.yo(6)^2*cos(c.yo(3)))^2+... 
              2*c.d*c.yo(6)^3*sin(c.yo(3))*... 
              (c.yo(5)+c.d*c.yo(6)*sin(c.yo(3))))); 
    if tmin < 0 
        tmin = 0; 
    end      
    hmax = -c.yo(2)-c.yo(5)*tmin-1/2*c.g*tmin^2+... 
               c.d*cos(c.yo(3)+c.yo(6)*tmin)-c.etao; 
  % Determin the bounds for beta. 
    if c.yo(4)>0 
  % Time of Min height of leg attachment point (Max Time)  
    tmax = (-(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))+... 
           sqrt((c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))^2+... 
           2*(c.g+c.d*c.yo(6)^2*cos(c.yo(3)))*... 
           (c.d*cos(c.yo(3))-c.yo(2))))/... 
           (c.g+c.d*c.yo(6)^2*cos(c.yo(3))); 
    if hmax < 0 
        beta_max = asin((-2*c.yo(2)-2*c.yo(5)*tmin-c.g*tmin^2+... 
                   2*c.d*cos(c.yo(3)+c.yo(6)*tmin))/(2*c.etao)); 
    else 
  % Find the time at which the leg touch at touchdown is 
  % perpendicular to the direction of the touchdown velocity. 
    tbetamax = RegulaFalsi(tmin,tmax,@MaxBetat,c); 
    beta_max = pi-asin((-c.yo(2)-c.yo(5)*tbetamax-1/2*c.g*... 
               tbetamax^2+c.d*cos(c.yo(3)+c.yo(6)*tbetamax))... 
               /c.etao); 
    end 
  % Find the time at which the leg touch at touchdown is 
  % parallel to the direction of the touchdown velocity. 
    tbetamin  = RegulaFalsi(tmin,tmax,@MinBetat,c); 
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    if tbetamin < 0 
        tbetamin = 0; 
    end 
    beta_min  = asin((-c.yo(2)-c.yo(5)*tbetamin-1/2*c.g*... 
                tbetamin^2+c.d*cos(c.yo(3)+c.yo(6)*... 
                tbetamin))/c.etao); 
    else 
        if hmax < 0 
            beta_min = pi-asin((-2*c.yo(2)-2*c.yo(5)*tmin-c.g*tmin^... 
                       2+2*c.d*cos(c.yo(3)+c.yo(6)*tmin))/... 
                       (2*c.etao)); 
        else 
            beta_min = pi/2; 
        end 
        beta_max = pi; 
    end 
    mid = pi/2; 
    test_pi_over_2 = 1; 
    if test_pi_over_2 
      % Cost Test Aligns Spread of Beta's to hit pi/2 in the middle. 
        if beta_min >= beta_max 
            beta(1) = beta_min; 
            M = 1; 
        elseif c.yo(4)>0 && beta_max>mid 
            Mf = ceil((M-1)/2); 
            Mb = floor((M-1)/2); 
            scalef = (mid-beta_min)/(Mf+.5); 
            scaleb = (beta_max-mid)/(Mb+.5); 
            beta(1) = beta_min+scalef*.5; 
            for i=2:Mf+1 
                beta(i) = beta(i-1)+scalef; 
            end 
            for i=Mf+2:M 
                beta(i) = beta(i-1)+scaleb; 
            end 
        else 
            scale   = (beta_max-beta_min)/M; 
            beta(1) = beta_min + scale*.5; 
            for i=2:M 
                beta(i) = beta(i-1)+scale; 
            end 
        end 
    else 
      % Cost Test Aligns Spread of Beta's to hit before and after pi/2. 
        if beta_min >= beta_max 
            beta(1) = beta_min; 
            M = 1; 
        elseif c.yo(4)>0 && beta_max>mid 
            Mf = ceil(M/2); 
            Mb = floor(M/2); 
            scalef = (mid-beta_min)/(Mf); 
            scaleb = (beta_max-mid)/(Mb); 
            beta(1) = beta_min+scalef*.5; 
            for i=2:Mf 
                beta(i) = beta(i-1)+scalef; 
            end 
            beta(Mf+1) = mid+scaleb*.5; 
            for i=Mf+2:M 
                beta(i) = beta(i-1)+scaleb; 
            end 
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        else 
            scale   = (beta_max-beta_min)/M; 
            beta(1) = beta_min + scale*.5; 
            for i=2:M 
                beta(i) = beta(i-1)+scale; 
            end 
        end 
    end 
end 
 
function tmaybe = RegulaFalsi(tmin,tmax,func,c) 
%========================================================================== 
% tmaybe = RegulaFalsi(tmin,tmax,func,c) 
%  
% This function finds the input value, tmaybe, for which func is 0. 
% 
% Inputs: 
% 
%   tmin   The minimum input value for which func could be 0.  
% 
%   tmax   The maximum input value for which func could be 0. 
% 
%   func   A function handle for a function.  The input of this function 
%          must be found such that the function's value is 0. 
% 
%   c      The model constants.  These will stay constant throughout the 
%          applicatoin of the control.  See rb_slip_sim for structure 
%          explanation. 
% 
% Outputs: 
%   tmaybe  The input value for which func is 0. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    ftmax   = func(tmax,c); 
    ftmin   = func(tmin,c); 
    ftmaybe = ftmin; 
    tmaybe  = tmin; 
    while  abs(ftmaybe)>c.ic_error 
        gprime  = (ftmax-ftmin)/(tmax-tmin); 
        tmaybe  = tmax-ftmax/gprime; 
        ftmaybe = func(tmaybe,c); 
        if ftmaybe < 0 
            tmax  = tmaybe; 
            ftmax = ftmaybe; 
        else 
            tmin  = tmaybe; 
            ftmin = ftmaybe; 
        end 
    end 
end 
 
function f = MinBetat(t,c) 
%========================================================================== 
% f = MinBetat(t,c) 
%  
% This function is 0 when the input is the time at which the system would 
% touchdown if it were touching down at the minimum leg touchdown angle. 
% 
% Inputs: 
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% 
%   t   Input time. 
% 
%   c   The model constants.  These will stay constant throughout the 
%       applicatoin of the control.  See rb_slip_sim for structure 
%       explanation. 
% 
% Outputs: 
%   f   Function value. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    if c.yo(4) == 0 
        f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*... 
            cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-1; 
    else 
        f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*... 
            cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-... 
            (c.yo(5)+c.g*t)/sqrt(c.yo(4)^2+(c.yo(5)+c.g*t)^2); 
    end 
end 
 
function f = MaxBetat(t,c) 
%========================================================================== 
% f = MaxBetat(t,c) 
%  
% This function is 0 when the input is the time at which the system would 
% touchdown if it were touching down at the maximum leg touchdown angle. 
% 
% Inputs: 
% 
%   t   Input time. 
% 
%   c   The model constants.  These will stay constant throughout the 
%       applicatoin of the control.  See rb_slip_sim for structure 
%       explanation. 
% 
% Outputs: 
%   f   Function value. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    f = (-2*c.yo(2)-2*c.yo(5)*t-c.g*t^2+2*c.d*... 
        cos(c.yo(3)+c.yo(6)*t))/(2*c.etao)-... 
        c.yo(4)/sqrt(c.yo(4)^2+(c.yo(5)+c.g*t)^2); 
end 
 
 

B.2.2 ic_prep_cost_finder  

The ic_prep_cost_finder function determines the unconstrained cost associated with each leg angle 

suggested by ic_prep_range_test and passes on the leg angle with the lowest cost associated with it. 

function minn = ic_prep_cost_finder(beta,jmin,c,nondim) 
%========================================================================== 
% minn = ic_prep_cost_finder(beta,jmin,c,nondim) 
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%  
% This function selects the leg angle out of an input vector of leg angles 
% that produces the lowest cost as determined by the unconstrained cost 
% function.  It then records information about its findings. 
% 
% Inputs: 
% 
%   beta    A vector of leg angles to test. 
% 
%   jmin    The best cost found so far. 
% 
%   c       The model constants.  These will stay constant throughout the 
%           applicatoin of the control.  See rb_slip_sim for structure 
%           explanation. 
% 
%   nondim  6x1 vector of nondimensionalization parameters for the states. 
% 
% Outputs: 
%   minn    A structure containing data about about the best beta chosen. 
%           The elements are: 
%             minn.i   The index number of the best leg angle chosen in the 
%                      vector. 
% 
%             minn.J   The unconstrained cost associated with the best 
%                      choice of leg angle. 
%         
%             minn.Y   6x2 touchdown state and end state associated with 
%                      the best leg angle found concatenated together in 
%                      that order. 
% 
%             minn.tc  The touchdown time associated with the best leg 
%                      angle found. 
% 
%             minn.tn  The ground phase time associated with the best leg 
%                      angle found. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
  % Angles to test, Cost to test against,  
  % For each new angle find the cost. 
    minn.J = jmin; 
    minn.i = 0; 
    for i = 1:length(beta) 
      % Approximate the touchdown time. 
        tc(i)   = (-(c.yo(5)+c.d*c.yo(6)*sin(c.yo(3)))+... 
                  sqrt((c.yo(5)+c.yo(6)*c.d*sin(c.yo(3)))^2+... 
                  2*(c.g+c.yo(6)^2*c.d*cos(c.yo(3)))*... 
                  (c.d*cos(c.yo(3))-c.yo(2)-c.etao*sin(beta(i)))))/... 
                  (c.g+c.yo(6)^2*c.d*cos(c.yo(3))); 
      % Use the Approximated touchdown time to get the touchdown state. 
        Y{i}(3,1) = c.yo(3)+c.yo(6)*tc(i); 
        Y{i}(1,1) = c.d*sin(Y{i}(3,1))-c.etao*cos(beta(i)); 
        Y{i}(2,1) = c.yo(2)+c.yo(5)*tc(i)+1/2*c.g*tc(i)^2; 
        Y{i}(4,1) = c.yo(4); 
        Y{i}(5,1) = c.yo(5)+c.g*tc(i); 
        Y{i}(6,1) = c.yo(6); 
      % Loosely approximated the ground phase time so the time step for the 
      % rk4 is not too big.  
        tn_est    = c.etao/c.vo; 
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      % For approximating tn and Yn use runge_N steps. 
        runge_N = 50; 
      % Make sure runge_tn_find runs once 
        true_ratio = 0; 
      % Rerun runge_tn_find if the time step was too large last time 
        while true_ratio < .5 
            [Y{i}(:,2),tn(i)] =... 
                        runge_tn_find(Y{i}(:,1),tn_est,runge_N,c); 
            true_ratio = tn(i)/tn_est; 
            tn_est = tn(i)*1.5; 
        end 
      % Calculate Cost of end State 
        deltaYbar = [Y{i}(:,2)-c.yfix].*nondim; 
        J(i)      = deltaYbar.'*(c.q.*deltaYbar); 
        if J(i)<minn.J 
            minn.i   = i; 
            minn.J   = J(i); 
            minn.Y   = Y{i}; 
            minn.tc  = tc(i); 
            minn.tn  = tn(i); 
        end 
    end 
end 
 
 
function [endspresh,tn] = runge_tn_find(Y,tn_est,N,c) 
%========================================================================== 
% [endspresh,tn] = runge_tn_find(Y,tn_est,N,c) 
%  
% This function uses a 4th order runge-kutta scheme to numerically 
% integrate forward in time until the leg is no longer in compression.  It 
% procedes finds the exact lift off state and returns it with the ground 
% phase time. 
% 
% Inputs: 
% 
%   Y       6x1 touchdown state vector. 
% 
%   tn_est  A guess of what the final time will be so a good step size can 
%           be picked. 
% 
%   N       The number of time steps to shoot for. 
% 
%   c       The model constants.  These will stay constant throughout the 
%           applicatoin of the control.  See rb_slip_sim for structure 
%           explanation. 
% 
% Outputs: 
%   endsprech  6x1 lift off state vector. 
% 
%   tn         Ground phase time. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
  % Step size 
    h = tn_est/N; 
  % Make sure integration starts 
    eta = 0; 
    etaprime = -1; 
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  % Initialize index 
    i=1; 
  % Start time 
    tn = 0; 
    while (eta <= c.etao || etaprime < 0) 
      % Take Step 
        [Y(:,i+1),tn] = rkstep(Y(:,i),tn,h,'half',c); 
        i = i+1; 
      % Calculate conditions for end 
        eta = sqrt((Y(1,i)-c.d*sin(Y(3,i)))^2+(Y(2,i)-c.d*cos(Y(3,i)))^2); 
        etaprime = 1/(2*eta)*... 
            (2*(Y(1,i)-c.d*sin(Y(3,i)))*(Y(4,i)-c.d*cos(Y(3,i))*Y(6,i))+... 
             2*(Y(2,i)-c.d*cos(Y(3,i)))*(Y(5,i)+c.d*sin(Y(3,i))*Y(6,i))); 
    end 
  % Lower bracket end condtion 
    eta2 = sqrt((Y(1,i-1)-c.d*sin(Y(3,i-1)))^2+(Y(2,i-1)-c.d*... 
           cos(Y(3,i-1)))^2); 
  % False Position method to find end. 
    gprime = (eta-eta2)/h; 
    h   = -(eta-c.etao)/gprime; 
    while (1-eta/c.etao)^2 > c.ic_error^2 
        [Y(:,i+1),tn] = rkstep(Y(:,i),tn,h,'half',c); 
        eta2 = sqrt((Y(1,i+1)-c.d*sin(Y(3,i+1)))^2+(Y(2,i+1)-c.d*... 
               cos(Y(3,i+1)))^2); 
        i   = i+1; 
        gprime = (eta2-eta)/h; 
        eta=eta2; 
        h   = -(eta-c.etao)/gprime; 
    end 
    endspresh = Y(:,i); 
end  
 
 

B.2.3 ic_final_prep1 

The function ic_final_prep1 uses the best leg angle determined by ic_prep_cost_finder and 

calculates guesses for the values of all the collocation states based on it. 

function X = ic_final_prep1(N,c,rdat) 
%========================================================================== 
% X = ic_final_prep1(N,c,rdat) 
%  
% This function uses the best leg angle found, and the lift off state and 
% ground phase time associated with it to determine estimates for the rest 
% of the parameters in the collocation scheme. 
% 
% Inputs: 
%   N     Number of segments into which the collocation scheme will be 
%         broken. 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See rb_slip_sim for structure 
%         explanation. 
%    
%   rdat  This is a structure containing everything ic_final_prep needs to 
%         know about the findings of the current call the ic_prep function 
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%         and its previous calls.  
% 
% Outputs: 
%   X     The initial guess for the collocation state vector. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
 
    betaTD   = rdat.betas(rdat.min.i); 
    Y(:,1)   = rdat.min.Y(:,1); 
    Y(:,N+1) = rdat.min.Y(:,2); 
    tc       = rdat.min.tc; 
    tn       = rdat.min.tn; 
  % Calculate nu from end states 
    nu(1,1)   = (Y(5,N+1)*(c.vo)^2*c.q(2)*Y(2,N+1)-Y(5,N+1)*(c.vo)^2*... 
                c.q(2)*c.yfix(2)+Y(6,N+1)*(c.etao)^2*(c.vo)^2*c.q(3)*Y(... 
                3,N+1)-Y(6,N+1)*(c.etao)^2*(c.vo)^2*c.q(3)*c.yfix(3)+... 
                c.q(5)*(c.g)*(c.etao)^2*Y(5,N+1)-c.q(5)*(c.g)*(c.etao)^... 
                2*c.yfix(5))/(c.etao)^2/(c.vo)^2/((Y(4,N+1)-Y(6,N+1)*(... 
                c.d)*cos(Y(3,N+1)))*Y(1,N+1)-Y(4,N+1)*(c.d)*sin(Y(3,N+... 
                1))+Y(5,N+1)*Y(2,N+1)-Y(5,N+1)*(c.d)*cos(Y(3,N+1))+Y(6,... 
                2)*(c.d)*sin(Y(3,N+1))*Y(2,N+1)); 
     
    nu(2:3,1) = [0;0]; 
  % Plug nu into Gyf.' to find the final coestates 
    Y(7:12,N+1) = [nu(1)*(-2*Y(1,N+1)+2*(c.d)*sin(Y(3,N+1)));... 
 
                   2*(Y(2,N+1)-c.yfix(2))/(c.etao)^2*c.q(2)+nu(1)*(-2*... 
                   Y(2,N+1)+2*(c.d)*cos(Y(3,N+1)));... 
 
                   2*(Y(3,N+1)-c.yfix(3))*c.q(3)+nu(1)*(2*(Y(1,N+1)-... 
                   c.d*sin(Y(3,N+1)))*(c.d)*cos(Y(3,N+1))-2*(... 
                   Y(2,N+1)-c.d*cos(Y(3,N+1)))*(c.d)*sin(Y(3,N+1)));... 
 
                   2*(Y(4,N+1)-c.yfix(4))/(c.vo)^2*c.q(4);... 
 
                   2*(Y(5,N+1)-c.yfix(5))/(c.vo)^2*c.q(5);... 
 
                   2*(Y(6,N+1)-c.yfix(6))*(c.etao)^2/(c.vo)^2*c.q(6)]; 
              
  % Set the time step to go backwards             
    h       = -tn/N; 
    ti(N+1) = tn; 
  % Integrate backward until a step before the touch down time, tc 
    for i=N:-1:2 
        [Y(:,i),ti(i)] = rkstep(Y(:,i+1),ti(i+1),h,'full',c); 
    end  
    [temp1,ti(1)] = rkstep(Y(:,2),ti(2),h,'full',c); 
  % Fill in the touchdown coestates in the Y matrix (we already have 
  % the state). 
    Y(7:12,1) = temp1(7:12); 
   
  % Using A polynominal to carry it over the asimptote. 
    max_upsilon = 50; 
    beta_region = pi/2-atan(max_upsilon); 
    min_reg = pi/2-beta_region; 
    max_reg = pi/2+beta_region; 
    if min_reg <= betaTD && betaTD <= max_reg 
        K  = [1 min_reg min_reg^2 min_reg^3; 0 1 2*min_reg 3*min_reg^2;... 
             1 max_reg max_reg^2 max_reg^3; 0 1 2*max_reg 3*max_reg^2]; 
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        Cs = inv(K)*[ max_upsilon;1/(cos(min_reg))^2;... 
                     -max_upsilon;1/(cos(max_reg))^2]; 
        upsilon(1) = Y(7,1)*[1 betaTD betaTD^2 betaTD^3]*Cs; 
    else 
        upsilon(1) = Y(7,1)*tan(betaTD); 
    end 
  % Gyc.' = -lambdac 
    xi(1:6,1) = -Y(7:12,1)+[0;upsilon(1);upsilon(1)*c.d*sin(Y(3,1))-... 
                 Y(7,1)*c.d*cos(Y(3,1));0;0;0]; 
  % Find upsilon(2) 
    upsilon(2,1) = 0; 
  % Find a's 
    asqrd(1) = -(Y(1,1)-c.d*sin(Y(3,1)))*(Y(4,1)-c.d*cos(Y(3,1))*Y(6,1))... 
               -(Y(2,1)-c.d*cos(Y(3,1)))*(Y(5,1)+c.d*sin(Y(3,1))*Y(6,1)); 
    asqrd(2) = tc; 
    asqrd(3) = (Y(1,N+1)-c.d*sin(Y(3,N+1)))*... 
               (Y(4,N+1)-c.d*cos(Y(3,N+1))*Y(6,N+1))+... 
               (Y(2,N+1)-c.d*cos(Y(3,N+1)))*... 
               (Y(5,N+1)+c.d*sin(Y(3,N+1))*Y(6,N+1)); 
    asqrd(4) = tn; 
    for i = 1:4 
        if asqrd(i) > 0 
            a(i,1) = sqrt(asqrd(i)); 
        else 
            a(i,1) = 0; 
        end 
    end 
  % find Best upsilon(3) 
    upsilon(3,1) = Y(7,1)*Y(4,1)+Y(8,1)*Y(5,1)+Y(9,1)*Y(6,1)+Y(11,1)*... 
                   c.g-xi(2)*(-c.yo(5)-c.g*tc)+xi(3)*c.yo(6)+xi(5)*c.g; 
    res1 = 1/(c.vo)*(c.etao)*upsilon(3); 
    res2 = -2*(1/(c.vo)*(c.etao))^(1/2)*a(2)*upsilon(3);... 
    if abs(res2) >= abs(res1) 
        upsilon(3,1) = 0; 
    end 
  % Now asign the variables to the collocation state vector X 
    X = [tc;a(1:2);betaTD;upsilon;xi]; 
    for i = 1:N+1 
        X(12*i+2:12*i+13) = Y(:,i); 
    end 
    X(12*N+26:12*N+31) = [nu; tn; a(3:4)]; 
end 
 
 

B.2.4 rk_step 

The function rk_step is called in some of the sub-functions of ic_prep5.  It moves the system 

forward of backward the amount specified in its input. 

function [yplus,tn] = rkstep(y,tn,h,func_style,c) 
%========================================================================== 
% [yplus,tn] = rkstep(y,tn,h,func_style,c) 
%  
% This function integrates the equations of motion of the system forward or 
% backward in time the amount specified by h. 
% 
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% Inputs: 
%   y           6x1 or 12x1 state or state and costate vector at time tn. 
% 
%   tn          Time passed since the start of the ground phase. 
% 
%   h           Time step (positive or negative). 
% 
%   func_style  String containing directions to either integrate both the 
%               states and the costates or just the states. 
% 
%   c           The model constants.  See rb_slip_sim for structure 
%               explanation. 
% 
% Outputs: 
%   yplus       6x1 or 12x1 state or state and costate vector and the new 
%               time tn.  
% 
%   tn          New time passed since the ground phase started. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    if func_style == 'half' 
        k1 = h*funcG(y,c); 
        k2 = h*funcG(y+k1/2,c); 
        k3 = h*funcG(y+k2/2,c); 
        k4 = h*funcG(y+k3,c); 
    elseif func_style == 'full' 
        k1 = h*fullfuncG(y,c); 
        k2 = h*fullfuncG(y+k1/2,c); 
        k3 = h*fullfuncG(y+k2/2,c); 
        k4 = h*fullfuncG(y+k3,c); 
    end 
    tn = tn+h; 
    yplus = y+(k1+2*k2+2*k3+k4)/6; 
end 
 
 
function dy = funcG(y,c) 
%========================================================================== 
% dy = funcG(y,c) 
%  
% This function contains the ground phase equations of motion for the 
% states.  It evaluates these given the state of the system. 
% 
% Inputs: 
%   y   6x1 state vector. 
% 
%   c   The model constants.  See rb_slip_sim for structure explanation. 
% 
% Outputs: 
%   dy  6x1 vector of the EOMs evaluated at state y.  
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    dy = [y(4);... 
 
          y(5);... 
 
          y(6);... 
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          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));... 
 
          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;... 
 
          c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*... 
          cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))]; 
end 
 
 
function dy = fullfuncG(y,c) 
%========================================================================== 
% dy = fullfuncG(y,c) 
%  
% This function contains the ground phase equations of motion for the 
% states and costates.  It evaluates these given the state of the system. 
% 
% Inputs: 
%   y   12x1 state and costate vector. 
% 
%   c   The model constants.  See rb_slip_sim for structure explanation. 
% 
% Outputs: 
%   dy  12x1 vector of the EOMs evaluated at state y.  
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    dy = [y(4);... 
 
          y(5);... 
 
          y(6);... 
 
          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));... 
 
          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;... 
 
          c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*... 
          cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)));... 
 
          1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-... 
          c.d*cos(y(3)))^2)^(3/2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(1)-c.d*... 
          sin(y(3)))-y(10)*(c.k)/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+... 
          (y(2)-c.d*cos(y(3)))^2)^(1/2)-1)+1/2*y(11)*(c.k)/(c.m)*(... 
          c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/... 
          2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(2)-c.d*cos(y(3)))+1/2*y(12)*... 
          (c.d)*(c.k)/(c.I)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*... 
          cos(y(3)))^2)^(3/2)*(2*y(1)-2*(c.d)*sin(y(3)))*(y(2)*sin(y(... 
          3))-y(1)*cos(y(3)))+y(12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-... 
          c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1)*cos(y(3));... 
 
          1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-... 
          c.d*cos(y(3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(3)))*(y(1)-c.d*... 
          sin(y(3)))-y(11)*(-1/2*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(... 
          3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(... 
          3)))*(y(2)-c.d*cos(y(3)))+c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(... 
          3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1))+1/2*y(12)*(c.d)*(... 
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          c.k)/(c.I)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(3/2)*(2*y(2)-2*(c.d)*cos(y(3)))*(y(2)*sin(y(3))-y(... 
          1)*cos(y(3)))-y(12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(... 
          y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(1/2)-1)*sin(y(3));... 
 
          1/2*y(10)*(c.k)/(c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-... 
          c.d*cos(y(3)))^2)^(3/2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(... 
          3))+2*(y(2)-c.d*cos(y(3)))*(c.d)*sin(y(3)))*(y(1)-c.d*sin(y(... 
          3)))+y(10)*(c.k)/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-... 
          c.d*cos(y(3)))^2)^(1/2)-1)*(c.d)*cos(y(3))-y(11)*(-1/2*(c.k)/... 
          (c.m)*(c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^... 
          2)^(3/2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(3))+2*(y(2)-... 
          c.d*cos(y(3)))*(c.d)*sin(y(3)))*(y(2)-c.d*cos(y(3)))+c.k/(... 
          c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^... 
          (1/2)-1)*(c.d)*sin(y(3)))+1/2*y(12)*(c.d)*(c.k)/(c.I)*(... 
          c.etao)/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2)^(3/... 
          2)*(-2*(y(1)-c.d*sin(y(3)))*(c.d)*cos(y(3))+2*(y(2)-c.d*cos(... 
          y(3)))*(c.d)*sin(y(3)))*(y(2)*sin(y(3))-y(1)*cos(y(3)))-y(... 
          12)*(c.d)*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-... 
          c.d*cos(y(3)))^2)^(1/2)-1)*(y(2)*cos(y(3))+y(1)*sin(y(3)));... 
 
          -y(7);... 
 
          -y(8);... 
 
          -y(9)]; 
end 
 
 

B.3 gc_newton 

The function gc_newton takes the system of nonlinear equations one step in the Newton direction.  

It decides the size of the step by making sure that the residual is reduced sufficiently by it.  The 

algorithm was inspired by [24]. 

function [Xp,Rp,lambda1] = gc_newton(dR,R,X,N,c) 
%========================================================================== 
% [Xp,Rp,lambda1] = gc_newton(dR,R,X,N,c) 
%  
% This function moves a system of nonlinear equations one step in the 
% Newton direction.  It decides how far to move in the step by ensuring 
% that the residual is decreased sufficiently by the step. 
% 
% Inputs: 
%   dR    Hessian matrix. 
% 
%   R     Old residual vector. 
% 
%   X     Old state vector 
% 
%   N     Number of collocation segments 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin of the control.  See collocation4 for structure 
%         explanation. 
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% 
% Outputs: 
%   Xp       New state vector 
% 
%   Rp       New residual vector 
% 
%   lambda1  Newton step size 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    g0      = R'*R/2; 
    gp0     = -2*g0; 
    alpha   = 1e-4; 
    M       = length(R); 
    [U,S,V] = svd(dR); 
    dRinv   = V*inv(S)*U'; 
    dX      = -dRinv*R; 
    Xp      = X+dX; 
    Rp      = residual8(Xp,N,c); 
    g1      = Rp'*Rp/2; 
    lambda1 = 1; 
    if g1 > g0-2*alpha*g0 
        lambda2 = lambda1; 
        lambda1 = min(max(-gp0/(2*(g1+g0)),0.1*lambda2),0.5*lambda2); 
        Xp      = X+lambda1*dX; 
        Rp      = residual8(Xp,N,c); 
        g2      = g1; 
        g1      = Rp'*Rp/2; 
        while g1 > g0-2*alpha*lambda1*g0 && lambda1 >= 1e-3 
            a = 1/(lambda1-lambda2)*[1/lambda1^2, -1/lambda2^2;... 
                         -lambda2/lambda1^2, lambda1/lambda2^2]*... 
                         [g1-gp0*lambda1-g0; g2-gp0*lambda2-g0];         
            lambda2 = lambda1; 
            lambda1 = min(max((-a(2)+sqrt(a(2)^2-3*a(1)*gp0))/(3*a(1)),... 
                                                 0.1*lambda2),0.5*lambda2); 
            Xp      = X+lambda1*dX; 
            Rp      = residual8(Xp,N,c); 
            g2      = g1; 
            g1      = Rp'*Rp/2; 
        end 
    end 
end 
 
 

B.4 Residual and Hessian Codes 

The residual and Hessian codes were too long to include in this text.  Since they were both written 

by a series of MATLAB codes those were included in appendix A. 
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APPENDIX C  

Simulation Code 

A general simulation code was written which could simulate with model predictive control, with 

fixed leg angle touchdown, or with a leg angle prescribed by a vector.  It could run for a prescribed 

number of steps or until a certain criterion was met.  Various front ends were written to accomplish 

all the tests that were done in this work. 

C.1 rb_slip_sim 

The function rb_slip_sim is the general simulation code.  It works for both the point mass SLIP and 

the rigid body SLIP. 

function [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c) 
%========================================================================== 
% [v,vlo,vtd,return_status] = rb_slip_sim(yo,fp,sp,c) 
%  
% This function simulates the rigid body SLIP. 
% 
% Inputs: 
%   yo    6x1 lift off conditions vector 
%         [x; z; theta; xdot; zdot; thetadot]; 
% 
%   sp    Simulation parameter structure containting: 
%           sp.control          Switches control on and off (1/0) 
% 
%           sp.max_steps        The maximum number of steps the system 
%                               takes before stopping. 
% 
%           sp.max_step_size  Maximum stepsize the simulation will take 
%     
%           sp.beta             Scalar or vector of leg angles 
% 
%           sp.beta_const       Determines if the leg angle should be held  
%                               fixed at sp.beta(1) for every stride or 
%                               change each step. 
% 
%           sp.end_criterion    Function handle for a function to determine 
%                               when to end the simulaiton  
% 
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%           sp.skip_flight_1    Switch to tell the simulation to skip the 
%                               first flight phase 
% 
%   c     The model constants.  These will stay constant throughout the 
%         applicatoin fo the control.  This is a structure containing: 
%           c.k       Spring constant 
% 
%           c.etao    Nominal leg length 
% 
%           c.d       The distance above the center of mass at which the 
%                     spring is attached 
% 
%           c.m       The mass of the body 
% 
%           c.I       Iyy moment of inertia 
% 
%           c.g       Gravitational constant 
% 
%           c.vo      The speed of the body at initial lift off 
% 
%           c.yfix    The desired lift off conditions 
% 
%           c.yo      The initial lift off conditions 
% 
%           c.q       The weighting vector 
%            
%           c.nondim  6x1 vector of nondimensionalization parameters for 
%                     the states 
% 
% Outputs: 
%   v              Vector of structures containing system data for a each 
%                  time step.  The elements of these structures are: 
%                    v.t    Time of data 
% 
%                    v.y    6x1 vector of states at time v.t  
% 
%                    v.fp   2x1 vector giving the x and z position of the 
%                           foot 
% 
%   vtd            Vector of structures containing system data at each  
%                  touchdown condition. This structures has the same  
%                  elements as v. 
% 
%   vlo            Vector of structures containing system data at each lift 
%                  off condition. This structures has the same  
%                  elements as v. 
% 
%   return_status  How the simulaiton ended. (returned, unretruned, fallen) 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global beta_now tc_now i controlled nv returned unreturned fallen; 
  % Handy constants 
    returned   = 1; 
    unreturned = 2; 
    fallen     = 3; 
  % if c is not specified use default 
    if isnumeric(c) 
        clear c 
        global c 
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        c.k     = 20;       %spring constant 
        c.etao  = 0.015; %nominal leg length 
        c.d     = 0.004; %distance of leg attachment point from COM 0.004 
        c.m     = 0.0025; %mass 
        c.I     = 1.86e-7; %moment of inertia Iyy 1.86e-7 
        c.g     = 9.81;     %gravitational acceleration 
        c.yfix  = [0.0059; -0.0107; 0.0051; 0.1289; -0.0984; -0.5056]; 
        c.q     = [0; 4; 8; 1; 3; 7]; 
        c.max_period = 0.5; 
    end 
  % If sp is not specified, use default 
    if isnumeric(sp) 
        clear sp 
        sp.control       = 1;                 %use controler y/n? 
        sp.max_steps     = 10;                %number of steps to take 
        sp.max_step_size = 1e-4;              %max step size 
        sp.beta          = [1.2, 1.2, 1.2];   %leg angles if uncontroled 
        sp.beta_const    = 1;                 %vary leg angle? 
        sp.end_criterion = @default_end_criterion; 
        sp.skip_flight_1 = 0; 
    end 
    controlled = sp.control; 
  % Set simulation options 
    ground_options = odeset('Events',@lift_off_event,'Refine',2,... 
                            'AbsTol',1e-12,'RelTol',1e-12,'InitialStep',... 
                            1e-15,'MaxStep',sp.max_step_size); 
    flight_options = odeset('Events',@touch_down_event,'Refine',2,... 
                            'AbsTol',1e-12,'RelTol',1e-12,'InitialStep',... 
                            1e-15,'MaxStep',sp.max_step_size); 
 
    i     = 1;     
  % State recording variables 
    v.y   = yo; 
    v.t   = 0; 
    vlo   = v;     
    return_status = unreturned; 
    keep_it_up    = 1; 
  % Simulate stride if  
    while(keep_it_up) 
        if sp.control 
            [beta(i),tc] = collocation4(vlo(i).y,c); 
        else 
            if sp.beta_const 
                beta(i)  = sp.beta(1); 
            else 
                beta(i)  = sp.beta(i); 
            end 
          % tc not 0 
            tc           = 1; 
        end 
      % Foot placement point 
        vlo(i,1).fp = [vlo(i).y(1)-c.d*sin(vlo(i).y(3))+... 
                       c.etao*cos(beta(i));... 
                       vlo(i).y(2)-c.d*cos(vlo(i).y(3))+... 
                       c.etao*sin(beta(i))]; 
        v(length(v)).fp = vlo(i,1).fp; 
      % If there is a flight phase 
        if (tc > 0)&~(sp.skip_flight_1&i==1) 
          % Set global variables 
            beta_now = beta(i); 
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            tc_now   = tc; 
          % Flight Phase 
            clear vadd 
            vadd     = flight_phase(vlo(i),beta(i),c,flight_options); 
            vtd(i,1) = vadd(length(vadd)); 
            v        = [v;vadd]; 
        else 
      % If there is no flight phase 
            vtd(i,1) = vlo(i); 
        end 
        if((vtd(i).y(2)>=0)&(vtd(i).y(5)>0)) 
                return_status = fallen; 
        else 
          % Ground Phase 
            clear vadd 
            vadd   = ground_phase(vtd(i),c,ground_options); 
            v      = [v;vadd]; 
            i = i+1; 
            vlo(i,1)  = vadd(length(vadd)); 
        end 
      % Decide if simulation should stop running. 
        [keep_it_up,return_status] = ... 
                            sp.end_criterion(v,vlo,vtd,sp,c,return_status); 
    end 
end 
 
function v = flight_phase(vlo,beta,c,flight_options) 
%========================================================================== 
% function v = flight_phase(vlo,beta,c,flight_options) 
%  
% This function runs flight phase simulations. 
% 
% Inputs: 
%   vlo             Structure containing system data at the lift off 
%                   condition. See rb_slip_sim for structure explanation.           
% 
%   beta            Leg touchdown angle. 
% 
%   c               Structure model constants.  See rb_slip_sim for 
%                   structure info. 
% 
%   flight_options  Vector of settings for ode45.  See odeset of more info. 
% 
% Outputs: 
%   v               Vector of structures containing system data for each 
%                   time step in the current flight phase.  See rb_slip_sim  
%                   for structure explanation. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    tspan = [0 c.max_period]; 
    [t,y] = ode45(@flight_dynamics,tspan,vlo.y,flight_options); 
    for j = 1:length(t)-1 
        v(j,1).y  = y(j+1,:).'; 
        v(j,1).t  = t(j+1,:)+vlo.t; 
        v(j,1).fp = [v(j).y(1)-c.d*sin(v(j).y(3))+c.etao*cos(beta);... 
                     v(j).y(2)-c.d*cos(v(j).y(3))+c.etao*sin(beta)]; 
    end 
end 
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function y = flight_dynamics(t,x) 
%========================================================================== 
% function y = flight_dynamics(t,x) 
%  
% This function calculates flight dynamics from the state. 
% 
% Inputs: 
%   t   Time.          
% 
%   x   State vector at time t. 
% 
% Outputs: 
%   y   Derivative of the state vector calculated with the equations of 
%       motion. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c; 
    y(1,:)  = x(4); %x 
    y(2,:)  = x(5); %z 
    y(3,:)  = x(6); %theta 
     
    y(4,:)  = 0;    %xdot 
    y(5,:)  = c.g;  %zdot 
    y(6,:)  = 0;    %thetadot 
end 
 
function v = ground_phase(vtd,c,ground_options) 
%========================================================================== 
% function v = ground_phase(vtd,c,ground_options) 
%  
% This function runs ground phase simulations. 
% 
% Inputs: 
%   vtd             Structure containing system data at the touchdown 
%                   condition. See rb_slip_sim for structure explanation. 
% 
%   c               Structure model constants.  See rb_slip_sim for 
%                   structure info. 
% 
%   ground_options  Vector of settings for ode45.  See odeset of more info. 
% 
% Outputs: 
%   v               Vector of structures containing system data for each 
%                   time step in the current ground phase.  See rb_slip_sim  
%                   for structure explanation. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    vtd.y(1) = vtd.y(1)-vtd.fp(1); 
    tspan   = [vtd.t vtd.t+c.max_period]; 
    [t,y] = ode45(@ground_dynamics, tspan, vtd.y, ground_options); 
    for j=1:length(t)-1 
        v(j,1).y    = y(j+1,:).'; 
        v(j,1).y(1) = y(j+1,1)+vtd.fp(1); 
        v(j,1).t    = t(j+1); 
        v(j,1).fp   = [vtd.fp(1);0]; 
    end 
end 
 



 
119

function dy = ground_dynamics(t,y) 
%========================================================================== 
% function dy = ground_dynamics(t,y) 
%  
% This function calculates ground phase dynamics from the state. 
% 
% Inputs: 
%   t   Time.          
% 
%   y   State vector at time t. 
% 
% Outputs: 
%   dy  Derivative of the state vector calculated with the equations of 
%       motion. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c; 
    dy = [y(4);... 
 
          y(5);... 
 
          y(6);... 
 
          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(1)-c.d*sin(y(3)));... 
 
          c.k/(c.m)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(... 
          3)))^2)^(1/2)-1)*(y(2)-c.d*cos(y(3)))+c.g;... 
 
          c.d*(c.k)/(c.I)*(c.etao/((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*... 
          cos(y(3)))^2)^(1/2)-1)*(y(2)*sin(y(3))-y(1)*cos(y(3)))]; 
end 
 
function [value,isterminal,direction] = touch_down_event(t,y) 
%========================================================================== 
% function [value,isterminal,direction] = touch_down_event(t,y) 
%  
% This function determines when the flight phase should end. 
% 
% Inputs: 
%   t   Time.          
% 
%   y   State vector at time t. 
% 
% Outputs: 
%   value       Vector of values.  When a value is 0, an event occurs. 
% 
%   isterminal  Vector of switches to tell if an event ends the simulation 
%               or not. 
% 
%   direction   Vector of switches.  For direction = -1 the derivative of a  
%               0 value must be nevative for the event to trigger.  For a 
%               direction = 1 the derivative of a 0 value must be positive 
%               for the event to trigger.  For a direction = 0 the event 
%               can be triggered from any direction. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c beta_now tc_now i controlled 
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  % Detect touchdown 
    value(1) = (y(2)-c.d*cos(y(3))+c.etao*sin(beta_now)); 
  % Detect fall 
    value(2) = (y(2)-c.d*cos(y(3))); 
  % Make sure a fall is not missed 
    if value(2)>0 
        value(2) = sin(1e4*t); 
    end 
  % x as measured in the ground phase 
    x = -c.etao*cos(beta_now); 
    if controlled 
      % If the system is controlled, the flight phase can end any time the 
      % foot is on the ground and the leg is entering compression. 
        dervy   = (x-c.d*sin(y(3)))*(y(4)-c.d*cos(y(3))*y(6))+... 
                  (y(2)-c.d*cos(y(3)))*(y(5)+c.d*sin(y(3))*y(6)); 
    else 
      % If there is a fixed angle reset policy, the leg touches down only 
      % when the foot is on the ground and has a vertical velocity 
      % downward.  
        dervy   = -y(5)-c.d*sin(y(3))*y(6); 
    end 
  % If the system is controlled and there is more than one point in time 
  % the foot could touch down at the angle specified, the control system 
  % deciedes when the leg should touch down. 
    if dervy <=0 & (~controlled|(t>=.8*tc_now & t<=1.2*tc_now)) 
        isterminal = [1,1];   % stop the integration 
    else 
        isterminal = [0,1]; 
    end 
    direction  = [0,0]; 
end 
 
function [value,isterminal,direction] = lift_off_event(t,y) 
%========================================================================== 
% [value,isterminal,direction] = lift_off_event(t,y) 
%  
% This function determines when the ground phase should end. 
% 
% Inputs: 
%   t   Time.          
% 
%   y   State vector at time t. 
% 
% Outputs: 
%   value       Vector of values.  When a value is 0, an event occurs. 
% 
%   isterminal  Vector of switches to tell if an event ends the simulation 
%               or not. 
% 
%   direction   Vector of switches.  See touch_down_event for details. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c; 
  % Spring length during the ground phase 
    eta     = sqrt((y(1)-c.d*sin(y(3)))^2+(y(2)-c.d*cos(y(3)))^2); 
  % Detect lift off 
    value(1,1) = (c.etao-eta);   
  % Detect fall 
    value(2,1) = (y(2)-c.d*cos(y(3)));   
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  % Make sure a fall is not missed 
    if value(2)>0 
        value(2) = sin(1e4*t); 
    end 
    isterminal = [1;1];   % stop the integration 
    direction = [-1;0]; 
end 
 
 

C.2 Front End Codes 

The simulation code is very general and therefore requires an enormous amount of input.  It also 

outputs almost every piece of data from the simulation.  In order to organize the inputs and outputs 

to and from the rb_slip_sim front end codes were developed as an interface. 

C.2.1 auto_rb_fixed_point_find1 

The function auto_rb_fixed_point_find1 finds rigid body fixed points in a specified gait family 

using a similar point mass fixed point as a starting point.  It should be started in the middle of the 

gait family and run in either direction for best results. 

function auto_rb_fixed_point_find1 
%========================================================================== 
% auto_rb_fixed_point_find1 
%  
% This function works with rb_slip_sim to find rigid body fixed points 
% using similar point mass fixed points as initial guesses. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    clear all 
    global c sp delta xlo 
    format long 
  % Model Parameters 
    c.k     = 20;       %spring constant 
    c.etao  = 0.015; %nominal leg length 
    c.d     = 0.004; %distance of leg attachment point from COM 0.004 
    c.m     = 0.0025; %mass 
    c.I     = 1.86e-7; %moment of inertia Iyy 1.86e-7 
    c.g     = 9.81;     %gravitational acceleration            
    c.yfix  = [0;0;0;0;0;0]; 
    c.q     = [0; 0; 0; 0; 0; 0]; 
    c.max_period = 0.5; 
     
  % Simulation Parameters 
    sp.control       = 0; 
    sp.max_step_size = 1e-4; 
    sp.beta          = 1.2; 
    sp.beta_const    = 1; 
    sp.end_criterion = @default_end_criterion; 
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  % Load point mass fixed points.   
    load(['FixedPoints/fproachparamb' num2str(sp.beta*100)]) 
     
    for n = 51:101 
        delta = -fvtot(n,2); 
                    % [zo ;vo ; thetao; thetadoto]     
        thetao  = 0; 
        if n==51 
               % [vo ; thetao; thetadoto] 
            x0 = [fvtot(n,1);thetao; 0] 
        else 
            x0 = [fvtot(n,1);fvtot_rb(n+1,4:5)'] 
        end 
        sp.skip_flight_1 = 1; 
        sp.max_steps     = 2; 
        options = optimset('MaxFunEvals',10e7,'TolFun',10e-15); 
        [xp,fval] = fsolve(@fsolve_io,x0,options) 
        F = fsolve_io(xp) 
        sp.skip_flight_1 = 0; 
        sp.max_steps     = 1; 
        xro = [xlo(1:2);xlo(4:5)] 
        [xrf,fval] = fsolve(@fsolve_io,xro,options) 
               %[zo; vo; delta; thetao; thetadoto] 
        xlop = [xrf(1:2);-delta;xrf(3:4)]; 
        fvtot_rb(n,:) = xlop'; 
        save(['FixedPoints/fproachparamb' num2str(beta*100)],'fvtot_rb',... 
              '-append') 
    end 
end 
 
function F = fsolve_io(x) 
%========================================================================== 
% F = fsolve_io(x) 
%  
% This function interfaces between the simulation and the fsolve routine. 
% 
% Inputs: 
%   x   The states that are being varied by fsolve. 
% 
% Outputs: 
%   F   The difference between the beginning state and the end state. 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c sp delta xlo 
    if length(x)==3 
        %[vo ; thetao; thetadoto] 
        zstart = -0.015*sin(sp.beta)+0.004*cos(x(2)); 
        yo     = [0;zstart;x(2);x(1)*cos(delta);-x(1)*sin(delta);x(3)]; 
    elseif length(x)==4 
        yo    = [0;x(1);x(3);x(2)*cos(delta);-x(2)*sin(delta);x(4)]; 
    else 
        yo    = [0;x(1);x(4);x(2)*cos(x(3));-x(2)*sin(x(3));x(5)]; 
    end 
    [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c); 
    vtyp = 0.3; 
    if length(x)==3 
        xlo  = [vlo(2,1).y(2); sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);... 
                atan(-
vlo(2,1).y(5)/vlo(2,1).y(4));vlo(2,1).y(3);vlo(2,1).y(6)]; 
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        F    = [zstart-vtd(2,1).y(2);... 
                x(1)-sqrt(vtd(2,1).y(4)^2+vtd(2,1).y(5)^2);... 
                atan(-vtd(2,1).y(5)/vtd(2,1).y(4))-delta;... 
                x(2)-vtd(2,1).y(3); x(3)-vtd(2,1).y(6)]... 
                .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp]; 
        post = [[zstart;x(1);delta;x(2:3)],F] 
    elseif length(x)==4 
        if i<2 
            F    = [x(1)-vtd(1,1).y(2);... 
                    x(2)-sqrt(vtd(1,1).y(4)^2+vtd(1,1).y(5)^2);... 
                    atan(-vtd(1,1).y(5)/vtd(1,1).y(4))+delta;... 
                    x(3)-vtd(1,1).y(3); x(4)-vtd(1,1).y(6)]... 
                    .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp]; 
        else 
            F    = [x(1)-vlo(2,1).y(2);... 
                    x(2)-sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);... 
                    atan(-vlo(2,1).y(5)/vlo(2,1).y(4))+delta;... 
                    x(3)-vlo(2,1).y(3); x(4)-vlo(2,1).y(6)]... 
                    .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp]; 
        end 
        post = [[x(1:2);delta;x(3:4)],F] 
    else 
        vend = vlo(2,1); 
        F    = [x(1)-vlo(2,1).y(2);... 
                x(2)-sqrt(vlo(2,1).y(4)^2+vlo(2,1).y(5)^2);... 
                atan(-vlo(2,1).y(5)/vlo(2,1).y(4))-x(3);... 
                x(4)-vlo(2,1).y(3); x(5)-vlo(2,1).y(6)]... 
                .*[1/c.etao;1/vtyp;1;1;c.etao/vtyp]; 
         post = [x,F] 
    end 
end 
 
 

C.2.2 rb_perterbation_return1 

The function rb_perterbation_return1 is a front end for rb_slip_sim which allows the user to observe 

system behavior at a specified rigid body fixed point or perturbed from it in a specified fashion.  A 

similar code was used to observe the point mass system in the same way. 

function rb_perterbation_return1 
%========================================================================== 
% rb_perterbation_return 
%  
% This function is a front end for rb_slip_sim which allows for general 
% observation of system behavior with control and without. 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    clear all 
    global c 
    beta = 1.2; 
    load(['FixedPoints/fproachparamb' num2str(beta*100)]) 
    format long 
    %[v delta theta thetadot] 
    n      = 51 
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    pstate = 3  
                % [zo;vo;deltao;theato,thetadoto] 
    fp          = fvtot_rb(n,:); 
    pt          = 0.3; 
    so          = fp;  
    so(pstate)  = fp(pstate)+pt 
  % Convert from polar velocity to rectangular 
    yo          = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)]; 
     
  % Model Parameters 
    c.k     = 20;       %spring constant 
    c.etao  = 0.015; %nominal leg length 
    c.d     = 0.004; %distance of leg attachment point from COM 0.004 
    c.m     = 0.0025; %mass 
    c.I     = 1.86e-7; %moment of inertia Iyy 1.86e-7 
    c.g     = 9.81;     %gravitational acceleration            
    c.yfix  = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)]; 
    c.q     = [0; 4; 8; 1; 3; 7]; 
    c.max_period = 0.5; 
     
  % Simulation Parameters 
    sp.control       = 1; 
    sp.max_steps     = 2; 
    sp.max_step_size = 1e-4; 
    sp.beta          = [1.2, 1.2, 1.2]; 
    sp.beta_const    = 1; 
    sp.end_criterion = @default_end_criterion; 
    sp.skip_flight_1 = 0; 
   
  % Simulation 
    [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c); 
  % Animation 
    Elipse2d(v,c); 
  % Plot 
    Y   = [v.y]; 
    Ylo = [vlo.y]; 
    Ytd = [vtd.y]; 
    figure 
    subplot(5,1,1) 
    plot([vlo.t],Ylo(2,:),'b.') 
    set(gca,'YDir','reverse'); 
    ylabel('z') 
    subplot(5,1,2) 
    plot([vlo.t],Ylo(3,:),'b.') 
    ylabel('\theta') 
    subplot(5,1,3) 
    plot([vlo.t],Ylo(4,:),'b.') 
    ylabel('xdot') 
    subplot(5,1,4) 
    plot([vlo.t],Ylo(5,:),'b.') 
    set(gca,'YDir','reverse'); 
    ylabel('zdot') 
    subplot(5,1,5) 
    plot([vlo.t],Ylo(6,:),'b.') 
    xlabel('time') 
    ylabel('\thetadot') 
end 
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C.2.3 rb_eig_fam1 

The function rb_eig_fam1 finds the eigenvalues of the Poincaré map linearized about fixed points of 

a specified gait family for the rigid body SLIP.  A similar code was used to find eigenvalues for the 

point mass SLIP. 

function rb_eig_fam1(book_beta,start_over,timed) 
%========================================================================== 
% rb_eig_fam1(book_beta,start_over,timed) 
%  
% This function calculates the eigenvalues of the Poincare map linearized 
% about the fixed points of a gait family and records them in a .mat file. 
% 
% Inputs: 
%   beta_book   An integer between 110 and 130 which is 100 times the value 
%               of beta associated with the gait family to be tested. 
% 
%   start_over  Start from the last saved set of eigenvalues (0) or start 
%               from the begining (1) 
% 
%   timed       Stop calculations before computer lab opens in the morning 
%               (1) or continue calculations regardless of the time (0). 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global gait_family 
    %load fixed points of beta from file 
    load(['FixedPoints/fproachparamb' num2str(book_beta)]) 
    beta = book_beta/100; 
    gait_family = beta; 
    if start_over 
        clear eigs_for_col4_q_4_5_1_3_3 
    end 
    format long 
    %[v delta theta thetadot] 
    global pt 
    pt = 10^-7; 
    min_mult = 1e-2; 
    if exist('eigs_for_col4_q_4_5_1_3_3') 
       size_of_eigs = size(eigs_for_col4_q_4_5_1_3_3); 
       starti = size_of_eigs(1)+1; 
    else 
        i = 1; 
        fp = fvtot_rb(i,:) 
        eigs_for_col4_q_4_5_1_3_3(i,:) = hocd_eig(fp,pt,min_mult,i); 
        starti = i+1; 
    end 
    for i = starti:length(fvtot_rb) 
        fp = fvtot_rb(i,:); 
        eigs_out         = hocd_eig(fp,pt,min_mult,i); 
        for j =1:5 
            [Y,I] = min(abs(eigs_out(:)-eigs_for_col4_q_4_5_1_3_3(i-1,j))); 
            eigs_for_col4_q_4_5_1_3_3(i,j) = eigs_out(I(1)); 
            eigs_out(I(1)) = inf; 
        end 
        save(['FixedPoints/fproachparamb' num2str(book_beta)],... 



 
126

              'eigs_for_col4_q_4_5_1_3_3','-append') 
        keyboard 
        time = clock; 
        if(timed & ((time(4)>=6 & time(5)>0) & (time(4)<=20 & time(5)>0))) 
            exit 
        end 
    end 
    exit 
end 
 
 
function eigs = hocd_eig(fp,pt,min_mult,j) 
%========================================================================== 
% eigs = hocd_eig(fp,pt,min_mult,j) 
%  
% This function calculates eigenvalues of the Poincare map linearized about 
% a particular fixed point. 
% 
% Inputs: 
%   fp        The fixed point in [z,v,delta,theta,thetadot] form. 
% 
%   pt        The amount of perturbation to use for the difference formula. 
% 
%   min_mult  The minimum scaleing to use on the perturbation. 
% 
%   j         The index of the fixed point. 
% 
% Outputs: 
%   eigs      The eigenvalues of the linearized Poincare map. 
% 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    controlled = 1; 
    for i = 1:5 
        if abs(fp(i)) < min_mult 
            pts     = pt*min_mult; 
        else 
            pts     = pt*abs(fp(i)); 
        end 
        so      = fp; 
        so(i)   = fp(i)-2*pts; 
        fprintf(['Calculation for fp %d, perterbing state %d, minus 2pt'... 
                 '\n'],j,i) 
        sfmm    = Vertical_Plane_Fixed_Point_Test(so,fp,controlled); 
        so(i)   = fp(i)-pts; 
        fprintf(['Calculation for fp %d, perterbing state %d, minus pt'... 
                 '\n'],j,i) 
        sfm     = Vertical_Plane_Fixed_Point_Test(so,fp,controlled); 
        so(i)   = fp(i)+pts; 
        fprintf(['Calculation for fp %d, perterbing state %d, plus pt'... 
                 '\n'],j,i) 
        sfp     = Vertical_Plane_Fixed_Point_Test(so,fp,controlled); 
        so(i)   = fp(i)+2*pts; 
        fprintf(['Calculation for fp %d, perterbing state %d, plus 2pt'... 
                 '\n'],j,i) 
        sfpp    = Vertical_Plane_Fixed_Point_Test(so,fp,controlled);         
        A(:,i)  = (sfmm-8*sfm+8*sfp-sfpp)./(12*pts); 
    end 
    eigs = eig(A)' 
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end 
 
 
function sf = Vertical_Plane_Fixed_Point_Test(so,fp,control) 
%========================================================================== 
% sf = Vertical_Plane_Fixed_Point_Test(so,fp,control) 
%  
% This function starts a one stride simulation with the given initial 
% condtions and retuns the results in polar velocity form. 
% 
% Inputs: 
%   so        The initial conditions in [z,v,delta,theta,thetadot] form. 
% 
%   fp        The fixed point in [z,v,delta,theta,thetadot] form. 
% 
%   control   Control on/off (1/0) 
% 
% Outputs: 
%   sf        The final state in [z,v,delta,theta,thetadot] form. 
% 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c gait_family 
  % Model Parameters 
    c.k     = 20;       %spring constant 
    c.etao  = 0.015; %nominal leg length 
    c.d     = 0.004; %distance of leg attachment point from COM 0.004 
    c.m     = 0.0025; %mass 
    c.I     = 1.86e-7; %moment of inertia Iyy 1.86e-7 
    c.g     = 9.81;     %gravitational acceleration            
    c.yfix  = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)]; 
    c.q     = [0; 4; 8; 1; 3; 7]; 
    c.max_period = 0.5; 
     
  % Simulation Parameters 
    sp.control       = control; 
    sp.max_steps     = 1; 
    sp.max_step_size = 1e-4; 
    sp.beta          = gait_family; 
    sp.beta_const    = 1; 
    sp.end_criterion = @default_end_criterion; 
    sp.skip_flight_1 = 0; 
     
    yo = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)]; 
    [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c); 
    j = length(vlo); 
    sf(:,1) = [vlo(j).y(2);sqrt(vlo(j).y(4)^2+vlo(j).y(5)^2);... 
                   atan(-vlo(j).y(5)/vlo(j).y(4));vlo(j).y(3);vlo(j).y(6)]; 
end 
 
 

C.2.4 rb_auto_perterbation_return1 

The function rb_auto_perterbation_return1 systematically tests to see if, for a given rigid body fixed 

point, the control scheme can return the system to the fixed point if the velocity angle is perturbed 
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by an angle between 31
32
π

−  and π .  A similar code was used to test the perturbation 

returnability for the point mass case. 

function rb_auto_perterbation_return1(n,start_over,timed) 
%========================================================================== 
% rb_auto_perterbation_return1(n,start_over,timed) 
%  
% Test the control system to see if it can return the system from various 
% large energy conservative perturbations. 
% 
% Inputs: 
%   n           The index number of the fixed point in a spacific gait 
%               family to be tested. 
% 
%   start_over  Start from the last saved perturbation (0) or start 
%               from the begining (1) 
% 
%   timed       Stop calculations before computer lab opens in the morning 
%               (1) or continue calculations regardless of the time (0). 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    beta = 1.2 
    format long 
    %[v delta theta thetadot] 
    pstate = 3 
    success = 1; 
    try 
        load(['FixedPoints/pert_ret_beta_',num2str(beta*100),'_n_',... 
              num2str(n)]) 
    catch 
        success = 0; 
    end 
    if (start_over==1 || ~success) 
        load(['FixedPoints/fproachparamb' num2str(beta*100)]) 
        %[zo;vo;deltao] 
        fp     = fvtot_rb(n,:); 
        starti = 1; 
    elseif (start_over == 0) 
        starti = size(return_for_col2G_q_4_5_1_3_3,1)+1; 
    else 
        starti = start_over 
    end 
    pt     = -31*pi/32:pi/32:pi; 
    if start_over > 1 
        lengthpt = start_over; 
    else 
        lengthpt = length(pt) 
    end 
    for i = starti:lengthpt 
        fprintf('Going from perterbation of %9.8g.\n',pt(i)); 
        so     = fp; 
        so(pstate)  = fp(pstate)+pt(i) 
        return_for_col2G_q_4_5_1_3_3(i,3) = pt(i); 
        [return_for_col2G_q_4_5_1_3_3(i,1),... 
         return_for_col2G_q_4_5_1_3_3(i,2)] =... 
                           Vertical_Plane_Fixed_Point_Test(so,fp,1,timed); 
        save(['FixedPoints/pert_ret_beta_',num2str(beta*100),... 
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             '_n_' num2str(n)],'return_for_col2G_q_4_5_1_3_3', 'fp',... 
             '-append') 
        time = clock; 
        if (timed & ((time(4)>=6 & time(5)>0) & (time(4)<=20 & time(5)>0))) 
           exit 
        end 
    end 
    if ((start_over <= 1) & (timed == 1)) 
        exit 
    end 
    %Centered difference for the rest of the fixed points. 
end 
 
function [return_status,i]... 
                     = Vertical_Plane_Fixed_Point_Test(so,fp,control,timed) 
%========================================================================== 
% [return_status,i] = Vertical_Plane_Fixed_Point_Test(so,fp,control,timed) 
%  
% This function starts simulations which determine if the system returned 
% to a fixed point, did not return to a fixed point, or just fell. 
% 
% Inputs: 
%   so        The initial conditions in [z,v,delta,theta,thetadot] form. 
% 
%   fp        The fixed point in [z,v,delta,theta,thetadot] form. 
% 
%   control   Control on/off (1/0) 
% 
%   timed     Stop calculations before computer lab opens in the morning 
%             (1) or continue calculations regardless of the time (0).  
% 
% Outputs: 
%   return_status  How the simulaiton ended. (returned, unretruned, fallen) 
% 
%   i              The number of steps the simulation took to do what ever 
%                  it did. 
%  
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global c 
  % Model Parameters 
    c.k     = 20;       %spring constant 
    c.etao  = 0.015; %nominal leg length 
    c.d     = 0.004; %distance of leg attachment point from COM 0.004 
    c.m     = 0.0025; %mass 
    c.I     = 1.86e-7; %moment of inertia Iyy 1.86e-7 
    c.g     = 9.81;     %gravitational acceleration            
    c.yfix  = [0;fp(1);fp(4);fp(2)*cos(fp(3));-fp(2)*sin(fp(3));fp(5)]; 
    c.q     = [0; 4; 8; 1; 3; 7]; 
    c.max_period = 0.5; 
     
  % Simulation Parameters 
    sp.control       = 1; 
    sp.max_steps     = 100; 
    sp.max_step_size = 1e-4; 
    sp.beta          = 1.2; 
    sp.beta_const    = 1; 
    sp.end_criterion = @perturbation_end_criterion; 
    sp.skip_flight_1 = 0; 
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    yo = [0;so(1);so(4);so(2)*cos(so(3));-so(2)*sin(so(3));so(5)]; 
    [v,vlo,vtd,return_status] = rb_slip_sim(yo,sp,c); 
    i = length(vtd); 
end 
 
 

C.3 Simulation Ending Criterion 

For different applications the simulation needed to end for different reasons.  For this reason, 

functions were made to determine when the simulation should end based on the needs of the specific 

application.  Handles to these functions were passed to the simulation and it called them at the end 

of each stride. 

 

C.3.1 default_end_criterion 

The function default_end_criterion was used when the basic end criterion were needed.  The 

simulation was ended if the system fell or if the system had reached the maximum number of steps 

if was supposed to take. 

function [k_i_u,r_status] = default_end_criterion(v,vlo,vtd,sp,c,r_status) 
%========================================================================== 
% [k_i_u,r_status] = default_end_criterion(v,vlo,vtd,r_status) 
%  
% This function determines if the simulation should stop. 
% 
% Inputs: 
%   v         Vector of structures containing system data for a each 
%             time step.  See rb_slip_sim for structure explanation. 
% 
%   vlo       Vector of structures containing system data at each 
%             touchdown condition.  See rb_slip_sim for structure 
%             explanation.       
% 
%   vtd       Vector of structures containing system data at each lift 
%             off condition.  See rb_slip_sim for structure explanation. 
% 
%   sp        Simulation parameter structure.  See rb_slip_sim for 
%             structure info. 
% 
%   c         Structure model constants.  See rb_slip_sim for structure 
%             info. 
% 
%   r_status  Tells function if the system has fallen. 
% 
% Outputs: 
%   k_i_u     Tells the simulation to keep it up (1) or stop (0) 
% 
% r_status  How the simulaiton ended. (returned, unretruned, fallen) 
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% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global returned unreturned fallen 
    k_i_u = 1; 
    if r_status == fallen || length(vtd) >= sp.max_steps 
        k_i_u = 0; 
    end 
end 
 
 
 

C.3.2 perturbation_end_criterion 

The function perturbation_end_criterion was used as the end function when the simulation needed to 

end if the system returned to within 1% of the fixed point from a perturbation. 

function [k_i_u,r_status] = ... 
                        perturbation_end_criterion(v,vlo,vtd,sp,c,r_status) 
%========================================================================== 
% [k_i_u,r_status] = perturbation_end_criterion(v,vlo,vtd,sp,c,r_status) 
%  
% This function determines if the simulation should stop. 
% 
% Inputs: 
%   v         Vector of structures containing system data for a each 
%             time step.  See rb_slip_sim for structure explanation. 
% 
%   vlo       Vector of structures containing system data at each 
%             touchdown condition.  See rb_slip_sim for structure 
%             explanation.       
% 
%   vtd       Vector of structures containing system data at each lift 
%             off condition.  See rb_slip_sim for structure explanation. 
% 
%   sp        Simulation parameter structure.  See rb_slip_sim for 
%             structure info. 
% 
%   c         Structure model constants.  See rb_slip_sim for structure 
%             info. 
% 
%   r_status  Tells function if the system has fallen. 
% 
% Outputs: 
%   k_i_u     Tells the simulation to keep it up (1) or stop (0) 
% 
% r_status  How the simulaiton ended. (returned, unretruned, fallen) 
% 
% Cary R. Maunder, Oregon State University, 2006 
%========================================================================== 
    global returned unreturned fallen nv 
    k_i_u = 1; 
    if r_status == fallen || length(vtd) >= sp.max_steps 
        k_i_u = 0; 
    end 
    if r_status ~= fallen 
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        if exist('nv') 
            start = size(nv,1)+1; 
        else 
            start = 1; 
        end 
        for j=start:length(v) 
            nv(j,:) = [v(j).y(2),sqrt(v(j).y(4)^2+v(j).y(5)^2),... 
                atan(-v(j).y(5)/v(j).y(4)),v(j).y(3),v(j).y(6)]; 
        end 
        r_status = returned; 
        k_i_u = 0; 
        fp = [c.yfix(2),sqrt(c.yfix(4)^2+c.yfix(5)^2),... 
                atan(-c.yfix(5)/c.yfix(4)),c.yfix(3),c.yfix(6)] 
        for j=1:5 
            nvmag(j) = max(nv(:,j))-min(nv(:,j)); 
            enddif(j) = abs(nv(length(v),j)-fp(j)); 
            if enddif(j)>0.01*nvmag(j) 
                r_status = unreturned; 
                k_i_u = 1; 
            end 
        end 
        exc = nv(length(v),:) 
        enddif 
    end 
end 


