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A ~!ECHANIZATION OF QUINE 'S CANONICAL FORM 

CHAPTER I 

INTRODUCTION 

In recent years there haa been much attention brought 

to bear on the p;roblem ot repreaentat.ion o'f Boolean poly­

nomials. Many methods haye been devised ~or reducing a 

repreeentation ot a Boolean polynomial to .a minimal repre­

sentation. The problem ot determining a minimal represen­

tation or a polynomial 1s complicated by the tact that a 

minimal representation 1s not unique. 

The ambiguity or representation, coupled with the 

ever present specter or human error gives rise to the 

following problem. "Given two representations or a Boolean 

polynomial, how can one determine whether or not they are 

equivalent." 

The purpose ot this paper is to answer that problem 

and show a method whereby an electronic computer can be 

made to do all or the computational work. The first 

section of the paper will deal with notions fundamental 

to the understanding or the problem. The second section 

will present two aolut1ons. The first solution has been 

a tool of Boole~ Algebra since ita conception. The second 

solution is comparatively new, having been presented by 

Quine {2) 1n 1955. Also, 1n this section, there will be 
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an algebraic-induction proof of the fact that the second 

solution is• indeed• a solution. 

The third section concerns itself with the mechani­

zation of the aeoond solution, while the fourth sect ion 

contains examples of the mechanization process. 



CHAPTER II 

SOME FUNDAMEN'rAL PROPERTIES OF BOOLEAN VARIABLES 

Before proceeding to the problem at hand, it will be 

necessary to define some basic terms. 

Def'in1t1on 1. 

A variable a1 l.s '- B001ean variable 1ft it may assume 

only the BOOlean values o or 1, 

Definition 2. ' 

Let s be a set or Boolean variables and let aj be an 

element or s, We sa;r that a is an independent Boolean3 
variable, relative to s, itt aJ ma.:r assume 0 and 1 values 

independently ot the "talues assumed by any other elements 

of S, 

Definition 3. 

Let a.1 be an independent Boolean variable. We shall 

introduce the Boolean variable &3, such that 1t a,J a.s.sumes 

the value 1 then ij assumes the value 0 and vioe versa. 

The variable i 'J is called the dual of a J, 

Throughout the remainder of this paper we shall use 

. the term "independent variable" to ~note the term "1nde­

\ • 1 pendent Boolean variable". 

Definition 4. 

A Boolean monomial is an independent variable or its 

dual., or a product or independent variables or or a set 



or independent variables and a eet ot duals ot other 

independent variables. 

Definition 5. 

A representation ot a Boola~ polynomial is the 

Boolean constant o, or a sum ot Boolean monomials. 

Definition 6. 

Tw~ polynomi~ls 1n the same 1ndependent Boolean vari• 

ables are equal if they have t~e same value tor every set 

ot values or the independent variables, 

It is here that an interesting logical point arises, 

It is not difficult to establish that tor every represen­

tation l? of a Boolean polynomial 1n n independent variables 

there exists an equivalence class (P) or representations 

equal to P. To avoid ambiguity 1n any discussion concern­

ing Boolean polynomials we Shall adopt the following con­

vention. When we speak or a polynomial, we mean an equi­

valence class ot equal Boolean variables. When we speak 

ot a representation or a polynomial, we mean an arbitrary 

element or the equivalence class. 

Notation: 

The product ot the two Boolean variables A and B is 

represented by the symbol AB. 

The sum or two Boolean var1abl.ea A and B is repre­

sented by the symbol A + B. 

http:var1abl.ea
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Definition 7. 

If A, B, and a are three Boolean T&riables such that 

A::: BC 

then A is less than ·or equal to B (_A. :s B, B ~ ~) and A is 

less than or equal to C (A ~ o, C ~ A). 1v · _, , 

Def'1nit1on .8. 

It A, B, c,_and D are tour Boolean variables and a 

1s an independent Boolean variable suon that 

A = ca. 
and 

B = Di 

then the variable CD is called the consensus or A and B. 

Definition 9. 

Multiplication and addition or Boolean variables are 

defined by the following tables. 
,
• • 1 

1 1 

0 0 

~ 
0 

0 

0 

• 1 0 

1 1 1 

0 1 o. 

Let A, B, and 0 be any Boolean variables. On the 

basis of the foregoing def'1n1t1ons the validity of the 

following identities is easily shown. 



A+A=A AA. ::: A 

A+B=B+A 

A + (B+O) ::: (A+B) + C A{BC) = (AB)C 

1 +A::: 1 

0-+A::::A 

(A+BC) = (A+B) (A+C) 

Further. 1f a 1s an independent Boolean variable. we 

have, 

a • -a= 1 ai =0 

Due to the s1mpl1c1t·y ot the proots we will. omit them. 

we now proceed to prove somt len~mas that will be ot 

use 1n our 1nvest1gat1on. 

Lemma 1.1. 

The relation (~) given 1n Def1n1~1on 1 partially 

orders any set or Boolean variables. 

Proof . 

We have 

A= AA, 

hence, 

A>- A. 

Assume ths.t 

A>B (AC :::- B) 

and 

B>A (BD =A).-
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Then, 

AB =BDB =BBD =BD =A 

and 

AB = AAC = AO :: B 

but 

A= AB = B. 

Hence 

A= B. 

Let A, B, and 0 be three Boolean v~iables such that 

A>B (AE = B)-
and 

B~C (BD:: C) 

This gives us 

AED = 0 

and 

A:>- O. 

Lemma 1.2.. 

Let P be a representation or a Boolean polynomial, 

and A and B be any BOolean mononomials. Then 

P • A + AB = P + A. 

Proor. 

P + A + AB =P + A(l+B) 

and 
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P + A(l+B) =P + A. 

Thus 

P + A + AB :: P + A. 

we see rrom the above lemma, that it A and c are two 

monomia1s or a representation auch that A ~ c then the 

monomial C mar be deleted trom the representation without 

altertng the polynomial. 

Lemma 1.3. 

Let P be a representation ot a Boolean polynomial and 

let aa and ~i be two Boolean monomials, a being an indepen... 

dent variable. Then 

P + aa + 13i =P + aa + ~i + al3. 

Proor. 

P + aa + 13i + a~ =P + csa + ~i + (a+'i) a.l3 

and 

P + aa + 13i + (a+'i)a~ =P + aa + ~i + acxP + i<~~. 

But 

ua > aa~-
and 

On the basis ot lemma 1.2 we may delete the two 

monomials aa~ and ia~ rrom the representation 

P + aa + ~a + aal3 + iu~ obtaining an equiTalent representa­

tion P + aa + pi; hence, 
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P + aa + J'i =P + a& • t)i + a~. 

On the basis of this lemma, it aa and ~i are monomials 

ot a representation ot a Boolean polynomial (P), we may add 

their consensus a~ without changing the polynomial. 

This concludes our discussion ot elementary pro~erties 

ot Boolean functions. In the next section we consider two 

solutions to the problem or representation ot Boolean pol~· 

nom1ala. 
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CHAPTER III 

BOOLEAN CANONICAL FORMS 

We now consider the problem or determining ~en two 

representations are elements or the same equiyalence class. 

What we would like to tind 1s a aimple algorithm which . . . 

when applied to all elements of an equivalence class gives
' . . 

the same element or the equivalence class. The represen­

tation common to all elements or the equivalence class we 

call a Boolean canonical form. 

A well known Boolean canonical form is derived from 

the truth table or the representations from a class {P). 

The form is defined as follows. Let f(a1 ,a2, ••• ,an) be a 

representation of a Boolean polynomial 1n n independent 

Boolean variables. Then 

where ai =ai if ei =1 and a1 =aJ if ei =0 and the sum 

is over all of the 2n possible combinations of 0 and 1 1n 

the ordered set e1 .e2, ••• ,en • 

That this is a canonical rorm is proved 1n standard 

texts, e.g. Rosenbloom {4). It is 1nstructive to consider 

an example. Let f{a,b) be a+ b, then 

f(a,b) =abf(l,l) + abt(O,l) + a~f(l,O) + iot(O,O) 
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and ~e have, 

While the above method assures that a method of com­

parison is availabl~, it grows o~t ot hand when the number 

ot variables 1s lars~ since one m:u.s:t always make 2n truth 

evaluations. For V&"t'Y simple representations the canonieal 

representations may be 
., 

complex. 

For example, consider the, representation 

F = a + b + c + d. The canonical form of P is the follow­

1ng 

p =abed + abed • a1lcd • abed + abo! 

+ &5cd + ibcd + ibca + a~cd + a~ca 

+ aboa • i~od + ibo! • i~a • aoc!. 

It would not be ea~y to look at the canonical form 

o~ P and s~e that P = 1 it any one of the variables a. b, 

c or d assumes the value 1; however, this is very evident 

when one looks at the original representation. 

It is tor reasons such as these that the writer feels 

a second form due to Quine (2) or Samson and Mills (5) 1s 

superior to the above form. 

'Throughout th1s section the following conventions will 

be honoredz 

(i) The first 13 capital English letters will 

be used to denote Boolean monomials. 
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(11) Lower case Greek letters will be used to 

denote sums or monomials or the Boolean constant o. 
(iii) Lower case English letters will denote 

independent variables. 

There are three conditione Quine requires a represen­

tation or a Boolean polynomial to satisfy in order that 1t 

may be said to be 1n canonical torm. 

Condition 1. If A and B are two monomials or a repre­

sentation P suoh that A ~ a, then the monomial B is to be 

deleted trom the representati.on. 

Condition 2. It Aa and Bi are two monomials ot a 

representation P and AB satisfies the following two 

conditions t 

( i) the monomial A does not contain as a 

factor the ~1 ot any independent variable contained as 

a factor 1n B, 

(ii) the product AB is not less than or equal 

to any monomial C ot F, then the monomial AB is to be 

added to the representation. 

Condition 3. If the monomials a and i occur 1n a 

representation, the polynomial is the Boolean constant 1. 

On the basis ot lemmas 1.2, 1.3 and our table of 

Boolean identities we see that the three conditions 

transform a representation P into an equal representation. 

http:representati.on
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Let us now consider some or the properties ot a repre­

sentation P that satisfies the above conditions. Let P be 

a non zero representat~on 1n n independent variables that 

satisfies Qu1ne 1 e three ~nd~tions. By factoring we may 

Obtain the following Boolean equiYalent ot Pt 

1n which +1, t 2 and +3 are represefitations ot polynomials 

1n n-1 variables and not both or t 1 and t are the zer~2 

representation; however, t 3 may be ~he zero representation. 

Lemma 2.1. 
I ~. 

Considered apart trom P. t 3 sat1st1es both conditions. 

Proor. 

Assume that t3 contains the monomials A and B and 

A > B. This implies that P contains A and B contrary to-
the assumption that P satieties Condition 1; thus, t 3 
sat1st1es Condition 1. 

Assume that t 3 contains the monomials aA and iB and 

the consensus AB is not contained in • 3, nor is AB less 

than or equal to any monomial C ot t • This 1mplies that3
P is 1n violation of Condition 2, unless some monomial ot 

antl or ant2 is greater than or equal to AB. No monomial 

or t 3 contains an or an as a tactor; hence, every monomial 

or antl or int2 eontains as a factor at least one indepen­

dent variable foreign to every monomial or t • It follows3
•j 
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that every monomial or antl or in*a contains as a factor 

at least one independent Tariable foreign to any consensus 

of monomials of t 3, since the process of forming the con­

sensus ot two monomial& adds no new independent variables. 

we. have, then, that no monomial of antl or int2 may be 

greater than or equal to any consensus or monomials of * ;3 
thu~ our ,initial assumption leads to a contradiction and 

t 3 satisfies Condition 2. 

If t 3 violates Condition 3, then it is immediate that 

P also violates Condition 3. 

It is interesting to note that t 3 is the only one or 

t 1 , t 2 , and t 3 that must satisfy all _three conditions. The 

following example shows this clearly. For an, t 1, t 2, and 

t 3 choose the following: 

an = a5' 

tl =a2a3 + a,a4• 
•2 =a2i4 + 8 4al, 

and 

then 

Lemma 2.2. 

There 1s no monomial in t 3 that _1s greater than .or 

equal to a monomial 1n t 1, ( 1 =1, 2). 
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Proot. 

Assume that there is a ·monomial A tn ';and a monomial 

B· 1n t 1 such that B = AO. 

t 1an ~r a monomial -a~ in *ai.n• This implies that there 

is a deletion to be made ooatrad1ct1ng the fact that P 
. '. ' . 

. ' l " ' ' 

satisfies COndition 1. 

Lemma 2.3. 

There is no eonse,nsus to be made betwe•m tha monomials 

ot '~ and t'3• ( i : 1.2} • ' 

Proof. 

If we assume that tor all monomials Aj 1n 't; there 

are no monomials 1n ti such that a consensus is to be made. 

the lenuna 1e a trivial statement. Let us assume., ror 

simplicity's sake, tbat there is a monomial Ab 1n t 1, and 

a monomial d& 1n t suCh that Ab satisfies (i) and (ii) or
3 . 

condition 2, and AC is not a monomial of t 1• This implies 

that a AO is not a monomla~ ot an-t1 • oontrad1otinS the
11

supposition that l3 eat1sf'ied. Condition 2. 
\ 
( On the basis ot the preeed1ng lemmas we may deduce 

some properties or t 1 • t 3, (i::: 11 2). we assume that 

neither or t 1 nor -t3 contains as monomials both. or the 

V.ar1ables a and 1 • Let us consider what operations we3 3
should apply to -t1 + t 1n order that lt should satisfy3 
conditions 1 and 2. By lenunas 2.2 and 2.3 we see that 

the only possibility is th• deletion or monomials tn t 3 
that are less than or ,equal to mQnom1als or 'ti. Let 
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'f1 + R1 be the representation of ti + t 3 that satisfies 

Quinets conditions. Since the operation of deleting mono­

mials ·does not create new monomials, we can say that any 

monomial of Ri 1s a monomial Of t 3• 

Consider the product (t1+t )' ('t +t ).3 2 3

From lemma 1.2 we obtain 

Since P satisfies Condition 2. we must have all of 

the monomials ot the product t 1t 2 that are not zero or 

lea$ than or equal to monomials ot t 3 1n t 3: hence, 

Theorem 1. 

It there are two representations P1 and P2 ot a 

Boolean polynomial P such that both P1 and P2 satisfy 

· Qu1ne 1 a ~onditiona, then P1 is identical with P2 aave for 

the order or the monomials. 

The proof is by induct1on on the number of' indepen­

dent variables 1n the polynomial. · 

The case tor n = 1 is quickly disposed or as any 

representation 1n one independent variable that satisfies 

Quine ' s conditions must be one or the following: 
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a, 

a, 
1, 

o, 
. . 

and if two represent~tions that satisfy the conditions 

are equal, they are ident1c~l. 

Assume that the proposition to be proved is true tor 

all polynomials in k • 1 or fewer variables and consider 

the case n = k, Assume that there are two representations 

P and Q or a pOlynomial and both representations satisfy 

Quine's conditions. 

By factoring we obtain the tact that P is 

and Q is 

· we note that 

and 

By the induction hypothesis, since a3 and ~, satistr Quine's 

conditions and each 1• a representation or 

t(~,a2 , ••• ,~_1,l)t(e,_,a2 , ••• ,~_1,o), 
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a and p3 .are identical save tor the order ot their 

monomials. 

Let us operate on (~+a3), (a2+a3), CP1+~3), and 

(~2+~3) 1n order that they satisfy Quine 's conditions. 

We obtain 

' . 

«2 
. 

+ 43 
. =a2 + R2, 

~l + . f\3 = P). + E:i. 
and 

since 
· , 

we have 

By the induction hypothesis a1 + R1 is 1dent1oal with 

Pi + E1 since both are fUnctions ot k - 1 or fewer 

variables, 

Let us assume that ai is not identical with p1 tor 

at least one i (1 =1,2). This 1mpl1es that one ot them 

must contain a monomial not contained in the other. Assume 

that a1 contains a monomial A that is not contained 1n ~i. 

Since we have an identity between ai + R1 and Pi + E1, 

must be contained in Ei; this implies that A is contained 

in p3 and since p3 is identical with a3 , A must be 
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contained 1n a3• But, by lemma 2.2, ai and a3 cannot 

share a monomial; hence a contradiction arises from the 

assumption that ai contains a ,monomial not contained in 

~i. ~Y symmetry, it tollows that ~i cannot contain a 

monomial that is not contained in ai; .hence, i is identi• 

cal With ~ 1 and the theorem is proved. The case ot the 

zero and one representations are trivial in any number or 

variables. 

We have three operations such that when they are 

applied to any two representations or a Boolean polynomial 

they give rise to the same representation. One may wonder 

what methods can be used to insure that the canonical torm 

is obtained 1n a finite number ot steps. We now exhibit 

an algorithm that will always obtain the canonical torm. 

. Let us establish the convention or calling the process 

ot deleting all monomials that are less than or equal to 

other monomials or a representation a deletion iteration 

and the process or forming every possible consensus a 

consensus iteration. 

Theorem 2. 

The·following algorithm will always insure that a 

polynomial satisfies Q.uine'e conditions. Begin with a 

deletion iteration and then tollow with a consensus itera­

tion which is followed by a check to see whether or not 

the monomials aJ and iJ both appear. It both appear, 

write the Boolean constant l as a canonical representation. 
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It a and iJ are not both elements or the representation
3 

whloh has been obtain~ by the previous 1tt~trat1ons, follow 

with a deletion iteration. 

Proof. 

Assume that the above process has been carr1ed out. 
/ 

Consider Oondition 3. The oh4ck to determine whether or 

not the representat1on eonta1ned both a .1 and i .1 was made 

at the time that tbe represent•tiori contained the maximum 

number of independent variables as monomials; h•nee. it the 
;· ' 

representation did not contain th•m then, it will not ~on­

tain them at all. Thus, Oond1t1on 3 is satisfiEKl. 

A,ssume now, that the. monomials a. 3 and a dO not both3 
occur. Then it is immediate that Condition 1 is satisfied 

since the last iteration was a deletion iteration. SUP­

pose now that th&re are monomials Aa and Bi such th&t the 

consensus AB is to be f'orme<l. The monomial AB cannot be 

formed if there 1s a IilQnom~al n ot the representation such 

that D > A. In the first section, we noted that a deletion-
1terat1on does not create new terms; thus, Aa., and :Sa were 

present during the consensus iteration. Since the tex-m "AB 

was not created durtng the oonseneus iteration, it 1s evi­

dent tha.t there was a monomial E ot the :representation 

such that E -> AB. 

One of two oases may a~1se. 

case 1. E remains attar the deletion iteration. 
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Case 2. E was deleted durtng the second deletion 

iteration• . 

Consider Case 1. Since E remain~ we have E > AB and-
AB cannot be formed. 

In Case 2, since E was deleted, we know that there 

must have been a monomial F ot the representation such 

that F ~ E. Now F may h&n been deleted by a monomial · G 

and G may in turn be deleted, etc. If this process con­

tinues, we obtain an ascending chain of monomials 

M> L > ••• F > E ••• > AB. 
~ 

Since there can be only a t1nite number or monomials 1n a 

representation, the chain· is finite and we obtain a ~eat­

est element M, Mmay be F, that remains 1n the represent&­

tion. Since M> AB, the px-oduot AB cannot be formed; thus.-
the representation satieties Condition 2. 

Let us now oonsider a Tariat1on ot the abo•e &ethod. 

Instead or checking, durtng the consensus iteration to see 

it sub condition (1i) ot Condition 2 is satisif1ed1 torm 

the monomial AB any time the monomials Aa and Bi occur 1n 

the representation and the monomial AB satieties sub con­

dition (1) or Condition 2. Let us call a consensus that 

violates sub condition (i1) ot Oond1t1on 2 a forbidden 

concensus. 
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Lemma 2.4. 

No forbidden consensus remains after the second dele­

tion iteration. 

Let A be a forbidden consensus, then A < B tor some-
monomial B ot the ·representation. On the basis of the 

proof ot the precedtng .theorem at least one monomial F 

such that F > A remains at the end of the second ·deletion-
1teration and A ia deleted. ·' 

L•mma 2.5. 

No monomial that is .the consf!tnsus ot two monomials 

such that at least one or them is a forbidden consensus 

remains atter the second deletion iteration. 

Proof. 

Let BO. be a monomial . that is the consensus ot two 

monomials aB and io· and aB 1s a forbidden consensus. we 

need only show that AB is a torb1dden consensus. 

Since aB is a forbidden consensus, we know that there 

exists a monomial D~ ot the representation, such that 

D > aB. One of two oases may oeour.-
Case 1. D contains a. 

Case 2. D does not contain a. 

Case l. It D contains a, then D = Sa and the monomial 

EC is to be formed. 

Now 

DaB = aB, 

and 
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EB = B 

thus,, 

ECBC = ECOB :: ECB = Clm = OB, 

hence 

EC > BC1-
and BC ie a torb1d4en consensus, 

Oaae 2. Since D does not contain a, we have 

DB= B 

and 

DBC = BC 

hence 

D -> BC 

and BC is a forbidden consensus. 

Lemma 2,6, 

The monomial a 1s not a forbidden consensus unless
3 

a is already a monomial or the representation or the
3 

re.preaentation is the BOolean constant 1, 

Proof, 

The only Boolean variables that are greater than or 

equal to the independent variable a3 are the variable a 3 
and the Boolean constant 1. 
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Lemma 2.1. 

No monomial A is less than or equal to a forbidden 

consensus B unless it 1s less than or equal to a monomial 

that is not a forbidden consensus. 

Proot. 

Assume that A < B and B is a forbidden consensus.-
Since B is a forbidden consensus, there exists a monomial 

0 ot th$ representation such B < OJ hence A < a. 
we see that allow1zl6 forbidden consensus to · be termed 

does not alter the end result or the second deletion 

.iteration. 

We haVe anown the existence ot a finite algorithm tor 

obtaining the oanon1oal torm ot a Boolean polynomial. such 

a method is amenable to machine computation. In the next 

chapter we wlll consider the mechanization ot this 

algorithm. 
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CHAPTER IV 

Essentially, there .a.re three problems that one must 

e~sider 1n the programmins ot the algorithm. One must 

first find a method ot representing a Boolean Illonomial. in 
' ' . . ' ' ~ . ' 

a maeh1ne. HaV;tne; ·. dontt· ~J.tlst . OJ?.& must then.determ~e a . . 

method ror finding out Whether or not a deletion 1s to be 
' .. ·. . ' 

made. Finally, one . muat determine when a oon~enaus is to 

be made and ho~ to make it. 

The methods discussed in this seot.1on apply
I 

to a 

lilaohine w;tth the following o:ttaracter1st.J.otu 

1. A word consists of an btts. 
' 

The machine can :take the log1ca.1 sum or two 

words, The logical sum ot .two words A and B is a word D 

that contains a l bit 1n bit position k iff A or B contains 

a 1 bit in bit poe1~1on 1t • . 

3. The machine can tatte the extraet of two 
O...v4... 

words. The extract or two words A a.nd B is a word D that 

oonta1ns a 1 bit in position k iff both A and B contain a 

b1t 1n bit position k. 

4. The machine oan sh1tt a. word until a,. 1 blt 

oocurs 1n a preassigned bit position and oount the number 

ot bit shifts necessary to bring the 1 bit to the position. 

5. The machine can ·complement a word. The 

complement or a word. A 1s a word B that contains a. 1 bit 

l 
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1n the kth bit position iff A contains a 0 bit 1n the kth 

, bit position and vice versa. 

Throughout the rest of this section we will use the 

terms "kth position" or "position k" to denote the term 

"kth bit position". 

Let us lab•1 our 1ndep«ndent variables acoordtng to 

their input order l.e., ai is the ith independent variable 

to be entered into the machine. We now introduce two 

auxiliary words. A and 1. A 1s a word that contains a l ~~ cCt 

bit 1n the first and (n + 1)at positions and 0' a 1n ev:ry ~~ ~:::~:~~~. 
other position, while. I . is a word that has a 1 bit 1n the 

(n + 1) 8t position and O's 1n every other position. 

The independent variable a1 is represented by the 

word [a1l that bas a 1 bit 1n the ith and (n + 1)th posi­

tions and O's 1n every other position. The variable 1
3 

has a 1 bit 1n the (n + j) th position and 0 's 1n every 

other position. 

Let us assume that we ~t to represent the monomial 

aia-3• We :t1rst enter the variable a1 int·o the machine. 

The machine determines that it is the 1th independent 

variable to be entered and forms the word [ai] by calling 

out A and shifting it i - 1 places to the left. The word 

[ai] 1s then stored. When & is entered lnto the machine,3 
the machine determines that it is the jth variable to be 

entered. The word (aJ] is then formed by calling out A 
and shifting it j - 1 places to the left. We now take 
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the logical sum o~ [ail and ta3] obtaining [aiaJ)• The 

word [aiaJJ has a l bit 1n the (n + 1)th, (n + j)th, and 

ith positions ~d O's 1n ev~rr other position. This method 

,enables ua to reprea$nt 1n one word a monomial 1n n 1nde-. _ 
I ,(,_oJ 'J I~ .,-.} \a... I ' 

pendent variables, 

For an example, let us assume we have a maoh1ne that 

has a word lengt~ of 6 bit~.- The bit configuration or the 

~epresentation of the m~noml~l ~i2a3 is the following~ 

A representation ota .polynomial 1s stored 1n the 
,. 

maoh1ne by the process ot serial storage ot monomial 

rep~esentat1ons, the 0 and 1 representations being sepa­

rately indicated. 

Assume that a representation P is stored in the 

machine. Let a be a monomial ot P. we want to find out 

whether a is greater than or equal' to any other monomial 

~ ot P. 

Let us denote the result of extraottng [a) with [p] 

by £(a;P). 

Lemma 3.1. 

A necessary condition tor a to be greater than or 

equal to p is 

E(a,P) =[a]. 
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Proot. 

Assume E(Cl1 P) ~ [Cl], then 1n some position, say 

position J, (a) contains a l bit, while [~1 does not con­

tain a 1 bit 1n position k. This implies that a contains 

as a factor a variable not contained in p; hence « # a. 
This oond1t1on: 1s .not a .suffic1ent condition as the 

following example' shows. 

Let 

(l = ala2 

J/ a =ala2a3 

then 

[Q) =0 l 1 0 0 1 

[~J =1 1 l 1 1 1 

and 

E(~1 P) =0 1 1 0 0 1 = [~] 

but a is not greater th.ttn. or equal to P. 

Let ~« denote the word that consists ot the r1ght 

ha1t word of [ u] and has 0 1 s in its lett half'. Ha is th& 

word that has ror its right half word . the lett halt word 

c>t [a] and has 0 1s 1n its left halft. 

Theorem 3. ·,. 

Either one of the to1low1ng two cond1t1onsc 

(i) E(a,P) = [a], 

(11) E(Ha,ftp) =~(ll<I,H~) 

are necessary for the tnequal1ty 
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a > ~-
to hOld and the simultaneous truth of both ot them 1s 

sutt'1clent tor the 1nequality to hold. 

Proof. 

Since we have already shown the necessity ot (i), 

consider (ii). Assume that K(Ha,R~) ~ E(Ra,H~) and let 

('t] = E(Ha,H~) and [ y l = E(HCl,H~). If ('t] ~ [ y ], then 

one ot them, say r•J. contains a 1 bit 1n the Jth position 

( J ~ n) while ( y] contains a o bit 1n position j. This 

implies that a conta1na, as a factor, a 3 or il while ~ 

must contain a 3 as a factor. From the 0 bit 1n [ y], it 

follows that a contains &3 as a factor; hence, a contains 

factors foreign to ~ and a is not greater than or equal to 

~. Since the reasoning is symmetric, the same result may 

be obtained by choosing [ Y ] to contain a 1 bit 1n the k th 

position while [t] contains a 0 bit 1n the kth position. 

Assume now 

and 

Since E(a,~) = [a], we know that (~l contains a 1 b1t 

1n every position that [a] contains a 1 bit. This reduoes 

the proof to showing that a does not contain, as a factor, 

the dual of any independent variable appearing as a tactor 

ot ~. Assume that a contains, as ~ factor, ~ and ~ 



contains '1t as a factor. Then, Ha• H~ and ll~ oonta1n a 1 

bit 1n position k while Da has a 0 1n the kth position: 

henoe, 

S1noe this contradicts oUI' hypotheses, a may not :~ontain, 

as a factor, the dual ot any independent variable ~oourr1ng 

a$ a faotor ot ~ and we haY~ s~own 

a> A - ... 
On the basis of the preoed1ns. theorem the method for 

the deletion iteration is constructed. Let (a] and [p] 

be two machine representations of Boolean mpnomials, Form 

l(a,p) and check to see whether or not E(a,P) =[a). It 

.:i ( a• ~) = (a], we check to see whether or not 

E(Ha,llp) = E(Jla,H~). It E(ftCl,Hp} = E(Ha,ltp), then we 

delete P. It either one ot the two equalities tails to 

hold, we proceed to check [a] with other monomial repre­

sentations. 

The process used 1n the formation o:t' the consensus 

of two monomials uses the words Ha' Ita• H~ and Rp, also. 

Let CE( a•H~) denote the complement ot E(R ,Hp)•
4 

Lemma 3.2. 

E[ CE(lta,lT~) , E(Ha,H~)) will contain a 1 bit 1n 

position k it:t' both a and ~ contain ~ as a factor or one 
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ot them contains ~· · as .a factor, while the other contains 

ik as a taotor. 

Consider E(H41H~) , it will have a 0 in position k it 

·both a and ~ contain ~· as a taotor, or if one of them 

contains ~ as a taotor While the other contains ~ as a 

taotor. Thus, under the above conditions OE('ile~,lte>· wlll 

contain a 1 bit in position k, 

It either or the above conditions are met, E(H
0 

,Hfl) 

will contain a 1 bit 1n position k. Since both words or 

the extract contain a 1 bit 1n 'position k, we must have 

that . the1r extract oonta1ns a 1 b1t in the kth position 

and we have shown the sutrio1enoy ot the conditions. 

If the above conditions are not met, three oases may 

arise. 

case 1. Neither or a or ~ contains 4g or ~ as a 

factor. 

Case 2. One or them contains either ak or ~ as a 

raotor but the other does not contain ~ or ~ as a taotor~ 

Case 3. Both a and ~ contain &g as a factor, 

In Cases 1 and 2, E (H4, H~) must contain a 0 1n 

position k; hence E(CE(lta,llp) , E(He&,H~)) has a o bit 1,n 

position k. 

In Case 3, E(fta,H~) must contain a 1 bit 1n position 

k, hence CE(!a,Hp) must oonta1n a o. in the kth position 

and E[CE(lta,Jtp) , E(H11,H~)] has a 0 1n position k. And 

we have show.n the neoessit1 of the conditions. 
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Let S(Ha•R~) denote the logical sum of Ra and R~. 

Lemma 3.3. 

E{E[ CE(Ha,Hf3) , E(Hu,Hp)} , s(ifa,Hp)} will contain a 

1 bit 1n position k 1ft a contains ak as a factor while f3 

contains ~ as a factor or u contains ~ as a factor and f3 

contains ~ as a taotor. 

l?roor. 

If either one or the above conditions are satisfied 

then S(~a•Rp) will contain a l bit 1n position k and by 

lemma 3. 2, so will E[ CE(lt'a•itp) , E(Ha,iff3)]. And we have 

shown the sufficiency of either one or the oondit~ons. 

Assume that neither one of the above conditions are 

satisfied. Then. tour oases are possible, the first three 

being the three oases ot lemma 3.2. The fourth case con­

sists or both a and f3 containing ~ as a factor. 

In the three oases or lemma 3.2 

E(OE(R~,R13 ) , E(Ha,H~)l does not contain a 1 bit in 

position k; thua, E{E[OE(Ha,Hp) , E(Ha,Hp)l , S(a,P)} 

cannot contain a 1 bit 1n the kth position. 

In case tour, S(Ha,Hp) does not contain a 1 bit 1n 

position k; hence E{E[CE(!a,!p) , E(Ha,Hp)l , S(a,p)} does 

not contain a 1 bit 1n position k. And we have shown the 

suttio1enoy of the conditions. 

Let NEap denote the number or 1 bits 1n 

E{E [CE (1Ia,itp) ., E ( H a, H p ) J , 8(a, P ) } • 
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Theorem 4. 

A consensus is to be made between a and p itt NE =1. 

Froor.. 
' 

Assume NE = 1, From lemma 3. 3, we know that u con~ 

ta1ns one a.nd only one dual ot an independent -.ariab1e or 

p; thus, by ~u1ne's second condition .a consensus is to be 

made, 

Assume NE ~ l, Two cases arise. 

case 1, NE = 0, 

Case 2, NE > 2,-
In Case 1, a does not contain the dual of any yariable 

ot p; hence, no consensus is to be made, 

In Case 2, a contains the dual ot at least two inde­

pendent variables of A; hence, by sub condition (i) _of 

Qu1ne 1s second condition no consensus is to be made, 

The process used 1n the -consensus iteration is the 

following. Let a and p be two monomials ot the represen­

tation, Determine whether or not NE4 p 1a equal to one. 

It NEa~ ~ 1, compare a with some other monomial of the 

representation. It NE4~ =1, shift 

E{E[ CE(iiCl,JtP) , E(Ha,Hp) 1 , S( 4, P)} to the lett until its 

1 bit is 1n the 2nth position and count the number of bit 

shifts necessary to do this, Let C be the number or shifts. 

Form the difference 2n - o. Call out the auxiliary word A 

and shift it 2n - 0 places to the lett. we then have a 

representation or the independent variable ~ that occurs 



1n a and has its dual 1n p. Form O(~J and store it. 

1'e.ke the word S(a,P) and form E(S((l1 P) , 0(~)]. This 

word is the consensus of a and P. 
Since the two words that form a consensus y are not 

unique, we mus~ store each word that is a consensus so 
. . ' 

that we may know Whether or not we have formed a consensus 

before, lest we exceed the storage capacity or a machine 

by stor~ 1t many times. 

Lemma 3.4. 

E[S(a,~) , 0{~)] will contain only 0 1 s 1ft the oo.n­

sensue 1s between the two monomials ~ and ~· 

Assume that the monomials ~ and ak are be1ng checked 

by the machine to determine whether or not a consensus is 

to be made. NE~~ will be one, and the 1 b1t will be 1n 

the kth position; thus• OC"'tl will have a 0 1n only the kth 

position While S(~·'t> wlll have a 1 Qit 1n only the kth 

position. It follows that E[.s(u, P) , C(~)] has 0 1 s ~ 

every position. 

Assume that the machine makes the consensus ot two 

monomials a and p and at least one ot a or P contains more 

than one 1ndepenClent var1able as factors • The word 

E(S(a,P) , C(~)] must ~onta~n at least one 1 bit, since 

the process of forming E[S(a,p), C{~)l eliminates only 

one independent variable from S(a,p) and P or a contains 

at least two independttnt var1a..bles as factors. 
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Once the oonsensua 1ter$t1on 1s finished• apply one 

more deletion 1terat1Qn to .complete the pro~est5. 
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CHAPTER V 

'\ "'' 
EXAMPLES 

In this section we will oonl.iider some examples that 

have been. W'orked out by an eleottoonie eompute:r. For each 

polynoni1·~~, Whose cap.on1eal ~orm has been determined t .here 

are three. ent:ries, The ·:tirst entry is the representation. ' 

whose eanonioal torm is to be determined. The second 

entry is ~he result ot one deletion iteration and one 

consensus 1terat1on.'~ In· the second entry it will be noted 

that some. ¢f. the monomials are unde~l1ned. The underlined 

monomials are the result of the deletion iteration. · It is 

seen that to this representation one may add any oombin~ 

t1on or the monomials ot the. second entry that are not 

underlined and not alter the polynomial. The third entry 

is the oanon1oe.l :rorm or the polYnomial. 

Example 1. 

P = alfo + i'bo + ai'o + abt + &to + abo + a'!o 
Intermediate results: 
. ./ 'V ../ ./ ./ .v .,/ .(/ •/ ~ <.;/ / ~ -z... 

·p ·= ao' + a + DO + a$ + c + lb + io + b + be + ab + ao "-s_..." 
v ..1 ../ ../ J ,; v 

+ bo + ibo • aoo + abc + ioo + a~c + ibc + a~c. 

Canonical form: 

a + b + c. 

:Example a. 
p :: a1lo + abo + od + ct' 
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Intermediate results: 
(/ ./ v ._/ J 

._._ __ _
p =df + abt • act' + aof + at + ao + aoo + abo • cd • ot 
Canonical forme 

p =dt' • at + ao + od + ct. := (), c -1 c J + cf 
~ , - J " I -f- .fr..'' 

, ,e.~~

Example 3. 

p = iooa + agh + bgj • 'Jkp 

Intermediate results: 

bSkP + abhkp + actghj + abo!hJ + bc'!Shl 

• boa8hkp + abo!hkp + ao!gbkp + ao!ghjkp 

+ abo~jkp + booShjkp + cbhJ + ico5Jtp 
• &oasnl + aooobkp • aoQ8hkp + &oasnJkp 
+ oca8hJkp + aoc!hJkp • ocagntp + ooasnJ 
• &T>o!hJ . • acas.1 + t>oash + ~ + ~ • bSJ + ~. 

Canonical form z 

bSkP + abhkp + abhJ + io!Skp + ioagJ + oo!gh 
+ i'Soa + agh • bgJ • 'Jkp. 

The intermediate results of the above example define 

a class ot 301 equal representations. 

The examples that we h&Te seen so tar have been rather 

well behaved. Some very pathological examples may be 

created by the following process. From a set ot n vari­

ables (n > 5, the process · is not worthwhile torn< 5)-
construct a representation by first forming all of the 

possible sets oonta1n1ng only n - l independent variables. 

There will be n ot these. From eaoh set rorm all of the 

possible monomials tb&t may be formed by replacing two or 
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the variables by their duals. There will be 

(n-2) + (n-3) + •..•• + (n•k+l) of them. 

The total number or monomials {formed will be 

(n-1) (11i2ln = .n3 -, 3rJ2 + 2n •
~ 

' 

~o delet1Qns oan be ~· because the monom1a~s are 

formed 1n s~oh . a W&y that either one oonta~s as .a factor 

the dual of an independent variable occurring as a ~actor 

ot the other or each co~ta1ns independent variables foreign 

to the other. .. _ 

Any consensus between two monomi~ls gives rise to 

another monomial or the ~epresentation. For. assume that 

a and ~ are two mo~om1als or th~s representation, 

Let 

a = ~a2 ••• ii • •-• iJ ••• an 

and 

~ ::: ~a2 .... a1 ••• iJ ~·· ~ ·~· ap P < n.-
For the consensus to be made we must have that ~ is 

foreign to a ·; thus the oon!ensus is the same as the word 

formed by . removing the f'actor a1 . from a and adding the 

factor ~· The consensus contains ~ • 1 f'aotors ot ~ioh 

two are primed, 



Example · 4. · 

' for n = 5 we obtatn 

p =aocd. abed. abc!. aocd + al»ca' ;i; ' e.bc! 

i.ooe +.. aboe __ .. lbo'3 • ~'5ce + aooe • ab'Oe 
~ .. . ' . . ~ 

iDde + ab!e • abd1 • a$!e + a~de + able 

aode + iol& • aede + . aeae + ao~.'e .. aode 
ocde + t)o!e • . 'St!ae • bc!e • bode • be!&• . 

The standard oanonieal fOrill Of .. )? 1s 

p :: abco.'e + a.~oae • abcae • ibodi 

ibcdi • 4b0di + &oede • a~cde 
abede • a.ooae + abioe • a~o!e 

.at;c!e + at.oae • ibc!e + -~~ode 

a.l;cae +abode · ·a'Dcde + lboa-e. 
In ¢losing, 1t -- 1s . telt -tb.at , Qu1ne's canonical torm 

is superior to tbe , standard. oanon1~al torm, due to its 

character1st1o ot reta.J.n1'1'.l.e; oi" reduo1ns the degree ot 

ooiitplex1ty or the polynomial representation and its 

amenda.bility to ~aoh1ne computation. 
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