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A MECHANIZATION OF QUINE'S CANONICAL FORM
CHAPTER I
INTRODUCTICON

In recent years there has been much attention brought
to bear on the problem of representation of Boolean poly-
nomials, Many methods have been devised for reducing a
repregsentation of a Boolean polynomial to a minimal repre-
gsentation, The problem of determining a minimal represen-
tation of a polynomial is complicated by the fact that a
minimal representation is not unique,

The ambiguity of representation, coupled with the
ever present specter of human error gives rise to the
following problem, "Given two representations of a Boolean
polynomial, how can one determine whether or not they are
equivalent,”

The purpose of this paper is to answer that problem
and show a method whereby an electronic computer can be
made to do all of the computational work, The first
section of the paper will deal with notions fundamental
to the understanding of the problem, The second section
will present two solutions, The first solution has been
a tool of Boolean Algebra since its conception, The second
solution is comparatively new, having been presented by
Quine (2) in 1955, Also, in this section, there will be
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an algebrale-induetion proof of the faet that the second
solution is, indeed, a solution,

The third section concerns itself with the mechani-
zation of the second solution, while the fourth section

contains examples of the mechanization process,



CHAPTER II
SOME FUNDAMENTAL FPROPERTIES OF BOOLEAN VARIABLES

Before proceeding to the problem at hand, it will be
necessary to definé some basic terms,
Definition 1,

A variable ay is a Boolean variable iff it may assume
only the Boolean values O or 1,
Definition 2,

Let S8 be a set of Boolean variables and let ay be an
element of S, We say that aJ is an independent Boolean

variable, relative to S, iff a, may assume O and 1 values

independently of the values au:umod by any other elements
of S,
Definition 3,

Let “3 be an independent Boolean variable, We shall
introduce the Boolean variable EJ. such that if a, assumes
the value 1thena j assumes the value O and vice versa,
The variable IJ is called the dual of 8y

Throughout the remainder of this paper we shall use
the term "independent variable" to denote the term "inde-
pendent Boolean variable”,

Definition 4,

A Boolean monomial is an independent variable or its

dual, or a product of independent variables or of a set



of independent variables and a set of duals of other
independent variables,
Definition 5,

A representation of a Boolean polynomial is the
Boolean constant O, or a sum of Boolean monomials,
Definition 6,

Two polynomials in the same independent Boolean vari-
ables are equal if they have the same value for every set
of values of the independent variables, _

It is here that an interesting logical point arises,
It is not difficult to establish that for every represen-
tation P of a Boolean polynomial in n independent variables
there exists an equivalence class (P) of representations
equal to P, To avoid ambiguity in any discussion eaﬁeorn-
ing Boolean polynomials we shall adopt the following con-
vention, When we speak of a polynomial, we mean an equie
valence class of equal Boolean variables, When we speak
of a representation of a polynomial, we mean an arbitrary
element of the equivalence class,

Notation:

The product of the two Boolean variables A and B is
represented by the symbol AB,

The sum of two Boolean variables A and B is repre-
sented by the symbol A + B,
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Definition 7,
If A, B, and C are three Boolean variables such that

A = BC

then A is less than or equal to B (A< B, B> A) and A is
less than or equal to C (A< C, C> A),
Definition 8,

If A, B, C, and D are four Boolean variables and a

is an independent Boolean variable such that

A= Ca
and

B = Da

then the variable CD 1s called the consensus of A and B,
Definition 9,

Multiplication and addition of Boolean variables are
defined by the following tables,

|

9 ;
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Let A, B, and C be any Boolean variables, On the
basis of the foregoing definitions the validity of the
following identities 1s easily shown,



A+ A=A AA = A
A+ B=B+ A AB = BA
A+ (B4C) = (A#B) # C A(BC) = (AB)C
l4A=1 1A= A
O+ A=A 0*'A=0

(A#BC) = (A+B) (A+C)

Further, if a is an independent Boolean variable, we
have,

as+a=1 aa = 0

Due to the simplicity of the proofs we will omit them,
We now proceed to prove some lemmas that will be of
uge in our investigation,
Lemma 1,1,
The relation (3) given in Definition 7 partially

orders any set of Booclean variables,

Proof,
We have

A = AA,

hence,
A > A,
Assume that
A>B (AC = B)

and

B> A (BD = A).



Then,
AB = BDB = BBD = BD = A
and
AB = AAC = AC =B
but
A= AB = B,
Hence
A= B,

Let A, B, and C be three Boolean variables such that

A>B (AE = B)
and
B>¢C (BD = ¢)
This glves us
AED = C
and
A>C,
Lemma 1,2,

Let P be a representation of a Boolean polynomial,

and A and B be any Boolean mononomials, Then
P+ A+ AB="D+#+ A,

Proof,
P+ A+ AB=P 4 A(lsB)



P+ A(l4B) = P 4 A,
Thus
P*A*AB‘P"‘Q

We see from the above lemma, that if A and C are two
monomials of a representation such that A > C then the
monomial C may be deleted from the representation without
altering the polynomial,

Lemma 1,3,

Let P be a representation of a Boolean polynomial and
let «a and fia be two Boolean monomials, a being an indepen=-
dent variable, Then

P+aod 4 Pa=P+ aa + B2 + aB,

Proof,
Psaa+fa+aP=P+ case Pas+ (aea)ap
and
Psaa+ fas (asa)aB =P + aa + Pa + aaP + aab,
But
aa > aaf
and

a > aab,

On the basis of lemma 1,2 we may delete the two
monomials aaPf and aaf from the representation
P+ aa + Pa + aap ¢+ 8ap obtaining an equivalent representa~

tion P + aa + Pa; hence,



P+aa+ fa="P4+ aa+ fa+ ab,

On the basis of this lemma, if aa and pa are monomials
of a representation of a Boolean polynomial (P), we may add
thelr consensus af without changing the polynomial,

This concludes our discussion of elementary properties
of Boolean functions, In the next section we consider two
solutions to the problem of representation of Boolean poly-
nomials,
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CHAPTER III

BCOLEAN CANONICAL FORMS

We now consider the problem of determining when two
representations are elements of the same equivalence class,
What we would like to find ies a simple algorithm which
when applied to all elements of an equivalence class gives
the same element of the equivalence class, The represen-
tation common to all elements of the equivalence class we
call a Boolean canonical form,

A well known Boolean canonical form 1s derived from
the truth table of the representations from a_alass (P).
The form is defined as follows, Let f(al,aa,...,qn) be a
representation of a Boolean polynomial in n independent

Boolean variables, Then

f(algﬁz.--oa‘n) = Zﬂ;‘_ a-g “es ';1 ﬂ'l"’a"""n)'

vhere al = a, if e, = 1 and a} = 31 if e, = 0 and the sum
is over all of the 2" possible combinations of 0 and 1 in
the ordered set ©10€55000s8, o

That thls 1s a canonical form is proved in standard
texts, e.,g. Rosenbloom (4), It is instructive to consider

an example, Let f(a,b) be a # b, then

f(a,b) = abf{l,l) + abf(0,1) + abf(1,0) + abf(0,0)



11
and we have,
a4 b=ab+ &b+ ab,

While the above method assures that a method of com-
parison is available, it grows out of hand when the number
of variables is large since one must always make 2R truth
evaluations, For very simple representations the canoniecal
representations may be complex,

For example, consider the representation
P=a+b+c+d, The canonical form of P is the follow-
ing

P = abed ¢ &bed + abed 4 abed + abed
+ 8Bed 4 8b%d + @bed + abtd + abed
+ abod ¢ 8Dod + BbCd + &bod + abed,

It would not be easy to look at the canonical form
of P and see that P = 1 1f any one of the variables a, b,
¢ or 4 assumes the value 1l; however, this is very evident
when one looks at the original representation,

It 1s for reasons such as these that the writer feels
a second form due to Quine (2) or Samson and Mills (5) 1s
superior to the above form,

Throughout this section the following conventions will
be honored:

(1) The first 13 capital English letters will

be used to denote Boolean monomials,
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(11) Lower cage Greek letters will be used to
denote sums of monomials or the Boolean constant O,

(111) Lower case English letters will denote
independent variables,

There are three conditions Quine requires a represen-
tation of a Boolean polynomial to satisfy in order that it
may be said to be in canonical form,

Condition 1, If A and B are two monomials of a repre=-
sentation P such that A > B, then the monomial B is to be
deleted from the representation,

Condition 2, If Aa and Ba are two monomials of a
representation P and AB satisfles the following two
conditions:

(1) the monomial A does not contain as a
factor the dual of any independent variable contained as
a factor in B,

(11) the product AB 1s not less than or equal
to any monomial C of P, then the monomial AB 1s to be
added to the representation,

Condition 3, If the monomials a and & oceur in a
representation, the polynomial is the Boolean constant 1,
On the basis of lemmas 1,2, 1,3 and our table of

Boolean identities we see that the three conditions

transform a representation P into an equal representation,
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Let us now consider some of the properties of a repre-
sentation P that satisfies the above conditlions, Let P be
& non zero representation in n independent variables that
satisfies Quine's three conditions, By factoring we may
obtain the following Boolean equivalent of P,

P= 'h*l + infz * *3,
in which ¥,, ¥, and *3 are representations of polynomials
in n-1 variables and not both of tl and *2 are the zero
representation; however, *3 may be the zero representation,
Lemma 2,1, _

Considered apart from P, *3 satisfies bo;h conditions,
Proof,

Assume that *3 contains the monomials A and B and
A > B, This implies that P contains A and B contrary to
the assumption that P satisfies Condition 1; thus, V¥

satisfies Condition 1,

3

Assume that ¥ contains the monomials aA and &B and
the consensus AB is not contained in *3. nor is AB less
than or equal to any monomial C of 13. This implies that
P 18 in violation of Condition 2, unless some monomial of
anil or an*: is greater than or equal to AB, NO monomial
of t3 contains a  or En as a factor; hence, every monomial
of 'n*l or Ehtz contains as a factor at least one indepen-
dent variable foreign to every monomial of *3. It follows
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that every monomial of ‘n*l or ihﬁz contains as a factor
at least one independent variable foreign to any consensus
of monomials of 03, since the process of forming the con-
sensus of two monomials adds no new independent variables,
We have, then, that no monomial of a ¥, or in‘z may be
greater than or equal to any consensus of monomials of *3;
thus, our initial assumption leads to a contradiection and
*3 satisfies Condition 2,

if 13 violates Condition 3, then it is immediate that
P also violates Condition 3,

It 1s interesting to note that $3 is the only one of
¥ *2' and 13 that must satlsfy all three conditions, The
following example shows this clearly, For a , *1, '2' and
#3 choose the following:

a, = ag,
¥ o= 8,85 # ;3“4'
¥, = aai4 + a,aq,

and
*3 = 8,8, 4 8,8,,
then
P= “5(“2‘3’33“4) & is(aaitfaaal) + 818, 4 a,8,,

Lemma 2,2,
There is no monomial in 13 that is greater than or
equal to a monomial in ti’ (1 = 1,2),
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Proof,

Assune that there 1s & monomial A in ¥ and a monomial
B in ¥, such that B = AC, Then there is a monomial ACa, in
¥,a or a monomial a_@.n in *23'11' This mplios.that there
is a deletion to be made oontradictins the fact that P
satisfies Condition 1,

Lemma 2,3,

There is no consensus to be made between the monomials
of ¥4 and t3, (4 =1,2),
Proof,

I1f we assume that for all monomials Ay in *3 there
are no monomials in 11 such that a consensus is to be made,
the lemma is a trivial statement, Let us assume, for
simplicity's sake, that there is a monomial Ab in '1. and
a monomisl OB in 13 such that Ab satisfles (1) and (11) of
Condition 2, and AC is not a monomial of 1!1. This implies
that a AC 1s not a monomial of “n*].' contradieting the
supposition that P satisfied Condition 2,

On the basis of the preceding lemmas we may deduce
some properties of *1 + *3, (1 =1,2), We assume that
neither of ¥, nor *3 contains as monomials both of the
variables 8y and iJ. Let us consider what operations we
should apply to #1 % *3 in order that it should satisfy
Conditions 1 and 2, By lemmas 2,2 and 2,3 we see that
the only possibility is the deletion of monomiels in t3
that are less than or equal to monomials of ‘#1. Let
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*1 4+ R, be the representation of '1 +* '3 that satisfies
Quine's conditions, Since the operation of deleting mono-
mials does not create new monomials, we can say that any
monomial of R, is a monomial of ¢3.
Consider the product (i1+#3}(i2+*3).

(¢1+*3)(f2+*3) = (*1*2+i1*3+*2*3+*3)
From lemma 1,2 we obtain
'1*2 + *1*3 + *2*3 - t3 = *1*2 + *3.

Since P satlsfles Conditlon 2, we must have all of
the monomials of the product *1*2 that are not zero or
less than or equal to monomials of *3 in t3; hence,

(t1+$3)(t2¢*3) = tB’

Theoren 1,

If there are two representations Pl and P2 of a
Boolean polynomial P such that both Py and P, satisfy
' Quine's conditions, then P, 1s identical with P, save for
the order of the monomials, :

The proof 1is by induection on the number of indepen-
dent variables in the polynomial,

The case for n = 1 is quickly disposed of as any
representation in one independent varilable that satisfies
Quine's conditions must be one of the following:
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and if two representations that satisfy the conditions
are equal, they are identical,

Assume that the proposition to be proved is true for
all palynemi&ls_ in k « 1 or fewer variables and consider
the case n = k, Assume that there are two representations
P and Q of a polynomial and both representations satisfy
Quine's conditions,

By factoring we obtain the fact that P 1s

80y # By, + Oy

and Q 1is
ayBy ¢ BB, + B,

We note that

ﬂl o+ 63 = f(31,32.oo-|ak_1.m) = Bl + 33

32 + 63 = r(‘lt‘!l"'l‘k_l!o) = Ba * ﬂ}c

By the induction hypothesis, since a3 and By satisfy Quine's
conditions and each is a representation of

f(‘lo Bpsee oo‘k_lol)r(‘lvazs .o -'o"k_lao) ’
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43 and 33 are identical save for the order of their

monomials,
Let us operate on (a1433), {¢2¢¢3), (31*53)' and
(ﬂz¢ﬂ3) in order that they satisfy Quine's conditions,

We obtain
oy 4 gz = gy # Ry,
G, + G5 = a, 4 Ryy
Bl‘*pBgﬂl"’El
and
F2¢ﬂ3352432.
since
' ay + ¢3 = 51 + 93.
we have

G, # R1 = ﬂi S Ei‘

By the induction hypothesis a, + R, is identical with
ﬂ1 + By gince both are functions of k¥ -« 1 or fewer
variables,

Let us assume that ay is not identical with By for
at least one 1 (1 = 1,2), This implies that one of them
must contain a monomial not contained in the other, Assume
that ay contains a monomial A that is not contained in Bi'
Since we have an identity between Gy + Ri and 31 ks E!' A
must be contalned in Ei: This implies that A is contained
in 53 and since ﬂ3 is identical with Gy o A must be
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contained in G0 But, by lemma 2,2, oy and a3 cannot
share a monomial; hence & contradiction arises from the
assunption that @y contains & monomial not contained in
51. By symmetry, it follows that 31 cannot contain a
monomial that is not contained in @43 hence, 8y is identi-
cal with Bi and the theorem is proved, The case of the
zero and one representations are trivial in any number of
variables, |

We have three operations such that when they are
applied to any two representations of a Boolean polynomial
they glive rise to the same representation, One may wonder
what methods can be used to insure that the canonieal form
is obtalned in a finlte number of steps, We now exhibit
an algorithm that will always obtain the canoniecal form,

Let us establish the convention of calling the process
of deleting all monomials that are less than or equal to
other monomials of a representation a deletion iteration
and the process of forming every possible consensus a
consensus literation,

Theorem 2,

The following algorithm will aiwnya insure that a
polynomial satisfiles Quine's conditions, Begin with a
deletion iteration and then follow with a consensus itera-
tion which is followed by a check to see whether or not
the monomials ay and 31 both appear, If both appear,

write the Boolean constant 1 ag a canonical representation,
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if 2, and EJ are not both elements of the representation
which has been obtained by the previous iterations, follow
with a deletion iteration,

Proof,

Assume that the above process has been carried out,
Consider QOondition 3, The check to determine whether or
not the representation contained both aJ and iJ was made
at the time that the representation contained the maximum
number of independent variables as monomials; hence, if the
representation did not contain them then, it willl not cdu-
tain them at all, Thus, OJondition 3 1s satisfled,

Assume now, that the monomials ay and EJ do not both
occur, Then 1t is ilmmediate that Conditlon 1 1s satisfied
since the last iteration was a deletion iteration, Sup-
pose now that there are monomials Aa and B2 such that the
consensus AB 1s to be formed, The monomial AB ecannot be
formed if there is a monomial D of the representation such
that D > A, In the first section, we noted that a deletlon
iteration does not ereate new terms; thus, Aa, and Ba were
pregent during the consensus iteration, Since the term AB
was not created during the consensus iteration, it is evi-
dent that there was a monomial E of the representation
such that E > 4B,

One of two cases may arise,

Case 1, E remains after the deletion iteration.
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Case 2, E was deleted during the second deletion
iteration, .

Congider Case 1, ©Since E remains, we have E > AB and
AB cannot be formed,

In Case 2, since E was deleted, we know that there
must have been & monomial F of the representation such
that F > E, Now F may have been deleted by a monomial G
and G may in turn be deleted, ete, If this process cone
tinues, we obtain an asooﬁdiﬁs chain of monomials

Hsz vee Fzgntczmo

Since there can be only a finite number of monomials in a
representation, the chain is finite and we obtain a great-
est element M, M may be F, that remains in the representa-
tion, Since M » AB, the product AB cannot be formed; thus,
the representation satisfies Condition 2,

Let us now consider a varlation of the above method,
Instead of checking, during the consensus iteration to see
if sub condition (11) of Condition 2 1s satisified, form
the monomial AB any time the monomials Aa and B& oceur in
the representation and the monomial AB satisfies sub cone
dition (1) of Condition 2, Let us call & consensus that
violates sub condition (1i) of Condition 2 a forbidden

eonecensus,
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Lemma 2,4,

No forbldden consensus remains after the second dele-
tion iteration,

Let A be a forbidden consensus, then A < B for some
monomial B of the representation, On the basis of the
proof of the preceding theorem at least one monomial F
such that F > A remains at the end of the second deletion
iteration and A is deleted,

Lemma 2,5,

No monomial that is the consensus of two monomials
such that at least one of them is a forbldden consensus
rina.ins after the second deletion iteration, '
Proof,

Let BC be a monomial that is the consensus of two
monomials aB and &C and aB is a forbidden consensus, We
need only show that AB is a forbidden consensus,

Since aB 1s a térbiddm consensus, we know that there
exists a monomial D, of the representation, such that
D > aB, Ome of twb cases may occur,

Case 1, D contains a,

Case 2, D does not contaln a,

Cagse 1, If D contains a, then D = Ea and the monomial
EC is to be formed,

Now

DaB = aB,

and



EB = B
thus,
ECBC = ECCB = ECB = CEB = CB,
hence

EC > BC,

and BC is a forbidden consensus,

Case 2, Since D does not contain a, we have

DB =B
and

DBC = BC
hence

D > BC

and BC is a forbidden consensus,

Lemma 2,6,

23

The monomial a j is not a forbidden consensus unless

a 3 is already a monomial of the representation or the

representation is the Boolean constant 1,
Proof,

The only Boolean variables that are greater than or
equal to the independent variable a 3 are the variable a 3

and the Boolean constant 1,
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Lemma 2,7,

No monomial A is less than or equal to a forbidden
consensus B unless it is less than or equal to a monomial
that is not a forbidden consensus,

Proof,

Asgume that A < B and B is a. forbidden consensus,
Since B is a forbidden consensus, there exlsts a monomial
C of the representation such B < C; hence A < C,

We see that allowing forbidden consensus to be formed
does not alter the end result of the second deletion
iteration,

We have shown the exlstence of a finite algorithm for
obtaining the canonical form of a Boolean pqunonnl. Such
a method 1s amenable to machine computation, In the next
chapter we will consider the mechanization of this

algorithm,
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CHAPTER IV

THE MECHANIZATION PROCESS

Essentially, there are three problems that one must
consider in the programming of the algorithm, One must
first find a method of representing a Boolean monomial in
a machine, Having done this, one must then determine a
method for finding out whether or- not a deletion is to be
made, Finally, one must determine when a consensus is to
be made and how to make it,

The methods discussed in this section apply to a
machine with the following characteristics:

1, A word consists of 2n bits,

2, The machine can take the logieal sum of two
words, The loglcal sum of two words A and B is a word D
that contains a 1 bit in bit position k iff A or B contains
a 1 bit in bit position k,

3. The machine can take the extract of two
words, The extract of two words A and B is a word D that
eontains a 1 bit in position k iff both A and B contain a
1 bit iIn bit position k,

4, The machine can shift a word until a 1 bit
occurs in a preassigned bit position and count the number
of bit shifts necessary to bring the 1 bit to the position,

5. The machine can complement a word, The

complement of a word A is a word B that contains a 1 bit
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in the k' bit position iff A contains & O bit in the k'O
. bit position and vice versa,

Throughout the rest of this section we will use the
terms "k'® position" or "position k" to denote the term
"B pit position”,

Let us label our independent variables according to
their input order i,e,, 8y is the 1th independent variable
to be entered into the machine, We now Introduce two
auxiliary words, A and A, A is a word that contains a 1
bit in the first and (n + 1)‘“ positions and 0's in ov‘ry S A
other position, while X is a word that has a 1 bit in the
(n + 1)%% position and 0's in every other position,

The independent wvarilable a,y is represented by the
word [a,] that has & 1 bit in the 1*® and (n + 1)*® posi-
tions and 0's in every other position, The variable lJ
has & 1 bit in the (n ¢ J)*P position and 0's in every
other position,

Let us assume that we want to represent the monomial
“133' We first enter the variable a, into the machine,

The machine determines that it is the 1'® independent
variable to be entered and forms the word [“1] by ealling
out A and shifting it 1 - 1 places to the left, The word
[2;] is then stored, When EJ is entered into the machine,
the machine determines that it is the )P variable to be
entered, The word (EJ] is then formed by calling out A
and shifting it J - 1 places to the left, We now take
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the logical sum of [a,] and [sJ] obtaining [aiiJ]. The
word [“153] has & 1 bit in the (n + 1)th. (n # J)th. and
N positions and O's in every other position, This method
enables us to represent in one word a monomial in nb1n4?~
pendent variables, Rk

For an example, let us assume we have a machine that
has a word length of 6 bits, The bit configuration of the
representation of the monomial “1‘2“3 is the following:

(a,8,85] =1 11101,

A representation of a polynomial is stored in the
machine by the process of serial storage of monomial
representations, the 0 and 1 representations being sepa-
rately indicated,

Assume that a representation P is stored in the
machine, Let a be a monomial of P, w& want to find out
whether a is greater than or equal to any other monomial
B of P, .

Let us denote the result of extracting [(a] with [B]
by E(a,B).

Lemmse, 3,1,

A necessary condition for a to be greater than or

equal to B is

E(a,B) = [al.

L, )
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Proof,

Assume E(a,B) # [a], then in some position, say
position jJ, [a] contains a 1 bit, while [f] does not cone
tain a 1 bit in position k, This implies that a contains
as a factor a variable not contained in B; hence a # B,

This condition is not a sufficlent condition as the
following example shows,

Let

Q= 31‘5.2
iy 3¢
then

[a] =011001
(fl=111111

E(ayB) =011001= [a]

but a is not greater than or equal to B,

Let Ea denote the word that consists of the right
half word of [a] and has O's in its left half, H, 1s the
word that has for its right half word the left half word
of [c] and has O's in its left half,

Theorem 3,
Either one of the following two conditions:
(1) E(w,B) = [al,
(11) E(H,Hg) = E(H ,Hg)
are necessary for the inequality
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a>B

to hold and the simultaneous truth of both of them is
sufficient for the inequality to hold,
Proof,

Since we have already shown the necessity of (1),
consider (ii), Assume that x(aa.na) # n(na.np) and let
(¥) = E(H,Hg) and [v] = n(ﬁa,ns). If [¥] # (Y], then
one of them, say [¥], contains a 1 bit in the §'B
(J < n) while [y ] contains a O bit in position j, This
1mp1ios that a contains, as a factor, ay or EJ while B

position

. must contain ay 88 8 factor, From the O bit in [y ], it
follows that a contains & jasa factor; hence, a contains
factors foreign to B and a is not greater than or equal to
Be Since the reasoning is symmetriec, the same result may
be obtained by choosing [Y ] to contain a 1 bit in the k'P
position while [¥] contains a O bit in the k" position,

Assume now
E(a,B) = [a]

E(Hy,Hg) = E(R,Hy).

Since E(a,B) = [a], we know that [B] contains a 1 bit
in every position that [a] contains a 1 bit, This reduces
the proof to showing that a does not contain, as a factor,
the dual of any independent variable appearing as a factor
of B, Assume that a contains, as a factor, 'ik and B
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contains a, &s a factor. Then, H , Hy and ﬁp contain a 1
bit in position k while B_has & O in the k" position;
hence, '
E(Hg,Hg) # B(R,Hp).

Since this contradicts our hypotheses, a may not contain,
as a faoctor, the dual of any independent variable occurring

as a factor of B and we have shown
a3z B.

On the basis of the preceding theorem the method for
the deletion lteration 1s constructed, Let [a] and [B]
be two machine representations of Boolean monomials, Form
E(a,B) and check to see whether or not E(a,B) = [a)., If
E(ayB) = [a), we check to see whether or not
E(Ha.ﬂa) = E(R ,Hg)e 1If E(H‘.H’) = E(H,Hg), then we
delete B, If either one of the two equalities fails to
hold, we proceed to check [a] with other monomial repre-
sentations,

The process used in the formation of the consensus

of two monomials uses the words H R Hg &nd Ba, also,

ﬂ'
Let CE(Ia.ﬁB) denote the complement of E(ﬁa.ﬁp).
Lemma 3,2,
n[cz(’ﬂa,ﬁs) " E(Hu,HB)] will contain a 1 bit in

position k iff both a and B contain ik as a factor or one



31
of them contains ays 28 & factor, while the other contains
ik as a factor,

Consider E(Ha,ﬁB), it will have & O in position k if
both a and B contain Ek, as a factor, or if one of them
contains &, as a factor while the other contains a, as a
factor, Thus, under the above conditions cx(ﬂc,ﬁﬂ) will
econtain a 1 bit in position k,

If either of the above conditions are met, E‘Hu'HB)
will contain a 1 bit in position k, Since both words of
the extract contain a 1 bit in position k, we must have
that their extract contains a 1 bit in the kth position
and we have shown the sufficiency of the conditlions,

If the above conditions are not met, three cases may
arise,

Case 1, Neither of a or f§ contains a, or Ek as a
factor,

Cage 2, One of them contains either a, or & as &
factor but the other does not contain a, or &, as a factor,

Case 3, Both « and B contain 8, as a factor,

In Casees 1 and 2, E(Ha,Hp) must contain a 0 in
position k; hmoobxtm(ﬂa.'ﬂp) ¢ E(HG'HB)] has & 0 bit in
position k,

In Case 3, ECEa;Hb) must contain a2 1 bit in position
k, hence CE(H ,/;) must contein & O in the k™ position
end E[CE(H,H;) , E(Hg,Hy)] has a 0 in position k, And

we have shown the necessity 6r the conditions,
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Let s(ﬁu.ﬁa) denote the logical sum of H  and Ha.
Lemma 3,3,

E{E[G‘Eﬁc,ﬁﬂ) » B(H Hg) , s(ﬁ“,ﬁaj} will contain a
1 bit in position k iff a eontalns a, as a factor while B
contains & as a factor or a contains &, as a factor and P
contains a, as a factor,

Proof, :

If either one of the above conditions are satisfled
~ then S(BG’HB) will contain a 1 bit in position k and by
lemma 3,2, so will E[Oﬁtﬁa.ﬂp) " E(HG'HB)]. And we have
ghown the sufficiency of either one of the conditionms,

Assume that neither one of the above condltions are
satisfled, Then, four cases are possible, the first three
being the three cases of lemma 3,2, The fourth case con-
sists of both o and B containing 'E.k as a factor,

In the three cases of lemma 3,2
E[BE('ﬂa.'HB) : E(Ha,BpJ] does not contain a 1 bit in
position k; thus, E{E[GE(Ea.HB) s E(Ha.HB)] " s(a,a)}
cannot contain a 1 bit in the k'® position,

In case four, s(ﬁc.'ﬁp) does not contain a 1 bit in
position k; hence E{E[GE('BG,Ha) ’ E(Ha,Hﬂ)] ’ S(G,B)} does
not contain a 1 bit in position k, And we have shown the
sufficiency of the conditions,

Let HEuﬁ denote the number of 1 bits in

B{EOE(H,Ky) » E(Hy,Hg)] 5 S(asB)).
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Theorem 4,

A consensus 1s to be made between a and g Aff NE = 1,
Proof,

Assume NE = 1, From lehls 343, we know that a con-
taine one and only one dual of an independent variable of
B; thus, by Quine's second condition a consensus is to be
made,

Assume NE # 1, Two cases arise,

Case 1, NE = 0,
Case 2, NE > 2,

In Case 1, a doos.not contain the dual of any variable
of Bp; hence, no consensus 1s to be made,

In Case 2, a contains the dual of at least two inde-
pendent variables of f; hence, by sub condition (1) of
Quine's second condition no consensus is to be made,

The process used in the consensus lteration 1s the
following, Let a and B be two monomials of the represenw-
tation, Determine whether or not NEGB is equal to one,

If NE o # 1, compare a with some other monomial of the
representation, If NEaB = 1, shift

E{E[GE(H“,HB) v E(Hg,Hg)) o S(as8)} to the left wntil its

1 bit is in the 2n°® position and count the number of bit
shifts necessary to do this, Let C be the number of shifts,
Form the difference 2n - C, 0Call out the auxiliary word A
and shift it 2n - C places to the left, We then have a
representation of the independent variable o that occurs
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in @ and has its dual in B, Form c[ak] and store it,
Take the word S(a,p) and form E(S(a,B) , C(a,)]. This
word is the consensus of a and B,

Since the two words that form a consensus Yy are not
unique, we must store each word that is a oana'naﬁs 80
that we may know whether or not we have formed a cbnscnﬁus
before, lest we exceed the storage capacity of a machine
by storing it meny times,

Lemma 3,4,

E(S(a,B) , C(a,)] will contain only 0's iff the econ~
sensus 1s between the two monomlals a, and 31.

Assume that the monomials ik and a, are being checked
by the machine to determine whether or not a consensus 1is
Pk,
the k*" position; thus, O[a,] will have & O in only the k'P
th

to be made, will be one, and the 1 bit will be in

position while s(ak.ik) will have a 1 bit in only the k
position, It follows that E[S(a,B) , ¢(a, )] has 0's in
every position,

Assume that the machline makes the consensus of two
monomials a and B and at least one of a or B contains more
than one independent veriable as raaturs.‘ The word
E(S(xyB) c(ak)] must contain at least one 1 bit, since
the process of forming E[S(a,B), c(ak)] eliminates only
one independent variable from S(u,B) and B or a econtains

at least two independent variables as factors,
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Once the consensus iteration is finished, apply one

more deletion iteration to complete the process,



CHAPTER V
EXAMPLES

In this section we will consilder some examples that
have been worked out by an electronic computer, For each
polynomial whose canonical form has been determined there
are three entries, The first entry is the representation
whose canonical form 1s to be determined, The second
entry 1s the result of one deletion iteration and one
consensus iteration, In the second entry it will be noted
that some of the monomials are underlined, The underlined
monomials are the result of the deletion iteration, It is
seen that to this representation one may add any combina-
tion of the monomials of the second entry that are not
und&l-.lned and not alter the polynomial, The third entry
is the canonical form of the polynomial,

Example 1,
P = abe 4 Bbe + a‘éu + av% + BBc + EVG 4 abe
Intermediate results:
DY wt 5 & 7 T o 7 = -
Pz=ac+as+bosabecsr8bedcsds bE+abe ac
+ bo + Ebe + abe + abE + abe + abe + EbE + abi.
Canonical form:
: a+ b+ e,
Example 2,

P = abe 4 abe 4 cd ¢ Cf
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Intermediate results:
P = df 4 abf 4 aef 4 aBf 4 af + ac + abe + abe # cd + Bf
Canonical form:

P=df ¢+ af 4 ac 4+ od ¢ of, - a¢ 4t <3
B e, ot thodesd

A

Example 3,
P = abed + agh + bgj + Jkp

Intermediate results:

bgkp + abhkp ¢ acdgh) + abcdhj + bedgh)

4+ bedghkp ¢ abodhkp 4 acdghkp + acdghjkp

+ abedhjkp + bodghjkp + ebh) + &cdgkp

+ 8Gdgh) + abcdnkp + 80d8hkp + 8cdghJkp

+ bodghlkp + abedhjkp + bedghkp « bBedgh)

+ 8bcdn) + 8cdg) + bedgh + &Bcd + agh + bE] + Jkp.
Canonical form:

bekp ¢ abhkp + abhj ¢ &cdgkp + acdg] + bedgh

+ 8bcd 4 agh + bgJ + Jkp,

The intermediate results of the above example define

a class of 301 equal representations,
. The cthplen that we have seen so far have been rather
well behaved, Some very pathological examples may be
ereated by the following process, From a set of n vari-
ables (n » 5, the process 1s not worthwhile for n < 5)
construet a representatlion by first forming all of the
posegible sets containing only n - 1 independent variables,
There will be n of these, From each set form all of the
possible monomials that may be formed by replacing two of



the variables by their duals, There will be
(n=2) # (n=3) # .us + (n=-kel) of them,
The total number of monomials formed will be

(ne1) (-2)n _ n° - ;l;’ e2n

No deletions can be made because the monomials are

formed in such a way that either one contsins as & factor
the dual of an independent variable occurring as a factor
of the other or each eonxaihn independent variables foreign
to the other,

Any consensus between two monomials gives rise to
another monomial of the representation, For, assume that
a and B are two monomials of this representation,

Let

G = 818, eoe By eee By 00e 8y

and

B = 898y soe 8y sas By see By vee 8, PN,

For the consensus to be made we must have that a, 1is
foreign to a; thus the consensus 1s the same as the word
formed by removing the factor a, from a and adding the
factor &, The consensus contains n - 1 factors of which
two are primed,



Example 4,
For n = 5 we obtain
P = @Bed 4 &bGd 4 Ebed 4+ abod ¢ abed 4 abed
8bce # BbTe 4 Abee + aboe + aboe 4 aboe
8bde + @bde ¢ -ibdi + abde + abdé + abde
@cde # dcde + Acd® + atde # acde + avde
Bide + Bede + Bodd + bGde # b3dS + beds,
The standard canonical form of P is
P = abcde + abed® + abedé + &bcds
abcde + abdde + abede + abede
@bede + abode 4 abcde + abede
&bcde 4 abede ¢ @bcde + abode
abcde + Bbcde + aAbede 4 &beds,

In closing, it is felt that Quine's canonical form
is superior to the standard cenonical form, due to its
characteristic of retaining or reducing the degree of
complexity of the polynomial representation and its
amendability to machine computation,
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