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ON SYSTEMS OF BOOLEAN EQUATIONS 

CHAPTER I 

INTRODUCTION 

In a solvable Boolean equation or system of 

Boolean equations each unknown has in general more than 

one value . Whitehead (11) gives necessary and sufficient 

conditions that the solution be unique. However, 

Whitehead's proofs were limited to Boolean equations in 

two variables. Bernstein (1) in a later paper presented 

a general proof of Whitehead's theorem. But unfortunately 

the proof relies on an intuitional approach . In this 

paper we present a proof of Whitehead's theorem by mathe­

matical induction. In another paper by Bernstein and 

Parker (2} the conditions are re-stated in a slightly dif­

ferent form. We generalize Whitehead's theorem to yield 

all of the solutions to a system of Boolean equations. 

One major difficulty with Whitehead's or Bernstein's 

conditions is that they are based on the disjunctive c anon­

ica l form of a Boolean representation. This canonical form 

has 2n terms in its representation whenever n independ­

ent variables are present. And since these conditions de­

pend upon the coefficients of the terms appearing in the 

• 
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c anonica l form all of the 2n terms must be examined. Of 

course for l ar ge n this procedure would be most undesir­

able. 

The main purpose of this paper i s to develop an 

a l gorithm by which the unique soluti on to a system of 

Boolean equations can be found without appeal i ng to the 

disjuncti ve canonica l form. 

In Chapt er VI we discuss some applications of the 

results of thi s investigation to the solution and construc­

tion of inferentia l problems. 
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CHAPTER II 

FUNDAMENTAL PROPERTIES 

Before proceeding with the main part of this di s· 

cussion it is necessary that we define some fund amental ter­

minology . It will be assumed that the reader is f amiliar 

wi t h t he basic properti e s of a Boolean al gebr a . (5) Some 

of the basic properti es are l i sted below for reference. 

One of the simplest Boolean a l gebr as is that de· 

fined on the set fo , 1} with additi on , +, and multi­

plication , • defi ned by the t ables ,• 

(2. 0) + 

0 

1 

0 1 • 0 1 

0 1 0 0 0 

1 1 1 0 1 

In practice the • may be om! tted and thus a • b becomes 

ab . Thi s part i cular Boolean al gebra has been quite useful 

in applications to switching network theory and to the so­

luti on of certain logica l problems. The remainder of this 

di scussi on will be devoted exclus ively to it . 

(2.1) We l i st some of the properties of the Boolean 

a l gebra def i ned on the set [0 , 1J . I f a , b and c are 
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ar bitrary elements of the set then, 

Pl. There is an element 0 in the set such that 

a +O = a for every a i n the set. 

P2. There is an element 1 in the set such that 

a • 1 = a for every a in the set. 

P3. a+b = b+a 

P4. ab = ba 

P5 . a+bc • ( a+b)( a+c) 

P6 . a(b+c) = ab+ac 

P7. For every a in the set there is an element 

a ' in the set such that, 

aa' = 0 and a+a ' ::: 1 

P8 . a+a = a and a • a = a 

P9 . a+l = 1 and a • 0 = 0 

PlO. a+ab • a and a ( a+b) = a 

Pll. a+(b+c) = (a+b)+c and a (bc) = ( ab )c 

Pl2 . (a ')' = a 

Pl 3 . a+b = ( a 'b')' and ab = ( a '+b ')' 



Pl4. 0 ' = 1 and 1' • 0 

(2.2) A variable ai is a Boolean variable iff its 

r ange is the set fo. 1J . 

(2.3) Let S be a set of Boolean variables and let 

a be an element of S. We say that a is an independent 

Boolean variable, relative to S, iff a may assume the 

values 0 and 1 independently of the values assumed by 

any other element of S. A symbol representing an inde­

pendent Boolean variable will be referred to as a letter. 

(2.4) The element a• of property P7 is called the 

~ of a . 

(2.5) The set of Boolean functions of n independent 

Boolean variables f x1,x2 ,···,xnJ will be called the finite 

Boolean algebr a Bn. Combining the independent Boolean va­

riables and their duals by the properties (2.1) yields va­

rious representations of the elements of Bn. 

(2. 6) Two representations of elements from Bn are 

said to be equa l i ff they have the same value for every set 

of values of the independent variables. 

(2.7) A difficulty arises here in the use of the 
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symbol "="· We may write x=l in which case we usually 

mean that the Boolean variable x has the value 1. Or we 

may write f(x1,x2,···,xn) = 0 in which case the question, 

"for what values of the independent variables 

[x1,x2,···,xn} does f(x1,x2,···,xn) have the value 0?" 

is implied. This is a nconditional" equality. Another ex­

ample of a conditional equality might be 

f(x1,x2,···,xn) = g(x1,x2,···,xn). However , we could mean 

by this exactly the definition (2.6). Finally when the de­

finition (2.6) is implied we may sometimes write 

f(x1,x2,···,xn) c g{x1,x2,···,xn) to emphasize that (2.6) 

is being used. 

We have this same difficulty in the algebra of real 

numbers and it is resolved by letting the context of the 

statement involved imply the use of the symbol. Throughout 

the rest of this discussion we shall "resolve11 the difficulty 

in precisely the same way. 

(2.8) 

Bn . The Boolean function, 

xn f(x1,x2,•••,xn-l'l) + x~ f(x1,x2 ,···,xn-l'O) 

is called the expansion of f(x 1,x2 ,···,xn) about the inde­

pendent variable xn. 
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(2.9 ) 

Proof: 

Evaluate both functions for X :r 0 and then X = 1.n n 

For xn =O, f(x 1,x2,•••,xn) is f(x1,x2,•••,xn-l' O) and 

xn f(x1,x2,···,xn-l'l) + x~ f(x1,x2,···,xn-l'O) becomes 

f(x1,x2,···,xn-l'O). 

If xn = 1 , then we see that, 

f(x1 ,x2,···,xn-l'l) _ l•f(x1,x2,···,xn-l'l) 

+ O•f(x1,x2,···,xn-l'O) 

(2 . 91) The elements of the set of Boolean variables 

rx x ••• x x' x' ••• x•} are called the literals of Bnt 1' 2 • • n ' 1' 2' ' n 

(2.92) A monomial in Bn is the Boolean product of li­

terals of Bn such that no letter occurs more than once. 

(2.93) A Boolean polynomial is the Boolean constant 1 

or the Boolean sum of a set of monomials of Bn. If the 

set of monomials is empty then the polynomial is the 

Boolean constant 0 . 

(2.94) By the use of the properties (2.1), particularly 
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P5 and P6, every member of Bn can be expressed as a po­

lynomial. 

(2.95) In what follows we shall drop the prefix 

"Boolean". For example we shall write "polynomial" in­

stead of "Boolean polynomial" or "va!'iable 11 for "Boolean 

variable". 

(2.96) If a,b and c are variables such that, 

a = be 

then a is less than or equal to b (a~b, b~a) and a 

is less than or equal to c ( a<c, e>a).-
(2.97) a+b+bc :.: a+b 

Proof: By property PlO b+bc = b. 

We shall call this procedure a deletion. The performance 

of all such deletions on a given polynomial shall be called 

a deletion iteration. 

(2.98) If a, b, c and d are Boolean variables and 

is an independent variable such that 

a = ex and b • dx• 

then the variable cd is called the consensus of a and 

b. 

(2. 99 ) Let y be a polynomial in Bn and aB and 

aC be monomials in where a is an independentBn• 
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variable in Bn. Then, 

Y + aB + a'C: Y + aB + a'C + BC 

Proof: Y + aB + a'C + BC =Y + aB + a'C + (a+a')BC 

Y + aB + a'C + (a+a')BC: Y +aB + a'C +aBC+ a'BC 

Y + aB + a'C + aBC + a ' BC: Y + aB + a'C 

by (2.1) and (2.97) . We note that BC is the consensus 

of aB and a'C. 

(2.991) We shall call the process of making every possib» 

consensus a consensus iteration . 
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CHAPTER III 

CANONICAL FORMS 

By (2.6) we see that we may determine when two 

functions in the same number of independendt variabl~are 

equal simply evaluating e ach of them for every set of 

values of the independent variables (x1,x2,···,xnJ . This 

method is usually called the truth table method . Although 

this can be a usefulmeth~itis sometimes more advantageous 

to be able to determine equality of Boolean functions by 

direct inspection of the representations of the two func­

tions. 

We employ here certain transformations such that 

when applied to a member of Bn they transform each equal 

representation of a function into a unique representation 

of the function. These unique representations are called 

Boolean canonical forms. In what follows we shall make 

use of three standard canonica l forms. 

(3.0) 

conjunctive canonical form of f(x1,x2,···,xn) is , 
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i i i 
• • • II (f(l 1,•••,1 n) 

i =0 n 

1-i 
+···+ x n )

n 

where if i = 0 and if i = 1 • 

The proof that this form is canonical is well known, 

e.g., Rosenbloom (9). This canonical representation is 

the product of sums of literals such that in each sum no 

letters appear more than once. 

(3.1) The terms of the conjunctive canonical form are 

called max-terms. Max-terms that contain the Boolean con­

stant 1 are dropped from the representation. 

{3.2) As an example suppose that, 

f{xl'x2 ) = x1x2 
then the conjunctive canonical form of f(x1,x2 ) is , 

f(x 1,x2 ) _ (xi +x2)(l+xi+x2)(x1+x2)(x1+x2 ) 

:: (xi + x2) (xl+x2)(xl+x2 ) • 

Since f(O, O) = f(O,l) = f(l,l) = 0 and f(l,O) = 1. 

(3.3) An alterm is a sum of literals such that no letter 

appears more than once in the sum. 
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(3.4) By a conjunctive form of a given Boolean func­

tion we shall mean a product of alterms. 

(3.5) 

disjunctive canonical form of f(x1,x2,· ··, xn) is, 

1 ... I1 

- L 
i = 0 n 

Where Xi X if i = 0 and if i = 1.j = j 

The proof that this representation is canonical is also 

well known (9). We note that this representation is a po­

lynomial in which each monomial contains n distinct let­

ters. Monomials with 0 coefficients are dropped from the 

representation. 

{3.6) The monomials of the disjunctive canonical form 

are called min-terms. 

(3.7) As an example suppose that, 

then the disjunctive canonical form of f(x 1,x2 ) is , 

f(x 1,x2 ):x1x2f{l,l) + x1x2f(l,O) + xix2f(O,l) + xix2f(O, O) 

f(x1,x2 ) : + x1x2 + xix2x1x2 
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by the properties (2.1) and since f(l,l)=f(l,O)=f(O , O)=l 

and f(l, O)aO. 

(3. 8) A transformation which will yield the disjunc­

t ive canoni ca l form of a member of Bn is obt ained by fol ­

lowing the rules : 

i . Transform the given function to a polynomial; 

ii . Multiply e ach monomi al of the polynomial by 

(xi + xr) for all independent variables xi 

such that neither xi or xr are f actors of 

the monomi al. See Witcraft (12). 

(3 . 9) As an example suppose that , 

f(x1,x2) = x1 + x2 

then applying (3.8). 

f(x1.x2) _ x1(x2 + x2) + x2(x1 +xi), 

f(x1,x2) _ x1x2 + x1x2 + xix2 • 

(3.91) There is a useful relationship between the dis­

junctive and conjunctive representations of a Boolean func­

tion. Namely. the conjunctive (di sjunctive) c anonical form 

is the product (sum) of up to 2n ma x-terms (min-terms). 

The conjuncti ve (disjunctive) canoni c al form of the dual 

of a Boolean function is the product (sum) of max-terms 
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(min-terms ) of the set complement of the conjunctive (dis­

jun¢tive) canonic al form of the given Boo~ an function re­

l ative to the set of 2° max- terms (min-terms) of Bn(9) . 

(3.92) As an example suppose we have, 

and want the conjunctive canonical form of 

By (3. 9), 

f ' (x1,x2) : x1x2 + x1x2 + xix2· 

By the properties Pl2 and Pl3 we have , 

and we have the conjunctive canonical for m of 

(3. 93) For our purposes we shall write the disjunctive 

canonica l form ~f f(x1 ,x2 ,•••,xn) in a less concise way, 

i .e., 

• • • 

+a x'x'··•x' 
2n 1 2 n 

where it i s understood that every combination of xj and 

xj occurs. (i=l,2,•••,2n,j=l,2,•••,n). 

(3 . 94) We shall call the the discriminants of thea1 

disjunctive canonical form of a function. In what follows 
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we shall reserve the symbols a , b and c to represent 

discriminants. 

(3. 95) We shall use the notation Qn or 

Q(x1,x2,•••,xn) to represent the disjunctive canonical 

form of a given function in n independent variables. 

(3. 96) By (2.9) we may write, 

Qn : xnQ(xl,x2,•••,xn-l'l) + x~Q(xl,x2,•••xn-l' O) 

and we note that Q(x1,x2,···,xn-l'l,) and 

Q(x1 ,x2,···,xn-l'O) are disjunctive canonical forms of 

functions in n-1 independent variables. We will let 

bj and cj' respectively, be the discriminants of 

Q(x1,x2,•••,xn-l'l) and Q(x1,x2,•••,xn-l' O). 

j • (1,2, ···,2n-l). In general the bj are not the same 

as the but every bj and is an 

(3.97) Another important canonical form is that due to 

Quine (7), (8) or Samson and Mi lls (lJ} . We shall refer 

to it as Quine ' s canonica l form. 

Given an element of Bn we first reduce the element 

to a polynomial. Then there are three conditions that a 

Boolean polynomial must satisfy in order that it may be 

said to be in Quine's canonical form. 



16 

Condi tion 1. 

If A and B are two monomia ls of a represent­

ation P such that ~B , then the monomia l B is 

to be deleted from the expressi on. 

Condition 2. 

If Ax (x an i ndependent variable) and a x' are 

two monomials of P and AB s atisfies the follow­

ing two conditions, 

i. The monomia l A does not contain as a f ac­

tor the dual of any i ndependent var iable 

conta ined as a f actor in B; 

ii . the product AB is not less than or e qual 

to any monomi al C of D; 

then the monomial AB is to be added to the repre­

sentation of P. 

Condi tion 3. 

If the monomials x and x' occur i n a repre­

sentation (x an independent variable), the poly­

nomial i s the Boolean constant 1. 

That the form i s canonica l is proved by Quine (7), (8 ) and 

Laxda l {6 ) . 

(3.98 ) The monomi als of Quine's canon i ca l form of a poly­

nomial P are ca lled the prime i mpli cants of P. 
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(3 . 99 ) The followi ng al gorithm will always i nsure that 

a polynomia l satisfies Quine's condi t i ons. See Laxda l (6). 

Begin with a deletion iteration and then follow 

with a consensus iteration whi ch i s followed by a check 

to see if t he monomials x and x' both appear (x an 

independent Boolean variable). If both appe ar t he Boolean 

constant 1 i s the canoni ca l r epresentation. If not, 

follow wi th a deleti on i terat i on. 

Thi s al gori thm has been mechanized for a digit al 

computer by both Laxda l (6 ) and Witcraf t (12 ). 

(3 . 991) The following useful theorem is due to Ghaz ala 

(4). 

If, given some conjunct i ve form of the polynomial 

f, 

i. we perform the indicated products by the 

use of properti es ( 2 .1); 

ii. drop all products xx' from the resultant 

representation; 

iii. perform a deleti on iteration on the result­

ing polynomial; 

then the new repre sentation i s Qui ne's canonica l form of 

f. 
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CHAPTER IV 

PROCEDURES BASED ON THE DISJUNCTIVE CANONICAL FORM 

In what follows we shall use the symbols fi and 

9i to represent Boolean functions in the n independent 

variables {x1,x2 ,···,xnJ . (i = 1,2,•••,m). 

Given a system of m equations in n independent 

variables, 

if there is a set of values of the independent variables 

such that fi • 9i reduces to 0 • 0 or 1 • 1 for every 

i, then the system (4 . 0 ) is said to have a solution . 

(4.1) Any Boolean equation, 

f = 9 

can be written in the form, 

fg' + f'g = 0 • 
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(4.2) By (4.1) the system {4. 0) can be written, 

flgi + fi 91 = 0 

+ c 0f2g2 f2g2 

fmg~ + f'm 9m a 0 . 

(4.3) I f there is a solution to the system (4.2) then 

the left hand sides of each equation must have the va lue 

0 for some set of values of the independent variables. 

Under this condition the system (4.2) is equivalent to, 

n 

Hn = L (figf + fl gi) = 0• 
i=l 

where Hn is a function of n independent variables. 

(4.4) We see that any solution to the system {4.3) i s 

a solution to the system {4.2) and any solution to the 

system {4.2) is a solution to the system (4. 0 ). Therefore, 

to solve the system (4. 0) we need only solve the single 

equation (4.3). We proceed by reducing Hn to theca­

nonical form ~ · And we shall investigate under what 

conditions does Hn =Ort • 0 have a solution. 
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(4 . 5) Given the equation, 

where is an independent variable and are 

discriminants, a necessary and sufficient condition that 

the equation have a solution is, 

= 0 . a1a2 

Proof: The condition is sufficient, for if al = a2 = 0 

then, a lxl + a2xi = Ox1 + Oxi : 0 

and any value of xl is a solution. 

If al = 0 , a2 = 1 then , 

alxl + a2x i = l • x1 + 0 • Xi = Xi = 0 

and X = 0 i s a solution. By symmetry if = l, a2 = 01 a1 

then 1 is a solution .xl = 
The condition is necessary for if al = a2 = 1 then, 

alxl + a2xi = 1 • X + 1 • Xi = xl + x'1 = 0 

which is not satisfied for any value of since,xl 

+ x• •x1 =11 

(4. 6 ) The following theorem is due to Whitehead (11). 

We offer an alternative proof . 
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Theorem 1: 

A necessar y and sufficient cond i t ion that t here 

exist s a solution to Q = 0 i s,n 

Proof: By i nducti on on the number of i ndependent vari­

ables n. 

For n~l the conjecture is val i d by (4. 5) . Sup­

pose that i t i s va l i d for some n~k . We expand Qk+l 

about the variable xk+l by (2 . 9 ) 

Q(xl,x2, •• • ,xk+l) - xk+lQ(xl,x2 ,· · ·,xk,l) 

+ xk+lQ(xl,x2,···,xk, O). 

If a1a2 ·· · a k+l = 0 then ei ther a bj = 0 and all 
2 

or a cj=O and all bj=l or f i nal ly some bj=O and 

some cj=O at the same time. 

Case 1. A bj and a cj are 0 . 

Then by t he i nduction hypothesis Q(x1,x2 ,· · ·,xk,l) 

and Q(x1,x2 , • • • , xk, O) are 0 for some set of 

va lues of t he variables ( x1,x2,·· ·,xnJ (not neces­

s arily the same set) . 

I n e i ther case we may choose a value of xk+l such that 

Qk+l i s o. 
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Case 2 . is 0 but no is 0, then 

Q( x1,x2,•• • ,xk,l) has the value 0 for some set 

of values of the k variables {x1, x2 ,•• •,xkJ by 

the induction hypothesis. And so we t ake this set 

of k va lues and let xk+l = 1 so that Qk+l 

has the value 0 . 

Case 3 . A is 0 but no is 0 , then by 

a symmetrical argument and letting xk+l = 0 we 

have a solution to Qk+l = O. 

These three cases show the sufficiency of the condition. 

Now suppose that Qk+l = 0 has a solution then 

Case 1. Q(x1 , x2 , ·· ·,xk,l) is 0 and 

is 0 • 
' 

Case 2. Q(x1 , x2 ,· ·· ,xk,l) is 0 and 

Q(x1 , x2 , · ··,xk, O) is 1; 

Case 3 . Q(x1, x2 , • •• , xk,l) is 1 and 

Q(x1 , x2 ,••• , xk, O) is o. 

If any of these three cases we have, by the induction hypo­

thesis, that either a bj is 0 or a i s 0 . And 

since every bj and at least one 
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Thi s shows the necessity of the condi tion . Hence t he con­

j ecture i s va lid for all n. 

{4 . 7) The following theorem is due to Bernstein (1) , 

but we offer an alter nat i ve proof. 

Theorem 2 . 

A necessary and sufficient condition that Qn =0 

have a unique .solution is , 

i . and ii . i I j 

Proof: We first note that the conditi ons (i) and ( i i) 

are equivalent to the statement that "exactly one di scri­

minant of Qn is 0 11 
• For by ( i ) at least one ai=O and 

if t wo discriminants are 0 there is an ai=O and an 

aj=O for i # j so that a j =1 , aj=l and ar aj I o. 

By (4 . 6) the condition (1) is necessary and suffi­

cient for the existence of a solution . Hence we need only 

show that the condition (ii) is necessary and sufficient 

for the uniqueness of the solution . The proof is by in­

duction on the number of i ndependent variables n. 

If n•l then, 
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In this case xi=O, i . e., x1=1 is the unique solu­

tion. 

By symmetry x1=0 is the unique solution . 

Suppose now, that Q1=o has a unique solution. Then it 

is x1• 0 or x1=1 since there is only one i ndependent 

variable. By (4. 6) at least one of a1 and a2 is 0 

and we have three possibilities . 

is a solution, contradicting our assump­

tion that Q1 =o ha s a unique solution. 

Case 2 . a1=1 , a2=o. Then (ii ) is s atisfied . 

Case 3. a1 =o, a2=1 . Then (11) is s atisfied . 

This shows that the conjecture is valid for n=l. 

Suppose that it is true for n•k. By (3. 9) we have, 

Qk+l : xk+lQ(xl,x2 , • • • ,xk, l)+xk+l Q(xl , x2 ,• • • ,xk, O). 

If the condition (ii) is satisfied then exactly one aj=O. 

Or by (3.96) exactly one of the set (bj ' c jJ is o. 

(j=l,2, · · · ,2k) . 
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If exactly one bj is 0 then every cj is 1 

and there is a unique set of values of the variables 

[x1,x2,···,xk} such that Q(x1,x2 ,···,xk , l) is 0 by 

the induction hypothesis . If we add to that unique set of 

values xk+l = 0 then Qk+l does not have the value 0. 

But if we add xk+l = 1 we have a unique set of values of 

the variable such that Qk+l is 0. By a symmetrical ar­

gument we see that when exactly one cj is 0 we also 

have a unique solut ion to Qk+l = 0. This shows the suf­

ficiency of the condition (ii) for n=k+l. 

Now suppose that Qk+l = 0 has a unique solution. 

Then Q(x1, x2 , ···,xk,l) and Q(x1,x2 , ···, xk , O) cannot 

have the value 0 for the same set of values of the vari­

ables. For this would imply that xk+l is arbitrary. In 

which case there would be two or more solutions to Qk+l=O 

contrary t o our assumption. 

Now Q(x1, x2,···, xk ,l ) = 0 has a unique solution 

for otherwise we could take xk+l = 1 and Qk+l is 0 

for more than one set of values of the variables contrary 

to our assumption. By symmetry the set of values for which 

Q(x1, x2,· ··,xk, O) is 0 is also unique. By (4.6) at least 

one ai is 0. Suppose two or more is O, thena1 
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there are three cases. 

Case 1. Two or more bj = 0 and all cj = 1, in 

which case Q(x1,x2,•••,xk,l) = 0 does not have a 

unique solution by the induction hypothesis . 

case 2. Two or more cj = 0 and ~ 11 bj • 1. 

Again by a symmetrical argument Q(x1,x2 ,•••xk,O}=O 

does not have a unique solution. 

Case 3. One or more cj = 0 and one or more 

bj = o. But if more than one bj or c j is 0 

then as before our assumption that there is a unique 

solution i s contradicted. And if exactly one bj=O 

and exactly one cj = 0 then there are two distinct 

solutions to Qk+l = o. Since Q(x1,x2,•••,xk,l) 

and Q(x1,x2,···,xk, O) cannot be 0 for the same 

set of values of the variables, we may take the set 

of values for which the first is 0 and xk+l = 1 

and the set of values for which the second is 

and xk+l = 0 . 

By these three cases we see that exactly one of the follow­

ing occurs: 

0 
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1. exactly one bj = 0 and all cj = 1, 

2. exactly one cj = 0 and all bj II: 1. 

In either case exactly one a 
~ 
. is o. This proves the 

necessity of condition (ii). Therefore by mathematical in­

duct ion the conjecture is valid for all n. 

(4. 8) For any min-term A of Q there is one andn 

only one set of values of the variables such that A has 

the value 1. 

Proof: We take xi = 1 if xi is a factor of A and 

XItake 0 if is a factor of A.xi = i 

(4.9) If Ah and Ak are min-terms of on and Ah 

has the value 1 for a set of values of the variables 

then Ak = 0 for that set of values. 

(k=l, 2,••• , h-1, h+t,· ···,2n). 

(4.91) Theorem 3 . 

Given Q = o, T is the set of all aj such that n 

ai = 1, t is the cardinality of T and S is the set 

of all solutions to on = 0 then the cardinality of s is 

2n-t •. (t=l,2,•••,2n). 

Proof: By induction on t and for a fixed n. 
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If t=O then every a1=0 , Qn:O and any one of the 2° 

possible soluti ons s atisfy the equation. And so the car­

dinal i ty of S i s 2n. 

If t=l then exactly one ai is 1 and the dis· 

junctive canoni cal form ~ is a s i ngle min-term. By 

(4. 8) there is exactly one set of values of the var iables 

for which on has the va lue 1. Thi s i mpli e s that of the 

2n pos sible soluti ons to on = o, for exactly one of the 

poss i bilities is 1. Therefore t here are 2n-l solu­on 
tions to Q = 0 when t i s 1.n 

We suppose that the conjucture i s va l i d for t = k. 

Q(k) Q( k+l)Let and be polynomials in dis j unctive ca­n n 

nonical form for whi ch k and k+l discriminants, res­

pectively, are 1. Now i f k+l<2n, 

Q(k+l) : Q(k) + A 
n n 

Q(k+l)for some and A is a min-term belonging to n 

but not to If ~k) and A have the value 0 for 

Q( k+l)a set of values of the variables then ha s the n 

value 0 for t hat same set of va lues . By the induction 

hypothesis t here are 2n-k solutions to ~k) = 0 . By 
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(4. 8) and (4 . 9) there is one and only one set of va lues of 

the variables such that A=l and Q(k) = 0 and hence for 
n 

which ~k+l) = 1. Therefore for the other 2n-k-1 sets 

of values of the variables for whi ch is 0 , A is 

ct+l)also 0 . That is , is 0 for 2n-( k+l) sets of n 

val ues of the variables and the cardinality of S is 

If k<2n the above ar gument is vall~ for any 

Q~k+l). If k=2n then on: 0 and we have 2n solutions. 

Therefore by mathematical inducti on the conjecture is valid 

for t < 2n • 

(4. 92 ) It is instructive to exami ne severa l examples 

using (4.91). 

Example 1. 

Q( xl,x2) = xfx2 +l xl x2 = 0 • 

2By (4. 91) and since t wo ai = 1 there are 2 -2 = 2 solu­

tions to this equation. We verify this with a truth t able. 
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xl x2 Q{xl'x2) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Ex ample 2. 

Q{x1,x2,x3) = xix2x3 + x1x2x3 + x1x2x3 = 0 

By {4. 91) there are 23-3 = 5 solutions to the equation. 

We verify this with a truth t able. 

xl x2 x3 Q(xl'x2 ,x3) 

0 C) 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 
1 0 0 0 

1 0 1 1 

1 1 0 1 
1 1 1 0 

{4.93) Theorem 4. 

Given ~ = 0 , u i s the set of all aj such that 

aj i s 0 and u is the cardi na l i ty of u then the solu­

t i ons to Q &: 0 are the s ame as the solutions to Aj =1.n 
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Where Aj is a min-term missing from the expansion Qn. 

(j = 1,2,•••,2n). 

Proof: By induction on u and for a fixed n. 

For u = 0 there are no solutions since the car­

dinality of T by (4. 9 ~) is 2n . For u = 1 we exami ne 

the min-term Aj whose discriminant aj is 0. By (4. 91) 

there i s only one solution. By (4. 8) and (4. 9) there is a 

set of values of the var iables such that Aj i s 1 and 

all other min-terms are 0 . But this implies that this 

set of va lues is a solution to Q c:: o. And since the so­n 

lution is unique we have found it by finding the set of 

values for which Aj is 1. 

We now suppose that the conjecture is valid for 
Q( k) Q{k+l)uc::k . Let and be disjunctive canonical formn n 

associated with u=k and u = k+l respectively. We note 

that ~k) has one more min-term in its representation 

than Q~k+l). Thus for some Qn
( k+l) 

, 

Q(k+l) + A, 
n 

(k+l)where A is a min-term of but not of o;_. • ( k>O). 

By (4. 91) ~k) is 0 for k sets of value s of 
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the variables. By the induction hypothe sis and (4.9 ) the 

k soluti ons to ~k) = 0 are determined . Every solution 

~k) = 0 Q( k+l) :: Q(k)to i s a solution to 0 s i nce i f n n 

~k+l) has the value 0 then both and A have the value 

0. By {4 . 8) and (4.9) there is one and only one set of 

va lues of the variables such that A i s 1 and ~k+l) 

Q{k+l) = 0i s o. Thi s set of values is a solution to n 

but not to Q(k)= 0 and since ~k+l ) = 0 has ex actly onen 

more solution t han ~k)= 0 t his set must be t he extra so· 

luti on . And furthermor e it is e xactly t he set of values of 

the variables for which A is 1. The above ar gument is 

va l i d for any if 0 < k < 2n • I f k=O then 

Q( k) - 1 and there are no sol utions . If k = 2n then 
n 

Q(k) _ 0 and there are 2n soluti ons and we merely t ake 
n 

all of the logica l poss i bili ties. But this i s equivalent 

to setting each min-term equal to 1. 

Therefore by mathemat i ca l i nducti on the conjecture 

i s val i d for all u and hence for all n. 

(4 . 9 4) Examples usi ng (4.92) 
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Example 1: 

Q(x1,x2,x3) = x1x2xj + x1x2x3 + xix2x3 + x1x2xj=O. 

Let M be the set of all min-terms of three variables. 

Then, 

M m(x1x2x3, x1x2xj ,x1x2x3,x1x2xj,xix2x3,xix2xj ,xix2x3 , 

' x•x•x•J1 2 3 

and WQ see that the min-terms whose di scriminants are 0 

are x1x2x3, xix2xj. xix2x3 and xix2xj. By (4.92) the 

solutions are, 

We verify this with a truth table. 

xl x2 x3 Q3 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 n 1 
1 1 1 0 

Example 2s 

+ x1x2x3x4 + x1x2xjx4 + x1x2xjx4 = 0 . x1x2x3x4 

l 
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The missing min-terms ar e: 

txlx2x3x4 xlx2x3x4 • • XlX2X3X4 xlx2tXt3X4 XiX2X3X4 XiX2X3X4 

tXt tx• ' • XiX2X3X4 xfx2x3x4 xl 2x3x4 x'x'x'x'1X2X3K4 xlx2x'x'3 4 1 2 3 4 

By (4.92) the 12 soluti ons are, 

x1=l, x2 =o. x3c1, x4=1 x1=1, x2=o, x3=1, X4 =0 

x1-=l, x2=o. x3=0 , x4=1 x 1=1~ x2 =o , x3 =0 , x4 =0 

x1 =o , x2=1, x3=1, x4=1 x1 =o , x2=1, x3=1, x4 =0 

x1=0 , x2=1, x3 =0 , x4=1 x1=0, x2=l• x3 =0 , x4 =o 

x1=o . x2 =o, x3=1, x4= 1 x1 =0 , x2=o, x3=1, x4 =o 

x1 =o, x2 =o , x3 =o. x4=1 x1=o , x2 =0 , x3 =o . x4 =0 . 

We verify thi s with a truth t able. 

x1 x2 x3 x4 Q4 

0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 l 1 0 
1 0 0 0 0 
l 0 0 1 0 
l 0 1 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 
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CHAPTER V 

PROCEDURES BASED ON QUINE'S CANONICAL FORM 

(5. 0 ) Theorem 5 . 

A necessary and sufficient condition that 

f(x 1,x2 , ••• ,xn) = 0 have a unique solution is that Quine's 

canoni ca l form of f(x1,x2,•••,xn) is a sum of literals 

such that no letter appe ars more than once and every 

letter appearing in the representation f(x 1,x2,•··,xn) 

appears in Quine' s canonical form of f(x 1,x2,•••,xn). 

Proof: Let QF :fn stand for the phrase, "Quine•a c ano­

nical form of f(x1,x2,···,xn)." The condition is suffi­

cient for if , 

n 

QF :fn = O, L a 1 = 
i=l 

where is a l i teral then every a1ao. And a unique 

solution is determined. 

If there is a unique solution then by (4.7) or (4.91) 

there is exactly one di scriminant which has the value 0 

in the disjunct i ve canonical form Qn' of fn . 
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By (3.91) 

f' = Q ' • M n n ' 

where M is the min-term whose discriminant is 0. 

There are n literals which are factors of M and no 

letter appears more than once. Furthermore 

n 

fn ~ (f~)· m M' I ai 
i=l 

But 

r n 
i s an alterm and hence is a lso a conjunctiveCli 

i =l 

form of fn. (a conjunct i ve of one alterm). 

If we apply (3.991), since there are no deletions to be 

made and there i s no consensus to t ake, 

n

L ai i s in Quine 's canoni cal form. This shows the ne­
i=l 

cessity of the condition. 

(5.1) We note that (5.0 ) also determines the solution 

(5 . 2) Theorem 6 . 

If QF:fn has in its representation prime impli­

cants that are literals then in any soluti on to f 0:I 
n 

the values of the variables associated with these l itera ls 



37 
are uni quely determined. 

Proof: 

Suppose , 

where ~ is a polynomi al no monomial of which is a li­

teral and ! ai is an alterm. Then i f fn has t he 

value 0 for a set of values of the i ndependent variables 

every ai = 0 in which case the var iable as sociated with 

a parti cular a i i s uni quely determined. 

(5 . 3) Theorem 7. 

If i s not the Boolean constant 1 and if 

a l etter appear i ng i n the representat i on fn doe s not 

appear in QF:fn then the variable a~soci ated with the 

mi ssing lett er i s ar bitr ary in any soluti on to fn = 0 . 

Proof: 

From (3 . 99 ) the only way a letter can be deleted 

from a representat i on which i s not the Boolean constant 

1 is for a deleti on iteration to be made. Hence i f x 

i s a letter appearing i n f
0 

but not i n QF:fn then 

the form Ax + A must appear e i ther i n fn or after the 

consensus i t eration. But by (2 . 97), 

Ax + A : A 

and the value of x i s arbi trary . 
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(5 . 8 ) Theorem 8 . 

If fn is a Boolean polynomial then a necessary 

and suff i cient condition that fn = 0 have a unique solu­

tion i s that QF:f~ is a product of n literals so that 

no letter appears more than once. 

Proof: 

By (4.2) a necessary and suffi cient condi t i on that 

fn = 0 have a unique solution is that exactly one min­

term is missing from t he di sjunctive canonical form of 

fn. But by (3. 91), 

Q~ = M, 

where M is the missing min-term. But M i s i n Qui ne's 

canonica l form since no deletions can be made and s ince 

there is no consensus to t ake. 

(5. 9 ) Theorem 9 . 

If QFrf~ is a product of n literal s such that 

no letter appears more than once then the unique solution 

to fn = 0 i s the soluti on t o QF:f~ = 1. 

Proof: By the proof of (5 . 8 ) QF:f~ i s the min-term mis­

sing from t he di sjuncti ve canonica l form of fn. There­

fore by (4.93) the unique solution t o f = 0 is detexmined n 
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by finding the unique set of values of the variables for 

which QF:f~ = 1. 

(5. 91) We now have an algorithm for finding the unique 

solution to the equation f = o. n if it exists. And for 

finding the arbitrary variables. 

Step 1. transform fn to a polynomial Pn 

Step 2 . find P' n 

Step 3. perform the indicated multiplications 

Step 4. perform a deletion iteration 

Step 5 . if the result is a monomia l Mn in n 

literals fn = 0 has a unique solution 

and the solution is found by solving 

We i llustrate the procedure with some examples. 

Example 1. 

Step 1. 

Step 2 . 



40 

Step 3 . 

Step 4. in this case there are no deletions to be made. 

Step 5 . if xix2 = 1 then xi = 1 and x2 = 1 

and the solution to f{x1,x2) = 0 is x1 =o,x2 =o. 

Example 2. 

f(x1,x2,x3 ) = x1+x2xi + x1x2x3 

Step 1. we already have a polynomia l 

Step 2 . f'(x1,x2 ,x3) = {xi)(x2+x1){xi+x2+xj) 

Step 3 . (xi){x2+x1)(x1+x2+x3) = {xix2){xi+x2+xj) 

Step 5. if xix2 = 1 then = 0 , = 0 and isx1 x2 x3 

arbitrary . 
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CHAPTER VI 

ON INFERENTIAL PROBLEMS 

In this chapter we investigate the applicability 

of the preceding results to the solution and construction 

of certain inferentia l problems. It is shown in most 

standard textbooks on symbolic logic, e.g., Rosenbloom 

(9), that the Boolean ~gebra defined in Chapter II is 

equivalent to the propositional c a lculus. For instance, 

if the proposition A is false we say that A has the 

truth value 0 or A=O. Similarly if the proposition A 

11 11is true we write A=l. The symbol "+" and • of the 

Boolean a l gebr a correspond respectively to the "or" and 

uand" of the propositional c a lculus. 

In 1952 Fletcher (3) gave examples illustrating the 

use of Boolean algebr a in solving certain types of prob­

lems, the solutions to which might be diffi cult to obtain 

by other me ans . 

(6.0) Example L 

Out of six boys, two were known to have been steal­

ing apples . But who? Harry said, "Charlie and Georgen. 

James said, "Donald and Tom''. Donald said "Tom and 

Charlie". George said, "Harry a nd Charlie". Charlie said, 
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"Donald and J ame s" . Tom couldn't be found. 

Four of the boys interrogated named one miscreant 

correctly. The fifth had lied outright . Who stole the 

apples? 

Fletcher sol ves this problem in the following 

manner . Let H, J , D, G, C, T denote the propositions 

"Harry, James, Donald , George , Charlie, Tom did it" res­

pectively. Each person who makes a statement names at 

least one miscreant incorrectly. That is , 

(1) CG = DT TC = HC = DJ = o. D 

Four of the fi ve statements are true taken in disjunction , 

but one is false because one of the boys lied outright. 

Thus, 

(2) (C+G)(D+T)(T+C)(H+C)(D+J) = 0. 

Performing the indicated multiplication and using the re­

l ations (1) we have , 

(3) CD = 0 

But one set of four out of the five statements in disjunc­

tion are true . Hence, 

(4) (C+G) (D+T) {T+C) {H+C~ +('C+G) (D+T) (T+C) (D+J) 

+{C+G){D+T){H+C){D+J)+{C+G){T+C)(H+C)(D+J) 

+(D+T)(H+C){D+J){T+C) = 1. 

Using (1) and {3) this reduces to , 



4 3 

( 5 ) CJ=l. 

And this me ans that Charlie and James stole the apples . 

The question might now arise , "is this the only 

solution?" If we take the results of (1) , (3) and (5) 

we have the system, 

CG+DT+TC+HC+DJ+CD • 0 
CJ = l. 

Applying Pl3 to the second equation we have 

CG+DT+TC+HC+DJ+CD+C'+J ' = 0 . 

Putting this equation in Quine ' s canonical form gives , 

C' + J ' + G + T + H + 0 = 0 . 

Therefore by (5 . 0 ) Theorem 5 , the given system has a 

unique solution . Hence , providing the analysis of problem 

is correct , the equations result in a unique solution. 

(6 . 1) Example 2 . 

Alice , Brenda , Cissie and Doreen competed for a 

scholarship . "What luck have you had?" someone asked them. 

Said Alice , "Cissie was top , Brenda was second." Said 

Brenda , "Cissie was second and Doreen was third . " Said 

Cissie , "Doreen was bottom, Alice was second . n Each of 

the three girls had made two assertions , of which only one 

was true . Who won the scholarship? 

If we let denote the pr oposition, "Alice wasA1 
firsttt and similarly for the other statements we have , 

from Alice , 
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from Brenda , 

from Ci s sie, 

These equations yield th~ system 

+ CiB2 = 0C1B2 

c o + C' Dt =02 3 2 3 

~04 + A2_D4 = O. 

From this we have the system, 

Fi nally we have, 

(ClB2 + CiB2 )(C2D3+C2D3)(~D4+AiD4) • 1. 

This yields, 

c1B2C2DjD4A2 + c1a2C20304~ + C1B2C2D3D4A2 + c1B2C2DjD4~ 

+ CiB2c2DjD4 A2 + CiB2c2o3o4~ + CiB2C2D3D4 A2 

+ Df32C2DjD4~ = 1. 

(Fletcher calls these exclusion relations) and this yields 

c1B2C2D3C4~ = 1. 

From this we conclude that, 
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Cissie was first, Alice second , Doreen third and 

therefore Brenda was fourth. 

(6. 2) The two examples and the results of the preceding 

chapters indicate a procedure by which this type of prob­

lem can be con structed so as to yield a unique solution . 

Suppose we start with the following equation , 

( 1) A +Abt+A +B +Bb' +B +C +Cb+C ' = 0 , r ·w r w r w 

which we know has a unique solution. 

We will let A, B and C represent colored beads. 

We will use the obvious suffix notation A with the 
r 

statement A is red. Similarly , Bb stands for B i s 

blue , C' stands for C is not white and so on . w 

Using (1) as a guide we construct the following 

example . 

Example 3 . 

Out of a box of red, blue and white beads three 

are drawn at r andom. Two of those drawn are blue and only 

one of the following statements is true; 

(i) A is red (ii) B is blue (ii i ) C is not white . 

Can you tell what color the beads that were drawn are? 

Solution: Since only one of the given statements (i) , 

(ii ) , and ( iii) is true , we know one of three alternatives 

to be true . The symbolic expression for this is, 
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(2) ArBbCw + A;BbCw+A;BbC~ = 1. 

Since t wo beads are blue we have , 

(3) AbBb + ~Cb + BbCb = 1. 

Again use is made of the exclusion relations which can 

be constructed from the nature of the problem. Some of 

them are, 

(4) 

cb cw = o 

Multiplying (2) and (3), using (4) and the rule xx• = 0 

we have, 

A;BbCwAb = 1. 

This me ans that A is blue , B is blue and C is white 

and this is exactly what we started with . 

(6 .3) In general to construct this type of problem we 

can start with a l inear combination of variables set 

equal to 0. We can use any of the properties of (2.1) 

to transform the original equation into a new, but iden­

tical representation. A verbal cloak is then given to 

the symboli c representation. 
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