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ON SYSTEMS OF BOOLEAN EQUATIONS
CHAPTER I
INTRODUCT ION

In a solvable Boolean equation or system of
Boolean equations each unknown has in general more than
one value. Whitehead (11) gives necessary and sufficient
conditions that the solution be unique. However,
Whitehead's proofs were limited to Boolean equations in
two variables. Bernstein (1) in a later paper presented
a general proof of Whitehead's theorem. But unfortunately
the proof relies on an intuitional approach. In this
paper we present a proof of Whitehead's theorem by mathe-
matical induction. In another paper by Bernstein and
Parker (2) the conditions are re-stated in a slightly dif-
ferent form. We generalize Whitehead's theorem to yield
all of the solutions to a system of Boolean equations.

One major difficulty with Whitehead's or Bernstein's
conditions is that they are based on the disjunctive canon-

ical form of a Boolean representation. This canonical form

has 2" terms in its representation whenever n independ-
ent variables are present. And since these conditions de-

pend upon the coefficients of the terms appearing in the
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canonical form all of the 2" terms must be examined. Of
course for large n this procedure would be most undesir-
able.

The main purpose of this paper is to develop an
algorithm by which the unique solution to a system of
Boolean equations can be found without appealing to the
disjunctive canonical form.

In Chapter VI we discuss some applications of the
results of this investigation to the solution and construc-

tion of inferential problems.



CHAPTER 1I
FUNDAMENTAL PROPERTIES

Before proceeding with the main part of this dis-
cussion it is necessary that we define some fundamental ter-
minology. It will be assumed that the reader is familiar
with the basic properties of a Boolean algebra. (5) Some
of the basic properties are listed below for reference.

One of the simplest Boolean algebras is that de-
fined on the set {0, 1} with addition, +, and multi-
plication, *, defined by the tables,

(2.0) +| 01 + 10 1
o]0 1 0|0 O
114 3 1101

In practice the +* may be omitted and thus a*b becomes
ab. This particular Boolean algebra has been quite useful
in applications to switching network theory and to the so-
lution of certain logical problems. The remainder of this

discussion will be devoted exclusively to it.

(2.1) We list some of the properties of the Boolean
algebra defined on the set {0, 1}. If a, b and ¢ are



arbitrary elements of the set then,

Pl.

P2,

P3.

P4.

P5.

Pé.

P7.

P8,

P9.

P10.

P1l.

P12.

P13.

There is an element O in the set such that

a+0 = a for every a in the set.

There is an element 1 in the set such that

a*l=a for every a in the set.
a+b = b+a

ab = ba

atbc = (a+b)(a+c)

a(b+c) = ab+ac

For every a in the set there is an element
a' in the set such that,

aa' = 0 and ata' =1
ata = a and a‘*a = a
atl =1 and a+0=0
atab = a and a(a+b) = a
a+(b+c) = (a+b)+c and a(bc) = (ab)e
(a?)' = a

a+b = (a'b')' and ab = (a'+b')’



Pl4, 0' =1 and 1' =0

(2.2) A variable a; is a Boolean variable iff its
range is the set {0, 1}.

(2.3) Let S be a set of Boolean variables and let

a be an element of S. We say that a 1is an independent
Boolean variable, relative to S, iff a may assume the
values O and 1 independently of the values assumed by

any other element of S. A symbol representing an inde-

pendent Boolean variable will be referred to as a letter.

(2.4) The element a' of property P7 1is called the

dual of a.

(2.5) The set of Boolean functions of n independent
Boolean variables {x;,%,,***,x,} will be called the finite
Boolean algebra B Combining the independent Boolean va-

riables and their duals by the properties (2.1) yields va-

rious representations of the elements of Bn.

(2.6) Two representations of elements from B~ are

said to be equal iff they have the same value for every set

of values of the independent variables.

(2.7) A difficulty arises here in the use of the
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symbol "=". We may write x=1 in which case we usually
mean that the Boolean variable x has the value 1. Or we

may write f(xl.xz,---.xn) = 0 in which case the question,

"for what values of the independent variables

[xl,xz."'.xn} does f(xl,xz,"'.xn) have the value 072"

is implied. This is 2 "conditional" equality. Another ex-
ample of a conditional equality might be

f(xl.x2.°*'.xn) = g(xl.xz,---,xn). However, we could mean
by this exactly the definition (2.6). Finally when the de-
finition (2.6) is implied we may sometimes write
f(xl.xz."'.xn) = g(xl.xz."',xn) to emphasize that (2.6)
is being used.

We have this same difficulty in the algebra of real
numbers and it is resolved by letting the context of the
statement involved imply the use of the symbol. Throughout
the rest of this discussion we shall "resolve" the difficulty

in precisely the same way.

(2.8) Let f(xl.xz."'.xn) be an arbitrary member of

Bn. The Boolean function,

X f(xl.xz.---.xn_l.l) * %t f(xl.xz.---,xn_l,o)
is called the expansion of f(xl.xz.---.xn] about the inde-

pendent variable X



(2.9) f(xl'XZ'..'lxn) = xnf(xl'x2'...sxn-l'l)
+ x! f(xl.xz."‘.xn_l,ol

Proof:

Evaluate both functions for X, ® 0 and then N = le¢

For X = 0, f(xl.XQ."*,!

. is f(xl'x2'°"’xn-l'o) and

)
X f(xl,xz.---.xn_l.l) L f(xl.xz.---,xn_l.O) becomes
f(xl.xz.'°-,xn_1.0).

If x, =1, thenwe see that,

f(xl.xz.--o.xn_l,l) = l-f(xl,xz.---.xn_l.l)

+ O'f(xl.xz. *.4'% ,xn_l.o)

(2.91) The elements of the set of Boolean variables

{xl.xz,---.xn.xi,xi.---.xa} are called the literals of Bﬁ

(2.92) A monomial in B, 1is the Boolean product of li-

terals of B such that no letter occurs more than once.

(2.93) A Boolean polynomial is the Boolean constant 1

or the Boolean sum of a set of monomials of Bn‘ If the

set of monomials is empty then the polynomial is the

Boolean constant O,

(2.94) By the use of the properties (2.1), particularly
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P5 and P6, every member of B, can be expressed as a po-

lynomial.

(2.95) In what follows we shall drop the prefix
"Boolean". For example we shall write "polynomial" in-
stead of "Boolean polynomial" or "variable" for "Boolean

variable".

(2.96) If a,b and ¢ are variables such that,
a = bc
then a 1is less than or equal to b (agb, b>a) and a

is less than or equal to c¢ (alc, c2a).
(2.97) a+b+bec = a+b

Proof: By property PlO b+be = b.
We shall call this procedure a deletion. The performance
of all such deletions on a given polynomial shall be called

a deletion Jiteration.

(2.98) If a, b, ¢ and d are Boolean variables and
x 1is an independent variable such that

a=c¢x and b = dx'
then the variable c¢d 1is called the consensus of a and
b.

(2.99) Let Y be a polynomial in B  and aB and

aC be monomials in B where a 1is an independent

n!



variable in Bn. Then,

Y+ aB +a'C=Y + aB + a'C + BC

Proof: Y + aB + a'C + BC = Y + aB + a'C + (a+a')BC
Y + aB + a'C + (a+a'")BC = Y +aB + a'C + aBC + a'BC
Y + aB + a'C + aBC + a'BC = Y + aB + a'C
by (2.1) and (2.97). We note that BC is the consensus
of aB and a'C.

(2.991) We shall call the process of making every possiblke

consensus a consensus iteration.
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CHAPTER III
CANONICAL FORMS

By (2.6) we see that we may determine when two
functions in the same number of independendt variables are
equal simply evaluating each of them for every set of

values of the independent variables {xl,xz.'°-,xn}. This

method is usually called the truth table method. Although

this can be a useful method,it ig sometimes more advantageous
to be able to determine equality of Boolean functions by
direct inspection of the representations of the two func-
tions.

We employ here certain transformations such that

when applied to a member of Bn they transform each equal

representation of a function into a unique representation
of the function. These unique representations are called
Boolean canonical forms. In what follows we shall make

use of three standard canonical forms.

(3.0) Let f(xl.xz.---,x be an element of B . The

o

conjunctive canonical form of f(xl.xz.'-°.xn) is,
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i i 11 1n
f(xl’xz'.'.'xn) E n e H (f(l '...’1 )
11-0 ir"O
1-1 1-1
1 L n
+ Xy Al 3 )

where aJ aJ if i 0 and aj aj if 1 X s

The proof that this form is canonical is well known,
e.9., Rosenbloom (9). This canonical representation is
the product of sums of literals such that in each sum no

letters appear more than once.

(3.1) The terms of the conjunctive canonical form are
called max-terms. Max-terms that contain the Boolean con-

stant 1 are dropped from the representation.

(3.2) As an example suppose that,
f(xl.xz) = xyx4
then the conjunctive canonical form of f(xl.xz) is,
f(xl.xz) E (xi +xé)(l+xi+x2)(x1+xé)(xl+x2)
£ (xi + xé)(xl+xé)(xl+x2).
Since f£(0,0) = £(0,1) = f(1,1) =0 and £(1,0) = 1.

(3.3) An alterm is a sum of literals such that no letter

appears more than once in the sum.
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(3.4) By a conjunctive form of a given Boolean func-

tion we shall mean a product of alterms.

(3.5) Let f(xl.xz.'-'.xn) be an element of B . The
disjunctive canonical form of f(xl,x2.°'°.xn) 18;
1 |
. Sy X i 1: & i
f(xl’xza”'ixn) = z e Z (£(1 ]il 2."'31 n)‘xllxzz“'xhq

1: = 1:' =
Where xj xj if 1 0 and xj xj 1T 3 [ @

The proof that this representation is canonical is also
well known (9). We note that this representation is a po-
lynomial in which each monomial contains n distinct let-
ters. Monomials with O coefficients are dropped from the

representation.

(3.6) The monomials of the disjunctive canonical form

are called min-terms.
(3.7) As an example suppose that,
f(xl.xz) = Xy + x}
then the disjunctive canonical form of f(xl.x2) is,
f(xl.xQ)Exlxzf(l.l) + xlxéf(l.o) + xix2f(0,1) + xixéf(0.0)

f(xl.xz) = X)Xy + xlxi + xixé
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by the properties (2.1) and since f£(1,1)=f(1,0)=£f(0,0)=1
and £(1,0)=0.

(3.8) A transformation which will yield the disjunc-

tive canonical form of a member of Bn is obtained by fol-

lowing the rules:
i. Transform the given function to a polynomial;
ii. Multiply each monomial of the polynomial by
(xi + xi] for all independent variables x;

such that neither Xy or xi are factors of
the monomial. See Witecraft (12).
(3.9) As an example suppose that,
f(xl.xz) =xy + xi

then applying (3.8),

m

f(xl.xz) xl(x2 + xé) + xi(xl + xi),

t

f(xl.xz) X Xy + XyX34 + x{x} .

(3.91) There is a useful relationship between the dis-
junctive and conjunctive representations of a Boolean func-

tion. Namely, the conjunctive (disjunctive) canonical form

is the product (sum) of up to 2" max-terms (min-terms).
The conjunctive (disjunctive) canonical form of the dual

of a Boolean function is the product (sum) of max-terms
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(min-terms) of the set complement of the conjunctive (dis-
junétive) canonical form of the given Boolean function re-

lative to the set of 2" max-terms (min-terms) of Bn(9).

(3.92) As an example suppose we have,
f(xl.xz) = X{Xos
and want the conjunctive canonical form of f(xl.xz).

By (3.9),
f'(xl.xz) = XXy * Xyx3 + x]x4.
By the properties P12 and P13 we have,

£(xg0x5) B (£0(xy0%5)) " = (x] + x§ )(x] +x5)(x) + x5),

and we have the conjunctive canonical form of f(xl.xa).

(3.93) For our purposes we shall write the disjunctive

canonical form of f(xl.xz,---.xn) in a less concise way,

io.-,

E(xyaXpe®*t o X ) =8y Xy X0 * " X $aRX X " * XL g X 00
+ nznxlxi---x'n
where it is understood that every combination of Xy and

x} oceurs. (1=1,2,°°°,2",3=1,2,°**,n).

(3.94) We shall call the a, the discriminants of the

disjunctive canonical form of a function. In what follows
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we shall reserve the symbols a,b and ¢ to represent

discriminants.
(3.95) We shall use the notation Q or

Q(xl.xz.-~-.xn) to represent the disjunctive canonical

form of a given function in n independent variables.

(3.96) By (2.9) we may write,

Q, = an(xl’x2’°°"xn-1'l) + x1Q(xy9Xp0 00 %, _1,0)
and we note that Q(xl.x2.°°-.xn_1.1.) and
Q(xl.xz.'°°,xn_1,0) are disjunctive canonical forms of

functions in n-l 1independent variables. We will let

bj and Cyo respectively, be the discriminants of

Q(xl.xZ.°"'xn-1.1] and Q(xl’ng'.'.xn-l’())l
4 = (1,2 “n2n'1). In general the bj are not the same

as the Cy but every bj and ¢4 is an ay.

(3.97) Another important canonical form is that due to
Quine (7), (8) or Samson and Mills (10). We shall refer
to it as Quinc's canonical form.

Given an element of Bn we first reduce the element

to a polynomial. Then there are three conditions that a
Boolean polynomial must satisfy in order that it may be

sald to be in Quine's canonical form.
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Condition 1.
If A and B are two monomials of a represent-
ation P such that A>B, then the monomial B is

to be deleted from the expression.

Condition 2.

If AX (X an independent variable) and BX*' are
two monomials of P and AB satisfies the follow-
ing two conditions,

i. The monomial A does not contain as a fac-
tor the dual of any independent variable
contained as a factor in Bj

ii. the product AB 1is not less than or equal
to any monomial C of D;
then the monomial AB is to be added to the repre-

sentation of P.

Condition 3.
If the monomials x and x' occur in a repre-
sentation (x an independent variable), the poly-
nomial is the Boolean constant 1.
That the form is canonical is proved by Quine (7), (8) and
Laxdal (6).

(3.98) The monomials of Quine's canonical form of a poly-

nomial P are called the prime implicants of P.
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(3.99) The following algorithm will always insure that
a polynomial satisfies Quine's conditions. See Laxdal (6).

Begin with a deletion iteration and then follow
with a consensus iteration which is followed by a check
to see if the monomials x and x' both appear (x an
independent Boolean variable). If both appear the Boolean
constant 1 1is the canonical representation. If not,
follow with a deletion iteration.

This algorithm has been mechanized for a digital
computer by both Laxdal (6) and Witcraft (12).

(3.991) The following useful theorem is due to Ghazala
(4).
If, given some conjunctive form of the polynomial
f,
i. we perform the indicated products by the
use of properties (2.1);
ii. drop all products xx' from the resultant
representation;
iii. perform a deletion iteration on the result-
ing polynomial;
then the new representation is Quine's canonical form of

f.
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CHAPTER IV
PROCEDURES BASED ON THE DISJUNCTIVE CANONICAL FORM

In what follows we shall use the symbols f, and
gy to represent Boolean functions in the n independent
variables {xl.xz.'°°.xn}. (1 =1,2,°**,m).

Given a system of m equations in n independent

variables,
5
£, = 9
£, = 9,
(4.0) ﬁ
f = g
m m
L

if there is a set of values of the independent variables
such that f1 L reduces to 0 =0 or 1 =1 for every

i, then the system (4.0) is said to have a solution.

(4.1) Any Boolean equation,
f = g
can be written in the form,

fg' + f'g =0 .
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(4.2) By (4.1) the system (4.0) can be written,
i
f10] + £} o =0

fzgé + fig2 =0

:

-

nm * fm O = 0

(4.3) If there is a solution to the system (4.2) then
the left hand sides of each equation must have the value
0 for some set of values of the independent variables.

Under this condition the system (4.2) is equivalent to,

n
Ho = ) (fy0] +flg;) =0,
i=]

where Ho is a function of n independent variables.

(4.4) We see that any solution to the system (4.3) is
a solution to the system (4.2) and any solution to the
system (4.2) is a solution to the system (4.0). Therefore,
to solve the system (4.0) we need only solve the single

equation (4.3). We proceed by reducing H, to the ca-

nonical form Qn' And we shall investigate under what

conditions does Hn = Qn = 0 have a solution.
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(4.5) Given the equation,
a;xy + azxi = 0,
where X, is an independent variable and aj,a, are
discriminants, a necessary and sufficient condition that
the equation have a solution is,
313y = 0.
Proof: The condition is sufficient, for if a) = a, = 0
then, apxy + a2xi = Ox1 + Oxi =0
and any value of Xy is a solution.,
If a; = 0, a, = 1 then,
ay;xy + azxi = l'xl + 0 xi = xi =0
and x; =0 is a solution. By symmetry if ay = l,a, = 0
then Xy = 1 1is a solution.
The condition is necessary for if 3 = 3, = 1 then,
ayx; + azxi = lex + 1- xi =X + xi =0
which is not satisfied for any value of Xy since,
x; + xi 1.

(4.6) The following theorem is due to Whitehead (11).

We offer an alternative proof.
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Theorem 1:

A necessary and sufficient condition that there
exists a solution to Qn =0 |is,

3132...a2n = 0,

Proof: By induction on the number of independent vari-
ables n.

For n=1 the conjecture is valid by (4.5). Sup-
pose that it is valid for some n=k. We expand Qk+1

about the variable i1 by (2.9.)
Q(xl'IQ'-..’xk+1) E xk+1Q(Kltx2v"'txkal)
+ xi+1Q(x1.x2."°,xk.0).

If 3185008 P = 0 then either a bj =0 and all

2
cj-l or a cj-o and all bjnl or finally some bj-o and

some cj-O at the same time.
Case 1. A bj and a ¢y are 0.
Then by the induction hypothesis Q(xl.xz.---.xk.l)
and Q(xl.xz,---.xk.o) are 0 for some set of
values of the variables {xl,xz.---.xn} (not neces-

sarily the same set).

In either case we may choose a value of X141 such that

Qk+1 is O.
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Case 2., A bj is 0 but no € is 0O, then

Q(xl.xz,---,xk.l) has the value 0O for some set
of values of the k variables {xl,xz,---.xk] by

the induction hypothesis. And so we take this set
of k values and let X4l = 1 so that Qk+1

has the value 0.

a symmetrical argument and letting X1 = 0 we
have a solution to Qk+1 = 0,

These three cases show the sufficiency of the condition.
Now suppose that Qs = 0 has a solution then

Case 1. Q(xl.xz,'--.xk,l) is O and
Q(x1.x23°"txklo) is 0:

Case 2. Q(xl.x2,°--.xk.1) is 0 and

Q(xl’12l°"nxkvo) is 1;

Case 3. Q(xl,xz,---,xk,l) is 1 and
Q(xl'xQ'...’xk'o) is O.
If any of these three cases we have, by the induction hypo-

thesis, that either a bj is O or a cj is 0. And

since every bJ and ¢y is an a, at least one a; = 0.
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This shows the necessity of the condition. Hence the con-

jecture is valid for all n.

(4.7) The following theorem is due to Bernstein (1),

but we offer an alternative proof.

Theorem 2.

A necessary and sufficient condition that Qnso

have a unique solution is,

. ajayee-a o0 and ii. aiai =0, 143

2

Proof: We first note that the conditions (i) and (ii)
are equivalent to the statement that "exactly one discri-

minant of Q 1is O". For by (i) at least one aixo and
if two discriminants are O there is an ai-o and an

= 1 = = 1at
ay 0 for 1 #3j so that 3 aj 1 and ajaj # 0.

By (4.6) the condition (i) is necessary and suffi-
cient for the existence of a solution. Hence we need only
show that the condition (ii) is necessary and sufficient
for the uniqueness of the solution. The proof is by in-
duction on the number of independent variables n.

If n=1 then,

Q1 = a;% + azxi = 0,

If aiaé = 0 and ayta, = 0 then there are two cases:
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Case 1. alno, 32-1.

In this case xi=0. i.e., x1=1 is the unique scolu-

tion.

Case 2. al-l. 3280.

By symmetry x;=0 is the unique solution.
Suppose now, that Q=0 has a unique solution. Then it
is x1-0 or xl-l since there is only one independent
variable. By (4.6) at least one of ay and a, is O

and we have three possibilities.

Case 1. alsa2-0. Then leo and xl-o or: xlwl

is a solution, contradicting our assump-

tion that Qy=0 has a unique solution.
Case 2. a;=1, a,=0. Then (ii) is satisfied.

Case 3, a1=0. 32-1. Then (ii) is satisfied.

This shows that the conjecture is valid for n=l.
Suppose that it is true for n=k. By (3.9) we have,

Qk+15xk+lﬁ(xl-xz."'-!k.1)+1i+1 Q(xlixza"'oxkio)t
If the condition (ii) is satisfied then exactly one ajso.

Or by (3.96) exactly one of the set {bj. cj] is O.

(j-l,z,"',Qk).
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If exactly one bj is O then every < is 1

and there is a unigue set of values of the variables

{xl,x2,~-*.xk} such that Q(x;,X5,***yX,,1) 1ie O by

the induction hypothesis. If we add to that unique set of

values X4l = 0 then Q1 does not have the value O.
But if we add Xies] = 1l we have a unicgue set of values of
the variable such that Qk+l is 0. By a symmetrical ar-
gument we see that when exactly one cj is 0O we also
have a unique solution to Qi = 0. This shows the suf-

ficiency of the condition (ii) for n=k+l.

Now suppose that Qe4y = 0 has a unique solution.
Then Q(xl.xz.---.xk.l) and Q(xl,xz.---.xk.o) cannot

have the value 0O for the same set of values of the vari-

ables. For this would imply that X141 is arbitrary. In
which case there would be two or more solutions to Qk+l=0

contrary to our assumption.

Now Q(xl,xz.-°-,xk.l) = 0 has a unique solution
for otherwise we could take Xpe1 = 1 and Qk+l is O

for more than one set of values of the variables contrary
to our assumption. By symmetry the set of values for which

Q(xl,xz.-'-,xk.o) ie O is also unique. By (4.6) at least

one a, is 0. Suppose two or more a; 1is 0, then
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there are three cases.
Case 1. Two or more bJ = 0 and all cj =1, in
which case Q(xl,xz.---.xk.l) = 0 does not have a

unique solution by the induction hypothesis.

Case 2. Two or more cj = 0 and all bj = 1,
Again by a symmetrical argument Q(xl.xz.---xk,o)no

does not have a unique solution.

Case 3. One or more c'1 = 0 and one or more
bJ = 0, But if more than one bj or cj is O

then as before our assumption that there is a unique

solution is contradicted. And if exactly one bj-o
and exactly one 5" 0 then there are two distinct
solutions to Qk+1 = 0, Since Q(xl.xz.---.xk.l)
and Q(xl.xz,--'.xk.o) cannot be 0 for the same

set of values of the variables, we may take the set

of values for which the first is O and X4l = 1

and the set of values for which the second is O

and X141 = 0.

By these three cases we see that exactly one of the follow-

ing occurs:
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l. exactly one bj = 0 and all ¢y = 1,

2. exactly one cj =0 and all bJ = 1.
In either case exactly one a; is 0. This proves the
necessity of condition (ii). Therefore by mathematical in-
duction the conjecture is valid for all n.
(4.8) For any min-term A of Q  there is one and
only one set of values of the variables such that A has
the value 1.
Proof: We take X, = 1 1if Xy is a factor of A and

take x, = 0 if x; is a factor of A.

(4.9) If A, and A, are min-terms of Q and Ay

has the value 1 for a set of values of the variables
then A, =0 for that set of values.
(k=1, 2,+++ , h=1, h+l,**+,2"),
(4.91) Theorem 3.

Given Qn =0, T 1is the set of all aj such that
a; =1, t is the cardinality of T and S 1is the set
of all solutions to Qn = 0 then the cardinality of S |is
2M-t. (t=1,2,+++,2").

Proof: By induction on t and for a fixed n.
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If t=0 then every aiao, QnEO and any one of the e

possible solutions satisfy the equation. And so the car-
dinality of S is 2",
If t=1 then exactly one a; is 1 and the dis-

junctive canonical form Q, is a single min-term. By

(4.8) there is exactly one set of values of the variables

for which Qn has the value 1. This implies that of the
2" possible solutions to Q, = 0, for exactly one of the

possibilities Q2 1is 1. Therefore there are 2".1 solu-
tions to Q, = O when t is 1.

We suppose that the conjucture is valid for t = k.

k+1)

Let Qék) and Qﬁ be polynomials in disjunctive ca-

nonical form for which k and k+1 discriminants, res-

pectively, are 1. Now if k+1<2",

Q£k+1) 2 QAk) + A

for some Qék) and A 1is a min-term belonging to Q£k+1)

but not to Q e X an A ave the value or
(), 1t qlk) and h he value O f

k+1)

a set of values of the variables then Qi has the

value O for that same set of values. By the induction

hypothesis there are 2"-k solutions to Qék) =0 . By



29
(4.8) and (4.9) there is one and only one set of values of

the variables such that A=l and Qﬁk) = 0 and hence for

k+1)

which Qg = 1. Therefore for the other 2"-k-1 sets

of vﬁlues of fio variables for which ng) is 0, A is
also 0. That is, d§+l) is 0 for 2"-(k+l) sets of

values of the variables and the cardinality of S is
27 (k+1).

If k<2" the above argument is valid for any
Q£k+1). If k=2" then Q=0 and we have 2" solutions.
Therefore by mathematical induction the conjecture is valid

for t < 2" .

(4.92) It is instructive to examine several examples

| using (4.91).
Example 1.
Qlxyaxy) = x{xy +;x, %3 =0 .
By (4.91) and since two a; = 1 there are 22.2 = 2 solu-

tions to this equation. We verify this with a truth table.
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x) | %3 | Qlxgax,)
o | o n
o |1 1
1 | o 1
e 0

Example 2.
QX sXg0%3) = X{XoXy + X X3X3 + X Xpx) =0

By (4.91) there are 23-3 = 5 solutions to the equation.
We verify this with a truth table.

Q(xlaxz'-i xa)

»
ot

x
N

x
W

Q

=0 0 0 O
o O O = O O
- O = O = OQ = O
Q= = O = O O

(4.93) Theorem 4.
Given Qn =0, U is the set of all aj such that

ay is 0 and u is the cardinality of U then the seolu-
tions to Q =0 are the same as the solutions to A.j = 1.



31

Where Aj is a min-term missing from the expansion Q,-

(3 = 1,2,¢++,2"),

Proof: By induction on u and for a fixed n.
For u = 0 there are no solutions since the car-
dinality of T by (4.91) is 2", For u =1 we examine

the min-term Aj whose discriminant a is 0. By (4.91)

there is only one solution. By (4.8) and (4.9) there is a
set of values of the variables such that Aj is 1 and

all other min-terms are O. But this implies that this
set of values is a solution to Qn = 0, And since the so-

lution is unique we have found it by finding the set of
values for which AJ is 1.

We now suppose that the conjecture is valid for

u=k., Let Qﬁk) and Q£k+1) be disjunctive canonical form

associated with u=k and u = k+l respectively. We note
that Qik) has one more min-term in its representation

(kt1)

k+1)
n ]

than Q Thus for some Qé

Q) o Qlkl) 4
n n

where A is a min-term of Qﬁk) but not of Q£k+1)'(k>o).

k) is O for k sets of values of

By (4.91) ql
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the variables. By the induction hypothesis and (4.9) the
k solutions to Qék) = 0 are determined. Every solution

to Q¥ =0 1is a solution to Q{¥*1) =0 since 1z Q¥

k+1)

has the value 0O then both Qé and A have the value

0. By (4.8) and (4.9) there is one and only one set of

values of the variables such that A is 1 and Q£k+1)

is 0. This set of values is a solution to Q£k+1) = 0

but not to ng)- 0 and since Qék+1)a

0 has exactly one
more solution than Qikja 0 this set must be the extra so-

lution. And furthermore it is exactly the set of values of

the variables for which A 1is 1. The above argument is

valid for any Qﬁk) if 0< k<2, If k=0 then

1 and there are no solutions. If k = 2" then

q(K)

Qﬁk) 0 and there are 2" solutions and we merely take

t

all of the logical possibilities. But this is equivalent
to setting each min-term equal to 1.
Therefore by mathematical induction the conjecture

is valid for all u and hence for all n.

(4.94) Examples using (4.92)
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Example 1:
Q(xl.xz'X3) = x1x2xé + Xlxéxa + xixzxa + xIXixéx()l

Let M be the set of all min-terms of three variables.
Then,

M -[xlxéxa,xlxzxé.xlxix3.xlxixé,xixzxa.xixzxé.xixixa,
xjxsx3!
and we see that the min-terms whose discriminants are O
are  X,X,Xa, xixzxé. xixéxa and xixixé. By (4.92) the
solutions are,
XI = 0.!2 = O'xa o O. xl-O' Xz’o. Xa"l.
xl-O' 82'1. 33’0. xl-I. x2-1. x3=1.

We verify this with a truth table.

X) | X2 | X3 | Q3
o |o | o 0
0 0 1 0
0 1 o | o
0 1 1 1
1 o | o 1
1 | o 1 1
1 1 0 1
1 1 1 0

Example 2

X XpXqX, + X)XoXaXg o+ X XaX3XG  + XyXpX3X, = O.



The missing min-terms are:
xlxéx3x4 xlxéxaxi xlxix5x4 xlxéxéxi xix2x3x4 xixzxaxz
xix2x5x4 xixzxéxa xixéx3x4 xixéxax& xixéxéx4 xixixéx&

By (4.92) the 12 solutions are,

xlﬂl. *2'0' xa-l. x4=1 xltl. x2=0. x3=1. x4=0
xlwl. x2-0. x3=0.'x4=1 xlsl; xy=0, x3=0. x4=0
xl-O, xznl, x3=1. x4=1 xlﬂo, x2=1. x3=1. x4=0
x1-0. xzwl. x3=0, x4-1 x1=0. x2=1. x3=0, x4=0
xl-O. x2-0, x3=1. X4=1 xlno. x2-0. x3=1. x4-0
x1=0, x2=0. 13-0. x4=1 xlﬂo. x2-0, x3=0, x4=0.

We verify this with a truth table.

X1 | X2 | X3 | X4 | Y
oo | o | o] o
o |lo | o] 1o
o |lo|1]o0o/|o
o |o |1 |11]o
o |10 2} o
o |10 ]11]o
o |1 |10 o
o |1 ]|1]1]o0
1 o | oo | o
1 oo |1 1o
1 o |10 o
1 o |11 ]0o
1 |10 lo |1
1 1 |o |1 |1
1 (1 |10 |1
1 111 |1
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CHAPTER V
PROCEDURES BASED ON QUINE'S CANONICAL FORM

(5.0) Theorem 5.
A necessary and sufficient condition that

f(xl.xz,---,xn) = 0 have a unique solution is that Quine's
canonical form of f(xl.xz.---,xn) is a sum of literals

such that no letter appears more than once and every

letter appearing in the representation f(xl.xz.'--.xn)

appears in Quine's canonical form of f(xl.xz.---.xn).

Proof: Let Qthn stand for the phrase, "Quine's cano-

nical form of f(xl.xz."'.xn)." The condition is suffi-
cient for if,

n
QF:f = 7 ay = 0,
1=1

where a; is a literal then every ay=0. And a unique
solution is determined.
If there is a unique solution then by (4.7) or (4.91)

there is exactly one discriminant which has the value O

in the disjunctive canonical form Qn' of fn.
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By (3.91)
0= Qo= M

where M is the min-term whose discriminant is O.
There are n literals which are factors of M and no

letter appears more than once. Furthermore

n

o m e = Loy
i=1
But
n
E ay is an alterm and hence is also a conjunctive
i=1

form of f . (a conjunctive of one alterm).

If we apply (3.991), since there are no deletions to be

made and there is no consensus to take,

n \
E ay is in Quine's canonical form. This shows the ne-
i=]

cessity of the condition.

(5.1) We note that (5.0) also determines the solution
fn'OQ

(5.2) Theorem 6.
If Qstn has in its representation prime impli-

cants that are literals then in any solution to fn =0

the values of the variables assocliated with these literals
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are uniquely determined. ;

Proof:
Suppose,

QF:fn =¥ +Z ay = 0

where V is a polynomial no monomial of which is a li-

teral and Eai is an alterm. Then if fn has the

value 0O for a set of values of the independent variables

every a; = 0 in which case the variable associated with

a particular a; 1is uniquely determined.

(5.3) Theorem 7.
If QF:fn is not the Boolean constant 1 and if

a letter appearing in the representation fn does not
appear in QF:fn then the variable associated with the

missing letter is arbitrary in any solution to fn = 0,

Proof:

From (3.99) the only way a letter can be deleted
from a representation which is not the Boolean constant
1 is for a deletion iteration to be made. Hence if x

is a letter appearing in f_  but not in QF:f ~ then

the form Ax + A must appear either in f_  or after the

consensus iteration. But by (2.97),
Ax + AE A

and the value of x 1is arbitrary.
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(5.8) Theorem 8.

If fn is a Boolean polynomial then a necessary
and sufficient condition that fn = 0 have a unique solu-
tion is that QF:fé is a product of n literals so that

no letter appears more than once.

Proof:
By (4.2) a necessary and sufficient condition that

fn = 0 have a2 unique solution is that exactly one min-

term is missing from the disjunctive canonical form of
£ . But by (3.91),
Q;'=M,

where M is the missing min-term. But M 1is in Quine's
canonical form since no deletions can be made and since

there is no consensus to take.
(5.9) Theorem 9.
i Qsz; is a product of n literals such that

no letter appears more than once then the unique solution

to fn = 0 is the solution fo QF:fA = ],

Proof: By the proof of (5.8) QF:f! 1is the min-term mis-
sing from the disjunctive canonical form of f . There-

fore by (4.93) the unique solution to fn = 0 1is deternined
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by finding the unique set of values of the variables for
which QF:fﬁ = 1.

(5.91) We now have an algorithm for finding the unique
solution to the equation fn- 0, if it exists. And for

finding the arbitrary variables,
Step 1. transform f  to a polynomial R

Step 2. find Pa

Step 3. perform the indicated multiplications

Step 4. perform a deletion iteration

Step 5. if the result is a monomial M~ in n
literals fn = 0 has a unique solution

and the solution is found by solving
M o= l.
We illustrate the procedure with some examples.
Example 1.
f(xl.xz) = xz(x1+xix2) + xyx4
Step 1.

f(xtaz)=x2(xl+xix2)+x1xé = X)Xy tX]Xp+X X

Step 2.
f‘(xl,xz) = (xi+x§)(x1+xi)(xi+x2)
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Step 3.
(] +x3) (xy #x5) (x] #3g) = (xy x3 b xgxg) (xf #x,) =x{x}

Step 4. in this case there are no deletions to be made.

Step 5. if xixé = 1 then xi =1 and xé = 1

and the solution to f(xl.x2) =0 is xl-O.xzao.

Example 2.
f(xl,xz.xs} = Xy XoX] + X XpXy

Step 1. we already have a polynomial
Step 2. f'(xl,xz.xs) = (xi){xi+x1)(xi+xi+x§)

Step 3. (xi)(xé+x1)(x1+x2+x3) = (xixi)(xi+xé+x§)

Step 4. xixé +x]cx)e xé = xixé

Step 5. if xixi = 1 then Xy = 0, Xy = 0 and Xq is

arbitrary.



41

CHAPTER VI
ON INFERENTIAL PROBLEMS

In this chapter we investigate the applicability
of the preceding results to the solution and construction
of certain inferential problems. It is shown in most
standard textbooks on symbolic logic, e.g., Rosenbloom
(9), that the Boolean &l gebra defined in Chapter II is
equivalent to the propositional calculus. For instance,
if the proposition A 1is false we say that A has the
truth value 0 or A=0. Similarly if the proposition A
is true we write A=l, The symbol "+" and "+" of the
Boolean algebra correspond respectively to the "or" and
"and" of the propositional calculus.

In 1952 Fletcher (3) gave examples illustrating the
use of Boolean algebra in solving certain types of prob-
lems, the solutions to which might be difficult to obtain

by other means.

(6.0) Example 1.

Out of six boys, two were known to have been steal-
ing apples. But who? Harry said, "Charlie and George".
James said, "Donald and Tom". Donald said "Tom and

Charlie". George said, "Harry and Charlie". Charlie said,
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"Donald and James". Tom couldn't be found.

Four of the boys interrogated named one miscreant
correctly. The fifth had lied outright. Who stole the
apples?

Fletcher solves this problem in the following
manner. Let H, J, D, G, C, T denote the propositions
"Harry, James, Donald, George, Charlie, Tom did it" res-
pectively. Each person who makes a statement names at
least one miscreant incorrectly. That is,

(1) CG=DT =TC =HC =DJ = 0.

Four of the five statements are true taken in disjunction,
but one is false because one of the boys lied outright.
Thus,

(2) (C+G)(D+T)(T+C)(H+C)(D+J) = 0.

Performing the indicated multiplication and using the re-

lations (1) we have,
(3) CD = 0
But one set of four out of the five statements in disjunec-

tion are true. Hence,

(4) (C+G)(D+T) (T+C) (H+C)+(C+G) (D+T) (T+C) (D+J)
+{C4+G) (D+T) (H+C) (D+J) +(C+G) (T+C) (H+C) (D+J)
+(D+T) (H+C) (D+J) (T+C) = 1.

Using (1) and (3) this reduces to,
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(5) cJ = 1.
And this means that Charlie and James stole the apples.
The question might now arise, "is this the only
solution?" If we take the results of (1), (3) and (5)
we have the system,

CG4+DT+TC+HC+DJ+CD = O
CJ = 1.

Applying P13 to the second equation we have
CG+DT+TC+HC+DJ+CD+C'+J' = O,
Putting this equation in Quine's canonical form gives,
C'+J'+G+T+H+D=0O,
Therefore by (5.0) Theorem 5, the given system has a
unique solution. Hence, providing the analysis of problem

is correct, the equations result in a unique solution.

(6.1) Example 2.

Alice, Brenda, Cissie and Doreen competed for a
scholarship. "What luck have you had?" someone asked them.
Said Alice, "Cissie was top, Brenda was second." Said
Brenda, "Cissie was second and Doreen was third." Said
Cissie, "Doreen was bottom, Alice was second." Each of
the three girls had made two assertions, of which only one
was true. Who won the scholarship?

If we let A, denote the proposition, "Alice was
first" and similarly for the other statements we have,

from Alice, 0132 = 0 and Cl+ 82 = ]



from Brenda, C203 =0 and C2+ D3 =1
from Cissie, D‘A2 =0 and D4+ A2 = 1,
These equations yield thé: system
C1B2 + CiBé =0
02D3 + Ci Dé = 0
AD, + AéDi = 0,
From this we have the system,
CyB) +CiB, =1
C2D5 + CéD3 =1
AyD) + A3D, = 1.
Finally we have,
(ClBé + CiBQ)(C2D5+CéD3)(A2D1+A5D4) = 1.
This yields,
C)BIC,030,8) + CBJC5RaEAs + CyBICIDgDLAS + C1B3CH0I0IA
¥ CiBgCaliieAd + CilgCiighahs ¢ C18903PsMeN
+ DiBchDéDAAQ = 1.
Certainly Clc2 = 0, 0304 = 0, 8262 = 0, A232 = 0,
D.D, = 0O,

374
(Fletcher calls these exclusion relations) and this yields

C1350§D3CiA2 = 1.

From this we conclude that,
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Cissie was first, Alice second, Doreen third and

therefore Brenda was fourth.

(6.2) The two examples and the results of the preceding
chapters indicate a procedure by which this type of prob-
lem can be constructed so as to yield a unigue solution.
Suppose we start with the following equation,
(1) A+AL+A 4B _+BI4B 4C_4C, +C! =0,
which we know has a unique solution.
We will let A, B and C represent colored beads.
We will use the obvious suffix notation A~ with the
statement A 1is red. Similarly, By, stands for B 1is

blue, C& stands for C 1is not white and so on.

Using (1) as a guide we construct the following

example.
Examplt -

Out of a box of red, blue and white beads three
are drawn at random. Two of those drawn are blue and only
one of the following statements is true;
(1) A 1is red (i1) B is blue (ii1) C is not white.
Can you tell what color the beads that were drawn are?
Solutiont Since only one of the given statements (i),
(ii), and (iii) is true, we know one of three alternatives

to be true. The symbolic expression for this is,
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(2) AerC + AerC +A'B'C' = 1.

Since two beads are blue we have,

(3) AB, * ACy + B.C, = 1.
Again use is made of the exclusion relations which can
be constructed from the nature of the problem. Some of

them are,

(4) Ap Bp G =0

Cp Cw =0

Multiplying (2) and (3), using (4) and the rule xx' =0
we have,

ArBpCuwip
This means that A 1is blue, B 1is blue and C is white
and this is exactly what we started with.

(6.3) In general to construct this type of problem we
can start with a linear combination of variables set
equal to 0. We can use any of the properties of (2.1)
to transform the original equation into a new, but iden-
tical representation. A verbal cloak is then given to

the symbolic representation.
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