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where a is the activity of the pellet and d is the order of deactivation.

We here explore whether this equation form is derivable in a simple

way from the mechanism of deactivation.

The basic differential equations are set up to account for

homogeneous surface deactivation and pore diffusion effects, and the

appropriate Thiele modulus is found to be the proper parameter for
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tion, analytical solution of the equations is possible for the extremes

of high and low Thiele modulus, however numerical solutions are

required for intermediate values of the Thiele modulus.
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CATALYST DEACTIVATION

I. INTRODUCTION

Catalysts are the substances which speed up or slow down the

approach to equilibrium of chemical changes. Catalysts may be

solids or fluids. Especially, solid catalyzed gas-phase reactions play

an important role in many industrial processes such as hydrogena-

tions, dehydrogenations, oxidations, reductions, dehydrations,

polymerizations, cracking and reforming. Usually, solid catalysts

consist of catalytically active substances, carrier materials, pro-

moters and inhibitors. Promoters improve activity or selectivity of

the catalyst or stabilize the catalytic agents. Inhibitors have the

opposite effects. Since a large active surface area is desirable, most

solid catalysts are in the form of porous pellets. Such materials can

provide hundreds of square meters of solid surface per gram of solid.

Usually, a pellet of solid catalyst is in contact with a fluid in

which reactants are present. The reactants must diffuse from the bulk

of the fluid to the exterior surface of the pellet, and from the exterior

surface of the pellet into the interior active surface through the pores.

Then, adsorption to the active sites, surface reaction and desorption

take place. The products must diffuse back to the bulk of the fluid.

Normally, the diffusion step from the bulk of fluid to the exterior
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surface of the pellet is negligible compared to the diffusion step inside

the pellet.

Often, the activity of a catalyst decreases with operating time.

This deactivation makes the process difficult to operate, and requires

periodic or continual replacement of catalyst. The following are

main causes of deactivation:

1) Deposition and physical blocking of the active surface by

poisoning substances; carbon deposition on cracking

catalyst is a typical example.

2) Physical adsorption or chemisorption on the active sites by

poisoning substances; poisoning of metallic catalysts by

the compounds of S, Se, As is in this group. If the adsorp-

tion is not reversible, the poisoning is permanent.

3) Structural changes of the catalyst surface such as sintering,

localized melting and abrasion of the pellets.

The study of catalyst deactivation can be conducted on four

different levels (Butt, 1970). Firstly, microscopic systems or the

intrinsic kinetics for the reaction and deactivation: this deals with

the kinetics on solid surfaces without consideration of diffusional

effects. Adsorption, desorption and surface reaction kinetics come

into the picture at this stage. Secondly, an analysis of the behavior

of an intermediate system such as the single catalyst pellet: the

details of reaction and deactivation kinetics are combined with effects
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of pore diffusion. If the intrinsic kinetics are complicated, this is

not an easy job. Thirdly, the intrinsic kinetics and the behavior of

single catalyst pellets are incorporated into the macroscopic system

to give estimates of reactor performance. Finally, the behavior of

reactor performance leads to optimization problems for the design

and operation of reactors.

This thesis deals with the second level of study of deactivating

catalytic systems. It is concerned with the proper or useful

description and the mathematical modeling of the action of single

pellets of deactivating pellets, accounting for both the surface kinetics

and pore diffusion effects.

The first step in treating the problem is to describe the behavior

of an intermediate system. As mentioned above, direct mathematical

modeling starting with the basic intrinsic kinetics is complicated and

yet there is not a simple analytical expression for general behavior

of the system. Recently, a new model was proposed for a single

catalyst pellet system and has been proved to be useful for many

practical applications (Szepe and Levenspiel, 1968a, b; Gwyn, 1970;

Levenspiel, 1972). This model assumes that the rate equations of

reaction and deactivation are termed separable for the single pellet

system as well as for the microscopic system. For the main reaction

Pres ent
Reaction rate = f 1(Temperature) f

3
(Concentration) f

5
(activity of)

catalyst (1)



and for the deactivation

Deactivation rate = f
2

(Temperature) f
4
(Concentration)

f
6
(Present condition of catalyst)

The activity of a catalyst is defined as

a -
-r

A
-rAo

4

(2)

(3)

where -rA is the observed rate of the main reaction and -rAo is some

specified reference rate, usually the reaction rate with fresh catalyst.

Introducing nth order kinetics and Arrhenius temperature dependen-

cies, the reaction rate becomes

-r
A

= k
A

C
A

na = kAo
e-E/RTCAna

And the deactivation rate which is dependent on the concentration of

the poison-producing species i becomes

--da = k C.n'ad = k e-Ed/RTC.n'ad
dt d do

(4)

(5)

where Ed, n' and d denote the activation energy of deactivation, the

dependency on poison concentration outside the pellet, and the order

of deactivation, respectively. Sometimes, the deactivation is

independent of concentration of any material in the gas stream such

as in temperature caused changes in surface structure. In that case,

equation (5) becomes

da
- k" ad k"e-Ed/RTad
dt d d

(5a)
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The purpose of this thesis is to study the behavior of single

catalyst pellets as a result of the interaction of various simple surface

kinetics and the different kinds of pore diffusion processes which may

be operating.

We will also show the relationship between order of deactiva-

tion, d, with the various mechanisms which may be operating. The

importance of this is that a knowledge of this order of deactivation

will give a valuable clue to the mechanism of action of the deactivation

process.
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II. MECHANISMS OF CATALYST DEACTIVATION

General Description

There are several ways for a catalyst to deactivate. And for

the catalyst decay, different authors have used different terminologies

such as poisoning, fouling, aging and deactivation. Although each

term has a slightly different meaning, we will use the term deactiva-

tion. Levenspiel (l972.) summarized general mechanisms of deactiva-

tion as follows:

A) Form of surface attack by poison

I) Homogeneous site-attack

Under an uniform environment, all active sites on the catalyst

surface are attacked indiscriminately. Therefore, all active sites

are deactivated uniformly. Poisoning by physical deposition on the

surface is in this group.

II) Preferential site-attack

More active sites are preferentially attacked and deactivated.

Poisoning by chemisorption on the active surface is likely to be in

this group.

B) Decay reactions

I) Parallel deactivation

A R + (6a)

or



A
P

The reaction product may deposit on and deactivate the active

surface.

II) Series deactivation

A R

7

(6b)

(7)

The reaction product may decompose or further react to pro-

duce a material which deposits on and deactivates the active surface.

III) Side-by-side deactivation

A R

P P (8)

An impurity in the feed may deposit on the active surface or

react to produce a material which deposits on and deactivates the

surface.

IV) Independent deactivation

In some cases, the deactivation is independent on the composi-

tion of reactants, products and some other substances in the feed.

This decaying process involves the structural change or sintering

of the active surface under extreme physical conditions such as high

pressure or high temperature environment. This type of decay is

called independent deactivation.

This thesis develops the general differential equations for

homogeneous site attack, the different decay reactions and pore
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diffusional effects. The case of parallel and side-by-side deactivation

will be solved numerically and the results displayed graphically.

Previous Work

Though many works have been done for various chemical aspects,

we will emphasize on the engineering point of view.

Systematic observation and interpretation of deactivating cata-

lysts have a relatively short history. In 1945, Voorhies reported an

empirical correlation of coke deposition rates on cracking catalysts.

The result, for various catalysts, is in the form

C = At
n

c

wnere Cc is the concentration of carbon and t is the operating time.

(9)

A and n are the constants and n has the value of about 0.5. A few

years later, Wheeler (1951, 1955) first introduced diffusion effects

on the deactivation, and classified the poisoning in terms of two

limiting cases; pore mouth poisoning and uniform poisoning. Pore

mouth poisoning is the diffusion limiting case where the outer shell of

the pellet becomes completely deactivated, where the completely

deactivated zone has a distinct boundary from the active zone, and

where the boundary moves toward the interior of the catalyst pellet.

On the contrary, the uniform poisoning has no diffusion effect. The

poison material is distributed uniformly throughout the pellet and
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hence the deactivation takes place uniformly throughout the pellet.

Experimentally, Balder and Peterson (196b) examined Wheeler's

concepts. They developed a new experimental technique, a method

using a single pellet reactor of slab geometry. It has two exposed

ends, one is for the centerplane concentration measurement, the

other is for the bulk concentration measurement. By plotting activity

versus centerplane concentration, they were able to differentiate

between pore-mouth poisoning and uniform poisoning for a first-

order reaction. Furthermore, Jeffery and Peterson (1970) extended

this method to determine whether the poisoning of the catalysts was

uniform, simply switching the centerplane and the bulk concentration

faces. Dougharty (1970) employed the same idea, but he used the

different intrinsic kinetics for deactivation.

Masamune and Smith (1966) presented a more general treatment

of a single pellet system. They considered three different decay

reactions; parallel, series and side-by-side deactivation. First-

order intrinsic kinetics were assumed for reaction and deactivation.

Homogeneous site-attack for microscopic scale of deactivation was

combined with intraparticle diffusion resistances, so that the

extremes of uniform poisoning or pore-mouth poisoning were possible

depending on relative rates of diffusion and intrinsic deactivation.

Particle effectiveness factor was introduced and calculated numeri-

cally as a function of time and Thiele modulus. Also, they used the
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numerical results of a single pellet system for the calculation of

conversion in a fixed-bed reactor, a typical macroscopic system.

Ozawa and Bishoff (1968) gave a similar analysis for coke

formation on cracking catalysts. For their experimental data, the

Thiele modulus was so small that the effectiveness factor was taken as

unity. Their conclusion was that the parallel mechanism and first-

order linear kinetics were suitable for coke formation. Chu (1968)

extended Masamune and Smith's work by using Langmuir-Hinshelwood

type rate forms. However, his results did not agree with the

correlation of Voorhies. Murakami et al. (1968) also presented

similar analyses, for parallel and series deactivation. They assumed

a fast poisoning reaction comparing to the diffusion process and

hence used an unsteady state analysis for the diffusion of poison.

For series deactivation, they showed that by changing the Thiele

modulus the poisoned area moved toward the interior of a catalyst

pellet. This behavior is not possible if we assume pseudo steady-

state for the diffusion of poison material. Gioia (1971) gave further

analysis of side-by-side deactivation. He used the same technique as

Masamune and Smith's, except employing Langmuir-Hinshelwood

type rate forms for poisoning. His experimental data showed good

agreement with his analysis.

So far, most of the investigators have paid little attention to

independent deactivation, and there are few works on this subject.
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Thermal sintering is considered as an important factor of independent

deactivation. Herrmann et al. (1961) reported experimental results of

thermal sintering on platinum-alumina reforming catalysts. The

intrinsic kinetics of deactivation on thermal sintering was established

to be second-order with respect to remaining intrinsic activity. But

later, Chu (1963) reported his experimental results of the sintering of

platinum supported on alumina and could not find any order for the

thermal sintering reaction because of inaccuracy of his data.

Russian researchers (Zaidmann et al., 1969) briefly discussed the

mechanisms of thermal sintering. They said that the sintering rate

can be represented as the probability of collision of platinum particles

and the probability is determined by the size of the particles, by the.

energy of their interaction with the surface and by the concentration

of platinum. Dougharty (1970) employed results of Herrmann et al.

for the intrinsic kinetics of deactivation.

Parallel Deactivation

Let us consider the control volume of a thin shell shape inside a

spherical catalyst pellet as shown in Figure 1. Reactant A diffuses in

a porous catalyst pellet, with a first-order reaction
kA

A R P}

The material balance for reactant A in the control volume is

(6a)



Surface Area = 4Trr2

Accumulation of A
rate of accumulation of A

( unit volume ) (volume

3C

at
A (41T r ar)

12

r+Ar

Disappearance of A by reaction

(rate
of disappearance )(volume)unit volume

k
A

aC
A

(4Trr2 Az.)

Figure 1. Setting up the material balance.
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(rate of reactant diffusion into the control volume)

- (rate of reactant diffusion out of the control volume)

- (rate of reactant loss due to reaction within the control volume)

= (rate of accumulation of reactant in the control volume) (10)

or with the quantities shown in Figure 1,

8CA
r2 (-DA ar

ac
2

-DA
Or

A )

r 1r + r

ac
A- 4rr r2 isrk

A
aC

A
= 4rr r

2
Lir at

where DA is effective diffusivity of reactant A inside the porous

pellet, and a is called point activity. a is 1 on the fresh surface and

decreases as the active sites are deactivated.

Rearranging the above equation,

CA

8r
2

aC
A- r

r + Ar 8r

tr
r 2

k
A r2 aC

A- r aC =
DA A DA at

and taking the limit as Ar approaches zero, we have

or

a
8C

A 2
k

A r2 8CA

(r ) - r aCA -ar 8r DA A DA at

82CA 2
8CA k

A 1
8CA

art
+ r 8r D

A
aCA =

DA at



Similarly, for the parallel deactivation of the form

R
A

P4
-A2

we have

82CA
2

DCA
. 1(kAl k

ac
1

ar DA Al A2
)aC

A
=

D at
A

ar 2
A

Replacing the sum of the rate constants, kAl + kA2' by another

constant, kA', we get the same expression as Equation (11).

We assume that the rate of decrease of the point activity, a,

has the linear relationship,

8a
at -kdaCA

14

(6b)

(11a)

(12)

We can easily recognize that Equation (12) represents homogeneous

site-attack as well as the first-order intrinsic kinetics for deactiva-

tion.

Initial and boundary conditions for Equations (11) and (12) are

C
A

(r, t)

8C
A

(r, t)

= CAs

- 0

= 1

= 0

at r = R, t

at r = 0, t

at t = 0, 0

at t = 0, 0

0

0

< r < R

< r < R

(13)

(14)

(15)

(16)

8r

a (r, t)

C
A

(r, t)

In the boundary condition, Equation (13), the reactant concentration,

CAs, at the surface of a pellet can be considered as the bulk
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concentration, since the gas-film resistance of mass transfer outside

the pellet is much lower than the resistance inside the pellet.

At this moment, it is convenient to make the equations dimen-

sionless, so let us define the following dimensionless quantities;

CA

r*

e

hA

dA

=

=

-

CA
A As

r/R

k
d

C
As

t

R
3

(17)

(18)

(19)

(20)

(21)

kA R
DA

k
d

CAs
DA

where h
A

is the Thiele modulus for slab geometry.

Rewriting Equations (11) to (16) with above dimensionless

quantities, we obtain

2 4,8 CA 8C* 8C*
2 2 A

(22)
arm2

r* ar* aC* = 9hd- 9hA A A 864

* (23)= -a CA
ae8a

C*
A

( r*, 0) =

aCA(r *,

1

0

at r* = 1, e> 0

at r* = 0, e> 0

(24)

(25)
ar* =

a (r*, e) = 1 at e= 0, 0 < r* < 1 (26)

CA (r *, e) = 0 at e= 0, 0 < r* < 1 (27)
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Furthermore, noticing that the poisoning reaction is usually

much slower than the diffusion process, we assume pseudo steady-

state with respect to the accumulation of mass inside the pellet.

Therefore, we can neglect the accumulation term in Equation (22), or

za C* aC*
A 2 A 2

+ 9h a CA * = 0
Aar 2 r* ar*

(28)

In this case, the initial condition, Equation (27), is not valid,

and other initial condition can be found from the initial steady-state

solution. As stated above, at t = 0, a is 1. Eliminating the time

variable from Equation (28), we have the ordinary differential equation

or

dZC* dC*
2 A

9h
2C* - 0

dr* r* dr* A A

dC*
d (r*Z dry) ) = 9r*Zh

A
2C*

dr*

with the boundary conditions

(29)

C*
A

= 1 at r* = 1 (30)

dC
A - 0 at r* = 0 (31)

dr*

The solution of Equation (29) with the boundary conditions,

Equations (30) and (31), becomes

1
sinh(3h

A
r*)

C* at e = 0, 0 < r* < 1 (32)
A r* sinh(3hA)



Equation (32) is a new initial condition for the differential equation

(29).

or

Reaction rates at any instant for reactant A is defined as

(Moles A disapp. )-r =
A (Time)(Vol. of pellet)

a (r*, e)C* (r*, e)4Tr r* dr*
0 A

- rA
=

1 Orr r*
2dr*

0

3 r* 2a (r*, e)C*
A

(r*, e)dr*

From Equation (3), the activity of a catalyst pellet is

a
-r

A
-rAo

17

(33)

We will choose the maximum reaction rate as a reference

reaction rate, rAo, so that maximum value of the activity cannot

exceed unity. For slow deactivation (using Equation (28)), the initial

reaction rate is the maximum reaction rate because reactant can

penetrate throughout the pellet, and each element of catalyst surface

"sees" fluid at bulk condition. For fast deactivation, things are more

complex. The instant a pellet is bathed in reactant starts

diffusion into the interior of the pellet, thus the rate of reaction will

rise and reach a maximum value a short time after exposing the
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catalyst pellet to the reactant gas.

All necessary equations for analysis of parallel deactivation are

summarized in Table 1.

Series Deactivation

A
kP kR

R P+ (7)

Consider the same control volume shown in Figure 1. The

material balance for reactant A in the control volume is the same as

Equation (10). Taking the same steps, we arrive finally at the

differential equation,

82 CA
2

8C
A

k
A 1

OCA
-

2 r DA
a CA

DA at

The material balance for product R in the control volume is

(rate of product diffusion into the control volume)

(rate of product diffusion out of the control volume)

- (rate of product loss due to poisoning reaction within
the control volume)

+ (rate of production due to main reaction within the
control volume)

= (rate of accumulation of product in the control volume)

(34)

The product loss due to the poisoning reaction is much smaller

than the diffusion process and the production rate due to the main

reaction. If it were not much smaller, then hardly any product R



Table 1. Summary of equations for parallel deactivation.
Parameters

of the
system

Differential equations Initial and boundary
conditions Activity

h
A,

hdA

Fast Deactivation

>C* = 1 at r* = 1, e oA

aC*A- >

1

(24)

(25)

(26)

(27)

-r
A

(3)

aC*
2 2

Z
A (22)V

A
C* 9h aC* = 9hdA aer A A

a a
= -ac* (23)00 A 0 at r* = 0, e_ o

Or*

a= 1 at 6 = 0, 0 < r*.5..1

CA 0 at 0 = 0, 0 .__ r* <A

a - -rAo

where

-rA = 3 r* 2 aC*
A

dr* (33)

0
-rAo , maximum value

of -r
A

h
A

Slow Deactivation

C*
A

= 1 at r* = 1, 0... 0

aC*
A

(24)

(25)

(26)

(32)

VC*
A

9h2A aC*
A

= 0 (28)

aa
= -aC* (23)ae A 0 at r* = 0, e 0Or*

a = 1 at e = o, o r* <1

s inh(3h
A

r-;1,)
1

C=` ,_

A r* sinh(3h
A

)
'

at 0 = 0, 0___ r* 1
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would escape from the pellet, this would represent a poor catalyst,

and this is an uninteresting case. Thus, eliminating the third term

of above equation, we have

2
acR

Orr r ( -DR ar )

aCR
4rr r (-DR --a r )

r

ac
R+ 4rr r ArkAa

CA = 4Trr2
Lir at

+ Or

Rearranging the above equation and taking the limit as Li r

approaches zero,

a2C
R 2

acR k
A 1

acR

ar2
+ r ar 4- DR a A DR at

In this case, the point activity has the relationship,

asaT - -kda CR

Initial and boundary conditions for Equations (34), (35), and

(36) are

(35)

(36)

C
A

(r, t) = C As
at r = R, t > 0 (37)

CR (r, t) = CRs
at r = R, t > 0 (38)

ac
A

(r, t) OCR (r, t)
-ar ar - 0 at r = 0, t > 0 (39)

a (r, t) = 1 at t = 0, 0 < r <R (40)

C
A

(r, t) = C R(r, t) = 0 at t = 0, 0 < r < R (41)
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Introducing the dimensionless quantities defined by Equations

(17) to (21) and defining the following additional dimensionless

quantities

CR CAs

CR

hdR
kd CAs R

DR 3

we can rewrite Equations (35) to (44) as

82C* 8C* 8C*
A 2 A A

- 9h
2 a C* = 9h2

r* ar* A A dA ae
8r*

2

(42)

(43)

(44)

(45)

32 C* ac* 8C*
+ 9h2 a C* = 9hdR R

ar*2 r* ar*
R

AR A ae (46)

a a
ae - -a C* (47)

CA (r *, e) = 1 at r* = 1, e > o (48)

C* (r*, 0) = CRs /CAs at r* = 1, 0 > 0 (49)

ac*
A

(r*, e) ac* (r*,

ar* ar* - o at r* = 0, e > o (50)

a (r*, e) = 1 at e = 0, 0 < r* < 1 (51)

CA (r *, e) = c* (r*, e) = 0 at e = 0, 0 < r* < 1 (52)

For slow deactivation, we may assume pseudo steady-state with
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respect to the accumulation of mass inside the pellet. Thus, the

accumulation terms in Equations (45) and (46) are neglected and these

expressions reduce to

a2a C* 8C*
A 2 A
2

+ - 9h 2a C* = 0 (53)
Dr*

r* Dr* A A

a
2C*

8C*
R 2

ar*2
+ r 3r* + 9h2

R A
a C* = 0 (54)

*
R

A

In this case, the initial condition, Equation (52), is not valid.

The proper initial condition for C*
A

for this case can be found by the

same treatment given in the previous section, or

C* (r*, e) =A r* sinh(3hA)
1

sinh(3h
A

r*)
at e = o, o < r* < 1 (55)

Initial condition for C* can be found easily from the properties

of a harmonic function. Combining Equation (53) with Equation (54),

2
(IIARCI h 2C*R ) = 0

A
(56)

2
where r denotes the Laplacian in spherical coordinates which only

has an r-component.

Integrating Equation (56) with respect to r*,

r2
*2

drd* (h AR AR
C* + h

RA
C* ) C1

Using Equation (50), the constant C
1

becomes zero.



Integrating once more,

hzAR AC* + h
A

2C*
R

= C2

and from Equations (48) and (49), we have

C
C* (r*, e) C

Rs
+ ( AR )2[1 - CA (r *, e)]

As
h

A

23

(57)

at 0= 0, 0 < r* < 1

Equations (55) and (57) are new initial conditions for C*
A

and

C. Activity and reaction rates for reactant A can be calculated by

the method of the previous section. All necessary equations are

tabulated in Table 2.

Side-by-side Deactivation

P
kp (8)

By a procedure similar to that of the previous sections, we find

that for fast deactivation,

2
-

k
A

1
OC

A
Vr CA DA a CA DA at

k
V 2

C - ---1 1

8 CP
r P D a CP DP atP

8a
8t -1(da CP

(58)

(59)

(60)



Table 2. Summary of equations for series deactivation.
Parameters

of the
system

Differential equations Initial and boundary
conditions Activity

h
A' hAR,

ham, C
R/C

As

Fast Deactivation

C* = 1 at r* = 1, A > 0 (48)A

C* = C /C at r*. 1, 090 (49)R R As

aC* aC*A R >0

-r
A

ac*
A'74C* - 9112 aC*

A
= 9112 80 (45)r A A dA

2
aC*

R2c-4 C* + 9h aC* = 9h (46)r R AR A dR ae

a a
=a0 -aC*

R (47) - - 0, at r* = 0, A (50)ar* ar*

..a= 1 at 0 = 0, 0 < r* 1 (51)

C* = C* = 0 at 0 = 0, 0 < r* < 1(52)A R

a - (3-rAo

where

-rA = 3 5 r*ZaC* dr* (33)A
0

-rAo ; maximum value
of -rA

h hA' AR,

C Rs /CAs

Slow Deactivation

C* = 1 at r* = 1, 0_ > 0 (48)A

C* = C
R at r* = 1, O. 0 (49)

ac*
A R

0,

V2C*A. - 9h2 aC* = 0 (53)A A
2 2

7r Cit + 9hARaCI 0
(54)

as
= -«C* (47)ae R - 0 at r* = an (50)ar* Or*

a= 1 at 0 = 0, 0 < r* < 1 (51)

1
sinh(3h

A
r* )

c* = (56)A r* sinh(3h A)

CRs
R)'(12.C + () (1 (57)(h

R CAs hA A

at 0 = 0, 0 < r* i1



25

The initial and boundary conditions are

C
A

(r, t) = CAs
at r = R, t > 0 (61)

C (r, t) = CPs at r = R, t > 0 (62)

8C
A

(r,t) 3C (r,t)

Or Or
- 0 at r = 0 , t > 0 (63)

a (r, t ) = 1 at t = 0 , 0 <r <R (64)

C
A

(r, t) = C (r, t) = 0 at t = 0 , 0 < r < R (65)

where C Ps denotes the concentration of poison on the exterior surface

of a catalyst pellet.

Using the same dimensionless quantities introduced in Equations

(17), (18), (20) and (21), and defining additional dimensionless quan-

tities;

e = kdCPs t,

IR
hP = 15

hdP =
k

d
CPs R
DP 3

C* C /CP P Ps

Equations (58) to (65) are rewritten in dimensionless form as

follows,

OC*
AC* - 9h 2a C* = 9h-

r A A A dA ae

8C*
V C* - 9h 2a C* = 9h-r P P P dP ae

(66)

(67)

(68)

( 69 )

(70)



8a

0 > 0

0 > o

0 < r* <

0 < r* <

1

1
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(71)

(72)

(73)

(74)

(75)

80 = -a C*

The initial and boundary conditions are

CA (r *, 0) = c* (r*, e) = 1 at r* = 1,

8C*
A

(r*, 8C* (r*, e)
- at r* = 0,ar* 8r* o

a (r*, 0) = 1 at 0 = 0,

CA (r *, e) = C* (r*, = 0 at e = 0,

For slow deactivation for the same reason as given in the

previous sections, we can neglect the accumulation terms in Equations

(69) and (70);

77C*
A

- 9h
A

2a
C*

Av r

MCP77C* - 9h 2
a C*P P

=

=

0

0

(76)

(77)

In that case, the initial conditions, Equation (75), should be

changed to

CA (r *, 0)

C* (r*, 0) =

1
sinh(3hAr*)

r* s inh(3h A)

1
sinh(3h r*)

r* sinh(3h )

at e = 0, 0 < r* < 1

Resulting equations are tabulated in Table 3.

(78)

(79)



T -able 3. Summary of equations for side-by-side deactivation.
Parameters

of the
system

Differential equations Initial and boundary
conditions Activity

h
A,

hi,,

h , h
dA dP

Fast Deactivation
ac*

vzc* 9112aC* 9h2r A A A dA ae (69)

ac*

V2 P
C* 9h

2
aC*

P d
9h

2

P ae (70)

9 a
-aCt) (71)

C*
A

= C*P = 1 at r* = 1, 0 > 0 (72)

8C* ac*
A - 0 at r*= 0, 0 (73)8r* ar*

a= 1 at e= 0, 0 r* 1 (74)

C*
A PC* = 0, at e=o, 0 r* <1 (75)

h
A,

hP
Slow Deactivation

7/C*A 9hA AaC* = 0

VC* 9h
2 aC* = 0r P P P

aa
ae-

(76)

(77)

(71)

C*A = C*P = 1 at r* = 1, >e_o (72)

8C*
A

8C*

8r* 8r* 0, at r* =.. 0, 0 ?_0(73)

1
sinh(3h

A
r:*)

C*
A r* sinh(3h )A at 0 = 0,

0 < r*< 1
1

sinh(3h 1.41
C*P r* sinh(3h

(78)

(79)

-r
Aa -rAo

where
1

(3)

-r
A

= 3 sc r*2aC*
A

dr* (33)
0

-rAo maximum value
of -r

A
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III. RESULTS

The equations tabulated in Tables 1, 2 and 3 can be solved

numerically by changing them into difference equations. We can find

the standard procedures for partial differential equations and other

numerical methods elsewhere (Carnahan et al., 1969).

Only cases of slow deactivation will be solved, because these

cases are more realistic and have less parameters to describe the

systems. We will consider Parallel and Side-by-side deactivation in

turn.

Parallel Deactivation

In difference form, partial differential equations (28), (23) and

the initial and boundary conditions (24), (25), (26) and (32) become

(12:1)CA + 0(Lse) + O(Ar 2)im-1112 2Ar21cA
-CA

m+1, n m A m, n m m-1, n

Aa m, n = (-A0Cm, n-1 + 1) a m, n-1 + 0(6e)

the boundary conditions;

CM,
n

A = 1

A A
C2,

n
- Cl,

n
= 0

and the initial conditions;

a m, 1 = 1

(80)

(81)

(82)

(83)

(84)



where

sinh [3hAAr(m-1)]

m, 1 Ar(m-l)sinh(3hA)

1A r -
(M-1)

Rearranging Equations (80), (82) and (83), gives the following

set of linear equations,

m -2 A m-1 2 2 A
- CA(-rn )cm-

1, n + ( m )(9h
A

A r am,
n + Z)Cm, n m+1, n = 0

29

(85)

; m = 3, . . M -2 (86)

M-3 A M-Z 2 2-()C + ()(9h A r a + 2)CA = 1
M-1 M-2, n M-1 A M-1, n M-1, n

The coeffficient matrix of the above equations is in the tridiagonal

form, and the method of solution is given in Appendix II.

Combining Euler's second-order method for the time incre-

ments, Equation (81) is regarded as the first approximation of the

point activity, e7m,

A= a
am, n m, n-1 (- A Cm,n-1 + 1) (87)

Using these 77m,
n

values, the tridiagonal matrix of Equation (86)

is solved, and the first approximation of the reactant concentration,

7A
m, n, is obtained. The second approximation of the point activity,

am,
n,

can be calculated from

am
e A A= a am + C m, n-am, n)

(88)
, n m, n-1 (Cm, n-1 , n-1
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Using the above second approximate values, am,
n,

we can solve

the tridiagonal matrix, Equation (86), again, and have the second

approximate values, CAm,

Then, we can evaluate the rate of reaction for the whole pellet

as a function of time from Equation (33) and from this, the activity of

the whole pellet as a function of time from Equation (3). The deriva-

tive ative of activity with respect to time, is also evaluated numeri-

cally as a function of time.

These procedures are given in Appendix III for both slow and

fast deactivation, and are programmed in FORTRAN IV language for

CDC 3300 Computer System. However, the results are given only for

the slow deactivation. These are shown as follows.

(1) For various values of Thiele modulus (hA = 0.1, 1, 5, 100,

1000) graphs of reactant concentration and point activity vs.

radial position are given in Figures 2 to 11.

(2) For all these cases the activity, a, is plotted as a function

of time and Thiele modulus in Figure 12.
da

(3) To test the validity of Equation (5a), the plot of - de vs. a

is made on log-log scales for these and numerous other

values of Thiele modulus (Figures 13 to 29). The results

are generally acceptable as straight lines. The slopes turn

out to be the order of deactivation, d.

(4) Finally, the order of deactivation, d, is plotted as a function

of Thiele modulus in Figure 30.
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Parallel deactivation, C*A vs. r*.
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Figure 3. Parallel deactivation, a vs. r*.



1. 0

hA = 1 0

0. 5
r*

0

Figure 4. Parallel deactivation, C*
A

vs. r*.
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e=o

0
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Figure 5. Parallel deactivation, a vs. r*.
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Figure 6. Parallel deactivation, C*
A

vs r*.

Figure 7. Parallel deactivation, a vs r*.
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Figure 8. Parallel deactivation, CI vs r*

Figure 9. Parallel deactivation, a vs r*.
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r*

Figure 10. Parallel deactivation, CA vs r*

1.0

ti 0.5

1. 0 0. 95
r*

Figure 11. Parallel deactivation, a vs. r*.



Figure 12. Parallel deactivation, a vs G.
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1. 0

a
daFigure 13. Parallel deactivation, -- vs. a.de
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0. 010.01 1 0. 1
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Figure 14. Parallel deactivation, -dade vs. a.
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Figure 15. Parallel deactivation, -de vs. a.
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Figure 16. Parallel deactivation, -de vs. a.
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Figure 19. Parallel deactivation, -de vs. a.
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Figure 21. Parallel deactivation,
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Figure 22. Parallel deactivation, -da vs. a.de
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Figure 23. Parallel deactivation, -dade vs. a.
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a daFigure 25. Parallel deactivation, vs. a.
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Figure 26.
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Figure 27. Parallel deactivation, -dade vs. a.
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Figure 28. Parallel deactivation, -de vs. a.
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Figure 29. Parallel deactivation, -da
dO

vs. a.
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Discuss ion

Figure 30 summarizes the results of this analysis. Let us

examine the various regimes in this plot.

For the extreme of rapid diffusion with respect to reaction and

deactivation, the Thiele modulus is small (h
A

< 1) and a vs. r* curve

is horizontal (Figure 3) and the order of deactivation, d, is close to

unity (Figure 13).

For slow diffusion with respect to reaction, h
A

> 1. Here the

a vs. r* curve is S-shaped (Figure 7) and the order of deactivation is

somewhat higher than unity.

For the extreme of very fast reaction, h
A

oo , and the S-

shaped a vs. r* curve becomes practically vertical and the order of

deactivation approaches 3. The curved portion in Figures 25 to 29

represents the initial period of deactivation where the a -profiles have

not yet become S-shaped (Figures 9 and 11).

In the intermediate range between a flat and S-shaped a vs. r*

profile (Thiele modulus 1), the order of deactivation drops to less

than unity. This strange behavior is a consequence of the shape of

the a vs. r* curve, as shown in Figure 5.

Side-by-side Deactivation

Partial differential equations and their initial and boundary

conditions given in Table 3 can be changed into difference form. The
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method of solution is similar to the method given in the previous

section. Again, we use Euler's second-order approximation for the

time increment. Necessary difference equation and the FORTRAN

programs are listed in Appendix IV.

Three typical values of hA and hp are selected (0. 1, 1.0 and

10.0), and the combination of these gives nine distinct cases. Figures

31 to 42 present the results for the three cases where h
A

= 0.1. For

each of the three hp values, CA, Ct, and a are given as a function of

radial position and time in Figures 31 to 38. The plot of activity vs.

time is given in Figure 39. To test the validity of Equation (5a), plots
daof - de vs. a are made (Figures 40 to 42).

For other values of hA, 1.0 and 10.0, the corresponding graphs

are presented in the same order (Figures 43 to 65).

Discuss ion

When hA = thethe equations of side-by-side deactivation

reduce to the parallel deactivation case which has already been

solved in the previous section. Thus, Figures 31, 32, 40, 46, 47

and 53 turn out to be the same as Figures 2, 3, 13, 4, 5 and 17,

respectively.

If the Thiele modulus for poison is small (hp < 1), the plot of

- de
da vs. a is acceptable as a straight line and the order of deactiva-

tion, d, approaches unity as h goes to zero (Figures 40, 41, 52,
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Figure 31. Side-by-side deactivation, CA, CI, vs. r*.
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Figure 32. Side-by-side deactivation, a vs. r*.
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1.0

*44 0.9

Figure 33. Side-by-side deactivation, CI vs. r*.

0
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Figure 34. Side-by-side deactivation, CI) vs. r*.
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Figure 35. Side-by-side deactivation, a vs. r*.
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Figure 36. Side-by-side deactivation, CI vs. r*.
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Figure 37. Side-by-side deactivation, 9, vs. r*.
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Figure 38. Side-by-side deactivation, a vs. r*.
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Figure 42. Side-by-side deactivation, -dade vs. a.
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Figure 43. Side-by-side deactivation, C*
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Figure 45. Side-by-side deactivation, a vs r*.
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Figure 46. Side-by-side deactivation, C*A P, C* vs r*.

Figure 47. Side-by-side deactivation, a vs r*.
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Figure 48. Side-by-side deactivation, C*A vs r*.
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Figure 49. Side-by-side deactivation, C>t, vs. r*.



59

70

h
A

= 1.0

h = 10.0

I0.5
r*

0

Figure 50. Side-by-side deactivation, a vs r*.
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Figure 55. Side-by-side deactivation, CI vs. r*.



63

1.0

el 0 . 9 9

o

h
A

= 10. 0

h = 0. 1

1.0 O. 5
r*

2

1

0=0

0

Figure 56. Side-by-side deactivation, 9) vs. r*.
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Figure 57. Side-by-side deactivation, a vs. r*.
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Figure 58. Side-by-side deactivation, CI vs. r*
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Figure 59. Side-by-side deactivation, 9) vs. r *.
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Figure 60. Side-by-side deactivation, a vs r *.
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Figure 61. Side-by-side deactivation, CA, C*P vs r*.
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Figure 62. Side-by-side deactivation, a vs. r*.
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Figure 63. Side-by-side deactivation, a vs. 0.
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Figure 65. Side-by-side deactivation, -de vs. a.



69

53 and 64).

If the Thiele modulus for poison is larger than both unity and the

Thiele modulus for the main reaction (he > 1 and h > hA), we cannot

dejustify the plot of - de vs. a as a straight line (Figures 42 and 54).

Therefore, Equation (5a) with constant d, is valid except when

hP
> h

A
and h > 1.
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IV. LIMITING CASES

The limiting cases are presented to test the validity of Equation

(5a) and the results of the previous chapter.

Parallel Deactivation

We have two limiting cases;

i) h
A

0

ii) h
A

00

Both these cases were analyzed by Levenspiel (1970) and we will

review them in turn.

Case i) h
A

0

(h
A

< 0.5)

(CA 1)

In this case, no diffusion resistance is present in the catalyst

pellet, the concentration of reactant is uniform, hence, poisoning is

uniform throughout the pellet (Figure 66).

The reaction

-r
A

da

rate of a poisoned catalyst pellet becomes

= kAa CAs

= -k
d

a CAs

= 1, at t = 0

(89)

(90)
dt

a

where a is the point activity which is uniform throughout the pellet.
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(Shown in Figures
2 and 3)

Figure 66. Parallel deactivation, 0.

Solving Equation (90), a becomes

a = exp(-kdCAst) (91)

Substituting Equation (91) into Equation (89),

-rA
= kACAs exp(-kd

C As t)

At t = 0, we have the reference state of reaction rate

-rAo = k
A

C
As

From Equation (3), the activity becomes

-r
A

kA C Asexp(-kdC Ast)
a -rAo k

A
C

As
exp(-kdC As t)

(92)



or,

Differentiating above equation with respect to time, t,

da
=

dt
-kd CAsexp(-kdCAst)

da
dt -kd CAsa

72

(93)

Thus, the order of deactivation, d, approaches unity as h
A

goes

to zero. This is in good agreement with the results given in Figures

13 and 30.

Case ii) hA oo

(EA 0)

Even after a large drop in activity has occurred, most of the

reaction still takes place within a thin shell close to the outer part of

the pellet. Therefore, we can approximate the spherical pellet as a

semi-infinite slab, and this is the typical case of pore-mouth poison-

ing given by Wheeler (Figure 67).

Here we have straight diffusion through the poisoned portion of

the pore followed by reaction. Also note that the diffusion rate equals

the reaction rate. Thus for a single pellet we write, for the mass

transfer step,

DA
-r - (C - C )

A L(L - x) As Ai
(94)



Shell model

C

-x

Pore-mouth poisoning

C

L

Narrow reaction zone

(Shown in Figures
8 and 10)

Figure 67. Parallel deactivation, h
A

oo.

and for the reaction step

-rA = kA(x/L)a,AiCAi

.A1where E is the pellet effectiveness factor based on the pore length x.

73

(95)

1 1

CAi hAi
kA-7

DA

Substituting the above equation into Equation (95),

k
A

C
Ai-rA

- - kA C
k

A Ai
A

A

DA

(96)

and Ai'
from Equations (95)



and (96),

CAs
-r

A L(L x) 1

DA EA k
A

The initial reaction rate, -rAo, becomes

-rAo = kAE,AC As

From Equation (3), the activity is written as

a
-r

A 1

-rAo L - x + 1
LE,A

The progression rate of poisoned area is proportional to the

reaction rate, -r
A

d(L x)
CAs

k (-r ) - k'
dt d A d L(L - x) 1

DA eAkA

Differentiating Equation (97) with respect to time, and using

the above equation, we have

1

da
LEA d(L x)

dt
-

( + 1)2
L - x dt
L,;A

k' Cd As 1

L (L - x
+ 1)3

LEA

or,

74

( 9 )



da
dt -1cd

CAsa
3

Therefore, the order of deactivation, d, approaches 3 as h
A

75

(98)

goes to infinity. The straight line portion in Figures 28 and 29 gives

the order of deactivation, d, close to 3. And the asymtotic behavior

is also given in Figure 30.

Rearranging Equation (98),

da kd CAsdt
a

3

Integrating the above equation,

1/2 a-2 = kd CAst

a
1

(2k
d

CAs
t + 1)1

/2
(98a)

Assuming that the activity of the surface is inversely propor-

tional to the concentration of carbon on the surface, Equation (9)

becomes

a = A t -0. 5

If 2kdCAs t >> 1, Equation (98a) becomes Equation (98b).

(98b)

Therefore, Equation (98) also represents the Voorhies correlation.

Side-by-side Deactivation

We have four limiting cases;
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i) h ----- 0
A

h __-,-- 0P

ii) h ----,--
A

hp ----,- 0

00

iii) h
A

--',--

h _____.)._

0

P 00

iv) h
A

---- oc

h ---)-- oo
P

For each of the above cases, we will develop the expression for

deactivation rate and see if the analysis of the previous chapter is

reasonable.

Case i) hA ('c 1)

hp 0 (E 1)

Concentrations of reactant A and poison P are uniform, and

hence the point activity a is uniform throughout the pellet.

-r
A

= k ACAsa

da -k C a
dt d Ps

a = 1, at t = 0

Solving the above equation, the point activity becomes

a = exp(-kdCpst)

( 9 9 )



From Equation (3), the activity becomes

-r
A

kACAsexp(-kd
CPs t)

a -rAo kACAs
exp(-kdCpst)

Differentiating the above equation with respect to time,

da -k C a
dt d Ps

The order of deactivation, d, approaches unity as hA
and h

goes to zero. This result is also given by Figure 40.

Case ii
A

hP

c° (EA 0)

0 (E 1)

77

(100)

Concentration of poison P is uniform, and hence the point

activity a is uniform throughout the pellet. The main reaction takes

place within a thin shell close to the outer part of the pellet. The

reaction rate can be found as

where

or,

tanh(h
A

4;7)
-r

A
= kACAs Nra-

A

da
dt = -kd CPs a

a = exp(-kd' Cpst)

From Equation (3), the activity becomes
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-rA k
A

C
As

\f-c7 tanh(hA \F) tanh(hA 17)
a = -

-rAo k
A

CAs
h

A
h

A

For large values of h
A,

a = Na' = exp(-1 /2 kd' Cpst)

Differentiating the above equation with respect to time, we have

da
dt d

CPs a (101)

Therefore, the order of deactivation, d, approaches unity as

h
A

goes to infinity and h goes to zero. This result is in good agree-

ment with Figure 64.

Case iii) h
A

----
hp---,--

0 (CA ----
00 (Ep

1)

0)

Concentration of reactant A is uniform through the pellet.

Poison is initially confined within a thin shell close to the outer part

of the pellet, and moves toward the interior of the pellet after

deactivating the active surface (Figure 68).

Even after more than half of the pellet radius is deactivated,

the pellet still has a significant amount of activity. In this case, we

cannot approximate the spherical pellet as a semi-infinite slab. We

will consider both slab and spherical geometries.



cr,
N

4 (1)

a)



a) A Pellet of Slab Geometry

Consider Figure 68a. The reaction rate for Reactant A is

-r
A

= kA C Asx/L

From Equation (3), activity is written as

a =

80

k C x/L-rA A As = x/L (102)
-r

A
k
A

CAs

By the same reason of Case ii in the previous section, the

reaction rate for poison P becomes, for the mass transfer step,

DP
-rP L(L - x) (CPs- Cr.)

and for the reaction step

-r =k6 C =kEP Pi Pi P PCPi

(103)

(104)

where E. is the pellet effectiveness factor for poison P based on the

pore length x

kP
E Pi = 1/hPi = 1/ ( 13 x)

Eliminating the interface concentration, CPi, from Equations

(103) and (104),

-r
CPs

L(L - x)
E

1

kP P

The progression rate of poisoned area is proportional to the

reaction rate for poison, -r



or,

Or,

d(L - x) - k'(- ) k'
dt d

rP d L(L x) 1
+

D E. k
P P P

CPs

k' k
d(x/L) d P CPs

dt L 1
(1 - j-c--) + 1

P2
L P

Substituting Equation (102) into the above equation,

k' k
da d P P CPs

=
dt L 1 (1 - a) + 1

-P

k' k
da - d P C Ps-
dt LhP hP (1 - a) + 1

When a << 1, Equation (105) reduces to

' k
da

kd P
dt L h2

CPs -k
d
CPs a

81

(105)

(105a)

For slab geometry if hP oo , hA)- 0 and a << 1, then

Equation (5a) with constant order of deactivation is applicable and the

order of deactivation approaches zero.

b) A Spherical Pellet

Consider Figure 68b. The reaction rate for reactant A is



Vol. of inner core-r
A

= k ACAs (Vol. of a whole pellet/

= k
A

CAs (r
i

/11)
3

From Equation (3), activity becomes

a - ( Rr./ )
3

-r
A

Ao
1

82

(106)

By the material balance within the poisoned region, we find the

following differential equation,

DP d 2
dCP

2 dr r drr

with the boundary conditions

step,

CP = CPs

CP =

- 0

at r = R

C. at r = r.
i

Solving the above equations, we have

C
(CPs - CPi 1

)R r.
1

RCPs - riCPi
(P R - r. r ) 4- R - r.

The reaction rate for poison P becomes, for the mass transfer

4Tr R
2

dC P-rP =
4 3

DP dr
-3- Tr R

and for the reaction step

r=R

D (C -C .) r. 3
P

R
Ps

r
Pi i

- R
(

R
)() (107)

- .
1



4 3

3
r. r;

-r = k C - k CP R P PiP Pi Pi
Tr R

3

3

where

E Pi = 1/hPi =
1

kPr

DP

ep = 1/h =
R

DP 3

1

ri.

3

83

(108)

Eliminating the interface concentration, CPi' from Equations

(107) and (108),

CPs

P = R - ri. (R )(R)+ R 2
1

DP ri ) (V+ (ri ) EP kP

The progression rate of poisoned region is proportional to the

reaction rate for poison.

or,

poisoned
d( ) k' C

region d Ps(-r )
dt d P R - r.

1 R R R 2 1

D
(r

i
) (7) + (r. ) e k

P 1 P P

d R(r./ )
3 k' k

1 d PC Ps P 1

dt R 3 R R 2
(r - 1) + ()r,

P i 1

Substituting Equation (106) into the above equation,



or,

k' k
da d PCPs'lp 1

dt R 3 -1 /3
(a 1) + a -2/3

da
kd P' k CPs

=
dt RhP 3h (a-1/3 - 1) + a-2/3

When a << 1, Equation (109) reduces to

k' k
da =

d PC Ps al /3
= -k

d
al /3

dt 3Rh2

84

(109)

(109a)

For a spherical pellet if h oo , h
A

0 and a << 1, then

Equation (5a) with constant order of deactivation is applicable and the

order of deactivation approaches 1/3.

Comparison With the Numerical Solution

Since CA is constant throughout the pellet and C has the same

profile as C
A

for parallel deactivation, we may use the same numeri-

cal procedures as given in Appendix II except the integration of

Equation (33). C* in Equation (33) is replaced by unity.
A

da
To test the validity of Equation (109), the plot of de vs.

1 is made on a log-log scale (Figure 69). The

3h (a-1/3 - 1) + a-2 /3

plot is acceptable as a straight line and the slope is about unity. The

curved portion represents the initial period of deactivation where the
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0.01

0.001

0.01

3h (a -1 /3 -1) + a-2 /3

Figure 69. Side-by-side deactivation, limiting case.

1.0
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a -profile has not yet become S-shaped (see Figures 9 and 11).

Equation (109) is in good agreement with the numerical solution.

Case iv) hA

hp

00
(EA co

00 (E 0)

Even after a large drop in activity has occurred, most of the

reaction and deactivation still takes place within a thin shell close to

the outer part of the pellet. Therefore, we can approximate the

spherical pellet as a semi-infinite slab (Figure 67). By a similar

procedure to that of Case ii in the previous section, we find that

CAs
-r

A
- L(L x) 1

DA EAkA

-
CPs

L(L - x) 1

DP E kP P

The progression rate of poisoned region is proportional to the

reaction rate for poison.

k' C
d(L - x) d Ps= k' (-r ) -

dt d P' L(L - x)
+

1

D E kP P P

The activity becomes

-r
A 1

a - --rAo
LL

- x
+ 1

EA

(110)



or,

or,

L - x = A a
L( - 1)

Substituting the above equation into Equation (110),

' E. /E
da

k
d
kP CPs P A a2

dt

da
dt

- k
d
CPs

3a

EA 1 EA
- + 1

EP a C

h'P
(1 - a) + a

h
A

When hp = hA, Equation (111) reduces to Equation (5a), and

87

the order of deactivation becomes 3. This result can be drawn from

the results in the previous chapters, since when hP h
A

the

differential equations of side-by-side deactivation reduce to those of

parallel deactivation and the order deactivation approaches 3 as h
A

goes to infinity.

When hp << hA, Equation (111) reduces to Equation (5a), and

the order of deactivation becomes 2.

When h >> h
A

and a << 1, Equation (111) reduces to Equation

(5a), and the order of deactivation becomes 3.
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V. CONCLUSIONS

As a result of the present analysis of a single pellet system, the

following conclusions are drawn.

(1) Parallel Deactivation

a) The proposed model, Equation (5) with a constant for the

order of deactivation d, is generally acceptable.

b) The order of deactivation, d, is a function of Thiele

modulus h
A

as given in Figure 30.

c) If h
A

goes to zero, the order of deactivation approaches 1.

d) If h
A

goes to infinity, the order of deactivation approaches

3.

(2) Side-by-side Deactivation

a) The proposed model, Equation (5) with constant order of

deactivation d, is applicable except when h is larger than

both unity and hA.

b) If h goes to zero, the order of deactivation, d, approaches

1, regardless of the value of hA.

c) If h goes to infinity and hA
goes to zero, Equation (105) is

applicable for slab geometry and Equation (109) for

spherical geometry.

In addition when a << 1, both Equations (105) and (109)

reduce to Equation (5) with constant order of deactivation.

The order of deactivation is zero for slab geometry and
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1/3 for spherical geometry.

d) If both h and h
A

go to infinity, Equation (111) is applicable.

In addition, when h >> h
A

and a << 1, or when hP = h
A

and any a, Equation (111) reduces to Equation (5) with the

order of deactivation, d = 3.

When hp << hA, Equation (111) reduces to Equation (5)

with the order of deactivation, d = Z.

e) These findings are only preliminary and a rough indication

since only combination of only three values of h
A

and h

were studied. More values of h
A

and h should be studied

to more definitely fix these conclusions.

The significance of this study is that the formulation of Equations

(5) and (5a) to describe deactivating catalysts can be a reasonable

representation for parallel deactivation, but probably is not useful for

situations where a rapidly adsorbed impurity in the feed is the cause

of deactivation.
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VI. RECOMMENDATIONS FOR FUTURE WORK

1) Further studies on side-by-side deactivation to fill out the

brief findings here.

2) Repeat the present type of analysis for reactions in series

deactivation, including limiting cases.

3) Repeat the present type of analysis for the cases of fast

deactivation which must include the unsteady-state terms for the mass

transfer step (Tables 1, 2, and 3).

4) Use different intrinsic kinetics for deactivation (i. e.,

Langmuir-Hinshelwood type rate forms,

k,C.1 a

k2 C + 1

and give an analysis similar to the present type.

5) Find a suitable intrinsic rate form for heterogeneous

poisoning and give an analysis similar to the present type.

6) Search for a formulation to replace Equation (5) which will

fit all kinds of deactivation.

7) Find a proper way to design experiments with deactivating

catalysts which will give a correct rate equation.

8) Extend a single pellet system to macroscopic systems of

various contacting patterns, and search for a simple formulation for

reactor performances.
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Letter

a

A

CAi

C,

C*

C.
Ls

C.

APPENDIX I

NOMENCLATURE

Meaning

activity of a catalyst pellet, see
Equation (3)

reactant substance

interface concentration of reactant
A, see Equation (94) and Figure 67

concentration of substance i

dimensionless concentration of substance
i, see Equations (17), (42) and (66)

concentration of substance i on the
exterior surface of a catalyst pellet

interface concentration of poison P, see
Equation (103) and Figure 68

d order of deactivation, see Equations (5),
(5a)

D. effective diffusivity of substance i in a
porous catalyst pellet

h
A

Thiele modulus of reactant A

h
AR

mixed Thiele modulus using the reaction
rate constant kA

and diffusivity of product
DR, see Equation (43)

hdA mixed Thiele modulus using kd and DA,
see Equation (21)

hdP
mixed Thiele modulus using kd and
DP, see Equation (68)

93

cgs Units

mole /cm3

mole /cm3

mole /cm3

mole /cm3

cm2 /sec
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Letter Meaning cgs Units

h
dR

mixed Thiele modulus using kd and
DR' see Equation (44)

hP Thiele modulus of poison P, see
Equation (67)

A
reaction constant for main reaction 1 /sec

1 cm3Int
k k deactivation constant

d' do sec 'mole'

k' constant for progression rate of 2
poisoned region cm /mole

kP reaction constant for poison reaction 1/sec

= k Cnk" d
' 1/sec

L pore length cm

m grid position of radial increments

M total number of grids of radial increments

n grid position of time increments

N total number of grids of time increments

P poison substance

R product substance or,
radius of a catalyst pellet cm

radius of a catalyst pellet cm

r* dimensionless radius of a catalyst
pellet

r, radius of a clean pellet core cm

-r
A

reaction rate based on the concentration mole
of reactant A 3(cm )(sec)
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Letter Meaning cgs Units

-rAo

-r

t

reference reaction rate based on the
concentration of reactant A

reaction rate based on the concentration
of poison P

mole

(cm3)(sec)

mole

(cm3)(sec)

time sec

x length of clean pore

Greek letters

a point activity, see Equation (12)

EA

EAi

Ep

EPi

e

pellet effectiveness factor for reactant A

pellet effectiveness factor for reactant A
based on the length of a clean pore

pellet effectiveness factor for poison P

pellet effectnveness factor for poison P
based on the length of a clean pore

dimensionless time, see Equations (19)
and (66)

CM



APPENDIX II

SOLUTIONS OF TRIDIAGONAL LINEAR EQUATIONS

Consider the following set of linear equations which has a

tridiagonal coefficient matrix,

blvl + civ2 = d
1

a2v1 + b2v2 + c2v3 d
2

a3v2 + b3v3 + c3v4 =
3

a.v. + b.v. + c.v. = d.
1-1 1 1 1 1+1

aN- lv N-2
+ bN- lvN- 1

+ cN-lv
N

The solution is

where

v
N y N

vi = Ni -

f3 = b
1 1

1
= d

1
/131

a. c.
1-1= b.

1 Pi-1

yi
d. - a.1 N 1-1

t3i

a
NvN- 1

+ bNvN

i = N-1, N-2, .

= d
N-1

= dN

i = 2, 3,. . N
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If d
1

= dz = . . . = dN-1
= 0 and d

N
= 1, the solution can be

simplified, thus

v
N

= 1 /I3N

vi = vi+1 V
i

i = N-1, N-2, . . ., 2, 1
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APPENDIX III

DIFFERENCE EQUATIONS AND PROGRAM LISTINGS
FOR PARALLEL DEACTIVATION

Difference Equations

ACm,
1

= 0

a m, 1
1

First approximation;

where

=
m, n- 1 (- OCA

Trm, n m, n - 1
+ 1)

m-2 A -
A-()C m-1. _

+ (m l) (ha + G x- A
m m-1, n m m, n 2 m, n m+1, n

G.(m- 1 )A
; m = 3, . . . , M-1

m rn, n-1
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(a)

=
G = (3h Ar)2 /AO, G2 = G + 2, h = (3h AL!, r)

2 A, C m, n 1 (b)

dA

Using the results of Appendix II, solve for --CA ; m = 2, 3, . , M-1.

Second approximation;
Aa

am, n
a
m, n-1 2

e
(CmA, n-1 m,n- 1 Cm, n m, n)

m-2-()CA
+ (m-1 )(ha + G )CA CA

m m-1, n m m, n 2 m,n m+1, n

m-1 A
in= G() Cm, n- 1 "

m = 3, . . . , M-1



where

CA = 1
M, 1

Solve for CAm, n ; m = 2, . . . , M-1.

For slow deactivation, all procedures are the same except

sinh[3hA(m- 1)A r]
(a) CA

1

m, 1 (m-1)Ar

(b) Set h = 0
dA

sinh (3h
A)
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PROGRAM PARAL
DIMENSION T(80),DD(401),AA(401),TT(401),A(401)
COMMON MM,MI,II,R,RR,HD,X(11),S(401),UA0(401),UB0(401),

I SI(11,80),UA(11,80),U8(11,80),X2(401),AC(401),A1(401)
1000 MM=TTYIN(4HM: )

IF(MM.EQ.0)GOTO 2000
50 MC=TTyIN(4HSTAR,4HTING,4H M V,4HALUE,2H= )

MI0=(MM-1)/10
IMPIC-1)/M10*M10.NE.(MC-1))G0T0 50
NN=TTYIN(4HN= )

DT=TTYIN(4HDT= )
F=TTYIN(4HTIME,4H FAC,4HTOR=)
KK=TTyI11(4HPRIN,4HT OU,4HT SE,4HQ= )

HA=TTYINOINHA= )
HD=TTYIN(4HHD= )

C CALCULATE CONSTANTS AND INITIAL CONDITIONS
HASP=HA*3.
CALL CALCUL(HA)
CALL INITIAL(HASP,1)
GAO=HD*HD*9.*RR/DT
H=HASP*HASP*RR
CALL FUBAR(EFF)
AA(I)=EFF S U0=EFF

C CALCULATE CONCENTRATION PROFILE AND ACTIVITY BY CALLING THE
C SUBPROGRAM TRID AND FUBAR

DO 500 N=2,NN
IF(N.LE.21)GOTO 1

C THESE LOOPS ARE FOR THE DIFFERENT TIME INCREMENTS
GA=GA0 S TH=DT E XX=N-21
TT(11)=XX*TH+TT(21)
GOTO 2

I GA=F*0o0 S TH=DT/F S xx=N-1
TT(N)=XX*TH

2 CONTINUE
CALL TRID(H,GA,TH,MC)
NI =N -I

CALL FUBAR(EFF)
AA(N)=EFF
IF(110.LE.EFF)U0=EFF

C CALCULATE THE DERIVATIVE OF THE EFFECTIVENESS FACTOR
DD(141)=CAA(N)-AA(N1))/TH

C FOR THE WRITING STEP AT THE LATER PORT,
IF(N.LE.21)GOTO II
NP=N-20
IF(NP/KK*KX.NE.NP)GOTO 13
NX=NP/KK+21
GOTO 12

II NK=N
12 T(NK)=TT(N)

DO 61 I=I,MM,II
IX=(I+II-1)/II
UA(IX,NK)=UAO(I)

61 SI(IX,NX)=S(I)
13 CONTINUE

C RESET THE STARTING M VALUE
IF(MC.EV.1)GOTO 500
IF(UAO(MC).GE.0.00001)MC=MC-M10

500 CONTINUE
C CHANGE THE DERIV OF EFFECTIVE TO THE DERIV OF ACTIVITY, AND
C THE EFFECTIVE TO THE ACTIVITY

DO 70 I=1.NN
A(I)=AA(I)/U0

70 DD(I)=DD(I)/U0
DD(I)=0.
NI=(1114-21)/XX+21

C WRITE UP THE RESULTS
WRITE(20,199)HA,HDOM,NN,DT
WRITE(20,200)(X(I),I=1,11)
WRITE(20,201)(1.(I),(UA(.10),J=1,11),I=1,NI)
WRITE(20,202)
WRITE(20,200)(X(I),I=1,11)
WRITE(20,201)(T(I),(SI(J,I),J=1,11),I=1,NI)
WRITE(20,203)(TT(I),AA(I),A(I),DD(I),I=1,NN)
GOTO 1000

2000 CONTINUE
199 FORMAT(IH1,10x,'***CONCENTRATION PROFILE OF A***'

I /1H0,'HA=.F12.6/' HDeF12.6/' M='I7/' N='I7/' DT=.F12.6)
200 FORMAT(IHO

"
10X II(3X,'R=76.4))

201 FORMAT(IX, T= . F7.4,1X,11F11.7)
202 FORMAT(1H1,10X,'***POINT ACTIVITY***')
203 FORMAT(IH1,10X,'***EFFECTIVENESS FACTOR AND ACTIVITY AS A '

1 'FUNCTION OF TIME * * *'
2/1H0,24X.TIME*'15X**EFFECTIVE**14X**ACTIVITY*'13X**DERIVATm**
3 /(21X,F10.5,2(10X,F15.3),E25.0))
END



SUBROUTINE CALCUL(HA) SUBROUTINE INITIAL(HA,K)
COMMON MM,M101,R,RR,HD,X(11),S(401),UA0(401),UB0(401), DIMENSION U(40)

I SI(11,80),UA(11,80),UB(11,80),X2(401),AC(401),A(401) COMMON MM,M1,1I,R,RR,HD,X(11),S(401),UA0(401),UB0(401),
C CALCULATE CONSTANTS WHICH ARE NEEDED IN THE LATER PART OF THE PROGN 1 SI(11,80),UA(11,80),UB(11,80),X2(401),AC(401),A(401)

M1=MM-1 $ II=M1/10 $ R=1./FLOAT(M) C CALCULATE INITIAL CONDITIONS
IF(HA.GE.50.)GOTO 91 C FUNCTIONAL KEYS 1;FOR UA, 2; FOR UB,

119=0 $ RR=R*R IF(HD.NE.0.)G0T0 50
GOTO 92 IF(HA.GE.150.)GOTO 40

91 SCALE=TTYIN(4HSCAL,4HE RA,411DIUS,4H10,1,4H00,))
XMI=M1 $ II9=(SCALE-1.)*XMI $ R=R/SCALE
RR=R*R $ UA(10,10)=II9

IF(HA.GE.10.)GOTO 21
EH=EXP(HA) E SINH=EN-1./EN
U(1)=2*HA/SINH

92 CONTINUE DO 30 I=2,MM
XII9=119 $ XII=II XX=I-1
X9=XI19*R $ XR=XII*R ARG=XX*R*HA $ E=EXP(ARG)
DO 21 I=1,MM 30 11(1)=(E-1./E)/(XX*R*SINH)
XX=II9+I S AC(I)=(XX-1.)/XX $ A(I)=-(XX-2.)/XX GOTO 22
YY=II9+I-1 $ X2(I)=YY*YY*RR 40 CONTINUE

21 S(I)=1. 119=UA(10,10) $ 1=1

DO 22 I=1,I1 41 CONTINUE
XX=I-1 S X(I)=XX*XR+X9 IF(IGE.MM)GOTO 22

22 SI(1,1)=1. I=I+1

RETURN XX=I19+I-I S XY=XX*R
END H1=-HA*(I.-XY)

IF(ABS(HI).GE.500.)GOTO 90
U(I)=EXP(H1)/XY
GOTO 41

90 U(I)=0.
GOTO 41

21 U(1)=2.*HA*EXP( -HA)
DO 31 I=2,MM
XX=I-I $ XY=XX*R
H1=-HA*(I.-XY) $ H2=-HA*(I.+XY)

31 U(I)=(EXP(H1)-EXP(H2))/XY
22 CONTINUE

IF(K.E)a.1)GOTO 23
DO 32 I=I,MM

32 UBO(I)=U(I)
DO 33 1=1,MM,II

33 UB(IX,1)=U(1)
GOTO 24

23 CONTINUE
DO 34 I=I,MM

34 UA0(1)=U(I)
DO 35 I=1,MM,I1
IK=(1+II-1)/II

35 UMIK,I)=U(1)
24 RETURN
50 DO 51 I=1,MM

UAO(I)=0.
51 UBO(I)=0.

DO 52 I=1,10
UA(I,I)=0.

52 UB(1,1)=0.
RETURN
END



SUBROUTINE TRID(H.G.TH,MC)
DIMENSION B(401),D(401).BETA(401),GAMMA(401),

I UTEMP(401),STEMP(401)
COMMON MM,M1,11,R,RR,HD,X(11),S(401),UA0(401).11110(401),

1 SI(11,80),UA(11,80)08(11,80),X2(401),AC(401),A(401)
C CALCULATE POINT ACTIVITY AND CONCENTRATION PROFILE BY SOLVING
C THE TRIDIAGIONAL MATRIX
C FOR THE TIME INCREMENTS, EULER'S SECOND ORDER APPROX IS USED.

MC2=MC+I S 1C3=f4C+2 $ N=M1 -MC2
IF(HD.EQ.0.)GOTO 60
G2=G+2
DO 61 M=14C,MM
STEMP(M)=( -TII*UAO(M)+1.)*S(M)
B(M)=AC(1) *(H*STEMP(M)+02)

61 D(P1)=6*AC(M)*UA0(11)
D(M1)=D(M1)+1.
BETA(MC2)=B(MC2) S GAMMA(MC2)=D(MC2)/BETA(MC2)
DO 62 1=MC3,M1
BETA(I)=B(I)+A(I)/BETA(I -I)

62 GAMMA(I)=CD(I)-A(I)*GAMMA(I-1))/BETA(I)
UTEMP(M1)=6AMMA(1111)
DO 63 I=1,N
X=MI -I

63 UTEMP(X)=GAMMA(K)+UTEMP(K+1)/BETA(K)
UTEMP(MC)=UTEMP(MC2) S UTEMP(MM)=1.
DO 64 M=MC,MM
S(M)=S(M) -(UAO(M)*S(M)+UTEMP(M)*STEMP(M))*TH/2.

64 B(M)=AC(M)*(H*S(M)+132)
BETA(MC2)=11(MC2) S GAMMA(MC2)=D(MC2)/BETA(MC2)
DO 65 I=MC3,M1
BETA(I) =B(I) +A(1)/BETA(I -1)

65 GAMMA(1)=CD(I)-A(1)*GAMMA(I-1))/BETA(I)
UAO(MI)=GAMMA(M1)
DO 66 I=I,N
11:141 -1

66 UAO(K)=GAMMA(K)+UAO(K+I)/BETA(K)
UAO(MC)=UAO(MC2) S UAO(MM)=1.
RETURN

C FOR THE NI ACC(HD=0) CASE,
60 CONTINUE

DO 67 M=MC,MM
67 STEMP(M)=(-TH*UAO(M)+1.)*S(M)

BETA(MC2)=01*STEMP(MC2)+20/2.
DO 68 M=NC3,M1

68 BETA(M)=AC(M)*(11*STEW(M)+2.)+A(M)/BETA(M-1)
UTEMP(MM)=I. S UTEMP(MI)=1./BETA(MI)
DO 69 I=1,N
K=MI -I

69 UTEMP(K)=UTEMP(K+1)/BETA(K)
UTEMP(MC)=UTEMP(NC2)
DO 70 M=MC,MM

70 S(M)=S(111)-(UA0(M)*S(M)+UTEMP(M)*STEMP(M))*TH/2.
BETA(MC2)=(H*S(MC2)+20/2.
DO 71 111=MC301

71 BETA(M)=AC(M)*(H*S(M)+2.)+A(M)/BETA(14-1)
UAO(MM)=1. S UA0(MI)=1./BETA(M1)
DO 72 1=1,N
K=M1 -I

72 UAO(K)=UAO(K+1)/BETA(K)
UAO(MC)=UAO(MC2)
RETURN
END

SUBROUTINE FUBAR(SS)
COMMON MM,141,11,R,RR,HD,X(11),S(401),UA0(401),U110(401),

I SI(11,80),UA(11,80),U11(11,80),X2(401),AC(401),A(401)
C CALCULATE THE ACTIVITY BY INTEGRATION OF THE POINT ACTIVITY*
C CONCENTRATION PROFILE, USING SIMPSON'S RULE

SS=0.
I=1
MMI=(M4-1)/2
DO 85 K=I,MMI
11=1+1
12=1+2
SS=SS+X2(I)*UAO(I)*S(I)+4.*X2(II)*S(II)*UAO(II)

I +X2(I2)*S(12)*UAO(I2)
85 1=12

SS=SS*R
RETURN
END



APPENDIX IV

DIFFERENCE EQUATIONS AND PROGRAM LISTINGS
FOR SIDE-BY-SIDE DEACTIVATION

Difference Equations

A
Cm, 1 = Cm, 1

= 0

m,1 1
= 1

First approximation;

where

= aTm, n m, n-1(- A GCm, n-1 + 1)

m-1m-2 P + ()(G + h )dP- () C m- 1, n m P2 2 m, n Pm, n 7 m+1, n
m

G
m-1()CP

= P m m, n-1

P
M, n

= 1

GP = (3hdP
A r)2 /A e

GP2
= GP + 2

= (3hPAr)2

; m = 3, . . . , M-1

103

(a)

(b)

Using the results of Appendix II, solve for Cm, n
; m = 2, ... , M -1.

Second approximation;

AE3 P P
a = a (c a +C a)
m, n m, n-1 2 m, n-1 m, n-1 m, n m, n



where

m-2 P m-+ () (G + h a )CP
m m-1, n m

1

P2 m, n m, n - cm+1, n

= G (
m-1

) CPP m in, n-1

m-2 A m-1 A
-( )C + () (GA2 h1

)C
A - C

m m-1, n m A2 1 m, n m, n m+1, n

= G (
m-1 )C

A
A m m, n-1

; m = 3, . . . , M-1

A = CM,
n

P
CM, n

= 1

GA = (3h
dA

r)2 /A e

GA2 = GA + 2

h
1

= (3h Lir)2

Solve for CA and C ; m = 2, 3, . . . , M-1.
m, n m, n

For slow deactivation, all procedures are the same except

A 1

(a) Cm,
1 (m -1)Er

CP
1

m, 1 (m -1)tr

sinh [3hA(m-1)Ar]

sinh(3hA)

sinh [3hp(m-1)Ar]

sinh(3hp)

(b) and (c) Set h
dA

= hdP = 0
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(c)



PROGRAM SIDEBY
DIMENSION T(60),DD(401),AA(401),TT(401),A(401)
COMMON MMOI,II,R,RR,HD,X(11),S(401),UA0(401),UB0(401),

I SI(11,80),UA(11,130),UB(11,60),X2(401),AC(401)01(401)
1000 MM=TTYIN(4HM= )

IF(MM.EQ.0)GOTO 2000
50 MC=TTYIN(4HSTAR,4HTING,4HM V,4HALUE,2H: )

MI0:(MM-1)/10
IF((MC-1)/M10.1.1410.NE.(MC-1))G0TO 50
NN=TTYIN(4HN: )

DT=TTYIN(4HDT: )
F=TTYIN(4HTIME,4H FAC,4HTOR=)
KK=TTYIN(4HPRIN,4HT 0U,4HT SE,4HQ= )

HA=TTYIN(4HHA: )
HP=TTYIN(4HHP: )
HD=TTYIN(4HHD= ) $ HDP=ITYIN(4HHDP:)
V=TTYIN(4HOUTE,AHR I0,4HE?(S,4HDT G,4HE.50,2H) )

C CALCULATE CONSTANTS AND INITIAL CONDITIONS
HASP=HA*3.
HPSP=3.*HP
CALL CALCUL(V)
CALL INITIAL(HASP,I)
CALL INITIAL(HPSP,2)
GAO=HD*HD*9.*RR/DT
HAA=HASP*HASP $ HPP=HPSP*HPSP
HI=HAA*RR $ H2=HPP*RR
GP0=9.*HDP*HDP*RR/DT
CALL FUBAR(EFF)
AA(I)=EFF $ OD:EFP

C CALCULATE CONCENTRATION PROFILE AND ACTIVITY BY CALLING THE
C SUBPROGRAM TRID AND FUBAR

DO 500 N=2,NN
IF(N.LE.21)GOTO I

C THESE LOOPS ARE FOR THE DIFFERENT TIME INCREMENTS
GA=GA0 $ GP=GPO S TH=DT $ XX=N-2I
TT(N)=XX*TH+TT(21)
GOTO 2

I GA=F*GAOS GP=GPO*F S TH=T/F $ XX:N-1
TT(N)=XX*111

2 CONTINUE
CALL SIDE(HI,H3,GA,GP,TH,MC)
NI=N-I
CALL FUBAR(EFF)
AA(N)=EFF
IF(UO.LE.EFF)U0=EFF

C CALCULATE THE DERIVATIVE OF THE EFFECTIVENESS FACTOR
DD(N1)=CAA(N)-AA(N1))/TH

C FOR THE WRITING STEP AT THE LATER PART,
IF(N.LE.21)GOT0 11
NP=N-20
IF(NP/KK*KK.NE.NP)GOTO 13
NK=NP/KK+21
GOTO 12

II NK=N
12 T(NK)=TT(N)

DO 61 I=1,MM,II
IK:(I+II-1)/II
UA(IK,NK)=UAO(I)
UB(IK,NK)=LIBO(I)

61 SI(/K,NK)=S(I)

13 CONTINUE
C RESET THE STARTING M VALUE

IF(MC.EQ.I)GOTO 500
IF(UAO(MC).GE.0.00001)MC=MC-M10

500 CONTINUE
C CHANGE THE DERIV OF EFFECTIVE TO THE DERIV OF ACTIVITY, AND
C THE EFFECTIVE TO THE ACTIVITY

DO 70 I=1,NN
A(I) =AA(I) /U0

70 DD(I)=DD(I)/U0
DD(I)=0.
NI:(NN-21)/KK+21

C WRITE UP THE RDSULTS
WRITE(20,199)HA,HP,HD,MMON,DT
WRITE(20,200)(X(I),I=1,11)
WRITE(20,201)(T(I),(UA(J,I),J=1,11),I=1,NI)
WRITE(20,204)
WRITE(20,200)(X(I),I=1,I1)
WRITE(20,201)(T(I),(UB(J,I),J=1,11),I=1,NI)
WRITE(20,202)
WRITE(20,200)(X(I),I=1,I1)
WRITE(20,201)(T(I),(SI(J,I),J=1,11),I=1,NI)
WRITE(20,203)(TT(I),AA(I),A(I),DD(I),I=1,NN)
GOTO 1000

2000 CONTINUE
199 FORMAT(1H1.10X.****CONCENTRATION PROFILE OF A***'

1 PONA=712.6/' HP=712.6/' HD:F12.6
2 /' M=.17/' N=.17/. DT="F12.6)

200 FORMAT(1H0,10X,11(3X,11:76.4))
201 FORMAT(IX,'T=77.4,1X,I1F11.7)
202 FORMAT(IH1,10X,'***POINT ACTIVITY***')
203 FORMAT(IH1.10X, ****EFFECTIVENESS FACTOR AND ACTIVITY AS A

I 'FUNCTION OF TIME* * *'
2/1H0,24X.TIME**15X**EFFECTIVE*'14X.*ACTIVITY*13X.*DERIVATIVE*.
3 /(21X,F10.5.2(10X,F15.8),E25.8))

204 FORMAT(1H1,10)(**** CONCENTRATION PROFILE OF P ****)
END

O
to



SUBROUTINE SIDE(HI ,H2 ,GA, GP , TH,MC)
DIMENSION B( 401) ,D ( 401) ,BETA ( 401 ),GAMMA( 401),

1 UTEMP( 401 ),STEMP(401 )
COMMON MM,MI ,I I ,R,RR,HD,X( 11 ) ,S( 401) ,UAO (401), UBO (401) ,

1 SI( I 1,80),UA(11,80),UB(11,80) ,X2 (401),AC( 401),A(40I)
C CALCULATE POINT ACTIVITY AND CONCENTRATION PROFILE BY SOLVING
C THE TRIDIAGONAL MATRIX
C FOR THE TIME INCREMENTS, EULER 'S SECOND ORDER APPROX IS USED.

MC2 =MC+ / S MC3 =14C+2 S N:141 -MC2
IF(HD.R0.0.)GOTO 60
GA2 =GA+2 S GP2 =GP+2
DO 61 M=PIC,MM
STEMP(M)=(TH*UBO(M)+1.)*S(M)
BCM)= AC(M) *(H2 *STEMP(M) +GP2)

61 D(M) :GP*AC( M)*UBO (14)
D(141 )=D( M1)+I.
BETA( MC2)=111(MC2 ) S GAMMA(MC2)= D(MC2) /BETA(MC2)
DO 62 I=f4C3,M1
BETA(I ) =B(I )+A( I ) /BETA(I-1)

62 GAMMA(I)=CD(I)-A(I)*GAMMA(I-1))/BETA(I )
UTEMP (MI )=GAMMA (MI )
DO 63 I=1,N
K=M1-I

63 UTEMP(X)=GAMMA(K)+UTEMP(X+1)/BETA(X)
UTEMP(MC)=LITEMP(MC2) S UTEMP( MM) =1 .
DO 64 M=PIC , MI4
S(14) =S( M)-(UBO(M)*S( M)+UTEPIP( M)*STEI4P( )*TH/2.

64 B( M)=AC(14)*(H2*S(M)+GP2)
BETA( MC2 ) =B(MC2 ) S GAMMA(MC2)=1)(MC2 ) /BETA (MC2 )
DO 65 I=MC3, MI
BETA(I)=B(I)+A(I)/BETA(I-1)

65 GAMMA(I)=CD(I)-A(I)*GAMMA(I-1))/BETA(I)
UB0(M1 ) =GAMMA (M1)
DO 66 I= I ,N
X =MI -I

66 UBO(K) =GAMMA (I( )+UBO (X+1)/BETA(10
UBO ( MC) =URO ( MC2 ) S MM) = 1 .
DO 91 I=MC,MM
BC))= AC(I) *(HI *S(I) +GA2)

91 D( I) =AC( I )4GA*UA0( I)
D( MI )=D( MI )+I
BETA(MC2) =A (MC2 ) S GAMMA(MC2)= D(MC2) /BETA(MC2)
DO 92 I=MC3 , MI
BETA(I)=B(I)+A(I)/BETA(I-1)

92 GAMMA(I) =(D(I )-A(I)*GAMMA(I -1) )/BETA(I )
UAO(M1)=GAMMA(M1)
DO 93 I=I,N
K=MI -I

93 UAO(K)=GAMMA(10+UA0(K -1)/BETA(K)
UAO(MC)=UAO(MC2) S UA0(14M)=1.
RETURN

C FOR THE NO ACC(HD=0) CASE,
60 CONTINUE

DO 67 M=14C , MEI
67 STEMP(M) =(-TH4,UBO (1041 .)*S( M)

BETA( MC2 ) =(H24,STEMP(MC2 )+2.)/2.
DO 68 Pl= MC3,141

68 B ETA( M) =AC( M)* (H2*STEMP( M)+2. )+A( M) ETA( M-1)
UTEMP( MM): I . $ UTEMP( MI ) = I ./BETA( MI )
DO 69 I =I ,E1
K=MI -I

69 UTEMP(K)=UTEMP(X+1)/BETA(X)
uTEMP(MC)=uTEMP(MC2)
DO 70 m=mC,mm

70 s(m)=S(m)-cuB0(14)*S(M)+UTEMP(M)*STEMP(M))*TH/2.
El ETA( MC2) :( H2*S( MC2 )+2 )/2
DO 71 M= MC39/41

71 BETA( fl) =AC( M)*(H2*S( M)+2 )+A ( M) /BETA( M-1)
LIBO(MM)=1. E UBO (M1 ) =1 ./BETA( MI )
DO 72 I=1,N
M=M1 -I

72 uB0(K)=uBO(K+1)/BETA(K)
uB0(MC)=UB0(mc2)
BETA(MC2) =AC( MC2 )*(H1*S(MC2 )+2 )/2
DO 98 I=EIC3, MI

98 BETA( I )=AC( I )*(H14,S( I )+2 .)+A(I )/BETA(I -I )
UAO( MM) =1 UAO ( MI ) =1 ./BETA (MI )
DO 99 I=1 ,N
K=141-I

99 UAO(K) = UAO(K+l) /BETA(K)
uA0(MC)=utio(mc2)
RETURN
END


