REFERENCES TO PERTINENT DATA AND SPECIFICATIONS ON
THE USE OF WOOD IN AIRCRAFT
(Available for Reference at Forest Products Laboratory)
August 1941

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE
FOREST PRODUCTS LABORATORY
Madison, Wisconsin
In Cooperation with the University of Wisconsin
REFERENCES TO PERTINENT DATA AND SPECIFICATIONS

ON THE USE OF WOOD IN AIRCRAFT

(Available for Reference at the Forest Products Laboratory)

August 1941

By

G. E. HECK, Engineer

The purpose of this compilation is to place under one cover references to pertinent data and specifications relating to the use of wood in aircraft that are available at the Forest Products Laboratory. The compilation, other than specifications, relates largely to Laboratory data, but references to works from other sources are also included for convenience. Specifications are largely those issued by various Government agencies having to do with the National Defense. The references under each heading are listed in alphabetical order.

Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives</td>
<td>3</td>
</tr>
<tr>
<td>Bending</td>
<td>4</td>
</tr>
<tr>
<td>Coatings</td>
<td>4</td>
</tr>
<tr>
<td>Decay</td>
<td>5</td>
</tr>
<tr>
<td>Design</td>
<td>5</td>
</tr>
<tr>
<td>Durability</td>
<td>6</td>
</tr>
<tr>
<td>Factors affecting strength</td>
<td>6a</td>
</tr>
<tr>
<td>Fastenings</td>
<td>6</td>
</tr>
<tr>
<td>Fireproofing</td>
<td>7</td>
</tr>
<tr>
<td>General</td>
<td>7</td>
</tr>
<tr>
<td>Gluing</td>
<td>7</td>
</tr>
<tr>
<td>Glue joints</td>
<td>8</td>
</tr>
<tr>
<td>Identification</td>
<td>9</td>
</tr>
<tr>
<td>Improved wood</td>
<td>9</td>
</tr>
<tr>
<td>Inspection</td>
<td>10</td>
</tr>
<tr>
<td>Kiln drying</td>
<td>10</td>
</tr>
<tr>
<td>Kilns</td>
<td>11</td>
</tr>
<tr>
<td>Laminated construction</td>
<td>11</td>
</tr>
<tr>
<td>Materials</td>
<td>11</td>
</tr>
<tr>
<td>Methods</td>
<td>12</td>
</tr>
<tr>
<td>Moisture</td>
<td>12</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>13</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Plastics</td>
<td>13</td>
</tr>
<tr>
<td>Plywood</td>
<td>14</td>
</tr>
<tr>
<td>Propellers</td>
<td>16</td>
</tr>
<tr>
<td>Properties, mechanical</td>
<td>16</td>
</tr>
<tr>
<td>Properties, physical</td>
<td>18</td>
</tr>
<tr>
<td>Seasoning</td>
<td>19</td>
</tr>
<tr>
<td>Species</td>
<td>19</td>
</tr>
<tr>
<td>Specifications:</td>
<td></td>
</tr>
<tr>
<td>Coatings</td>
<td>21</td>
</tr>
<tr>
<td>Cork</td>
<td>21</td>
</tr>
<tr>
<td>Defects</td>
<td>21</td>
</tr>
<tr>
<td>Fastenings</td>
<td>22</td>
</tr>
<tr>
<td>General</td>
<td>22</td>
</tr>
<tr>
<td>Glues and gluing</td>
<td>22</td>
</tr>
<tr>
<td>Housing</td>
<td>23</td>
</tr>
<tr>
<td>Kiln drying</td>
<td>23</td>
</tr>
<tr>
<td>Lumber and timber</td>
<td>23</td>
</tr>
<tr>
<td>Packing and marking</td>
<td>24</td>
</tr>
<tr>
<td>Phenolic material</td>
<td>25</td>
</tr>
<tr>
<td>Plywood</td>
<td>26</td>
</tr>
<tr>
<td>Propellers</td>
<td>26</td>
</tr>
<tr>
<td>Properties</td>
<td>27</td>
</tr>
<tr>
<td>Wing beams</td>
<td>27</td>
</tr>
<tr>
<td>Storage</td>
<td>28</td>
</tr>
<tr>
<td>Structure, wood</td>
<td>28</td>
</tr>
<tr>
<td>Struts</td>
<td>28</td>
</tr>
<tr>
<td>Veneer</td>
<td>28</td>
</tr>
<tr>
<td>Wings</td>
<td>28</td>
</tr>
<tr>
<td>Wing beams</td>
<td>28</td>
</tr>
<tr>
<td>Wing ribs</td>
<td>29</td>
</tr>
<tr>
<td>Wood</td>
<td>30</td>
</tr>
<tr>
<td>Working stresses</td>
<td>30</td>
</tr>
</tbody>
</table>
Adhesives

R1273 -3-

Bending

Coatings

Decay

The yellow stain on hardwood. F.P.L. Tech. Note 166.

Design

Jane's all the world's aircraft. Comp. and ed. by C. G. Grey and Leonard Bridgman. London, Sampson Low, Marston & Co., Ltd. 1939. (Issued annually.)

Strength of aircraft elements. Army-Navy-Civil Committee.

Wood in aircraft construction. Aircraft design data No. 12, by Forest Products Laboratory, issued by U. S. Navy Dept, U. S. Bureau Construct. & Repair, 1919. (Out of print.)

Durability

Factors Affecting Strength

Effect of rate of loading on the strength of wood, by H. S. Grenoble. Aug. 15, 1921. (F.P.L. Proj. 121-1.)

R1273

The influence of the form of a wooden beam on its stiffness and strength; Pt. I: Deflection of beams with special reference to shear deformations, by J. A. Newlin and G. W. Trayer. N.A.C.A. Rept. 180. 1924. (Out of print.)

The influence of the form of a wooden beam on its stiffness and strength; Pt. II: Form factors of beams subjected to transverse loading only, by J. A. Newlin and G. W. Trayer. N.A.C.A. Rept. 181. 1924.

The influence of the form of a wooden beam on its stiffness and strength; Pt. III: Stresses in wood members subjected to combined column and beam action, by J. A. Newlin and G. W. Trayer. N.A.C.A. Rept. 182. 1924. (Out of print.)

Notes on the rate of loading and other factors affecting the strength of Sitka spruce for airplane design, by R. F. Luxford. June 13, 1941.

The relation between color and toughness strength in commercial white ash, by R. H. Colley. Apr. 16, 1924. (F.P.L. Proj. 243.)

The strength of black walnut as related to its shades of color, by R. F. Luxford. Apr. 11, 1923. (F.P.L. Proj. 221-1B41.)

Fastenings

Fireproofing

General

Aircraft yearbook for 1940. Statistics, detailed description of industry, personnel, etc. N.Y., Aeronautical Chamber of Commerce of Amer. Issued annually.

Journal of the aeronautical sciences. (Monthly) N. Y.

Private and commercial aircraft manufactured under approved type certificates. Aero Digest, Mar. 1941.

Gluing

Dry film gluing in plywood manufacture, by Ray Sorensen. Furniture Mfr., July 1933; July 1934.
Gluing practice at aircraft manufacturing plants and repair stations,

Trans. 1928.

Gluing wood treated with fire retardant chemicals, by Don Brouse.
Aug. 17, 1933. (F.P.L. Proj. 179.)

(F.P.L. Proj. 179.)

Glue Joints

Age and strength of glue joints, by Don Brouse. Wood Working Indus.,
June 1931; Hardwood Rec., Aug. 1931.

Behavior of casein and blood glue joints, by Don Brouse. Furniture

The durability of glue joints, by Don Brouse. Oct. 18, 1930. (F.P.L.
Proj. 157.)

Effect of treating plywood with tetrachlorophenol, chloro-terephénylphenol,
and dinitrochlorobenzene on durability of glue joints, by Don Brouse.
Apr. 18, 1940. (F.P.L. Proj. 157.)

Effect of treating plywood with beta naphthol on durability of glue

Effect of preservatives on the durability of glued joints, by C. E.

Effect of surfacing on the strength of the glued joint, by Don Brouse.
June 25, 1925. (F.P.L. Proj. 157-3J32.)

Efficiency of scarf joints glued with lauxite No. 4 glue, by R. F.

A factory method for testing hardness of glue joints. F.P.L. Tech. Note
223.

R1273

Tooth-planing or sanding not necessary to effect strong glued wood joints. F.P.L. Tech. Note 227. 1929.

Strong and weak glue joints. F.P.L. Tech. Note 211.

Identification

How to distinguish black ash from commercial white ash lumber. F.P.L. Tech. Note D-11.

The identification of true mahogany, certain so-called mahoganies, and some common substitutes, by Arthur Koehler. U. S. Dept. Agr. Dul. 1050. 1922. (Out of print.)

Improved Wood

Inspection

List of instruments for inspectors of airplane wood with notes regarding their use.

See also Specifications.

Kiln Drying

Simplified diagrams will aid in dry kiln operations, by R. C. Rietz. Barrel & Box & Packages, May 1932.

R1273
Use more stickers and save lumber; warping and end-checking may be greatly reduced by proper attention in piling on kiln trucks, by L. V. Teesdale. Lumber World Rev., Nov. 10, 1924.

Also see Specifications -- Kiln Drying.

Kilns

Smoke-making device for testing the circulation in kilns. F.P.L. Tech. Note 127.

Laminated Construction

Internal stresses in laminated construction, by A. L. Heim, A. C. Knauss, and Louis Sutter. N.A.C.A. Rept. 145. 1922. (Out of print.)

Materials

Methods

A mechanical method for determining the quality of aircraft woods. (U.S. Civil Aeronaut. Authority Aircraft Airworthiness. Sect. Rept. 18.) 1940.

Moisture

R1273
Moisture equilibrium of wood under actual conditions of service, by A. L. Heim. (Proj. L-134-1J4 - 2d Prog. Rept., Dec. 23, 1927.)

Nomenclature

Nomenclature for aeronautics. N.A.C.A. Rept. 474. 1933.

Plastics

Aircraft possibilities of cellulose acetate plastics, by Alexander Klemm. Aero Digest, Nov. 1936.

Design for a plastic wing, by Sidney Ireland. The Aeroplane, Mar. 18, 1936. (See also B-1.)

Improving the creep stress of plastics, by Aero Research Ltd. Feb. 19, 1936, pp. 231-232. (See also F-1 and L-4.)

The increasing application of plastics, by H. Pennington. Aero Digest, July 1936.

Laminated plastics for aircraft parts, by S. W. Place. Illus. Aero Digest, Jan. 1941.

Molded airplanes for defense. Illus. Mod. Plastics, July 1940.

Plastics at Hatfield, by E. P. King. The Aeroplane, Feb. 17, 1937.

Plexiglas in aircraft, by G. P. Young. Aero Digest, Feb. 1937.

Thiokol -- A new material finds varied aircraft use. Aero Digest, July 1936.

Plywood

Contributions of synthetic resins to improvement of plywood properties, by Don Brouse. F.P.L. Mimeo. R1212. 1939.

Data on the design of plywood for aircraft, by Armin Elmendorf. N.A.C.A. Rept. 34. 1920. (Out of print.)

Factors affecting the test values of casein water-resistant plywood, by Don Brouse. Thesis submitted for the degree of chemical engineering, Purdue University, 1927.

Molded airplanes for defense. Modern Plastics, July 1940.

Strength tests of screw fastenings of plywood, by H. S. Grenoble. Aerial Age Weekly, Jan. 31, 1921.

Tests on thin plywood as a substitute for linen in aeroplane construction, by Armin Elmendorf. Aerial Age, Sept. 1, 1919.

Propellers

Brazilian woods suitable for airplane manufacture, by E. F. Horn. 1919.

Light weight material for propellers, by J. A. Newlin. Sept. 23, 1918.

Properties, Mechanical

R1273
Average strength and related properties of five foreign woods tested at the Forest Products Laboratory, by G. E. Heck. Furniture Index, Mar. 1937; F.P.L. Mimeo. Rl139.

Mechanical properties of Bataan mahogany, by C. V. Maudlin. Nov. 5, 1917.

Mechanical properties of corate (tests of corate for suitability in airplane propeller construction), by G. E. Heck, Jan. 15, 1918.

Strength values for various American and European species of wood: Results of tests on small clear specimens, by Forest Products Laboratory. Table, 1925.

Properties, Physical

Seasoning

Summary of observations on seasoning practice made during an inspection of naval aircraft establishments and contractors' plants, by Rolf Thelen. Rev. Nov. 21, 1927. (F.P.L. Proj. 142-35-J22.)

Species

Balsa wood (table giving general strength characteristics). Aviation, Nov. 15, 1917.

Balsa wood for cores in plywood (memorandum for Mr. Hicks). Oct. 23, 1918.

Bataan mahogany (see mechanical properties).

Coratu (see mechanical properties).

Information on spruce substitutes secured from British sources, by Halsey Dunwoody, U. S. Air Service Tech. Sect. (Compiled by F.P.L. from correspondence.)

Memorandum relative to the substitution of rock elm for ash in airplane frames, by J. A. Newlin. June 7, 1917.

Memorandum relative to the suitability of Douglas fir as a substitute for spruce in airplane construction, by J. A. Newlin. June 14, 1917.
Memorandum relative to the suitability of western yellow pine as a substitute for spruce in airplane construction, by L. J. Markwardt. Mar. 12, 1913.

The need for spruce for airplane construction, by T. R. C. Wilson, Nov. 17, 1939.

Panama mahogany (see mechanical properties).

Production of Port Orford cedar from the standpoint of use in airplane construction, by J. F. Kliemmel. 1918.

Survey of production of sawmills engaged in the manufacture of Sitka spruce lumber, by West Coast Lbrmen's Assn. (See J. T. Gray's -- Chief, U. S. Civil Aeronaut. Authority Aircraft Airworthiness Sect. -- letter Nov. 20, 1940 to I. A. McCoy, Sitka Spruce Trade Promotion)

Use of balsa wood for fairing: Tried as a substitute for spruce where strength is not essential, by U. S. War Dept., Bur. Aircraft Prod., Airplane Engin. Div. 1918. (Special treatment for balsa described.)

Specifications

Coatings

General specification for protective coatings and finishes for aircraft and aircraft parts. U. S. Army Spec. 3-100H, Aug. 11, 1933; Amend. 3, May 24, 1940.

Cork

Defects

Specifications (continued)

Fastenings

General

Material and process specifications: Bul. 23. (Index issued monthly by U. S. Army, Air Corps.)

Selling to the Navy, for the information of those desiring business relationship with the Navy. U. S. Navy Dept. 1940.

Glues and Gluing

Specifications (continued)

Housing

Kiln Drying

Lumber and Timber

Specifications (continued)

Lumber and Timber (continued)

Memorandum regarding proposed Civil Aeronautics Authority specification for "mill grade aircraft spruce" and "minimum acceptable standards for laminated and spliced spruce spars." (See letter to J. T. Gray, Chief, Aircraft Airworthiness Sect., C.A.A., Aug. 19, 1940.)

Packing and Marking

Box, aircraft battery, for shipment. U. S. Army Spec. 23-33A. June 1, 1936.

Box, aircraft engine, for domestic and overseas shipment.

Box and crate for domestic shipment, Air Corps supplies and equipment.
Specifications (continued)

Packing and Marking (continued)

Plywood packing box. U. S. Army Spec. 82-1/4A. June 17, 1940.

Phenolic Material

Specifications (continued)

Plywood

Propellers

(see also Coatings; Lumber: Packing)

Lumber, propeller. U. S. Army Spec. 82-5A. May 14, 1925.

Specifications (continued)

Propellers (continued)

Properties

Wing Beams

Memorandum regarding proposed Civil Aeronautics Authority specification for "mill grade aircraft spruce" and "minimum acceptable standards for laminated and spliced spruce spars." (See letter to J. T. Gray, Chief, Aircraft Airworthiness Sect., C. A. A., Aug. 19, 1940.)

Storage

Proper care of airplane wood, by F. J. Hallauer. Timberman, June 1919.

Structure, Wood

Struts

Veneer

Effect of the method of cutting veneer on the strength and durability of plywood panels, by W.L. Jones and Don Brouse. Oct. 25, 1925. (F.P.L. Proj. 225-7.)

Short assembly periods reduce veneer expansion, by Don Brouse. Wood Working Indus., June 1931.

Wings

Wing Beams

Approximate stress analysis of multistringer beams with shear deformation of the flanges, by Paul Kuhn. N.A.C.A. Rept. 656. 1936.

The design of plywood webs for airplane wing beams, by G. W. Trayer. N.A.C.A. Rept. 344. 1930.

The lateral buckling and twisting of deep beams, by G. W. Trayer. July 7, 1927. (F.P.L. Proj. 228-3J13.)

Results obtained from impact bending tests upon bakenized canvas wing spars, by C. V. Maudlin. Oct. 11, 1917.

The strength of one-piece solid, built-up and laminated wood airplane wing beams, by John H. Nelson. N.A.C.A. Rept. 35. 1918.

Stress analysis of beams with shear deformation at the flanges, by Paul Kuhn. N.A.C.A. Rept. 608. 1937.

Wing Ribs

Wood

Supplies and production of aircraft woods, by W. N. Sparhawk. N.A.C.A. Rept. 67. 1919. (Out of print.)

Wood handbook: Basic information on wood as a material of construction with data for its use in design and specifications, by Forest Products Laboratory. Unnumbered U. S. Dept. Agr. publication. 1935. Rev.1940.

Working Stresses