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PRONTO Programs
for Product Term Reduction

CHAPTER 1

INTRODUCTION

1.1 Thesis Topic

The major concern of this paper is to study PRONTO,

an algorithm for PLA size reduction. This study has two

main points:

a) Evaluating the time complexity of the over-

all PRONTO algorithm, in which the major

dominant time-growth factors are identified.

b) Comparing different procedure implementa-

tions, and choosing the ones resulting in

the fastest reduction.

1.2 Project Status

PRONTO is a heuristic approach for product term

reduction of Programmable Logic Arrays that was developed

by Martinez [MARTI], [MART2].

Translating PRONTO algorithm into a program was the

focus of two projects. At the end of the first project,

that was worked on by E. Burns, and R. Stettler, the first

two parts of PRONTO were coded in the Mainsail® Language.

Mainsail is a trademark of Xidak Corporation
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Those parts chose a product term from a PLA and, by

comparison to the other cubes, selected a set of possible

expansion directions. The second project, worked on by

D. Dagit, resulted in a correct PRONTO program that was

tested for several PLAs.

As for my thesis, I started by testing some code

alternatives and ended up with a version of PRONTO that

was then evaluated for computational complexity.

Knowing the dominant time-growth factors and some experi-

mental time measurements; an attempt was pursued to find a

formula relating execution time to a PLA's character-

istics. With the knowledge of the most time consuming

parts of PRONTO, an attempt was made to produce a faster

PRONTO version by considering alternative implementations

of some of those procedures.
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CHAPTER 2

BASIC DEFINITIONS

In this chapter we introduce a collection of defi-

nitions, operations and theorems that are pertinent to

PRONTO's implementation. The terminology presented here

is to be used throughout this paper. Most of the defini-

tions follow Dietmeyer [DIETM].

2.1 Definitions

2.1.1 Programmable Logic Array. A programmable Logic

Array (PLA) is a representation of an "integrated circuit

with n input terminals that drive inverters, m output

terminals driven by OR (NOR) gates, and p AND gates. Also

included are interconnections between any or all input

terminals (or their inverters) and the AND gates, and

between any or all AND gates and each output gate."

[DIETM, p. 185].

2.1.2 Product Term. A product term is also referred to

as a cube. It is an expression with an input and an

output part which stands for a structure in a PLA. The

expression-structure relation is given below.

1. Input bits,

0 : The complement of the input variable is

connected to the input of an AND gate.
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1 : the input variable is connected to the

input of an AND gate.

- : no connection to the AND gate's input.

2. Output bits,

0 : no connection to the input of OR gate.

1 : connection to the input of OR gate.

d : does not matter if connection is made or not.

For example a product term with 5 input variables and 4

output variables might look like: 1001- ; 10d0.

2.1.3 Specification. A specification of a PLA is a set

of product terms.

2.1.4 Solution. A solution to the specification is a

description of a PLA which implements the desired func-

tions. (Solution might contain less product terms than

specification but is still cover equivalent).

2.1.5 Direction. Direction is a single input variable

(an input direction) or a set of output variables (an out-

put direction).

2.1.6 Expansion. Expansion of a cube in an input

direction replaces the '0' or '1' in that position with a

1_1
. Output expansion increases the number of l's by

forming the union of outputs with the given direction.
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2.1.7 Projection. An input direction of a cube is pro-

jected by replacing the '-' bit with a '0' or '1'.

2.1.8 Adjacency. Two product terms are adjacent if

they have the same input bits except at one position where

one cube has a '0' and the other has a '1', while the

output parts are equal. Two cubes with the same input

parts are adjacent if they have different output parts.

2.1.9 Cube a is covered by cube b (a < = b) iff

a. for every '1' in the input part of b

there exists a '1' in the corresponding

bit of a. And

b. for every '0' in the input part of b

there exists a '0' in the corresponding

bit of a. And

c. for every '1' in the output of b there

exists a '1' or 'd' in the corresponding

bit in a.

2.1.10 If a and b are two product terms then,

a. (a = b) iff (a < = b) and (b < = a); and

b. (a < b) iff (a = b) is false and (a < = b)

is true.

2.1.11 Common Cover. Product term c is a common cover

of a and b if it covers both a and b.
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2.1.12 Cube b is a single decomposition of cube a if

differs from a in only one column.

2.1.13 Cube b is an expansion of cube a, if for some

input column where ai = '0' or '1' the corresponding

column b.
1
= '- ', or for some output column where ai = '0'

there exists a '1' or a 'd' in the corresponding output

column bi..

2.2 Operations

2.2.1 Cube Intersection. The intersection of two cubes

a and b (a A b) is a column by column operation comparing

a and b as shown in Tables 2.1 and 2.2.

Table 2.1

Input Coordinate Cube Intersection

a A b bi
.

a.
1 1 -

0 0 4) 0

1 4) 1 1

- 0 1 -

If in the resulting cube c a p occurs in the input part or

all output bits ci are O's, then the result is said to be

empty.
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Table 2.2

Output Coordinate Cube Intersection

a A b b.
1

a.
1

0 1 d

0 0 0 0

1 0 1 d

d 0 d d

2.2.2 Sharp Product

2.2.2.1 The sharp operation of two cubes (a # b) results

in

a) an empty cube if f (a A b) = a;

b) cube a iff (a /N b) is empty;

c) an array C iff (a i% b) is nonempty and

(a /N b) < a.

C consists of a set of cubes (maybe only one cube) deter-

mined by the following: For every ai = '-' in the input

where b. = '0' or '1', there is a cube c where c. = '1' or

'0' respectively, with all other columns the same as a.

If in the output there is some ai = '1' where bi = '0',

then there is another cube c where all ci in the input

columns are the same as ai, and for every ci in each
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outputcolumi,c.]. =111iffa.=11' and b. = '0', other-

wise c. = '0'.

For example let,

a = 101- / 1001

b = 10-0 / Oldl

Then C = a # b where

C = 1011 / 1001; due to the input parts,

101- / 1000; due to the output parts.

And C = b # a results in

C = 1000 / Oldl; due to the input parts,

10-0 / 0100; due to the output parts

2.2.2.2 The sharp product of an array of cubes A with a

single cube b (A # b) is defined in terms of single-cube

sharp operations as

A # b = (al # b) U (a2 # b) U...

A # b results in,

a) array A iff (ail\ b) is empty for every a in A.

b) an empty cube iff (ai/N b) = ai for every a in A.

c) an array C if conditions a) and b) fail. C is

the collection of cubes resulting from (a # b)

for every a in A.

2.2.2.3 The sharp product of two arrays of cubes (A # B)

is defined as follows:

(A # B) = ((A # b1) # b2) #...
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The above representation could be broken down by the

array-cube sharp product presented in section 2.2.2.2.

(A # B) = ...((al # b1) U (a2. # bi) U...) # b2) #

The operation results in

a)arrayAiff(a.Ab,) is empty for every a in A

and for every b in B.

b)anemptysetifforeveryaiin.A,(ail\. 133 )= ai

for :mme 133 . in B.

c) an array C if conditions a) and b) fail. C is

the collection of cubes from a # B for every a in

A.

2.2.2.4 A is covered by B iff (A # B) is empty.

2.2.2.5 If (A # B) = (B # A), then

a) (A # B) = (B # A) =0, and

b) A is cover equivalent to B, A := B

2.2.2.6 Array A is a solution set of array B if they are

cover equivalent.

2.2.3 Cube Union

The union of two cubes (a U b) is a column by column

operation comparing both the input part and the output

part of a and b resulting in a single term c according to

the rules of Tables 2.3 and 2.4
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Table 2.3

Input Coordinate Cube Union

a U b
0

.bi

1 -

0 0 - -

ai 1 - 1 -

_ -

Table 2.4

Output Coordinate Cube Union

a U b
0

b.
1

1 d

0 0 1 d

a.1 1 1 1 1

d d 1 d

2.3 Theorems

2.3.1 Equivalence. (a = b) iff there is a column by

column equivalence in the input, and for every '1' in an

output column in a or b, there must be a non zero entry in

the corresponding output column of the other term.
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2.3.2 If (a < b) then either there is a '1' or a '0' in

ai where there is a '-' in bi on the input part, or there

isafolin.a.wherethereisalllinb.on the output

part.

2.3.3 If (a < = b) then (a A b) = a.

2.3.4 If c = a U b, then c is called the smallest

common cover of a and b, and c is always nonempty if

either a or b or both are nonempty.
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CHAPTER 3

DESCRIPTION OF ALGORITHM PRONTO

3.1 Introduction

PRONTO is a one-pass heuristically guided direct

search method for the reduction of product terms of a

given PLA function specification. PRONTO's main loop

removes terms from the specification and places into the

solution terms which cover them in the following four

steps until the specification is exhausted.

a. It selects a most promising, yet uncovered

product term from the current specification.

b. For this selected term, PRONTO locates a set

of directions that would most likely provide

expansions which attempt to cover most of

the yet uncovered remaining terms.

c. PRONTO then expands the chosen product term

in the previously found directions and

checks the validity and usefulness of the

expanded terms.

d. Finally, PRONTO updates the solution,

deletes the fully covered product terms from

the specification and modifies the partially

covered ones.
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These steps are looped until no product term is left in

the specification.

PRONTO has three characteristics which enable it to

produce practically fast, near-optimal results. First, it

attempts to expand only in the direction most likely to be

successful expandable directions. Second, PRONTO seeks to

cover most uncovered product terms and does not require

the primality of the expanded product terms. Third, its

complexity depends linearly on the number of product terms

in the solution, and thus makes PRONTO faster in producing

better results. A PLA area is approximated by (see

Figure 3.1),

A= (2 * ni + no) * nc,

where ni, no and nc are the numbers of inputs, outputs and

product terms, respectively. Since the number of product

terms (nc) is the dominant factor, PRONTO's main concern

was to reduce this number.

PRONTO was also chosen to be a near-optimal reduction

method because "It is very unlikely that an optimum reduc-

tion method for a PLA generator will be justified due to

the prohibitively large requirements in memory and compu-

tation time." (page 548, [MART2]).

3.2 PRONTO

Here, PRONTO is introduced by a detailed presentation

of its four main parts that are mentioned in the previous
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Figure 3.1 Area factors of a PLA description of ni-
inputs, no-outputs and nc-product terms.

section. PRONTO's body could be presented simply by the

following pseudo-algorithm, as given by Martinez [MART2].

For a given specification

Initially, the solution is empty;

REPEAT

Select a Base Product term;

Find a set of expansion directions;

Expand the Base Product term;

Update the solution and specification;

UNTIL the specification is empty.

3.2.1 Base Product Term Selection

A base product term, Pb, that is least likely to be

covered by other terms is selected from the specification.
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The selection process follows the following steps:

a) An output column is chosen with the minimum

nonzero number of l's in all the rows. A

column with the minimum number of d's is

picked in case of a tie in the number of

l's.

b) The preferred Base Product term must have a

'1' in the selected column and the smallest

total number of l's in the output.

3.2.2 Expansion Directions

At this stage there are a base product term, Pb, and

the set of product terms, [Ti], of the rest of the speci-

fication. Comparing Pb with each term in [Ti], a set of

possible directions is found into which expanding Pb might

prove successful in covering some product terms of the

specification. The comparison process, outlined below,

follows some heuristic criteria.

1.IfTi covers Pb, Ti > = Pb, by Definition

2.1.9 then Pb is replaced by Ti and the

search process is repeated with the rest of

[Ti].

2. If Pb covers Ti, Pb > = Ti, then Ti is de-

leted because it is redundant.

3. If the intersection of Pb and Ti, Pb A Ti,

by Operation 2.2.1 results in a cube that is
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a single projection of Ti then Ti is

replaced by this projection.

4. If Pb and Ti are disjoint then PRONTO at-

tempts to find those single expansion direc-

tions that might enable Pb to cover Ti. Ac-

cording to the following rules, the direction

of adjacency is taken to be a direction for

expansion when,

a) Ti is adjacent to Pb; or

b) A projection of Ti is adjacent to Pb;

or

c) A single expansion of Ti is adjacent

to Pb; or

d) A single expansion, in one direction,

of a cube that is a projection of Ti

in another direction, results in a cube

adjacent to Pb. In other words, the

intersection of Ti with a cube adjacent

to Pb results in a cube which is a

projection of each.

3.2.3 Expanding a Base Product Term

The Base Product term is to be expanded in order to

cover most of the product terms left in the current speci-

fication. Given a set of possible expansion directions,
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all different possible expansion combinations are to be

applied. Each expanded term is cover checked for validity

(i.e. for coverage by the original specification) and if

successful then it is eligible to be considered for a

solution cube. At the end of the expansion process a set

of valid expanded terms might be produced that are then

tested for usefulness in terms of covering any other

product terms of the remaining specification.

3.2.4 Updating the Solution and Specification

For each valid expanded term "there was a correspond-

ing term, or portion thereof, in the specification. The

fully expanded base term is added to the developing solu-

tion, and all those terms, or portions thereof, found

during cover checking to be covered by the expanded term

are deleted from the specification." (page 550, [MART2]).

When a portion of a product term is covered it is deleted

only if deletion does not increase the number of terms

remaining (i.e. the covered portion must be a single pro-

jection of the original product term).
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CHAPTER 4

ALGORITHM IMPLEMENTATION

4.1 Programming Language

MainsailTM is a highly structured programming langu-

age produced by Xidak Corporation. PRONTO was chosen to

be coded in Mainsail, running on a Digital Equipment

Corporation VAXTM 750 under AT&T's UnixTM 4.2 bsd, mostly

because of Mainsail's appropriate data structure for cube

and array representation, and because,of the program

module organization facilities. Some coding for array

operations and input/output tasks were obtained for use as

modules or incorporation as utilities [TEEL].

A PLA specification is represented by a Class

(Record) structure as follows:

CLASS Logic Array

(INTEGER nc, ni, no;

LONG BITS ARRAY (* To *) la);

The integer variables nc, ni and no stand for the numbers

of cubes, input bits and output bits, respectively. The

Long Bits' structure reserves two words in memory account-

ing for 32 bits. Array la is an array of Long Bits where

the representation of the PLA bit structure is stored.

Having three bit states (0, 1 and don't care) for both the

input and output variables forces the use of a two-bit
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coding to represent the state of a variable in the speci-

fication. Each product term of a specification is stored,

in a predetermined number of words, starting with the

input bits and followed by the output bits. Since each

PLA variable representation requires two bits, therefore

one word might represent up to 16 actual product term

variables (bits). The bit representation is as follows:

a. Input part,

O : 01

1 : 10

- : 11 ;

b. Output part

O : 00

1 : 11

d : 10 ;

The different coding for the input and output bits is due

to their different structural meaning and the choice was

made in the best interest of the operations to be per-

formed on each (i.e. seeking straight forwardness of the

operations).

4.2 Algorithm Translation

The overall program consists of two modules: NEWFUN

and PRONTO. The module NEWFUN contains the utility

operations imported from [TEEL] to handle the Logic Array
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data structure: MergeCube, NewLogicArray, DisposeLogicAr-

ray, Cube, InArray, SpamOutArray, CopyLogicArray, Compact

and AddCube. NEWFUN also has some fundamental operations

such as procedure Sharp. The module PRONTO contains the

algorithm's body which performs the actual PLA reduction.

Procedure Initial, of module PRONTO, performs most of the

file manipulation, input and output tasks. It calls

procedure Main which in turn calls several procedures

including the four basic procedures: FindBaseProduct,

Directions, Tree and Update, which stand for the basic

parts of the reduction process of algorithm PRONTO pre-

sented in Section 3.2. Module PRONTO also contains seve-

ral housekeeping procedures as well as secondary proce-

dures that are used by the above four major procedures.

4.2.1 Housekeeping Procedures

The following is an introduction of the housekeeping

procedures available in both modules, PRONTO and NEWFUN.

a. NewLogicArray (nc, ni, no)

NewLogicArray creates a logic array struc-

ture and assigns the number of cubes, input

bits and output bits as specified. Also

created is an array of words necessary to

store the cubes. The input and output bits

are set to l's. A pointer to this structure

is returned.



b. DisposeLogicArray (A)

DisposeLogicArray disposes of the logic

array structure A.

c. CopyLogicArray (A)

CopyLogicArray creates a copy of the logic

array A and returns a pointer to this new

structure.

d. Cube (A, I)

Cube accepts logic array A and integer I and

creates a one-cube logic array in which the

Ith cube of logic array A is returned.

e. Compact (A)

Compact looks for zeroed cubes in logic

array A, copies the remainder of the cubes

into them and updates the number of cubes

A.nc.

f. AddCube (A, B, I)

AddCube simply appends the Ith cube of logic

array B to the end of logic array A and

returns a pointer to this new structure.

MergeCube (A, B, I)

MergeCube performs the same task as proce-

dure AddCube but does some checks on the

cube to be added with each cube in logic

Array A. A cube with an all '0' output is

g-

21
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not appended. If the input parts of the Ith

cube of B and some cube in A are equal then

that cube is not appended and instead its

output is Ored to expand the corresponding

cube in A. If the Ith cube of B covers some

cube in A then delete the latter cube and

append the former to A. If the Ith cube of

B is covered by some cube in A then discard

the former cube.

h. InArray (TextFile)

InArray takes for an input the text file

with the actual PLA specification and con-

verts it into a logic array structure as

introduced in Section 4.1. A pointer to

this new structure is returned.

i. SpamOutArray (TextFile, A)

SpamOutArray accepts logic array A for an

input, transfers the information into the

regular representation of the PLA specifica-

tion and outputs it to an output text file.

j. DisposeCoverings (C)

DisposeCoverings disposes of the array C of

logic arrays of Class coverings.

k. Addla (C, A)

Addla appends a copy of logic array A to the

array of logic arrays C. If C does not
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exist, it creates C. A pointer to this new

structures is returned.

1. Remove (C, I).

Remove discards the Ith logic array from the

array C of logic arrays. A pointer to this

new structure is returned.

m. Erase (A, I)

Erase zeroes the Ith cube in logic array A

and calls procedure Compact to discard the

zeroed cubes.

n. Equiv (A, B)

Equiv compares the size and contents of

logic arrays A and B, and, if they are equal

in all respects, it will return the boolean

value 'True', otherwise a 'False' is re-

turned.

o. Large (A)

Large turns all output don't cares in a copy

of logic array A into l's, and returns that

new logic array.

p. Small (A)

Small turns all output don't cares in a copy

of logic array A into 0's, and returns that

new logic array.
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4.2.2 Searching for a Base Product Term

This is a straight forward part of PRONTO which is

implemented, as presented in Section 3.2.1, by the follow-

ing two procedures.

a. SetUpTables (Spec).

SetUpTables counts the number of l's and the

number of don't cares in the output part of

the current specification, Spec, and pre-

pares three global count arrays:

1. Onesarray holds the number of l's in

each output column.

2. Dontsarray holds the number of don't

cares in each output column.

3. Rowarray holds the number of l's in

the output part of each cube.

b. FindBaseProduct (Spec).

FindBaseProduct starts by calling procedure

SetUpTables then uses the information

gathered by it, about the output part, in

finding the most unlikely-to-be-covered term

(i.e. the Base Product term, Pb) in the cur-

rent specification, Spec. This term is

taken out of Spec and is returned as a one-

cube logic array.
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4.2.3 Selection of Expansion Directions

The selection of expansion directions is done by pro-

cedure Directions which returns an array of possible

expansion directions or an empty array if none exists.

The expansion-direction rules laid out in Section 3.2.2

are the basic steps followed by this procedure. Procedure

Directions takes for inputs Pb, the Base Product term, and

Spec which stands for the remaining specification.

"Directions" compares Pb with each cube in Spec, Ti, in

order to end up with a set of expansion directions.

First, the input parts of Pb and Ti are compared and if

found to have more than one direction of opposition then

the next T
i

is pursued. This step is a time saver since

product terms of a specification usually are not adjacent.

Second, the output parts of Pb and Ti are compared. The

output parts are said to intersect if a '1' in one cube's

output part appears opposite to a '1' in the other. They

are also said to be different if a '1' bit confronts a '0'

bit. If Pb is found to be a single input projection of Ti

and their outputs intersect then Ti is replaced by that

cube that is still not covered by Pb, as presented by step

3 of Section 3.2.2. The current Ti is given up and the

next Ti. is pursued if either

a. The output parts of Pb and Ti do not inter-

sect; or
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b. Pb is a multiple projection of or or Ti is

a multiple projection of Pb.

At this stage the successful product term Ti compared to

Pb might have

a. No input opposition direction and a differ-

ent, non-intersecting output part; or

b. One input opposition direction and an equal,

or intersecting, output part.

For the first case, the expansion direction is considered

to be the union of the output parts of Pb and. Ti. For the

second case, the expansion direction is taken to be the

input opposition direction. Moreover, none, one or both

of the following statements must be true,

a. PB is a simple input projection of Ti;

b. Ti is a simple input projection of Pb.

The four different combinations of the truth value of the

two statements represent the four cases that govern step 4

of Section 3.2.2

The expanded Base Product term is added to the array

of expansion directions only if it is unique (i.e. it is

not a duplicate of an existing possible expanded term).

As mentioned before, each product term of the remaining

specification, Spec, should be tested for possible

expansion directions. An array of possible single-

expansion direction terms is returned, which may be empty.
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4.2.4 Expansion of a Base Product Term

Given a set of possible single-expansion directions,

each possible term formed by expanding the Base Product

term, into a different expansion combination, is tested

for validity (i.e. for coverage by the original specifica-

tion). At this stage, a set of promising expanded terms

exists and we are left with testing if they are useful

terms (i.e. if a term covers some product terms other than

the Base Product term). Figure 4.1 shows an imaginary

tree structure whose nodes represent the possible, dif-

ferent expansion terms formed from a Base Product term

with three single-expansion directions.

The task of expanding the base term and testing its

validity and usefulness is performed by procedure Tree as

shown below.

Procedure Tree;

1. Procedure Treesearch: (Recursive)

a. expands the Base Product term;

b. Procedure Donts: checks the validity

of the expanded term.

2. Procedure Covering: finds the terms covered

by the valid expanded term.

Procedure Treesearch expands the Base Product term by

pursuing the different expansion-direction combinations by

traversing a tree structure similar to that of Figure 4.1.
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Figure 4.1 The tree structure of possible expanded terms

The order of traversal is the subject of Chapter 6 where

three methods are compared. At each node the previously

expanded term is expanded in that node's new direction to

form the current base term. The current term is then

tested for validity by procedure Donts. The term is re-

turned if it was found valid, otherwise an empty cube is

returned. The, valid expanded terms are stored by proce-

dure Treesearch in array "Coverers" after assuring that no

redundancy occurs by keeping only the largest term in case

it covers one or more valid terms.

At this point, each term in array "Coverers" is

tested for usefulness by procedure Covering. Covering

gathers the product terms, in both.the current specifica-

tion and the current solution, that are covered by each

valid expanded term and stores them in an array called

"Covered". The set of all resulting "Covered" arrays are

stored in array "Covers".
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4.2.4.1 Implementation of Procedure Donts

Procedure Donts accepts for input an expanded term,

Pb, and Larger, the original specification with all output

don't cares turned to l's. "Donts" returns the output-

modified expanded term if it is found to be covered by

Larger, or an empty cube otherwise. To follow, are two

different implementations of the validation process that

depend on the number of output don't cares (d.c.'s) of the

expanded term. The principal difference is in how don't

care conditions in the output part of the expanded term

are handled.

1. Procedure Donts (Pb, Larger);

a. makes a copy of Pb with all output

d.c.'s set to 0's;

b. uses the Sharp operation to check if

this copy is covered by Larger;

c. if not covered, an empty cube is re-

turned;

d. if covered, then each output d.c. in

Pb is iteratively set to '1' and the

modified cube is again checked for

cover by the Sharp operation. If not

covered then the corresponding d.c.

position is zeroed;
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e. the modified expanded term, with the

maximum covered output size, is re-

turned.

This was the method used in PRONTO version that was evalu-

ated in the following chapter. It turned out to have two

drawbacks. The first, is that a successful expanded term

with output d.c.'s was turned as large as possible by

setting those d.c.s to l's while restoring the term's

validity. The second, is that if an expanded term had

some "n" output d.c.'s then it might be sharped with

Larger as many as n+1 times. This specific sharp

operation is time consuming since Larger has the size of

the original specification. These two problems could be

avoided by implementing the following alternative method.

The characteristics of this method is that the valid ex-

panded term tries to keep as many as possible of its

original d.c.'s.

2. Procedure Donts2 (Pb, Larger);

a. checks if Pb is covered by Larger by

performing the Sharp product opera-

tion;

b. if more than one cube is produced

then an empty cube is returned;

c. if one cube resulted with a '1' in

the output part then Pb is not
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covered totally by Larger, and an

empty cube is returned;

d. if a d.c. exists in the output part

of the one cube then the correspond-

ing d.c. bit is replaced by a zero in

order to leave it covered by Larger.

the modified Pb is returned.

This alternative procedure was implemented at a later

stage in the process of improving PRONTO. It resulted in

a considerable time saving, especially for large PLAs, as

will be be shown in Chapter 7.

4.2.4.2 Implementation of Procedure Covering

Procedure Covering compares each term in the current

specification array and the current solution array with

the expanded valid product term P and stores those that

are covered by P. The array of covered product terms,

which might be empty, is returned. The cover checking

process adopted here follows theorem 2.3.3 which could be

stated as:

Cube a is covered by cube b only if their inter-
section results in cube a.

Therefore, procedure Covering intersects each product term

Ti of both logic arrays, one at a time, with the valid

term P and if the resulting cube is equal to the former

product term, Ti, then Ti is covered by P and is stored in
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the array. Two procedures were considered for this equi-

valence check:

1. Procedure Equiv (a, c);

(* c is the cube resulting from the
intersection operation (a A P) *)

If cubes a and c are equivalent in a

word-by-word manner then the boolean

value True is returned. A False is re-

turned otherwise.

This procedure works efficiently for PLA examples with no

output d.c.'s, but is incomplete for those which have

d.c.'s. This incompleteness emerges from the fact that if

an output d.c. of P is intersected with a '1' bit in cube

a then the resulting bit is a d.c., and according to pro-

cedure Equiv cube a is not covered by P. In fact, cube a

is covered by P as long as this d.c. bit in P is replaced

with a '1'. This observation forces us to check the

output part bit by bit according to the following alterna-

tive method:

2. Procedure CoverEquiv (a, c, P);

a. if the input parts of cubes a and c

differ then False is returned;

b. compares the output bits, and for

those that differ,

- if a. = '1' and c. = '0' then
Falsg is returnedl(P does not
cover a),
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- if a. = '1' and c. = d.c. then
the 6orresponding-J'd.c. in P is
replaced with a '1'.

c. Otherwise, returns True.

Procedure CoverEquiv, being the general one, is chosen for

PRONTO. It is worth mentioning, here, that the majority

of equivalence checkings stop atthe first input bit

mismatch in step (a) of procedure CoverEquiv. This is due

to the fact that the expanded product term, P, usually

does not intersect most of the remaining product terms.

By the end of procedure Tree there might exist a set

of successfully expanded product terms. Each of these

expanded terms, in turn, might have a set of product terms

that are covered by it. The next step, which is the

fourth part of PRONTO, is to choose the "Best" set of

useful expanded terms to be appended to the solution, and,

then to update the specification logic array.

4.2.5 Updating the Solution and Specification Arrays

Here, the decision should be made on which of the

useful expanded terms is to be added to the solution. The

simplest method is to pick the term that covers the

largest number of cubes. Another, more involved method

would place all expanded terms that cover two or more dis-

tinct product terms, that are different from the other

covered sets, into the solution. The former method is the
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one used, in the PRONTO version to be evaluated, because

both produced the same size results when implemented on a

set of PLA examples. However, the code for the latter

method is included, commented out, in PRONTO. The major

procedure Update is used to append the chosen expanded

term to the solution array and to delete those terms, in

the current solution and specification arrays, which are

covered by that expanded term, as shown below.

Procedure Update (solution, coverer, maxcover, spec);

(* "coverer" is the expanded term to be added.*)

(* "maxcover" is the array of product terms that *)

(* are covered by "coverer". *)

a. Remove from the current specification and

the current solution arrays any term covered

by "coverer".

b. Append "coverer" to the solution array.

In the process of seeking covered terms in the current

specification array, if a product term Ti was found not to

be covered by "coverer" then that term is sharped with

"coverer". If the result of the Sharp operation is a cube

that is a single projection of Ti, then Ti is replaced by

that cube. The point is that this swap shows no growth in

the number of product terms, yet it allows for more future

expansion directions.
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4.3 Testing PRONTO's Time Consumption

Eleven PLA examples were used in testing PRONTO.

Those examples were collected, by the people that worked

on the project of constructing PRONTO, from previous lite-

rature. Table 4.1 shows reduction results. The second

column is the number of original terms. The third column

is the number of resulting product terms. The fourth and

fifth are the number of input bits and output bits, re-

spectively. The sixth and seventh columns give the

processor execution time units and seconds, respectively,

on a VAX UNIX timesharing system. One processor unit is

1/60 of a second.

In an attempt to find the relative time consumption

by PRONTO's main parts, three PLA examples (4, 5 and 7)

were subjected to a test where time was calculated for the

major procedures. Figure 4.2 gives the averaged relative

results. For example, procedure Donts consumes about 78%

of the time spent in procedure Tree, which in turn con-

sumes 53% of the time spent by Main.

The other 13% of time spent by the initial procedure

represents time consumption of inputting the specification

and outputting both the specification and solution arrays.

Of course, time spent in the major procedures includes the

time spent in some housekeeping and function procedures;

Sharp, MergeCube, NewLogicArray, DisposeLogicArray, Cube
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Table 4.1

Information on Some Examples Run on PRONTO

PLA
Example

Number of Cubes in

ni no

Execu-
tion
Time
Units

Execu-
tion
Time
(sec.)

Specifi-
cation

Solu-
tion

1 22 12 6 6 774 12.9

2 24 14 10 9 1100 18.3

3 33 18 9 8 1906 31.8

4 64 48 14 5 5586 93.1

5 38 24 9 14 2839 47.3

6 56 39 16 16 10374 172.9

7 91 35 15 23 12140 202.3

8 173 56 12 25 52911 881.9

9 30 13 5 4 1423 23.7

10 49 32 6 6 4670 77.8

11 37 32 12 3 1343 22.4

and some other minor ones. Those procedures are the most

called ones. The last three, mentioned above, are

straightforward procedures that do not show flexibility

in terms of time consumption reduction. On the other

hand, Sharp and MergeCube should be taken into considera-

tion in pursuing a faster implementation of PRONTO, since

Sharp was found to consume, on an average, about 13% of

total execution time, while MergeCube consumed about 12%.
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Figure 4.2 Distribution of time consumption
among the major procedures.

This knowledge of the major time consuming procedures is

of critical importance to the evaluation process of

Chapter 5, attempting to generalize and relate time growth

rate to PLA characteristics. On the other hand, in

Chapter 6, based on the fact that procedure Tree is the

major time consuming part of PRONTO, evaluates alternative

implementations for Tree and ends up choosing the best

expansion method.
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CHAPTER 5

TIME COMPLEXITY EVALUATION

5.1 Introduction

Since PRONTO is a one-pass heuristically guided

search method, it is not easy to find a general relation

between the time spent in reduction and the

characteristics of a PLA specification.

The time spent by PRONTO depends on the following:

a. The size of the PLA (number of product

terms).

b. The size of the OR-plane (number of output

bits per cube).

c. The size of the AND-plane (number of input

bits per cube).

d. The success of the order of choosing the

Base Product terms.

e. The extent to which the Base Product term is

adjacent to other cubes.

f. The size of the reduced PLA.

The first three factors have the clearest effect on execu-

tion time since they are known constants. On the other

hand, the last three are what makes this relation tough to

generalize. This is because of the indefinite character-

istics of the heuristic approach.



39

5.2 Purpose

In this chapter an estimate of the order of PRONTO's

time complexity is found. Initially, each subroutine is

to be evaluated by finding its major time growth factors.

These results are to be accumulated to roughly find the

dominant major factors of PRONTO's four main parts:

1. FindBaseProduct (finds the most favorable

product term for expansion);

2. Directions (finds the most likely expansion

directions);

3. Tree (checks the possible expanded terms for

feasibility);

4. Update (adds the useful expanded term to the

solution array and updates the current spe-

cification array).

Secondly, the cumulative dominant time growth factor is

simplified to give an estimated order of complexity that

would relate the amount of time spent in reduction to the

specification array's characteristics (i.e. number of

cubes, number of inputs and outputs). Finally, based on

experimental results, an empirical relation is found to

estimate execution time given the characteristics of a

specification array.
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5.3 Definitions

The following notations are to be used, throughout

this chapter, as procedure parameters:

A, B, C, D and E are logic arrays of product terms.

Pb stands for a one-cube logic array.

A.nc = number of cubes in A;

A.ni = number of input variables in A;

A.no = number of output variables in A;

nwpc = number of words per cube

= (ni + no) Div 16 + 1;

nbpc = number of bits per cube = ni + no;

Spec = the current specification array;

Soln = the current solution array;

I = integer;

Cov is an array of logic arrays.

5.4 Subroutine Evaluation

The following is an individual evaluation of each of

the subroutines comprising PRONTO's body.

1. NewLogicArray (A.nc, A.ni, A.no).

NewLogicArray allocates storage for a new

logic array. Although time spent here is a

constant, regardless of the call, this pro-

cedure spends a considerable amount of time

since it is frequently called.
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2. DisposeLogicArray (A)

DisposeLogicArray is called to dispose of an

existing logic array. Processing time is a

constant, but as is the case with "NewLogic-

Array" it is called often and thus contri-

butes in a considerable portion of total

execution time.

3. CopyLogicArray (A)

CopyLogicArray allocates storage for a copy

of an existing array. Time spent in this

subroutine is in direct proportion with the

number of words in the logic array A.

Therefore, the dominant factor is nwpc*A.nc.

4. Cube (A,I)

Cube returns the Ith cube of array A. Time

spent depends on the number of words per

cube. Therefore it contributes in the fac-

tor nwpc.

5. Compact (A)

Compact reduces array A by eliminating the

zeroed cubes. The time spent varies accord-

ing to the number of zeroed terms and to

their position in the array. The array

being a random access data structure compli-

cates the elimination process. Thus a

zeroed cube at the top of the array has to
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be pushed down one cube at a time until it

falls off. Therefore, the major time growth

factor, in the worst case, would be

nwpc*A.nc (the best case factor being nwpc).

6. Addcube (A, B, I).

Addcube simply appends the Ith cube of array

B to the end of array A. In this case the

major time growth factor is nwpc.

7. MergeCube (A, B, I).

MergeCube performs the same function done by

"Addcube" plus some size-reducing cover

checks in which the Ith cube in array B is

compared to each cube in array A. The above

cover checking process has A.nc*nwpc as a

major time-growth factor. The factor nwpc

contributed by appending the cube is seen

already to be a part of the previous factor.

"MergeCube" calls procedure "Compact" a few

times whenever a covered cube needs to be

deleted. "Compact" has, in a worst case, a

major time-growth factor of nwpc*nc. There-

fore, it is seen that the value A.nc*nwpc is

the dominant factor for "MergeCube".

8. Sharp (A, B)

Sharp performs the sharp product operation
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A # B and returns the resulting cube(s) in

array R. "Sharp" checks all two-cube com-

binations (A(k) and B(j)). First, the input

parts are compared one bit at a time. Once

the cubes are found not to intersect proce-

dure MergeCube (R, A, I) stores A(I) in

array R. This step turns out to be a

valuable one, in terms of time saving, since

usually cubes do not intersect. The major

time-growth factor for the above process is

A.nc * B.nc * ni * R.nc * nwpc. The factor

R.nc * nwpc is the one contributed by

"MergeCube".

If the cubes intersect then the actual sharp

operation is performed where each input and

output bit location is visited. During this

process the actual sharp operation is per-

formed whenever found needed. Then proce-

dure MergeCube (R, C, 1) stores the sharp

operation result C in array R. The process

has the time-growth major factor of A.nc

B.nc * nbpc * (nwpc + R.nc * nwpc). "Copy-

LogicArray" is called once introducing the

factor A.nc * nwpc.
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Putting together the above factors the fol-

lowing overall major time-growth factor

results, [A.nc * B.nc * ni * R.nc * nwpc] +

[A.nc * B.nc * nbpc * (nwpc + R.nc * nwpc)]

+ [A.nc * nwpc].

The factor (nwpc + R.nc * nwpc) could be

estimated by (R.nc * nwpc), then the factor

(A.nc * B.nc * R.nc * nwpc) is pulled out as

a common factor thus ending up with,

[A.nc * B.nc * R.nc * nwpc * (ni + nbpc)] +

[A.nc * nwpc].

It is noticed that the factor A.nc * nwpc is

a part of the larger factor and thus leads

to the following simplified dominant factor,

[A.nc * B.nc * R.nc * nwpc * (ni + nbpc)].

Considering the factor ni is a part of the

larger factor nbpc, the following overall

order of complexity results.

CI(A.nc * B.nc * nwpc * R.nc * nbpc)

9. Addla (Cov, A)

Addla appends array A, which holds the cubes

covered by a successful expansion term, to

the array of covered arrays Cov. Its major

time factor is (A.nc * nwpc) which is intro-

duced by procedure "NewLogic Array".
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10. Erase (A, I)

Erase zeroes all words in the Ith cube, then

calls procedure "Compact" to delete that

cube. Therefore, the time consuming factor

is (nwpc + (A.nc * nwpc)) which could be

simplified to A.nc * nwpc.

11. SetUpTables (A)

SetUpTables visits all output bits of the

current specification A while constructing

the counts arrays to be used by procedure

"FindBaseProduct". Therefore, the major

time-growth factor is represented by the OR-

plane A.nc * no.

12. FindBaseProduct (A)

FindBaseProduct is the first of PRONTO's

four major parts in which the Base Product

term is found based on an output part bit

count, performed by procedure "SetUpTables".

The major time spent is consumed by

procedure "SetUpTables", thus resulting in

A.nc * no as the major time-growth factor.

"FindBaseProduct" consumes around 3% of the

total execution time and about 3.3% of time

spent by PRONTO's main body "Main".
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13. CoverEquiv (A, B, Pb)

Equiv checks if arrays A and B are equiva-

lent. Normally A and B are one-cube arrays.

The major time factor is A.nc * nbpc.

14. Directions (Pb, A)

Directions is the second of PRONTO's four

parts. It consumes almost 18.5% of total

execution time and about 21% of procedure

Main. It finds the possible expansion

directions, that cube Pb has in comparison

with the cubes of array A, according to the

rules of subsection 4.2.3.

In the checking process each cube in A is

visited and the input and output bits are

tested. The major time-growth factor turns

out to be A.nc * (2nbpc + no + 3nwpc).

It is seen that nwpc is negligible in com-

parison with the other factors. Therefore,

the above factor may be simplified into the

dominant factor of A.nc * (nbpc + no).

15. Covering (Pb, A, B)

Covering contributes about 18% of the time

spent in procedure "Tree", and about 8.0% of

the total execution time. It searches both

Specification and Solution arrays (A and B)
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for cubes covered by the successful expan-

sion term Pb. Procedure CoverEquiv, used in

the cover checking process, introduces the

factor nbpc since it only checks single

cubes. The overall dominant time-growth

factor ends up to be (A.nc + B.nc) * nbpc.

16. Donts (Pb, X)

Donts checks the validity of an expansion

term Pb by testing if Pb is covered by A the

original specification with all output dont-

cares replaced by ones. This cover checking

is performed by a call to procedure Sharp

which might be repeated as many times as the

number of d.c.'s in the output part of Pb.

The major time-growth factor is

A.no * factor contributed by "Sharp",

thus ending up with the following factor,

A.no * A.nc * R.nc * nwpc * nbpc.

Procedure Donts contributes about 36.0% of

the total execution time, and is the major

part of procedure Tree contributing 78.0% of

the time spent in it. It should be

mentioned here that the factor A.no actually

stands for the number of d.c. bits in the

output part of Pb. Therefore if Pb has no
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output dont-cares then "Sharp" is called

just once, giving the factor A.nc * nbpc *

nwpc * R.nc.

17. Tree (Pb, E, A, B, C, D, Cov)

Tree is the third and major part of PRONTO

by which expansion terms are checked and the

actual cover checking and reduction

possibilities are sought. It spends about

46% of the total execution time and about

52% of the time spent in PRONTO's main part.

The complexity of procedure Tree is evalu-

ated here for a preorder tree expansion

method. Chapter 6 will discuss some alter-

native methods.

Array E stands for the logic array of

single-expansion directions. There are

(2**E.nc) -1 different possible expanded

terms, each representing one main loop in

procedure Tree. In that main loop if Pb is

found to be valid by "Donts" then it is

stored in array B of valid expanded terms.

After all the valid expanded terms are

found, procedure Covering examines each

valid term of array B in order to find those

terms that are covered by it. Processing

time has the following time-growth factors,
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[(2**E.nc) * (factor by "Donts")] +

[factor by "Covering"],

which leads to

[(2**E.nc) * (A.no * Kim * nbpc * nwpc * R.nc)]

+ [(A.nc + D.nc) * nbpc * B.nc].

The factor (A.nc + D.nc) represents the

value of (Spec.nc + Soln.nc) which starts to

be equal to the original specification array

and ends up to be equal to the final solu-

tion array. Since the final solution array

is always less (or equal) to the original

specification size, therefore the part con-

tributed by "Covering" can be simplified to

(A.nc * nbpc * B.nc). It is seen that this

factor could be considered as part of the

factor from "Donts", since (A.nc * nbpc)

already exists in the latter and the factor

B.nc, the number of valid expanded terms, is

always less than the value of (2**E.nc)

representing the number of possible expanded

terms. Therefore, the dominant time-growth

factor could be simplified into,

(2**E.nc) * A.nc * no * nbpc * nwpc * R.nc.

It is found, from experimental results, that

on an average the number of single expansion

directions E.nc is equal to 2.
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Now, let the above factor be represented by

the following notation,

(2**E.nc) * F(A) .

In the four examples which were studied in

detail for the analysis, on the following

pages, the number of expansion directions,

E.nc, ranged from 1 to 8. Although the

average value was close to 2, the occasional

case of as many as eight directions can be

costly. In the worst case, the main loop

F(A) could occur as many as (2E.nc_1) times.

Fortunately, the above worst case has an

almost zero probability, which leads to the

second point to be considered - that is the

majority of the possible expansion direc-

tions are not valid.

Since different numbers of expansion direc-

tions (E.nc) have different occurrence

probabilities, therefore, to get an averaged

result, the above dominant factor could be

written as,

k
T P(E.nc)*2E.nc * F (A) .

E.nc=0
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P(E.nc) stands for the probability of E.nc

occurring which is taken to be the experi-

mental relative frequency. Now looking at

the factors within the main loop F (A)

(ii.nc, no, nbpc, nwpc and R.nc) it is seen

that F (A) is independent of the number of

expansion directions which permits writing

the above factor

as

kF (A) * P(E.nc) * 2E.nd

E.nc=0

According to statistical results based on

the examples run on PRONTO, where the upper

limit k is equal to 8, the above summation

added up to about 9.

The experimental data presented in Table 5.1

show the effect that the occurrence proba-

bility P(E.nc) has in defusing the drastic

effect of the exponential value (2**E.nc).

If P(E.nc) is exactly inversely related to

the exponential value (i.e. is equal to

(2**-E.nc)) then the value P(E.nc) *(2**E.nc)

should be equal to unity for every E.nc.

The value P(E.nc) * (2**E.nc) was found to

range, experimentally, from 0 to 1.95, see



Table 5.1

Occurrence Probability of Expansion Directions

Number of Expansion
Directions (E.nc) 0 1 2 5 7 8

Occurrence fre-
quency P(E.nc) 0.184 0.252 0.238 0.170 0.075 0.061. 0.014 0.0 0.007

2
-E.nc

1 0.5 0.25 0.125 0.063 0.031 0.016 0.008 0.004

2
E.nc

* P(E.nc) 0.184 0.5 0.95 1.36 1.2 1.95 0.896 0 1.79
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Table 5.1, with an average value of 0.98.

The effect of P(E.nc) could be best shown by

an example: for E.nc = 8, P(8) = 0.007

while (2**8) = 256 resulting in P(8)*(2**8)

= 1.79. It is shown here that although for

high E.nc the exponential value is devas-

tating, the value P(E.nc) proved to neutral-

ize that effect.

Again, taking into consideration that the

majority of the expansion terms are not

valid shows that, actually, a small fraction

of the value 2**E.nc occurs more often than

the original value.

The analysis of Table 5.1 concludes that, on

an average, the exponential time growth

effect by 2**E.nc is suppressed down to a

constant level by its occurrence probability

P(E.nc). Therefore the factor P(E.nc) *

2**E.nc is considered in the following to be

a constant and is excluded from the overall

time-growth major factor. Thus, the result-

ing simplified factor is,

A.nc * no * nbpc * nwpc * R.nc

18. Update (B, Pb, D, A)
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Update is the fourth and last of PRONTO's

main parts in which the successfully expand-

ed term Pb is added to the Solution array B.

The cubes that are already known to be

covered by Pb (i.e. array D) are then de-

leted from the specification and solution

arrays A and B. "Update" spends about 18%

of the total execution time, which turns out

to be about 21% of the time spent in

PRONTO's main procedure "Main".

The call to procedure Sharp contributes in

(nbpc + ni) * nwpc * R.nc for a time-growth

factor. The overall major factor is A.nc *

(D.nc * nwpc + nbpc * nwpc * R.nc) + B.nc *

(D.nc * nwpc).

It was found, experimentally, that on an

average the number of product terms in array

D is almost equal to "1". Hence, the domi-

nant time-growth factor could be simplified

into (A.nc * nbpc * nwpc * R.nc) + (B.nc *

nwpc).

As mentioned earlier, the Solution array B

is of the same size order as the
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specification array A, thus leading to the

following dominant time factor,

A.nc * nbpc * nwpc * R.nc

19. Large (A)

Large is called to replace all dont-care

bits of the OR-plane with ones producing an

as-large-as-possible specification array.

The dominant factor is A.nc * no.

20. Small (A)

Small resembles procedure "Large" but in-

stead replaces dont-cares with zeros. It

also contributes the factor A.nc * no.

21. Main (A, Outfile)

Main is an interpretation of the PLA reduc-

tion algorithm PRONTO. It consumes about

87% of total execution time. "Main" calls

four major procedures; "FindBaseProduct",

"Directions", "Tree" and "Update", in a

heuristic loop that has a size of the number

of cubes in the Solution array.

The overall dominant time growth factor is

Soln.nc [(A.nc * no) + (A.nc * (nbpc + no))

+ (A.nc * no * nbpc * nwpc * R.nc) + (A.nc *

nbpc * nwpc * R.nc)] .
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tributed by procedure "Update" is already a

part of the factor resulting from procedure

"Tree". Second, the factors contributed by

"Directions" and "FindBase Product" are also

existant in the factor from "Tree". The

above observations result in the order of

time-growth complexity of

(7(Soln.nc * A.nc * no * nwpc * nbpc)

The factor R.nc depends only on the intrin-

sic features of the PLA (i.e. the internal

structure and cube compactness). Since this

factor is independent of the PLA's area con-

stants (ni, no and nc) and due to the diffi-

culty of evaluating its direct effect on

time growth, I have chosen to drop it from

the above dominant factor and considered its

effect as one of the nondeterministic as-

pects of PRONTO's heuristic approach.

The above dominant factor stands for

Soln.nc * gpec.nc * no * nwpc * nbpc

5.5 Presentation

Introduced here is the idea behind the evaluation

process in reaching a generalization relating execution
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time to the specification's characteristics. Let Tm re-

present the time spent in procedure Main. Table 5.2 shows

a summary of information about the four major procedures

called by "Main".

Table 5.2

Summary of Results for the Four Major
Procedures of PRONTO

Procedure
Percentage Major Time-Growth Factor

of Tm (one loop)

FindBaseProduct 3% Spec.nc * no

Directions 21% Spec.nc * (nbpc + no)

Tree 53% Spec.nc * no * nwpc * nbpc

Update 21% Spec.nc * nwpc * nbpc

To simplify the evaluation process let us consider

the factor contributed by "FindBaseProduct" to be covered

by the one contributed by "Tree". This is justified

because of the smaller percentage contributed by "Find-

BaseProduct". The major effective factor of procedure

"Tree" is Spec.nc * nbpc * no, where nwpc is discarded

because of its low variability. It is also seen that

procedures Directions and Update have equal percentages of

execution time, which is due mainly to the major common

factor Spec.nc * nbpc. Considering the above two observa-
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tions, execution time, Tm, could be estimated by the

following equation,

Tm = Soln.nc * [Cl(Spec.nc * nbpc) + C2(Spec.nc *

nbpc * no)]

or alternatively,

Tm = Soln.nc * Spec.nc * nbpc * [C1 + C2(no)].

Tm is, on an average, 87% of the total execution time T.

However, taking into consideration that "InArray" and

"SpamOutArray", the input/output handling procedures, have

time complexities of the order of Spec.nc * nbpc shows

that the time estimate equation could be modified to

represent the total execution time by merely choosing dif-

ferent constants.

T = Soln.nc * Spec.nc * nbpc * [C1 + C2 (no)].

5.6 Experimental Evaluation

Execution time evaluation, here, will be based on the

total execution time estimate equation reached at in the

previous section, and on experimental results obtained by

running '8' PLA examples. Table 5.3 shows the character-

istics of the PLA examples. The estimate equation is

written as

T/(Soln.nc * Spec.nc * nbpc) = C1 + C2 (no).

Comparison of columns (5) and (9) of Table 5.3 shows

that the vlue of T/(Spec. nc * Soln.nc * nbpc) tended to

decrease with an increase in the number of output bits.



Table 5.3

Characteristics of the Eight PLA Examples
used in Evaluation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Example
No.

Spec. nc Soln.nc ni
,

no nbpc nwpc

Total
Execution

Time
T.

T 4-

(Spec.nc *

SWII)Cir

no
nbpc

1 22 12 6 6 12 1 774 0.24 0.5

2 24 14 10 9 19 2 1,100 0.17 0.47

3 33 18 9 8 17 2 1,906 0.19 0.47

4 64 48 14 5 19 2 5,586 0.10 0.26

5 38 24 9 14 23 2 2,839 0.14 0.61

6 56 39 16 16 32 3 10,374 0.15 0.5

7(10) 49 33 6 6 12 1 4,670 0.24 0.5

8(11) 37 32 12 3 15 1 1,343 0.08 0.2
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Examples '4' and '8' were not found to be consistent with

the above generalization. Moreover, it turns out that

both examples have a low (no/nbpc) ratio as shown in

column (10) of Table 5.3. In an attempt to obtain a

better linear fit relating the values of columns (5) and

(9), the ratio (no/nbpc) is integrated into the original

estimate equation to give,

T/(Soln.nc * Spec.nc * nbpc) = (no/nbpc) * (C1 + C2 (no)),

which is simplified into

T/(Soln.nc * Spec.nc * no) = C1 + C2 (no).

Table 5.4 presents the results concerning the modi-

fied estimate equation. Comparing the value of T/(Spec.nc

* Soln.nc * no) to (no), it is found that they have a

correlation factor of (-0.70) with C1 = 0.49 and C2 =

0.01. Therefore we end up with the following time esti-

mate equation,

T = Soln.nc * Spec.nc * no * (0.49 - 0.01 (no)).

Total execution time estimated by the above relation

is shown in column (5) of Table 5.4 and by curve B of

Figure 5.1. Curve A of Figure 5.1 represents the experi-

mental total execution time.

In a less strict sense, since constant C
1

is the

dominating one, the order of time complexity of PRONTO

could be reduced to the major factor of Spec.nc * Soln.nc

* no. Experimental comparison of this factor with (T)



Table 5.4

Experimental and Estimated
Total Execution Time Results

Example
# no

Experimental
Execution
Time (T)

T./

(Spec.nc
Soln.nc

Estimated
* T

* no) (Linear)

Estimated
T

(power)

1 6 774 0.49 644 717

2 9 1100 0.36 1105 1246

3 8 1906 0.40 1802 1835

4 5 5586 0.36 6459 5010

5 14 2839 0.22 3783 4277

6 16 10,374 0.30 9389 10,125

7 6 4670 0.48 3946 3293

8 3 1343 0.38 1592 1430
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Figure 5.1. Comparison of experimental and estimated execution times.
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shows that the best fit curve, with a correlation factor

of 0.97, is a power relationship represented by

T = 1.307 * (Spec.nc * Soln.nc * no)
0.856

Column (6) of Table 5.4 and curve C of Figure 5.1

represent the total execution time estimated by the above

power relationship. Curve C turns out to show an almost

linear relation. This is because the power factor (0.856)

is close to unity which is the case for a linear relation-

ship. Having a power factor less than unity means the

time increases in a slower manner on the long run, than it

would in a linear relationship.

5.7 Conclusion

In the process of choosing the best execution time

estimate relation, it was kept in mind that the power

model predicts a smaller execution time, for large PLAs,

than that predicted by the linear model.

Now what needs to be known is the average ratio of

reduced size to original size,for large PLAs. As a rough

measure, the results obtained by Brayton et al. [BRAYT],

in running 56 PLAs on ESPRESSO-11 APL, are considered.

The original size of these examples ranged from 10 to 1092

product terms. The average ratio of (Soln.nc/Spec.nc) was

found to equal 0.67. Now, only PLAs with Spec.nc greater

than 200 (i.e. 19 out of 56 PLAs) are considered and are

found to have an average ratio (Soln.nc/Spec.nc) equal to
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0.5. These results show that, on an average, for large

PLAs a relatively greater reduction in size is obtained.

This relative smaller solution array size is a direct

measure of the number of main loops of PRONTO, and there-

fore is a measure of execution time. This result turns

out to be in favor of the power model estimate.

Although the order of time complexity is determined

by the algebraically higher-order terms (i.e. exponential

over polynomial over linear), it is found that, for the

few examples compared in Section 5.6, the actual computa-

tion time is comparable to the order of

CI(Soln.nc * Spec.nc * no) .
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CHAPTER 6

ALTERNATIVE APPROACHES FOR BASE
PRODUCT TERM EXPANSION

6.1 Introduction

Experimental results have proven that procedure Tree

is the most time consuming part of PRONTO, accounting for

almost 46% of the total execution time.

In order to be able to evaluate the implementation

alternatives for Tree, it is necessary to identify the

major time consuming procedures that are extensively used

in the process of expanding and cover checking a base

Product term. There are two procedures that perform the

major tasks in the expansion: The first, procedure Donts,

tests the validity of a probable expansion term. The

second, procedure Covering, finds the product terms that

are covered by each term of the array of valid expanded

terms. Comparing the orders of time complexity derived at

in Chapter 5, it is found that procedure Donts contributes

the major part of time consumption.

6.2 Purpose

No matter what method is used to expand a base

product term, Pb, the number of cover checks performed by

procedure Covering should be identical. This is due to

the fact that any complete expansion method should result
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in the same set of independent, valid expanded cubes (i.e.

none of them is covered by any of the rest).

The intention, in this chapter, is to find an

efficient (fast) implementation of expanding a base

product term in order to cover other cubes. The major

comparison factor of the alternative implementations would

be the total expected number of calls of procedure Donts.

6.3 Expansion Methods

In this section three term-expansion procedures are

considered. Each method starts with an array of possible

expansion directions, based on the current base product

term Pb. The number of validation checks by each method

might differ since each approach has a different order of

pursuing expansion terms and different termination rules.

Expansion terms are represented by a tree structure with

2
n

nodes, where n is the number of possible single-expan-

sion directions. Figure 6.1 shows a tree structure for a

case of three possible expansion directions (a, b, c)

where the head node is the Base Product term and the rest

representing the different possible expanded terms.

Node (ab) stands for the term Pb(ab) resulting from

expanding the Base Product term in both directions a and

b.

Two general rules, to be considered in the expansion

validation process, are presented below.
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Figure 6.1 Tree representation of expansion terms
formed from three expansion direction.

a. Redundancy rule. If an expanded term is

proved to be valid then any smaller expanded

term that is a subcube of it need not be

tested for validity. For example if Pb(abc)

is valid then it is also known that Pb(ac)

is valid.

b. Dead-end rule. If an expanded term is found

to be nonvalid then no further expansion is

to be performed on that term. For example

if Pb(ab) is nonvalid then Pb (abc) is also

nonvalid.

6.3.1 Depth-First Expansion Method

The following pseudo-algorithm describes the process

by which the Depth-first method proceeds in pursuing the

expansion of a base product term. It represents a
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recursive routine that follows a tree structure in

carrying out the expansions. Starting with a base product

term and a set of single-expansion directions, the method

traverses the tree nodes (expanded terms) in a preorder

fashion. The term "Base" stands for the current base term

to be expanded, and it starts to be the Base Product term.

The term "Node" is the current expanded term. Array

"Expansions" holds the single-expansion direction. Proce-

dure Treesearch returns an array of the current valid

expanded terms.

Treesearch (Base, Expansions);

While there are more directions do

Dirsileftmost available direction in Expansions,

Node *--Base '+' Dir,

delete Dir from Expansions,

If Node is a valid expanded term

Then - apply the Redundancy rule before

storing Node in the array of

valid expanded terms;

- Exp E-- Expansions;

- Treesearch (Node, Exp).

End If,

End While.

The Dead-end rule is taken care of internally by the

"If" statement and the "While" iteration. For the Redun-
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-dancy rule, the valid term is compared with those terms

already in the array of valid expanded terms. If it is

covered by any of them then it is discarded. Otherwise,

it is added to the array and those cubes, in that array,

that are covered by it are deleted.

A noninterrupted preorder traversal by this method

(refer to Figure 6.1), ends up with the following node

order if all three directions are valid in every combina-

tion.

[a, ab, abc, ac, b, bc, c]

In that particular case, the expansion process ends

up with only Pb (abc) in the array of valid expanded terms

since it covers all other combinations.

6.3.2 Level-Order Expansion Method

Level-order method traverses the expanded terms in a

level-by-level manner. The expanded terms of some level

are formed by using only the valid expanded terms of the

previous level. The following pseudo-code describes the

above recursive process. "Node" is the current base

product. "Ni" is the newly expanded term. "Dirns" repre-

sents the current set of single expansion directions.

"Queue" is a list of two-field records, where the first

holds the current valid expanded term while the second

holds an array of single expansion directions that are

left to be tested with that term. "Di" is the first
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available expansion direction from "Dirns". Procedure

Treesearch returns an array of the current valid expanded

terms.

Treesearch (Pb, Dirns);

Queue .4---(Pb, Dirns),

While Queue is not empty do

(Node, Dirns)4---Queue

While Dirns is not empty do

Disifirst available direction from Dirns

delete Di from Dirns

Ni +Node + Di

If Ni is valid

Then Queue 4.---(Ni, Dirns)

Else Do

- If at 1st level

Then delete Di from each

Dirns array in Queue.

End If.

End While Dirns

End While Queue.

In this method, all small expanded terms are tested

for validity before larger terms are reached thus making

the Redundancy rule nonapplicable. On the other hand, the

Dead-end rule is internally taken care of by the nature of

the algorithm.
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Figure 6.2 shows a case where only 3 directions (a,

b, c) out of many are valid. Level-order expansion gives

n +4//

Figure 6.2 Order of traversal for the level-order
expansion methods. (Case of three
valid expansion directions out of n
possible directions).

the following node order if all three directions are valid

in every combination,

[a, b, c, x, ab, ac, bc, abc]

6.3.3 Compact-Depth Expansion Method

The Compact-depth method is a combination of the

above two methods and follows the idea of the tree-search

process presented by Rhyne et al. in their Direct Search

Algorithm [RHYNE]. This method requires examining all

single-expansion-direction terms, one at a time, to iden-

tify those, valid ones. The Depth-first expansion process
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is then applied to those valid single-expansion terms.

Figure 6.3 shows the traversal, by this method,

Pb

1 / 2 \ n

(t)
n+1/ \\n+3

c al3)

h+2,/

Figure 6.3 Order of traversal for the Compact-Depth
expansion method. (Case of three valid
expansion directions out of n possible
directions).

for the same case presented in the previous section which

results in the following node order,

[a, b, c, x, ab, abc, ac, bc]

6.4 Evaluation of Expansion Methods

To make the evaluation possible, four PLA examples

(4, 5, 6 and 7) were run on PRONTO and monitored for the

following:

a. The number of possible single-expansion

directions for each base product term chosen

for expansion. Results are shown in Table

6.1.



Table 6.1

Occurrence Frequency of n Possible
Expansion Directions

Number of Possible
Expansion Directions (n) 0 1 2 3 4 5 6 7 8

Number of Occurrences
of n Possible Expansion
Directions (On)

27 37 35 25 11 9 2 0 1

Relative Frequency

(0
n
JE On)

0.184 0.252 0.238 0.170 0.075 0.061 0.014 0.0 0.007

Maximum Possible Ex-
panded Terms (On*(2n-1)) 0 37 105 175 165 279 126 0 255
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Table 6.2

Occurrence Frequency of n Valid
Expansion Directions

Number of Valid
Expansion Directions (n)

Number of Occurrences of
n Valid Expansion Direc-
tions (On)

Relative Frequency

(On/ E On)

Maximum Possible
Expanded Terms
(On * (2"-1))

0 1 2 3

57 66 20 4

0.392 0.446 0.135 0.027

0 66 60 28
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b. The number of valid single-expansion direc-

tions for each base product term. Results

are shown in Table 6.2.

The first rows of Tables 6.1 and 6.2 show the number

of single-expansion directions (n); "possible" directions

in Table 6.1 and verified valid directions in Table 6.2.

The second rows show the number of occurrences of each n

(On). The third rows represent the relative frequency of

each n's occurrence (0
n
/2: 0

n
). The last rows show the

maximum number of possible expanded terms for each n, (On

* (2n-1)), where 2n-1 is the number of possible expanded

terms for n expansion directions.

It was found that although the possible expansion

directions ranged from zero to eight, there were never

more than three valid ones. The evaluation to follow will

revolve on the number of expansion terms to be tested for

validity. One crucial consideration is that the majority

of possible expansion directions are not valid. Table 6.1

shows that the four examples produced 291 possible expan-

sion directions (2:n On), while Table 6.2 resulted in 118

valid single-expansion directions (En On) which amounts

to about 40% of the total possible expansion directions.

In order for this observation to be meaningful, the number

of possible expanded terms is to be considered here, to

give a more direct measure of the number of validity

checks.
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The four examples might result in up to 1142 possible

expansion terms (21-(0n*(2n-1))) to be tested for validity

(refer to Table 6.1). Now, considering only the valid

single-expansion directions of Table 6.2 we end up with

445 possible expansion terms for an upper limit. Out of

the possible 445 validation checks, 291 are the ones

performed on possible single-expansion-direction terms (In

0n ) to identify those that are valid (n stands for the

number of possible single expansion directions). The

rest, which amounts to 154 validation checks (E(On*(2n-

1))), are the ones resulting from the possible number of

expansion terms that might be produced by expanding only

in the valid directions.

Theoretically, the above results indicate the possi-

bility of saving up to 60% (1142 - 445)/1142) of the time

spent in validity checks. However, this is too high a

percentage to be hoped for since in real application a

small fraction of the number of possible expansion terms

is to be checked for validity. This fraction depends on

three points. The first is the number of valid single-

expansion directions. The second is their relative posi-

tion. The third is the validity of the combinations of

valid expansion terms.

Anyhow, this possibility of time saving suggests the

usefulness of pursuing the valid single-expansion direc-
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tions for starting the expansion process, and therefore

promoting the Level-order and Compact-depth methods. Both

methods have the first-level validity checks in common.

The numbers of nodes visited by the above two expansion

methods differ when there are more than two valid single-

expansion directions. This is shown in Table 6.3 which

compares the possible numbers of validity checks, for both

methods, after the first level checks. First level checks

Table 6.3

Number of Validity Checks for Level-order
and Compact-depth Methods

No. of Valid
Expansion Directions

(n)

Range of Possible Validation Checks
Not Including First Level Checks
Level-order Compact-depth

1 0 0

2 1 1

3 3-4 2-4

4 6-11 3-11

5 10-35 4-35

are equal to the number of possible expansion directions

for both methods. It is noticed that, for more than two

valid directions, both methods have a range for the poss-

ible validity checks. For example, in the case of three
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valid directions, the Level-order method's lower limit of

checks (3) indicates that the Dead-end rule shows that the

largest possible cube Pb(abc) is not valid and need not be

checked for validity (refer to Figure 6.2). On the other

hand, for the same case, the Compact-depth method's lower

limit of validity checks (2) indicates that the Redundancy

rule shows that the largest possible cube Pb(abc) is valid

and no other smaller terms are to be tested for validity

(refer to Figure 6.3).

The above observations suggest that the Compact-depth

expansion method might be the faster method.

6.4.1 Quantitative Aspect of Evaluation

Table 6.4 shows the experimental relation of possible

expansion directions to valid expansion directions. For

example, the third row of data shows that for those base

products with 3 possible expansion directions; 4 out of 25

base product terms (i.e. 0.16) have no valid directions,

17 (i.e. 0.68) have just one valid expansion direction, 2

(i.e. 0.08) have two valid directions and 2(i.e. 0.08)

have three valid directions. The occurrence probability

P. (n) was estimated to be the experimental relative

frequency.

The evaluations to follow are based on base product

terms with one to four possible expansion directions.

These terms constitute about 90% of the terms, with one or
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Table 6.4

Possible and Valid Expansion-Direction Results
Obtained from Four Examples

Number of
Original
Expansion Number of Occurrences of the Following Number
Directions

(i)
of Valid Single-Expansion Directions

0 1 2 3

# Pi (0) # P
i i i
(1) # P(2) # P(3)

1 15 0.417 21 0.583

2 8 0.229 18 0.514 9 0.257

3 4 0.16 17 0.68 2 0.08 2 0.08

4 2 0.182 5 0.455 4 0.364 0 0.0

5 1 0.111 3 0.333 3 0.333 2 0.222

6 0 0.0 1 0.5 1 0.5 0 0.0

7 0 0.0 0 0.0 0 0.0 0 0.0

8 0 0.0 0 0.0 1 1.0 0 0.0
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more possible expansion directions, that are obtained by

the previous four examples. Table 6.5 shows the expected

number of validity checks, for the different expansion

methods, in best and worst cases. The first column gives

the number of possible expansion directions. The second

column gives the different combinations of single direc-

tion validity. For example, for 2 possible expansion

directions the combination (00) indicated that none is

valid, (10 or 01) indicates one of the two directions to

be valid and (11) shows that both directions are valid.

The rest of the columns give the possible number of valid-

ity checks by each expansion method. In some cases a

range appears for the number of checks due to the nature

of the corresponding method. For example, in the case of

2 possible directions that are valid (11), the Depth-first

method results in 2 validity checks if the expanded term

in both directions, at the same time, is valid or in 3

validity checks if that term is not valid.

In the evaluation, the following points were taken

into consideration:

1. For those combinations of valid expansion directions

that have a range for the number of validity checks,

the average number of checks is considered in the

calculation (refer to Table 6.5).

2. For a given number of possible expansion directions

in Table 6.4, the different combinations of single
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Table 6.5

Validation Checks by the Three Expansion Methods
for 1, 2, 3 and 4 Possible Directions

Number of
Expansion
Directions

Combinations
of

Validity

Number of Validation Checks for
the Following Expansion Methods
Depth-
Order

Level-
Order

Compact -Depth

1 0

1
1
1

1
1

1
1

2 00 2 2 2
01 2 2 2
10 3 2 2
11 2-3 3 3

3 000 3 3 3
001 3 3 3
010 4 3 3
011 3-4 4 4
100 5 3 3
101 4-5 4 4
110 6-7 4 4
111 3-7 6-7 5-7

4 0000 4 4 4
0001 4 4 4
0010 5 4 4
0011 4-5 5 5
0100 6 4 4
0101 5-6 5 5
0110 7-8 5 5
0111 4-8 7-8 6-8
1000 7 4 4
1001 6-7 5 5
1010 8-9 5 5
1011 7-9 7-8 6-8
1100 9-11 5 5
1101 9-11 7-8 6-8
1110 10-15 7-8 6-8
1111 4-15 10-15 7-15
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direction validity are not considered equally likely

but are given probabilities that are estimated by the

experimental relative frequency. For example, in the

case of 3 possible expansion directions the

occurrence of single valid-direction combinations

(i.e. 001, 010, 100) has a probability of 0.68 and

not 0.375 (i.e. 3/8) if compared to the eight dif-

ferent truth combinations.

3. The relative frequencies of Table 6.1 are taken to

represent the probabilities of the different possible

numbers of expansion directions. These probabilities

are incorporated in the final evaluation step to

reach a close-to-reality efficient estimate.

6.4.2. Calculations

The following are sample calculations of the average

number of validation checks required for the case of three

possible expansions directions. Refer to Tables 6.4 and

6.5 for values.

The average number of validation checks for the

level-order and the Compact-depth expansion methods turns

out to be the same for some numbers of possible expansion

directions. The reason is that, for those cases no valid

expanded term existed with more than two expansion direc-

tions. Table 6.5 clarifies this point by showing those
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two methods to have the same results for terms based on

two or less valid expansion directions.

6.4.2.1 Depth-first expansion evaluation

AVC = Average number of Validity Checks
3

AVC = [Val.Checks(i) * P3(i)]

= VC(o) * P3(o) +...+ VC(3) * P3(3)

= (3 * 0.16) + ((3 + 4 + 5)/3 * 0.68) +

((3.5 + 4.5 + 6.5)/3 * 0.08) + (5 * 0.08)

= 3.99

6.4.2.2 Level-Order Expansion Evaluation.

AVC = (3 * 0.16) + (3 * 0.68) + (4 * 0.08)

+ (6.5 * 0.08)

= 3.36

6.4.2.3 Compact-Depth Expansion Evaluation.

AVC = (3 * 0.16) + (3 * 0.68) + (4 * 0.08)

+ (6 * 0.08)

= 3.32

6.4.3 Results

Table 6.6 shows the average number of validity checks

for the cases of 1, 2, 3, and 4 possible expansion direc-

tions. It is seen that the Depth-first expansion method

is the worst of all three. The Level-order and Compact-
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depth methods produce close results that would shift in

favor of the latter method when the number of valid expan-

sion directions is greater than two. This is shown in

the three-expansion-direction case of Table 6.6.

The results of the Depth-first and the Compact-depth

expansion methods of Table 6.6 are compared and the

estimated precentage saving in time is calculated and

shown in Table 6.7. For example the case of 4 possible

directions might result in up to 24.8% (i.e. (5.81-

4.37)/5.81) saving in time if the Compact-depth method is

used instead of the Depth-first method. The savings are

expected to increase for larger numbers of possible expan-

sion directions.

6.5 Conclusion

As shown in Table 6.7 the Compact-depth expansion

method produces appreciable savings in the number of vali-

dity checks for base product terms with more than one

possible expansion direction.

Now, since terms with different numbers of possible

expansion directions have different occurrence probabili-

ties, a weighted overall saving in validity checks is

calculated below. Refer to Tables 6.1 and 6.7. Remember,

that the probabilities are estimated by the experimental

relative frequencies.

Overall Savings = E [P.
1

* Saving(i)]
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Table 6.6

Average Number of Validation Checks Obtained
by the Three Expansion Methods

Number of Average Number of Validation Checks for
Possible the Following Expansion Methods:
Expansion
Directions Depth-First Level-Order Compact-Depth

1 1.00 1.00 1.00

2 2.39 2.26 2.26

3 3.99 3.36 3.32

4 5.81 4.37 4.37

Table 6.7

The Advantage of Compact-Depth over Depth-First

Number of Possible
Expansion Directions 1 2 3 4

Savings in Time Con-
sumption Using
Compact-Depth Expan-
sion Instead of
Depth-first

0.0% 5.4% 16.8% 24.8%
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= (P0 * % Saving (o) + (P1 * % saving (1))

+

= (0.0) + (0.0) + (0.238 * 5.4%) +

+(0.170 * 16.8%) + (0.075 * 24.8%) +

> 6.0% of validity checks

The above results show that the Compact-depth and the

level-order expansion methods, compared to the Depth-first

method, promise some saving in processing time even for

the small problems tested here, which most of the time

enter procedure Tree with few possible expansions direc-

tions. Larger PLA problems with product terms which are

tightly packed, showing many adjacencies and many possi-

bilities for expansion directions will benefit more.

6.6 Application

Both expansion methods, the Depth-first and Compact-

depth, were implemented in PRONTO's code. Table 6.8 shows

the results obtained by both versions of PRONTO applied to

the eleven PLA examples. Time is expressed in CPU units

where one unit is (1/60) of a second.

Table 6.9 gives the saving percentage in time con-

sumption. Basically the Compact-depth expansion method

proved to be better than the Depth-first method for all

eleven PLA examples. However, savings ranging from 0% up

to 4% were not considered as clear-cut savings since

different runs of the same example might yield different
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Table 6.8

Total Execution Time Obtained by the
Depth-First and the Compact-Depth Versions

Example
No.

Spec
nc

Execution Time of PRONTO Version With
Soln
nc

Depth-first
Method

Compact-depth
Method

1 22 12 774 715

2 24 14 1,100 1,068

3 33 18 1,906 1,901

4 64 48 5,586 5,435

5 38 24 2,839 2,483

6 56 39 10,374 8,832

7 91 35 12,140 9,759

8 173 56 52,911 42,445

9 30 13 1,423 1,376

10 49 32 4,670 4,297

11 37 32 1,343 1,313
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Table 6.9

Saving in Total Execution Time Resulting by
Using the Compact-Depth Method over the

Depth-First Method

Example Saving in Total
No. Execution Time ni no

1 7.6% 6 6

2 2.9% 10 9

3 0.3% 9 8

4 2.7% 14 5

5 12.5% 9 14

6 14.9% 16 16

7 19.6% 15 23

8 19.8% 12 25

9 3.3% 5 4

10 8.0% 6 6

11 2.2% 12 3
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execution times but close within about 4%. Therefore, six

out of the eleven examples were considered to have truly

benefitted from the application of Compact-depth expan-

sion, with savings greater than 6.0 percent.

On an average, the largest savings went to large PLA

examples. Also it is noticed that for those examples with

appreciable savings above 7.5% the number of output bits

were equal to or greater than the number of input bits

(refer to Table 6.9).

6.7 Summary

The previous results and observations show that the

Compact-depth method is usually the fastest term-expansion

method. Applying the Compact-depth method, instead of the

Depth-first method, on eleven examples resulted in appre-

ciable savings in execution time of up to 19.8%. Those

PLA examples with considerable saving in execution time

must have had many packed cubes that resulted in large

numbers of possible expansion directions.
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CHAPTER 7

SUMMARY AND CONCLUSION

7.1 Purpose of Thesis

The main goal was to improve PRONTO's implementation

to achieve a faster solution. To start with, the PRONTO

algorithm was evaluated and the major time-consuming pro-

cedures were identified. Moreover, the dominant time-

growth factors (i.e. the PLA characteristics having a

major effect on execution time) were identified. Then,

the more flexible and most time-consuming part of PRONTO

was subjected to different code implementations in an

attempt to find the fastest alternative.

7.2 Major Achievements

In this section a summary of the basic work is pre-

sented in the first two subsections. The third subsection

introduces some final modifications to PRONTO's code.

7.2.1 Processing Time Analysis

Execution time evaluation was the subject of Chapter

5. Each procedure was evaluated for its major time-growth

factor. An overall time-growth factor dominating the exe-

cution of PRONTO was found. Based on that dominant factor

and some experimental results, an estimate equation was
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pursued to relate execution time to the characteristics of

the original and the resulting PLA specifications. The

result was the following execution time estimate equation.

T = 1.307 * (Spec.nc * Soln.nc * no) 0.856

where (Spec.nc) is the number of product terms of the

original specification, (Soln.nc) is the number of product

terms of the resulting solution and (no) is the number of

output bits. This relation had a high correlation of

0.97 for the solution times of examples 1, 2, 3, 4, 5, 6,

10 and 11.

7.2.2 Base Product Expansion Alternatives

In Section .4.3 are described the results of moni-

toring PRONTO's major parts for time consumption. It was

found that procedure Tree consumed about 46% of total

execution time.

The main concern of Chapter 6 was to compare three

different implementations of the Tree algorithm; The

Depth-first expansion method, the Level-order method and

the Compact-depth method. The fastest method, which was

found to be the Compact-depth method, was chosen for the

final implementation of PRONTO. Experimental results

showed that the Compact-depth method, compared to the

Depth-first method, resulted in considerable time saving

which went up to about 19.5% for two PLA examples.
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7.2.3 Final Modifications to PRONTO

During the course of evaluating PRONTO, some

promising modifications for a faster implementation were

detected as presented below. Table 7.1 gives the execu-

tion times for eleven PLA examples obtained by three

different versions of PRONTO. Column 4 gives results of

PRONTO with the Depth-first expansion method. column 5

gives results of PRONTO with the Compact-depth method.

Column 6 represents the Compact-depth PRONTO version with

the changes presented below.

7.2.3.1 Procedure MergeCube

MergeCube was found to consume around 12% of the

total execution time. This considerable amount of time

makes any attempt to modify the procedure's implementation

worthwhile. As described in subsection 4.2.1, " MergeCube"

first compares the input parts of two cubes, and if found

equal the output parts are Ored together. Otherwise, the

output parts are then compared. It is noticed here that

if neither of the input parts cover the other, then the

two cubes are different and there is no need to perform

the output part comparison step. Therefore, a feasible

modification is to test if both input parts are not

covered by each other, by adding the following line:



Table 7.1

Execution Times by Three PRONTO Versions

Total Execution Time in CPU Units By Time Saving
by

Example
Spec.nc Soln.nc

PRONTO.I
(Depth-First
Expansion)

PRONTO.II
(Compact-Depth
Expansion)

PRONTO.III
(PRONTO.II
Modifications
of Sec. 7.2.3)

PRONTO.III
Vs.

PRONTO.I

1 22 12 774 715 627 19%

2 24 14 1,100 1,068 680 38%

3 33 18 1,906 1,901 1,211 36%

4 64 48 5,586 5,435 4,822 14%

5 38 24 2,839 2,483 1,966 31%
ISoln.nc=23)

6 56 39 10,374 8,832 8,098 22%

7 91 35 12,140 9,759 8,067 34%

8 173 56 52,911 42,445 33,897 36%

9 30 13 1,423 1,376 1,219 14%

10 49 32 4,670 4,297 3,946 16%

11 37 32 1,343 1,313 1,207 10%
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IF NOT (xley OR ylex) THEN Continue "JLOOP";

This change promises considerable time saving since cubes,

most often, differ in their input parts. This modifica-

tion was implemented in PRONTO's final version.

7.2.3.2 Procedure Update

As introduced in subsection 4.2.5, "Update" compares

each product term in the current solution array with the

terms that are covered by the chosen expanded term, in

order to delete from the array those terms that are equal.

Due to the low possibility of an expanded term covering a

product term of the solution array, it pays to restrict

the execution of this considerable part of Update. Since

procedure Covering tests the solution array for terms

covered by the expanded term, therefore it could flag

whether the corresponding part of "Update" should be

executed or not. This was done simply by setting a flag

in "Covering" and testing for it in "Update".

7.2.3.3 Procedure Donts.

An alternative Donts implementation was discussed in

subsection 4.2.4.1. It will be shown in the next section

that using this alternative resulted in considerable

saving in execution time.

The above three modifications were integrated in the
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final PRONTO version with the Compact-depth expansion

method. The results are shown in the 6th column of Table

7.1.

7.3 Conclusion

Implementations of optimal PLA reducers require large

amounts of memory and computation time. Therefore near-

optimal reducing methods are preferred for practical

applications and are expected to give good, fast results

using affordable memory space. PRONTO, following a one-

pass, direct heuristic approach, is a suboptimal reducer

that might prove to be very efficient for large, practical

PLAs. It was shown that PRONTO could result in consider-

able size reduction. Moreover, PLA examples were reduced

in an execution time that varied almost linearly with the

value of Spec.nc * Soln.nc*no (i.e. the product result of

the original number of product terms, the number of

resulting terms and the number of output bits). The most

important aspect of this observation is that actual execu-

tion time, for large-size PLAs, does not increase as dras-

tically as would execution time of optimal reducers. For

example, an optimal reducer generates all prime implicants

and then extracts a minimum prime cover. "The number of

prime implicants of a logic function with n input vari-

ables can be as large as 3n/n." (page 8, [BRAYT]).
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Suboptimal solution is the price paid by heuristic

methods for affordable usage of memory and computation

time. There will be some possible reductions that PRONTO

will not find, but most of the easy ones will be found

quickly. Fast, good results for practical problems are

encouraged by three PRONTO characteristics. First, PRONTO

attempts to expand only in promising expandable

directions. Second, PRONTO seeks to cover most cubes of

the remaining specification, and does not require the

primality of the expanded terms. Third, PRONTO's time

complexity depends monotonically on the number of product

terms in a solution, and therefore PLAs which yield the

most reduction also yield the quickest solutions.

The most time consuming part of PRONTO is procedure

Tree since, theoretically, it has an almost exponential

major time-growth factor (2n), where n represents the

number of possible expansion directions. Nevertheless,

this problem is kept under control by the restrictions

imposed on selecting the directions for expansion, and by

the nature of practical problems. Therefore, not many

product terms, on an average, are expected to be adjacent

to the base product term.

The 7th column of Table 7.1 shows that the cumulative

effect of attempts to speed up PRONTO resulted in as much

as 38% decrease in overall CPU time.
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7.4 Suggested Future Work

A major step to be taken from here is comparing

results obtained by PRONTO with results of other product-

term reducing algorithms; MINI, developed by S. J. Hong,

et al., [HONG], PRESTO, developed by A. Svoboda and

reported by Brown [BROWN] and ESPRESSO-II, developed by R.

K. Brayton, et al. [BRAYT]. Two things can be checked in

the above comparison, the size of the reduced PLA and the

execution time. The search objective might be to check

whether PRONTO is efficiently fast for large PLAs since

that was the idea behind its development.

The second suggestion would be to examine a new

implementation of the process of testing each expanded

term's validity. The current validation method sharps the

expanded term with the original specification and bases

the test on the result. This procedure might be very

expensive since in the process of performing the sharp

operation cube by cube the intermediate result might grow

and further complicate the process. An alternative imple-

mentation might check if the expanded term intersects the

complement array of the original specification. It is

expected to be a better method since invalidity is proved

at the first successful intersection, and the process is

stopped. Another point in favor of the new procedure is

that the majority of the expanded terms are nonvalid.
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But, still to be considered is the price of computing the

complement array.
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