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Natural selection, in its most basic form, is described as a process in which traits

increase or decrease in frequency depending on their fitness, and only the trait with

the highest fitness will remain in the population. Yet, populations rarely have a

single ‘optimal’ trait. The way natural selection maintains this observed variation

within populations has been a keen focus of evolutionary biologists. In the fol-

lowing chapters, I focus on how natural selection maintains a form of phenotypic

variation referred to as ‘partial migration’. Partial migration is the coexistence of

migratory and non-migratory phenotypes, and is found in a wide variety of taxa. I

find that some, but not all forms of density-dependent competition can lead to the

evolution and maintenance of partial migration (i.e., partial migration as an evo-

lutionarily stable strategy (ESS) and convergent stable strategy (CSS)). Whether

density-dependent competition allows for partial migration as an ESS and a CSS

depends on how it influences the relative fitnesses of the phenotypes. If compe-



tition changes the relative fitnesses in opposing directions, then it will allow for

partial migration. If it affects the relative fitnesses in the same direction, it will

not. I then apply these results to a fish species of conservation and commercial

concern: Oncorhynchus mykiss, or steelhead and rainbow trout. I demonstrate

how female steelhead and rainbow trout competing separately for spawning habi-

tat can still be subject to frequency-dependent selection and how this allows for

partial migration. The frequency-dependent selection also results in strong feed-

backs between survival and reproduction, which produces a non-linear response in

the migration propensity ESS and CSS. In practical terms, this means that con-

servation or management actions may not affect the population as expected, and

measuring the propensity for migration in wild populations is notoriously difficult.

To address this difficulty, I develop a method to measure the propensity for migra-

tion in wild populations that can be used to test the predicts I generated in the

two previous chapters. The method is called sex-ratio balancing and it relies on a

fundamental relationship between sex ratios and the propensity for migration. Sex

ratios are much easier to measure than the propensity for migration and the ease

of measurement makes this method valuable for studying many different partially

migratory taxa.
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Chapter 1 Introduction

At the center of evolutionary theory lies the idea of natural selection, in which traits

increase or decrease in frequency depending on their fitness, and only the trait with

the highest fitness will remain in the population. Despite this central idea, there

are many examples where multiple trait values coexist within populations, even

when they have different fitnesses. These are referred to by many names, including

‘dimorphisms’, ‘polyphenisms’, ‘discrete alternative phenotypes’, and ‘alternative

tactics’ (Gross 1996; Roff 2002; Stearns 1992), and they come in a variety of forms.

For example, some individuals have spines (Harvell 1984) or wings (Crespi 1986)

while other individuals within these groups do not. Some fight to attract mates

while others sneak for mates (Gross 1996). In perhaps the most dramatic case,

some may migrate while others do not (Chapman et al. 2011; Johnson and Gaines

1990; Lundberg 1988). The coexistence of migrants and non-migrants is known,

perhaps somewhat misleadingly, as partial migration (Chapman et al. 2011; Lack

1944). The ‘partial’ refers to the population and not the individual behavior.

Partial migration has been documented in a wide variety of taxa, from birds to

fish, as well as insects, mammals, amphibians, and reptiles (Table 2.1).

There are three main hypotheses for how natural selection leads to partial

migration, and phenotypic diversity in general. One is that environmental variation

causes parents to ‘spread the risk’, or hedge their bets’, by producing both migrant
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and non-migrant offspring because migrants will have higher fitness in some years

and non-migrants will have higher fitness in others (den Boer 1968; Gillespie 1974;

Slatkin 1974). A second hypothesis is that the fitness of each phenotype is greatest

when it is rare (i.e., at low frequency), and as such, balancing selection leads to the

mixture of phenotypes where their fitnesses are equal (Charnov 1993; Gromko 1977;

Kaitala et al. 1993; Lundberg 1987). This is generally referred to as ‘frequency-

dependent selection’, although it can arise through density-dependent competition

(Heino et al. 1998; Kokko 2007, 2011). A third hypothesis considers the effect

of individual variation, and proposes that an individual’s fitness depends on their

condition. Individuals adopt a phenotype based on what will maximize their fitness

given their condition. This is often referred to as a ‘conditional strategy’ (Gross

1996; Lundberg 1988) and is maintained by natural selection via the environmental

threshold model (Hazel et al. 2004).

Of the three hypotheses, the conditional strategy has received the most atten-

tion because there is considerable empirical data showing that migratory tendency

is influenced by individual condition and that one phenotype has higher fitness

than the other (Adriaensen and Dhondt 1990; Gillis et al. 2008; Grayson and

McLeod 2009; Ogonowski and Conway 2009; Olsson et al. 2006; Paez et al. 2011;

Skov et al. 2010). The frequency-dependent selection hypothesis has fallen out of

favor because there is little empirical evidence that the average fitness of migra-

tory and non-migratory phenotypes are equal (Chapman et al. 2011). Yet, there

are two reasons frequency-dependent selection may still be important. Density-

dependent competition is commonly observed, and there is evidence that it can
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lead to frequency-dependent selection. Kokko (2007, 2011) has shown this theoret-

ically for the prior residence effect, Berejikian et al. (2010) measured it empirically

in sneaker/fighter male salmon, as did Dijkstra et al. (2009) in red and blue color

morphs of a Lake Victoria cichlid. Additionally, the conditional strategy cannot

maintain partial migration alone if there are occasions when the less fit pheno-

type is more fit than the other (i.e., which phenotype has the higher fitness de-

pends on the circumstances). Under these circumstances frequency-dependent se-

lection is the most likely mechanism for maintaining partial migration (Repka and

Gross 1995). Therefore, frequency-dependent selection may be occurring through

density-dependent competition or may be playing an under appreciated role in the

conditional strategy, and it warrants further research.

My dissertation focuses on how density-dependent competition can lead to

frequency-dependent selection, thereby providing a mechanism by which natural

selection leads to and maintains partial migration. In the second chapter, I inves-

tigate how different forms of density-dependent competition during reproduction

can lead to the evolution and maintenance of partial migration. I identify four

forms of density-dependent competition that occur during reproduction and use

adaptive dynamics to derive equations for the predicted convergent stable strat-

egy (CSS) and an evolutionarily stable strategy (ESS). I find that not all forms

of competition lead to partial migration as a CSS and ESS and there are certain

conditions that are important. I also find that this system leads to feedbacks with

unexpected consequences.

In the third chapter, I apply the results from one of the forms of density-
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dependent competition to a fish species of commercial and conservation impor-

tance. Steelhead is the migrant form, and rainbow trout is the non-migrant form of

the species Oncorhynchus mykiss. I use simulations to show how density-dependent

competition leads to frequency dependent fitness in this species, and use the ESS

and CSS equation from the first chapter to predict how the migration propensity

may respond to changes in survival and reproduction.

In the fourth chapter, I propose a method for testing the predictions I made

in the two previous chapters. Many of the assumptions and predictions I make

require measuring migration propensity, but this is a very difficult thing to measure.

I present a new method, which relies on measuring sex ratios in the migrants and

residents, and which we refer to as ‘sex-ratio balancing’. Other methods require

estimating the number of migrants and non-migrants, which can be challenging at

best and impossible at worst. sex-ratio balancing uses sex ratio data that is easy

to collect and can be collected in a wide variety of species. This method has the

potential to provide important information to the study of partial migration and

to generate empirical data to test predictions of the first two chapters.
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Chapter 2 The Evolutionary Stability of Partial Migration Under

Different Forms of Density-Dependent Competition

Coauthors

A. Mohapatra, D. A. Lytle, P. De Leenheer

2.1 Introduction

The ways in which phenotypic variation is maintained in populations has been a

long standing question in the field of evolutionary ecology (Fisher 1930). An excel-

lent system to investigate the evolution and maintenance of phenotypic variation is

partial migration, which is the coexistence of migrant and non-migrant phenotypes

within a single population (Lack 1944; Lundberg 1987). Although most theoret-

ical investigations of partial migration have focused on birds (e.g, Kaitala et al.

1993; Kokko 2007; Lundberg 1987, 2013), recent work shows it is a wide-spread

phenomenon present in bats, mammals, fish, and insects (Table 2.1).

The evolution and maintenance of partial migration occurs by the process of

balancing selection, which requires that the fitnesses of both phenotypes are equal

(Kokko 2011).The fitnesses of both phenotypes can be equal, despite having vastly

different costs and benefits, if fitness depends on the frequency of migration in the
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population (Gromko 1977). Fitness depends on the frequency of migration because

it determines the local densities of migrants and non-migrants, that in turn deter-

mine the amount of density-dependent competition for resources (Kokko 2011). In

this way, density-dependent competition can be the basis of frequency-dependent

selection and ultimately the mechanism by which natural selection maintains mi-

gratory and non-migratory phenotypes (Heino et al. 1998).

Most theoretical work on the evolution and maintenance of partial migration

has focused on how fitness equality can occur because of density-dependent compe-

tition (Griswold et al. 2010; Kaitala et al. 1993; Kokko 2007, 2011; Lundberg 1987,

2013; Taylor and Norris 2007) Missing from this body of work is the process of evo-

lution itself. Whether the end point of natural selection will be at the point where

fitnesses are equal remains untested. There have also been no direct comparisons

of different forms of density-dependent competition to see what characteristics of

density-dependent competition allow for balancing selection and partial migration.

Density-dependent competition could take on many forms, and given the broad di-

versity of partially migratory species, we would expect it to. Yet, thus far the only

form of competition proven to result in balancing selection and partial migration

is when phenotypes compete only among their own phenoypte (De Leenheer et al.

2017).

To see what characteristics of density-dependent competition allow for balanc-

ing selection and partial migration we addressed the following three questions.

First, can we identify forms of density-dependent competition that are most com-

mon among partially migratory taxa? Second, which forms of density-dependent
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competition can lead to the evolution and maintenance of partial migration through

balancing selection, and which forms cannot? And, do the forms that lead to par-

tial migration have similar characteristics? Third, how might taxa experiencing

different forms of competition respond differently to changes in survival or repro-

duction, particularly in regards to climate and land use changes?

To answer these questions, we identified four complimentary forms of density-

dependent competition that are experienced by partially migratory populations

during reproduction, including those that share breeding habitat and those that

share only non-breeding habitat (Chapman et al. 2011; Griswold et al. 2010). We

focused on competition specifically during reproduction because migratory and

non-migratory phenotypes are often indistinguishable as juveniles, and as a result,

there are more observations of competition during reproduction.

We assessed which of the four forms lead to the evolution and maintenance of

partial migration using adaptive dynamics. Individuals migrate (or not) based on

their propensity for migration. This is a probability that ranges from zero to one.

The evolution of partial migration occurs if a migration propensity between zero

and one is a convergent stable strategy (CSS), and natural selection maintains that

migration propensity if it is an evolutionarily stable strategy (ESS). A migration

propensity that is both an ESS and a CSS is one of the strongest notions in adaptive

dynamics because not only can a strategy resist invasion by mutants (by being

an ESS), but the strategy value adopted by the population will also converge to

this strategy in the evolutionary process (i.e., by being a CSS; (Diekmann 2004).

We derive equations for the ESS and CSS migration propensities and use these
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equations to examine how sensitive the ESS and CSS values are to changes in

survival and reproduction characteristics (i.e., competition strength and number

of gametes). The ESS sensitives are directly relevant to predicting the future

adaptations to climate and land use change among partially migratory species.

2.2 Methods

2.2.1 Forms of competition

We searched the literature for records of partially migratory species and competi-

tive interactions they experience during reproduction. We found 58 species divided

among birds, reptiles, amphibians, mammals, fishes, and insects (Table 2.1). Data

and descriptions of competition during reproduction, as well as other life stages,

was quite limited. However, we used what information we found and identified

four general forms of density-dependent reproduction during competition (Figure

2.2). The four forms of density-dependent competition are as follows.

1. Within phenotype: migrants compete only with other migrants for a resource

and non-migrants compete only with non-migrants for a resource. This form

of competition occurs if migrant and non-migrant reproductive habitat differs

(i.e., they nest in different habitats), or reproduction occurs at different times

(i.e., migrants mate earlier than non-migrants).

2. Between phenotype: migrants and non-migrants compete for the same re-

source at the same time and neither has an advantage.
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3. Prior residence: non-migrants have an advantage over migrants during re-

production. This includes the prior residence effect’ (Kokko et al. 2006) in

which non-migrants are present on the reproductive habitat first and com-

pete only among themselves for habitat. Migrants arrive later and must

compete among themselves as well as with non-migrants. It also includes

cases in which non-migrants have a competitive advantage.

4. Migrant advantage: migrants have an advantage over non-migrants during

reproduction. This is the opposite of prior residence. Migrant advantage

could occur if migrants are more competitive than non-migrants such that

they only compete among themselves for a resource, but non-migrants must

compete among themselves and the migrants.

We identified species in each of these categories based on descriptions of their

mating behavior and resource use (Table 2.1). Generally, comparisons of mating

behavior and competition among and between phenotypes was limited, but we

were able to find some information.

2.2.2 Population model

To assess how each of these four forms of density-dependent competition does, or

does not, lead to the evolution and maintenance of partial migration, we represent

a general partially migratory population with a three stage Leslie matrix model.
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
x1(t+ 1)

xM(t+ 1)

xN(t+ 1)

 =


0 fM(zM(t)) fN(zN(t))

φsM 0 0

(1− φ)sN 0 0



x1(t)

xM(t)

xN(t)

 , (2.1)

where x1(t), xM(t) and xN(t) are abundances of juveniles, migrant adults and non-

migrant adults at time t, respectively (Figure 2.1). Both phenotypes contribute

to a common pool of juveniles that have a migration propensity of φ. Juveniles

become migrant with migration propensity φ and non-migrant with propensity

1−φ. Juveniles that become migrant survive to reproduction with a probability of

sM , and those that become non-migrant survive with a probability of sN . Survival

to reproduction is not affected by density-dependent competition in this model.

Reproduction is affected by density-dependent competition and is given by a

per-capita fertility function specific to each phenotype and form of competition

(fi(zi) with i = M or N). We use the Beverton-Holt function:

fi(z) =
ai

1 + biz
(2.2)

which is defined for all non-negative z, and parameterized by two positive param-

eters ai and bi. ai is the number of gametes (i.e., eggs or sperm) in the absence

of competition. bi controls the rate of decline of fi(z) and is a measure of the

intensity of competition. The important characteristics of the Beverton-Holt func-

tion are that total fertilities (zifi(zi)) increase with respect to zi, but per capita
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fertilities decrease with respect to zi, reflecting that increased abundances always

have a negative effect on reproduction. Our results and conclusions that follow

apply to any fertility functions that meet these characteristics. Other commonly

used fertility functions, such as Hassell’s function (De Leenheer et al. 2017) and

the density dependence used by Kaitala et al. (1993) satisfy these conditions, but

Ricker’s function does not (De Leenheer et al. 2017), nor do the linear functions

used by Kokko (2007) and Taylor and Norris (2007).

We represent the four forms of density-dependent competition mathematically

by switching between two possible arguments zi in each fertility function fi in

matrix 2.1:

Within phenotype: zM = xM and zN = xN (2.3)

Between phenotype: zM = xM + xN and zN = xM + xN (2.4)

Prior residence: zM = xM + xN and zN = xN (2.5)

Migrant advantage: zM = xM and zN = xM + xN (2.6)

We assume that both migrant and non-migrant phenotypes could exist in isola-

tion of one another (i.e., neither is a population sink). And, because of the density

dependence fertilities, both phenotypes would reach equilibrium in isolation. As a

result, we assume there exist two positive numbers x̂M and x̃N such that

sMfM(x̂M) = 1 = sNfN(x̃N). (2.7)
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Note that if these numbers exist, they are necessarily unique because the fi are

decreasing.

For each fixed migration propensity φ, the behavior of model 2.1, there exists a

unique nonzero fixed point x∗(φ) = (x∗1(φ), x∗M(φ), x∗N(φ)) which is globally stable

(De Leenheer et al. (2017), Appendix A). Moreover, in case of the extreme migra-

tion propensity φ = 1, which means that no offspring will become non-migrant, it

follows that

x∗M(1) = x̂M and x∗N(1) = 0.

This shows that x̂M represents the stable equilibrium abundance of migrants in

a population of only migrants. Similarly, when φ = 0, meaning that no offspring

become migrants, it follows that x∗M(0) = 0 and x∗N(0) = x̃N , and x̃N represents

the stable equilibrium abundance of non-migrants in a population only only non-

migrants.

Notice that when the equilibrium abundances of migrants and non-migrants

are positive, their ratio is given by:

x∗M(φ)

x∗N(φ)
=

φ

1− φ
sM
sN

x1(t)

x1(t)
(2.8)

x1(t) cancels, and inverting this formula provides us with a way to determine the

value of φ:

φ =

sN
sM

x∗N (φ)

x∗M (φ)
+ sN

sM

.

In other words, the migration propensity φ can be computed quite easily, if (1) the
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ratio of the equilibrium abundances of the two types is known, and (2) the ratio of

their survival probabilities is known. In particular, no knowledge of the per capita

fertilities is required.

Although this is a convenient and a very useful way to determine φ, it does not

explain why this particular value has been adopted as the migration propensity of

the population. We need additional analysis to learn whether this value of φ arises

from natural selection. For this we use adaptive dynamics. Partial migration

is said to occur when the migration propensity φ is strictly between zero and

one, and is maintained by natural selection as an evolutionarily stable strategy

(ESS) and convergent stable strategy (CSS), two central notions featuring in the

theory of adaptive dynamics which will be reviewed below. In contrast, when

the migration propensity φ takes either of its extreme values 0 or 1, and is also

maintained as an ESS and a CSS, partial migration does not occur. In these two

cases, evolution drives the population toward a purely non-migrant or migrant

composition, respectively.

2.2.3 Adaptive dynamics

We use adaptive dynamics (Diekmann 2004) to analyze whether partial migra-

tion is an ESS and a CSS under the four forms of density-dependent competition.

Adaptive dynamics is a method that allows us to mimic the process of natural

selection and see what the end point of natural selection would be. It starts with a

‘resident’ population containing individuals with a ‘resident’ migration propensity
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(φ). A genetic mutation occurs in one individual that gives it a different migra-

tion propensity (φ′), which is called the ‘mutant’. Adaptive dynamics determines

whether the mutant can successfully invade the resident population and ultimately

replace it. A migration propensity is an ESS if it cannot be invaded by mutants

with differing migration propensities (De Leenheer et al. 2017; Diekmann 2004),

and is denoted by φ∗. A migration propensity is a CSS if all mutant invasions

near φ∗ converge toward the φ∗ and not away from it. It is not always the case

that an ESS is a CSS, or vice versa. A migration propensity between zero and one

that is both an ESS and a CSS is the strongest theoretical evidence that adaptive

dynamics can provide for the evolution of partial migration.

To introduce a mutant phenotype into the resident population defined in equa-

tion 3.4, we consider a resident population that uses strategy value φ, and assume

invasion by a mutant population using strategy value φ′ 6= φ. The resulting dy-

namical population model takes the following form:

X(t+ 1) = A(X(t))X(t), (2.9)



15

where

X(t) =



resident egg abundance (x1(t))

resident migrant adult abundance (xM(t))

resident non-migrant adult abundance (xN(t))

mutant egg abundance (y1(t))

mutant migrant adult abundance (yM(t))

mutant non-migrant adult abundance (yN(t))


,

A(X(t)) =

A1(x(t) + y(t), φ) 0

0 A1(x(t) + y(t), φ′)


with

x =


x1

xM

xN

 , y =


y1

yM

yN

 ,

and

A1(x, φ) =


0 fM(zxM(t) + zyM(t)) fN(zxN(t) + zyN(t))

φsM 0 0

(1− φ)sN 0 0

 (2.10)

where (zxM , z
x
N) corresponds to one of the four forms of density-dependent com-

petition in the ’resident’ population whose abundance vector is x and migration

propensity is φ. (zyM , z
y
N) describes the same scenario but for the ’mutant’ popu-
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lation whose abundance vector is y and migration propensity is φ′.

We assume that the mutant appears as a single individual in the environment

occupied by the resident. Thus, the mutant will experience the same form of

density dependence as the resident phenotype. We also assume that the resident

population is at a stable equilibrium x∗(φ). Mathematically, we investigate this

model’s behavior near the fixed point (x, y) = (x∗(φ), 0). To determine whether

the mutant can invade and replace the resident, we determine the mutant’s fitness

in the environment occupied by the resident. A commonly used fitness measure

is the basic reproduction number, denoted as R0 (Allen and van den Driessche

2008), minus 1. The reason for subtracting one is that it makes fitness positive

if the mutant can successfully invade and replace the resident, and negative if it

cannot (Diekmann 2004). Linearizing the resident-mutant model (2.9) near the

relevant fixed point (x∗(φ), 0), it can be shown, as in De Leenheer et al. (2017),

that fitness, which we denote by W (φ, φ′), equals:

W (φ, φ′) = (φ′ − φ) [sMfM(z∗M(φ))− sNfN(z∗N(φ))]

where z∗M(φ) and z∗N(φ) denote the values of zM and zN , evaluated at the resident’s

equilibrium x∗(φ) described in the Methods section. This formula shows that the

sign of the fitness is equal to the product of the sign of φ′ − φ, and the sign of the

second factor in the square brackets. In particular, fitness will always be zero if

and only if φ′ = φ or the factor in the square brackets is zero. That fitness is zero

when φ′ = φ is not surprising because in this case the mutant is identical to the
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resident. Notice that the factor in the square brackets only depends on φ, but not

on φ′, and thus it is natural to determine those values of φ which make this factor

zero. Following the same arguments as in De Leenheer et al. (2017), by exploiting

that x∗(φ) is the stable nonzero equilibrium of 2.10 it can be shown that the factor

in the square brackets is zero if and only if

sMfM(z∗M(φ)) = 1 = sNfN(z∗M(φ)),

or equivalently, because the fertility functions fM and fN are decreasing, when

z∗M(φ) = x̂M (2.11)

z∗N(φ) = x̃N (2.12)

Depending on which of the four possible forms of competition is chosen, we can find

the values of φ which satisfy these two equations, and which identify when fitness

is zero. Once this is achieved, the mathematical analysis performed in Appendix

A. enables us to determine the sign of the fitness function W (φ, φ′) for all possible

combinations of resident and mutant migration propensity pairs (φ, φ′). The results

can be visualized with pairwise invasibility plots (PIPs; Figure 2.3). A PIP has the

resident migration propensity (φ) on the horizontal axis and the mutant migration

propensity (φ′) on the vertical axis. Resident and mutant migration propensities

are equal (φ = φ′) on the diagonal line. Regions where W (φ, φ′) > 0 are labeled

with a plus (+) and correspond to cases where mutants have positive fitness and
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can successfully ’invade’ the resident; regions with W (φ, φ′) < 0 are labeled with

a minus (-), and here, mutants have lower fitness and cannot invade the resident.

Whether the migration propensity is an ESS and/or CSS can be determined

on the basis of the PIP, as well as on the basis of the nonlinear stability analysis

performed in Appendix A. A resident migration propensity (φ∗) is an ESS if the

vertical line φ = φ∗ in the PIP is contained in a region where fitness is negative

(except on the diagonal where fitness is always zero). Unfortunately, this criterion

often fails, and instead we find a candidate ESS value φ∗, which corresponds to a

vertical line φ = φ∗ in the PIP where fitness is identically zero, i.e. which is such

that W (φ∗, φ′) = 0 for all φ′. A candidate ESS is a genuine ESS if (x∗(φ∗), 0) is

a stable fixed point for the resident-mutant model (2.9) for all φ′ 6= φ∗, and this

can be determined by performing a nonlinear stability analysis of that fixed point

(De Leenheer et al. 2017; Appendix A). A resident migration propensity φ∗ is a

CSS whenever the horizontal line through, but excluding the point (φ∗, φ∗), lies

within a positive region where the fitness function W is positive.

2.2.4 Sensitivities of ESS values

Once we calculated equations for φ∗ under each form of density-dependent com-

petition, we looked at how the value of φ∗ responded to changes in si, ai, and

bi, using arbitrary parameter values. Migrant parameter values were: sM = 0.6,

aM = 3.3, bM = 0.0002, and x̂M = 4900. Non-migrant parameter values were:

sN = 0.4, aN = 4, bN = 0.0002, and x̃N = 3000. To look at the effect of ai, we
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varied it between 0.0001 and 10, for the effect of bi we varied it between 1 ∗ 10−6

and 0.002, for the effect of si we varied it between 1 ∗ 10−6 and 1.

2.3 Results

Of the four different forms of density-dependent competition, within phenotype was

the only form for which partial migration was an ESS and a CSS in all conditions

(Figure 2.3). The between phenotype form never allowed for partial migration as

an ESS or CSS, whereas the prior residence and migrant advantage did under some

conditions. Specific results for each of the four forms of density dependence are as

follows.

1. Within phenotype: zM = xM and zN = xN .

In this case, (2.11)− (2.12) simplifies to

x∗M(φ) = x̂M and x∗N(φ) = x̃N ,

and since (2.8) must hold, it follows that there is a unique solution φ = φ∗

to these equations, where φ∗ is defined as:

φ∗ =

sN
sM

x̃N
x̂M

+ sN
sM

. (2.13)

Thus, in this case φ∗ is the only candidate ESS, and the nonlinear stability

analysis in Appendix A shows that it is a genuine ESS. The sign of W (φ, φ′)
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is summarized in Figure 2.3, and indicates that φ∗ is also a CSS.

2. Between phenotype: zM = xM + xN and zN = xM + xN .

In this case, (2.11)− (2.12) simplifies to

x∗M(φ) + x∗N(φ) = x̂M and x∗M(φ) + x∗N(φ) = x̃N ,

and if we make the mild and reasonable assumption that x̂M 6= x̃N , there are

no solutions to these equations. Thus, there are no candidate ESS values,

and the sign of W (φ, φ′) depends only on which of the 2 abundances is

bigger, x̂M or x̃N , see Figure 2.3. If x̂M > x̃N , then φ∗ = 1 is the unique

ESS/CSS. Similarly, if x̂M < x̃N , then φ∗ = 0 is the unique ESS/CSS. This

result expresses that when between phenotype density dependence occurs,

the phenotype that would perform best in isolation (i.e., achieves the highest

equilibrium abundance in isolation), will outperform the other phenotype

when both compete in the same environment.

3. Prior residence: zM = xM + xN and zN = xN .

In this case, (2.11)− (2.12) simplifies to

x∗M(φ) + x∗N(φ) = x̂M and x∗N(φ) = x̃N .

For these equations to have a positive solution (x∗M(φ), x∗N(φ)), there must

hold that x̂M > x̃N , and then we can use (2.8), to show that there is a unique
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solution φ = φ∗ with φ∗ defined as

φ∗ =

sN
sM

sN
sM

+ x̃N
x̂M−x̃N

. (2.14)

Thus, φ∗ is the unique candidate ESS in this case, and the nonlinear stability

analysis in Appendix A shows that φ∗ is a genuine ESS. The PIP in Figure

2.3 also indicates that φ∗ is a CSS.

On the other hand, if x̂M < x̃N , there are no solutions to the equations above,

and thus no candidate ESSs. In this case, φ∗ = 0 is the unique ESS/CSS.

4. Migrant advantage: zM = xM and zN = xM + xN .

The analysis of this scenario is analogous to that of prior residence, but

reverses the role of migrants and non-migrants: If x̃N > x̂M , there is a

unique ESS/CSS φ = φ∗, with

φ∗ =

sN
sM

sN
sM

+ x̃N−x̂M
x̂M

. (2.15)

If on the other hand, x̃N < x̂M , then φ∗ = 1 is the unique ESS/CSS. These

possibilities are summarized in the PIP in Figure 2.3.

We identified species that experience each of the different forms of density-

dependent competition (Figure 2.4). The response of φ∗ to changes in si, ai,

and bi were variable among the different forms of competition (Figure 2.5-2.7).

The response of the within phenotype φ∗ to all three parameters was non-linear.
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The rate of change was greatest at low parameter values, but then declined as

the parameter values increased. This indicates feedbacks for all three parameters.

The between phenotype φ∗ response was discontinuous and highlighted a threshold

parameter value controlled whether the population was all migrant or non-migrant.

The prior residence φ∗ response was also discontinuous because of the x̂M and x̃N

conditions. For each parameter value there was a threshold in which the φ∗ was all

non-migrant or partially migratory. Note, the φ∗ would never be equal to 1 (i.e., the

population could never be all migrant) under any parameter values. There were

values of ai and si for which migrants or non-migrants could no longer sustain

themselves in isolation. This is a condition required for our analyses (equation

2.7) and therefore we could not predict what would happen to the φ∗ for those

parameter values. φ∗ was most sensitive to changes in aN , sN and bM . The migrant

advantage φ∗ response was complimentary to the prior residence response. The

conditions of x̂M and x̃N led to discontinuous functions and for each parameter

value there was a threshold in which the φ∗ was all migrant or partially migratory.

φ∗ would never be equal to 0 (i.e., the population could never be all non-migrant)

under any parameter values. However, there were values of ai and si for which

migrants or non-migrants could no longer sustain themselves in isolation. This is

a condition required for our analyses (equation 2.7) and therefore we could not

predict what would happen to the φ∗ for those parameter values. φ∗ was most

sensitive to changes in aM , sM and bN .
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2.4 Discussion

There were three circumstances in which partial migration was an ESS and a

CSS: the within phenotype form in all conditions, the prior residence form when

x̂M > x̃N , and the migrant advantage form when x̂M < x̃N . These three cir-

cumstances have two characteristics in common. There was some value of φ in

which migrant and non-migrant fitnesses were equal and the relative fitnesses had

opposite responses to φ (i.e., one fitness increased while the other decreased).

There were also three circumstances in which a single phenotype was the ESS

and the CSS: the between phenotype form in all conditions, the prior residence

form when x̂M < x̃N , and the migrant advantage form when x̂M > x̃N . These three

circumstances have two opposite characteristics to those when partial migration

occurs. There was never a value of φ in which migrant and non-migrant fitnesses

were equal and the relative fitnesses had responded to φ in the same direction (i.e.,

the fitnesses both increased or decreased).

These characteristics are helpful for identifying other forms of density-dependent

competition and the circumstances that may (or may not) lead to balancing selec-

tion and partial migration. We analyzed four forms of density-dependent compe-

tition, but there are many others and they may occur at other life stages.

We were surprised that the only form that allowed for partial migration as an

ESS/CSS under all arrangements of x̂M and x̃N was the between phenotype form.

Under this form of competition, phenotypes do not compete directly for a shared

resource during reproduction, but competition in each is indirectly affected by the
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propensity for migration. If, for example, migration propensity is high, competition

among migrants will be high and, simultaneously, competition among non-migrants

will be low. This result has been demonstrated previously (De Leenheer et al.

2017), and has been shown to be a mechanism for equal fitness, or frequency-

dependent fitness (Taylor and Norris 2007). It is notable that this is true under

even extreme conditions, such as when migrants have a much better combination of

survival and fertility (i.e., x̂M >> x̃N). In such a circumstance, it seems reasonable

to ask: why allocate offspring to a phenotype that does so much worse than the

other? The answer is because there will always be some small density in which

non-migrants can achieve fitness equal to the migrants (or vice versa).

Prior residence is sufficient for partial migration as an ESS/CSS when x̂M > x̃N ,

but only non-migration is an ESS/CSS when x̂M < x̃N . Conversely, migrant ad-

vantage is sufficient for partial migration as an ESS/CSS when x̂M < x̃N , but

only migration is an ESS/CSS when x̂M > x̃N . The prior residence form has been

well studied, particularly in the bird literature, and has been clearly demonstrated

as a potential mechanism for partial migration (Kokko 2007, 2011; Kokko and

Lundberg 2001). Our results are notable because partial migration is not sim-

ply a continuum between complete migration and no migration, as other authors

have suggested (Chapman et al. 2011; Griswold et al. 2010; Taylor and Norris

2007). Instead, complete migration is never expected to evolve under this form of

competition. Using a different model and method, Kokko and Lundberg (2001)

found a slightly different result in that migration could be evolutionarily stable if

non-migration produced a sink population. Assessing the circumstance of a sink
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population (i.e., x̃N < 0) did not meet our initial conditions, so we cannot directly

compare to this result, however it indicates that there may be some additional

cases where complete migration could evolve. Populations experiencing migrant

advantage competition could be all migrant or partially migratory, but compete

non-migration is never expected to evolve. There are no other models to com-

pare with, but given the parallels with prior residence, it is possible that complete

non-migration could occur if migration was a sink (x̂M < 0).

The between phenotype form is the only form that was not sufficient for partial

migration under any conditions. Instead, the population was expected to be all

migrant or all non-migrant, depending on the relative values of x̂M and x̃N . Other

studies have noted that it alone cannot lead to equal fitnesses (Griswold et al. 2011;

Taylor and Norris 2007), but here we show that there are no cases for which partial

migration is an ESS or CSS. The reason for this is because between phenotype

competition does not lead to the negative frequency dependent fitness required for

balancing selection (equal fitnesses). The fitness of each phenotype depends on

the frequency of phenotypes, through its effect on the density, but the changes in

frequency have identical effects on the fitnesses. Therefore, the fitnesses of both

phenotypes increase or decrease together, they do not follow an opposite pattern.

Another way to express this is that between phenotype competition creates a one

dimensional feedback environment, whereas frequency dependence requires a two

(or more) dimensional feedback environment (Heino et al. 1998).

The between phenotype result does provide some insight into how some pop-

ulations may transition from completely non-migratory to completely migratory.
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Under this form of competition, a population simply has a threshold and whichever

phenotype has the higher fitness will dominate. If threshold conditions change, the

population would go through a period of transition during which migrant and non-

migrant individuals were present, but this coexistence would not be a stable state

and the population would eventually become only one phenotype or the other. This

threshold result, based on x̂M and x̃N , could be a useful way to describe a process

that ecologically could be quite complicated (Levey and Stiles 1992; Rappole and

Jones 2003).

The sensitivities of φ∗ to changes in si, ai, and bi were variable among the

different forms of competition, but all were non-linear. Because the responses are

non-linear, how a population responds will depend on its survival, gamete produc-

tion, and degree of competition values. For example, if a population experiencing

within phenotype competition has low migrant survival, an increase in migration

survival will rapidly increase the ESS migration propensity (Figure 2.5). If the pop-

ulation has high migrant survival, an increase in migration survival may have little

effect on the ESS migration propensity. This non-linear responses of migration

propensity to survival (as well as gamete production, and degree of competition)

are due to feed backs. As survival improves, competition during reproduction

increases and fertility declines. This feedback has really important implications

for management and conservation decisions. Improving survival seems like an ob-

vious choice as a conservation goal, however, if the ultimate goal is to produce

more migrants (as might be the case in a commercially important species, such

as steelhead), improving survival might not produce as many migrants as desired.
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The change in survival may need to be coupled with a decrease in competition to

achieve the desired result.

Populations with the prior residence form would be more sensitive to changes in

non-migrant survival and number of gametes than comparable changes to migrant

survival and number of gametes (Figure 2.5-2.6). They would also be more sensitive

to changes in migrant competition than non-migrant competition (Figure 2.7).

They are more sensitive in the sense that changes in those parameter values have

a greater effect on φ∗, but they also can lead to φ∗ values over the full range of

zero to one. The parameters to which they are less sensitive have a more limited

effect on φ∗. For example, changes to aN in a population with the prior residence

form would change its φ∗ from 0.9999 to 0. Changes to aM in that same population

would change its φ∗ from 0 to 0.8 only. The differences in sensitivities are important

information for conservation and management goals.

2.5 Conclusion

The four forms of density-dependent competition studied here cover a broad range

of reproductive dynamics and can provide a basis for generating predictions in a

wide range of taxa. Density-dependent competition during reproduction leads to

balancing selection and allows for partial migration when two conditions are met.

First, migrant and non-migrant fitnesses are equal at some migration propensity

and second, the relative fitnesses have an opposite responses to φ (i.e., one increases

while the other decreases). If these conditions are not met, balancing selection can-
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not occur, and instead a single phenotype will be the ESS and the CSS. Data on

competition between migratory and non-migratory phenotypes during reproduc-

tion, and at other life stages, is sparse. Given the important role of competition in

the evolution and maintenance of partial migration, gathering empirical data on

competition would provide valuable insights into how natural selection maintains

multiple phenotypes, such as partial migration, and would improve predictions of

how taxa may adapt to ongoing ecological changes.
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2.6 Figures

x1
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(1− φ)sN
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fM (zM )

fN (zN )

1

Figure 2.1: Population life cycle diagram for our general model of a partially migra-
tory species. Juveniles (J) become migrant with probability φ or non-migrant with
probability (1 − φ). Individuals that become migrant survive to adulthood with
probability sM and those that become non-migrants survive to adulthood with
probability sN . The number of juveniles produced is determined by a density-
dependent fertility function (fi(zi)) that characterizes competition during repro-
duction. All individuals are semelparous.
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Figure 2.2: The four forms of density-dependent competition are illustrated here.
Black standing geese represent non-migrants, the grey flying geese represent mi-
grants, and the nest represents a resource individuals compete for, such as nesting
habitats or mates. Within phenotype competition, in quadrant A, occurs when
migrants and non-migrants compete only within their phenotype for a resource.
Between phenotype competition, in quadrant B, occurs when migrants and non-
migrants compete for the same resource. Prior residence, in quadrant C, occurs
when non-migrants have the competitive advantage to migrants. This can occur
through the prior residence effect (Kokko et al. 2006) or through superior compet-
itive ability. Migrant advantage, in quadrant D, occurs when migrants have the
competitive advantage to non-migrants, which could occur because of arrival time
or competitive ability.
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Figure 2.3: Pairwise invisibility plots (PIP) for each of the four forms of competi-
tion. In each PIP the resident migration propensity (φ) is on the x-axis and the
mutant migration propensity (φ‘) is on the y-axis. The + sign, and grey coloring,
indicates invasion by the mutant, while the sign, and white coloring, indicates
the mutant cannot invade the resident. In all but the within-phenotype form, the
PIP depends on the conditions of x̂M and x̃N , which are the number of migrant or
non-migrant individuals in an all-migrant or all non-migrant population at popu-
lation equilibrium, respectively (equation 2.7). The PIPs were generated from the
mathematical proofs, not from specific parameter values.
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Within Phenotype

Female steelhead/
Rainbow trout

(Zimmerman and Reeves 2000)

Female Arctic charr
(Jonsson and Hindar 1982)

Female American dipper
(Morrissey 2004)

Prior Residence

Corys shearwaters
(Perez et al. 2013)

European Robin
(Tobias 1997)

European blackbird
(Lundberg 1985)

White-ruffed manakins
(Boyle et al. 2008)

Between Phenotype

Female red-spotted newts
(Grayson and McLeod 2009)

Female southern monarch
(Slager and Malcom 2015)

Migrant Advantage

Male Atlantic salmon
(Weir et al. 2012)

1

Figure 2.4: Examples of species that experience different forms of density-
dependent competition during reproduction. The list is not exhaustive and most
of these examples were inferred based on descriptions of the mating system.
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Figure 2.5: Responses of φ∗ to changes in migrant and non-migrant survival values
for each form of competition. Some φ∗ values are not possible because survival is
too low to sustain migrants or non-migrants in isolation (i.e., x̂M and x̃N are less
than zero).
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Figure 2.6: Responses of φ∗ to changes in migrant and non-migrant gamete pro-
duction (ai) for each form of competition. Some φ∗ values are not possible because
the gamete production is too low to sustain migrants or non-migrants in isolation
(i.e., x̂M and x̃N are less than zero).
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Figure 2.7: Responses of φ∗ to changes in the migrant and non-migrant competition
intensity (bi) for each form of competition. As long as bi > 0 there are no undefined
φ∗ values.
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2.7 Table

Table 2.1: Partially Migratory Taxa

Species References

Birds
Cory’s shearwater Calonectris diomedea Perez et al. (2013)
House finch Carpodacus mexicanus Able and Belthoff (1998)
American dipper Cinclus mexicanus Morrissey (2004)
White-ruffed manakins Corapipo altera Boyle (2008)
Yellow warbler Dendroica petechia Klein and Brown (1994)
European robin Erithacus rubecula Tobias (1997)
Dark-eyed junco Junco hyemalis Rabenold and Rabenold (1985)
Great bustards Otis tarda Alonso et al. (2000)
Blue tits Parus caeruleus Smith and Nilsson (1987)
Willow tits Poecile montanus Silverin et al. (1989)
Blackcaps Sylvia atricapilla Pulido et al. (1996)
European blackbird Turdus merula Lundberg (1985)
Tropical kingbird Tyrannus melancholicus Jahn et al. (2010)
Reptiles and Amphibians
Aldabra tortise Aldabrachelys gigantea Swingland and Lessells (1979)
Green turtles Chelonia mydas Mortimer and Carr (1987)
Red-spotted newt Notophthalmus viridescens Grayson and McLeod (2009)
Mammals
Moose Alces alces Ball et al. (2001)
Pronghorns Antilocapra americana Feldhamer et al. (2007)
Roe deer Capreolus capreolus Cagnacci et al. (2011)
Elk/Red deer Cervus elaphus Mysterud et al. (2011)
Sika deer Cervus nippon Sakuragi et al. (2003)
Wildebeest Conochaetes taurinus Fryxell et al. (1988)
Daubenton’s bat Myotis daubentonii Senior et al. (2005)
Mule deer Odocoileus hemionus Nicholson et al. (1997)
White-tailed deer Odocoileus virginianus Nelson and Mech (1991)
Tibetan antelope/Chiru Pantholops hodgsoni Schaller (1998)
African buffalo Syncerus caffer Naidoo et al. (2012)
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Table 2.3: Partially Migratory Taxa continued

Species References

Insects
Common green darners Anax junius May (2013)
Southern monarch Danaus erippus Slager and Malcolm (2015)
Fishes
Common bream Abramis brama Skov et al. (2011)
Black bream Acanthopagrus butcheri Gillanders et al. (2015)
Shortnose sturgeon Acipenser brevirostrum Dadswell (1979)
European eel Anguilla anguilla Tsukamoto et al. (1998)
Atlantic herring Clupea harengus Ruzzante et al. (2006)
Bear Lake sculpin Cottus extensus Neverman and Wurtsbaugh (1994)
Pike Esox lucius Engstedt et al. (2010)
Cod Gadus morhua Cote et al. (2004)
Three-spined stickleback Gasterosteus aculeatus Kitamura et al. (2006)
Humpback chub Gila cypha Yackulic et al. (2014)
Orange roughy Hoplostethus atlanticus Bell et al. (1992)
White perch Morone americana Kerr et al. (2009)
Cutthroat trout Oncorhynchus clarki clarki Trotter (1989)
Masu salmon O. masu Morita et al. (2014)
Rainbow trout/Steelhead O. mykiss Shapovalov and Taft (1954)
Sockeye salmon O. nerka Quinn (2005)
Chinook salmon O. tshawytscha Larsen et al. (2013)
Smelt Osmerus eperlanus Jonsson and Jonsson (1993)
Plaice Pluronectes platessa Dunn and Pawson (2002)
Zulega Prochilodus argenteus Godinho and Kynard (2006)
Spotted sorubim Pseudoplatystoma corruscans Godinho et al. (2007)
New Zealand smelt Retropinna retropinna Northcote and Ward (1985)
Roach Rutilus rutilus Skov et al. (2010)
Atlantic salmon Salmo salar Hutchings and Myers (1985)
Brown trout S. trutta Jonsson (1985)
Arctic charr Salvelinus alpinus Jonsson and Jonsson (2001)
Bull trout S. confluentus Nelson et al. (2002)
Brook trout S. fontinalis Morinville and Rasmussen (2003)
White-spotted charr S. leucomaenis Morita et al. (2009)
Spiny dogfish Squalus acanthius McFarlane and King (2003)
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Chapter 3 Evidence for Frequency-Dependent Selection in Female

Steelhead and Rainbow Trout

3.1 Introduction

Partial migration, the coexistence of migratory and resident phenotypes, is com-

mon among fishes, particularly the salmonids (Chapman et al. 2012; Table 2.1).

For evolutionary biologists through, salmonid partial migration is a perplexing

system. Natural selection is generally considered a process that selects the single

fittest phenotype, yet partial migration has two phenotypes, and often one appears

to have lower fitness. This is particularly true for female salmonids. Resident fe-

males are almost always smaller than migratory females and because fecundity is

proportional to body size, residents produce fewer eggs than migrants (Fleming

and Reynolds 2004; Jonsson and Jonsson 1993; Kendall et al. 2015; Thriault et al.

2007). In some cases this difference can be extreme, with residents having ten

times fewer eggs than migrants (Quinn et al. 2011; Schill et al. 2010). Resident

females are assumed to have lower fitness than migrants because of their lower

fecundity (Dodson et al. 2013; Satterthwaite et al. 2010). Although residency is

more common in males, female residency occurs at low frequencies in the vast

majority of salmonid species (see Dodson et al. (2013) for references). Predict-

ing how these partially migratory species may adapt to climate change, land use,
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management, and conservation actions is a high research priority for scientists and

fishery managers (Apgar et al. 2017; Benjamin et al. 2013; Hendry and Stearns

2004; Satterthwaite et al. 2009, 2010). But, before we can successfully predict

how salmonids will adapt to these pressures, we must first understand how partial

migration is maintained.

The two main hypotheses for how natural selection leads to and maintains

partial migration are frequency-dependent selection and the conditional strategy.

Frequency-dependent selection occurs when the fitness of each phenotype depends

on its frequency (Gromko 1977). If the fitness of each phenotype is greatest when

it is rare (i.e., at low frequency), balancing selection will lead to the mixture of

phenotypes where their fitnesses are equal (Charnov 1993; Kaitala et al. 1993;

Lundberg 1987). Although the name focuses on the frequency of phenotypes,

frequency-dependent selection can arise through density-dependent competition

(Heino et al. 1998; Kokko 2007, 2011). The conditional strategy hypothesis focuses

on the role of individual variation and proposes that individuals adopt a phenotype

based on which will maximize their fitness, given their condition (Gross 1996; Hazel

et al. 1990). This is sometimes referred to as ‘making the best of a bad situation’

because individuals with low condition can achieve a higher fitness by adopting

one phenotype over the other (Lundberg 1987). The threshold, also called the

switch point, determines the condition for which an individual should adopt one

phenotype or the other. The threshold is located where the theoretical fitness

functions of both phenotypes intersect (i.e., where the fitnesses of both types are

equal).
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Of these two hypotheses, the conditional strategy has received the most atten-

tion because there is considerable empirical data showing that migratory tendency

is influenced by individual condition (Olsson et al. 2006; Paez et al. 2011; Phillis

et al. 2016; Skov et al. 2010; Sloat et al. 2014). The frequency-dependent selection

hypothesis has received less attention since there is little empirical evidence that

the average fitness of migratory and non-migratory phenotypes are equal (Chap-

man et al. 2011), although the lack of evidence may simply be that calculating

fitness is a challenge and is very rarely done. Even without the empirical evidence,

there are two reasons frequency-dependent selection may still be important. First,

density-dependent competition is commonly observed (Berejikian et al. 2010; Di-

jkstra et al. 2009), and there is theoretical evidence that it can lead to frequency-

dependent selection (Heino et al. 1998; Kokko 2007, 2011). Additionally, if there

are occasions when the less fit phenotype is more fit than the other (i.e., which

phenotype has the higher fitness depends on the circumstances) the conditional

strategy cannot maintain partial migration alone (Repka and Gross 1995). Under

these circumstances frequency-dependent selection is the most likely mechanism

for maintaining partial migration (Repka and Gross 1995). Therefore, frequency-

dependent selection may be occurring through density-dependent competition or

may be playing an under-appreciated role in the conditional strategy. If either of

these is true, it may change predicted responses to future conditions, and thus, the

role of frequency-and density-dependence warrants further consideration.

One of the problems with considering frequency-dependent selection among

female migrants and residents is that it is difficult to conceptualize. Migratory
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females are bigger than resident females, so they use habitats with larger gravel

and deeper water (Clutton-Brock 2007; McMillan et al. 2015; Zimmerman and

Reeves 2000). This segregates the spawning habitats, and sometimes spawn tim-

ing, which means that they do not compete between each other for this shared

resource (Dodson et al. 2013). Competition for a shared resource is assumed to

be a critical component of frequency-dependent selection (Berejikian et al. 2010;

Dodson et al. 2013; Satterthwaite et al. 2010). However, recent theoretical work

(De Leenheer et al. 2017, Chapter 2 this dissertation) has shown that a shared

resource is not required for frequency-dependent selection and that competition

within a phenotype can be the mechanism by which natural selection maintains

partial migration.

In this paper we apply the recent theoretical findings of De Leenheer et al.

(2017) to females of the partially migratory salmonid Oncorhynchus mykiss, com-

monly known as steelhead and rainbow trout. Steelhead is the migratory (anadro-

mous) form and rainbow trout is the resident (freshwater) form of the species.

First, we illustrate how density-dependent competition for spawning habitat can

lead to frequency-dependent selection using a population simulation model. This

relationship leads to partial migration as an evolutionary stable strategy (ESS).

We then use the ESS equation derived by De Leenheer et al. (2017) to predict

how a population’s migration propensity may respond to changes in survival and

reproduction. De Leenheer et al. (2017) showed mathematically that competition

within phenotypes will always result in a migration propensity value between zero

and one as an evolutionarily stable strategy (ESS), as long as both phenotypes can
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sustain themselves independently (the definition of migration propensity is defined

below). An ESS refers to a migration propensity value that has higher fitness than

any other migration propensity arising by genetic mutation and competing in the

existing population (Diekmann (2004)). A migration propensity ESS between zero

and one will result in a partially migratory population. I predict how the ESS

will change under three example scenarios. The three scenarios are increased mi-

gratory survival from improved dam passage, decreased competition for spawning

habitat among rainbow trout due to additional spawning habitat from culvert re-

placements, and increased rainbow trout fecundity due to increases in latitude and

food resources. I predict that increased migratory survival will lead to a higher

ESS migration propensity, decreased competition for rainbow trout spawning habi-

tat will decrease the ESS migration propensity (i.e., shift the population to more

rainbow trout), and increased rainbow trout size and fecundity will also decrease

the ESS migration propensity.

3.2 Methods

3.2.1 Frequency-dependent selection

Recall that frequency-dependent selection is defined as a process of selection in

which the fitness of each tactic depends on the frequencies of the tactics (Gromko

1977). To determine whether female O. mykiss experience frequency-dependent

selection, my approach was to calculate individual fitnesses in populations with



43

different frequencies of steelhead and rainbow trout and determine whether fitness

depends on the frequencies.

I assumed that each individual has some ‘migration propensity’, denoted by the

greek letter φ. This is the individual trait under selection. It can be thought of

as an individual probability in the same way that the threshold in the conditional

strategy model results in an individual probability for migration (Hazel et al. 1990).

The probability ranges from zero to one, zero meaning there is no propensity for

migration and all juveniles become rainbow trout, one meaning there is 100%

propensity for migration and all juveniles become steelhead, and a value between

zero and one meaning each juvenile has some probability of becoming a steelhead or

rainbow trout. Notice that even though the migration propensity is an individual

trait, it has population-level consequences. Individuals with migration propensities

that equal zero or one lead to populations that are all steelhead or all rainbow

trout, respectively. Individuals with migration propensities that are between zero

and one lead to populations with a mixture of steelhead and rainbow trout.

In this context, migration propensity is the heritable component of the life

history strategy. Steelhead offspring do not inherit genes to strictly migrate, they

inherit a migration propensity. Likewise for rainbow trout. A population will have

a single average migration propensity (i.e., steelhead and rainbow trout as tactics

within a single strategy (Gross 1996; Hazel et al. 1990)).

Individual fitness is defined as lifetime reproductive success, which is the ex-

pected number of female eggs produced by a single female over her lifetime, and is

denoted by R0 (Caswell 2000; Roff 1996). Steelhead and rainbow trout each have
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their own Ri
0 value, where i = S or R for steelhead and rainbow trout, respec-

tively. Lifetime reproductive success (Ri
0) is calculated as the product of survival

to reproduction (si) and the number of offspring produced (fi(xi); De Leenheer

et al. (2017)). Steelhead and rainbow trout fitnesses are given by:

RS
0 = sSfS(xS), (3.1)

RR
0 = sRfR(xR). (3.2)

I assume that survival to reproduction (si) is a long-term average, so survival

values for steelhead and rainbow trout are constant in this model. I assume that

the number of surviving offspring (fi(xi)) depends on competition for spawning

habitat within a tactic. Steelhead and rainbow trout females use different sized

gravel and water depths for spawning (Clutton-Brock 2007; McMillan et al. 2015;

Zimmerman and Reeves 2000), and as such, there is only intraspecific competition.

Competition is modeled with a Beverton-Holt function:

fi(z) =
ai

1 + bixi
, (3.3)

where i = S or R for steelhead and rainbow trout, respectively, ai is fecundity

(i.e., the number of eggs) in the absence of competition, and bi is a measure of the

intensity of competition and the rate of fertility decline, and xi is the number of

steelhead or rainbow trout adults competing for redd habitat (Figure 3.1).

Notice that because fertility depends on the number adults, fitness also depends

on the number of adults. Therefore, to calculate the fitnesses in populations with
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different propensities for migration, I need to know the number of adults in each

of these populations. This is achieved with a stage-structured population matrix

model (Figure 3.2).

The population is represented by a three stage Leslie matrix model


x1(t+ 1)

xS(t+ 1)

xR(t+ 1)

 =


0 fS(xS) fR(xR)

φsS 0 0

(1− φ)sR 0 0



x1(t)

xM(t)

xN(t)

 , (3.4)

where x1(t), xS(t) and xR(t) represent the abundances of juveniles, steelhead

adults, and rainbow trout adults, respectively, at time t. Steelhead and rainbow

trout contribute to a common pool of juveniles (x1(t)) and all juveniles have the

same propensity to migrate (φ). This individual propensity to migrate results in

a fraction equal to φ becoming steelhead and the complimentary fraction (1 − φ)

becoming rainbow trout. Juveniles that become steelhead survive to adulthood

with a probability sS, and juveniles that become rainbow trout survive to adult-

hood with a probability sR. Steelhead and rainbow reproduction is given by the

tactic-specific density-dependent fertility function (equation 3.3).

This matrix model (equation 3.4) allows me to project the population size at

any given time. The population will always reach an asymptotic size, known as

population equilibrium, because of the density dependence in the model. To calcu-

late and compare the fitnesses of populations with different migration propensities,

I need to project the number of steelhead and rainbow trout at population equi-

librium in populations with different values of migration propensity (φ). I do this
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by using parameter values from (Table 3.1).

I used values of steelhead survival to reproduction that were ten times lower

than rainbow survival to reproduction because I assume ocean migration causes

higher mortality. I used values of fecundity that were 30 times greater for steelhead

because of their larger body size. These values are generally based on values found

in the literature (Quinn 2005). I used values of rainbow competition that were ten

times lower than steelhead to represent a greater amount of spawning habitat for

rainbow trout

I calculated the population equilibrium for populations with φ values ranging

from zero to one, on intervals of 0.01, for a total of 101 populations. I defined

population equilibrium as the population size when the dominant eigenvalue of the

matrix (equation 3.4) equaled one for ten consecutive generations. The population

size was the sum of juveniles, adult steelhead, and adult rainbow trout. The

numbers of adult steelhead and rainbow trout were used to calculate the fertilities

and fitnesses in 101 different populations, each with a different φ value.

3.2.2 Predictions based on evolutionarily stable strategy concept

We use the ESS equation derived by De Leenheer et al. (2017) to predict how

a population’s migration propensity may respond to three scenarios that change

survival and reproduction. The ESS migration propensity is assigned the symbol
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φ∗ and is given by the equation:

φ∗ =

sR
sS

x̃R
x̂S

+ sR
sS

, (3.5)

where sS and sR are the survival to reproduction values for steelhead and rainbow

trout, respectively, x̂S is the number of steelhead in a population with a migration

propensity of one (φ = 1; i.e., completely steelhead), and x̃R is the number of

rainbow trout in a population with φ = 0 (i.e., all individuals are rainbow trout).

x̂S and x̃R are given by the equations:

x̂S =
aSsS − 1

bS
(3.6)

x̃R =
aRsR − 1

bR
, (3.7)

The ESS is globally stable and represents the migration propensity expected at

the end point of natural selection. Notice that φ∗ will always be a value between

zero and one as long as both survival values, x̂S, and x̃R are greater than zero.

The ESS occurs at the migration propensity where the fitnesses of each tactic are

equal (Figure 3.5).

I use equation 3.5 to predict how the ESS migration propensity (φ∗) will re-

spond to increased migratory survival (sS) from improved dam passage, decreased

competition for spawning habitat among rainbow trout (bR) due to additional

spawning habitat from culvert replacements, and increased rainbow trout size and

fecundity (aR) due to increases in latitude and food resources. I used the param-
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eter values in Table 3.1 as an example population and independently varied sS,

bR, and aR to assess its affect on φ∗. We varied sS between 0 and 1, bR between

1 ∗ 10−6 and 0.4, and aR between 0.1 and 4,000.

3.3 Results

The numbers of steelhead and rainbow trout in a population were determined by

the migration propensity of the population. Populations with a high migration

propensity had a greater number of steelhead, whereas populations with a low

migration propensity had a greater number of rainbow trout (Figure 3.3). Be-

cause migration propensity affected the number of steelhead and rainbow trout, it

affected their fertilities (Figure 3.1), and their fitnesses (Figure 3.5).

At low migration propensities, steelhead had relatively higher fitness, whereas

at high migration propensities, rainbow trout had relatively higher fitness. The

opposing directions of the relative fitnesses are evidence for frequency-dependent

fitness and frequency-dependent selection. The intersection of the fitness curves is

the expected value of migration propensity, or the evolutionarily stable strategy

(ESS) migration propensity. It is notable that the migration propensity was not

equal, or proportional, to the fraction of steelhead and rainbow adults, except

when φ = 0 or 1 (Figure 3.6).

The ESS migration propensity (φ∗) was more sensitive to changes in rainbow

trout competition (bR) than to changes in rainbow trout fecundity (aR) or steelhead

survival (sS, Figure 3.7). Changes in fecundity and competition produced the full
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spectrum of φ∗ values, meaning φ∗ ranged from approximately zero to one, although

they never equal zero or one exactly. In contrast, φ∗ reached an asymptotic value

near 0.75 once survival increased above 0.002. The ESS migration propensity (φ∗)

of the example population parameters equaled 0.76 and is denoted with a circle on

the plots as a point of comparison. We found that the ESS migration propensity

(φ∗) responded to survival and reproduction in the direction predicted, but all

responses were non-linear, meaning the magnitude of response depended on the

initial population. Our predictions were that increased migratory survival would

lead to a higher ESS migration propensity (φ∗), decreased competition for rainbow

trout spawning habitat would decrease the ESS migration propensity (i.e., shift the

population to more rainbow trout), and increased rainbow trout size and fecunditiy

would also decrease the ESS migration propensity.

3.4 Discussion

In this paper we sought to answer whether partial migration in female steelhead

and rainbow trout could be maintained by frequency-dependent selection. The

answer is yes, but frequency dependence arises in an unexpected way and requires

some explanation. Frequency-dependent selection occurs when fitnesses vary as

functions of the frequencies of tactics in the population and the rare tactic has the

highest fitness (Gromko 1977). Implicit in this definition is that the number of

individuals within each tactic cannot be independent. When the number of one

goes up, the other must come down. One way to think of this is that there are
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a fixed number of offspring that can be allocated to each tactic. For example, a

clutch of 100 eggs could be allocated to steelhead or rainbow trout. Anytime more

eggs are allocated to steelhead, fewer eggs must be allocated to rainbow trout.

It is the same with migration propensity. Any time individuals have a higher

migration propensity, fewer individuals will be rainbow trout. The fitnesses vary

because of density-dependent competition for spawning habitat. Steelhead and

rainbow trout fertilities decline as competition increases. The greater number of

steelhead or rainbow in the habitat, the lower the per capita fertility. Steelhead

and rainbow trout spawn in different habitats, so the number of steelhead do not

directly affect rainbow trout fertility (or fitness), and vice versa. However, the

fertility (and fitness) of each is indirectly affected by the number of the other,

because a low migration propensity will mean a low number of steelhead but a

high number of rainbow trout. A high migration propensity will mean a high

number of steelhead and a low number of rainbow trout. As a result, the fitnesses

do depend, albiet indirectly, on the frequency of steelhead (which is determined

by the propensity of migration) and fitness is higher for the rare tactic (because of

the density dependence). These two factors together lead to frequency-dependent

selection. Similar results and conclusions appear in theoretical literature, but these

are focused on the prior residence effect in partially migratory birds (Kaitala et al.

1993; Kokko 2007, 2011) and theoretical multidimensional environments (Heino

et al. 1998).

That female O. mykiss should experience frequency-dependent selection is not

obvious for two reasons. The first is that females do not compete for a shared
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resource, so the density-dependent competition that affects the fertility of one phe-

notype does not directly affect the competition and fertility of the other (Clutton-

Brock 2007; McMillan et al. 2015; Zimmerman and Reeves 2000). This is why

negative frequency dependent selection is an often cited phenomenon in male O.

mykiss, but not in females (Dodson et al. 2013; Satterthwaite et al. 2009). Second,

the terminology itself is confusing. Does frequency refer to the juvenile or adult life

stage and which is important for the selection? In female O. mykiss, and in other

species that rely on a threshold trait (Roff 1996), the frequency at reproduction

influences fitness, but the trait that determines the frequency, which is the trait

under selection, is expressed at the juvenile stage. Therefore, even though fitness

depends on the frequency of adult tactics, it is really the frequency during the

juvenile stage that is important because it is the trait under selection.

This result highlights an important point about the term ‘frequency’ and the

life stage at which selection occurs. Even though selection would favor the rare

adult tactic during reproduction, it couldn’t act on the frequency of steelhead

directly because it is not a trait. Selection must act on the trait responsible for

the frequency of steelhead, which is the migration propensity.

An important observation was that the migration propensity and the frequency

of adult steelhead are not equal unless φ = 0 or 1 (Figure 3.6). The reason is

because the numbers of adult steelhead and rainbow trout are affected by the mi-

gration propensity as well as the number of juveniles allocated by the migration

propensity. This is important because the frequency of adult steelhead is what is

most easily measured, yet it provides no information about the migration propen-
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sity ESS value. If the goal is to measure the ESS, then it must be measured at the

point of ‘decision’. The method of sex-ratio balancing that I describe in Chapter

4 is an example of a method that would estimate the ESS migration propensity.

That female O. mykiss experience frequency-dependent selection can be applied

to predict how populations may adapt to altered environments. We considered the

three scenarios of altered environments that included increased migratory survival

from improved dam passage, decreased competition for spawning habitat among

rainbow trout due to additional spawning habitat from culvert replacements, and

increased rainbow trout size and fecundity due to increases in latitude and food

resources. In all three scenarios our predicted direction of response matched the

modeled direction of response, however the magnitude of change was unexpected

(Figure 3.7). Changes to all three parameters (steelhead migratory survival, rain-

bow fecundity, rainbow competition intensity) resulted in non-linear responses of

the ESS migration propensity (φ∗), meaning the magnitude of response depends on

the initial population ESS value. One example is steelhead survival. If a popula-

tion has survival and reproduction values such that its ESS migration propensity of

0.76 (indicated by the circle in Figure 3.7), increases in steelhead survival will have

effectively no change on the ESS migration propensity. This is because of the feed-

backs from the density-dependent competition and resulting frequency-dependent

fitness. If steelhead survival increases, there will be more steelhead, but there will

also be more steelhead competing for spawning habitat. This increased competi-

tion will decrease fertility and fitness. Therefore, a migration propensity does not

improve fitness and would not be selected for.
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These predicted responses have important implications for conservation and

management. It is often assumed that increases in migration survival will lead to

adaptations that make more steelhead (likewise, decreases in migration survival

will lead to more rainbow trout). This may be true on the short-term, but our

results indicate that long-term adaptations will not follow this pattern. An in-

teresting consideration is how the survival and reproduction responses may act

in combination. Changes that affect survival may also affect size or competition

strength, and these interactions will have unique effects on the migration propen-

sity ESS. This would be an interesting area of research, and we encourage a further

look at this question.

Frequency-dependent fitness has not been included in previous O. mykiss mod-

els. Three studies have used a conditional strategy framework from Satterthwaite

et al. (2009) to predict how O. mykiss will respond to changes in water tempera-

ture, food resources, and survival (Benjamin et al. 2013; Satterthwaite et al. 2010).

Each found evidence that populations could become completely steelhead, or com-

pletely rainbow trout, depending on the growth and survival conditions. However,

the framework does not include frequency- or density-dependencies, and our re-

sults indicate these dependencies can create important feedbacks that may change

the outcomes. Adding density-dependent competition into the Satterthwaite et al.

(2009) model would be an interesting study.

In conclusion, density-dependent competition and frequency-dependent selec-

tion likely play important roles in maintaining partial migration in female O.

mykiss. The conditional strategy has taken center stage in the O. mykiss liter-
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ature, but we have shown that frequency-dependent selection is a likely product

of the density-dependent competition for spawning habitat. Frequency-dependent

selection leads to feedbacks between survival, reproduction, and migration propen-

sity that should be considered in future models.
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3.5 Figures
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Figure 3.1: The per capita fertilities of steelhead and rainbow are Beverton-Holt
functions that decline as the number of adult steelhead and rainbow competing
for spawning habitat increases (equation 3.3). These plots were drawn using the
parameters in Table 3.1. Steelhead and rainbow trout fertility in the absence
of competition (xi = 0) is equivalent to fecundity (ai). The rate of decline is
determined by the parameter bi.
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Figure 3.2: Population life cycle diagram for our general model of a partially
migratory species. Juveniles (x1) have a propensity for migration φ and become
steelhead with a probability of φ or rainbow trout with a probability of (1 −
φ). Juveniles that become steelhead survive to reproduction with probability sM
and those that become rainbow trout survive to reproduction with probability
sN . The number of juveniles produced by each tactic is determined by a density-
dependent fertility function (fi(xi)), where i = S or R for steelhead or rainbow
trout, respectively. All individuals are semelparous in this model.
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Figure 3.3: The number of adult steelhead and rainbow trout in populations that
have migration propensities ranging from zero to one. As the population migra-
tion propensity approaches one, more juveniles become steelhead and the number
of steelhead adults increases. Conversely, as the migration propensity approaches
zero, more juveniles become rainbow and the number of rainbow adults increases.
The highest number of steelhead and rainbow trout occurs at a migration propen-
sity that greatly favors their tactic, but also produces some of the opposite tactic.
Offspring of the opposite tactic boosts their numbers. The white circle at φ = 0.76
is the evolutionary stable strategy (φ∗) of the example parameters. Notice that
the ESS is not located at the highest population size.
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Figure 3.4: Steelhead and rainbow trout fertility (fi(xi)) as a function of migration
propensity (φ). The y-axis is truncated at 300 so we can see the patterns at low
fertilities. Steelhead fertility is highest when migration propensity is zero (which
is not shown, steelhead fertility maxes out at 3000 when φ = 0), whereas rainbow
trout fertility is highest when migration propensity is one. The slight increase
in steelhead fertility at φ = 1 and rainbow trout fertility at φ = 0 is surprising
because this should be the point maximum density dependence. Instead, maximum
density dependence occurs nearby because additional offspring are generated by
the opposite tactic. For example, at φ = 0.98 some juveniles become rainbow
trout, whom produce juveniles that become steelhead. This is illustrated in Figure
3.3. The white circles at φ = 0.76 mark the evolutionary stable strategy (φ∗) of
the example parameters.
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Figure 3.5: Steelhead and rainbow fitnesses (Ri
0) depend on the migration propen-

sity of the population (φ). Fitness is highest for steelhead when the migration
propensity is zero and fitness is highest for rainbow trout when the migration
propensity is one. This is in-line with the commonly made statement that ”fitness
is highest for the rare tactic”, except a more accurate description is that fitness is
highest for the tactic with the lowest propensity of expression. The white circle is
located at the ESS (φ∗) of the example parameters in Table 3.1.
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Figure 3.6: The frequency of steelhead (i.e., the proportion of steelhead adults
in the population) is associated with the propensity for migration, but it is not
a linear relationship. The diagonal line denotes where the frequency of steelhead
equals the migration propensity. The frequency of steelhead is always lower than
the propensity for migration because steelhead survival to reproduction is lower
than rainbow trout survival to reproduction. The white circle is located at the ESS
(φ∗) of the example parameters in Table 3.1. Note that at a migration propensity
of 0.76, the frequency of adult steelhead in the population is only 0.24.
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Figure 3.7: Survival (si), spawning competition (bi), and fecundity (ai) influence
the migration propensity ESS (φ∗) in different ways. φ∗ is more sensitive to changes
in competition and fecundity in this example. The white circles are located at the
ESS (φ∗) for the example parameters in Table 3.1.
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3.6 Table

Table 3.1: Parameter values to illustrate steelhead and rainbow trout partial mi-
gration as an ESS

Steelhead Rainbow

Survival (si) 0.01 0.1
Fecundity (ai) 3000 100
Competition Intensity (bi) 0.2 0.02



63

Chapter 4 Estimating the Proportion of Migrants and Residents

in Partially Migratory Species Using Sex-ratio balancing

Coauthors

C. E. Jordan, A. I. Gitelman, D. A. Lytle

4.1 Introduction

Sex-biased movement patterns are common among migratory, partially migra-

tory, and dispersing taxa (Dodson et al. 2013; Lawson Handley and Perrin 2007;

McGuire and Boyle 2013). In these cases, one sex will migrate or disperse at a

greater frequency than the other (e.g., Belthoff and Gauthreaux Jr 1991; Grayson

and Wilbur 2009; Koizumi et al. 2006; Ohms et al. 2013), or the sexes will differen-

tially select seasonal habitats (e.g., Kelly 1998; Ketterson and Nolan 1976; Kjelln

1994). Sex-specific migration and dispersal patterns lead to differences in survival

(Johnson and Gaines 1990; Lucas et al. 1994), mating opportunities (Chapman

et al. 2011), habitat use (Chapman et al. 2011), and selective pressures (Ronce

2007), which influence the genetics (Clobert et al. 2001; Wright 1969), mating

systems (Lawson Handley and Perrin 2007), ecosystem dynamics (Chapman et al.

2011), and demographics (Clobert et al. 2001) of the population.
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The effects of the sex-biased dispersal are additionally dependent on the overall

proportion of migrants or dispersers in the population. For example, if the migrant

sex ratio becomes more female biased, it is assumed that competition for migrant-

specific breeding sites increases. However, if the overall proportion of migrants

is low, a change in the migrant sex ratio may have a relatively small effect on

migrant-specific competition for breeding sites. If the proportion of migrants is

high, an increase in female migrants may lead to large changes in migrant-specific

competition (Ohms et al. 2013). Despite this important interplay between the

proportion of migrants/dispersers and sex-biased migration/dispersal, it is often

ignored. The two main reasons for this are that the relationship between sex-

biased movement and the proportion of migrants or dispersers has never been

quantitatively defined, and empirical estimates of the proportion of migrants or

dispersers in a population are difficult to collect and are thus rare.

In this paper, we address these issues by defining the relationship between sex-

biased movement and the proportion of migrants or dispersers, and demonstrate

how this relationship can be used as a method to estimate the proportion of mi-

grants or dispersers. To our knowledge, there is no formally defined quantitative

relationship between sex-biased movement and the proportion of migrants or dis-

persers. Our relationship and method are referred to as ‘sex-ratio balancing’. The

general form of sex-ratio balancing makes it applicable to migration, partial mi-

gration, and dispersal, but for illustrative purposes we focus on partial migration.

Partial migration is the phenomenon in which some individuals of a breeding popu-

lation migrate seasonally to nonbreeding areas while others individuals of the same
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population remain resident year-round (Chapman et al. 2011; Lack 1944). Partial

migration is found throughout the animal kingdom and has been an important

trait for understanding the evolutionary mechanisms that lead to coexistence of

multiple life-history tactics (Cohen 1967; Kaitala et al. 1993; Lundberg 1987, 1988;

Taylor and Norris 2007). Unfortunately, most of this work remains untested be-

cause of the methodological challenges associated with estimating the proportion

of migrants.

Empirical estimates of the proportion of migrants require accurate counts of

both migrants and residents, which are difficult to obtain. Organisms often migrate

during seasons in which observation or capture is challenging, if not impossible

(e.g., salmon migrate during seasonal floods; Quinn 2005), migrants and residents

can be morphologically indistinguishable prior to migration, migration often takes

place over large spatial scales, and sampling accuracy for migrants and residents

can differ such that estimates are not comparable. Migration and partial migra-

tion research has employed a variety of tagging and tracking methods (Mysterud

et al. 2011; Perez et al. 2013; Rikardsen and Elliott 2000), which can be effective

in some cases, but remain time consuming and expensive. Retrospective analyses

(e.g., fish otolith analysis; Gillanders et al. 2015) or proxies of migration (e.g., the

presence or absence of marine parasites on an adult fish; Kristoffersen et al. 1994)

are also used, however these methods are system-specific and assessing their accu-

racy is difficult. These methodological challenges hinder research on the complex

consequences of sex-biased migration and the evolutionary mechanisms that lead

to partial migration and demonstrate the need for improved methods.
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Here, we first lay out the conceptual framework for the relationship between

sex-biased partial migration and the proportion of migrants, then define this rela-

tionship quantitatively. This relationship is referred to as sex-ratio balancing, and

we demonstrate how it can be used to estimate the proportion of migrants using

sex ratio measurements from the migrant and resident groups. We use a Bayesian

approach to develop confidence bounds for the estimates, and extend the model

by relaxing assumptions of age structure and equal mortality rates. Finally, the

utility of sex-ratio balancing is demonstrated with examples from three different

partially migratory taxa.

4.2 The Conceptual Model

Consider a population of partial migrants in which migrant and resident adults

have offspring that become either migrant or resident. The sex ratio at birth is

assumed to be 1:1 (male:female), and because we assume no sex-specific mortality

at this stage, the sex ratio of juveniles is also 1:1. Some fraction of the juveniles

become migrants and the remainder become residents. The fraction that becomes

migrant is female biased and the fraction that becomes resident is male biased.

We again assume there is no sex-specific mortality at the transition from juvenile

to migrant or resident. Although there is now sex bias in the migrant and resident

groups, the population-level sex ratio remains at 1:1. Because there is a limited

number of males and females that can be assigned to each group, the sex bias in

each group, and the relative proportion of the population assigned to each group,
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are related.

This relationship is illustrated in Figure 4.1 using three scenarios. Each of the

three scenarios begins with a 1:1 juvenile sex ratio. The proportion of the popula-

tion assigned to the resident and migrant groups is different in each scenario, but

the migrant sex ratio remains constant (i.e., 1:3). Because the relative proportion

assigned to the resident and migrant groups changes in each scenario, the resident

sex ratios are forced to change. It is this relationship between the sex ratios and

proportion of migrants that leads to sex-ratio balancing as a method.

4.3 sex-ratio balancing

We define the following parameters:

ρg: Proportion migrant (0 ≤ ρg ≤ 1)

ρr: Proportion resident (ρr = 1− ρg and 0 ≤ ρr ≤ 1)

πg: Proportion of migrants that are female (0 ≤ πg ≤ 1)

πr: Proportion of residents that are female (0 ≤ πr ≤ 1)

We assume the sex ratio is 1:1 at birth and, because there is no sex-specific

mortality, remains 1:1 at the population level, even though females and males may

adopt different migrant and resident tactics. This is equivalent to:

πgρg + πrρr = 0.5 (4.1)
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By substituting ρr with (1− ρg) equation (4.1) rearranges to:

ρg =
0.5− πr
πg − πr

(4.2)

Equation (4.2) describes the proportion of migrants in a population as a func-

tion of the migrant and resident sex ratios. The importance of this relationship as

a method lies with the sex ratios. Sex ratios are generally much easier to estimate

than the proportion of migrants and require smaller sample sizes for a given level of

confidence. Implicit is the simplifying assumption that individuals transition to a

migrant or resident tactic at the same age. This simplification and the sex-specific

mortality assumption are addressed in the Results section. One assumption that

must not be violated is the sex-biased migration and residency assumption. With-

out a sex bias in either of the migrant or resident groups, the equation (4.2) goes

to zero and cannot be used to calculate the proportion of migrants.

4.3.1 Error propagation and Bayesian highest posterior density in-

tervals

To use sex-ratio balancing as a method it is important to understand how uncer-

tainty in the sex ratio estimates (πr and πg) influences the proportion of migrant

calculation (ρg). To do this, we calculate a 95% Bayesian highest posterior density

(HPD) interval for ρg, which is interpreted as a 95% chance that the true value

is contained in the HPD interval. We use a HPD interval rather than a posterior
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interval to avoid any potential issues with asymmetric posteriors (Gelman et al.

2014). To calculate the HPD interval, we treat Xt as a binomial sample from a

population of tactic t (either migrant (g) or resident (r)).

Xt ∼ Bin(nt, πt) (4.3)

Where n is the sample size, and πt is the unknown proportion of females in tactic

t. We assign bounded uniform priors for πt.

πg ∼ Uniform (0.5, 1) = 2 (4.4)

πr ∼ Uniform (0, 0.5) = 2 (4.5)

These bounded priors reflect our assumption that migrants are female biased

and residents are male biased, and to ensure that the posterior distribution is

bound between 0 and 1. Female-biased migration is the most commonly observed

bias among partially migratory species (Belthoff and Gauthreaux Jr 1991; Grayson

and Wilbur 2009; Kjelln 1994; Senior et al. 2005; Dodson et al. 2013 and references

therein; McGuire and Boyle 2013 and references therein; Ohms et al. 2013; Perez

et al. 2013), and our priors reflect this. In dispersing taxa, both male- and female-

biased dispersal is common (Lawson Handley and Perrin 2007). The priors can be

adjusted to reflect a male-biased dispersal or migration pattern by assigning prior

distributions of πg ∼ Uniform (0, 0.5) and πr ∼ Uniform (0.5, 1) .

We calculate the posterior distribution of each πt by using Bayes theorem and

numerically integrating the denominator. We draw 10,000 random samples from



70

each posterior distribution and apply them to equation (4.2), such that,

ρg|Xr,Xg =
0.5− π(s)

r

π
(s)
g − π(s)

r

(4.6)

Where s = 1, ..., 10, 000 random draws. This generates a posterior distribution

containing 10,000 values for ρg.

The 95% HPD interval for ρg is the set of values, C, satisfying,

∫
C

f(ρg|πg, πr)dρg) = 0.95 (4.7)

such that for any value of ρg ∈ C and any value ρ∗g /∈ C, f(ρg|πg, πr) ≥ f(ρ∗g|πg, πr).

4.4 Results

sex-ratio balancing defines the relationship between the proportion of migrants and

residents and their sex ratios. As shown by the surface in Figure 4.2, some combi-

nations of values cannot exist and would not be expected in nature. For example,

a migrant sex ratio of 0.9 and a resident sex ratio of 0.4 cannot exist together with

a high proportion of migrants in the population. Migrants and residents have com-

plimentary sex ratios (e.g., 0.8 and 0.2) only when the population is evenly divided

between the two types (i.e., the proportion of migrants is 0.5). Any migrant sex

ratio greater than 0.5 can be associated with a resident sex ratio between 0 and

0.5. Even if the migrants are exclusively female (πg = 1), residents can have any

sex ratio between 0 and 0.499. The Bayesian 95% HPD interval is interpreted as
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the 95% chance the true value is contained in the interval and characterizes the

uncertainty associated with the estimate of ρg. It is based on the sex ratio sample

sizes and prior information about the migrant and resident sex ratios.

4.4.1 Allowing differential mortality

In equations (4.1) and (4.2), we assume that males and females experience equal

mortality between birth and their ‘decision’ to migrate or not. To assess how this

assumption influences the estimate of ρg, we replace the 0.5 with a sex-specific

mortality term, such that:

γ: proportion of females prior to transition, (0 ≤ γ ≤ 1) (4.8)

Substituting this into equation 4.2 yields:

ρg =
γ − πr
πg − πr

(4.9)

From equation (4.9), it is clear that sex-specific mortality directly influences ρg.

However, if the sex-specific mortality is known, it can be directly added to the

model through the parameter γ. Therefore, although sex-specific mortality is

highly influential on ρg, it can also be easily added to equation (4.2) if necessary.

It is important to note that sex-specific mortality is influential only at life stages

prior to the transition from juvenile to migrant or resident (i.e., prior to the time

period before the sex ratios are measured). For example, if sex ratios are mea-
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sured immediately after the transition from juvenile to migrant or resident, any

sex-specific mortality that takes place later in life does not influence the sex-ratio

balancing. A common example of this is differential mortality after reproduction,

in which either males or females experience greater mortality from fighting, in-

creased risk taking, or additional energy output (Adler and Bonduriansky 2011).

Therefore, it is important to know the life history and the stage (or age) of the

organisms at the time of sex ratio measurement.

4.4.2 Addition of age structure

We made the simplifying assumption that the transition from birth to migration

or residency takes place at the same age, in equations (4.1) and (4.2). However,

in many taxa this transition takes place over multiple years. For example in one

study of the partially migratory salmonid Oncorhynchus mykiss, individuals be-

came migrants or residents between one and five years of age (Ohms et al. 2013).

To explore the consequences of relaxing this assumption, we create a two-age model

in which a fraction individuals transition to migrant or resident in year one, and

the remaining fraction transitions in year two (Figure 4.3). This framework could

be expanded to include more ages, but for the purposes of demonstration we use

only two ages.
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Let,

ρt1: Proportion of tactic t at age 1

ρt2: Proportion of tactic t at age 2

πt1: Proportion of females in tactic t at age 1

πt2: Proportion of females in tactic t at age 2

η: Proportion that transition at age-2

where tactic (t) is either migrant (g) or resident (r).

We start with the assumption used previously in equation (4.2), in which the

number of resident and migratory females equals the number resident and migra-

tory males (i.e., half of the population). Expanding to two cohorts, equation (4.2)

becomes:

ρg1πg1 + ρr1πr1 + η(ρg2πg2 + ρr2πr2) = 0.5 (4.10)

From equation (4.10) it is apparent that

ρg = ρg1 + ηρg2 (4.11)

πg = φ1πg1 + φ2πg2 (4.12)

where φ1 and φ2 are the proportion of age-1 and age-2 migrants, respectively.

Notice that πg is equivalent to the weighted average of the sex ratios in each

age class. This indicates that if the resident or migrant sex ratios are measured
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while ignoring the relative abundances of each age class, some ages could be over-

or under-represented and the measured sex ratio would not accurately reflect that

of the group. This error could lead to an inaccurate estimate of ρg, but the degree

of inaccuracy depends on the amount of difference in the sex ratios of the different

age groups. If the sex ratios among age groups are similar, there will be relatively

small effect on ρg.

4.5 Applications in Three Taxa

We apply sex-ratio balancing to estimate the proportion of migrants (or residents)

in three published data sets to demonstrate how sex-ratio balancing could be useful

for current data and its applicability to many taxa and environments. None of

these studies were designed with sex-ratio balancing in mind, and as such, the

conclusions we draw should be treated with caution. The purpose of this section is

to demonstrate applications in a variety of systems and to highlight the possibilities

of this method.

4.5.1 Bats

The Daubenton’s bat (Myotis daubentonii) is a small insectivorous species common

throughout Europe. These bats congregate at high elevation upland caves to mate

in the fall, and hibernate at these locations through winter. Once summer arrives

the bats come out of hibernation. A fraction of the population then migrates to
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lower elevation areas to feed, while others remain in the high elevation upland areas

(Senior et al. 2005). Data from several closely related species suggests that upland

residents tend to be male, likely because females have higher energetic requirements

that necessitate migration to the more productive lowland areas (Barclay 1991).

Senior et al. (2005) monitored the sex ratios of migratory and resident M.

daubentonii in the central UK for six years. By combining data for six years, they

found a resident bat sex ratio of 126:1 (n=127) and a migrant sex ratio of 1:1.45

(n=108). All bats collected were between 1 and 8+ years old and there was no

difference in the age frequency of individuals in the migratory and resident groups.

In the absence of age-specific sex ratios, we assume no difference in sex ratios by

age class. We also assume there was no sex-specific or tactic-specific mortality.

Using ratio balancing, we estimate that 83.9% of the bats in this population

were migratory (95% posterior HPD interval 72.8 to 97.3%, Figure 4.4). Senior

et al. (2005) did not estimate the proportion of migrants, but our HPD interval is

consistent with the cases where the majority of residents were males (Figure 4.2).

Senior et al. (2005) concluded that the less competitive males were excluded

from the high quality, lowland habitat during the summer and were forced to re-

main as residents in the high elevations. This suggests that the amount of low

elevation habitat could influence the proportion of migrants in this bat popula-

tion. Ratio balancing could be used to assess whether the amount of low elevation

habitat is related to the proportion of migrants and provide insights into factors

that control the demographics of this population.
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4.5.2 Pelagic seabirds

The Cory’s shearwater (Calonectris diomedea) is a pelagic seabird that breeds

February to November on islands in the Canary current (Granadeiro 1991). Most

individuals undertake winter migrations to one of five possible areas in the Southern

Atlantic ocean, while the remaining individuals overwinter as residents near the

breeding area (Dias et al. 2011).

Perez et al. (2013) followed migrant and resident Cory’s shearwaters that bred

on Selvagem Grande Island using geolocators and isotopes from 2006 to 2011. They

found that the sex ratio of resident birds was 14:1 (n=15), and the sex ratio of

migratory birds was 1.04:1 (n=157). These sex ratios were calculated from data

combined over the 6 year study.

Age data were not reported in this paper, however the study found that mi-

gratory decision was not affected by year or the age of birds (using a generalized

linear model with a logit link function). There was some evidence that adult birds

could change between migratory and resident tactics, although the sample size was

limited to only seven birds that were tracked for more than one year. Three of

the seven birds changed from migratory to resident on at least one occasion; given

this small sample size it is not clear whether this switching is representative of the

population, so we ignored it for this analysis.

In the absence of data, we assume there was no difference in sex ratios by

age class or sex- and tactic-specific mortality. Using the sex ratios reported, we

estimate that 94.7 of the shearwater population was migratory (95 posterior HPD
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interval 84.9 to 99.9, Figure 4.4). Perez et al. (2013) estimated that 91.9 of studied

birds (n=172) were migratory using isotopes and geolocators. Their estimate falls

within our 95 HPD interval and is only slightly less than our estimate, indicating

concordance between these two disparate methods for estimating proportion of

migrants.

This example demonstrates how ratio balancing can provide comparable esti-

mates of the proportion of migrants with relatively simple observational data. Sex

ratio data collection is much easier and cost-effective than geolocation or isotopes,

and if it was the focus of the study, it could lead to increased sample size and

better estimates of the proportion migrants.

4.5.3 Salmon

The Chinook Salmon (Oncorhynchus tshawytscha) is a culturally and economically

valuable fish species native to the northern Pacific Ocean. Spawning takes place

during summer or fall in freshwater streams. Migrants move to the ocean in the

spring, and residents remain in freshwater to mature and later spawn. We use

the terms resident and migrant to describe the general patterns of maturing in

freshwater or migrating to the ocean, respectively. It is important to note that

there can be considerable diversity in the ages and behaviors within these migrant

and resident categories, both within and among populations. For example, some

residents may migrate hundreds of kilometers within a river system (i.e., are ad-

fluvial), while others remain near their natal spawning site (Larsen et al. 2013).
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This complexity could be included in other sex-ratio balancing analyses, but in this

example we limit the analysis to the general categories of migrant and resident.

Larsen et al. (2013) measured the sex ratios of wild and hatchery-bred migra-

tory Chinook Salmon in the Yakima River of Washington State, USA for seven

years. The high frequency of residents among hatchery Chinook has concerned

biologists, but because of difficulties in sampling wild resident Chinook, it is un-

clear whether the high frequency of residents in hatchery-bred fish is abnormal

compared to wild fish (Pearsons et al. 2009). In the Yakima River, migratory wild

and hatchery-bred Chinook Salmon migrate to the ocean after approximately 17

months in freshwater. Residents remain in freshwater and spawn at age one or

two (Larsen et al. 2013; Pearsons et al. 2009). Female residency is extremely rare

(Harstad et al. 2014; Healey 1991), whereas male residency can be quite common,

especially among hatchery-bred fish (Harstad et al. 2014; Larsen et al. 2013).

During the spring outmigration Larsen et al. (2013) measured the sex ratios in

both wild and hatchery migrants at a dam 260 river kilometers downstream from

the hatchery. Hatchery fish had been artificially spawned fish at a hatchery on the

Yakima River and released after 17 months. Sex ratios ranged from 52% female

to 68% female.

To calculate the proportion of residents using sex-ratio balancing we assumed

that all females were migratory because no resident females were observed in the

seven years of the Larsen et al. (2013) study, and, according to Harstad et al. (2014)

and Healey (1991), resident females are extremely rare. We assigned the resident

sex ratio a value of 1:0 male:female, which simplified equation (4.2) to 0.5/πg.
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Additionally, we assumed that all migrants were 17 months of age, residents were

either age one or two, and there was no age or sex-specific mortality prior to this

transition. There was no sex-specific mortality among the hatchery-bred fish prior

to release (Larsen et al. 2013); however this data was not collected in wild fish.

We calculated the proportion of residents and the 95% HPD intervals for both

wild and hatchery groups in each of the seven years using sex-ratio balancing

(Figure 4.5). We found no consistent differences between the calculated proportion

of residents in wild and hatchery-bred fish (Figure 4.5). The median proportion of

residents ranged from 0.268 to 0.046. The 95% HPD intervals overlapped in every

year except for 2001, and there was no consistent pattern in which group had the

higher proportion of residents (Figure 4.5). These results indicate that hatchery

Chinook did not have a consistently higher proportion of residents in the Yakima

River population from 2001 to 2007.

Few studies have directly compared the proportion of residents in wild and

hatchery-bred Chinook (although, see Pearsons et al. 2009). The lack of a consis-

tent pattern in our Chinook analysis could indicate that the differences between

hatchery-bred and wild Chinook may be more population-specific than previously

expected, at least at the broad categorization of migrant and resident. Within

these categories there is evidence that the age of maturation differs (i.e., hatchery

fish mature at age one only, whereas wild fish mature at age one or two, Pear-

sons et al. 2009) and this has important implications for the age and mortality

assumptions used in our analysis, as well as the species management. Additional

data on ages of freshwater residents and mortality should be incorporated into any
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future sex-ratio balancing analysis through equations similar to those presented in

equations (4.9) and (4.10).

4.6 Discussion

The proportion of migrants in a population is critical component for understanding

the effects of sex-biased migration as well as the causes and consequences of partial

migration. In this paper, we present the first formally defined quantitative rela-

tionship between migrant and resident sex ratios and the proportion of migrants.

We demonstrate how this relationship can be leveraged as a method to estimate

the proportion of migrants through sex-ratio balancing. sex-ratio balancing can

be applied to a variety of organisms that inhabit a wide range of habitats, and has

explicit, testable assumptions.

We present a basic version of sex-ratio balancing that assumes a 1:1 primary

sex ratio, a single age transition from juvenile to migrant or resident, and no sex-

specific mortality prior to the transition. Although these assumptions are adequate

in some cases, they will not apply universally and will need to be adjusted to

accommodate more complicated scenarios. We demonstrate how to incorporate

deviations from the 1:1 starting sex ratio and additions to the age structure, but

exactly how these are adjusted will depend on the study system and the research

questions. We also limited the examples to broadly defined ‘migrant’ and ‘resident’

categories. These categories may not completely describe the life history diversity

within a taxa (e.g., the Chinook example from Larsen et al. 2013) and additional
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categories may be necessary to meet the specific needs of a study system.

A key benefit of sex-ratio balancing is that it requires sex ratio data from the

migrants and residents, which can often be collected in a non-lethal manner and

is much easier to quantify than the numbers of migrants and residents. Non-lethal

sex determination methods vary by taxa and include visual inspection (i.e., Senior

et al. 2005), morphological measurements or vocalization identification (i.e., Perez

et al. 2013), ultrasound (i.e., Bonar et al. 1989), or genetic identification (i.e.,

Ohms et al. 2013). Non-lethal sex or life history determination is not possible for

all taxa, however, and this consideration is especially important for endangered

species act listed species whose sample availability may be considerably restricted.

The Bayesian HPD interval associated with sex-ratio balancing is unique among

currently available methods and provides an estimate of the uncertainty associated

with the proportion migrant estimate. None of the current methods for estimating

the proportion of migrants (e.g., tagging and tracking, retrospective analysis, or

proxies) provide measures of uncertainty, which limits comparisons between popu-

lations. The HPD interval in sex-ratio balancing is controlled by sample size, the

proportion values, and prior information about the sex ratio values. If sex ratio

values are known from previous studies, they can be incorporated directly and will

decrease the HPD interval width. In our three examples, the priors reflected a

general assumption that migrant sex ratios are female-biased and range from 0.5

to 1, but each of these could be more specific by incorporating prior information.

The use of prior information could be particularly beneficial to long-term studies

because as the priors become more specific the sample sizes needed for a given
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degree of certainty decrease.

One possible extension of ratio balancing is in estimating population sizes.

Once the proportion of migrants has been estimated through ratio balancing, it

could be combined with an estimate of the number of migrants in a population to

infer the number of residents (or vice versa). For example, the number of migrating

juvenile salmon are often estimated at large traps as they migrate to the ocean.

The estimated number of migrants could be combined with a proportion migrant

estimate to infer the number of residents in that population. This extension re-

quires additional assumptions and analysis, but it could be a very useful tool for

estimating population sizes when one component of the population is difficult to

sample.

Ratio balancing also has potential applications for sex-biased dispersal or spe-

cific migratory patterns, such as sex-biased latitudinal migration in birds (Belthoff

and Gauthreaux Jr 1991). Estimating the proportion of dispersers remains an

understudied component of dispersal due to methodological challenges similar to

those in partially migratory systems. Meeting the necessary assumptions could

be a challenge and may limit the applications within dispersal. For example, in

dispersing species, dispersal may take place over many years and in multiple co-

horts, and immigrants from other populations are morphologically identical and

impossible to separate from the local population. Likewise, in sex-biased latitu-

dinal migrations, there may be multiple breeding populations migrating to the

same locations making it impossible to measure the sex ratios in each population.

However, not all populations will be this complicated and some of this additional
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variation could be incorporated into the sex-ratio balancing approach.

In conclusion, sex-ratio balancing is a unique method for estimating the pro-

portion of migrants that could be useful for a variety of taxa. It also provides

a much needed quantitative link between sex biased movement and the overall

proportion of migrants in a population. Both the method and quantitative rela-

tionship are directly beneficial to management and conservation actions, such as

setting restoration goals, prioritizing habitat conservation or movement corridors,

predicting susceptibility to climate change, and assessing harvest consequences

(Brenkman and Corbett 2005; McGuire and Boyle 2013; Moore et al. 2014), ulti-

mately leading to better-informed conservation and management decisions and a

better understanding of partially migratory species in general.
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4.7 Figures

Ratios 1:3 5:1 1:3 1:3 3:1 9:1 

Mig. Res. 

Migrants, 
Residents 

Juveniles 
(1:1) 

Mig. Res. Mig. Res. 

♀ ♂ 

Figure 4.1: An illustration of the relationship between migrant (mig.) and resident
(res.) sex ratios and the proportion of migrants and residents in the population. In
each of the three cases, the juvenile sex ratio is 1:1 (male:female) and the migrant
sex ratio is female biased (a sex ratio of 1:3). However, as the relative proportion
of migrants and residents changes, the resident sex ratio ranges between slightly
male biased (a ratio of 3:2) to extremely male biased (a ratio of 9:1). The migrant
and resident sex ratios mirror each other only when the proportion of migrants
and residents is equal (50%).
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Figure 4.2: The relationship between the proportion of migrants and sex ratios in
the migrant and resident groups (equation 4.2). This surface is limited to the case
of female-biased migrants and male-biased residents.
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Figure 4.3: A life cycle diagram for the two age model example. In the first
year, individuals can transition to a migrant or resident life history, or remain as
juveniles. In the second year all remaining juveniles must transition to a migrant
or resident life history. In this example, individuals are semelparous and cannot
switch between life history types.
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Bat Migrant Sex Ratio

0.50 0.60 0.70 0.80

Bat Resident Sex Ratio

0.00 0.04 0.08 0.12

Bat Proportion Migrant
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Shearwater Migrant Sex Ratio
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Shearwater Resident Sex Ratio
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Shearwater Proportion Migrant

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.4: The posterior distributions of the migrant sex ratio, resident sex ratio,
and proportion of migrants for (A) Daubenton’s bats and (B) Cory’s Shearwaters.
The red line indicates the 95% HPD interval boundary. The sex ratio posterior
distributions are bounded by their priors in order to limit the proportion migrant
posterior estimate to between 0 and 1.
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Figure 4.5: The calculated proportion of residents in wild and hatchery Chinook
salmon from 2001 to 2007 in the Yakima River, USA. Error bars represent 95%
HPD intervals. The sex ratio data used in this analysis was collected by Larsen et
al. (2013).
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Chapter 5 Conclusion

At the start of my dissertation, I posed the question of natural selection main-

tains phenotypic variation, such as partial migration. My results demonstrate

that density-dependent competition is sufficient for the maintenance of partial mi-

gration, because it can lead to frequency-dependent fitness and balancing selection.

This has important implications for predicting species’ responses to future changes.

Specifically, the predicted responses I observed were non-linear, meaning responses

will vary depending on their initial value. To measure these predicted responses, I

developed the method sex-ratio balancing, which estimates the propensity of mi-

gration based on sex ratios. This method could enable greater data collection on

migration propensities and test theory on how natural selection maintains pheno-

typic variation.

I will end by saying that studying the details of natural selection is not just a

theoretical exercise, it is the only way we can predict how organisms may adapt

to their rapidly changing environments. Most species have diverse life histories

and traits, and if we do not understand how this diversity is maintained, we have

no chance of accurately predicting how they will, or will not, adapt. My hope is

that my dissertation adds a small drop into the larger pool of research on natural

selection, evolution, and ecology.
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Chapter A Analysis of the results in Chapter 2

Anushaya Mohapatra and Patrick De Leenheer did this analysis and wrote up the

following mathematical proof of the results. They start with the prior residence

form of density dependence.

Rewriting the uncoupled system (3.4) as

x(t+ 1) = A1(x(t), φ)x(t), (A.1)

where

A1(x, φ) =


0 fM(xM + xN) fN(xN)

φsM 0 0

(1− φ)sN 0 0

 and x =


x1

xM

xN


When φ 6= 0 and φ 6= 1, this model has an important invariance property:

xN(t)

xM(t)
=

(1− φ)sN
φsM

=: c1(φ) = c1, for all t = 1, 2, . . . (A.2)

This means that the ratio of xN and xM is equal to the positive constant c1 from

time t = 1 onwards. In other words, all orbits reach the line xN/xM = c1 in 1 time

step, and remain there forever after. Thus, the system reduces to a planar system,
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whose asymptotic behavior can be determined:

 x1(t+ 1)

xM(t+ 1)

 =

 0 fM(d1xM) + c1fN(c1xN)

φsM 0


 x1(t)

xM(t)

 (A.3)

Where d1 = c1 + 1. Note that since the functions gM and gN are increasing. Thus,

systems (A.3) is monotone, and it has a positive fixed point x∗(φ) = (x∗1, x
∗
M) which

follows from De Leenheer et al. (2017).

The coupled model is:



x1(t+ 1)

xM(t+ 1)

y1(t+ 1)

yM(t+ 1)


=

A1(x(t) + y(t), φ) 0

0 A1(x(t) + y(t), φ′),




x1(t)

xM(t)

y1(t)

yM(t)


(A.4)

or more explicitly,

x1(t+ 1) = (fM(d1xM + d2yM) + c1fN(c1xM + c2yM))xM (A.5)

xM(t+ 1) = φsMx1 (A.6)

y1(t+ 1) = (fM(d1xM + d2yM) + c2fN(c1xM + c2yM)) yM (A.7)

yM(t+ 1) = φ
′
sNy1 (A.8)
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where

c2 =
(1− φ′)sN
φ′sM

d2 = 1 + c2

The system (A.4) has a fixed point at X∗(φ) = (x∗1, x
∗
M , 0, 0). From the PIP (

figure 2.3), it is clear that in case of x̂M > x̃N , φ
∗ =

sN
sM

1
x̂M
x̃N
−1

+
sN
sM

is the only candidate

for ESS. To prove, it is in fact an ESS we perform a nonlinear stability analysis.

We use following mathematical definitions.

Definition A.0.1 We say that φ∗ in [0, 1] is an evolutionary stable strategy (ESS)

if X∗(φ∗) is a locally asymptotically stable fixed point of system (A.4) for all φ′ 6= φ∗

in some neighborhood of φ∗.

This notion captures that if the resident population has adopted an ESS, then it

cannot be invaded by mutants that use nearby strategies.

Definition A.0.2 We say that φ∗ in [0, 1] is a convergence stable strategy (CSS)

if there is a neighborhood N of φ∗ such that X∗(φ∗) is not an asymptotically stable

fixed point of system (A.4) for all pairs (φ, φ′) with φ in N that satisfy that either

φ < φ′ < φ∗ or φ∗ < φ′ < φ, but an asymptotically stable fixed point of system

(A.4) for all pairs (φ, φ′) with φ in N that satisfy that either φ′ < φ < φ∗ or

φ∗ < φ < φ′.
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Nonlinear stability analysis when x̂M > x̃N holds

By means of the linear coordinate change

X̃ = X −X∗(φ∗),

we first translate the fixed point X∗(φ∗) of the K-monotone system (A.5) to the

origin of R4, and dropping tildes, we re-write the transformed system, which is

also K-monotone, as

X(t+ 1) = F (X(t)). (A.9)

We claim that as long as φ∗ 6= φ′ ∈ (0, 1), the origin is an asymptotically stable

fixed point for (A.9) with respect to perturbations ∆X = (∆x,∆y) near X = 0

for which ∆x is arbitrary, but for which ∆y ≥ 0. We shall first show that there are

two vectors u1 ≤K 0 and 0 ≤K u2, such that the set N = {X | u1 ≤K X ≤K u2}

is a compact neighborhood of X = 0, and such that

u1 ≤K F (u1) ≤K 0 ≤K F (u2) ≤K u2. (A.10)

To establish this claim, we first recall that Jacobian matrix L(φ∗, φ′) of F (X) at

X = 0 has eigenvalues L11 (which belongs to (0, 1)) and L22 (which equals 1 since

W (φ∗, φ′) = 1). By the Perron-Frobenius Theorem for K-monotone matrices (Van-

dergraft 1968), there exists an eigenvector 0 ≤K V corresponding to the dominant



109

eigenvalue 1. In fact, this eigenvector can be calculated explicitly, yielding:

V =



− (d2f
′
M+c1c2f

′
N )φ

′

φ(d1f
′
M+c21f

′
N )

− (d2f
′
M+c1c2f

′
N )φ

′
sM

(d1f
′
M+c21f

′
N )

1

φ
′
sM


where we have dropped the arguments d1x

∗
M and c1x

∗
M of the derivatives f ′M and

f ′N respectively, to economize on our notation. Note that V belongs to the interior

of K for all φ′ ∈ (0, 1). We now show that for all sufficiently small ε > 0, there

holds that u1 ≤K F (u1), when u1 = −εV .

By using a Taylor expansion for F near X = 0,

F (u1) = L(φ∗, φ′)u1 + h(u1) +O(||u1||3) = u1 + h(u1) +O(||u1||3). (A.11)

Here, h = (h1, h2, h3, h4)
T with each hi(u1) = uT1Hiu1 and Hi being the Hessian

with respect to Fi. We have h2 = h4 = 0. We focus on finding the sign of h1(u1)

and h3(u1).

We start by calculating h1(u1) = uT1H1u1 whereH1 is the Hessian corresponding

to F1. The reduced Hessian after dropping the zeros:

Hred
1 =

(H1)22 (H1)24

(H1)24 (H1)44


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where

(H1)22 = 2
(
d1f

′

M + c21f
′

N

)
+ x∗M

(
d21f

′′
M + c31f

′′
N

)
(H1)24 = d2f

′
M + c1c2f

′
N + x∗M

(
d1d2f

′′
M + c21c2f

′′
N

)
(H1)44 = x∗M

(
d22f

′′
M + c22c1f

′′
N

)
We dropped the arguments d1x

∗
M and c1x

∗
M of the derivatives f ′M , f

′′
M and f ′N , f

′′
N

respectively, to economize on our notation through out. A tedious calculation

shows that h1(u1) = uT1H1u1 = ((u1)2, (u1)4)H
red
1

(u1)2

(u1)4

 can be simplified to:

h1(u1) =
x∗M(φ

′
sM)2(

d1f
′
M + c21f

′
N

)2 [(d1c1c2 − d2c21)2f
′′
(f
′

N)2 + c1(c1d2 − c2d1)2f
′′

N(f
′

M)2]

Recall that f ′M > 0, f ′N > 0 and that f ′′M > 0, f ′′N > 0, and that φ∗, φ′ ∈ (0, 1) with

φ′ 6= φ∗. Moreover, d1c1c2 − d2c21 6= 0 and c1d2 − c2d1 6= 0. These facts imply that

h1(u1) > 0, as claimed.

Similarly, h3(u1) = uT1H2u1, where the reduced Hessian takes the form

Hred
3 =

(H3)22 (H3)24

(H3)24 (H3)44


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where

(H3)22 = 0

(H3)12 = d1f
′

M + c1c2f
′

N

(H3)22 = 2
(
d2f

′

M + c22f
′

N

)

Another tedious calculation shows that h3(u1) can be simplified to:

h3(u1) = uT1H3u1 = ((u1)2, (u1)4)H
red
3

(u1)2

(u1)4


= 2

(φ
′
sM)2

d1f
′
M + c21f

′
N

(c1 − c2)2f
′

Mf
′

N

Using the facts that f
′
M , f

′
N < 0 and c1 − c2 6= 0, we have h2(u1) < 0, as claimed.

The existence of a vector 0 ≤K u2 such that F (u2) ≤K u2 can be established

as follows. We reconsider system (A.9) with φ = φ∗, and fixed, but arbitrary

φ′ ∈ (0, 1). Then the set {X =



x1

xM

y1

yM


| y1 = yM = 0} is invariant, and the

restriction of the monotone dynamics to this invariant set, is such that all solutions

with positive initial x-component, converge monotonically to x∗(φ∗). Thus, there

exists a positive vector b such that 0 ≤ T (b) ≤ b in R2, where T (x) is the map on



112

the right-hand side of equation (A.3) with φ = φ∗. Consequently, by setting

u2 =

b− x∗(φ∗)
0

 ,

it follows that u2 ≥K 0, and it can be verified that

F (u2) =

T (b)− x∗(φ∗)

0

 ≤K
b− x∗(φ∗)

0

 = u2

Combining the existence of the vectors u1 and u2 with the properties listed above,

and the fact that system (A.9) is K-monotone, establishes (A.10). Notice in partic-

ular that the vectors u1 and u2 are such that N is indeed a compact neighborhood

of X = 0.

Now, since system (A.9) is K-monotone, (A.10) implies that the orbit start-

ing at u1 is increasing with respect to the partial order ≤K , and bounded above

(by the zero fixed point). Thus, it must converge to some fixed point X1 in N .

Similarly, K-monotonicity and (A.10) imply that the orbit starting in u2 is de-

creasing with respect to the partial order ≤K , and bounded below by the zero

fixed point, and must also converge to some fixed point X2 in N . We now claim

that we can always shrink N by choosing ε > 0 sufficiently small in the definition

of u1, so that X1 = X2 = 0. Suppose that (x̃1, x̃M , ỹ1, ỹM) is any fixed point of

system (A.9) in N , with ỹM , ỹ1 ≥ 0. If ỹM = 0 or ỹ1 = 0, we first shrink N

by choosing ε > 0 sufficiently small in the definition of the vector u1, so that N
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does not include the fixed point (−x∗(φ∗), 0) of system (A.9). Then x̃1 and x̃M

must also be equal to 0 since (0, 0, 0, 0) is the unique fixed point in N of system

(A.9) restricted to the invariant set where yM = y1 = 0. Therefore, any fixed point

(x̃1, x̃M , ỹ1, ỹM) in N is necessarily such that ỹM , ỹ1 6= 0. Thus, (ỹM , ỹ1) must

necessarily be positive vector because φ′ ∈ (0, 1). Moreover, as shown above, for

any fixed point x̃ = (x̃1, x̃M , ỹ1, ỹM) in N , we have made sure that x̃+ x∗(φ∗) is a

positive as well. Therefore, if N would contain a fixed point x̃, other than X = 0,

then both x̃ + x∗(φ∗) and x̃ would be positive. Then the original system (A.4)

would have a positive fixed point as well which is not true, as we prove the system

(A.4) can have at most one positive fixed point when φ = φ∗ and φ′ 6= φ∗ as follows.

Let (x̃1, x̃M , ỹ1, ỹM) be a positive fixed point of (A.4)

If we set

z1 = d1x̃M + d2ỹM (A.12)

zN = c1x̃M + c2ỹM (A.13)

then there must hold in particular, that:

sMφ∗ c1sMφ
∗

sMφ
′
c2sMφ

′


fM(z1)

fN(z2)

 =

1

1

 , (A.14)
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Let B =

sMφ∗ c1sMφ
∗

sMφ
′
c2sMφ

′

, and notice that det(B) = sMsN(φ∗ − φ
′
) 6= 0

since φ
′ 6= φ∗. Hence, the system (A.14) can have at most one solution (z1, z2) be-

cause both functions fM and fN are decreasing, and are therefore 1-to-1 functions.

Equations (A.12)− (A.13) can be re-written as follows:

d1 d2

c1 c2


x̃M
ỹM

 =

z1
z2

 (A.15)

Similarly, (A.15) has at most one solution (x̃M , ỹM). Consequently, we have shown

that the coupled system (A.4) can have at most one positive fixed point, as

claimed.

By choosing ε > 0 even smaller in the definition of u1, we can now ensure

that the corresponding shifted fixed point for system (A.9), does not belong to N .

Therefore, N is an isolating neighborhood for the fixed point X = 0, in the sense

that it contains no other fixed points. In conclusion, we have proved the claim

that X1 = X2 = 0 by appropriately choosing N , and therefore by K-monotonicity,

all solutions in the compact, invariant neighborhood N , converge to X = 0. Going

back to the original coordinates, we have proved that the fixed point X∗(φ∗) of the

coupled system (A.4) is locally asymptotically stable, which completes the proof

of the result.

Results for other forms of density dependence follow from this proof.
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Sign of the W function and PIPs

1. Within phenotype.

We have W (φ, φ′) = 0 if and only if φ = φ′ or φ = φ∗ = x̂M/x̃N
x̂M/x̃N+sM/sN

.

W (φ, φ′) is a continuous function, which is zero if and only if either the pair

(φ, φ′) belongs to the diagonal where φ = φ′, or to the vertical line through

φ∗. These two lines divide the square [0, 1] × [0, 1] in four open regions,

where the sign of the function W is either positive or negative. The sign of

W (φ, φ′) for pairs (φ, φ′) in the SE region in figure 2.3 is the same as the sign

of W (1, 0) = −(1 − sNfN(0)), which is positive as sNfN(0) > 1. Similarly,

W (0, 1) = sMfM(0) − 1 is positive as sMfM(0) > 1, and thus W (φ, φ′) > 0

in the NW region. The sign of W (φ, φ′) for pairs (φ, φ′) in the NE region is

the same as the sign of W (φ, 1), where φ is an arbitrary value in the open

interval (φ∗, 1). The sign of W (φ, 1) is equal to the sign of the second factor

sMfM(x∗M(φ))−sNfN(x∗N(φ)), which is continuous in φ and can only be zero

when φ = φ∗. Since φ > φ∗, it follows that the sign of this second factor is

equal to the sign of sMfM(x∗M(1)) − sNfN(x∗N(1)) = 1 − sNfN(0), which is

negative. Thus, W (φ, φ′) is negative for all pairs (φ, φ′) in the NE region. A

similar argument shows that W (φ, φ′) is negative for all pairs (φ, φ′) in the

SW region.

2. Between phenotype.

When x̂M < x̃N , we have W (0, 1) = sMfM(x̃N) − 1 < 0, and W (1, 0) =

sNfN(x̂M)− 1 > 0.
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If x̂M > x̃N , we get W (0, 1) = sMfM(x̃N)−1 > 0 and W (1, 0) = sNfN(x̂M)−

1 < 0.

Using continuity of W (φ, φ
′
), we have the PIP’s as in figure 2.3.

3. Prior resident.

When x̂M > x̃N , it turns out that W (φ, φ′) = 0 iff φ = φ′ or φ = φ∗ where

φ∗ =
sN
sM

1
x̂M
x̃N
−1

+
sN
sM

and PIP is similar to within phenotype (figure 2.3).

When x̂M < x̃N , W (φ, φ′) = 0 iff φ = φ′. And W (0, 1) = sMfM(x̃N)− 1 < 0

and W (1, 0) = sNfN(0)− sMfM(x̂M) > 1− sMfM(x̂M) > 0. So PIP in figure

2.3 follows from continuity of W function.

4. Migrant advantage.

This case is is analogous to that of prior residency with reverses the role of

migrants and non-migrants.




