

AN ABSTRACT OF THE DISSERTATION OF

Yuehua Xu for the degree of Doctor of Philosophy in Computer Science

presented on August 4, 2010.

Title: Learning Ranking Functions for Efficient Search

Abstract approved:

Alan Fern

This dissertation explores algorithms for learning ranking functions to efficiently

solve search problems, with application to automated planning. Specifically, we

consider the frameworks of beam search, greedy search, and randomized search,

which all aim to maintain tractability at the cost of not guaranteeing

completeness nor optimality. Our learning objective for each of these frameworks

is to induce a linear ranking function for guiding the search that performs nearly

as well as unconstrained search, hence gaining computational efficiency without

seriously sacrificing optimality.

We first investigate the problem of learning ranking functions to guide beam

search, with a focus on learning feature weights given a set of features. We

present a theoretical analysis of the problem’s computational complexity that

identifies the core efficient and hard subclasses. In addition we study online

learning algorithms for the problem and analyze their convergence properties.

The algorithms are applied to automated planning, showing that our approach is

often able to outperform an existing state-of-the-art planning heuristic as well as

a recent approach to learning such heuristics.

Next, we study the problem of automatically learning both features and weights

to guide greedy search. We present a new iterative learning algorithm based on

RankBoost, an efficient boosting algorithm for ranking and demonstrate strong

empirical results in the domain of automated planning.

Finally, we consider the problem of learning randomized policies for guiding

randomized greedy search with restarts. We pose this problem in the framework

of reinforcement learning and investigate policy-gradient algorithms for learning

both features and weights. The results show that in a number of domains this

approach is significantly better than those obtained for deterministic greedy

search.

c©Copyright by Yuehua Xu
August 4, 2010

All Rights Reserved

Learning Ranking Functions for Efficient Search

by

Yuehua Xu

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 4, 2010
Commencement June 2011

Doctor of Philosophy dissertation of Yuehua Xu presented on August 4, 2010.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electric Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Yuehua Xu, Author

ACKNOWLEDGEMENTS

I am profoundly grateful to my advisor, Alan Fern. I was very fortunate to have

Dr. Fern as my mentor throughout the time it took me to complete my PhD

program. Dr. Fern is incredibly knowledgeable, energetic, inspirational and

supportive. His commitment to the pursuit of excellence in research work guided

me through the past six years, and I am sure it will benefit me a lot in my future

career.

I would like to thank my committee members, Tom Dietterich, Prasad Tadepalli,

Raviv Raich, and Jon Herlocker. They generously contributed their time and

expertise to better shape my research work. I also thank Karen Dixon for taking

her time off to serve as Graduate Council Representative in my committee. I am

immensely grateful for having been given the opportunity of spending these years

with my fellow graduate students, faculty, and staff here at Oregon State

University.

I want to especially thank Sungwook Yoon for providing me with the planners

and feature learner. Without his help, I wouldn’t be able to build my research

work. I am also grateful to Horst Samulowitz, my internship mentor at Microsoft

Research Cambridge, for giving me the opportunity to work on the satisfiability

problems.

Last in deed but first in thought, I want to express my deepest gratitude to my

family. Without the tremendous support and encouragement from them, I

couldn’t have made it this far. This dissertation is dedicated to them.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Outline . 4

2 Basic Search Concepts 5

2.1 Search Space . 5

2.2 Efficient Search . 6

3 Automated Planning Background 8

3.1 Automated Planning . 8

3.2 Learning to Plan . 11

3.3 Prior Work . 12

4 Learning Weights for Linear Ranking Functions 16

4.1 Weight Learning Problems . 16

4.2 Computational Complexity . 21
4.2.1 Hardness Upper Bounds . 23
4.2.2 Hardness Lower Bounds . 29

4.3 Convergence of Online Updates . 36
4.3.1 Online Perceptron Updates 37
4.3.2 Previous Result and Counter Example 39
4.3.3 Convergence Under Stronger Notions of Margin 44
4.3.4 Convergence for Ambiguous Training Data 51

5 Application of Weight Learning in Automated Planning 55

5.1 Experimental Setup . 56
5.1.1 Domain Problem Sets . 56
5.1.2 Search Space Definition . 57
5.1.3 Training Data Generation 58
5.1.4 Ranking Function Representation and Domain Features . . . 59

5.2 Experimental Results . 61

TABLE OF CONTENTS (Continued)

Page

6 Learning Features and Weights for Greedy Search 72

6.1 Introduction . 72

6.2 Rule-based Ranking Functions . 75

6.3 Learning Weighted Rule Sets . 77
6.3.1 The Rank Learning Problem 77
6.3.2 Learning-to-Plan as Rank Learning 78
6.3.3 RankBoost with Prior Knowledge 81
6.3.4 Iterative Learning Algorithm 84
6.3.5 Learning Action Selection Rules 88

6.4 Experimental Results . 89

7 Learning Features and Weights for Randomized Greedy Search 97

7.1 Introduction . 97

7.2 Problem Setup . 98
7.2.1 Randomized Policy Representation 99
7.2.2 Reinforcement Learning Formulation 99

7.3 Gradient-based Approach for Weight Learning 101

7.4 Learning Weighted Rule Sets by Policy Gradients 103

7.5 Experimental Results . 106

8 Summary and Future Work. 111

8.1 Summary of Contributions . 111

8.2 Future Work . 112

Bibliography 114

Appendices 120

LIST OF FIGURES

Figure Page

3.1 An example from automated planning. 10

4.1 An example from structured classification. 20

4.2 The key problem parameters: n - the number of training instances,
d - the depth of target solution paths, b - the beam width. Not
depicted in the figure are: c - maximum number of children of any
node, t - the maximum target width of any example. 22

4.3 The exhaustive algorithm for breadth-first consistency. 25

4.4 A tractable class of breadth-first consistency, where b = 1 and t = 1. 28

4.5 The LaSO-BR online algorithm for breadth-first beam search. . . . 38

4.6 The LaSO-BST online algorithm for best-first beam search. 40

4.7 Counter example for convergence under positive search margin. . . . 42

4.8 Counter example to convergence under positive level margin. 48

6.1 The variant of RankBoost. 83

6.2 The iterative learning algorithm. 85

7.1 The OLPOMDP algorithm. 102

7.2 The revised NPPG algorithm. 105

LIST OF TABLES

Table Page

4.1 Complexity results for breadth-first consistency. 35

5.1 The average training time required by LaSO-BR per iteration for
all training instances (seconds). 63

5.2 Experimental results for our weight learning algorithms. For each
domain, we show the number of solved problems and the median
plan length of the solved problems. A dash in the table indicates
that the median plan length is not available while none of the prob-
lems can be solved. 65

5.3 Experimental results for various learning beam widths. For each do-
main, we show the number of solved problems and the median plan
length of the solved problems. A dash in the table indicates that
the median plan length is not available while none of the problems
can be solved. 66

6.1 Experimental results for the learned ranking functions in greedy
search. For each domain, we show the number of solved problems
and the median plan length of the solved problems. A dash in the
table indicates that the median plan length is not available while
none of the problems can be solved. N/A indicates that the result
of the planner is not applicable here. 91

6.2 The number of unique rules learned by different approaches. For
each domain, we show the number of unique rules that are learned
after the corresponding number of learning iterations. 93

6.3 Experimental results for the learned weighted rule sets. The per-
formance of each learned rule set is given by the number of solved
problems and the median plan length of the solved problems. A dash
in the table indicates that the median plan length is not available
while none of the problems can be solved. 94

7.1 Experimental results for the learned randomized policies. For each
domain, we show the number of solved problems and the median
plan length of the solved problems. A dash in the table indicates
that the median plan length is not available while none of the prob-
lems can be solved. 109

DEDICATION

To my family.

Chapter 1 – Introduction

Throughout artificial intelligence and computer science, heuristic search is a funda-

mental approach to solving complex problems. Unfortunately, when the heuristic

is not accurate enough, memory and time constraints make pure heuristic search

impractical. There are a number of strategies that attempt to maintain tractabil-

ity of heuristic search such as beam search, greedy search, or randomized search.

One common property of these search strategies is that they all prune away most

nodes in the search queue. Due to this pruning, these search strategies are not

guaranteed to be complete nor optimal. However, if the heuristic is good enough

to guide the search process along a good solution path, then the solution will be

found quickly.

This dissertation will investigate the problem of learning heuristics, or rank-

ing functions, that allow these search strategies to quickly find solutions, without

seriously sacrificing optimality compared to unconstrained search. We consider

this problem for the case of linear ranking functions, where each search node v is

associated with a feature vector f(v) and nodes are ranked according to w · f(v)

where w is a weight vector. Each training instance corresponds to a search space

that is labeled by a set of target solutions, each solution being a (satisficing) path

from the initial node to a goal node. Given a training set, our learning objective

is to find a ranking function that can efficiently guide the search process to find

2

at least one target path. Such a ranking function allows the corresponding search

strategy to efficiently solve all of the training instances, and ideally new search

problems for which the training set is representative.

In order to learn the ranking function, we first assume that a set of features

is provided for the given training set. Under this assumption, the ranking func-

tion can be represented by a weight vector w and consequently our learning task

becomes to select w. This problem has been considered in the context of struc-

tured classification [Daumé III and Marcu, 2005], and a perceptron-style algorithm,

known as learning as search optimization (LaSO), is proposed to solve it. Moti-

vated by their success, we formally define the learning problem for finding a weight

vector that guides beam search to solve all training instances. One key contribu-

tion of this dissertation is to analyze the weight learning problem theoretically,

in terms of its computational complexity and the convergence properties of vari-

ous learning algorithms. Also, we provide an empirical evaluation of these weight

learning algorithms, in the context of automated planning.

While showing good empirical results in automated planning, the above work

requires features to be provided before learning. As a result, the performance of the

learned ranking function is limited to the given features. In this dissertation, we

also attempt to learn features automatically for a target planning domain. Here we

focus on greedy search and consider the features in the form of action-selections

rules, which are usually learned to define reactive policies in planning domains

[Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002]. The learned rank-

ing function, represented as a set of weighted action-selection rules, will assign

3

numeric scores to potential state transitions. These scores can then be used to

guide greedy search for solving the planning problems. This approach allows for

information from multiple rules to be combined to help maintain robustness to

errors. Our learning approach is based on a combination of a heuristic rule learner

and RankBoost [Freund et al., 2003], an efficient boosting-style algorithm for learn-

ing ranking functions. The empirical results have shown significant promise in a

number of planning domains.

One way to extend greedy search is to generate a randomized policy based on

the ranking function. Given any search node v, we can normalize the numeric

scores assigned by the ranking function on all children nodes of v, resulting in a

probability distribution. Note that the search node with higher rank will have a

higher probability. The randomized policy then randomly selects a node according

to the distribution. Here our learning objective is to learn a randomized policy that

can find a solution path with only a small number of restarts. We formulate the

learning problem in the framework of reinforcement learning, with the objective to

maximize the expected average reward of the randomized policy. We then apply re-

cent gradient-based reinforcement learning techniques [Baxter and Bartlett, 2000;

Kersting and Driessens, 2008] for learning the features and optimizing the weights.

Our empirical results have shown that by maximizing the expected average reward,

we have learned randomized polices that work well in most planning domains.

4

1.1 Outline

This dissertation is organized as follows. Section 2 introduces the basic search con-

cepts and Section 3 gives the background of our application domain - automated

planning. Section 4 formulates the weight learning problem for beam search and

studies its theoretical properties. Section 5 applies weight learning algorithm to

automated planning and presents the experimental results. Section 6 gives our it-

erative learning algorithm for automatically inducing rule-based features to guide

greedy search. Section 7 investigates the problem of learning randomizied polices.

Finally, Section 8 concludes the dissertation with proposal for future research di-

rections.

5

Chapter 2 – Basic Search Concepts

In this chapter, we formally define search spaces and describe the search paradigms

used in the dissertation.

2.1 Search Space

A search space is a tuple 〈I, s(·), f(·), <〉, where I is the initial search node, s is a

successor function from search nodes to finite sets of search nodes, f is a feature

function from search nodes to m-dimensional real-valued vectors, and < is a total

preference ordering on search nodes. We think of f as defining properties of search

nodes that are useful for evaluating their relative goodness and < as defining

a canonical ordering on nodes, for example, lexicographic. In this dissertation,

we use f to define a linear ranking function w · f(v) on nodes where w is an m-

dimensional weight vector, and nodes with larger values are considered to be higher

ranked, or more preferred. Since a given w may assign two nodes the same rank,

we use < to break ties such that v is ranked higher than v′ given w ·f(v′) = w ·f(v)

and v′ < v, arriving at a total rank ordering on search nodes. We denote this total

rank ordering as r(v′, v|w,<), or just r(v′, v) when w and < are clear from context,

indicating that v is ranked higher than v′.

6

2.2 Efficient Search

First we introduce two different beam search paradigms: breadth-first beam search

and best-first beam search. Given a search space S = 〈I, s(·), f(·), <〉, a weight vec-

tor w, and a beam width b, breadth-first beam search simply conducts breadth-first

search, but at each search depth keeps only the b highest ranked nodes according

to r. More formally, breadth-first beam search generates a unique beam trajectory

(B0, B1, . . .) as follows,

• B0 = {I} is the initial beam;

• Cj+1 = BreadthExpand(Bj, s(·)) =
⋃

v∈Bj
s(v) is the depth j+1 candidate

set of the depth j beam;

• Bj+1 is the unique set of b highest ranked nodes in Cj+1 according to the

total ordering r.

Note that for any j, |Cj| ≤ cb and |Bj| ≤ b, where c is the maximum number of

children of any search node.

Best-first beam search is almost identical to breadth-first beam search except

that we replace the function BreadthExpand with BestExpand(Bj, s(·)) =

Bj ∪ s(v∗)− v∗, where v∗ is the unique highest ranked node in Bj. Thus, instead

of expanding all nodes in the beam at each search step, best-first search is more

conservative and only expands the single best node. Note that unlike breadth-first

search this can result in beams that contain search nodes from different depths of

the search space relative to I.

7

Greedy search is a special case of beam search with b = 1, which keeps only

the highest ranked node at each search step. More formally, given a search space

S = 〈I, s(·), f(·), <〉 and a weight vector w, greedy search generates a unique node

sequence (v0, v1, . . .) where v0 = I is the initial node and vi is the highest ranked

node in s(vi−1) according to r.

When the ranking function is not good enough, greedy search often leads to

failures. While beam search can improve greedy search by having larger beam

widths and explore more in the search space, another way of extending it is to

randomize the search process. At each search step i, instead of selecting the

highest ranked node, we consider randomly selecting vi from s(vi−1) according

to a probability distribution. Randomized Greedy Search is a search process that

adds randomization as above to greedy search and allows quick restarts. More

details will be provided in Chapter 7.

8

Chapter 3 – Automated Planning Background

In this chapter, we first give background related to the application of automated

planning. We then discuss the problem of learning to plan, with a brief summary

of prior work in this area.

3.1 Automated Planning

Planning is a subfield of artificial intelligence that studies algorithms for selecting

sequences of actions in order to achieve goals. In this dissertation, we consider

planning domains and planning problems described using the STRIPS fragment of

the planning domain description language (PDDL) [McDermott, 1998], which we

now outline.

A planning domain D defines a set of possible actions A and a set of world

states W in terms of a set of predicate symbols P , action types Y , and constants

C. A state fact is the application of a predicate to the appropriate number of

constants, with a state being a set of state facts. Each action a ∈ A consists of:

1) an action name, which is an action type applied to the appropriate number of

constants, 2) a set of precondition state facts Pre(a), and 3) two sets of state facts

Add(a) and Del(a) representing the add and delete effects respectively. An action

a is applicable to a world state ω iff Pre(a) ⊆ ω. The application of an (applicable)

9

action a to ω results in the new state ω′ = (ω \ Del(a)) ∪ Add(a). That is, the

application of an action adds the facts in the add list to the state and deletes facts

in the delete list.

Given a planning domain, a planning problem is a tuple (ω,A, g), where A ⊆

A is a set of actions, ω ∈ W is the initial state, and g is a set of state facts

representing the goal. A solution plan for a planning problem is a sequence of

actions (a1, . . . , al), where the application of the sequence starting in state ω leads

to a goal state ω′ where g ⊆ ω′. In this dissertation, we will view planning problems

as directed graphs where the vertices represent states and the edges represent

possible state transitions. Planning then reduces to graph search for a path from

the initial state to goal.

Figure 3.1 shows an example of the search space corresponding to a problem

from the Blocksworld planning domain. Here, the initial state is described by the

facts

ω0 = {clear(A), clear(B), clear(C), clear(D), ontable(A),

ontable(B), ontable(C), ontable(D), armempty}.

An example action from the domain is pickup(A) with the following definition:

Pre(pickup(A)) = {clear(A), ontable(A), armempty}

Add(pickup(A)) = {holding(A)}

Del(pickup(A)) = {clear(A), ontable(A), armempty}.

10

…

…

…

… …

…

…

…

pickup(B) pickup(C)

stack(B, A)

pickup(C)

A B C D

A

B C D A

B

C D A B

C

D A B C

D

pickup(A) pickup(D)

A
B

C D A
B

C D A B
C

D A B
C
D

stack(B, D) stack(C, A) stack(C, D)

A
B C

D

A
B C

D

A

B
C
D

pickup(B)

… …stack(B, A)stack(C, D)

A
B

C

D

pickup(D)

A

B
C
D

pickup(A)

…
…

A
B
C

D

stack(C, B)

A

B
C
D

stack(B, C)

Figure 3.1: An example from automated planning.

Note that the precondition of this action is satisfied in ω0 and hence can be

applied from ω0, which would result in the new state

ω1 = {holding(A), clear(B), clear(C), clear(D),

ontable(B), ontable(C), ontable(D)}.

If the goal of the planning problem is g = {on(C,D), on(B,A)}, then one

solution for the problem, as shown in Figure 3.1, is the action sequence (pickup(B),

stack(B,A), pickup(C), stack(C,D)).

There has been much recent progress in automated planning. One of the most

successful approaches, and the one most relevant to our work, is to solve planning

problems using forward state-space search guided by powerful domain-independent

planning heuristics. A number of recent state-of-the-art planners have followed

this approach including HSP [Bonet and Geffner, 1999], FF [Hoffmann and Nebel,

11

2001], and AltAlt [Nguyen et al., 2002].

3.2 Learning to Plan

It is common for planning systems to be asked to solve many problems from a

particular domain. For example, the bi-annual international planning competition

is organized around a number of planning domains and includes many problems of

varying difficulty from each domain. Given that problems from the same domain

share significant structure, it is natural to attempt to learn from past experience in

a domain in order to solve future problems from the same domain more efficiently.

However, most state-of-the-art planning systems do not have any such learning

capability and solve each problem from the domain as if it were the first problem

ever encountered by the planner. The goal of our work is to develop the capability

for a planner to learn domain-specific knowledge in order to improve performance

in a target domain of interest.

More specifically, we focus on developing learning capabilities within the simple,

but highly successful, framework of heuristic state-space search planning. Our goal

is to learn heuristics, or ranking functions, that can quickly solve problems using

efficient search algorithms. Given a representative training set of problems from a

planning domain, our approach first solves the problems using potentially expensive

search (e.g., complete search), guided by an existing heuristic. These solutions are

then used to learn a ranking function that can guide a small width beam search or

greedy search to the same solutions. The hope is that the learned ranking function

12

will then generalize and allow for the quick solution of new problems that could

not be practically solved before learning.

3.3 Prior Work

There has been a long history of work on learning-to-plan, originating at least

back to the original STRIPS planner [Fikes et al., 1972], which learned triangle

tables or macros that could later be exploited by the planner. For a collection and

survey of work on learning in AI planning see [Minton, 1993] and [Zimmerman and

Kambhampati, 2003].

A number of learning-to-plan systems have been based on the explanation-based

learning (EBL) paradigm, for example, [Minton et al., 1989] among many others.

EBL is a deductive learning approach, in the sense that the learned knowledge is

provably correct. Despite the relatively large effort invested in EBL research, the

best approaches typically did not consistently lead to significant gains, and even

hurt performance in many cases. A primary way that EBL can hurt performance

is by learning too many, overly specific control rules, which results in the planner

spending too much time simply evaluating the rules at the cost of reducing the

number of search nodes considered. This problem is commonly referred to as the

EBL utility problem [Minton, 1988].

Partly in response to the difficulties associated with EBL-based approaches,

there have been a number of systems based on inductive learning, sometimes com-

bined with EBL. The inductive approach involves applying statistical learning

13

mechanisms to find common patterns that can distinguish between good and bad

search decisions. Unlike EBL, the learned control knowledge typical does not have

guarantees of correctness. However, the knowledge is typically more general and

hence more effective in practice. Some representative examples of such systems

include learning for partial-order planning [Estlin and Mooney, 1996], learning for

planning as satisfiability [Huang et al., 2000], and learning for the Prodigy means-

ends framework [Aler et al., 2002]. While these systems typically showed better

scalability than their EBL counterparts, the evaluations were typically conducted

on only a small number of planning domains and/or small number of test problems.

There is no empirical evidence that such systems are robust enough to compete

against state-of-the-art non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems based on the

idea of learning reactive policies for planning domains [Khardon, 1999; Martin

and Geffner, 2000; Yoon et al., 2002]. These approaches use statistical learning

techniques to learn policies, or functions, which map any state-goal pair from a

given domain to an appropriate action. Given a good reactive policy for a domain,

problems can be solved quickly, without search, by iterative application of the

policy. Despite its simplicity, this approach has demonstrated considerable success.

However, these approaches have still not demonstrated the robustness necessary to

outperform state-of-the-art non-learning planners across a wide range of domains.

More closely related is work by [la Rosa et al., 2007], which uses a case-based

reasoning approach to obtain an improved heuristic for forward state-space search.

It is likely that our weight learning approach could be combined with their system

14

to harness the benefits of both approaches. The most closely related approach to

our work is based on extending forward state-space search planners by learning

improved heuristics [Yoon et al., 2006], an approach which is among the state-of-

the-art learning-based planners. That work focused on improving the relaxed plan

length heuristic used by the state-of-the-art planner FF [Hoffmann and Nebel,

2001]. Note that FF consists of two stages: an incomplete local search and a

complete best-first search. In particular, Yoon, Fern and Givan applied linear re-

gression to learn an approximation of the difference between FF’s heuristic and

the observed distances-to-goal of states in the training plans [Yoon et al., 2006].

The primary contribution of the work was to define a generic knowledge repre-

sentation for features and a features-search procedure that allowed learning of

good regression functions across a range of planning domains. While the approach

showed promising results, the learning mechanism has a number of potential short-

comings. Most importantly, the mechanism does not consider the actual search

performance of the heuristic during learning. That is, learning is based purely

on approximating the observed distances-to-goal in the training data. Even if the

learned heuristic performs poorly on the training data when used for search, the

learner makes no attempt to correct the heuristic in response.

A primary motivation for this dissertation is to develop a learning mechanism

that is more tightly integrated with the search process. Our learning approach

can be viewed as error-driven in the sense that it directly attempts to correct

errors as they arise in the search process, rather than attempting to precisely

model the distance-to-goal. In many areas of machine learning, such error-driven

15

methods have been observed to outperform their traditional passive counterparts.

The experimental results presented here agree with that observation in a number

of planning domains.

16

Chapter 4 – Learning Weights for Linear Ranking Functions

In this chapter, we assume features are provided and investigate the problem of

learning weights for beam search. First, we formally define the weight learning

problems for breadth-first beam search and best-first beam search respectively.

Next, we study their theoretical properties, in terms of computational complexity

and convergence of various learning algorithms. The work presented in this chapter

has been published in [Xu and Fern, 2007; Xu et al., 2009a].

4.1 Weight Learning Problems

Our learning problems provide training sets of pairs {〈Si, Pi〉}, where the Si =

〈Ii, si(·), fi(·), <i〉 are search spaces constrained such that each fi has the same

dimension. As described in more detail below, the Pi encode sets of target search

paths that describe desirable search paths through the corresponding search spaces.

Roughly speaking the learning goal is to learn a ranking function that can produce

a beam trajectory of a specified width for each search space that contains at least

one of the corresponding target paths in the training data. For example, in the

context of automated planning, the Si would correspond to planning problems

from a particular domain, encoding the state space and available actions, and the

Pi would encode optimal or satisficing plans for those problems. A successfully

17

learned ranking function would be able to quickly find at least one of the target

solution plans for each training problem and ideally new target problems.

We represent each set of target search paths as a sequence Pi = (Pi,0, Pi,1, . . . ,

Pi,d) of sets of search nodes where Pi,j contains target nodes at depth j and Pi,0 =

{Ii}. It is useful to think about Pi,d as encoding the goal nodes of the i′th search

space. We will refer to the maximum size t of any target node set Pi,j as the target

width of Pi, which will be referred to in our complexity analysis. The generality

of this representation for target paths allows for pathological targets where certain

nodes do not lead to the goal. In order to arrive at convergence results, we rule

out such possibilities by assuming that the training set is dead-end free. That is,

for all i and j < d each v ∈ Pi,j has at least one child node v′ ∈ Pi,j+1. Note

that in almost all real problems this property will be naturally satisfied. For our

complexity analysis, we will not need to assume any special properties of the target

search paths Pi.

Intuitively, for a dead-end free training set, each Pi represents a layered directed

graph with at least one path from each target node to a goal node in Pi,d. Thus,

the training set specifies not only a set of goals for each search space but also

gives possible solution paths to the goals. For simplicity, we assume that all target

solution paths have depth d, but all results easily generalize to non-uniform depths.

For breadth-first beam search we specify a learning problem by giving a training

set and a beam width 〈{〈Si, Pi〉}, b〉. The objective is to find a weight vector w that

generates a beam trajectory containing at least one of the target paths for each

training instance. More formally, we are interested in the consistency problem:

18

Definition 1 (Breadth-First Consistency) Given the input 〈{〈Si, Pi〉}, b〉

where b is a positive integer and Pi = (Pi,0, Pi,1, . . . , Pi,d), the breadth-first consis-

tency problem asks us to decide whether there exists a weight vector w such that

for each Si, the corresponding beam trajectory (Bi,0, Bi,1, . . . , Bi,d), produced using

w with a beam width of b, satisfies Bi,j ∩ Pi,j 6= ∅ for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allow a breath-

first beam search of width b to uncover at least one goal node (i.e., a node in Pi,d)

within d beam expansions for all training instances.

Unlike the case of breadth-first beam search, the length of the beam trajectory

required by best-first beam search to reach a goal node can be greater than the

depth d of the target paths. This is because best-first beam search, does not

necessarily increase the maximum depth of search nodes in the beam at each search

step. Thus, in addition to specifying a beam width for the learning problem, we

also specify a maximum number of search steps, or horizon, h. The objective is to

find a weight vector that allows a best-first beam search to find a goal node within

h search steps, while always keeping some node from the target paths in the beam.

Definition 2 (Best-First Consistency) Given the input 〈{〈Si, Pi〉}, b, h〉, where

b and h are positive integers and Pi = (Pi,0, . . . , Pi,d), the best-first consistency prob-

lem asks us to decide whether there is a weight vector w that produces for each Si

a beam trajectory (Bi,0, . . . , Bi,k) of beam width b, such that k ≤ h, Bi,k ∩ Pi,d 6= ∅

(i.e., Bi,k contains a goal node), and each Bi,j for j < k contains at least one node

in
⋃

j Pi,j?

19

Again, a weight vector that demonstrates a “yes” answer is guaranteed to allow

a best-first beam search of width b to find a goal node in h search steps for all

training instances.

Example from Automated Planning. Figure 3.1, shows a pictorial ex-

ample of a single training example from an automated planning problem. The

planning domain in this example is Blocksworld where individual problems involve

transforming an initial configuration of blocks to a goal configuration using simple

actions such as picking up, putting down, and stacking the various blocks. The

figure shows a search space Si where each node corresponds to a configuration

of blocks and the arcs indicate when it is possible to take an action that transi-

tions from one configuration to another. The figure depicts, via highlighted nodes,

two target paths. The label Pi would encode these target paths by a sequence

Pi = (Pi,0, Pi,1, . . . , Pi,4) where Pi,j contains the set of all highlighted target nodes

at depth j. A solution weight vector, for this training example, would be required

to keep at least one of the highlighted paths in the beam until uncovering the goal

node.

Example from Structured Classification. Daumé III and Marcu con-

sidered learning ranking functions to control beam search in the context of struc-

tured classification [Daumé III and Marcu, 2005]. Structured classification involves

learning a function that maps structured inputs x to structured outputs y. As an

example, consider part-of-speech tagging where the inputs correspond to English

sentences and the correct output for a sentence is the sequence of part-of-speech

tags for the words in the sentence. Figure 4.1 shows how Daumé III and Marcu

20

((the cat ran),(- - -))

((the cat ran), (verb - -))((the cat ran), (article - -))

((the cat ran), (article verb -)) ((the cat ran), (article noun -))

((the cat ran), (article noun verb)) ((the cat ran), (article noun noun))

…

…

…

Goal Node (x, y)

x = (The cat ran)

y = (article noun verb)

Terminal Node (x, y’)

Figure 4.1: An example from structured classification.

formulated a single instance of part-of-speech tagging as a search problem. Each

search node is a pair (x, y′) where x is the input sentence and y′ is a partial label-

ing of the words in x by part-of-speech tags. The arcs in this space correspond to

search steps that label words in the sentence in a left-to-right order by extending

y′ in all possible ways by one element. The leaves, or terminal nodes, of this space

correspond to all possible complete labelings of x. Given a ranking function and

a beam width, Daumé III and Marcu return a predicted output for x by conduct-

ing a beam search until a terminal node becomes the highest ranked node in the

beam, and then return the output component of that terminal node [Daumé III

and Marcu, 2005]. This approach to making predictions suggests that the learning

objective should require that we learn a ranking function such that the goal termi-

nal node, is the first terminal node to become highest ranked in the beam. In the

figure, there is a single goal terminal node (x, y) where y is the correct labeling of

x and there is a unique target path to this goal.

21

From the example in Figure 4.1, we see that there is a difference between the

learning objective used by [Daumé III and Marcu, 2005] for structured classifi-

cation and the learning objective under our formulation, which was motivated by

automated planning. In particular, our formulation does not force the goal node to

be the highest ranked node in the final beam, but rather only requires that a goal

node appear somewhere in the final beam. While these formulations appear quite

different, it turns out that they are polynomially reducible to one another, which

we prove in the Appendix. Thus, all of the results in this paper apply equally well

to the structured-classification formulation of [Daumé III and Marcu, 2005].

4.2 Computational Complexity

In this section, we study the computational complexity of the above consistency

problems. We first focus on breadth-first beam search and then give the corre-

sponding best-first results at the end of this section. It is important to note that

the size of the search spaces will typically be exponential in the encoding size of the

learning problem. For example, in automated planning, standard languages such

as PDDL [McDermott, 1998] are used to compactly encode planning problems that

are potentially exponentially large, in terms of the number of states, with respect

to the PDDL encoding size. Throughout this section we measure complexity in

terms of the problem encoding size, not the potentially exponentially larger search

space size. All discussions in this section apply to general search spaces and are

not tied to a particular language for describing search space such as PDDL.

22

Our complexity analysis will consider various sub-classes of the breadth-first

consistency problem, where the sub-classes will be defined by placing constraints

on the following problem parameters: n - the number of training instances, d

- the depth of target solution paths, c - the maximum number of children of

any search node, t - the maximum target width of any Pi as defined in Section

4.1, and b - the beam width. Figure 4.2 gives a pictorial depiction of these key

problem parameters. We will restrict our attention to problem classes where the

maximum number of children c and beam width b are polynomial in the problem

size, which are necessary conditions to ensure that each beam search step requires

only polynomial time and space. We will also assume that all feature functions

can be evaluated in polynomial time in the problem size.

. . . .

b
n

d

Figure 4.2: The key problem parameters: n - the number of training instances, d -
the depth of target solution paths, b - the beam width. Not depicted in the figure
are: c - maximum number of children of any node, t - the maximum target width
of any example.

Note that restricting the number of children c may rule out the use of certain

search space encodings for some problems. For example, in a multi-agent planning

23

scenario, there are an exponential number of joint actions to consider from each

state, and thus an exponential number of children. However, here it is possible to

re-encode the search space by increasing the depth of the search tree, so that each

joint action is encoded by a sequence of steps where each agent selects an action in

turn followed by all of them executing the selected actions. The resulting search

space has only a polynomial number of children and thus satisfies our assumption,

though the required search depth has increased. This form of re-encoding from

a search space with exponentially many children to one with polynomially many

children can be done whenever the actions in the original space have a compact,

factored encoding, which is typically the case in practice.

4.2.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consistency by

proving that the general problem is in NP even for exponentially large search

spaces.

Observe that given a weight vector w and beam width b, we can easily generate

a unique depth d beam trajectory for each training instance. Our upper bound is

based on considering the inverse problem of checking whether a set of hypothesized

beam trajectories, one for each training instance, could have been generated by

some weight vector. The algorithm TestTrajectories in Figure 4.3 efficiently carries

out this check. The main idea is to observe that for any search space S it is possible

to efficiently check whether there is a weight vector that starting with a beam B

24

could generate a beam B′ after one step of breadth-first beam search. This can be

done by constructing an appropriate set of linear constraints on the weight vector

w that are required to generate B′ from B. In particular, we first generate the

set of candidate nodes C from B by unioning all children of nodes in B. Clearly

we must have B′ ⊆ C in order for there to be a solution weight vector. If this is

the case then we create a linear constraint for each pair of nodes (u, v) such that

u ∈ B′ and v ∈ C −B′, which forces u to be preferred to v:

w · f(u) > w · f(v)

where w = (w1, w2, . . . , wm) are the constraint variables and f(·) = (f1(·), f2(·), . . . ,

fm(·)) is the vector of feature functions. Note that if u is more preferred than v in

the total preference ordering, then we only need to require that w ·f(u) ≥ w ·f(v).

The overall algorithm TestTrajectories simply creates this set of constraints for

each consecutive pair of beams in each beam trajectory and then tests to see

whether there is a w that satisfies all of the constraints.

Lemma 1 Given a set of search spaces {Si} and a corresponding set of width

b beam trajectories {(Bi,0, . . . , Bi,d)}, the algorithm TestTrajectories (Figure 4.3)

decides in polynomial time whether there exists a weight vector w that can generate

(Bi,0, . . . , Bi,d) in Si for all i.

Proof It is straightforward to show that w satisfies the constraints generated

by TestTrajectories iff for each i, j, r(v′, v| <i, w) leads beam search to generate

Bi,j+1 from Bi,j. The linear program contains m variables and at most ndcb2

25

ExhaustiveAlgorithm ({〈Si, Pi〉}, b)
Γ = Enumerate({〈Si, Pi〉}, b)
// enumerates all possible sets of beam trajectories
for each {(Bi,0 . . . , Bi,d)} ∈ Γ

if IsConsistent({Pi}, {(Bi,0 . . . , Bi,d)}) then
w= TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)})
if w 6= false then

return w
return false

TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)})
// Si = 〈Ii, si(·), fi(·), <i〉
construct a linear programming problem LP as below

the variables are w = {w1, w2, . . . , wm}
for (i, j) ∈ {1, . . . , n} × {1, . . . , d}
Ci,j =BreadthExpand(Bi,j−1, si(·))
if Bi,j ⊆ Ci,j then

for each u ∈ Bi,j and v ∈ Ci,j −Bi,j

if v <i u then
add a constraint w · fi(u) ≥ w · fi(v)

else add a constraint w · fi(u) > w · fi(v)
else return false

w = LPSolver(LP)
if LP is solved then

return w
return false

Figure 4.3: The exhaustive algorithm for breadth-first consistency.

26

constraints. Since we are assuming that the maximum number of children of a

node v is polynomial in the size of the learning problem, the size of the linear

program is also polynomial and thus can be solved in polynomial time [Khachiyan,

1979].

This lemma shows that sets of beam trajectories can be used as efficiently-checkable

certificates for breadth-first consistency, which leads to an upper bound on the

problem’s complexity.

Theorem 1 Breadth-first consistency is in NP.

Proof Given a learning problem 〈{〈Si, Pi〉}, b〉 our certificates correspond to sets of

beam trajectories {(Bi,0, . . . , Bi,d)} each of size at most O(ndb) which is polynomial

in the problem size. The certificate can then be checked in polynomial time to see if

for each i, (Bi,0, . . . , Bi,d) contains a target solution path encoded in Pi as required

by Definition 1. If it is consistent then according to Lemma 1 we can efficiently

decide whether there is a w that can generate {(Bi,0, . . . , Bi,d)}.

This result suggests an enumeration-based decision procedure for breadth-first

consistency as given in Figure 4.3. In that procedure, the function Enumerate

creates a list of all possible combinations of beam trajectories for the training data.

Thus, each element of this list is a list of beam trajectories, one for each training

example, where a beam trajectory is simply a sequence of sets of nodes that are

selected from the given search space. For each enumerated combination of beam

trajectories, the function IsConsistent checks whether the beam trajectory for each

27

example contains a target path for that example and if so TestTrajectories will be

called to determine whether there exists a weight vector that could produce those

trajectories. The following gives us the worst case complexity of this algorithm in

terms of the key problem parameters.

Theorem 2 The procedure ExhaustiveAlgorithm (Figure 4.3) decides breadth-first

consistency and returns a solution weight vector if there is a solution in time

O
(

(t+ poly(m)) (cb)bdn
)

.

Proof We first bound the number of certificates. Breadth-first beam search ex-

pands nodes in the current beam, resulting in at most cb nodes, from which b

nodes are selected for the next beam. Enumerating these possible choices over d

levels and n trajectories, one for each training instance, we can bound the number

of certificates by O
(

(cb)bdn
)

. For each certificate the enumeration process checks

consistency with the target paths {Pi} in time O(tbdn) and then calls TestTra-

jectories which runs in time poly(m,ndcb2). The total time complexity then is

O
(

(tbdn+ poly(m,ndcb2)) (cb)bdn
)

= O
(

(t+ poly(m)) (cb)bdn
)

.

Not surprisingly the complexity is exponential in the beam width b, target

path depth d, and number of training instances n. However, it is polynomial

in the maximum number of children c and the maximum target width t. Thus,

breadth-first consistency can be solved in polynomial time for any problem class

where b, d, and n are constants. Of course, for most problems these constants

would be too large for this result to be of practical interest. This leads to the

28

question of whether we can do better than the exhaustive algorithm for restricted

problem classes. For at least one problem class we can.

Theorem 3 The class of breadth-first consistency problems where b = 1 and t = 1

is solvable in polynomial time.

Proof Given a learning problem 〈{〈Si, Pi〉}, b〉 where Pi = (Pi,0, . . . , Pi,d), t = 1

implies that each Pi,j contains exactly one node. Since the beam width b = 1, then

the only way that a beam trajectory (Bi,0, . . . , Bi,d) can satisfy the condition Bi,j∩

Pi,j 6= ∅ for any i, j, is for Bi,j = Pi,j. Thus there is exactly one beam trajectory

for each training example, equal to the target trajectory, and using Lemma 1 we

can check for a solution weight vector for these trajectories in polynomial time.

. . .

Figure 4.4: A tractable class of breadth-first consistency, where b = 1 and t = 1.

This problem class, as depicted in Figure 4.4, corresponds to the case where

each training instance is labeled by exactly a single solution path and we are asked

to find a w that leads a greedy hill-climbing search, or reactive policy, to follow

those paths. This is a common learning setting, for example, when attempting to

learn reactive control policies based on demonstrations of target policies, perhaps

from an expert, as in [Khardon, 1999].

29

4.2.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears that breadth-first

consistency is computationally hard even under strict restrictions. In particular,

the following three results show that if any one of b, d, or n are not bounded then

the consistency problem is hard even when the other problem parameters are small

constants.

First, we show that the problem class where n = d = t = 1 but b ≥ 1 is NP-

complete. That is, a single training instance involving a depth one search space

is sufficient for hardness. This problem class, resembles more traditional ranking

problems and has a nice analogy in the application domain of web-page ranking,

where the depth 1 leaves of our search space correspond to possibly relevant web-

pages for a particular query. One of those pages is marked as a target page, e.g.

the page that a user eventually went to. The learning problem is then to find

a weight vector that will cause for the target page to be ranked among the top

b pages. Our result shows that this problem is NP-complete and hence will be

exponential in b unless P = NP .

Theorem 4 The class of breadth-first consistency problems where n = 1, d = 1,

t = 1, and b ≥ 1 is NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binary

classifiers, which was proven to be NP-complete by [Hoffgen et al., 1995]. The

input to this problem is a training set T = {x+
1 , · · · , x+

r1
, x−1 , · · · , x−r2

} of positive

and negative m-dimensional vectors and a positive integer k. A weight vector

30

w classifies a vector as positive iff w · x ≥ 0 and otherwise as negative. The

Minimum Disagreement problem is to decide whether there exists a weight vector

that commits no more than k misclassification.

Given a Minimum Disagreement problem we construct an instance 〈〈S1, P1〉, b〉

of the breadth-first consistency problem as follows. Assume without loss of general-

ity S1 = 〈I, s(·), f(·), <〉. Let s(I) = {q0, q1, · · · , qr1+r2
}. For each i ∈ {1, · · · , r1},

define f(qi) = −x+
i ∈ Rm. For each i ∈ {1, · · · , r2},define f(qi+r1

) = x−i ∈ Rm.

Define f(q0) = 0 ∈ Rm, P1 = ({I}, {q0}) and b = k + 1. Define the total ordering

< to be a total ordering in which qi < q0 for every i = 1, . . . , r1 and q0 < qi for

every i = r1 + 1, . . . , r1 + r2.We claim that there exists a linear classifier with at

most k misclassifications if and only if there exists a solution to the corresponding

consistency problem.

First, suppose there exists a linear classifier w · x ≥ 0 with at most k misclas-

sifications. Using the weight vector w, we have

• w · f(q0) = 0;

• for i = 1, · · · , r1 :

if w · x+
i ≥ 0, w · f(qi) = w · (−x+

i) ≤ 0;

if w · x+
i < 0, w · f(qi) = w · (−x+

i) > 0;

• for i = r1 + 1, . . . , r1 + r2:

if w · x−i ≥ 0, w · f(qi) = w · x−i ≥ 0;

if w · x−i < 0, w · f(qi) = w · x−i < 0.

For i = 1, · · · , r1+r2, the node qi in the consistency problem is ranked lower than q0

31

if and only if its corresponding example in the Minimum Disagreement problem is

labeled correctly, is ranked higher than q0 if and only if its corresponding example

in the Minimum Disagreement problem is labeled incorrectly. Therefore, there are

at most k nodes which are ranked higher than q0. With beam width b = k+1, the

beam Bi,1 is guaranteed to contain node q0, indicating that w is a solution to the

consistency problem.

On the other hand, suppose there exists a solution w to the consistency problem.

There are at most b−1 = k nodes that are ranked higher than q0. That is, at least

r1 + r2 − k nodes are ranked lower than q0. For i = 1, . . . , r1, qi is ranked lower

than q0 if and only if w · f(qi) ≤ w · f(q0). For i = r1 + 1, . . . , r1 + r2, qi is ranked

lower than q0 if and only if w · f(qi) < w · f(q0). Since w · f(q0) = 0, we have

• for i = 1, · · · , r1 :

w · f(qi) ≤ 0⇒ w · (−x+
i) ≤ 0⇒ w · x+

i ≥ 0;

• for i = r1 + 1, . . . , r1 + r2 :

w · f(qi) < 0⇒ w · x−i < 0⇒ w · x−i < 0.

Therefore, using the linear classifier w ·x ≥ 0, at least r1 + r2−k nodes are labeled

correctly, that is, it makes at most k misclassifications.

Since the time required to construct the instance 〈〈S1, P1〉, b〉 from T, k is poly-

nomial in the size of T, k, we conclude that the consistency problem is NP-Complete

even restricted to n = 1, d = 1 and t = 1.

The next result shows that if we do not bound the number of training instances

n, then the problem remains hard even when the target path depth and beam

32

width are equal to one. Interestingly, this subclass of breadth-first consistency

corresponds to the multi-label learning problem as defined in [Jin and Ghahramani,

2002]. In multi-label learning each training instance can be viewed as a bag of m-

dimensional vectors, some of which are labeled as positive, which in our context

correspond to the target nodes. The learning goal is to find a w that for each bag,

ranks one of the positive vectors as best.

Theorem 5 The class of breadth-first consistency problems where d = 1, b = 1,

c = 6, t = 3, and n ≥ 1 is NP-complete.

Proof The proof is by reduction from 3-SAT [Garey and Johnson, 1979], which is

the following.

“Given a set U of boolean variables, a collection Q of clauses over U such that

each clause q ∈ Q has |q| = 3, decide whether there is a satisfying truth assignment

for C.”

Let U = {u1, . . . , um}, Q = {q11∨q12∨q13, . . . , qn1∨qn2∨qn3} be an instance of

the 3-SAT problem. Here, qij = u or ¬u for some u ∈ U . We construct from U,Q

an instance 〈{〈Si, Pi〉}, b〉 of the breadth-first consistency problem as follows. For

each clause qi1 ∨ qi2 ∨ qi3, let si(Ii) = {pi,1, · · · , pi,6} , Pi = ({Ii}, {pi,1, pi,2, pi,3}),

b = 1, and the total ordering <i is defined so that pi,j <i pi,k for j = 1, 2, 3

and k = 4, 5, 6. Let ek ∈ {0, 1}m denote a vector of zeros except a 1 in the

k′th component. For each i = 1, . . . , n, j = 1, 2, 3, if qij = uk for some k then

fi(pi,j) = ek and fi(pi,j+3) = −ek/2, otherwise if qij = ¬uk for some k then

fi(pi,j) = −ek and fi(pi,j+3) = ek/2. We claim that there exists a satisfying truth

33

assignment if and only if there exists a solution to the corresponding consistency

problem.

First, suppose that there exists a satisfying truth assignment. Let w = (w1, · · · ,

wm), where wk = 1 if uk is true, and wk = −1 if uk is false in the truth assignment.

For each i = 1, . . . , n, j = 1, . . . , 3, we have:

• if qij is true, then

w · fi(pi,j) = 1 and w · fi(pi,j+3) = −1/2;

• if qij is false, then

w · fi(pi,j) = −1 and w · fi(pi,j+3) = 1/2.

Note that for each clause qi1∨ qi2∨ qi3, at least one of the literals is true. Thus, for

every set of nodes {pi,1, pi,2, pi,3}, at least one of the nodes will have the highest

rank value equal to 1, resulting in Bi,1 = {v} where v ∈ {pi,1, pi,2, pi,3}. By the

definition, the weight vector w is a solution to the consistency problem.

On the other hand, suppose that there exists a solution w = (w1, . . . , wm) to

the consistency problem. Assume the beam trajectory for each i is ({Ii}, {vi}).

Then vi = pi,j for some j ∈ {1, 2, 3}, and for this i and j, qij = uk or ¬uk for some

k. Let uk be true if qij = uk and be false if qij = ¬uk. As long as there is no

contradiction in this assignment, this is a satisfying truth assignment because at

least one of {qi1, qi2, qi3} is true for every i, that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is,

any variable is assigned either true or false, but not both. Note that for any node

v ∈ {pi,1, pi,2, pi,3}, there always exists a node v′ ∈ {pi,4, . . . , pi,6} such that:

34

• w · fi(v) < 0⇔ w · fi(v
′) > 0;

• w · fi(v) > 0⇔ w · fi(v
′) < 0;

• w · fi(v) = 0⇔ w · fi(v
′) = 0.

Then because of the total ordering <i we defined, the node vi = pi,j appearing in

the beam trajectory, must has w · fi(vi) > 0. Assume without loss of generality

that qij = uk, then uk is assigned to be true. Although ¬uk might appear in

other clauses, e.g. qi′j′ = ¬uk, its corresponding node pi′,j′ can never appear in the

beam trajectory because w · fi′(pi′,j′) = w · (−ek) = −w · ek = −w · fi(pi,j) < 0.

Therefore, uk will never be assigned false. A similar proof can be given for the

case of qij = ¬uk.

Since the time required to construct the instance 〈{〈Si, Pi〉}, b〉 from U,Q is

polynomial in the size of U,Q, we conclude that the consistency problem is NP-

Complete for the case of d = 1, b = 1, c = 6 and t = 3.

Finally, we show that when the depth d is unbounded the consistency problem

remains hard even when b = n = 1.

Theorem 6 The class of breadth-first consistency problems where n = 1, b = 1,

c = 6, t = 3, and d ≥ 1 is NP-complete.

Proof Assume x = 〈{〈Si, Pi〉|i = 1, . . . , n}, b〉, where Si = 〈Ii, si(·), fi(·), <i〉 and

Pi = ({Ii}, Pi,1), is an instance of the consistency problem with d = 1, b = 1, c = 6

and t = 3. We can construct an instance y of the consistency problem with n = 1,

35

b = 1, c = 6, and t = 3. Let y = 〈〈S̄1, P̄1〉, b〉 where S̄1 = 〈I1, s̄(·), f̄(·), <̄〉, and

P̄1 = ({I1}, P1,1, P2,1, . . . , Pt,1). We define s̄(·), f̄(·), <̄ as below.

• s̄(I1) = s1(I1), f̄(I1) = f1(I1);

• for each i = 1, . . . , n− 1

∀v ∈ si(Ii), f̄(v) = fi(v) and s̄(v) = si+1(Ii+1);

∀(v, v′) ∈ si(Ii), <̄(v, v′) =<i (v, v′);

• ∀v ∈ sn(In), f̄(v) = fn(v);

∀(v, v′) ∈ sn(In), <̄(v, v′) =<n (v, v′).

Obviously, a weight vector w is a solution for the instance x if and only if w is a

solution for the constructed instance y.

Table 4.1: Complexity results for breadth-first consistency.

b n d c t Complexity
poly ≥ 1 ≥ 1 poly ≥ 1 NP
K K K poly ≥ 1 P
1 ≥ 1 ≥ 1 poly 1 P

poly 1 1 poly 1 NP-Complete
1 ≥ 1 1 6 3 NP-Complete
1 1 ≥ 1 6 3 NP-Complete

Table 4.1 summarizes our main complexity results from this section for breadth-

first consistency. Here K indicates a constant value and “poly” indicates that the

quantity must be polynomially related to the problem size. Each row of Table

36

4.1 corresponds to a sub-class of the problem and indicates the computational

complexity.

For best-first beam search, most of these results in Table 4.1 can be carried

over. Recall that for best-first consistency the problem specifies a search horizon

h in addition to a beam width. Using a similar approach as above we can show

that best-first consistency is in NP assuming that h is polynomial in the problem

size, which is a reasonable assumption. Similarly, one can extend the polynomial

time result for fixed b, n, and d. The remaining results in the table can be directly

transferred to best-first search, since in each case either b = 1 or d = 1 and

best-first beam search is equivalent to breadth-first beam search in either of these

cases.

4.3 Convergence of Online Updates

In section 4.2, we identified a limited set of tractable problem classes and saw

that even very restricted classes remain NP-hard. We also saw that some of these

hard classes had interesting application relevance. Thus, it is desirable to consider

efficient learning mechanisms that work well in practice. Below we describe two

such algorithms based on online perceptron updates.

37

4.3.1 Online Perceptron Updates

Figure 4.5 gives the LaSO-BR algorithm for learning ranking functions for breadth-

first beam search. It resembles the learning as search optimization (LaSO) algo-

rithm for best-first search by [Daumé III and Marcu, 2005]. LaSO-BR iterates

through all training instances 〈Si, Pi〉 and for each one conducts a beam search of

the specified width. After generating the depth j beam for the ith training instance,

if at least one of the target nodes in Pi,j is in the beam, then no weight update

occurs. Rather, if none of the target nodes in Pi,j are in the beam then a search er-

ror is flagged and weights are updated according to the following perceptron-style

rule,

w = w + α ·
(
∑

v∗∈Pi,j∩C f(v∗)

|Pi,j ∩ C|
−
∑

v∈B f(v)

b

)

,

where 0 < α ≤ 1 is a learning rate parameter, B is the current beam and C is the

candidate set from which B was generated (i.e., the beam expansion of the previous

beam). For simplicity of notation, here we assume that f is a feature function for

all training instances. Intuitively this weight update moves the weights in the

direction of the average feature function of target nodes that appear in C, and

away from the average feature function of non-target nodes in the beam. This has

the effect of increasing the rank of target nodes in C and decreasing the rank of

non-targets in the beam. Ideally, this will cause at least one of the target nodes to

become preferred enough to remain on the beam the next time through the search.

Note that the use of averages over target and non-target nodes is important so as

38

to account for the different sizes of these sets of nodes. After each weight update,

the beam is reset to contain only the set of target nodes in C and the beam search

then continues. Importantly, on each iteration, the processing of each training

instance is guaranteed to terminate in d search steps.

LaSO-BR ({〈Si, Pi〉}, b)
w ← 0
repeat until w is unchanged or a large number of iterations

for every i
Update-BR(Si, Pi, b, w)

return w

Update-BR (Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
for j = 1, . . . , d
C ← BreadthExpand(B, si(·))
for every v ∈ C
H(v)← w · f(v) // compute heuristic value of v

Order C according to H and the total ordering <i

B ← the first b nodes in C
if B ∩ Pi,j = ∅ then

w ← w + α ·
(

∑

v∗∈Pi,j∩C f(v∗)

|Pi,j∩C|
−

∑

v∈B f(v)

b

)

B ← Pi,j ∩ C
return

Figure 4.5: The LaSO-BR online algorithm for breadth-first beam search.

Figure 4.6 gives the LaSO-BST algorithm for learning in best-first beam search,

which is a slight modification of the original LaSO algorithm. The main difference

compared to the original LaSO is in the weight update equation, a change that ap-

39

pears necessary for our convergence analysis. The algorithm is similar to LaSO-BR

except that a best-first beam search is conducted, which means that termination

for each training instance is not guaranteed to be within d steps. Rather, the

number of search steps for a single training instance remains unbounded without

further assumptions, which we will address later in this section. In particular,

there is no bound on the number of search steps between weight updates for a

given training example. This difference between LaSO-BR and LaSO-BST was of

great practical importance in our automated planning application. In particular,

LaSO-BST typically did not produce useful learning results due to the fact that

the number of search steps between weight updates was extremely large. Note that

in the case of structured classification, Daumé III and Marcu did not experience

this difficulty due to the bounded-depth nature of their search spaces [Daumé III

and Marcu, 2005].

4.3.2 Previous Result and Counter Example

Adjusting to our terminology, Daumé III and Marcu defined a training set to be

linear separable iff there is a weight vector that solves the corresponding consis-

tency problem [Daumé III and Marcu, 2005]. For linearly separable data they also

defined a notion of margin of a weight vector, which we refer to here as the search

margin. The formal definition of search margin is given below.

Definition 3 (Search Margin) The search margin of a weight vector w for a

linearly separable training set is defined as γ = min{(v∗,v)}(w · f(v∗) − w · f(v)),

40

LaSO-BST ({〈Si, Pi〉}, b)
w ← 0
repeat until w is unchanged or a large number of iterations

for every i
Update-BST(Si, Pi, b, w)

return w

Update-BST (Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
P̄ = Pi,0 ∪ Pi,2 ∪ . . . ∪ Pi,d

while B ∩ Pi,d = ∅
C ← BestExpand(B, si(·))
for every v ∈ C
H(v)← w · f(v) // compute heuristic value of v

Order C according to H and the total ordering <i

B ← the first b nodes in C
if B ∩ P̄ = ∅ then
w ← w + α ·

(
∑

v∗∈P̄∩C f(v∗)

|P̄∩C|
−

∑

v∈B f(v)

b

)

B ← P̄ ∩ C
return

Figure 4.6: The LaSO-BST online algorithm for best-first beam search.

41

where the set {(v∗, v)} contains any pair where v∗ is a target node and v is a

non-target node that was compared during the beam search guided by w.

Daumé III and Marcu state that the existence of a w with positive search mar-

gin, which implies linear separability, implies convergence of the original LaSO

algorithm after a finite number of weight updates [Daumé III and Marcu, 2005].

On further investigation, we have found that a positive search margin is not suf-

ficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BST. Intuitively,

the key difficulty is that our learning problem contains hidden state in the form

of the desired beam trajectory. Given the beam trajectory of a consistent weight

vector one can compute the weights, and likewise given consistent weights one can

compute the beam trajectory. However, we are given neither to begin with and

our approach can be viewed as an online EM-style algorithm, which alternates be-

tween updating weights given the current beam and recomputing the beam given

the updated weights. Just as traditional EM is quite prone to local minima, so are

the LaSO algorithms in general, and in particular even when there is a positive

search margin as demonstrated in the following counter example. Note that the

standard Perceptron algorithm for classification learning does not run into this

problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight

vector with positive search margin does not guarantee convergence to a solution

weight vector for LaSO-BR or LaSO-BST. Consider a problem that consists of a

single training instance with search space shown in Figure 4.7, preference ordering

42

C < B < F < E < D < H < G, and single target path P = ({A}, {B}, {E}).

A

B C D

)1,1()(Bf

E F G H

)1,1()(Ef)1,0()(Ff)1,1()(Gf)1,1()(Hf

)1,0()(Cf)0,0()(Df

)1,1()(Af

Figure 4.7: Counter example for convergence under positive search margin.

First we will consider using breadth-first beam search with a beam width of

b = 2. Using the weight vector w = [γ, γ] the resulting beam trajectory will be

(note that higher values of w · f(v) are better):

{A}, {B,C}, {E,F}

The search margin of w, which is only sensitive to pairs of target and non-target

nodes that were compared during the search, is equal to,

γ = w · f(B)− w · f(C) = w · f(E)− w · f(F)

which is positive. We now show that the existence of w does not imply convergence

under perceptron updates.

43

Consider simulating LaSO-BR starting from w′ = 0. The first search step gives

the beam {D,B} according to the given preference ordering. Since B is on the

target path we continue expanding to the next level where we get the new beam

{G,H}. None of the nodes are on the target path so we update the weights as

follows:

w′ = w′ + f(E)− 0.5[f(G) + f(H)]

= w′ + [1, 1]− [1, 1]

= w′

This shows that w′ does not change and we have converged to the weight vector

w′ = 0, which is not a solution to the problem.

For the case of best-first beam search, the performance is similar. Given the

weight vector w = [γ, γ], the resulting beam search with beam width 2 will generate

the beam sequence,

{A}, {B,C}, {E,C}

which is consistent with the target trajectory. From this we can see that w has a

positive search margin of:

γ = w · f(B)− w · f(C) = w · f(E)− w · f(C)

However, if we follow the perceptron algorithm when started with the weight vector

44

w′ = 0 we can again show that the algorithm does not converge to a solution weight

vector. In particular, the first search step gives the beam {D,B} and since B is

on the target path, we do not update the weights and generate a new beam {G,H}

by expanding the node D. At this point there are no target nodes in the beam and

the weights are updated as follows

w′ = w′ + f(B)− 0.5[f(G) + f(H)]

= w′ + [1, 1]− [1, 1]

= w′

showing that the algorithm has converged to w′ = 0, which is not a solution to the

problem.

Thus, we have shown that a positive search margin does not guarantee conver-

gence for either LaSO-BR or LaSO-BST. This counter example also applies to the

original LaSO algorithm, which is quite similar to LaSO-BST.

4.3.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margin, is not

sufficient to guarantee convergence, we consider a stronger notion of margin, the

level margin, which measures by how much the target nodes are ranked above (or

below) other non-target nodes at the same search level.

45

Definition 4 (Level Margin) The level margin of a weight vector w for a train-

ing set is defined as γ = min{(v∗,v)}(w · f(v∗) − w · f(v)), where the set {(v∗, v)}

contains any pair such that v∗ is a target node at some depth j and v can be reached

in j search steps from the initial search node—that is, v∗ and v are at the same

level.

For breadth-first beam search, a positive level margin for w implies a positive

search margin, but not necessarily vice versa, showing that level margin is a strictly

stronger notion of separability. The following result shows that a positive level

margin is sufficient to guarantee convergence of LaSO-BR. Throughout we will

let R be a constant such that for all training instances, for all nodes v and v′,

‖f(v)−f(v′)‖ ≤ R. The proof of this result follows similar lines as the Perceptron

convergence proof for standard classification problems [Rosenblatt, 1962].

Theorem 7 Given a dead-end free training set such that there exists a weight

vector w with level margin γ > 0 and ‖w‖ = 1, LaSO-BR will converge with a

consistent weight vector after making no more than (R/γ)2 weight updates.

Proof First note that the dead-end free property of the training data can be used

to show that unless the current weight vector is a solution it will eventually trigger

a “meaningful” weight update (one where the candidate set contains target nodes).

Let wk be the weights before the k′th mistake is made. Then w1 = 0. Suppose

the k′th mistake is made for the training data 〈Si, Pi〉, when B ∩ Pi,j = ∅. Here,

Pi,j is the j′th element of Pi, B is the beam generated at depth j for Si and C is the

candidate set from which B is selected. Note that C is generated by expanding

46

all nodes in the previous beam and at least one of them is in Pi,j−1. With the

dead-end free property, we are guaranteed that C ′ = Pi,j ∩C 6= ∅. The occurrence

of the mistake indicates that, ∀v∗ ∈ Pi,j ∩ C, v ∈ B, wk · f(v∗) ≤ wk · f(v), which

lets us derive an upper bound for ‖wk+1‖2.

‖wk+1‖2 = ‖wk +

∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
‖2

= ‖wk‖2 + ‖
∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
‖2

+ 2wk · (
∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
)

≤ ‖wk‖2 + ‖
∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
‖2

≤ ‖wk‖2 +R2

where the first equality follows from the definition of the perceptron-update rule,

the first inequality follows because wk · (f(v∗) − f(v)) < 0 for all v∗ ∈ C ′, v ∈ B,

and the second inequality follows from the definition of R. Using this upper-bound

we get by induction that

‖wk+1‖2 ≤ kR2

Suppose there is a weight vector w such that ||w|| = 1 and w has a positive

47

level margin, then we can derive a lower bound for w · wk+1.

w · wk+1 = w · wk + w · (
∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
)

= w · wk +

∑

v∗∈C′ w · f(v∗)

|C ′| −
∑

v∈B w · f(v)

b

≥ w · wk + γ

This inequality follows from the definition of the level margin γ of the weight vector

w.

By induction, we get that w ·wk+1 ≥ kγ. Combining this result with the above

upper bound on ‖wk+1‖ and the fact that ‖w‖ = 1 we get that

1 ≥ w · wk+1

‖w‖‖wk+1‖ ≥
√
k
γ

R
⇒ k ≤ R2

γ2

.

Without the dead-end free property, LaSO-BR might generate a candidate set

that contains no target nodes, which would allow for a mistake that does not result

in a weight update. However, for a dead-end free training set, it is guaranteed that

the weights will be updated if and only if a mistake is made. Thus, the mistake

bound is equal to the bound on the weight updates.

Note that for the example search space in Figure 4.7 there is no weight vector

with a positive level margin since the final layer contains target and non-target

nodes with identical weight vectors. Thus, the non-convergence of LaSO-BR on

that example is consistent with the above result. Unlike LaSO-BR, LaSO-BST

48

and LaSO do not have such a guarantee since their beams can contain nodes from

multiple levels. This is demonstrated by the following counter example.

Counter Example 2 We give a training set for which the existence of a w with

positive level margin does not guarantee convergence for LaSO-BST. Consider a

single training example with the search space in Figure 4.8, single target path P =

({A}, {B}, {E}), and preference ordering C < B < E < F < G < D.

A

B C D

)0,1()(Bf

E F G

)1,1()(Ef)0,1()(Ff)0,1()(Gf

)0,0()(Cf)1,0()(Df

)0,0()(Af

Figure 4.8: Counter example to convergence under positive level margin.

Given the weight vector w = [2γ, γ], the level margin of w is equal to γ. How-

ever, starting with w′ = 0 and running LaSO-BST the first search step gives the

beam {D,B}. Since B is on the target path, we get the new beam {G,F} by ex-

panding the node D. This beam does not contain a target node, which triggers the

49

following weight update:

w′ = w′ + f(B)− [f(F) + f(G)]/2

= w′ + [1, 0]− [1, 0]

= w′

Since w′ does not change the algorithm has converged to w′ = 0, which is not a

solution to this problem. This shows that a positive level margin is not sufficient to

guarantee the convergence of LaSO-BST. The same can be shown for the original

LaSO.

In order to guarantee convergence of LaSO-BST, we require an even stronger

notion of margin, global margin, which measures the rank difference between any

target node and any non-target node, regardless of search space level.

Definition 5 (Global Margin) The global margin of a weight vector w for a

training set is defined as γ = min{(v∗,v)}(w ·f(v∗)−w ·f(v)), where the set {(v∗, v)}

contains any pair such that v∗ is any target node and v is any non-target node in

the search space.

Note that if w has a positive global margin then it has a positive level margin.

The converse is not necessarily true. The global margin is similar to the common

definitions of margin used to characterize the convergence of linear perceptron

classifiers [Novikoff, 1962].

50

To ensure convergence of LaSO-BST we also assume that the search spaces are

all finite trees. This avoids the possibility of infinite best-first beam trajectories

that never terminate at a goal node. Tree structures are quite common in practice

and it is often easy to transform a finite search space into a tree. The structured

classification experiments in [Daumé III and Marcu, 2005] and our own automated

experiments both involve tree structured spaces.

Theorem 8 Given a dead-end free training set of finite tree search spaces such that

there exists a weight vector w with global margin γ > 0 and ‖w‖ = 1, LaSO-BST

will converge with a consistent weight vector after making no more than (R/γ)2

weight updates.

The proof is similar to that of Theorem 7 except that the derivation of the lower

bound makes use of the global margin and we must verify that the restriction to

finite tree search spaces guarantees that each iteration of LaSO-BST will terminate

with a goal node being reached. We were unable to show convergence for the

original LaSO algorithm even under the assumptions of this theorem.

In summary, we have introduced three different notions of margin: search mar-

gin, level margin, and global margin. Both LaSO-BR and LaSO-BST converge for

a positive global margin, which implies a positive search margin and a positive

level margin. For LaSO-BR, but not LaSO-BST, convergence is guaranteed for

a positive level margin, which implies a positive search margin. This shows that

LaSO-BR converges under a strictly weaker notion of margin than LaSO-BST due

to the fact that the ranking decisions of breadth-first search are restricted to nodes

51

at the same level of the search space, as opposed to best-first search. This suggests

that it may often be easier to define effective feature spaces for the breadth-first

paradigm. Finally, a positive search margin implies linear separability, but is not

enough to guarantee convergence for either algorithm. This is in contrast to re-

sults for linear classifier learning, where linear separability implies convergence of

perceptron updates.

4.3.4 Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable training data. Inseparability is

often the result of training-data ambiguity, in the sense that many “good” solution

paths are not included as target paths. For example, this is common in automated

planning where there can be many (nearly) optimal solutions, many of which are

inherently identical (e.g., differing in the orderings of unrelated actions). It is

usually impractical to include all solutions in the training data, which can make it

infeasible to learn a ranking function that strictly prefers the target paths over the

inherently identical paths not included as targets. In these situations, the above

notions of margin will all be negative. Here we consider the notion of beam margin

that allows for some amount of ambiguity, or inseparability.

For each instance 〈Si, Pi〉, where Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,1, Pi,2, . . . ,

Pi,di
), let Dij be the set of nodes that can be reached in j search steps from Ii.

That is, Dij is the set of all possible non-target nodes that could be in beam Bi,j. A

beam margin is a triple (b′, δ1, δ2) where b′ is a non-negative integer, and δ1, δ2 ≥ 0.

52

Definition 6 (Beam Margin) A weight vector w has beam margin (b′, δ1, δ2) on

a training set {〈Si, Pi〉}, if for each i, j there is a set D′
ij ⊆ Dij such that |D′

ij| ≤ b′

and

∀v∗ ∈ Pi,j, v ∈ Dij −D′
ij, w · f(v∗)− w · f(v) ≥ δ1 and,

∀v∗ ∈ Pi,j, v ∈ D′
ij, δ1 > w · f(v∗)− w · f(v) ≥ −δ2.

A weight vector w has beam margin (b′, δ1, δ2) if at each search depth it ranks

the target nodes better than most other non-target nodes (those in Dij −D′
ij) by

a margin of at least δ1, and ranks at most b′ non-target nodes (those in D′
ij) better

than the target nodes by a margin no greater than δ2. Whenever this condition is

satisfied we are guaranteed that a beam search of width b > b′ guided by w will

solve all of the training problems. The case where b′ = 0 corresponds to the level

margin, where the data is separable. By allowing b′ > 0 we can consider cases

where there is no “dominating” weight vector that ranks all targets better than all

non-targets at the same level. The following result shows that for a large enough

beam width, which is dependent on the beam margin, LaSO-BR will converge to

a consistent solution.

Theorem 9 Given a dead-end free training set, if there exists a weight vector w

with beam margin (b′, δ1, δ2) and ‖w‖ = 1, then for any beam width b > (1 + δ2/δ1) b
′

= b∗, LaSO-BR will converge with a consistent weight vector after making no more

than (R/δ1)
2 (1− b∗b−1)

−2
weight updates.

Proof Let wk be the weights before the k′th mistake is made, so that w1 = 0.

53

Suppose that the k′th mistake is made when B ∩ Pi,j = ∅ where B is the beam

generated at depth j for the ith training instance. We can derive the upper bound

of ‖wk+1‖2 ≤ kR2 as in the proof of Theorem 7.

Next we derive a lower bound on w ·wk+1. Denote by B′ ⊆ B the set of nodes

in the beam such that δ1 > w · (f(v∗)− f(v)) ≥ −δ2 and let C ′ = Pi,j ∩C. By the

definition of beam margin, we have |B′| < b′.

w · wk+1 = w · wk + w · (
∑

v∗∈C′ f(v∗)

|C ′| −
∑

v∈B f(v)

b
)

= w · wk + w ·
∑

v∈B−B′

∑

v∗∈C′ f(v∗)

|C′| − f(v)

b

+ w ·
∑

v∈B′

∑

v∗∈C′ f(v∗)

|C′| − f(v)

b

≥ w · wk +
(b− b′)δ1

b
− b′δ2

b

By induction, we get that w · wk+1 ≥ k (b−b′)δ1−b′δ2
b

. Combining this result with

the above upper bound on ‖wk+1‖ and the fact that ‖w‖ = 1 we get that 1 ≥
w·wk+1

‖w‖‖wk+1‖
≥
√
k (b−b′)δ1−b′δ2

bR
. The mistake bound follows by noting that b > b∗ and

algebra.

Similar to Theorem 7, the dead-end free property of the training set guarantees

that the mistake bound is equal to the bound on the weight updates.

Note that when there is a positive level margin (i.e., b′ = 0), the mistake bound

here reduces to (R/δ1)
2, which does not depend on the beam width and matches

the result for separable data. This is also the behavior when b >> b∗.

54

An interesting aspect of this result is that the mistake bound depends on the

beam width. Rather, all of our previous convergence results were independent of

the beam width and held even for beam width b = 1. Thus, those previous results

did not provide any formalization of the intuition that the learning problem will

often become easier as the beam width increases, or equivalently as the amount of

search increases. Indeed, in the extreme case of exhaustive search, no learning is

needed at all, whereas for b = 1 the ranking function has little room for error.

To get a sense for the dependence on the beam width consider two extreme

cases. As noted above, for very large beam widths such that b >> b∗, the bound

becomes (R/δ1)
2. On the other extreme, if we assume δ1 = δ2 and we use the

smallest possible beam width allowed by the theorem b = 2b′ + 1, then the bound

becomes ((2b′ + 1)R/δ1)
2, which is a factor of (2b′ + 1)2 larger than when b >> b′.

This shows that as we increase b (i.e., the amount of search), the mistake bound

decreases, suggesting that learning becomes easier, agreeing with intuition.

It is also possible to define an analog to the beam margin for best-first beam

search. However, in order to guarantee convergence, the conditions on ambiguity

would be relative to the global state space, rather than local to each level of the

search space.

55

Chapter 5 – Application of Weight Learning in Automated Planning

While the LaSO framework has been empirically evaluated in structured classifica-

tion with impressive results [Daumé III and Marcu, 2005], its utility in other types

of search problems has not been demonstrated. This chapter considers applying

the above LaSO-style algorithms to automated planning, which also appears in

our prior work [Xu et al., 2007; 2009a].

The background related to automated planning has been given in Chapter 3.

Roughly speaking, the planning problems are most naturally viewed as goal-finding

problems, where we must search for a short path to a goal node in an exponentially

large graph. This is different to structured classification, which is most naturally

viewed as an optimization problem, where we must search for a structured object

that optimizes an objective function. For example, the search problems studied

in structured classification typically have a single or small number of solution

paths, whereas in automated planning there are often a large number of equally

good solutions, which can contribute to ambiguous training data. Furthermore,

the size of the search spaces encountered in automated planning are usually much

larger than in structured classification, because of the larger depths and branching

factors. These differences raise the empirical question of whether a LaSO-style

approach will be effective in automated planning.

56

5.1 Experimental Setup

We present experiments in eight STRIPS domains: Blocksworld, Depots, Driver-

Log, FreeCell, Pipesworld, Pipesworld-with-tankage, PSR and Philosopher. All of

these domains with the exception of Blocksworld were taken from the 3rd and 4th

international planning competitions (IPC3 and IPC4). With only two exceptions,

this is the same set of domains used to evaluate the approach of [Yoon et al., 2006],

which is the only prior work that we are aware of for learning heuristics to improve

forward state-space search in automated planning. The difference between our set

of domains and theirs is that we include Blocksworld, while they did not, and we

do not include the Optical Telegraph domain, while they did. Our reason for not

showing results for Optical Telegraph is that none of the systems we evaluated

were able to solve any of the problems. 1

5.1.1 Domain Problem Sets

For each domain we needed to create a set of training problems and testing prob-

lems on which the learned ranking functions would be trained and evaluated. In

Blocksworld, all problems were generated using the BWSTATES generator [Slaney

and Thiébaux, 2001], which produces random Blocksworld problems. Thirty prob-

lems with 10 or 20 blocks were used as training data, and 30 problems with 20, 30,

1The results in [Yoon et al., 2006] indicated that their linear regression learning method was
effective in Optical Telegraph. Our implementation of linear regression, however, was unable to
solve any of the problems. After investigating this difference, we found that it is due to a subtle
difference in the way that ties are broken during forward state-space search, indicating that the
linear regression method was not particularly robust in this domain.

57

or 40 blocks were used for testing. For DriverLog, Depots and FreeCell, the first

20 problems are taken from IPC3 and we generated 30 more problems of varying

difficulty to arrive at a set of 50 problems, roughly ordered by difficulty. For each

domain, we used the first 15 problems for training and the remaining 35 for testing.

The other four domains are all taken from IPC4. Each domain includes 50 or 48

problems, roughly ordered by difficulty. In each case, we used the first 15 problems

for training and the remaining problems for testing.

5.1.2 Search Space Definition

We now describe the mapping between the planning problem described in Sec-

tion 3.1 and the general search spaces described in Chapter 2, which were the

basis for describing our algorithms. Recall that a general search space is a tuple

〈I, s(·), f(·), <〉 giving the initial state, successor function, feature function, and

preference ordering respectively. In the context of planning, each search node is

a state-goal pair (ω, g), where ω can be thought of as the current world state,

g is the current goal, and both are represented as sets of facts. Note that it is

important that nodes contain both state and goal information, rather than just

state information, since the evaluation/rank of a search node depends on how good

ω is with respect to the particular goal g. The initial search node I is equal to

(ω0, g), where ω0 is the initial state of the planning problem and g is the problem’s

goal. The successor function s maps a search node (ω, g) to the set of all nodes

of the form (ω′, g) where ω′ is a state that can be reached from ω via the appli-

58

cation of some action whose preconditions are satisfied in ω. Note that according

to this definition, all nodes in a search space contain the same goal component.

The feature function f((ω, g)) = (f1((ω, g)), . . . , fm((ω, g))) can be any function

over world states and goals. The particular functions we use in this chapter are

described later in this section. Finally, the preference ordering < is simply the

default ordering used by the planner FF, which is the planner our implementation

is based on.

5.1.3 Training Data Generation

The LaSO-style algorithms learn from target solution paths, which requires that

we generate solution plans for all of the training problems. To do this, for each

training problem, we selected the shortest plan out of those found by running

the planner FF and beam search with various large beam widths guided by FF’s

relaxed-plan heuristic. The resulting plans are totally ordered sequences of actions,

and one could simply label each training problem by its corresponding sequence

of actions. However, in many cases, it is possible to produce equivalent plans by

permuting the order of certain actions in the totally ordered plans. That is, there

are usually many other equivalent totally ordered plans. Thus, including only the

single plan found via the above approach in the training data results in significant

ambiguity in the sense described in Section 4.3.4.

In order to help reduce the ambiguity, it is desirable to try to include as many

equivalent plans as possible as part of the target plan set for a particular problem.

59

To do this, instead of using just a single totally ordered solution plan in the training

data for each problem, we transform each such totally ordered plan into a partial-

order plan that contains the same set of actions but only includes action-ordering

constraints that appear to be necessary. Finding minimal partial-order plans from

total-order plans is an NP-hard problem; and hence we use the heuristic algorithm

described in [Veloso et al., 1991]. For each training problem, the resulting partial-

order plan provides an implicit representation for a potentially exponentially large

set of solution trajectories. By using these partial-order plans as the labels for our

training problems, we can significantly reduce the ambiguity in the training data.

In preliminary experiments, the performance of our learning algorithms improved

in a number of domains when using training data that included the partial-order

plans rather than the original total-order plans.

5.1.4 Ranking Function Representation and Domain Features

We consider learning ranking functions that are represented as weighted linear

combinations of features, that is, H(v) = Σiwifi(v) where v is a search node, fi is

a feature of search nodes, and wi is the weight of feature fi. One of the challenges

with this representation is to define a generic feature space from which features can

be selected for each domain. This space must be rich enough to capture important

properties of a wide range of planning domains, but also be amenable to searching

for those properties. For this purpose we will draw on prior work [Yoon et al.,

2008a] that defined such a feature space using a first-order language.

60

Each feature in the above space is defined by a taxonomic class expression,

which represents a set of constants/objects in the planning domain. For example,

a simple taxonomic class expression for the Blocksworld planning domain is clear,

which represents the set of blocks that are currently clear, i.e. the set of blocks x

such that clear(x) ∈ ω where the current search node is v = (ω, g). The respective

feature value represented by a class expression is equal to the cardinality of the

class expression when evaluated at a search node. For example, if we let f1 be

the feature represented by the class expression clear then f1((ω, g)) is simply the

number of clear blocks in ω. So in the example states from Section 3.1, f1(v0) =

f1((ω0, g)) = 4 and f1(v1) = f1((ω1, g)) = 3. A more complex example for this

problem is clear ∩ gclear, which represents the set of blocks that are clear in

both the current state and the goal, i.e. the set containing any block x such that

clear(x) ∈ ω and clear(x) ∈ g. If f2 represents the feature corresponding to this

expression, then in the example states from 3.1 f2(v0) = 2 and f2(v1) = 2.

Since our work in this dissertation is focused on learning ranking functions, we

refer to [Yoon et al., 2008a] for the full definition of the taxonomic feature lan-

guage. Here we simply use a set of taxonomic features that have been automatically

learned in prior work [Yoon et al., 2008a] and tune their weights. In our experi-

ments, this prior work gave us 15 features in Blocksworld, 3 features in Depot, 22

features in DriverLog, 3 features in FreeCell, 35 features in Pipesworld, 11 features

in Pipesworld-with-tankage, 54 features in PSR and 19 features in Philosopher. In

all cases, we include FF’s relaxed-plan-length heuristic as an additional feature.

61

5.2 Experimental Results

For each domain, we use LaSO-BR to learn weights with a learning rate of 0.01 for

beam widths 1, 10, 50, and 100. We will denote LaSO-BR run with beam width

b by LaSO-BRb. The maximum number of LaSO-BR iterations was set to 5000.

In the evaluation procedure, we set a time cut-off of 30 CPU minutes per problem

and considered a problem to be unsolved if a solution was not found within the

cut-off.

In preliminary work, we also tried to apply LaSO-BST to our problems. How-

ever, this turned out to be an impractical approach due to the large potential search

depths of these problems. In particular, we found that in many cases LaSO-BST

would become stuck processing training examples, in the sense that it would nei-

ther update the weights nor make progress with respect to following the target

trajectories. This typically occurred because LaSO-BST would maintain an early

target node in the beam and thus not trigger a weight update, but at the same

time would not progress to include deeper nodes on the target trajectories and

instead explore paths off the target trajectories. To help remedy this behavior, we

experimented with a variant of LaSO-BST that forces progress along the target

trajectories after a specified number of search steps. For the Blocksworld planning

domain and preliminary experiments in the other domains, we found that the re-

sults tended to improve compared to the original LaSO-BST, but still were not

competitive with LaSO-BR. Thus for the experiments reported below we focus on

LaSO-BR.

62

Note that the experiments in [Daumé III and Marcu, 2005] for structured clas-

sification produced good results using an algorithm very similar to LaSO-BST.

There, however, the search spaces have small maximum depths (e.g. the length of

a sentence), which apparently helped to avoid the problem we experienced here.

Training Time. Table 5.1 gives the average training time required by LaSO-

BR per iteration in each of our domains for four different beam widths. Note that

Pipesworld was the only domain for which LaSO-BR converged to a consistent

weight vector using a learning beam width 100. For all other training sets LaSO-

BR never converged and thus terminated after 5000 iterations. The training time

varies widely across the domains and depends on various factors including the

number of features, the number of actions, the number of state predicates, and

the number and length of target trajectories per training example. As expected

the training times increase with the training beam width across the domains. It

is difficult, however, to predict the relative times between different domains due

to the complicated interactions among the above factors. Note that while these

training times can be significant in many domains, the cost of training needs only

to be paid once, and then it is amortorized over all future problems. Furthermore,

as we can observe later in the experimental results, a small beam width of 10

typically performs as well as larger widths.

Description of Tables. Before presenting our results, we will first provide an

overview of the information contained in our results tables. Table 5.2 compares

the performance of LaSO-BR10 to three other algorithms,

• LEN : beam search using FF’s relaxed plan length heuristic

63

Table 5.1: The average training time required by LaSO-BR per iteration for all
training instances (seconds).

Domain b = 1 b = 10 b = 50 b = 100

Blocksworld 3 15 66 128

Pipesworld 1 4 13 24

Pipesworld-with-tankage 3 17 76 149

PSR 53 127 403 690

Philosopher 3 24 121 260

DriverLog 1 5 22 44

Depots 5 32 160 320

FreeCell 10 68 315 654

• U : beam search using a heuristic with uniform weights for all features

• LR : beam search using the heuristic learned from linear regression following

the approach in [Yoon et al., 2006].

We selected LaSO-BR10 here because its performance is on par with or better than

other training beam widths. Note that in practice one could select the best beam

width to use via cross-validation with a validation set of problems.

In Table 5.2, the columns are labeled by the algorithm used to generate the

results. The rows correspond to the beam width used to generate the results on

the testing problems, with the last row for each domain corresponding to using

full best-first search (BFS) with an infinite beam width, which is the native search

procedure used by FF. We first evaluate the performance of these planners by the

number of solved problems. A planner solving more problems has better perfor-

mance. When two planners solve the same number of problems, we break the tie by

64

the median plan length of solved problems. The one with shorter plans is better.

For example, the table shows that the ranking function learned via LaSO-BR10

solves 26 Blocksworld testing problems with a median solution length of 139 using

a testing beam width of 50, and solved 19 problems with a median solution length

of 142 using BFS.

Table 5.3 is similar in structure to Table 5.2 but compares the performance of

ranking functions learned using LaSO-BR with a variety of training beam widths

and evaluated using a variety of testing beam widths. For example, the upper

right-most data point gives the performance of LaSO-BR using a learning beam

width of 100 and a testing beam width of 1.

Performance Across Testing Beam Width. From Table 5.2, in general, for

all algorithms (learning and non-learning) we see that as the testing beam width

begins to increase, the number of solved problems increases and solution lengths

improve. However, at some point as the beam width continues to increase, the

number of solved problems typically decreases. This behavior is typical for beam

search, since as the testing beam width increases, there is a greater chance of not

pruning a solution trajectory, but the computational time and memory demands

increase. Thus, for a fixed time cut-off, we expect a decrease in performance as

the beam width becomes large.

Also note that it is not necessarily true that the plan lengths are strictly non-

increasing with testing beam width. With large testing beam widths, the number

of candidates for the next beam increases, making it more likely that the ranking

function will be confused by “bad” states. This is also one possible reason why

65

Table 5.2: Experimental results for our weight learning algorithms. For each do-
main, we show the number of solved problems and the median plan length of the
solved problems. A dash in the table indicates that the median plan length is not
available while none of the problems can be solved.

b Problem solved (Median plan length)
LEN U LR LaSO-BR10

Blocksworld 1 13(3318) 0(-) 11(938) 24(499)
10 22(449) 0(-) 19(120) 24(293)
50 20(228) 0(-) 19(64) 26(139)
100 19(110) 0(-) 20(67) 24(144)
500 17(80) 0(-) 23(74) 17(96)
BFS 5(80) 0(-) 13(76) 19(142)

Pipesworld 1 11(114) 13(651) 8(2476) 16(2853)
10 17(112) 17(360) 21(194) 23(222)
50 18(34) 19(167) 21(89) 26(80)
100 18(32) 16(39) 21(60) 24(62)
500 21(30) 18(33) 21(31) 25(53)
BFS 15(44) 7(54) 7(42) 15(54)

Pipesworld-with-tankage 1 6(119) 4(416) 2(1678) 7(291)
10 6(68) 8(603) 9(399) 8(117)
50 6(61) 5(111) 6(94) 11(122)
100 5(54) 4(105) 5(43) 8(55)
500 5(42) 6(97) 4(41) 10(76)
BFS 5(59) 3(60) 2(126) 3(100)

PSR 1 0(-) 0(-) 0(-) 0(-)
10 1(516) 20(157) 13(151) 13(193)
50 13(99) 17(109) 16(99) 10(97)
100 13(103) 15(89) 13(89) 6(85)
500 4(55) 4(59) 2(48) 1(39)
BFS 13(89) 0(-) 21(131) 21(141)

Philosopher 1 0(-) 33(363) 33(363) 33(363)
10 0(-) 33(363) 33(363) 11(1154)
50 0(-) 6(215) 23(308) 13(1579)
100 0(-) 16(292) 18(281) 6(1076)
500 0(-) 7(220) 7(220) 2(745)
BFS 0(-) 33(363) 33(363) 0(-)

Depots 1 1(462) 1(790) 2(411) 3(790)
10 4(195) 1(28) 4(981) 6(3295)
50 3(25) 4(511) 5(51) 6(467)
100 4(232) 7(157) 3(26) 7(207)
500 5(38) 4(62) 6(39) 11(53)
BFS 2(46) 2(48) 3(33) 2(48)

DriverLog 1 0(-) 0(-) 0(-) 8(6801)
10 3(789) 0(-) 0(-) 12(1439)
50 4(108) 8(177) 0(-) 12(541)
100 1(98) 11(147) 0(-) 11(275)
500 0(-) 3(86) 0(-) 1(94)
BFS 6(162) 2(181) 0(-) 1(138)

FreeCell 1 5(96) 7(120) 4(146) 9(123)
10 20(82) 22(117) 19(243) 21(89)
50 23(65) 24(73) 12(102) 19(66)
100 20(65) 18(63) 7(70) 21(65)
500 3(53) 3(55) 2(59) 4(55)
BFS 23(78) 20(87) 12(111) 20(97)

66

Table 5.3: Experimental results for various learning beam widths. For each do-
main, we show the number of solved problems and the median plan length of the
solved problems. A dash in the table indicates that the median plan length is not
available while none of the problems can be solved.

b Problem solved (Median plan length)
LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100

Blocksworld 1 27(840) 24(499) 18(92) 13(314)
10 27(206) 24(293) 20(96) 19(150)
50 27(180) 26(139) 23(72) 24(82)
100 25(236) 24(144) 23(72) 23(86)
500 23(122) 17(96) 19(62) 24(77)
BFS 21(116) 19(142) 18(73) 17(124)

Pipesworld 1 16(1803) 16(2853) 21(1403) 15(6958)
10 25(227) 23(222) 23(179) 21(270)
50 25(74) 26(80) 25(119) 22(75)
100 27(146) 24(62) 23(104) 22(47)
500 23(60) 25(53) 20(61) 21(37)
BFS 14(59) 15(54) 13(103) 8(42)

Pipesworld-with-tankage 1 5(55) 7(291) 2(197) 7(300)
10 8(103) 8(117) 8(68) 10(77)
50 9(48) 11(122) 8(37) 9(42)
100 8(53) 8(55) 10(122) 10(55)
500 9(30) 10(76) 5(39) 10(96)
BFS 6(48) 3(100) 4(70) 6(63)

PSR 1 0(-) 0(-) 0(-) 0(-)
10 12(182) 13(193) 3(550) 14(205)
50 6(75) 10(97) 16(126) 17(129)
100 3(82) 6(85) 10(113) 13(86)
500 2(61) 1(39) 4(58) 4(64)
BFS 19(164) 21(141) 3(170) 25(142)

Philosopher 1 6(589(33(363) 33(363) 0(-)
10 19(319) 11(1154) 1(451) 1(1618)
50 13(297) 13(1579) 2(1023) 2(855)
100 9(253) 6(1076) 5(255) 1(1250)
500 4(226) 2(745) 2(253) 0(-)
BFS 0(-) 0(-) 0(-) 0(-)

DriverLog 1 0(-) 8(6801) 0(-) 3(4329)
10 5(1227) 12(1439) 2(1061) 7(435)
50 0(-) 12(541) 1(129) 1(136)
100 0(-) 11(275) 0(-) 1(98)
500 0(-) 1(94) 0(-) 0(-)
BFS 1(154) 1(138) 0(-) 2(332)

Depots 1 4(1526) 3(790) 2(588) 2(588)
10 5(3259) 6(3295) 7(2042) 6(715)
50 2(517) 6(467) 7(707) 3(392)
100 4(43) 7(207) 6(147) 5(54)
500 6(47) 11(53) 11(53) 5(38)
BFS 4(106) 2(48) 2(48) 2(48)

FreeCell 1 7(132) 9(123) 5(125) 5(133)
10 23(89) 21(89) 23(85) 19(71)
50 25(69) 19(66) 24(68) 24(68)
100 24(68) 21(65) 22(65) 28(72)
500 19(61) 4(55) 21(62) 19(61)
BFS 23(104) 20(97) 27(104) 25(104)

67

performance tends to decrease with larger testing beam widths.

LaSO-BR10 Versus No Learning. From Table 5.2, we see that compared

to LEN, the heuristic learned by LaSO-BR10 tends to significantly improve the

performance of beam search, especially for small beam widths. For example, in

Blocksworld with beam width 1, LaSO-BR10 solves almost twice as many problems

as LEN. The median plan length has also been reduced significantly for beam width

1. As the beam width increases, the gap between LaSO-BR10 and LEN decreases

but LaSO-BR10 still solves more problems with comparable solution quality. In

Pipesworld, LaSO-BR10 has the best performance gap with beam width 50, solving

8 more problems than LEN. As the beam width increases, again the performance

gap decreases, but LaSO-BR10 consistently solves more problems than LEN. In

this domain, the median plan lengths of LEN tend to be better, though a direct

comparison of these lengths is not exactly fair, since LaSO-BR10 solves more prob-

lems, which are often the harder problems that result in longer plans. The trends

with respect to number of solved problems are similar in other domains, with the

exception of PSR and FreeCell. In PSR, LEN solves slightly more problems than

LaSO-BR10 at large beam widths. In FreeCell, LaSO-BR10 is better than LEN for

most case except for beam width 50.

These results show that LaSO-BR10 is able to learn ranking functions that

significantly improve on the state-of-the-art heuristic LEN when using beam search.

In general, the best performance was achieved for small beam widths close to those

used for training, which is beneficial in terms of time and memory efficiency. Note

that in practice one could use a validation set of problems in order to select the best

68

combination of training beam width and testing beam width for a given domain.

This is particularly natural in our current setting where our goal is to perform well

relative to problems drawn from a given problem generator, in which case we can

easily draw both training and evaluation problem sets.

Comparing LaSO-BR10 with Linear Regression. To compare with prior

passive heuristic learning work, we learned weights using linear regression following

the approach of [Yoon et al., 2006]. To our knowledge this is the only previous

system that addresses the heuristic learning problem in the context of forward

state-space search in automated planning. In these experiments we used the linear

regression tool available under Weka. The results for the learned linear-regression

heuristics are shown in the columns labeled LR in Table 5.2.

For Blocksworld, LR solves fewer problems than LaSO-BR10 with beam widths

smaller than 500 but solves more problems than LaSO-BR10 with beam width 500.

The median plan length tends to favor LR except for the smallest beam width b =

1. For Pipesworld, DriverLog and Depots, LaSO-BR10 always solves more problems

than LR, with plan length again favoring LR to varying degrees. In Pipesworld-

with-tankage, LaSO-BR10 is better than LR for most cases except for beam width

10, solving one less problem. In PSR and Philosopher, LR outperforms LaSO-BR10

but LaSO-BR10 achieves a comparable performance with small beam widths. In

FreeCell, LaSO-BR10 always solves more problems than LR with improved plan

length.

These results indicate that error-driven learning can significantly improve over

prior passive learning (here regression) in a number of domains. Indeed, there

69

appears to be utility in integrating the learning process directly to the search

procedure. However, the results also indicate that in some cases our current error-

driven training method can fail to converge to a good solution while regression

happens to work well.

Effects of Learning Beam Width. Table 5.3 compares the performance of

LaSO-BR with different learning beam widths. For most domains, the performance

doesn’t change much as the learning beam width changes. Even with learning beam

width 1, LaSO-BR can often achieve performance on par with larger learning beam

widths. For example, in Blocksworld, LaSO-BR1 results in the best performance at

all testing beam widths except beam width 500. For the other domains, LaSO-BR10

typically is close to the performance of the best learning beam width. In a number

of cases, we see that LaSO-BR10 performs significantly better than LaSO-BR100,

which suggests that learning with smaller beam widths can have some practical

advantages. One reason for this might be due to the additional ambiguity in the

weight updates when using larger beam widths. In particular, the weight update

equations involve averages of all target and non-target nodes in the beams. The

effect of this averaging is to mix the feature vectors of large numbers of search

nodes together. In many cases there will be a wide variety of non-target nodes in

the beam, and this mixing can increase the difficulty of uncovering key patterns,

which we conjecture might increase the requirements on training iterations and

examples. In cases where the features are rich enough to support successful beam

search with small width, it is then likely that learning with smaller widths will

be better given a fixed number of iterations and examples. Note that the feature

70

space we have used in this work has been previously demonstrated [Fern et al.,

2006] to be particularly well suited to Blocksworld, which is perhaps one reason

that b = 1 performed so well in that domain.

Finally note that contrary to what we originally expected, it is not typically the

case that the best performance for a particular testing beam width is achieved when

learning with that same beam width. Rather the relationship between learning and

testing beam widths is quite variable. Note that for most domains LaSO-BR never

converged to a consistent weight vector in our experiments, indicating that either

the features were not powerful enough for consistency or the learning beam widths

and/or number of iterations needed to be increased. In such cases, there is no clear

technical reason to expect the best testing beam width to match the learning beam

width. Thus, in general, we suggest the use of validation sets to select the best

pair of learning and testing beam widths for a particular domain. Note that the

lack of relationship between learning and testing beam width is in contrast to that

observed in [Daumé III and Marcu, 2005] for structured classification, where there

appeared to be a small advantage to training and testing using the same width.

Best First Search Results. While our heuristic was learned for the purpose

of controlling beam search, we conducted one more experiment in each domain

where we used the heuristics to guide Best First Search (BFS). We include these

results primarily because BFS was the search procedure used to evaluate LR in

[Yoon et al., 2006] and is the native search strategy used by FF.2 These results are

2FF actually uses two search strategies. In the first state it uses an incomplete strategy called
enforced hill climbing. If that initial search does not find a solution then a best-first search is
conducted.

71

shown in the bottom row of each table in Table 5.2 and 5.3.

In Blocksworld, Pipesworld, PSR, LaSO-BR10 was as good or better than the

other three algorithms. Especially in Blocksworld, LaSO-BR10 solves 19 problems

while LEN only solves 5 problems. In Philosopher, neither LEN nor LaSO-BR10

solves any problem. LEN is the best in Pipesworld-with-tankage, DriverLog and

FreeCell, and LR works best in Depots. But for Pipesworld-with-tankage, Depots

and FreeCell, the performance of LaSO-BR10 is very close to the best planner.

These results indicate that the advantage of error-driven learning over regres-

sion is not just restricted to beam search, but appears to extend to other search

approaches. That is, by learning in the context of beam search it is possible to

extract problem solving information that is useful in other contexts.

Plan Length. LaSO-BR can significantly improve success rate at small beam

widths, which is one of our main goals. However, the plan lengths at small widths

are quite suboptimal, which is typical of beam search. Ideally we would like to

obtain these success rates without paying a price in plan length. We are currently

investigating ways to improve LaSO-BR in this direction. However, we note that

typically one of the primary difficulties of automated planning is to simply find

a path to the goal. After finding such a path, if it is significantly sub-optimal,

incomplete plan analysis or plan rewriting rules can be used to significantly improve

the plan, for example, see [Ambite et al., 2000]. Thus, despite the long plan lengths,

the improved success rate of LaSO-BR at small beam widths could provide a good

starting point for a fast plan length optimization.

72

Chapter 6 – Learning Features and Weights for Greedy Search

While the LaSO-BR algorithm has shown promising results in automated planning,

it is limited to tuning the weights of previously selected features. In this chapter, we

study the problem of automatically learning features and weights for guiding greedy

search. The work presented in this chapter has been published in [Xu et al., 2009b;

2010].

6.1 Introduction

It is often the case that search problems must be solved quickly in order for their

solutions to be usefully applied. Such scenarios often arise due to real-time con-

straints, but also in problem-solving frameworks that solve complex problems by

reduction to a number of simpler search problems, each of which must be solved

quickly. For example, some approaches to probabilistic planning involve generat-

ing and solving many related deterministic planning problems [Yoon et al., 2008b;

Kolobov et al., 2009]. Greedy search is one approach to finding solutions quickly

by pruning away most nodes in a search space. We have investigated it as a spe-

cial case of beam search in prior chapters. However, the LaSO-BR algorithm in

Chapter 4 only learns the weights for a human-provided set of features and did

not provide a feature learning mechanism. In this chapter, we consider learning

73

weights and features, to guide greedy search in planning domains based on training

solutions to example problems.

One prior approach to learning greedy control knowledge has been to learn

action-selection rules for defining reactive policies tuned to a particular planning

domain [Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002]. Given a good

reactive policy, a planning problem from the corresponding domain can be quickly

solved without search. While action-selection rules are an intuitively appealing

form of control knowledge and give good results in certain domains, experience

with existing learning algorithms has shown that in many domains the learned

reactive policies are often imperfect and result in poor planning performance.

There are at least three possible reasons for this lack of robustness. (1) Policies

have typically been defined as decision-lists of action-selection rules, which can be

quite sensitive to variations in the training data. In particular, each decision made

by a decision list is based on a single rule, rather than a vote among a number

of rules, each providing its own evidence. (2) Learning from example plans (i.e.

state-action sequences) leads to ambiguity in the training data. In particular,

there are often many good actions in a state, yet the training data will generally

only contain one of them arbitrarily. Attempting to learn a policy that selects

the arbitrary training-data actions over other, inherently equal, actions can lead

to extremely difficult learning problems. (3) Prior approaches to learning greedy

policies from example plans typically do not consider the search performance of

the learned policy. These approaches select a policy based on an analysis of the

training data alone, but never actually observe the search performance of the

74

selected policy.

In this chapter, we describe a new form of control knowledge and learning algo-

rithm for addressing the above three shortcomings. (1) Recognizing that action-

selection rules are able to capture useful knowledge, we attempt to learn and use

such rules in a more robust way. In particular, we use sets of weighted rules to

define a ranking function on state transitions, which allows multiple rules to vote

at each decision point. We use a variant of the powerful RankBoost algorithm to

learn both the rules and rule weights. (2) To deal with the problem of ambigu-

ous training data, we derive partially-ordered plans from the original sequential

training plans. These provide more accurate information about which actions are

good and bad in each state. We then define our learning goal to be that of forc-

ing greedy search to remain consistent with the partially-ordered plan, rather than

the original action sequence. (3) We introduce a novel iterative learning algorithm

that takes the search performance into account. On each iteration, the algorithm

conducts a greedy search with the current knowledge and uses the observed search

errors to guide the next round of learning. Thus, the learning is tightly integrated

with the search process.

To our knowledge, there is only one other prior work that has integrated learn-

ing with search and that also attempts to learn features and weights [Daumé III et

al., 2009]. That work attempts to learn greedy policies as linear combinations of

component policies (or features) to guide greedy search for structured-prediction

problems. However, the work makes a number of assumptions that are often valid

for structured prediction, but rarely valid for automated planning or similar com-

75

binatorial search problems. In particular, the work assumes the ability to compute

the optimal policy at any state that might be generated on the training search

problems, which is highly impractical for the planning problems we are interested

in.

The remainder of the chapter is organized as follows. First, we introduce the

form of our rule-based ranking function. Then, we present a new iterative algorithm

for learning the ranking function, followed by a description of our rule learner. We

finally present experimental results and conclude.

6.2 Rule-based Ranking Functions

We consider ranking functions of state transitions that are represented as linear

combinations of features, where our features will correspond to action-selection

rules. Following prior work [Yoon et al., 2008a] that used taxonomic syntax to

define action-selection rules for reactive policies, each of our action-selection rules

has the form:

u(z1, . . . , zk) : L1, L2, . . . , Lm (6.1)

where u is a k-argument action type and the zi are argument variables. Each Li

here is a literal of the form z ∈ E where z ∈ {z1, . . . , zk} and E is a taxonomic class

expression. Given a state-goal pair (s, g), each class expression E represents a set

of objects in a planning problem, so that each literal can be viewed as constraining

a variable to take values from a particular set of objects. For example, holding is

a taxonomic class expression in the Blocksworld domain and it represents the set of

76

blocks that are being held in the current state. More complex class expressions can

be built via operations such as intersection, negation, composition, etc. For exam-

ple, the class expression ontable ∩ gontable represents the set of objects/blocks

that are on the table in both the current state and goal. Given a state-goal pair

(s, g) and a ground action a where a = u(o1, . . . , ok), the literal zj ∈ E is said to

be true if and only if oj is in the set of objects that is represented by E. We say

that the rule suggests action a for state-goal pair (s, g) if all of the rule literals are

true for a relative to (s, g).

Given a rule of the above form, we can define a corresponding feature function

f on state transitions, where a state transition is simply a state-goal-action tuple

(s, g, a) such that a is applicable in s. The value of f(s, g, a) = 1 iff the corre-

sponding rule suggests a for (s, g) and otherwise f(s, g, a) = 0. An example rule in

the Blocksworld domain is: putdown(x1): x1 ∈ holding which defines a feature

function f , where f(s, g, a) = 1 iff a = putdown(o) and holding(o) ∈ s for some

object o, and is equal to zero for all other transitions.

Assume that we have a set of rules giving a corresponding set of feature func-

tions {fi}. The ranking function is then a linear combination of these rule-based

features

F (s, g, a) =
∑

i

wifi(s, g, a)

where wi is the corresponding real-valued weight of fi. From this it is clear that

the rank assigned to a transition is simply the sum of the weights of all rules that

suggest that transition. In this way, rules that have positive weights can vote

77

for transitions by increasing their rank, and rules with negative weights can vote

against transitions by decreasing their rank.

6.3 Learning Weighted Rule Sets

In this section, we describe the traditional rank learning problem from machine

learning and then formulate the learning-to-plan problem as a rank learning prob-

lem. Next we describe a variant of the RankBoost algorithm for solving the ranking

learning problem. Finally, we describe our novel iterative learning algorithm based

on RankBoost for learning weighted rule sets.

6.3.1 The Rank Learning Problem

Given a set of instances I, a ranking function is a function that maps I to the reals.

We will view a ranking function as defining a preference ordering over I, with ties

allowed. A rank learning problem provides us with training data that gives the

relative rank between selected pairs of instances according to some unknown target

partial ordering. The goal is to learn a ranking function that is (approximately)

consistent with the target ordering across all of I based on the training data.

More formally a rank learning problem is a tuple (I, S), where I is a set of

instances, and S ⊆ I × I is a training set of ordered pairs of instances. By

convention, if (v1, v2) ∈ S then the target is to rank v1 higher than v2. The learning

objective is to learn a ranking function F that minimizes the number of misranked

78

pairs of nodes relative to S [Freund et al., 2003]. Here we say that F misranks

a pair if (v1, v2) ∈ S and F (v1) ≤ F (v2). The hope is that the learned ranking

function will generalize so that it correctly ranks pairs outside of the training set.

It is typical to learn linear ranking functions of the form F (v) =
∑

iwi · fi(v),

where the fi are real-valued feature functions that assign scores to instances in

I. The wi are real-valued weights indicating the influence of each feature. In this

chapter, the instances will correspond to possible state transitions from a planning

domain and our features will be the rule-based features described above.

6.3.2 Learning-to-Plan as Rank Learning

We now describe two approaches for converting a learning-to-plan problem into

a rank learning problem. Given a learning-to-plan training set {(xi, yi)} for a

planning domain, let sij be the j′-th state along the solution trajectory speci-

fied by yi. Also let Cij be the set of all candidate transitions out of sij, where

a transition from s to s′ via action a will be denoted by (s, a, s′). Finally, let

tij = (sij, aij, si(j+1)) be the target transition out of sij specified by yi. Our first

conversion to a rank learning problem (I, S) defines the set of instances I to be the

set of all possible state transitions in the planning domain. The set S is defined

to require that tij be ranked higher than other transitions in Cij, in particular,

S =
⋃

i,j{(tij, t)|t ∈ Cij, t 6= tij}. Any ranking function that is consistent with S

will allow for greedy search to produce all solutions in the training set and hence

solve the learning-to-plan problem.

79

Unfortunately, for many planning domains, finding an accurate ranking func-

tion for the above rank learning problem will often be difficult or impossible. In

particular, there are often many equally good solution trajectories for a planning

problem other than those in the learning-to-plan training set, e.g. by exchanging

the ordering of certain actions. In such cases, it becomes infeasible to require that

the specific transitions observed in the training data be ranked higher than all

other transitions in Cij since many of those other transitions are equally good. To

deal with this issue, our second conversion to rank learning attempts to determine

which other transitions in Cij are also good transitions. To do this we use the

heuristic algorithm described in [Veloso et al., 1991] to transform the given solu-

tion trajectories into partially ordered plans. The partially ordered plans contain

the same set of actions as the totally ordered plan given by yi but only include the

necessary constraints on the action-ordering. Therefore, every partially ordered

plan implicitly represents a set of solution paths, often an exponentially large set.

Given partially ordered plans for the examples in our learning-to-plan problem,

we can now consider the learning goal of finding a ranking function such that greedy

search will always remain consistent with the partially ordered plans. To do this we

can generate a rank learning problem (I, S) that defines I as above, but defines the

set S relative to the partial order plans as follows. Let δ(t, xi) be a boolean function

that determines whether a given transition t = (s, a, s′) is on the partially ordered

plan for xi. δ(t, xi) = 1 indicates that there exists a solution path consistent with

the partially ordered plan that goes through t and δ(t, xi) = 0 otherwise. Given

80

this we can arrive at an improved set of training pairs

S =
⋃

i,j

{(t1, t2) | t1, t2 ∈ Cij, δ(t1, xi) = 1, δ(t2, xi) = 0}.

This definition of S specifies that for every state on the solution path correspond-

ing to yi, its outgoing transitions that are consistent with the partially ordered

plan should be ranked higher than those that are not consistent. Intuitively, this

learning problem will often be easier than the one defined earlier, since the learner

is not forced to make arbitrary distinctions between equally good transitions (i.e.

those consistent with the partially ordered plan).

Unfortunately, with this new form of training data, a subtle problem has been

introduced. In particular, a ranking function that is consistent with the rank

learning problem is no longer guaranteed to solve the training planning problems.

That is, solving the rank learning problem does not necessarily solve the learning-

to-plan problem. The reason for this is that the only transitions included in I are

those that originate at nodes on the totally ordered training solutions (i.e. the

union of transitions in the Cij). However, a consistent ranking function might

lead a greedy search to take a transition that leads off of the training solution,

e.g. by selecting good/consistent transitions not in the totally ordered solution.

The ranking function has not been trained on these transitions, and hence no

guarantees can be made about its performance. One way to solve this problem

would be to include all possible transitions in I and attempt to rank all transitions

consistent with a partially ordered plan higher than all others. Unfortunately,

81

there can be an exponentially large set of transitions consistent with a partially

ordered plan, making this option intractable in general. In order to overcome this

potential pitfall, we propose an iterative learning algorithm later in this section.

Before that, we first describe how to solve a fixed ranking problem with a variant

of the RankBoost algorithm.

6.3.3 RankBoost with Prior Knowledge

By converting our learning-to-plan problems to rank learning, we can now consider

applying existing learning algorithms for ranking. RankBoost is a particularly

effective algorithm that combines a set of weak learners in order to accurately rank

a set of instances [Freund et al., 2003]. Given a set of ordered pairs of instances S,

RankBoost defines D to be a uniform distribution over all pairs in S. RankBoost’s

learning objective is to find a ranking function F that minimizes the rank loss with

respect to D,

rLossD(F) =
∑

(v1,v2)∈S

D(v1, v2) · ψ(F (v1) ≤ F (v2)),

where ψ(·) is 1 if its argument is true and 0 otherwise. This is equivalent to finding

an F that minimizes the number of misranked pairs with respect to S.

RankBoost is an iterative algorithm that adds one feature to a linear ranking

function on each iteration in order to improve the rank loss. To do this, on each

iteration i it maintains a distribution Di over all pairs in S, starting with D from

82

above, which indicates the importance of each pair to be ranked correctly by the

next learned feature. Di is passed to the weak learner, which attempts to return

a new feature fi that achieves a good rank loss with respect to Di. RankBoost

then selects an appropriate weight wi (details below) so that the resulting ranking

function F (v) =
∑

iwi · fi(v) has a reduced rank loss over iteration i − 1. The

distribution Di+1 then gets updated so that it decreases the emphasis on pairs

ranked correctly by fi and increases the emphasis on incorrectly ranked pairs. As

a result, iteration i + 1 will concentrate more on pairs that have been misranked

more often in previous iterations.

In our case, we consider a variant of RankBoost that takes into account prior

knowledge provided by an initial ranking function. This is motivated by the fact

that prior work [Yoon et al., 2008a; Xu et al., 2009a] has found it quite useful to

incorporate state-of-the-art heuristics such as relaxed plan length [Hoffmann and

Nebel, 2001] into the learned control knowledge. In addition, our overall algorithm

(described later) will call RankBoost repeatedly, and it is beneficial to provide

RankBoost with the best ranking function from previous calls as prior knowledge.

Our variant algorithm takes any ranking function F0 as input and learns weighted

features that attempt to correct the mistakes of this ranking function.

As shown in Figure 6.1, the main idea is to modify the initial distribution ac-

cording to the given ranking function F0. The learned ranking function F is then

equal to F0 plus a linear combination of learned features that attempt to correct

the mistakes of F0. The following theorem proves a bound on the rank loss of F .

83

RB-prior (S, F0, k)
// S is the set of instance pairs.
// F0 is the input ranking function.
// k is the number of iterations.
for each pair (v1, v2) ∈ S

D1(v1, v2) = exp(F0(v2)−F0(v1))
Z0

for i = 1, 2, . . . , k :
fi ← Rule-Learner (S, Di)
// Learning a ranking feature using distribution Di

Choose wi ∈ R // see text for our choice
for each pair (v1, v2) ∈ S

Di+1(v1, v2) = Di(v1,v2)exp(wi(fi(v2)−fi(v1)))
Zi

where Zi is a normalization factor
return F = F0 +

∑k
i=1 wi · fi

Figure 6.1: The variant of RankBoost.

Theorem 10 For any F0, the rank loss on the training data of F = F0+
∑k

i=1wifi

returned by RB-prior satisfies rLossD(F) ≤∏k

i=0 Zi.

The proof is a direct adaptation of the original RankBoost result [Freund et al.,

2003]. This bound indicates that if we can always maintain Zi < 1, then the rank

loss on the training data decreases exponentially fast. To achieve this, we follow

the approach of [Freund et al., 2003] for learning features and selecting weights,

where a specialized formulation was presented for binary features, which is the

case for our rule-based features. In particular, the weak learner attempts to find a

feature f that maximizes |r|, where r =
∑

(v1,v2)∈S Di(v1, v2)(f(v1) − f(v2)). The

weight for the feature is set to wi = 1
2
ln(1+r

1−r
). Provided that the weak learner can

find a feature with |r| > 0, then it can be shown that Zi < 1. Therefore, RB-prior

84

is guaranteed to reduce the rank loss at an exponential rate provided that the weak

learner can achieve a minimal guarantee of |r| ≥ ǫ for any ǫ > 0.

6.3.4 Iterative Learning Algorithm

As noted above, the conversions from learning-to-plan to rank learning included

only a small fraction of all possible state transitions, in particular those transitions

that originate from states in the training solution paths. For any transitions that

are not included in S, the learning problem does not specify any constraints on

their rank. Thus, when the learned ranking function leads greedy search to parts

of the search space outside of S, the search is in unchartered territory and no

guarantees can be given on the search performance of the learned weighted rule

set on the training problems.

In order to help overcome this issue, we propose an iterative learning algorithm

that integrates the above RB-prior algorithm with the search process. The goal is

to form rank learning problems whose set of transitions in S are a better reflection

of where a greedy search using the currently learned ranking function is going to

go. In particular, it is desirable to include erroneous transitions resulting from

greedy search with the current ranking function, where an erroneous transition is

one that falls outside of the partially ordered plan of a training example. This

allows for learning to focus on such errors and hopefully correct them.

More specifically, Figure 6.2 gives pseudo-code for our improved approach to

learning ranking functions for planning. The top level procedure repeatedly con-

85

IterativeLearning ({xi}, δ, F0, k)
// xi = (si, A, gi) is a planning problem.
// δ is the function defined on partially ordered plans.
// F0 is an initial ranking function, e.g. a planning heuristic.
// k is the number of iterations of RB-prior for each generated ranking
problem
F ← F0 //initialize the ranking function
S ← ∅ // initialize the ranking problem
repeat until no improvement or a certain number of iterations

S ← S+ ConstructRP ({xi}, δ, F)
F ′ ←RB-prior (S, F, k)
F ←LaSO-BR1(F

′)
return F

ConstructRP ({xi}, δ, F)
S ← ∅
for each xi = (si, A, gi)

s← si

repeat until s ⊇ gi // goal achieved
C ← all transitions (s, a, s′) out of s

C+ ← {t | t ∈ C ∧ δ(t, xi) = true}
C− ← C − C+

S = S + {(t, t′) | t ∈ C+, t′ ∈ C−}
s← destination of highest ranked transition in C+ according to F

return S

Figure 6.2: The iterative learning algorithm.

86

structs a ranking problem by calling ConstructRP, calls RB-prior to learn k

new features on it, and then further optimizes the feature/rule weights by calling

LaSO-BR1 introduced in Chapter 4. In RB-prior, the weights are selected in

order to minimize the rank loss. However, this does not always correspond exactly

to the best weights for maximizing planning performance. Thus, to help improve

the planning performance, we consider using the perceptron-style algorithm to fur-

ther optimize the weights. This LaSO-BR1 algorithm iteratively conducts greedy

search and updates the weights in order to correct the search errors that have been

made.

The key aspect of this iterative algorithm is that the training instances gener-

ated at each iteration depend on the performance of the currently learned ranking

function. In particular, given the current ranking function F , the algorithm sim-

ulates the process of greedy search using F and then adds transition pairs to S

along the greedy search path. At any node along the greedy search path all possi-

ble outgoing transitions are classified as being on or off the partial order plan via

δ and pairs are added to S to specify that transitions on the partial order plan be

ranked higher than those that are not. If, during this process, the greedy search

should ever follow an erroneous transition according to δ, then the search will be

artificially forced to follow the highest ranked good transition. This helps avoid

adding pairs to S along paths that significantly diverge from the partially-ordered

plans.

Convergence. Under certain assumptions the above iterative learning algo-

rithm is guaranteed to converge to a ranking function that solves the training

87

problems in a finite amount of time. This is a minimal property that a learning

algorithm should have, but for most prior work on learning control knowledge,

which does not take search performance into account, no such guarantees can be

made.

The assumptions we make are as follows: 1) There exists a weighted rule set in

our rule language which can correctly rank all nodes in the search space, according

to δ defined on the partially ordered plans, 2) We have a weak rule learner which

can always find a rule that achieves |r| ≥ ǫ for some ǫ > 0, which is a standard

assumption in boosting theory, 3) Each call to RB-prior is run for enough iterations

to achieve zero rank loss on its input ranking problem.

Under assumptions (2) and (3) we are guaranteed that each call to RB-prior

will terminate in a finite amount of time with zero rank loss since the rank loss

decreases exponentially fast as described earlier. Thus it remains to bound the

number of calls to RB-prior. After each call to RB-prior, if the resulting ranking

function does not solve a training problem then new training pairs of instances

will be generated and added to the current set of training pairs S. Note that the

training pairs are only generated for the transitions (s, a, s′) out of s where s is a

possible state generated by the corresponding partially ordered plan. Let m denote

the number of possible states that can be reached by the partially ordered plans.

The number of calls to RB-prior is then bounded by m. Unfortunately, m can

be exponentially large in the size of the partially ordered plans. Unless further

assumptions are made it is possible to construct example learning problems that

match this worst case bound, showing the bound is tight.

88

In future work, we will investigate assumptions where convergence can be guar-

anteed in a small number of iterations. In particular, the worst case results are

quite pathological since they assume that the learning algorithm never generalizes

correctly to unseen states in the training data. It is likely that assumptions about

generalization will allow for much tighter bounds.

6.3.5 Learning Action Selection Rules

The RankBoost algorithm assumes the existence of a weak learner that can be

called to produce a ranking feature. In this section, we briefly introduce the rule

learner we used. As shown in Figure 6.1, the input to the rule learner is the

set of transition pairs S and a distribution D over S. In our case, each instance

composing a pair in S is represented as a state-goal-action tuple (s, g, a), on which

a rule-based feature can be evaluated. The learning objective is to find a rule that

can maximize |r| where r =
∑

(v1,v2)∈S D(v1, v2)(f(v1)− f(v2)).

For this purpose, we adapt the heuristic rule learner described in [Yoon et

al., 2008a] to find the best rule that can maximize |r|. Since the rule space is

exponentially large, the approach performs a beam search over possible rules, where

the starting rule has no literals in its body and each search step adds one literal to

the body. The search terminates when the beam search is unable to improve |r|.

89

6.4 Experimental Results

We present experiments in seven STRIPS domains: Blocksworld, Depots, Driver-

Log, FreeCell, Pipesworld, Pipesworld-with-tankage and Philosopher, which are

already provided with details in Chapter 5. We also set a time cut-off of 30 CPU

minutes and considered a problem to be unsolved if a solution was not found

within the time cut-off. For our learning algorithms, the maximum number of

learned rules is limited to 30. The learning algorithm will terminate when no im-

provement can be observed or the maximum number of rules has been reached.

Note that the actual size of the learned rule set is usually smaller than 30 since

the rule learner may output duplicated rules.

Description of Tables. Table 6.1 compares the performance of different ap-

proaches we used as well as algorithms in prior work for learning control knowledge

for greedy search [Yoon et al., 2008a; Xu et al., 2009a]. These algorithms are:

• Yoon08 : three forms of control knowledge were learned in [Yoon et al.,

2008a] and were all evaluated for their ability to guide greedy search. The

table entries labeled Yoon08 give the best performance among the three types

of control knowledge as reported in that work. Results for Yoon08 are only

given for our three IPC4 domains: Pipesworld, Pipesworld-with-tankage and

Philosopher, for which our training and testing sets exactly correspond.

• RPL : greedy search with FF’s relaxed plan length heuristic.

• LaSO-BR1: greedy search with the ranking function learned by LaSO-BR1,

which is previously evaluated in Chapter 5.

90

• RB : greedy search with the weighted rule set that is learned by RB-prior

when no prior knowledge is provided. Here the ranking problem is derived

from just the states in the training trajectories. Learning is stopped when

no improvement is observed or 30 rules are learned.

• RB-H : identical to RB except that we view the relaxed-plan length heuristic

as prior knowledge and generate the ranking problem based on it.

• ITR : greedy search with the weighted rule set that is learned via our iterative

learning approach starting with no prior knowledge. In this experiment,

we do not accumulate data across iterations as described in Figure 6.2, for

efficiency reasons, but rather pass only the most recent data to RB-prior. We

choose to learn k = 5 rules for each ranking problem generated. Learning is

terminated when no improvement is observed or 30 rules are learned in total.

• ITR-H: identical to ITR except that we use the relaxed-plan length heuristic

as prior knowledge.

For an additional reference point, we also include the performance of FF [Hoff-

mann and Nebel, 2001] in Table 6.1 which is not constrained to perform greedy

search. Each column of Table 6.1 corresponds to an algorithm and each row corre-

sponds to a target planning domain. The planning performance is first evaluated

with respect to the number of solved problems. When two algorithms solve the

same number of problems, we will use the median plan length of the solved prob-

lems to break the tie.

91

Table 6.1: Experimental results for the learned ranking functions in greedy search.
For each domain, we show the number of solved problems and the median plan
length of the solved problems. A dash in the table indicates that the median plan
length is not available while none of the problems can be solved. N/A indicates
that the result of the planner is not applicable here.

Problems solved (Median plan length) FF Yoon08 RPL LaSO-BR1

Blocksworld 10(77) N/A 13 (3318) 27 (840)
Depots 14(63) N/A 1 (462) 4 (1526)

DriverLog 3(119) N/A 0 (-) 0 (-)
FreeCell 29(90) N/A 5 (96) 7 (132)

Pipesworld 20(50) 0(-) 11 (114) 16 (1803)
Pipesworld-with-tankage 3(63) 0(-) 6 (119) 5 (55)

Philosopher 0(-) 0(-) 0 (-) 6 (589)

Problems solved (Median plan length) RB RB-H ITR ITR-H
Blocksworld 30 (126) 30 (166) 30 (89) 30 (118)

Depots 15 (661) 11 (129) 0 (-) 23 (433)
DriverLog 0 (-) 3 (2852) 0 (-) 4 (544)
FreeCell 5 (155) 7 (96) 2 (213) 9 (92)

Pipesworld 7 (1360) 17 (1063) 7 (1572) 17 (579)
Pipesworld-with-tankage 1 (1383) 6 (152) 3 (2005) 5 (206)

Philosopher 33 (875) 33 (363) 33 (875) 33 (363)

92

Table 6.3 and 6.2 provides more details of the approaches we used. We have a

column “Learning iterations” indicating how many times the rule learner is called,

i.e. how many rules are produced in total. Note that there exist duplicated rules.

Table 6.2 shows the actual size of the learned rule sets with duplicates removed.

Each row of Table 6.3 corresponds to the performance of the weighted rule set

learned after the number of iterations specified by that row. Since ITR and ITR-H

learned 5 rules for each ranking problem generated in each iteration, we compared

the results after every 5 rules being induced.

For example, the first row for Blocksworld corresponds to the weighted rule set

learned after 5 rules are induced. However, after removing duplications, the actual

size of the weighted rule set is 3 for RB and 4 for RB-H. The next row indicates

that the size of the weighted rule set is 7 for RB after 10 rules are induced.

Performance Across Different Learning Approaches. Table 6.1 com-

pares the performance of different planners. First, note that, Yoon08 is unable

to solve any problems in the three IPC4 domains, which suggests that learning

control knowledge for greedy search is non-trivial in these problems. In particu-

lar, one form of control knowledge considered in [Yoon et al., 2008a] were reactive

rule-based policies. Rather we see that our weighted rule sets are often able to

solve a non-trivial number of problems in these domains. This gives some evidence

that using weighted rule sets is a more robust approach for learning and using

action-selection rules.

For Blocksworld, ITR is the best planner and solves all problems with best

median plan length. RB, RB-H and ITR-H also solve all problems indicating that

93

Table 6.2: The number of unique rules learned by different approaches. For each
domain, we show the number of unique rules that are learned after the correspond-
ing number of learning iterations.

Learning iterations Number of unique rules
RB RB-H ITR ITR-H

Blocksworld 5 3 4 5 5
10 7 8 8 10

Depots 5 4 5 5 4
10 7 9 8 8
15 9 13 10 9
20 11 17 12 12
25 13 20 14 14
30 16 24 16 15

DriverLog 5 4 5 4 5
10 6 5 5 8
15 7 6 6 10
20 8 8 6 10
25 9 9 6 10
30 10 11 6 10

FreeCell 5 2 4 2 5
10 4 7 2 5
15 7 10 2 6
20 11 15 2 6
25 11 19 2 6

Pipesworld 5 3 4 3 3
10 7 7 7 7
15 9 9 9 9
20 9 12 10 13
25 11 16 11 15
30 12 19 11 18

Pipesworld-with-tankage 5 5 5 4 4
10 6 8 5 9
15 9 9 5 10
20 12 12 7 10
25 16 17 7 10

Philosopher 5 3 3 3 3
10 3 3 4 4
15 4 5 4 4
20 5 5 5 4)

94

Table 6.3: Experimental results for the learned weighted rule sets. The perfor-
mance of each learned rule set is given by the number of solved problems and the
median plan length of the solved problems. A dash in the table indicates that the
median plan length is not available while none of the problems can be solved.

Learning iterations Problems solved (Median plan length)
RB RB-H ITR ITR-H

Blocksworld 5 30(133) 30(151) 30(125) 30(160)
10 30(126) 30(166) 30(89) 30(118)

Depots 5 0(-) 2(8631) 0(-) 3(115)
10 3(9194) 4(954) 0(-) 20(796)
15 5(5372) 2(113) 0(-) 16(313)
20 2(5193) 7(263) 0(-) 23(433)
25 3(3188) 5(678) 0(-) 22(349)
30 15(661) 11(129) 0(-) 19(314)

DriverLog 5 0(-) 1(1893) 0(-) 3(8932)
10 0(-) 3(2852) 0(-) 1(2818)
15 0(-) 0(-) 0(-) 3(544)
20 0(-) 1(4309) 0(-) 4(544)
25 0(-) 3(4082) 0(-) 4(544)
30 0(-) 1(632) 0(-) 3(544)

FreeCell 5 2(213) 6(104) 2(213) 9(94)
10 2(186) 5(112) 2(213) 7(95)
15 3(103) 6(143) 2(213) 9(94)
20 5(155) 7(96) 2(213) 9(94)
25 3(334) 5(90) 2(213) 9(92)

Pipesworld 5 4(382) 17(1063) 7(1572) 16(279)
10 2(7845) 8(1821) 2(335) 11(307)
15 5(2929) 12(1599) 2(335) 17(595)
20 3(1369) 11(1423) 5(511) 17(579)
25 4(998) 11(2561) 6(883) 17(595)
30 7(1360) 12(1423) 6(990) 15(366)

Pipesworld-with-tankage 5 0(-) 3(296) 3(2006) 4(126)
10 0(-) 3(100) 1(5372) 4(148)
15 0(-) 4(98) 1(4735) 4(134)
20 1(1383) 6(152) 1(4735) 5(350)
25 1(1383) 4(449) 3(2940) 5(206)

Philosopher 5 0(-) 33(363) 0(-) 33(363)
10 0(-) 33(363) 33(875) 0(-)
15 0(-) 33(363) 33(875) 0(-)
20 33(875) 33(363) 33(875) 0(-)

95

the rule-based control knowledge in this domain is more useful than the relaxed

plan length heuristic and the previously learned heuristic. Similar results are

shown for Philosopher. For other domains except for Pipesworld-with-tankage,

the best planner is ITR-H, solving more problems with fairly good plan length.

In Pipesworld-with-tankage, RPL outperforms our planners. But RB-H solves the

same number of problems, with the plan quality being a little worse.

The results show that the learned weighted rule sets significantly outperform

the relaxed plan length heuristic and the heuristic in LaSO-BR1 that only captures

information about states. Overall, ITR-H is the best approach and to the best of

our knowledge, these are the best reported results of any method for learning

control knowledge for greedy search.

Performance Across Learning Iterations. Table 6.2 and 6.3 gives more

detailed results of our learning approaches. As the learning goes on, the number of

rules produced will be non-decreasing. However, since there exist duplicate rules,

the size of the weighted rule set may not change. For example, ITR learned only 2

unique rules for FreeCell, regardless of how many times the rule learner is called.

This either indicates a failure of our rule learner to adequately explore the space

of possible rules, or indicates a limitation of our language for representing rules in

this domain. These issues will be investigated in future work.

Note that in general, with some exceptions, the planning performance judged in

terms of solved problems and median plan length improves as the number of unique

rules increases. For example, RB solves 3 problems with 13 rules but 15 problems

with 16 rules for Depots. As an exception, however, consider Philosopher, where

96

ITR-H solves all problems with the first 3 rules learned. When one new rule is

added, it can not solve any of those problems. It is very likely that our weighted rule

set converges to bad local minima, either because of the weight learning algorithm

or the iteratively boosting algorithm, or both.

Iterative Learning vs. Non-iterative learning. ITR and ITR-H can

be viewed as an iterative version of RB and RB-H, respectively. In general, with

some exceptions, the iteration versions work better than the non-iterative versions,

particularly for ITR-H. For Blocksworld, all of them have similar performance,

while ITR improves the plan length over RB. For Depots, the iterative version

ITR fails to solve any problem but contrastingly, ITR-H works much better than

non-iterative version RB-H. For other domains, the iterative versions often achieve

a better performance.

Effect of Relaxed Plan Length Heuristic. The only difference between

ITR-H and ITR, as well as the difference between RB-H and RB, is that we used

the relax plan length heuristic as prior knowledge for the former methods. Table 6.3

shows that the relaxed plan length heuristic did help to significantly improve per-

formance in some domains. For DriverLog, FreeCell, Pipesworld and Pipesworld-

with-tankage, RB-H and ITR-H solve more problems than RB and ITR, with the

same number of rules induced. In Depots, RB-H achieves similar performance as

RL but ITR-H solves many more problems than ITR. Blocksworld is a domain

where ITR and RB work slightly better than ITR-H and RB-H, with better solu-

tion length. In Philosopher, ITR-H and RB-H have better solution path. Overall,

there is clear value in using the relaxed-plan length heuristic as prior knowledge.

97

Chapter 7 – Learning Features and Weights for Randomized

Greedy Search

It has been shown in Chapter 6 that the learned weighted rule sets greatly improve

the performance of greedy search. One limitation of this approach, however, is that

the search process is deterministic. When the search procedure gets trapped in

a wrong path, it can not detect the error and will follow the path until reaching

the time limit. To solve this problem, we consider randomized greedy search with

restarts in this chapter.

7.1 Introduction

For incomplete search algorithms, it is often helpful to add randomization and allow

quick restarts for solving problems. For example, WalkSat is a solver for satisfiabil-

ity problems, which repeats the process of randomly picking an initial assignment

and conducting a randomized local search [Selman et al., 1995]. By adding ran-

domization to complete search algorithms, the search engine also achieves better

performance [Gomes, 1998]. We were motivated by the success of this prior work

and studied the problem of learning for randomized greedy search in this chapter.

Given a ranking function F , instead of selecting the highest ranked node ac-

cording to F as described in Chapter 6, we calculate a probability distribution and

98

select actions based on the distribution. The state transitions with higher ranks

will have higher probabilities of being selected. The ranking function F can thus

be viewed as a randomized policy. When the randomized policy fails to solve a

planning problem within a certain amount of time, we will restart it and another

run of the randomized policy will probably generate a different path.

The learning objective here is to learn randomized policies that can guide ran-

domized greedy search with restarts to efficiently solve problems. We investigated

this learning problem in the framework of reinforcement learning and learned fea-

tures and weights using recent policy-gradient algorithms [Baxter and Bartlett,

2000; Baxter et al., 2001; Kersting and Driessens, 2008]. Similar to prior learn-

ing approaches presented in the dissertation, we tightly integrated learning with

search, aiming to correct observed search errors.

The remainder of the chapter is organized as follows. First, we formulate our

learning problem for learning randomized policies. Then we present the adaptive

weight learning and feature learning algorithms for our planning application. We

finally present the experimental results and conclude.

7.2 Problem Setup

In this section, we first give the definition of the randomized policy and then

formulate our learning problem in the reinforcement learning framework.

99

7.2.1 Randomized Policy Representation

We extend our linear ranking function, which is represented as a set of rule-

based features, to a randomized policy. Given a ranking function F (ω, g, a) =
∑

iwifi(ω, g, a), we calculate a probability distribution as below.

π((ω, g), a) =
exp(F (ω, g, a))

∑

a′ exp(F (ω, g, a′))

Here π(v, a) = Pr(a|v) is the probability of selecting action a from search node

v = (ω, g). The ranking function F could thus be viewed as defining a randomized

policy that will direct the randomized greedy search. At each step of the search

process, the policy selects the action according to the probability distribution π.

Therefore, different runs of the randomized policy can result in different search

paths. We set a depth limit for the randomized greedy search. Whenever this limit

is reached and no solution is found yet, we will start a new run of the randomized

greedy search.

7.2.2 Reinforcement Learning Formulation

The field of reinforcement learning (RL) studies algorithms that interact with the

environment and observe the rewards to learn control knowledge. A basic model

for RL consists of a set of states S, a set of actions A, a transition function T and

a reward function R. Following the discussion in Section 5.1.2, each state s ∈ S

is a state-goal pair (ω, g), where ω is a planning state and g represents the goal in

100

the current planning problem. The set of actions A = A ∪ {ǫ} where A contains

all possible actions in the given planning domain and ǫ is a special action used in

learning. For any node that is not on the target solution paths, applying action ǫ

will lead to one of its sibling nodes that are on the target solution paths.

The transition function T gives the probability of transitioning to a state by

taking an action in the current state. We define the transition function T as below.

• for any target node v = (s, g),

T (v, a, v′) = 1, if a is an applicable action in s and v′ = (s′, g) where s′ is the

state generated by applying a in s;

T (v, a, v′) = 0, otherwise;

• for any non-target node v = (s, g),

T (v, a, v′) = 1/k, if a = ǫ and v′ is one of the k sibling nodes of v that are

on the target solution paths;

T (v, a, v′) = 0, otherwise.

In the learning process, ǫ is the only action that can be taken from the non-

target nodes. This forces our learning algorithm to follow the target solution paths

in the training set. Accordingly, we define the reward function R.

• for any target node v = (s, g),

R(v, a) = k+ > 0, if applying action a in s results in a target node;

R(v, a) = k− < 0, otherwise;

• for any non-target node v = (s, g)

R(v, a) = 0.

101

The reward function R assigns an immediate reward for every transition, which

is positive if the transition starts from a target node and also generates a target

node, and negative if the transition starts from a target node and generates a non-

target node. With this reward function, the learned randomized policy will tend

to select the nodes on the target solution paths to maximize its expected average

reward.

7.3 Gradient-based Approach for Weight Learning

Given the above RL formulation, we first assume that the features in the ranking

function have already been provided. Our learning objective is to learn a weight

vector that can maximize the expected average reward. One algorithm for doing

this is GPOMDP [Baxter and Bartlett, 2000], which estimates the gradient of the

average reward and then uses the gradient estimation to update the weight vector.

We consider its online version, which is called OLPOMDP [Baxter et al., 2001],

and apply this algorithm to our planning application.

Figure 7.1 shows the OLPOMDP algorithm for our planning application. Each

training instance here is a planning problem xi = (si0, A, gi). The learning al-

gorithm resembles LaSO-BR1 in the sense that it iterates through all training

instances and conducts greedy search from the initial node (si0, gi). Based on the

transition function we defined, whenever the selected action leads to a non-target

node, this node will be replaced by one of its siblings that are target nodes. We

force the search process to follow an example solution path.

102

OLPOMDP ({xi}, δ, H)
// xi = (si0, A, gi) : planning problem
// δ : partial-order plan indicator function
// H : the given ranking function
repeat for a number of iterations or until no improvement

for each xi = (si0, A, gi)
s← si0

∆ = 0
while s is not a goal node

draw an action a according to π((s, g), a)
observe the reward R

∆ = β∆ +∇wlog(Pr(a|(s, g), w))
w ← w + αR∆
s← the state generated by applying action a on state s

if δ(xi, s) = false // s is not on the example solution paths
s← randomly selecting a sibling s′ of s that satisfies δ(xi, s

′) = true

return F

Figure 7.1: The OLPOMDP algorithm.

The difference between this gradient-based RL algorithm and LaSO-BR1 is in

weight updating. As a supervised learning algorithm, LaSO-BR1 moves the weights

toward the direction of the target nodes and away from the non-target nodes. How-

ever, the gradient-based RL algorithm updates the weights by estimating the gra-

dient of the average reward. It must compute the gradient ∇w log(Pr(a|(s, g), w)),

which for our policy representation is given by

103

∇wi
log(Pr(a|(s, g), w))

= ∇wF (s, a)−∇w log(
∑

a′

exp(F (s, g, a′)))

= −hi(s, g, a)−
∑

a′ exp(F (s, g, a′))(−hi(s, g, a
′))

∑

a′ exp(F (s, g, a′))

= −hi(s, g, a) +
∑

a′

πw(s, g, a′)hi(s, g, a
′)

Computing all gradients along a search path, we can then estimate the gradient

of the average reward by the discounted sum of these gradient directions, as shown

in Figure 7.1. This is guaranteed to find a local optimum [Baxter and Bartlett,

2000].

7.4 Learning Weighted Rule Sets by Policy Gradients

In the previous section we have shown a gradient-based algorithm for tuning the

weights of given features. These features, as we considered, are the rule-based

features introduced in Section 6.2. In addition to weight learning, we are also

interested in inducing these features directly to maximize the expected average

reward. Here we apply a non-parametric policy gradient approach, called NPPG

[Kersting and Driessens, 2008], to find the locally optimal policies.

The key idea of NPPG is to estimate the policy gradient by a regression function

learned from the training set {(v, a), fm(v, a)}. Here v is a state-goal pair (s, g)

104

where s is a state on the search path that is generated by executing policy π, a

is an action applicable in state s. fm(v, a) is the point-wise functional gradient at

(v, a), which can be computed as

fm(v, a) =
∂π(v, a)

∂F
Q(v, a)

where Q(v, a) is the unknown discounted state-action value. One way to estimate

Q(v, a) is by using the Monte Carlo methods. In this work, we focus on the

immediate reward and use β = 0. So Q(v, a) = R(v, a). According to Proposition

3.1 of [Kersting and Driessens, 2008],

∂π(v, a)

∂F (v, a)
= π(v, a)(1− π(v, a)).

Provided with the training set {(v, a), fm(v, a)}, the NPPG algorithm then aims

to learn a function that will minimize the squared error and updates the policy in

the direction of the learned fm. Figure 7.2 shows the revised NPPG algorithm for

our planning application.

As shown in Figure 7.2, the NPPG algorithm starts with an initial function

and iteratively adds functional gradients to correct the errors. In each iteration,

it constructs a training set based on the point-wise functional gradients and then

trains a function so that it minimizes the loss over the training examples. We also

apply OLPOMDP to optimize the feature weights learned in the NPPG algorithm.

Again, we force the policy to select an action that will lead to a target node, i.e.

a node s with δ(x, s) = true where x is the current planning problem. Whenever

105

NPPG ({xi}, δ, H)
// xi = (si0, A, gi) : planning problem
// δ : partial-order plan indicator function
// H : the given ranking function
F = −H

for m = 1 to N do
Σ← ∅
for each xi = (si0, A, gi)

s← si0

while s is not a goal node
compute the probabilities πm−1((s, g), a) for all a

πm−1((s, g), a) = exp(F (s,g,a))
∑

a′ exp(F (s,g,a′))

observe the immediate reward R(s, g, a) for all a

compute the point-wise functional gradients
f(s, g, a) = πm−1((s, g), a)(1− πm−1((s, g), a))R(s, g, a)
Σ← Σ + {((s, g), a, f(s, g, a))}
draw an action a according to πm−1

s← the state generated by applying a on s

if δ(xi, s) = false

s← a sibling s′ of s where δ(xi, s
′) = true

//Induce a feature from Σ that minimizes the loss Φ
fm ← Rule-Learner(Σ)
wm ← argminw

∑

s,g,a Φ(f, wfm)
F ← F + wmfm

F ←Weightlearning(F) //OLPOMDP({xi}, δ,−F)
return F

Figure 7.2: The revised NPPG algorithm.

106

the policy selects an action that results in a non-target node, this node will be

replaced by one of its siblings that satisfy δ(x, s) = true.

After constructing the training set Σ, we need to learn feature fm and its

corresponding weight wm that minimize the loss Φ on the training examples. In

this work, we consider each feature as an action selection rule and use the rule

learner introduced in Section 6.3.5 to learn the feature. The procedure Rule-

Learner performs a beam search over possible rules, where the starting rule has

no literals in its body and each search step adds one literal to the body. The search

terminates when the beam search is unable to further decrease the squared error.

7.5 Experimental Results

As in Section 6.4, we present experiments in seven STRIPS domains: Blocksworld,

Depots, DriverLog, FreeCell, Pipesworld, Pipesworld-with-tankage and Philoso-

pher. We set a time cut-off of 30 CPU minutes and a maximum search depth of

1000. Once the depth 1000 is reached and the randomized greedy search has not

found a solution, we will terminate it and restart a new randomized greedy search

from the initial node. If a solution is not found within the time cut-off of 30 CPU

minutes, we considered the problem to be unsolved.

In our experiments, we use the reward function R(v, a) = 1 for any transition

(v, a) that is on the partially ordered plan and R(v, a) = −5 otherwise. Note

that this reward function considers all nodes on the partially ordered plan to be

of equal value, regardless of their distance to the goal. Therefore, these nodes are

107

viewed as independent instances without sequential dependence. For this reason

we set β = 0 and Q(s, a) = R(s, a) which tell the algorithm to consider only the

immediate reward.

We use the NPPG algorithm to automatically induce new rules. The learning

algorithm terminates when no new rule can be induced or the maximum number

of rules has been reached. We discovered that our rule learner often outputs

duplicated rules. Here we set the maximum number of learned rules to be 5, since

for most domains, the rule learner already fails to induce any new rule among the

first 5 rules. We have learned 4 rules in Blocksworld, 2 rules in Pipesworld, 5 rules

in Depots, Driverlog and Pipesworld-with-tankage. For FreeCell and Philosopher,

we learn only 1 unique rule.

Description of Tables. Table 7.1 compares the performance of the learned

randomized policies with the ranking function learned in Chapter 6. For each of

the randomized policy or ranking function, it is a weighted rule set and could be

evaluated in two different ways. First, we use it as a ranking function to guide

deterministic greedy search, with the highest ranked node being selected at each

search step, which is the evaluation approach in Chapter 6. Second, we use it

as a randomized policy to guide randomized greedy search with restarts, as we

described in this chapter. The algorithms in Table 7.1 are:

• ITR-H : greedy search with the weighted rule set that is learned via our

iterative learning approach starting with the relaxed-plan length heuristic as

prior knowledge. The details of this algorithm are given in Chapter 6.

108

• ITR-HR: greedy randomized search with restarts guided by the same ranking

function in ITR-H. Here the ranking function is used as a randomized policy.

• GW: greedy search with the weighted rule set that is learned via OLPOMDP.

This learning approach conducts only weight learning and assumes the fea-

tures are already provided. We use the set of features learned in ITR-H.

Therefore, the difference between GW and ITR-H is that the weights in GW

are learned by the revised OLPOMDP algorithm.

• GWR: greedy randomized search with restarts guided by the same weighted

rule set in GW, which is now used as a randomized policy.

• GL: greedy search with the weighted rule set that is learned via the revised

NPPG algorithm. We also use the relaxed-plan length heuristic as prior

knowledge.

• GLR: greedy randomized search with restarts guided by same weighed rule

set in GL, which is now used as a randomized policy.

Each row of Table 7.1 corresponds to a target planning domain and each col-

umn corresponds to an algorithm. The planning performance is first evaluated on

the number of solved problems. When two algorithms solve the same number of

problems, we use the median plan length of the solved problems to break the tie.

The one that has shorter plans is considered better.

Performance Evaluation. From Table 7.1 we can see that in a number of

domains, adding randomization directly to the previously learned ranking function

109

Table 7.1: Experimental results for the learned randomized policies. For each
domain, we show the number of solved problems and the median plan length of
the solved problems. A dash in the table indicates that the median plan length is
not available while none of the problems can be solved.

Problems solved (Median plan length) ITR-H ITR-HR GW GWR GL GLR

Blocksworld 30(118) 0(-) 30(129) 30(137) 11(536) 28(572)
Depots 23(433) 0(-) 11(847) 21(331) 2(61) 18(315)

DriverLog 4(544) 0(-) 0(-) 6(724) 4(6408) 4(877)
FreeCell 9(92) 17(242) 9(92) 21(141) 6(107) 25(122)

Pipesworld 17(579) 11(596) 17(2315) 20(179) 12(162) 26(303)
Pipesworld-with-tankage 5(206) 1(359) 6(158) 12(211) 4(104) 11(262)

Philosopher 33(363) 4(234) 0(-) 26(402) 0(-) 20(435)

hurts the performance. For example, with the same weighted rule set, ITR-H solves

all problems in Blocksworld but ITR-HR can not solve even a single problem. For

the Depot domain, ITR-H solves 23 problems and ITR-HR again solves none of the

problems. The only exception here is the FreeCell domain, in which randomized

greedy search with the same weighted rule set solves about twice as many problems

as greedy search. These results are in contrast to the following results of the learned

randomized policies, showing the effectiveness of learning randomized policies for

guiding randomized greedy search.

The columns labeled as GW and GWR show the performance of the randomized

policy learned by weight learning. With the same set of features as in ITR-H, the

weights of GW and GWR are learned by the gradient approaches in the framework

of reinforcement learning. For Blocksworld , GWR now solves all 30 problems with

comparable plan length, compared to ITR-H. For Driverlog, FreeCell, Pipesworld

and Pipesworld-with-tankage, GWR outperforms ITR-H with more planning prob-

lems being solved. For the other two domains, GWR solves fewer problems, but still

110

is comparable with ITR-H. However, GW always solves fewer problems than GWR

and is usually worse than ITR-H. This indicates that our weight learning algorithm

has successfully learned a good weight vector for better guiding randomized greedy

search.

The last two columns in Table 7.1 show the performance of GL and GLR which

learn both features and weights. For FreeCell and Pipesworld, GLR has the best

performance in Table 7.1. It solves 25 out of 35 problems in FreeCell and 26 out

of 35 problems in Pipesworld. For all other domains, however, it solves fewer

problems than GWR. This suggests that our feature learning mechanism still has

significant room to improve.

111

Chapter 8 – Summary and Future Work.

8.1 Summary of Contributions

This dissertation presented a detailed study of the problem of learning ranking

functions for efficient search in automated planning. We considered ranking func-

tions represented as a linear combination of features and aimed to learn features

and weights that can guide beam search, greedy search, or randomized greedy

search to perform nearly as well as unconstrained search.

First, we investigated the problem of learning weights for linear ranking func-

tions to guide beam search. On the theoretical side, we studied the computational

complexity of this learning problem, highlighting the main dimensions of complex-

ity by identifying core tractable and intractable subclasses. We also studied the

convergence of recent online learning algorithms for this problem. The results clar-

ified convergence issues, correcting and extending previous results. This included

an analysis of convergence given ambiguous training data, giving a result that

highlights the trade-off between the amount of allowed search and the difficulty

of the resulting learning problem. Our experiments in the domain of automated

planning showed that the approach has benefits compared to existing learning and

non-learning state-space search planners. These results complement the positive

empirical results in structured classification [Daumé III and Marcu, 2005] showing

112

the general utility of the method.

Next, we studied the problem of automatically learning both features and

weights to guide greedy search. We introduced weighted sets of action-selection

rules as a new form of control knowledge, which allow multiple rules to vote, help-

ing to improve robustness to noisy rules. We also presented a new iterative learning

algorithm for learning weighted rule sets based on RankBoost, an efficient boost-

ing algorithm for ranking. Each iteration considers the actual performance of the

current rule set and directs learning based on the observed search errors. This is in

contrast to most prior approaches, which learn control knowledge independently of

the search process. Our empirical results have shown significant promise for this

approach in a number of domains.

Finally, we considered randomizing the search process and learning random-

ized policies for guiding randomized greedy search with restarts. We investigated

the learning problem in the framework of reinforcement learning and applied re-

cent policy-gradient algorithms for learning features and weights. Our experiments

show that in a number of domains, randomized greedy search has better perfor-

mance than deterministic greedy search, especially with the guidance of our learned

randomized policies.

8.2 Future Work

This dissertation has shown significant promise for learning ranking functions for

efficient search. Beyond the research work discussed here, there are several inter-

113

esting problems that require further investigation.

Theoretical Analysis. It is important to study the theoretical properties of

our learning algorithms, especially for feature learning. In Chapter 4, we have

presented a detailed study of the theoretical properties of the weight learning

algorithms. But for feature learning in Chapter 6, we only show a worst case

bound. We are interested in investigating new assumptions that can guarantee the

convergence in a small number of iterations.

Moreover we are interested in understanding the fundamental limitations on

learning for greedy search. In particular, can one characterize when it is possible

to practically compile search away via learning? One way to begin addressing this

question is to understand when it is and is not possible to succinctly represent

greedy control knowledge for a search problem.

Improving the Weak Learner. The experiments in Chapter 6 and 7 have

shown that our rule learner often generates duplicated rules. For example, the

revised NPPG algorithm fails to induce any new rule after a single rule is learned

in the Philosopher domain. We suspect that our results can be further improved

by using more powerful weak learning algorithms, e.g. relational decision trees as

in [de la Rosa et al., 2008].

Combining Different Types of Features. Finally, we plan to learn other

types of features in planning domains. One option is to consider reactive policies,

which consist of a list of action-selection rules. Similar to action-selection rules,

the reactive policies are evaluated on state transitions and have binary values.

The main difference is that reactive policies can represent more complex control

114

knowledge. It is possible to extend our work in Chapter 6 to learning weighted

policies by simply replacing the weak rule learner by a policy learner.

In the application of weight learning, we have considered features as taxonomic

class expressions. These features, unlike the binary rule-based or policy-based

features, have integer values which increases the difficulty of learning these features.

We will also attempt to automatically learn this type of features, so that our

ranking function can represent more powerful control knowledge.

115

Bibliography

[Aler et al., 2002] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic
programming to learn and improve control knowledge. Artificial Intelligence,
141(1-2):29–56, 2002.

[Ambite et al., 2000] Jose Luis Ambite, Craig A. Knoblock, and Steven Minton.
Learning plan rewriting rules. In Artificial Intelligence Planning Systems, pages
3–12, 2000.

[Baxter and Bartlett, 2000] Jonathan Baxter and Peter L. Bartlett. Reinforce-
ment learning in POMDP’s via direct gradient ascent. In In Proc. 17th Inter-
national Conf. on Machine Learning, pages 41–48. Morgan Kaufmann, 2000.

[Baxter et al., 2001] Jonathan Baxter, Peter L. Bartlett, and Lex Weaver. Exper-
iments with infinite-horizon, policy-gradient estimation. Journal of Artificial
Intelligence Research, 15:2001, 2001.

[Bonet and Geffner, 1999] Blai Bonet and Hector Geffner. Planning as heuristic
search: New results. In European Conference on Planning, pages 360–372, 1999.

[Daumé III and Marcu, 2005] H. Daumé III and Daniel Marcu. Learning as search
optimization: Approximate large margin methods for structured prediction. In
ICML, 2005.

[Daumé III et al., 2009] Hal Daumé III, John Langford, and Daniel Marcu.
Search-based structured prediction. Machine Learning, 75:297–325, 2009.

[de la Rosa et al., 2008] Tomás de la Rosa, Sergio Jiménez, and Daniel Borrajo.
Learning relational decision trees for guiding heuristic planning. In ICAPS,
pages 60–67, 2008.

[Estlin and Mooney, 1996] Tara Estlin and Raymond Mooney. Integrating EBL
and ILP to acquire control rules for planning. In International Workshop on
Multi-Strategy Learning, 1996.

116

[Fern et al., 2006] Alan Fern, Sungwook Yoon, and Robert Givan. Approximate
policy iteration with a policy language bias: Solving relational Markov decision
processes. Journal of Artificial Intelligence Research, 25:85–118, 2006.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning
and executing generalized robot plans. 3(1–3):251–288, 1972.

[Freund et al., 2003] Yoav Freund, Rai Iyer, Robert E. Schapire, and Yoram
Singer. An efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research, 4:933–969, 2003.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson, editors. Com-
puters and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York, 1979.

[Gomes, 1998] Carla P. Gomes. Boosting combinatorial search through random-
ization. In Proceedings of the Fifteenth National Conference on Artificial Intel-
ligence, pages 431–437. AAAI Press, 1998.

[Hoffgen et al., 1995] Klaus-Uwe Hoffgen, Hans-Ulrich Simon, and Kevin S. Van
Horn. Robust trainability of single neurons. Journal of Computer and System
Sciences, 50(1):114–125, 1995.

[Hoffmann and Nebel, 2001] Jorg Hoffmann and Bernhard Nebel. The FF plan-
ning system: Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:263–302, 2001.

[Huang et al., 2000] Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning
declarative control rules for constraint-based planning. In Proceedings of Seven-
teenth International Conference on Machine Learning, pages 415–422, 2000.

[Jin and Ghahramani, 2002] Rong Jin and Zoubin Ghahramani. Learning with
multiple labels. In Proceedings of the Sixteenth Annual Conference on Neural
Information Processing Systems, 2002.

[Kersting and Driessens, 2008] Kristian Kersting and Kurt Driessens. Non-
parametric policy gradients: A unified treatment of propositional and relational
domains. In Proceedings of the 25th international conference on Machine learn-
ing, 2008.

117

[Khachiyan, 1979] L. G. Khachiyan. A polynomial algorithm in linear program-
ming. Soviet Mathematics Doklady, 20(1):191–194, 1979.

[Khardon, 1999] Roni Khardon. Learning action strategies for planning domains.
Artificial Intelligence, 113:125–148, 1999.

[Kolobov et al., 2009] Andrey Kolobov, Mausam Mausam, and Daniel S. Weld.
ReTrASE: integrating paradigms for approximate probabilistic planning. In
IJCAI, pages 1746–1753. Morgan Kaufmann Publishers Inc., 2009.

[la Rosa et al., 2007] Tomas De la Rosa, Daniel Borrajo, and Angel Garca Olaya.
Using cases utility for heuristic planning improvement. In International Confer-
ence on Case Based Reasoning, 2007.

[Martin and Geffner, 2000] Mario Martin and Hector Geffner. Learning general-
ized policies in planning domains using concept languages. In Proceedings of
Seventh International Conference on Principles of Knowledge Representation
and Reasoning, 2000.

[McDermott, 1998] Drew McDermott. PDDL - the planning domain definition
language. In The 1st International Planning Competition, 1998.

[Minton et al., 1989] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock,
Daniel Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning:
A problem solving perspective. Artificial Intelligence, 40:63–118, 1989.

[Minton, 1988] Steven Minton. Quantitative results concerning the utility of
explanation-based learning. In Proceedings of National Conference on Artifi-
cial Intelligence, 1988.

[Minton, 1993] Steven Minton, editor. Machine Learning Methods for Planning.
Morgan Kaufmann Publishers, 1993.

[Nguyen et al., 2002] XuanLong Nguyen, Subbarao Kambhampati, and
Romeo Sanchez Nigenda. Planning graph as the basis for deriving heuristics
for plan synthesis by state space and CSP search. Artificial Intelligence,
135(1-2):73–123, 2002.

[Novikoff, 1962] Albert B.J. Novikoff. On convergence proofs on perceptrons. In
Symposium on the Mathematical Theory of Automata, pages 615–622, 1962.

118

[Rosenblatt, 1962] Frank Rosenblatt. Principles of Neurodynamics. Spartan, New
York, 1962.

[Selman et al., 1995] Bart Selman, Henry Kautz, and Bram Cohen. Local search
strategies for satisfiability testing. In DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 521–532, 1995.

[Slaney and Thiébaux, 2001] John Slaney and Sylvie Thiébaux. Blocks world re-
visited. Artificial Intelligence, 125:119–153, 2001.

[Veloso et al., 1991] Manuela M. Veloso, M. Alicia Pérez, and Jamie G. Carbonell.
Nonlinear planning with parallel resource allocation. In Workshop on Innovative
Approaches to Planning, Scheduling and Control, pages 207–212, 1991.

[Xu and Fern, 2007] Yuehua Xu and Alan Fern. On learning linear ranking func-
tions for beam search. In Proceedings of the Twenty-Fourth International Con-
ference on Machine Learning, 2007.

[Xu et al., 2007] Yuehua Xu, Alan Fern, and Sungwook Yoon. Discriminative
learning of beam-search heuristics for planning. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 2007.

[Xu et al., 2009a] Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning linear
ranking functions for beam search with application to planning. Journal of
Machine Learning Research, 10:1367–1406, 2009.

[Xu et al., 2009b] Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning weighted
rule sets for forward search planning. Workshop on Planning and Learning in
ICAPS-09, 2009.

[Xu et al., 2010] Yuehua Xu, Alan Fern, and Sungwook Yoon. Iterative learning
of weighted rule sets for greedy search. In Proceedings of the 20th International
Conference on Automated Planning and Scheduling, 2010.

[Yoon et al., 2002] Sungwook Yoon, Alan Fern, and Robert Givan. Inductive pol-
icy selection for first-order MDPs. In Proceedings of Eighteenth Conference in
Uncertainty in Artificial Intelligence, 2002.

[Yoon et al., 2006] Sungwook Yoon, Alan Fern, and Robert Givan. Learning
heuristic functions from relaxed plans. In ICAPS, 2006.

119

[Yoon et al., 2008a] Sungwook Yoon, Alan Fern, and Robert Givan. Learning con-
trol knowledge for forward search planning. Journal of Machine Learning Re-
search, 9:683–718, 2008.

[Yoon et al., 2008b] Sungwook Yoon, Alan Fern, Robert Givan, and Subbarao
Kambhampati. Probabilistic planning via determinization in hindsight. In
AAAI, 2008.

[Zimmerman and Kambhampati, 2003] Terry Zimmerman and Subbarao Kamb-
hampati. Learning-assisted automated planning: Looking back, taking stock,
going forward. AI Magazine, 24(2)(2):73–96, 2003.

120

APPENDICES

121

Relation to Structured Classification

This Appendix assumes that the reader is familiar with the material in Section

4.2. The learning framework introduced in Section 4.1 is motivated by automated

planning, with the objective of finding a goal node. It is important to note that

the learning objective does not place a constraint on the rank of a goal node in the

final beam compared to non-goal nodes, but rather only requires that there exists

some goal node in the final beam. This is a natural formulation for automated

planning where when solving test problems it is easy to test each beam to determine

whether a goal node has been uncovered and to return a solution trajectory if one

has. Thus, the exact rank of the goal node in the final beam is not important with

respect to finding solutions to planning problems.

In contrast, as described in the example at the end of Section 4.1, the formula-

tion of structured classification as a search problem appears to require that we do

pay attention to the rank of the goal nodes in the final beam. In particular, the

formulation in [Daumé III and Marcu, 2005] requires the goal node to not only be

contained in the final beam, but to be ranked higher than any other terminal node

in the beam.

Since our formulation of the beam-search learning problem does not constrain

the rank of goal nodes relative to other nodes, it is not immediately clear how our

formulation relates to structured classification. It turns out that these two formu-

lations are polynomially equivalent, meaning that there is a polynomial reduction

from each problem to the other. Thus, it is possible to compile away the explicit

122

requirement that goal nodes have the highest rank in the final beam.

Below we adapt the definitions of the learning problems in Section 4.1 for

structured classification. First, we introduce the notion of terminal node, which

can be thought of as a possible solution to be returned by a structured classification

algorithm, for example, a full parse tree for a sentence. We will denote the set of

all terminal nodes as T and will assume a polynomial time test for determining

whether a node is in this set. Note that some terminal nodes correspond to target

solutions and others do not. When using beam search for structured classification

the search is halted whenever a terminal node becomes highest ranked in the

beam and the path leading to that terminal node is returned as the solution.

Thus, successful learning must ensure both that no non-target terminal node ever

becomes ranked first in any beam and also that eventually a target terminal node

does become ranked first. This motivation leads to the following definitions for the

breadth-first and best-first structured classification problems. Below, given the

context of a weight vector w, we will denote the highest ranked node relative to w

in a beam B by B(1).

Definition 7 (Breadth-First Structured Classification) Given the input

〈{〈Si, Pi〉}, b〉, where b is a positive integer and Pi = (Pi,0, . . . , Pi,d), the breadth-

first structured classification problem asks us to decide whether there is a weight

vector w such that for each Si, the corresponding beam trajectory (Bi,0, . . . , Bi,d),

produced using w with a beam width of b, satisfies Bi,j ∩ Pi,j 6= ∅ for each j,

B
(1)
i,d ∈ Pi,d, and B

(1)
i,j /∈ T for j < d?

123

Definition 8 (Best-First Structured Classification) Given the input

〈{〈Si, Pi〉}, b〉, where b is a positive integer and Pi = (Pi,0, . . . , Pi,d), the best-first

structured classification problem asks us to decide whether there is a weight vector

w that produces for each Si a beam trajectory (Bi,0, . . . , Bi,k) of beam width b, such

that k ≤ h, each Bi,j for j < k contains at least one node in
⋃

j Pi,j, B
(1)
i,k ∈ Pi,d,

and B
(1)
i,j /∈ T for j < k?

We prove that these problems are polynomially equivalent to breadth-first and

best-first consistency by showing that they are NP-complete. Since Section 4.2

proves that the consistency problems are also NP-complete we immediately get

equivalence.

Theorem 11 Breadth-first structured classification is NP-complete.

Proof We can prove that the problem is in NP, following the structure of the

proof of Theorem 1. Each certificate corresponds to a set of beam trajectories and

has a size that is polynomial in the problem size. The certificate can be checked in

polynomial time to see if for each i, it satisfies the conditions defined in Definition

7. From Lemma 1 in Section 4.2 we can use the algorithm TestTrajectories in

Figure 4.3 to decide whether there is a weight vector that generates the certificate

in polynomial time. To show hardness we reduce from breadth-first consistency

for the class of problems where b = 1, d = 1, c = 6, t = 3, and n ≥ 1, which

from Table 4.1 is NP-complete. Since for this class the search spaces have depth

1 and the beam width is 1 it is easy to see that for any problem in this class, a

weight vector is a solution to the consistency problem if and only if it is a solution

124

to the structured classification problem. This shows that breadth-first structured

classification is NP-hard and thus NP-complete.

Using an almost identical proof we can prove the same result for best-first

structured classification.

Theorem 12 Best-first structured classification is NP-complete.

