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In von Neumann Languages, side effects occur if one

or more non local variables change value(s) during the

execution of a procedure or a function. Side effects can

occur only if the programming language provides a notion

of memory (or state) where the effect will be stored.

Side effects complicate the semantics of such languages.

As a result programs are often hard to prove or verify in

languages permitting side effects. The applicative

languages eliminate the problem of side effects altogether

by removing the concept of memory or state.

Consequently,these languages have simpler semantics and

applicative programs are easier to to prove. In this

thesis we explore the design of the programming language

EML ( for Environment Modeling Language). EML retains the

the notion of memory and restricts but does not eliminate

side effects. Restriction of side effects is enforced by



eliminating the notion of global accessibility to a data

item and by the introducing the concept of a 'consumable'

variable. In this model a variable once accessed by a

procedure is assumed to be consumed in the calling

environment. A consumed variable may not be used by any

other procedure till its value is regenerated by the exe-

cution of some other procedure. Instead of global acces-

sibility, in EML data exchange is limited only between

neighboring environments, i.e an EML procedure can accept

and return data only to the procedure which invokes it.

We show that these restrictions simplify the semantics of

assignment based languages and improve the provability of

EML programs. An approach to verifying EML programs

employing the notion of equivalent function is discussed.

EML should be useful for programming and verifying proper-

ties of programs intended to model and manipulate environ-

ments.
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STATES, SIDE EFFECTS AND MULTIPLE CONTEXTS

IN PROGRAMMING LANGUAGES

INTRODUCTION

Programming languages can be broadly grouped in two

classes: (a) those having the concept of memory or store;

and (b) those having no such concept. The applicative

languages belong to the latter group while the von Neumann

languages form the majority of languages in the former

group. von Neumann languages have been noted for complex

semantics, complex transition states and side effects.

Programs in von Neumann languages are often difficult to

prove or verify. The applicative languages, on the other

hand, have simpler semantics, no notion of state and no

side effect. Consequently it is often easier to prove or

verify applicative programs (Backus '77). The notion of

memory and state, however, are quite useful in programming

applications which require history sensitive computation

and which involve modeling and manipulating environments

or objects acting in an environment. Data base systems and

real time controller systems are examples of such applica-

tions. The investigations reported in this thesis have

been motivated by the following question: Is it possible

to design a programming language which retains the notion

of memory and state AND yet has a semantics simple enough

such that programs are easier to verify? This goal could

be achieved if the programming language would satisfy the

following:
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(1) Within a procedure, it should be possible to

assign different values to a variable at different stages

of computation; i.e. it should be possible to write:

" X := Fl(Y);

X := F2(Z); "

where X,Y,Z are names of variables
and Fl,F2 represent procedures.

(2) The semantics of the language ought to be such

that it should be possible to state the effect of execut-

ing a syntactically valid procedure as an expression.

The first condition assures that a variable may

assume different values at different stages of computation

thus allowing the state of the environment to be modified

as computation proceeds. The second condition assures that

the meaning of executing a syntactically valid procedure

may be captured as a formal expression. This capability

should ease the process of program verification. None of

the current programming languages support both of these

two conditions. The von Neumann languages allow assignment

statements of the desired form. But the semantics of these

languages are such that there is no assurance that the

effect of executing a syntactically valid procedure in the

language may be captured as an expression. In the applica-

tive languages the procedures are really expressions; but

they have no notion of variable, memory or state; they do

not provide a facility for a variable to assume different

values at different stages of computation. The data flow
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languages have the semantics of functional languages and

yet they follow the syntax of imperative languages. These

languages follow the "single assignment rule" i.e., they

allow a variable to assume a value only once. Thus condi-

tion (1) stated earlier cannot be satisfied by the data

flow languages.

It is difficult to state the effect of executing a

von Neumann procedure as an expression because of side

effects permitted by such languages. Side effects are a

principal cause of the complex semantics of the von Neuman

languages (Backus '77). In von Neumann languages side

effects are practically indeterminate (see next chapter).

Our principal hypothesis is that if side effects could be

specified or restricted then the semantics of a program-

ming language would be simplified and programs in such a

language would be easier to verify. It is a common belief

that programs which are easier to verify, are often easier

to understand, maintain, and modify as well.

This thesis is organized in the following order. In

the next chapter we analyze how side effects arise in von

Neumann languages. From this analysis we propose a solu-

tion to restrict but not eliminate side effects. Notice

that the elimination of side effects would also eliminate

the notion of memory from a programming language and would

be contrary to our goal. Next we describe the notion of a

two-state memory system and a simplified virtual machine

where the computation and memory communicate with each
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other via three unidirectional channels. These concepts

are useful in developing the language E nvironment M odel-

ing L anguage (EML) which enforces restricted side

effects. The syntactic and semantic specifications of EML

are described in chapters 3 and 4. In chapter 5 we

describe an approach to verification of programs in the

EML language by first transforming them to algebraic

expressions. The final chapter tries to find a place for

EML in the panoply of programming languages.
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CHAPTER 2

CONSUMABLE VARIABLES & UNIDIRECTIONAL CHANNELS:
MODEL OF A VIRTUAL MACHINE

2.1 How Side Effects Occur In von Neumann Languages:

In imperative languages side effects occur in three

different ways:

(a) During the execution of a procedure, if values of

one or more of its input parameters are altered then a

side effect is said to have occurred.

(b) If during the execution of a procedure the values

of one or more global variables are modified then the pro-

cedure is said to have side effects.

(c) During the execution of an assignment statement,

if the values of one or more variables NOT occurring on

the left hand side of the assignment operator are modi-

fied, then also side effect is said to have occurred.

We explain below how side effects occur in these

situations.

Assume the following statement in a language like

PASCAL:

"Y := F(X);"

During execution the procedure may alter the values

of input variables if the parameters are passed by refer-

ence. The procedure may also access and alter the values

of one or more global variables not referenced in the
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statement. Both of these cause side effects. In impera-

tive languages there is no simple rule to detect and

determine the effect of invoking a procedure. Not all

procedures cause side effects, nor does every invocation

of the same procedure cause side effects. In short side

effects are allowed by the languages but the extent of

side effect remains a property of each individual pro-

cedure and are difficult to control on a more global basis

and certainly cannot be determined from the local program

syntax. A language which wishes to control side effect

must specify in the syntax which variables may be accessed

by a procedure at a given invocation. Also the semantics

of the language must specify what happens to the variables

accessed by a procedure during execution. Such specifica-

tions must be a property of the language and must be

applicable to all procedures in the language.

Imperative languages provide several mechanisms to

bind more than one name to a single value at a given time.

This happens when variables are passed by reference to

procedures. In this case variable names in two different

scopes continue to share a value. Another mechanism to

bind more than one name to a value is to use pointers and

refer to values via pointers. A third and more subtle

form of binding multiple names to a value is inherent in

the way components of structured objects are referenced

and used. The value of a component of a structured object

is bound to the name of the component as well as to the
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name of the parent object containing the component. In

these situations, whenever the value of the component is

altered, the value of the parent object is also altered,

albeit indirectly. The side effects occurring from the

latter are illustrated below. We shall see that side

effects from these sources are more subtle and more diffi-

cult to control within the confines of the imperative

languages.

Assume the following fragment of a 'C' program:

{

Struct rec
{ int A;

int B;) X;
/* X is a structure of two components A, B

both of which are integers */

X.A = a;
X.B = b;
/* stage 1 */
/* The components of X are initialized

to values a and b.*/

X. B = X.B + b;
/* value of X.B = 2b */

At the end of stage 1, the value associated with the

variable of name X is sequence of two values viz. (X = (a

b)). In the last statement the value of the variable of

name X.B is changed to 2b. However since X.B is a com-

ponent of X, the reassignment of the value of X.B also

indirectly changes the value of the structure X as a side

effect. At the end of the reassignment of X.B the value

of X is in reality a sequence of two values (X = (a 2b)).
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Thus the value of X was changed although its name was not

referenced in the statement. This form of side effect can

become more subtle if the the component X.B is accessed

via a pointer. If more than one pointer points to the

component, then altering the value of the component via

any of the pointers would cause a side effect to the

structure containing the component as well as to the value

accessed via the other pointers. Under these situations it

is difficult to reason about the state of a structured

variable. This analysis provides another clue for con-

trolling side effects. A language wishing to control side

effects must make sure that a value is not accessed via

more than one name. In the above example, the component B

is accessible via two names X and X.B. If the value asso-

ciated with the name X.B is changed, side effects is

caused to the variable X. If we could split the component

B from the structure X, before reassigning its value, then

we would be able to prevent the side effect on X. This

however requires that the language be able to decompose

(and compose) a structured data during execution. The von

Neumann languages do not provide any such mechanism.

What causes side effects in imperative languages and

why is it harmful? As discussed above, side effects can

arise only because the imperative languages allow a value

to be shared (or bound) among more than one name at a time

and also because these languages allow name spaces of pro-

cedures to be overlapped. For example, the global
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variables are included in the name space of all procedures

in a program. These languages allow the sharing to occur

but does have no mechanism to reflect which names are

sharing a given value at a given stage of computation.

Side effects are not harmful par se except that side

effects make it difficult to reason about the state of a

program. For program verification it would be necessary to

be able to reason about values associated with names. If

values are shared then it will be necessary to keep track

which names share which value(s) at each stage of computa-

tion, so that when a value is modified, the states of all

names sharing the value may be updated. This is cumber-

some at the least and may be almost impossible in many

cases if the language allows the value to be referenced

indirectly. Because of side effects, the effect of exe-

cuting an assignment statement cannot be stated by means

of a simple rule. Nor can the effect of executing a pro-

cedure be captured by any simple rule because of side

effects.

2.2 How Side Effects Could Be Controlled In

von Neumann Languages:

Our aim is to design a programming language which retains

the notion of state and memory and yet it should be easy

to state the effect of executing a program in the form of

an expression. For this purpose it is necessary to make

sure we are able to express the effect of executing a

statement in the form of an expression from the statement
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itself. From our analysis of side effects and how they

occur, we conclude that to meet the above goals, a

language ought to meet the following requirements:

(1) It should be possible to perform multiple assign-

ments in one step.

(2) The convention for naming values should be such

that a value is never attached to more than one name at a

time.

(3) The name spaces of procedures must never overlap.

(4) The strategy for passing parameters to a pro-

cedure should be such that a procedure may be viewed as a

function and yet it is able to alter the environment in

which it is invoked.

(5) The loop statement should be so constructed that

it is possible to easily deduce the function computed by a

loop statement.

The first requirement is easily met. The normal

model of assignment in imperative languages is that a pro-

cedure or a function may accept multiple parameters but

may return a single value. The desired language should

allow a vector of values to be accepted and a vector of

values to be returned by a function. The difference in

the two models are shown below.

Model of assignment in imperative languages:
X := F(Y1,Y2 ...Y_n);

Model of assignment in EML:
F(Y1, Y2..Y_n) = (X1,X2...X_m);
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We have not found a simple way to accommodate the

second, third and fourth requirements within the framework

of von Neumann languages. These requirements force a fun-

damental modification in the way a programming language

views and references its data. This paper describes the

design considerations, syntax and semantics of the pro-

gramming language EML which satisfies the requirements

stated above.

The features of EML may be summarized as follows. It

has a very simple flow of control. It allows procedures

to return a vector of values rather than a single value.

It makes sure that a value is always bound to a single

name at a time although the value may be bound to dif-

ferent names at different times. It makes sure that a

value is always viewed as a scalar and never as a com-

ponent of another value. To support this view it provides

operators to aggregate and split structures during execu-

tion. Further EML makes sure that the effects of execut-

ing a statement are inferred from the statement itself.

For this purpose it observes the following rules:

(1) Specify, in the syntax, which nonlocal variables

a procedure may access at a given invocation. One imple-

mentation of this rule would be to restrict the access of

a procedure to only those variables in nonlocal memory

which are passed to it as parameters. A procedure may not

access any other variable in the nonlocal memory. This

rule would constrain the possibility of unbridled changes



12

in global memory.

(2) Specify, in the semantics of the language, what

happens to a variable in the nonlocal memory if it is

accessed by a procedure during execution. This specifica-

tion will be a property of the language rather than of

the individual procedure. Thus the effect of accessing a

nonlocal variable will be independent of the internal

operation of the procedure.

2.3 Consumable Variables:

The above rules form the core of the programming

language Environment Modeling Language (EML) described in

this thesis. While the implementation of rule (1) is

quite clear cut, there are probably many ways in which the

second rule could be enforced. EML uses the concept of

'consumable variable' to implement the second rule. In

EML, a variable is a value stored in a cell in the memory.

The value can be completely removed from the cell which

merely serves as a container of the value. If the value

is removed, the cell becomes empty; i.e it contains a spe-

cial value empty designated as "E." "E" is a legal value

of all variables. If a variable 'X' is passed to a pro-

cedure P, then the value of X is supposed to be consumed

by the P; i.e., the procedure removes the value from the

container and consumes it in computation. Specifically,

the following is supposed to happen when the variable X is

passed to the procedure P. The value 'x' is removed from

the container labeled 'X'. Thus the container 'X' becomes
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empty. The value 'x' is then placed in a container local

to scope of the procedure 'P'. This concept of consumable

variables has two interesting implications:

(1) A variable always has the value 'E' after it has

been made available to a procedure, no matter what the

procedure does.

(2) This scheme assures that conceptually a procedure

will only access local values. This enables us to view

the procedure as a function and in turn helps to capture

the effect of executing a procedure in terms of an alge-

braic expression.

Other properties and rules of usage of variables will

be described later. It suffices here to note that, with

respect to the second rule, EML specifies that after a

variable has been used by a procedure, it must contain the

specific value 'E'. Further, a variable containing value

'E' may not be accessed for consumption by any other pro-

cedure. While the notion of an empty variable is similar

to the concept of unbound variables in some languages like

PROLOG, the notion of consumption of value does not seem

to have a parallel in other programming languages.

It is interesting to compare our solution for con-

trolling side effects with the solution adopted in the

data flow languages (Agarwala '82, Ackerman '82, Arvind

'82, McGraw '82). The data flow languages do not allow

any side effects although some allow assignment state-

ments. These languages have no notion of global memory.
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With respect to the second rule above, these languages

implement the policy of 'no change'; i.e the languages

specify that the parameters passed to procedures or func-

tions may not change in any way. This is enforced by the

convention that all parameters are passed by value only.

In contrast, EML may be said to implement the policy of

'pro change'; it requires that parameters passed to pro-

cedures must change and specifies the nature of that

change, from full to empty. The policy followed by data

flow languages eliminates side effects completely. Execu-

tion of a procedure in these languages does not affect its

environment at all. So far as a data flow procedure is

concerned, environment does not even exist. EML pro-

cedures on the other hand recognize that there exists an

environment in which the procedure executes and execution

of a procedure causes specifiable changes in the environ-

ment. In order to support the consumable data model of

EML, we have found it helpful to modify the traditional

view of virtual machines modeled by von Neumann languages

in two different ways. The EML virtual machine is a von

Neumann machine modified as described below.

2.4 Notion Of A Two-state Memory System:

The von Neumann languages traditionally view memory

as a series of cells; the cells are used to hold values of

variables. A cell always contains some value, whether or

not the value is of any significance to a program manipu-

lating the cell. In these languages a cell may NEVER be
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devoid of a value. The state of a cell is altered by

assigning a new value to it. Thus conceptually a cell in

the memory may be said to exist in only one state viz.

the 'filled' state , designated as (F). In these systems

there is only one possible type of state transition for a

memory cell. The state of a cell may only be changed from

one filled state Fi to another filled state Fj (Fig 2.1).

We will call this type of transition a 'filled_to_filled'

transition.

The memory cells in EML are permitted to have two

types of state transitions called consume transition and

produce transition. These transitions relate to the syn-

tactic constructs consume expression and

produce expression described in the syntax of the language

(Chapter 3). The consume transition occurs when a vari-

able is passed as a parameter to a procedure. At the

beginning of the consume transition the memory cell must

be full, i.e., the variable representing the cell must

have a value other than 'E'. At the end of the

consume transition the cell must contain the value 'E'.

Thus the consume transition of cell is indicated by '(Fi)

---> (E)' where Fi <> 'E'. The produce transition

occurs when values are assigned to memory cells. At the

start of the produce transition a cell may have any value

including 'E'. If at the beginning of produce transition

a cell has any value other than 'E', then the cell is

first emptied and then filled with the new value. Thus at
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the end of the produce transition a cell must have a

value other than 'E'. Thus the produce transition is

indicated by '(Fi) ---> (Fj)' where Fj <> E. The

produce transition is roughly similar to the state tran-

sition of cells in the von Neumann languages. These

languages do not have any notion equivalent to the consume

transition proposed here. The permissible state transi-

tions of cells in EML memory are shown in figure 2.1. The

notion of the memory system proposed here may be compared

with the notion of memory of other languages in the fol-

lowing manner. In EML, memory is writable and there are

two types of read operations: destructive and nondestruc-

tive. The latter variety of read operation implements the

consume transition. In von Neumann languages, memory is

readable and writable; there is no concept of destructive

read. In data flow languages, memory is readable but a

memory location can be written to only once. This res-

triction on write operation implements the

single_assignment rule which forms the core of data flow

languages. The functional languages are at the other end

of the spectrum since they have no notion of memory at

all.
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Figure 2.1
State Transitions Of A Memory Cell

(Fi) --> (Fj) (E)---->(F)

Fig 2.1a Fig 2.1b

Consume transition (Fi) ---> (E) (Fi <> E)
Produce transition (Fi) ---> (Fj) (Fj <> E)

Fig 2.1c

2.5 Unidirectional Channels Linking Computation And

Memory:

In the traditional view of the von Neumann languages,

the communication between the cpu and memory is performed

via a single bidirectional channel. Consider a simple

statement in a language like 'C':

if ( x > 5) x = f(x);

In this statement the location x is used in three dif-

ferent ways, once for comparing the resident value with

another constant, once for using the value as an operand

to the function f and finally the same location is used

for storing the newly computed value 'f(x)'. Logically

there are three different purposes for accessing a memory

cell during program execution.

(a) to 'look-up' and learn some thing about the pro-

perty of the value resident in the cell;

(b) to use the resident value in some computation to

generate a new value;

(c) to store a new value to the cell.
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In two of these instances the data value flows from

the cell to the computation; in the third instance the

data value flows from the computation to the cell. All

data transfer between computation and the cell is per-

formed via only one channel no matter what the purpose of

access is or direction in which the data flows. The

semantics of accessing a memory cell are not reflected in

the machine structure.

In the EML system, the communication between the cpu

and the memory cell is assumed to be performed via three

functionally specialized unidirectional channels. Each

channel is dedicated to a specific purpose. These three

channels are : the image-channel, the consume-channel and

the produce-channel. The properties of these channels are

stated in table 1. When accessed via the image-channel,

an image of the value resident in the cell is transported

to the cpu; the cell itself remains unchanged. When

accessed via the consume channel, the value resident at

the cell is transported to computation (i.e., the cpu).

The cell itself reaches an empty state. If the target

cell was already empty, no data transfer occurs and an

error results. Any instruction causing such an error is

not executed. When accessed via the produce channel value

flows from the cpu to the cell and the receiving cell

becomes filled with the value destroying the old value.

The value 'E' cannot be transported by the consume or

produce channels.
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2.6 EML-machine vs. Other Virtual Machines:

In von Neumann languages, a value may never be com-

pletely dissociated from the cell containing the value. A

cell may never be emptied by any means. A value assigned

to a cell destroys its existing value. The data flow

languages, on the other hand, impose the 'single assign-

ment rule' i.e a value may be assigned to a variable only

once. Once assigned, a variable may not be reassigned

new values ever again within the scope of definition of

the variable (Ackerman '82 ). In our view, this implies

that in the data flow languages the only type of state

transition allowed is from "E --> F"; here E represents

the value in the variable before the first value was

assigned to it by the program. In these languages, the

filled state is a dead end for a memory cell. Once a cell

is in a filled state no other transition is allowed. In

contrast, in the EML language, a value can be completely

dissociated from the container; a full container may be

emptied by removing its value and passing it on to a pro-

cedure; an empty cell may not be emptied again; and any

new value except "E" may be loaded to any cell.



Table 2.1
Channels of communication between computation

and a memory cell in EML

channel I direction o
name I data

I transfer

'effect on state I

lof the I when used
'memory cell

image_ I cell --->
channel I computation

I state
I unchanged

20

condition_
expression.

consume_' cell --->
channel I computation

I (Fi) ---> E I

I cell emptied I

consume
transition

produce_I computation
channel I ---> cell

I (Fi)----> (Fj) I

I empty cell
produce
transition.
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CHAPTER 3

SYNTACTIC SPECIFICATION OF EML

3.1 EML-entities:

The EML language consists of the following type of

entities: constants, variables, templates, and operators.

Files and operations related to input/output are not

included in the current definition. A EML program or a

user-defined operator is made up of statements composed

of the above entities along with other user-defined opera-

tors. The conventions for naming user defined entities

are shown in table 3.1.

Table 3.1
EML entities and conventions for naming them.

EML entity

constant
template
variable
file
operator

Prefix for name

c.
t.
v.
f.
o.

CONSTANTS: The constants include integers, reals,

characters and other user defined constants; names of all

user-defined constants start with the prefix "c." User

defined constants are declared as:

define (20 ) = c.twenty;
define ( c.twenty * 5) = c.hundred;
define ("catalog") = c.catalog;

In the above c.twenty is declared to be a constant
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of integer value 20 and c.catalog is defined to be a

string constant of value "catalog".

TEMPLATES: Template entities are descriptors of

forms. There are five fundamental forms known in the

language. They are : integer, real, boolean, character,

and sequence. The first four forms resemble the principal

types in other languages. The form sequence is obtained by

concatenating one or more of the principal forms.

Sequences are also formed by concatenating one or more

sequences. Further a sequence may be split by the split

operator at any indicated location to generate two

sequences. The "split" and "concat" operators used for

these operations are described later. A sequence must

have one or more component forms. In fact the fundamental

forms are each considered as a sequence of one component.

Attempt to split an empty sequence causes an error. Some

examples for declaring sequences are shown below:

(1) sequence(integer real boolean character)
t.all;

(2) sequence ((integer 5) (real 1) (char 20))
= t.record;

(3) sequence ( t.record 10) = t.ten_record;

Example (1) indicates that the template t.all is

obtained by concatenating the four fundamental forms in

the order described. The template t.record is a sequence

of three sequences: the first one is a sequence of five

integer forms; the second one contains one real form and

third one is a sequence of twenty forms of character. The
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template t.ten_record is a sequence of ten forms of the

template t.record. Template definition is a mechanism for

defining a storage structure without binding any variable

to the form. Note that this mechanism of concatenating

objects suffices for arrays, lists and record structures.

The template definitions should be particularly useful

in input/output statements.

Constants and templates do not occupy any cell in the

memory. They merely form declarations for the ease of com-

pilation.

VARIABLES: Variables are containers of values. Names

of all variables must start with the prefix "v."; valid

variable names are v.var, v.var x, v.varl etc. Variables

may be of simple form, or be of a complex form defined by

a template. The model of variables of EML differs signifi-

cantly from the model of variables in other imperative

languages. Most of the significant differences will be

presented in the section on rules for usage of variables.

In this section we explain the EML view of variables as

scalar objects. No matter how complex the structure, i.e.,

template, of a variable is, EML treats all variables as

scalar objects; i.e. variables are passed between opera-

tors as single entities. In languages like PASCAL, the

fields of a record are named by associating the field name

and the name of the record by the dot ('.') operator.

Other languages provide similar mechanisms. In these

languages different procedures may directly access and
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simultaneously process different parts of a record. Since

even variables of complex structures are treated as

scalars, in EML there is no provision to directly access

or name a specific component of a variable. To access a

component of a variable, first the variable must be pro-

cessed to isolate the desired component as an independent

variable. An example of such operation is given below:

make_sequence (0,10) = v.num_array;
split (v.num_array, 5) = (v.upper, v.lower);
split (v.upper,4) (v.first_four, v.fifth_num);

The first line is an instruction to create a sequence

of 10 elements each of which is initialized to the value

0. The sequence is associated to the name v.num_array.

Thus num array is essentially equivalent to an array of

ten integers in other languages. We intend to obtain the

fifth element of this array. The split operator splits a

concatenation of objects in two parts. 'make_sequence' and

'split' are built-in operators of the EML language. More

precise definition of 'split' and other EML operators and

definition of EML statements will follow shortly. Since

the variable num array is viewed as one object, it is not

possible to access the fifth element by simply subscript-

ing the array with the desired index. Rather, the variable

is first split in two parts after the fifth element pro-

ducing two objects corresponding to the upper and lower

halves of the original object. The upper half is then

split again after the fourth element to generate the vari-

able "fifth" as an independent variable. The variable
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"fifth" may now be used as a scalar object and passed to

any operator. The decision to treat all variables as

scalars, independent of the complexity of its structure

has two significant implications:

(a) it requires that the language provide operators

to rearrange structures of variables at runtime ; the EML

provided operators "split" and "concat" serve this need

(see built in operators of EML language).

(b) since structures of data are necessarily altered

while accessing any of its components, the notion of

static typing akin to PASCAL are less useful in this

language.

Other advantage of treating complex data as scalars

lies in controlling side effects. This aspect has been

discussed by Ackerman (Ackerman '82).

EML STATEMENTS:

The EML_statements are analogous to instructions in

other programming languages. They contain operators, vari-

ables, constants and the equality sign. More will be said

about the EML operators below. Here we describe the struc-

ture of the EML_statements. There are three types of

statements: simple statement, conditional statement and

the loop statement. Their general syntax is shown below:

F(X) = Y ; simple statement.
if (eq(X,Y)) Fl(X) = Y; conditional statement.

loop
[ if (gt (X,Y)) sub (X,1) = X; ]
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The first statement merely indicates, apply the EML

operator F on X and store the resultant value in the vari-

able Y. This looks familiar to the assignment statement of

imperative languages. The difference is that on execution

of the statement the value of X will be consumed, i.e.

after the statement is executed the value of X would be

empty (E). The conditional statements have a condition

expression associated with them. Loop statements are pre-

ceded by the key word 'loop'. Syntactically speaking a

statement has two components: the condition expression and

the procedure expression ; the condition expression is

optional. The procedure expression consists of a consume

expression and a produce expression. If it exists, the

condition expression starts with the key word "if". The

condition expression binds two expressions via a rela-

tional or boolean operator to generate a truth value. The

operands in the condition expression may be variables,

constants, arithmetic or boolean expressions involving

these entities. Only relational, boolean and arithmetic

operators defined in the EML language are allowed in a

condition expression. User-defined operators may not be

used in condition expression. User-defined operators in

general return a vector of values rather than a single

value. It is not always simple to obtain a single value

from such functions. Hence in the first definition of the

language user defined operators have been excluded from

condition expression. A consume expression contains a
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user-defined operator or a built-in operator of the

language and one or more parameters; a produce expression

is simply a list of of one or more variable or file

objects. The abstract form of an EML-statement is shown

below:

if (c i (Xl, c_j(X2,X3)))
f_i (Xl, X2.... X_n)

Y1,Y2 Y_n;

In this example first line represents the condition

expression, the second line represents a consume expres-

sion and the last line represents a produce expression.

c_i, c_j etc. are operators of the EML language. f_i is

either a built-in or user defined operator. X1,X2...Xn

are either variable names or constants or file names.

Y1,Y2...Yn must be variable names or file-names.

EML-OPERATORS:

The operators in EML are the active units; they pro-

cess data items to generate new data. The EML-language

supports a number of built in operators (Table 3.2).

Table 3.3 shows the definition of these operators. A pro-

gram in EML is actually an user-defined operator. A user

defined operator is composed from other user-defined

operators and/or built-in operators of the EML language.

Names of all user-defined operators start with the prefix

"o.". In EML, operators are used in two ways: they may be

used in condition expressions or consume expressions with

fairly different results. In either case, operators act on
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their operands to generate new values. When used in a

condition expression, an operator behaves like a function

in algebra; i.e execution of an operator in the condition

expression does not alter the operands themselves.

Further, new values generated are not stored in memory;

they are merely used to compute a truth value. On the

other hand, when used in a consume expression, operands

supplied to an operator are consumed during execution of

the operator; new values produced are stored in the

memory. These aspects are fully explored in the section on

semantic specification of the EML language.

Table 3.2

Operators of the EML language

Class I Operator

Relational I lt,gt,eq,le,ge, ne

Boolean and, or, not

Arithmetic I addIsub,mult,div ,

idiv, mod

Structure
rearrangement1

split, concat

Locational I locate

object
transfer

receive. send

fill copy, mk sequence
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Table 3.3
Definitions of operators of the EML language

(a) relational operators:
It (Xl, X2 ) :: if ( X1 < X2)

then true else false;
if ( X1 > X2)
then true else false;
if ( X1 = X2)
then true else false;
if ( X1 < X2)
then false else true;
if ( X1 > X2)
then false else true;
if ( X1 = X2)
then false else true;

gt ( X1,X2 ) ::

eq ( X1,X2 ) ::

ge ( X1,X2) ::

le ( X1,X2) ::

ne ( Xl, X2) ::

(b) boolean operators:
and ( Xl, X2 ) :: if ( Xl) and if (X2)

then true else false;
or (Xl, X2) :: if ( X1) or if (X2)

then true else false;
not ( X1) :: if (X1) then false else true;

(c) arithmetic operators:
add (Xl, X2 ) ( xl+x2);
sub ( Xl, X2) :: ( xl-x2);
mult ( Xl, X2) ( xl*x2);
div ( Xl, X2) :: ( xl/x2);
idiv ( Xl, X2) ( quotient (xl/x2))
mod ( Xl, X2) :: ( remainder ( xl/x2))

(d) locational operators :

locate ( (al,a2, a_n), i) (a_i);

(f) structure rearrangement operator:
split( (al, a2, ...a n ), i )

return ( (al,a2...i_i) ,(a_i+1 , a_n) );

concat ( (al,a2...a_j), (a k, a_n))
return( al,a2....a_j,a_k7...a_n);

3.2 EML Programs / User-defined Operators:

Names of all user defined operators start with the

prefix "o.". A syntactic description of the structure of

user defined operators is shown in figure 3.1. An EML
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operator contains two sections: the declarative part and

executable part. All variables used in an operator must be

declared in the declarative part. If user-defined con-

stants are used they must be also be declared here.

Optionally, user-defined templates and associations

between variables and templates may also be contained in

this section. The declarative part of a EML operator is

similar to the declarations in a PASCAL procedure, except

that it is not obligatory to associate types with vari-

ables. An EML programs to determine factorial is shown in

figure 3.2. An EML program implementing merge_sort is

presented at the end of this chapter ( figure 3.3).
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Figure 3.1

Structure of a EML operator.

EML operator :: <declarative> <executables >;
declaratives :: <template_def><constant_def>;
executables :: <receive> [<body>] <send>;
receive :: "receive" "()"

" =" <object list> ';';
send :: "send" <paramete-i_list> "." ;

body :: <statement> 1 (<body> < statement>;
statement ::<procedure_expression>

1 < cond statement>
1 < loop_statement> ";" ;

cond statement :: <cond expression>
< proceaure_expression;

loop_statement :: "Loop" "["(<cond statement>
1 <procedure_expression>) "];

cond_expression :: "if" "(" <relational_expr>
<boolean_expr >')';

procedure_expression::
<consume expression>' ='
<produce_expression> ;

consume expression:: <operator name>
'(' <parameter_lisE> ')';

produce_expression:: <object_list>;
parameter_list :: <objects> 1 constant 1

( <parameter_list>
<object> <constants>);

objects :: <variable> 1 <file >;
object_list :: <objects>

1( <object_list> <objects>);

The executable part of a EML operator contains a body

braced between a receive statement and a send statement.

The body itself is optional. If it exists it is a sequence

of one or more statements. The structure of statements

have been described above.
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Figure 3.2

Operator o.factorial

o.factorial
{ vars : v.num, v.num2, v.nextnum,

v. factorial, v.nextfact;

receive () = v.num;
/* # 0 */

if (eq( v.num,0))
add(v.num,l) = v.factorial;

/* #1 */
copy ( v.num,2) = (v.num, v.num2);

/* #2 */
sub ( v.num, 1) = v.nextnum; /* #3 */
o.factorial ( v.nextnum) = v.nextfact;

/* #4 */
mult ( v.nextfact, v.num2) = v.factorial;

/* #5 */
send (v.factorial). /* #6 */

The first statement in the operator o.factorial is

the receive statement. The operator is to receive a value

and store it in the variable v.num. If the value of the

variable is 0, then 1 is added to the value of variable

and the resulting value is associated with the variable

v.factorial. This happens in the second statement. The

third statement attempts to copy the value of v.num to

v.num and v.num2. Note that the statements #2 to #5 can

execute only if the statement #1 did not execute. If the

statement #1 did execute then the variable v.num would be

empty. As will be stressed throughout this paper, a

statement containing an empty variable cannot execute.

Thus if the statement #1 would execute, then the state-

ments #2 to #5 would not execute. On the other hand if the

value of v.num would be greater than 0, then the statement



33

#1 would not execute. The variable v.num would not be

empty and therefore the statements #2 to #5 would execute.

In any event the send statement would execute.

3.3 Rules Of Usage Of Various Entities:

It is useful to have a general idea of the semantic

model of the EML machine before we describe the syntactic

restrictions on various constructs of the EML language.

The complete description of the semantic model of this

language is the subject of the next chapter. Here we will

present a brief and informal overview. It has already been

stated that operators may be present in both condition

expressions and procedure expressions. Execution of a

procedure expression empties the variables in consume

expression and fills new values in the variables in the

corresponding produce expression. In other words, execu-

tion of an operator in a procedure expression reduces the

consumed operands to the state "E" (for empty) and

transfers the produced operands to the state "F" (

filled). Further, a procedure expression can be executed

only if the corresponding "readiness condition" is satis-

fied. The readiness condition states that an operator in a

procedure expression may be evaluated only if none of the

consume operands are in the empty. state. If the readiness

condition fails then the EML machine ignores the statement

containing such a procedure expression and proceeds to

examine the next statement in the body of the operator.
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Furthermore, while values of variables are consum-

able, values of constants and files are not.

3.3.1 Use Of 'receive' And 'send' Operators:

The receive operator may occur only in the consume

expression of the receive statement; the send operator may

occur only in the consume expression of the send state-

ment. They may not occur in any other statement in the

body of an operator. The receive statement must be the

first executable statement and the send operator is the

last executable statement of an operator. These statements

delimit the body of an operator; in this sense they serve

like the "begin-end" constructs of PASCAL. However, in EML

their main function is to convey values to and from the

calling operator. The structure of receive and send

statements are shown below:

receive () = X1,X2,...Xn;
send ( Y1,Y2,...Ym).

The first line indicates that the operator is to

receive some values from the calling operator ; these

values are to be placed in the variables X1,X2..Xn.

The process of transporting values between calling

and called operator may be viewed as described in figure

3.4. Assume the operator "A" calls the operator "B"

through the i_th statement in its body: "B(X) = Y". Also

assume that the receive and send statements in operator

"B" are: "receive() = M" and "send (P)" respectively. In

the semantic model, the calling and called operators are
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supposed to be connected via two unidirectional pipes. The

receiving-pipe transports value(s) from the calling opera-

tor to the called operator and the sending-pipe transports

value(s) from the called operator to the calling operator.

There is no other means of communication between the cal-

ling and called operator. Assume that when the operator

"B" was called the variable X in "A" contained the value

"xi". The following steps happen when the operator B is

invoked within the operator "A".

(1) the value xi contained in the cell X is dissoci-

ated from the cell itself; the result is an empty con-

tainer X and the dissociated value "xi".

(2) The value xi is sent down the receiving pipe to

the called operator B.

(3) In B, the receive operator accepts the value xi

and places it in the empty container M in B.

The operator B terminates when it executes its send

statement. The value contained in its variable P is then

shipped to the calling procedure A in the following steps.

(1) The value p_n contained in P is dissociated from

the cell P. It produces an empty cell P and dissociated

value p_n.

(2) The value p_n is sent down the send pipe to the

environment in A.

(3) The value p_n is accepted by A and placed in the

cell corresponding to the produce expression of the state-

ment which called B. The net result is that the value p_n
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is placed in the cell Y in the operator A.

The consume expression of the receive statement may

not contain any variable. This is obvious since the only

purpose of the receive operator is to accept values from

the external environment. The consume expression of a

send statement may or may not contain an operand. If it

contains some variables, as is the case in the example

above, it indicates that values contained in the operands

will be returned to the calling operator. It may be noted

however, that if in an operator, the produce expression in

the receive statement is an empty list and there are no

operands to the send operator, then the operator neither

receives any value nor returns any value to the calling

operator. Execution of such an operator is equivalent to

performing a "no operation" instruction.

3.3.2 Use Of Operators:

Operators may appear only in condition expressions

and consume expressions. Produce expressions may not con-

tain any operator. A consume expression may contain only

one operator. Since all operands in the consume expression

must be named objects, nesting of operators in the consume

expression cannot be supported. Execution of nested opera-

tors would produce values without any name. In such cases

the semantic analysis of an operator becomes quite diffi-

cult under our specification (see chapter 4). There may

be more than one operator in the condition expression.
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Following is a valid use of operators:

if ( gt ( add(X,Y), sub ( Z,Y)))
o.F( X, Y) = (Y, Z, P);

In this example there is nesting of operators in the

condition expression. Following two statements are exam-

ples of invalid uses of operators:

o.F(X, o.Fl(Y,Z)) = (P,Q);
o.F(X,Y) = o.Fl( P,Q);

In the first example there is nesting of operators in

the consume expression. In the second example the opera-

tor Fl appears in the produce expression.

3.3.3 Use Of Variables:

(1) Variables may appear in condition expression,

consume expression, produce expressions.

(2) Within a condition expression, a specific vari-

able may be referenced more than once.

(3) Within a consume expression,

may appear only once.

(4) Within a produce expression,

may appear only once.

3.3.4 Use Of Constants:

a specific

a specific

variable

variable

Constants may be used in condition expressions and

consume expressions. They may not be used in produce

expression. Within a consume expression , a constant may

be referred to more than once since constants are not con-

sumable items in EML.
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3.4 Loop Statement:

Looping requires that a sequence of statements be

executed repeatedly. Moreover, it requires that a vari-

able, say X, be capable of assuming new values on each

iteration of the loop. This in turn requires that the

model of memory ought to support filled-to-filled transi-

tion of cells in memory as described in chapter 2. Since

this is the model of memory in von Neumann languages, such

languages capture the semantics of looping in very simple

syntax. The notion of writable memory also allows a simple

syntax to capture the idea behind a loop statement. The

notion of single_assignment of the data flow languages is

basically incompatible with the semantics of looping,

since the latter would require that the variable X be

assigned a value at each iteration. In a pure form these

languages cannot express looping. Looping in these

languages, VAL and Id for example, are expressed through

constructs like "new" which indicate that at each itera-

tion a new instance of the variable X is being assigned

the value ( Ackerman '82, McGraw '82).

In EML, the general form of a loop statement is as

follows:

loop
[ { C i } f_i( Xl, X2, ...Xn) ---> (X1,X2,....Xn); ]

The following syntactic restriction apply for, the loop

statement:

The set of objects in the produce expression must be
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a identical to the set of objects in the consume expres-

sion of the loop statement; i.e. the variables consumed by

the operator must also be produced by the operator.

The necessity for such a restriction may be under-

stood as follows: assume the variable Xi is present in the

consume expression but not in the produce expression of a

loop statement. In this case in the first iteration

through the loop, the value in Xi will be consumed; the

value in Xi will not be regenerated since Xi does not

appear in the produce expression. Hence the readiness

condition ( which requires that none of the consume

operands be in the empty state ) will fail. As a result,

the loop will not iterate beyond first pass. The seman-

tics of the looping operation requires that the iterations

terminate only when the condition C_i fail ; looping ought

to continue otherwise. The syntactic restriction imposed

here is designed to attain this objective.

Informally, execution of a loop_statement may be

viewed as a two step activity.

while ( C_i = true)
{ 1. execute the operator f_i with values in the

variables X1,X2 etc.
As a result the variables X1 etc are emptied;
i.e they are associated with the value E.

2. Fill the variables in the procedure expression
with values returned by the operator executing f_i.

}

In the first step the consume variables are emptied. In

the second step the produce variables are filled with new

values. Since in the loop_statement they are the same
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variables, with each iteration in the loop, the

consume variables are associated with new values.

Note that if the loop statement does not have any

condition associated with it, the result is a nonterminat-

ing loop. The loop is also nonterminating if there is no

overlap between the set of variables in the consume

expression and set of variables in the condition expres-

sion. In the latter case, alterations in the values of

variables in the consume and produce expression will not

affect the truth value of the condition expression. In

this situation either the loop will not execute at all,

since at the beginning of first iteration the condition

will fail; or it will never stop since the loop condition

will never fail.



Figure 3.3
An EML program for merge-sort.

o.merge_sort
/* accepts a sequence and size of sequence;

produces a sorted sequence */

)

receive () = (v.list, v.size);
if ( ge(v.size,2))

o.divide and merge (v.list,v.size)
= (v.list,v.size);

send (v.list, v.size).

/* Operator o.divide_and_merge:
this operator accepts a list and its size; it
splits the list in two halves, sorts the
halves and merges the sorted halves to
produce the sorted list.

*/
o.divide_and merge_
{

receive() = (v.list, v.size);
o.split_half(v.list,v.size)

= ( v.left_half, v.left size,
v.right half, v.right_size);

o.merge_sort( v.left_half, v.left size)
= (v.sorted_left, v.left_size);

o.merge_sort (v.right_half, v.right_size)
= (v.sorted_right, v.right_size);

o.merge (v.sorted_left, v.left size,
v.sorted right, v.right_size)

= ( v.sorted_list, v.size);

send( v.sorted_list, v.size).

41
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Figure 3.3 (continued)

/* Operator o.split_half:
this operator will split a sequence in to
two halves. It will return the two halves
and the size of individual halves.

*/
o.split_half
{

receive () = (v.list, v.size);
copy( v.size,2) = (v.sizel, v.size2);
divide (v.sizel, 2) = v.half;
copy(v.half,3)

= (v.halfl, v.half2, v.left_size);
sub (v.size2, v.half2) = v.right_size;
split( v.list, v.halfl)

= (v.left_half, v.right_half);
send( v.left half, v.left_size,

v.right_ half, v.right_size).

/* Operator o.merge
merges two sorted lists into one sorted list.

*/
o.merge
{

receive ()
= (v.listl, v.lengthl,

v.list2,v.length2);
copy(v.lengthl,2) = (v.lengthl, v.lenl);
copy(v.length2,2) = (v.length2, v.len2);
copy(-1, 1) = (v.list_collector);
/* this one element sequence acts as the seed on

the sorted elements are collected.
*/

loop
( if (and(ge(v.lenl,1), ge(v.len2,1)))

pick_sort(v.list_collector, v.listl, v.lenl,
v.list2, v.len2)

= (v.list_collector, v.listl, v.lenl,
v.list2, v.len2); ]

/* merge the residue of the longer list to
the list collected so far. */

if (gt(v.len1,0))
concat ( v.list collector, v.listl)

= (v.sorted_list);
if (gt(v.len2,0))

concat (v.list collector, v.list2)
= (v.sorted_list);

add(v.lengthl, v.length2) = (v.length);
/* remove the first element form the sorted_list */



split ( v.sorted list,l)
= (v.Tist collector, v.sorted_list);

send( v.sorted_list, v.length).
)
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Figure 3.3 (continued)

/* Operator pick_sort:
This operator accepts two lists, their lengths
and a collector list. It detaches the first
element in each list and cocatenates them on the
collector in a sorted order.

*1
o.pick_sort

receive() = (v.collector, v.listl,v.lengthl,
v.list2,v.length2);

split( v.listl,l) = (v.headl, v.bodyl);
split (v.list2,l) = (v.head2, v.body2);

if (le(v.headl, v.head2))
pick_merge (v.collector, v.headl,

v.bodyl, v.lengthl,
v.head2, v.body2, v.length2)

= (v.collector, v.next_listl,
v.next lengthl, v.next list2,
v.next_Tength2);

/* else */
pick merge (v.collector, v.head2,

v.body2, v.length2,
v.headl, v.bodyl, v.lengthl)

= (v.collector, v.next_list2,
v.next length2, v.next listl,
v.next lengthl);

send( v.collector,v.next_listl,
v.next lengthl, v.next list2,
v.next length2).

)

/* operator o.pick_merge
accepts a collector list and descriptions of
head, body, size of two lists add_head and
other head. It adds the add_head to the
collector and decreases the
its size; also it composes the other list.
Returns all the lists .

44

*/
o.pick_merge
{ receive ()

= (v.collector, v.add_head,v.add_body,
v.add size, v.other head, v.other body,
v.othe'r_size);

/* concat v.add_head to the collector list and decrease
the size of the v.add size.



concat (v.collector, v.add head)
= (v.sortedlist);

sub ( v.add size, 1) = v._next_size;
/* reconstruct the other list */
concat ( v.otherhead, v.other_body)

= v._otherbody;
send (v.sortedlist, v._add_body, v.next_size,

v._other_body, v.othersize).
)
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Fig 3.4. Data Transfer Between Contexts

Operator A
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CHAPTER 4

SEMANTIC SPECIFICATION OF EML

4.1 Overview :

The target of semantic specification is to formally

describe what happens when the EML machine is executing a

syntactically valid EML program. Our aim is to develop

expressions which represent the working of the EML

machine. Also we shall show how, with the help of these

expressions, one can specify the meaning of executing an

EML operator. We will first define some terms useful for

the rest of the discussion in this chapter. Then we will

describe, informally, the working of the EML machine.

Later we shall define some functions to formalize the con-

cepts described in the informal overview. These functions

will be used to formally specify the meaning of executing

a statement and an EML operator.

4.2 Definitions Of Some Useful Terms:

An "object_name" is the name of a variable or the

name of a constant.

An "object_descriptor" is the association between an

object_name, the type of the named object and the value of

the named object. Currently type of object can only be

"variable" or "constant".

object = ( object_name object_type object_value);

An "object_list" is a list of object_descriptors;
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i.e.

object list = ( objectl object2 object3 ... object n);
where each object_i is an object_descriptor;

A "value list" is a list of values.

"Consume_objects" is a list of objects referenced in

the consume expression of a statement. Consume_objects may

contain zero or more members in its object_list.

"Produce_objects" is a list of objects referenced in

the produce expression of a statement. Produce_objects

may contain zero or more members in its object_list.

"Condition objects" is a list of objects referenced

in a condition expression.

"Consume values" is a value list containing the

values of consume objects.

"produce values" is a value_list containing the

values of produce_objects.

"condition values" is a value_list containing the

values of condition objects of a statement.

"New values" is a list of values obtained by execut-

ing a procedure expression. New values may contain zero or

more members in the value list.

"Environment" of an operator is an object_list con-

taining all objects referenced in the operator.

4.3 Working Of The EML machine: Informal Description:

4.3.1 Sequential Execution Of Statements:

An EML operator consists of a sequence of executable

statements. Execution of an EML operator starts at the
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receive statement. The EML machine attempts to execute

each successive statement in the sequence. Execution of an

EML operator stops after executing its send statement. It

ought to be noted that the syntax of the EML language does

not permit any jump ahead or jump back during execution.

In von Neumann languages, looping constructs invariably

require backward branching to execute a block of state-

ments over and over again. In the EML language the loop

construct is conceived as an atomic operation. In von

Neumann languages, forward jumping often is required in

the "if-then-else" constructs. During execution, if the

"if" condition fails, the von Neumann machine will jump

over the block of statements belonging to the "if" con-

struct. In contrast, in EML, if the condition expression

associated with a statement evaluates to false, then the

EML machine simply attempts to execute the next statement

in the sequence. No branching ahead is permitted.

4.3.2 Executability Of A Statement:

It is important to understand when an EML statement

may be executed and what happens if a statement executes

or fails to execute. We first describe what governs the

executability of a statement and then we shall indicate

what happens to the environment in the EML machine when a

statement gets executed.

It has been stated earlier that each EML statement

contains a procedure expression . A statement can be exe-

cuted only if its procedure expression can be executed.
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When the EML machine reaches a statement, it first makes

sure if the procedure expression is ready to be executed.

A procedure expression is said to be ready for execution

if none of the values in its list of consume values, nor

any value in its list of condition values is empty. A sim-

ple statement will be executed if its procedure expression

is ready to be executed. After executing such a statement

the EML machine will proceed to examine the executability

of the next statement in the sequence. If even a single

object in the consume_objects of a procedure expression is

associated with the value empty, then the procedure

expression is not ready for execution. Such a statement

will not be executed at run time. The EML machine will

ignore the statement and proceed to the next statement in

sequence.

When the EML machine reaches a conditional or a loop

statement, it does does the following:

(a) first it examines the readiness condition of its

procedure expression ;

(b) if the procedure expression is ready, then it

evaluates the associated condition expression ;

(c) if the condition expression evaluates to true

then the machine executes the procedure expression .

If either of (a) or (b) fails then the statement is

not executed; the machine proceeds to examine the next

statement in sequence.

An important difference between EML and the von
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Neumann languages may be noted here. In the von Neumann

languages there is no notion of readiness for execution of

an assignment statement. In these languages, if at run

time an assignment statement is reached then the assign-

ment statement WILL be executed. Once reached, the execu-

tability of the assignment statement is not determined by

the values of variables participating in the assignment

statement. In EML, the values of consume variables and

condition variables do determine the executability of a

statement.

4.3.3 Effect Of Execution Of A Statement:

We now describe how the environment of an EML opera-

tor is modified by executing a statement. As defined ear-

lier, the environment of an operator consists of the

objects referenced within the operator. At run time the

names are associated with values. The environment of an

operator changes if the value associated with one or more

names are modified. The changes happening in the environ-

ment of an operator Pi during the execution of its j_th

statement may be visualized as follows. Assume the pro-

cedure expression of the j_th statement to be:

Pj( Xj) = Xku.

In other words the operator Pi is invoking the operator Pj

with variable Xj. Assume at this time the names Xj and Xk

are associated with values xj and xk respectively. Obvi-

ously xj is not empty or else the procedure expression
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could not be executed. Execution of a procedure expres-

sion takes place in the following phases:

(1) Consumption;
(2) Bus out;
(3) Transform or mapping;
(4) Bus in;
(5) Production;

(1) In the consumption_phase, the value(s) associated

with the consume variables are detached from their names

to generate a value-list. The consume variables themselves

thus become associated with empty values. In this exam-

ple, xj is detached from Xj; the value list consists of

only one value xj. The name Xj is associated with the

empty value E. Conceptually the variable Xj is said to be

consumed in the process.

(2) In this phase, the value-list generated in step 1

is bussed out to the environment of the invoked operator,

where they are bound to name(s) referred in the receive

statement of the invoked operator. In this example, the

value xj is transported to the environment of Pj and asso-

ciated with some name in the environment of Pj. This

action occurs by executing the receive statement of the

operator Pj.

(3) In the mapping phase, the invoked operator, Pj in

this instance, is executed till it reaches its send state-

ment. When the send statement is executed in the invoked

operator a new value -list of zero or more elements may be

generated for transporting back to the invoking operator.
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When the send statement in Pj is executed then a new value

xk' say, is generated and environment of Pj disappears.

The input values xj are thus mapped to values xk'. The

mapping phase is completed with the termination of execu-

tion of the invoked operator.

(4) In this phase the mapped values from phase(3) are

bussed into the environment of the invoking operator. The

value list xk' is transported to Pi. Note that the

value list xk' may contain zero or more values; but none

of the values may contain the special value E.

(5) The value-list obtained from the invoked operator

is then associated with the names in the produce expres-

sion of the invoking operator. New values are thus said to

be produced in the environment of Pi. Execution of a pro-

cedure expression is then said to be completed. In this

example , the value xk' is now associated with the name Xk

in the environment of Pi. The variable Xk is said to be

'produced' in the environment of Pi.

It should be noted that the environment of Pi, the

operator under analysis, changes in steps (1) and (5). We

will later define the functions consume update,

produce update and state update to formally specify these

changes in the environment. The function get value,

map values will be defined to specify the process of read-

ing value(s) associated with a name or list of names.

Two comments are worth mentioning at this point.

First, in the concept described above, values are tran-
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sported across environments for modification. At no time,

is a value associated with more than one name. This is in

sharp contrast to the von Neumann Languages which, through

a variety of mechanisms, allow a value to be referenced by

more than one name.

Second, the invoked operator, i.e. Pj in this

instance, always operates within its own environment. Pj

never modifies values associated with names outside of its

own scope. There is no overlap in the name_space or

value_space of Pj with any other operator. The only chan-

nel of communication between Pj and the external world are

the channels through which the values are received and

sent. In contrast, the von Neumann languages allow overlap

of both name_space and value_space between procedures in

the form of global variables and by allowing variables to

be passed by reference. This is the basic argument that

all EML operators may be viewed as a function from

environments external to the operator itself. Thus Pi may

view Pj as a function although Pj (like Pi) internally

retains the notion of state and environment. Since Pj may

be viewed as a function, the effect of executing Pj with

some input value ought to be described as an expression.

The method of deriving such an expression for an arbitrary

but syntactically valid operator is the main focus of this

chapter and will be described in the later sections. At

this point, we will assume that the effect of executing a

syntactically valid operator can be captured by an expres-
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sion called the equivalent function of the operator.

4.3.4 Values generated by execution of a statement:

We have indicated above what governs the executabil-

ity of a statement during execution of an operator; also

we have indicated the kind of changes occurring in the

environment of the operator during execution of a state-

ment. Now we relate the values generated by execution of a

statement to the values of variables referenced in the

statement. Each statement has exactly one procedure

expression; and each procedure expression has exactly one

operator. We have argued that the operation of the invoked

operator may be viewed as a function acting on the values

supplied to the operator. The statements of the EML

language are of either of the three following forms:

Pj(Xj) = (Xk);
Or Ci Pj(Xj) = (Xk);
Or loop [ Ci(Xj) Pj(Xj) = (Xj);]

We will define functions simple eval,

conditional eval and loop eval to specify the values gen-

erated by executing the procedure expression in a simple,

conditional or loop statement.

4.4 Some Useful Functions:

We will now define some functions which will be use-

ful to describe the working of the EML machine. We will

use notation normally employed to describe functions in

functional languages ( Henderson '80). The functions car,

cdr, cons and the item NIL have their normal meaning. In
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many cases we will also describe the type of the function.

To simplify the type description we use the following con-

vention:

Type of name of variable/ constant = N;
Type of value of variable/constant = V;
Type of name:

T = { "variable", "constant" };
Type of an object: 0 where 0::(NxTxV);
Type of list of any of the above type

= LIST( TYPE);
Type of an arithmetic or

boolean expression: EX;
Type of a statement: ST;
Type of a function mapping values

Dj to Dk: (Dj->Dk);

Function init ears: This function is used to initial-

ize the values of variables. The function returns a list

of objects.

Type of init_vars:LIST(N)->LIST(0);

init ears( V NAMES)
= if ( car(V_NAMES)= NIL)
then (NILT
else ( cons (list

((car V NAMES), "variable", "E"),
init virs( cdr(V_NAMES)));

Function init const: This function is used to ini-

tialize a list of names to values and declare that these

are constants. The function returns a list of objects.

Type of init_const: (LIST(N)*LIST(V))->LIST(0);

init const( C_NAMES, CVALS)
= if (car(C_NAMES) = NIL)

then (NIL)
else ( cons( list

((car(C_NAMES), "constant", car(CVALS))),
init_const( cdr(C_NAMES), cdr (C_VALS)));
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Function concat: This function accepts two

object_lists and merges them to one object_list.

Type of concat: (LIST(0)*LIST(0))->(LIST(0);

concat ( V_ENV, C ENV)
= if (V_ENV = NIL)

then C_ENV
else
if( cdr(V_ENV) = NIL)

then cons(car(V_ENV), C_ENV)
else
cons( car(VENV),
concat(cdr(V_ENV), C_ENV));

Function init env: This function is used to create a

new environment before an operator is executed. The func-

tion receives a list of names of variables(V_NAMES), a

list of names for constants (C NAMES) and a list of

values(C_VALS) with which to initialize the constants. The

function returns an environment which in effect is a list

of objects.

Type of init_env: (LIST(N)*LIST(N)*LIST(V))
- > LIST(0);

init_env (V NAMES, C_NAMES, C_VALS)
= concat( Initvars(VNAMES),

init const(C_- NAMES,C_VALS));

Function none empty: This function examines a list of

values to decide if any of the values is EMPTY. If so it

returns false otherwise it returns true.
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Type of none_empty: LIST(V)->{TRUE,FALSE);

none_empty( VALUES)
= if( VALUES = NIL)
then TRUE
else if (car(VALUES) = "EMPTY")

then FALSE
else none_empty( cdr(VALUES));

Function consume: This function empties the value of

variable object.

Type of consume: 0->0;

consume( NAME TYPE VALUE)
= if (TYPE = "variable")

then <NAME, TYPE," EMPTY"
else <NAME TYPE VALUE>;

Function put_value: This function associates a vari-

able object to a new value.

Type of put_value: 0->0;

put_value( (NAME TYPE VALUE), V1)
if ( TYPE = "variable")

then <NAME, TYPE, V1>
else <NAME, TYPE, VALUE>;

Function consume_update: This function consumes the

values in a list of objects.

Type of consume_update: LIST(0)->LIST(0);

consume update( OB LIST)
= if ( 513 LIST = NIL)

then NIL
else
(cons (consume car(OB_LIST))

consume_update( cdr(OB_LIST)) );
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Function attach_values: This function associates new

values to a list of variable objects.

Type of attach_values:
(LIST(0)*LIST(V)) -> LIST(0);

attach values(OB LIST,V_LIST)
= if LIST =NIL)

then NIL
else

cons
( put_value(car(OB_LIST), car(V_LIST)),
attach value( cdr(OB LIST), cdr(V_LIST)));

Function get_value: This function maps a name (NAME)

to its value in a given environment represented by

OB LIST.

Type of get_value: (LIST(0)*N)->V;

get value (0B_LIST, NAME)
= If(OB_LIST= NIL)

then NIL
else if( car(car(OB_LIST) = NAME)

then (cdr(cdr(car(OB_LIST)))
else get_value( cdr(OB_LIST), NAME);

Function map_values: This function maps a list of

names ( NAME_LIST) to their list of values in the environ-

ment OB LIST;

Type of map_values: (LIST(0) *LIST(N)) -> LIST(V);

map_values(OBLIST, NAME_LIST)
= if (NAME_LIST = NIL)

then NIL
else
cons( get_value(OB_LIST, car(NAME_LIST)),

map_values(OB_LIST, cdr(NAME_LIST)));
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Function get_object: This function maps a name (NAME)

to its object in the environment ( OB_LIST).

Type get_object: (LIST(0)xN) -> 0;

get_object( OB_LIST, NAME)
= if ( OB_LIST = NIL)

then RIL
else if( car(car(OB_LIST) = NAME)

then (car(OB_LIST))
else get_object( cdr(OB_LIST), NAME);

Function map_objects: This function maps a list of

names(NAME_LIST) to a list of objects in the environment

OB_LIST.

Type map_objects: (LIST(0)xLIST(N)) -> LIST(0);

map objects(OB LIST, NAME_ LIST)
= if( NAME _LIST = NIL)

then (NIL)
else

cons ( get object(OB LIST, car(NAME LIST)),
map_oEjects(OB_IIST, cdr(NAME_LIST)) );

Function delete_object: This function deletes an

object (OBJECT) from an environment ( OB_LIST).

Type delete_object: (LIST(0) x 0) -> LIST(0);

delete object (OB LIST, OBJECT)
= if (OB LIST = NIL)

then (NIL)
else if (get_name( car(OB_LIST)

then (cdr(OB_LIST))
else cons( car(OB_LIST),

delete object( cdr(OB_

= get_name(OBJECT))

LIST), OBJECT));

Function remove_duplicates: This function deletes
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from the environment OB LIST1, the objects which are also

present in the environment OB_LIST2.

Type remove_duplicates: ( LIST(0) x LIST(0))
-> LIST(0);

remove duplicates ( OB LIST1, OB_LIST2)
= if T OB_LIST2 = NIL)

then NIL
else remove_duplicates

(delete_object( OB_LIST1, car(OB_LIST2)),
cdr(OB_LIST2));

Function state_update: This function is used to

update the environment of an operator when a procedure

expression is executed by the EML_machine.

state update( OB LIST1, OB LIST2)
= concat ( remove duplicates( OB LIST1,0B LIST2),

OB_LIST2);

Type state_update: (LIST(0) *LIST(0)) -> LIST(0);

Function member: This function determines if an item

is present in a list of symbols (LIST).

Type of member: (N x LIST(N)) -> {TRUE,FALSE};

member ( ITEM, LIST)
= if( car(LIST) = NIL)

then FALSE
else if (car(LIST) = ITEM)

then TRUE
else ( member( ITEM, cdr(LIST)));

Function bool eval: This function evaluates a boolean

expression in an environment.
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Type of bool_eval: (EX x LIST(0)) -> (TRUE,FALSE);

bool eval( OP, EXP, ENV)
= if (OP= gt)

then (gt (map_eval car(EXP) ENV)
(map_eval cdr(EXP) ENV))

else
if (OP= lt)
then (lt (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= le)
then (le (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= ge)
then (ge (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= eq)
then (eq (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= ne)
then(ne (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= and)
then (and (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= or)
then (or (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if (OP= not)
then not( map_eval( car(EXP), ENV);

Function eval: This function evaluates an arithmetic

expression in a given environment.
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Type of eval: (EX x LIST(0)) -> V;
eval( OP, EXP, ENV)
= if ( OP = add)

then (add (map_eval car(EXP) ENV)
(map_eval cdr(EXP) ENV))

else
if ( OP = sub)
then (sub (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if ( OP = mult)
then (mult (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if ( OP = div)
then (div (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV))
else
if ( OP = mod)
then (mod (map_eval car(EXP) ENV)

(map_eval cdr(EXP) ENV));

Function map_eval: This function evaluates an expres-

sion in an environment.

Type map_eval: (EX x LIST(0)) -> V;

map_eval ( EXP, ENV)
= if ( car(EXP) = NIL)

then NIL
else if (member( car(EXP),

<gt, ge, lt, le, eq, ne, and, or, not>))
then ( bool_eval( car(EXP), cdr(EXP), ENV))
else if (member( car(EXP),

<add, sub, mult, div, mod>))
then ( eval( car(EXP), cdr(EXP), ENV))
else get value( ENV, car(EXP));

In the following we describe some functions which

specify the effects of executing an EML statement. We

assume that:
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ENV: represents the environment in which the EML
machine attempts to execute the statement;

VCONS,VCOND,VPROD :
represents names of objects in the
consume expression, condition_expression,
produce_expression of the statement;

BOOL_EX: represents the condition_expression
of the statement;

FUN: represents the equivalent function of the
operator in the procedure expression
of the statement.

Function simple_eval: This function expresses the new

values available to an environment when a procedure

expression is executed.

Type simple eval: (LIST(0) x LIST(N) x (D_j->D_k))
-> LIST(V);

simple eval( ENV,VCONS, FUN)
= FUN(map_values(ENV,VCONS);

Function cond eval: This function describes the new_

values obtained by executing a conditional statement.

Type of cond_eval:
( LIST(0) x EX x LIST(N) x (D_j->D_k) x LIST(N))

-> LIST(V);

cond eval( ENV,BOOL EXP,VCONS,FUN,VPROD)
= i? ( bool_eval

( car(BOOL_EXP), cdr(BOOL_EXP), ENV) = TRUE)
then ( simple_eval( ENV,VCONS,FUN))

else (map_values(ENV,VPROD));

If the boolean expression (BOOL_EXP) evaluates to true in

the environment ENV, then the function executes

simple_eval and returns the values; otherwise cond_eval

returns the values associated with the names in VPROD in

the environment ENV, i.e the procedure expression is not

executed.
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Function simple_update: This function expresses

change on the environment when the EML machine attempts to

execute a simple statement.

Type of simple_update:
( LIST(0) x LIST(N) x (D_j->D_k) x LIST(N))

-> LIST(0);
simple update( ENV,VCONS,FUN,VPROD)
= if Tnone_empty(map_values(ENV,VCONS)) = FALSE)

then (ENV)
else
(state_update( ENV,
state_update
( consume_update(map_objects(ENV,VCONS)),

attach values( map_objects(ENV,VPROD),
simple_eval( ENV,VCONS,FUN))));

Function conditional update: This function expresses

the effect on the the environment when the EML machine

attempts to execute a conditional statement.

Type of conditional update:
( LIST(0) x EX x LIST(N) x LIST(N)

x (D_j->D_k) x LIST(N))
-> LIST(0);

conditional_update(ENV,BOOL EXP,
VCOND,VCONS,FUN,VPROD)

= if (and
(and( none empty(mapvalues(ENV,VCOND)),

none-empty(map_values(ENV,VCONS)))),
boole evar( car(BOOL EXP),

cdr(BOOE EXP), ENV)
= FALSE)

then (ENV)
else
( state update( ENV,

state_update(
consume update(map_objects(ENV,VCONS),
attach-Values( map_objects(ENV,VPROD),
cond_ival(ENV, BOOL_EXP,VCONS,FUN,VPROD)))));

Function loop_eval: This function describes the new
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values obtained by executing a loop_statement.

Type of loop_eval:
( LIST(0) x EX x LIST(N) x (D_j->D_K) x LIST(N))

-> LIST(V);

loop_eval( ENV, BOOL_EXP, VCONS, FUN)
= if (bool eval( car(BOOL_EXP), cdr(BOOL EXP), ENV)

= FALSE)
then (map_values( ENV,VCONS))

else
loop_eval( simple update(ENV,VCONS,FUN,VCONS),

BOOL=EXP, VCONS, FUN)

If the boolean expression BOOL_EXP evaluates to false in

environment ENV, then loop_eval returns the values of

names VCONS in ENV, i.e. looping stops; otherwise it

recursively executes the procedure expression and updating

the environment. The values returned by the loop_eval

function may be obtained by the following inductive rea-

soning. Let ENVj(0) and c_j(0) represent the environment

ENV and the values associated with the names VCONS at the

beginning. If the BOOLEXP evaluates to false, then the

function returns the values associated with VCONS in

ENVj(0), i.e. it returns c_j(0). Otherwise, it updates

the environment to ENVj(1) and goes through next itera-

tion. Let c_j(1) represent the values of VCONS in ENVj(1).

Since

ENVj(1) = simple_update(ENVj(0), VCONS, FUN,VCONS)

we conclude that only the values of VCONS alters as the

environment is updated. Since simple_update utilizes

isimple_eval(ENVj(0),VCONS,FUN)' to obtain new values, we
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find that: c_j(1) = FUN(c_j(0)). As long as iteration con-

tinues, only the values of VCONS changes. They can be

related to the initial values as follows:

c_j (0) = c_j in ENVj (0) = ENVj;
c_j(1) = FUN(c_j) in ENVj(1);

c_j (k) = FUN(c_j (k -1)) in ENVj(k);

Hence: cj_(k) = FUN(FUN(FUN...FUN(c_j)..))_k;

Also the recursion terminates when the BOOL_EXP evaluates

to false. Let us assume that the recursion terminates

after k iterations. Hence the BOOL EXP must evaluate to

true during 0 to (k-1) iterations and must evaluate to

false after k iterations. Hence k is such a positive

integer that the two conditions below are satisfied.

bool_eval( car(BOOL EXP), cdr(BOOL_EXP), ENVj(i))
= TRUE for 0=i < k;

and
bool_eval( car(BOOL EXP), cdr(BOOL_EXP), ENVj(i))

= FALSE for i=k;

Thus given the arguments of the function loop_eval it is

possible to reason about k and also it is possible to

relate c_j(k) to c_j i.e it is possible to relate the

values associated with VCONS before and after the execu-

tion of the loop_statement.

Function loop_update: This function expresses the

effect on the environment when the EML machine attempts to

execute a loop_statement in a given environment.
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Type of loop_update:
(LIST (0) x EX x LIST(N) x LIST(N)

x (D_j->D_k) x LIST(N))
-> LIST(0);

loop update(ENV,BOOL_EXP,VCOND,VCONS,FUN)
= if (and

(and
(none_empty(map_values(ENV,VCOND)),
none empty(map_values(ENV,VCONS))

),
bool eval( car(BOOL EXP),

car(BOOL EXP), ENV)
) = FALSE)
then (ENV)

else
( state_update( ENV,

state_update(
consume update( map_objects(ENV,VCONS)),
attach values( map_objects(ENV,VCONS),

loop_eval(ENV,BOOL_EXP,VCONS,FUN)))));

Function receive_update: This function specifies the

effect of executing a receive statement in an environment

ENV. In the following ARGS represent the

argument_list,i.e. a list of values with which an operator

is invoked.

Type of receive update:
( LIST(0) x LIST(V) x LIST(N)) -> LIST(0);

receive_update ( ENV, ARGS, VPROD)
= if (none_empty(ARGS))

then state_update( ENV,
attach values

(mip_objects(ENV,VPROD),ARGS))
else (error);

Function send_update: This function represents the

effect of executing the send statement of an operator.
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Type of send_update:
(LIST (0) x LIST(N)) -> LIST(V);

send update( ENV, VCONS)
= if( noneempty(map_values(ENV,VCONS)))

then (map_values(ENV,VCONS))
else (error);

Function env_update: This function describes the

effect of executing a statement in the body of the opera-

tor. Depending on the type of the statement, env_update

calls other functions and finally returns an updated

environment.

Type of env_update:
( LIST(0) x

(ST x EX x LIST(N) x LIST(N)
x (D_j->D_k) x LIST(N))

-> LIST(0);

env_update ( ENV,
<TYPE, BOOL EXP, VCOND, VCONS, FUN, VPROD> )

= if ( TYPE= simple) then
simple_update(ENV,VCONS,FUN,VPROD)

else
if (TYPE= conditional) then

conditional_update( ENV, BOOL_EXP,
VCOND,VCONS,FUN,VPROD)

else
if (TYPE=loop) then

loop_update(ENV,BOOL_EXP,VCOND,VCONS,FUN)
else

(error)

4.5 Semantic specification of the EML language:

We will first provide some formal definitions, then

provide the abstract syntax of the language and finally

give equations to specify the effect of executing EML

statements and EML-operators.
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4.5.1 Formal Definitions:

We assume the existence of:

V: a set of names of objects
(variables and constants);

D: a set of data values;
E: a distinguished element of D,

representing the value empty.
B: a set of primitive boolean functions.

Bi,j: D_j ->{T,F} of type <j,boolean>,
where T,F are distinguished elements of D.

0: a symbol neither in D or V;
P: a set of primitive operators

Pi,j,k: D_j -> D_k, of type <j,k>;
F: a set of function names;
TYPE: a set of three distinguished symbols

{ "simple", "conditional","loop"};
NT: a set of two distinguished symbols

{ "variable", "constant"};

A function type is either: <i,boolean> or <i,j >

where i and j are integers. This means two types of func-

tions are recognized in EML. The first type is of the type

boolean; it accepts a sequence of i values and maps the

sequence to a boolean value. The second type accepts

accepts a sequence of i values and maps it to another

sequence of j values where j >= 0.

A function environment FE is a mapping:

FE: F->T x 0
where: T is a function type;

and 0: is a primitive operator
in P or an EML operator

to be defined below.

This means we assume the existence of a function FE

which takes the name of a function F and returns the

operator for the function and the type of the operator.
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The operator may be a language defined operator in P or a

user defined operator.

We will refer to T as Type(F,FE) and to an operator 0

as Operator(F,FE). We define

Type(FUN,FE) = T;
DEF (FUN, FE) = 0;

VARS is defined to be the tuple: VARS= <V NAMES,

C NAMES, C VALS> where: V_NAMES is in V, C_NAME is in V,

and C_VALS is in D. V_NAME and C_NAME represent the lists

of names of variables and constants used in the operator.

C VALS is a list of values which are to be bound to the

names in C NAMES.

4.5.2 Abstract syntax:

Boolean Expression BE:

Given a functional environment FE, a boolean expres-

sion over a set of variables is defined as follows:

BE ::=<FUNIA1,A2..A_i>

is a boolean expression over V if for each A_j l<=j<=i

A_j is in D or A_j is in VARS, or A_j is itself a boolean

expression over VARS; and if Type(FUN,FE) = < k,boolean>.

EML Statement ST:

Given a functional environment FE, an EML statement

is defined over a set of object names VARS as follows:

The tuple
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ST ::= <S TYPE, BE, VCOND, VCONS, FUN, VPROD>
is an EML statement if:
(1) VCOND is in VARS; these are names referred in the

condition expression of the statement.
(2) BE is a boolean expression over VCOND;
(3) VCONS is in VARS; these are names referred in the

consume expression of the statement.
(4) VPROD is in VARS; these are names referred in the

produce expression of the statement.
(5) FUN is in F; this is the function expression of the

operator named in the procedure expression of
statement.

(6) Type ( FUN,FE) = <j,k>;
(7) S_TYPE is in TYPE;

The receive and statements of the EML language are

special cases of the above and are defined as follows.

These statements are defined by the tuples R and S as fol-

lows:

R ::=< VPROD >;
S ::= <VCONS>;

where VCONS, VPROD are in VARS. These are the objects

referred in the produce expression and consume expressions

of the receive and send statements of the operator.

EML operator:

Given a function environment FE, an EML operator 0 of

type <j,k> is defined by the tuple:

Operator ::= <VARS, R, BODY, S>
where:
(1) VARS is a tuple <V_NAMES, C_NAMES, C_VALS>

defined earlier.
(2) BODY is a sequence <ST1,ST2,...ST_k>

where ST_i is an EML statement over VARS.
(3) R and S are tuples of receive and send statements

defined over VARS;

Now we can formally define an EML program. An EML

program is a tuple:
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Program ::= <V,D,F,TRUE, FALSE, B, P, 0, FE, M>

of type <i,j> if:

(1) V,D,F are all disjoint sets of symbols;
(2) TRUE,FALSE are distinguished elements of D;
(3) B is a set of primitive boolean operators;
(4) P is a set of primitive operators;
(5) 0 is a set of EML operators;
(6) FE: is a function environment;
(7) M is an EML operator, the main operator.

4.5.3 Effect of executing EML operator:

We can now begin to define the effect of executing an

EML program or operator. Let 0 an EML operator of the

type <I,J> be described as follows:

0 = < VARS, R, BODY, S>
= «V NAMES, C_NAMES, C_VALS>,

R,
<ST1,ST2,..ST k>,
S>

where each of ST i is of the form:
ST_i = <TYPE i IVCOND i I BE / CO i I

FUN_i, P0 i>;

We define the environments assumed by the operator 0

during execution to be as follows:

ENV(0,ARGS)(0) = init_env( V_NAMES, C_NAMES, C_VALS);

ENV(O,ARGS) (1)
= receive_update ( ENV(0,ARGS)(0), R);

For 1<i<=k,
ENV(0,ARGS)(i+1)

= env_update( ENV(0,ARGS)(i), ST_i);
= env_update( ENV(0,ARGS)(i),

<TYPE_i,VCOND_i,BE_i,CO_i,FUN_i,P0_i> );

The values returned by the operator after termination

of execution is defined by:
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FINAL VALUE(0,ARGS)
=if (member (0, P))
then O(ARGS)
else send update( ENV(0,ARGS)(k+1), S);

Note that the send function returns a list of values.

Hence the final effect of executing the operator is to map

the arguments ARGS to a list of values. We define a

second order function EQ_FUNC to obtain the

equivalent function of an operator. EQ_FUNC is defined as

follows:

EQ_FUNC(0) (LAMBDA(ARGS)(FINAL_VALUE(0,ARGS)));

Hence the equivalent function of an operator 0 is

obtained by applying the function EQ_FUNC on the tuple

representing O. The equivalent function of the operator 0

,i.e. EQ_FUNC(0) is such a function that it maps the argu-

ment list ARCS to the value list FINAL VALUE(0,ARGS). In

other words, EQ_FUNC is a mapping from the textual

description of an operator to a function expression

representing the effect of executing the operator.

4.6 Meaning Of Executing An Operator:

We can now use the above formalism to analyze the

meaning of executing an operator. This can be done in

three stages:

(1) Analyze the text description of the operator to

generate its abstract form. That is generate the tuples

representing the abstract form described in previous sec-

tion. We assume that there is a parsing function
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"abstract" available to achieve this ( see below).

(2) Use the abstract form and an argument list to

generate successive environments of the operator employing

the specifications and functions described in sections 4.5

and 4.4. The successive environments provide the internal

view of the operator during execution.

(3) Obtain the expression 'FINAL VALUE' as described

in section 4.5 to obtain the values returned by the opera-

tor after termination of execution. The values

FINAL_VALUE(0,ARG) represent the external view of the

operator.

We assume the existence of the function abstract

defined as follows:

abstract
= LAMBDA( o.operator name)

if ( o.operator_name is in P)
then (operator_name)
else
(«V_NAMES,C_NAMES,CVAL>, R, BODY, S>);
where the meaning of the tuple is the same

as in section 4.5.

If the operator_name is one of the primitive operators

(P), i.e. if it is one of the operators defined in the EML

language, then the operator name is returned. Otherwise

the text is processed to obtain the necessary tuple. In

effect a parser of the language modified by a simple rule

could implement the function "abstract". If a semantic

entity is not applicable to a syntactic construct, then

the corresponding semantic entity could be replaced by

'NIL'; e.g. if the statement ST_i is a simple statement
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then VCOND i = NIL, and BOOL_EXP i = NIL as well. We will

not describe the mapping abstract any farther in this

paper. The result of its application on several operators

will be shown below.

The application of semantic specification on the

tuple 0 produce successive environments ENV(0)(i) for 0<=

i <= (k+1) if the body of the operator contains k state-

ments. The receive statement is executed in ENV(0)(0) and

the send statement is executed in ENV(0)(k+1). The

attempted execution of the i_th statement in the body pro-

duces ENV(0)(1+1). We will present the result of applica-

tion of the semantic specification in the form of a table.

The i th row of the table will contain the objects in

ENV(0)(i). We will see that each value in the table is

either a constant or a value present in the argument list

or an expression involving only constants or members of

the argument list. If the expression becomes too clut-

tered, we will replaced it with a symbolic name; the sym-

bolic name will be will be defined below the table.

We will adopt the following convention in naming the

equivalent_function of a user_defined operator. The name

of the equivalent_function of an operator will be obtained

by deleting the string "o." from the name of the operator.

Thus equivalent_function of the operator o.new could be

written as:
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EQ_FUNC( o.new)
= new
= LAMBDA(ARGS) FINAL VALUE( abstract(o.new), ARGS);

We will illustrate the method with three operators:

o.sum inc, o.integer_sum and o.difference. The operator

o.sum inc uses only simple statements. The operator

o.integer_sum contains a loop statement and also invokes

the operator o.sum_inc. The operator o.difference uses

conditional as well as simple statements.

The operator o.sum_inc is shown in figure 4.1; its

abstract form is in figure 4.2. The environments of the

operator during execution is shown in table 4.1.

Figure 4.1
Operator o.sum_inc

o.sum inc
{

receive () = (v.num,
copy ( v.num, 2) = (v
add (v.num, v.sum) =
add (v.numl, 1) = (v
send (v.num, v.sum).

}

v.sum);
.num, v.numl);
(v.sum);
.num);
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Figure 4.2
Abstract form of operator o.suminc

abstract(o.sum_inc)
= < <V_NAME, C_NAME, C_VAL>, R, BODY, S>

where:
{ V_NAME = <v.S, v.T, v.S1>;

C_NAME = <c.TWO, c.ONE>;
C VAL = < 2, 1>;
R = <v.S, v.T>;
BODY = <ST_1,ST_2,ST 3>

where:
{ ST_i = <simple, NIL, NIL, <v.S,c.TWO>,

copy, <v.S,v.S1»;
ST _2 = <simple, NIL,NIL, <v.S, v.T>,

add, <v. S »;
ST _3 = <simple, NIL, NIL, <v.S1,1>,

add, <v.S»;
};

S = <v.S, v.T>;
);

It is obvious from the table 4.1, that the final

values returned by the executing the operator o.sum_inc

is:

FINAL VALUE( (abstract(o.sum inc), <num, sum>
= send update ( ENV(4), (v.num,v.sum));
= < (num +l), (num+sum) >;

Hence the equivalent_ function of the operator

o.sum inc could be written as:

sum inc = LAMBDA(num,sum)
( (num +l), (num+sum));



Table 4.1
Environments of o.sum inc (num,sum)_

Object_
names

Object_values

ENV(0) ENV(1) ENV(2) ENV(3) ENV(4)

v.S E num num num (num+1)

v.T E sum sum (num+sum) (num+sum)

v.Sl E E E num E

c.two 2 2 2 2 2

c.one 1 1 1 1 1
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We may now analyze the execution of the operator

o.integer_sum. This operator and its abstract form are

described in figure 4.3 and figure 4.4.

Figure 4.3
Operator o.integer_sum

o.integer_sum
{ receive () = (v.last);

/* Statement 0 */
copy (0) = (v.total, v.start);

/* Statement 1 */
loop
[ if (le ( v.start, v.last))

o.sum inc ( v.start, v.total)
= (v.start, v.total);]

/* Statement 2 */
send ( v.total). /* Statement 3 */

)
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Figure 4.4
Abstract form of the operator o.integer_sum

Abstract( o.integer_sum)
VARS, R, <BOD>, S>

where:
{ VARS = < (v.last, v.start, v.total) ,

(c.zero c.two), (0 ,2) >;
R = <v.last>;
BODY = < ST1,ST2>
where:
{ ST1 = <simple, NIL, NIL, <c.zero,c.two>,

copy, <v.total,v.start»;
ST2 = <loop, <le<v.start,v.last»,

<v.start, v.last>,
EQ FUNC( o.sum inc),
(v.itart,v.last));

);
S = (v.total);

);

In order to find the final values obtained after exe-

cuting the the operator, we must evaluate ENV(3) as shown

in table 4.2. The loop_update function in turn invokes

the recursive function loop_eval. Hence we need to evalu-

ate the loop_eval function shown below. The environments

assumed by the operator o.integer_sum during the execution

of the loop_statement are shown in table 4.2A. As stated

earlier, we will use inductive reasoning to evaluate the

function.

loop_eval (ENV(2), (le(v.start, v.last)),
(v.start,v.total), sum_inc);

Let (S0,T0) and (S_k, T_k) be the values associated with

the names (v.start,v.total) before and after termination

of the loop_eval function. (S0,T0) are the values associ-

ated with (v.start, v.last) in ENV(2). These values are
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easily obtained as follows:

SO = get_value( ENV(2), v.start) = 0;
TO = get_value( ENV(2), v.total) = 0;

By applying induction, the values assumed by the variables

(v.start,v.total) at successive iterations are obtained as

follows:

(SO, TO) = (0,0);
(S1, Ti) = num_inc(SO,TO) = (1,0);
(S2, T2) = num_inc(S1,T1) = (2, (0+1));
(S3, T3) = num_inc(S2,T2) = (3, (0+1+2));

(S_k, T_k) = (k, (0+1+2+...(k-1))
= (k, ( (k-1)*(k-2))/2);

If the function loop_eval terminates after k iterations

then the following conditions must be true:

( bool eval( le, v.start, v.last, ENV(2)(k-1)) = TRUE;)
and
( bool eval( le, v.start, v.last, ENV(2)(k)) = FALSE;)

Hence:
le ( (k-1), num) = TRUE;

AND le ( k, num) = FALSE;

Hence: k = num + 1;

The values returned by the loop_eval are thus:
loop_eval( ENV(2), (le(v.start, v.last)),

(v.start,v.total), sum_inc)
= (k, ( (k-1)*(k-2))/2)
= ( (num + 1), (num *(num - 1))/2);

Using these values we can evaluate the loop_update func-

tion to obtain ENV(3). Also we can show that final values

obtained by executing o.integer_sum is as follows:

FINAL VALUE( ENV(4), ( num)) = num*(num -1)/2;
Hence:
integer_sum = LAMBDA( num)( num * (num - 1)/2);

It can easily be shown that if ( num < 0) then the



execution of the operator will generate an error.

Table 4.2
Environments of o.integer_sum (num)

Object_
names

Object_values

ENV(0) ENV(1) ENV(2) ENV(3)

v.last E num num num

v.total E E 0 num*(num-1)/2

v.start E E 0 num

c.zero 0 0 0 0

c.two 2 2 2 2

Table 4.2A
Environments of o.integer_sum (num) during

execution of the loop_statement.

Object_
names

Object values

ENV(2) ENV(2) ENV(2) ENV(2) ...ENV(2)
(0) (1) (2) (3) (k)

v.last num num num num num

v.total 0 0 (0+1) (0+1+2) .. (0+1+2..
(k-1))

v.start 0 1 2 3 000 k

c.zero 0 0 0 0 0040 0

c.two 2 2 2 2 .... 2
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The operator o.difference is supposed to accept two

values (x,y) say. Depending on the relationship between x

and y, the operator is to return a value z. The value of z
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should be such that:

if (x > y) then z= (x-y);
if (x < y) then z= (y-x);

else z = (x*x);

The code and abstract form of the operator o.difference

are in figure 4.5 and figure 4.6. The environments are in

table 4.3. It can be easily shown that :

if ( x > y) then
ENV(2) = ENV(3) = ENV(4)

= ( (v.X E)(v.Y E)(v.Z (x-y)));

Thus it can be shown that:

FINAL_VALUE( o.difference, (x,y))
= send update

( ENV(o.difference, (x,y))(4), (v.Z))
= (x-y);

Similarly it can be shown very easily that:

if ( x <y ) then
send update
(ENV(o.difference, (x,y))(4), (v.Z))
= (y-x);

if ( x = y) then
send (ENV(o.difference, (x,y))(4), (v.Z))
= (x*x);

Figure 4.5
Operator o.difference

o.difference
{ receive () = (v.X v.Y); /* Statement 1*/
if ( gt (v.X,v.Y)) sub (v.X, v.Y) = v.Z;

/* Statement 2*/
if ( It (v.X, v.Y)) sub (v.Y, v.X) = v.Z;

/* Statement 3*/
sqr (v.X) = v.Z; /* Statement 4*/
send ( v.Z).

}
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It is obvious that if either of the conditional

statements execute, then value of v.X will become empty,

and therefore the statement 4 will not execute.

Figure 4.6
Abstract form of operator o.difference

abstract (o.difference)
= «V NAMES, C NAMES, C VALS>,_

R, BODY, S>
where:
{ V NAMES = (v.X,v.Y,v.Z);
C=NAMES = (NIL);
C VALS = (NIL);
R = (v.X,v.Y);
BODY = <ST1,ST2,ST3>
where:
{ ST1 = < conditional, gt(v.X,v.Y),

(v.X,v.Y), (v.X,v.Y), sub,
(v.Z)>;

ST2 = < conditional, ( lt(v.X,v.Y)),
(v.X,v.Y), (v.Y,v.X), sub,

(v.Z)>;
ST3 = < simple, NIL, NIL, (v.X),

sqr, (v.Z)>;

S = <V.Z;
);
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Table 4.3
Environments of o.difference (x,y)

Object_
names

Object values

ENV(0) ENV(1) ENV(2) ENV(3) ENV(4)

v.X E x x2 x3 x4

v.Y E y y2 y3 y3

v.Z E E z2 z3 z4

x2
y2
z2
x3
y3
z3
x4
z4

=
=
=
=
=
=
=
=

if (x > y) then (E) else (x);
if (x > y) then (E) else (y);
if (x > y) then (x-y) else (E);
if (x < y) then (E) else (x);
if (x < y) then (E) else (y);
if (x < y) then (y-x) else (E);
if (none_empty(x3)) then (E) else (x3);
if (none_empty(x3)) then (x*x) else (z3);
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CHAPTER 5

VERIFICATION OF EML PROGRAMS

5.1 From Program To Expressions:

The aim of program verification is to determine if

the program under consideration implements the intentions

of its users. It is assumed that users intentions will be

supplied in the form of assertions which are to hold true

at specified stages of computations of the program in

question. An assertion is a relationship between the

values of variables and constants. In verifying EML pro-

grams we propose to proceed in two distinct stages:

(1) Applying the semantic specification of the

language, we will transform the source code of the EML

operator to a set of expressions, one for each value

relevant to the computation. The terms of the expression

will consist of the input values (if any) to the operator,

the constants known to the language and either built in

operators of the language and/or user defined operators

referenced within operator being verified. At any given

stage of computation we hope to have a symbolic expression

for each variable referenced in the operator being veri-

fied.

(2) Examine the expressions to determine if the

user's assertions are satisfied by the expressions.

If the user supplied assertions are satisfied by the

expression, then an operator will be said to be verified.
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The above two stages in the verification process may be

conceptualized as follows:

Transform
SOURCE-CODE > EXPRESSIONS;

EXPRESSIONS : satisfy user supplied assertions?

In comparing the ease of verification of programs in

EML and other imperative languages we claim the following:

Given any syntactically valid EML operator, systematic

application of the semantic specification of the language

may generate a set of symbolic expressions. The operators

in these expression are either defined in the language or

are user defined operators referenced in the operator

under analysis or are the meta operators loop update etc.

described in the semantic specification of the language (

see chapter 4). Similar analysis of programs in impera-

tive languages may or may NOT be possible. In other words,

there is no guarantee that we may transform every syntac-

tically valid procedure in 'C' or PASCAL to a set of

expressions which employ only language defined operators

and/or user defined operators referred in the procedure.

In the context of imperative languages the process to

derive these expressions may be quite difficult or impos-

sible. Often it may be necessary to be inventive to derive

such expressions. We shall present examples to support

this claim.

We do NOT claim that every syntactically valid EML
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program can be proved to be correct. Although every EML

program may be easily transformed to expressions, there is

no assurance that each of these programs will terminate

during execution. In fact, if an EML program contains loop

statements or recursion, then it will be necessary to

employ inductive reasoning to determine if the loop or

recursion will indeed terminate. We think, however, it may

be easier to employ inductive reasoning on the algebraic

expressions obtained by transforming EML programs. Similar

reasoning on the source code of imperative languages may

not be as easy since, because of side effects, it may be

quite difficult to decide the nature of the function com-

puted by an arbitrary loop statement.

It ought to be noted that the complexity of the

second step of the verification process, i.e. the process

of determining if the expressions satisfy the users asser-

tions is dependent on the complexity of the expressions

themselves. The complexity of the expressions are

directly related to the complexity of the procedure. If

EML does offer any advantage over the imperative languages

in program verification, it lies in the ease of deriving

these expressions and not in analyzing the properties of

such expressions.

5.2 Verification Of An EML Operator:

We will now describe the verification process stated

above with four examples. In the first example, we will

analyze the properties of an EML program designed to do
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integer division. The analysis and verification of this

program is quite straightforward. Hoare (Hoare '69) has

discussed the verification of a similar program within the

context of imperative languages. The second example deals

with a program determining the greatest common divisor

using the Eucleadian algorithm (Djikstra '76). We will

show how difficult it is to derive the properties of a

similar program in the imperative languages. The third

example illustrates the analysis of a recursively defined

operator. In the fourth example, we present the analysis

of programs containing non_terminating loops.

5.2.1 Example 1:

In the first example we will discuss the verification

process of an EML program intended to determine the quo-

tient of two nonnegative integers. The program is imple-

mented by the operator o.quotient, which in turn uses

another user defined operator o.sub_and_add. The operator

o.quotient is described in figure 5.1. The environments of

this operator are shown in table 5.1. We will verify if

the operator o.quotient implements the intention of its

users. Formally speaking, this operator claims to find the

quotient 'q' and the remainder 'r' obtained on dividing

'x' by 'y'. All variables are assumed to range over posi-

tive integers. The operator will be considered verified if

we can show that on termination the operator satisfies the

three assertions: (a) x = r + y*q; (b) r < y; and (c) r >

0. We farther assume that: x >y; and x > 0; and y > 0.
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Figure 5.1
Operator o.quotient

o.quotient
{ Vars : v.number, v.divisor, v.quotient;

receive() = v.number, v.divisor;
copy (0,1)= v.quotient;
loop
[ if ( ge ( v.number, v.divisor))

o.sub and add ( v.number,v.divisor,v.quotient)
= (v.number,v.divisor,v.quotient);)

send ( v.quotient, v.number).
/* number = remainder */

}

Table 5.1

Environments of o.quotient(x,y)

objects
I

Environments

I ENV(0) ENV(1) ENV(2) ENV(3)

v.number I E x y x k

v.divisor I E y y y_k

v.quotientl E E 0 z k_

c.zero I 0 0 0 0

c.one 1 1 1 1 1

(x_k, y_k, z_k)
= loop_eval ( ENV(2),

(ge (v.number, v.divisor),
(v.number,v.divisor,v.quotient),

sub and add);

The operator o.quotient invokes the operator
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o.sub and add. Hence we analyze the latter first before_ _

deriving the effect of executing the operator o.quotient.

The operator o.sub_and_add is described in the figure 5.2.

Its environments are shown in table 5.2. The effect of

executing the operator o.sub_and_add is given by the

expression:

sub and add( x,y,q)
= send_update( ENV(4),

(v.number,v.divisor,v.quotient))
where: ENV(4) is obtained from Table 5.2.

= ( (x-y), y, (q+1));

Figure 5.2

Operator o.sub_and_add

o.sub_and_add
{ vars: v.from,v

receive ()
copy (v.num,2)
sub ( v.from,v
add ( v.to,l)
send ( v.from,

.num,v.to, v.numl;

(v.from, v.num, v.to);
= v.num, v.numl;

.numl) = v.from;
= v.to;
v.to, v.num).
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Table 5.2

Environments of o.sub_and_add(x, y,q)

objects Environments

Env(0) Env(1) Env(2) Env(3) Env(4)

v.from E x x (x-y) (x-y)

v.num I E y y y y

v.add_to E q q q (q+1)

v.numl E E y E E

c.two 2 2 2 2 2

c.one 11 1 1 1 1

Next we determine the effect of executing the opera-

tor o.quotient with input arguments (x,y). From table 5.1:

quotient(x,y)
=send update( ENV(3), (v.quotient, v.divisor))
{where:
ENV(3) = loop_update( ENV(2),

(ge(v.number, v.divisor)),
(v.number, v.divisor,v.quotient),
sub_and_add);

);

In order to evaluate the loop_update expression

above, we will have to evaluate the following expression (

see definition of loop_update in chapter 4):

loop_eval ( ENV(2),
(ge(v.number, v.divisor)),

(v.number, v.divisor, v.quotient),
sub and add);

The loop_eval function is evaluated by induction as

indicated in chapter 4. Assume x_i,y_i,q_i are values of

v.number, v.divisor, v.quotient respectively at i_th
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iteration of loop_eval. Hence:

(x0,y0,q0) = (x,y,0);
(xl,y1,q1) = sub_and_add (x0,y0,q0)

= ( (x-y), y, (q+1));

By solving the appropriate recurrence relations we obtain:

(x_k, y_k,q_k) = ( (x-k*y), y, (q+k));

Also both of the following conditions must be true:

ge(x_(k-1), yjk-1)) = TRUE;
and ge( x_k,y_k) = FALSE;

Hence the following must be true:
condition 1: (x -(k-1)*y) >= y;
condition 2: (x-k*y) < y;

The effect of executing the operator o.quotient is

thus given by:

quotient (x,y) = ( k, (x-k*y))
where: k is defined by the two equations above.

The operator o.quotient accepts two integers (x y)

and returns the quotient k and the remainder (x - k*y);

i.e. x = r + k*y.

Since our remainder 'r' is given by (x - k*y), condi-

tion 2 above is a straightforward expression of the second

assertion ( r < y). The first assertion ( x= r+ k*y) is

trivially seen by substituting (x-k*y) for r. Finally,

the third assertion, i.e. (r > 0) is seen from condition 1

which states that: x - (k-1)*y >= y. From this it follows

that:

x - k*y + y >= y;
i.e. r + y >= y;
i.e. r >= 0; since we assumed initially that y > 0.
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Thus all the three assertions are proven to hold true.

Hence the operator o.quotient is said to be verified.

Hoare ( Hoare 1969) has discussed the proof procedure

of an essentially identical program within the context of

imperative languages. What is interesting is the fact that

in constructing the proof of the program, Hoare assumed

absence of side effects in evaluation of assignment state-

ments and condition expressions. Farther it was assumed

that the programs do not employ jumps, pointers and name

parameters. Notice that these constraints are unlikely to

be obeyed by most programs in the imperative languages.

Thus it appears that it will be difficult to verify many,

if not most, programs employing Hoare's methodology. In

short, Hoare's methodology will not be applicable to ver-

ify programs which employ side effects. Most programs in

imperative languages however do employ side effects. On

the contrary, the EML language allows locally controlled

side effects; also it provides a verification procedure

for a syntactically valid programs in the language in a

very straight-forward manner.

Note that, while the EML language guarantees a simple

way to express the effect of loop computation in the form

of an expression involving the meta function loop update,

it by no means assures that every syntactically valid loop

statement will converge to some specific termination dur-

ing actual execution. Termination conditions should be the

property of each individual loop rather than the property
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of a programming language. Thus, in EML as well as in

other programming languages, termination properties of a

loop have to be decided by independent means. Of course in

the example of o.quotient, it is almost trivial to prove

that the loop will terminate if both x and y are positive

integers. With successive iterations the value of k mono-

tonically increases and value of ( x - k*y) monotonically

decreases. Thus after a finite number of iterations the

condition ' ( x -k*y) > y' will be false and the loop will

terminate. This part of the verification process is essen-

tially equivalent to the verification process of other

languages, except that monotonicity is usually easier to

guarantee due to the controlled nature of side effects.

5.2.2 Example 2:

We will now discuss the verification of a program

intended to compute the greatest common divisor of two

positive integers using the Eucleadian algorithm (Djikstra

'76). Djikstra has discussed extensively the difficulty of

finding an appropriate loop_invariant for the loop in the

Eucleadian algorithm. The program written in 'C' is in

figure 5.3.
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Figure 5.3
A Program For Determining The Greatest

Common Divisor

int p;
main ()

{ int X,Y, Z;

scanf ( "%d %d", &X, &Y);
Z = gcd ( X, Y);
printf ( "%d", Z);

gcd ( X,Y)
int X,Y;

{ while ( ( X != Y) && ( X != 0)
&& ( Y != 0) )

{ if ( X > Y) then X = X - Y;
else Y = Y -X;

}

p = X*X; /* side effect */
return ( X);

The same algorithm is implemented in the EML operator

o.gcd in figure 5.4. First we discuss the verification of

the program in 'C' to contrast it with the ease of verifi-

cation of the corresponding EML program. The program in

'C' uses the procedure "gcd' to compute the greatest com-

mon divisor. The program is implemented using a procedure

to illustrate the difficulty of verifying a program using

a procedure with side-effects. The statement "P = X*X;" in

the procedure gcd causes the side-effect, since it alters

the value of the nonlocal variable 'P'. Admittedly, this

is a mindless addition to the procedure and does in no

way contribute to the derivation of the greatest common
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divisor. Neither is this addition a part of the Eucleadian

algorithm par se. Nonetheless, the procedure gcd is syn-

tactically valid and the example will serve to illustrate

the difficulty one faces in transforming a procedure of an

imperative language to an expression capturing the effect

of its execution.

Figure 5.4

Operator o.gcd

o.gcd
{ vars: v.intl, v.int2;

receive () = v.intl, v.int2;
loop
[ if (and(ne(v.intl,v.int2) ,

and(ne(v.intl, 0),
ne(v.int2, 0))))
o.lgcm( v.intl, v.int2)

= (v.intl, v.int2);];
send ( v.intl);

)
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Table 5.3

Environments of operator o.gcd(x,y)

objects 1 Environments
I

I Env(0) Env(1) Env(2)

v.intl 1 E x x_k_

v.int2 1 E y y_k

c.zero 1 0 0 0

(x_k, y_k) = loop_eval( ENV(1),
(and(ne(v.intl,v.int2),
and(ne(v.int1,0), ne(v.int2,0))),

(v.intl,v.int2), lgcm);

In transforming the procedure "gcd" to an expression

we ought to be able to transform the effect of its "while"

statement to an expression so that we could relate the

values X, Y, after the loop termination to their values

before the initiation of the loop. It seems there is no

simple way to intuit such an expression. In fact, we have,

so far failed to derive such an expression within the con-

text of semantics of the imperative language. For the pur-

poses of this discussion however, let us assume that such

an expression exists; also assume that values of X,Y

before and after the termination of the loop are (x y) and

(x k y_k) respectively. Thus we could reason that the

procedure gcd receives the values x,y and would return the

value x_k. Therefore the effect of executing "gcd" could

be expressed by the relation: xk = gcd(x,y). However,

this would still be wrong since this expression would not
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reveal the fact that the value of the variable p has been

modified to (x_k*x_k). In essence, it seems to be diffi-

cult, if not impossible to state the effect of executing

the procedure gcd in the form of an expression. In con-

trast, we show below that the effect of executing the EML

operator o.gcd can be derived in an algorithmic manner.

An EML operator computing the greatest common divisor

of two integers (x y) such that (x > 0) and (y > 0), will

be considered verified if the operator returns a value y_k

such that the following relations hold true:

x = m* x_k + y_k;
y = n* x_k + y_k;
x_k = p* y_k;
where x_k, y_k, m, n, p are integers such that:

(a) x_K > 0; y_k >0;
(b) m >=0; n >= 0; p > 0;

In our implementation the operator o.gcd invokes the

operator o.lgcm. The operators o.gcd and o.lgcm are

described in the figures 5.4 and 5.5. The environments for

these operators are in tables 5.3 and 5.4 respectively.
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Figure 5.5

Operator o.lgcm

o.lgcm
{ vars : v.intl, v.int2,

v.nextl, v.next2;

receive() = v.
copy (v.intl,2)
copy (v.int2,2)

if ( gt( v.intl,
sub(v.intl,

sub ( v.int2, v.

send ( v.nextl,

intl, v.int2;
= v.intl, v.nextl;
= v.int2, v.next2;

v.int2))
v.int2) = v.nextl;
intl) = v.next2;

v.next2).
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Table 5.4

Environments of o.lgcm (x,y)

objects I

1

Environments

1

1

ENV
(0)

ENV
(1)

ENV
(2)

ENV
(3)

ENV
(4)

ENV
(5)

v.intl 1 E x x x x4 x5

v.int2 1 E y y y y4 y5

v.nextl 1 E E x x p4 p5

v.next2 1 E E E y q4 q5

(x4 y4 p4 q4) = map_value ( ENV(4),
(v.intl, v.int2, v.nextl, v.next2)

where:
{ ENV(4) = conditional update( ENV(3),

(gt(v.intl,v.int2)), (v.intl,v.int2),
(v.intl,v.int2), (v.intl,v.int2),
sub, ( v.nextl));

);

(x5 y5 p5 q5) = map_value( ENV(5),
(v.intl, v.int2, v.nextl, v.next2)

where:
{ ENV(5) = simple_update ( ENV(4),

(v.int2,v.intl), sub, (v.next2));

The effect of executing o.lgcm(x,y) is given by:

lgcm(x,y) = send update( ENV(5), (v.nextl, v.next2));

For inputs such that (x>y) or (x <= y) the environment

table 5.4 may be easily reworked to produce the following:

lgcm(x y) = if ( gt(x y)) then ( (x-y), y);
if(not(gt(x y)) then ( x, (y-x));

Now we can transform the operator to o.gcd to its

equivalent function and analyze its the properties. From
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figure 5.4 and table 5.3 equivalent function of o.gcd is

defined to be:

gcd(x y) = send update( ENV(2), (v.intl))
where ENV(2) is obtained from table 5.3.

The value_list (x_k y_k) in table 5.3 is obtained by

evaluating the expression :

loop_eval( ENV(2),
(and(ne(v.intl,v.int2),
and(ne(v.int1,0), ne(v.int2,0))),
(v.intl,v.int2), lgcm);

This expression is evaluated by applying induction (see

chapter 4) in the following manner. Assume that variables

v.intl,v.int2 have values x_i,y_i during the i_th itera-

tion of the loop_eval function. Then we find the follow-

ing:

(x0 yO) = (x y);
(xl yl) = lgcm(x0 y0);

(xk yk) = lgcm(x_k-1 y_k-1);

Some properties of the equivalent function gcd can be

gleaned in the following manner. Assume that initially: (x

> y) and that after k iterations through the loop x_k <=

y_k. With this restriction on the input we get the follow-

ing:

(x0 yO) = (x y);
(xl yl) = lgcm(x y)

= ( (x-y), y); since we have assumed x > y;
(x k-1 y_k-1) = ((x -(k-1)*y) y);
(x=k y_k) = ( (x- k*y) y);

If the loop terminates after the k_th iteration then
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either or both of the following relations must be true.

and(ne(v.intl,v.int2),
and(ne(v.int1,0), ne(v.int2,0))) = FALSE;

i.e either x_k = y_k;
or x k = 0;

If x_k = y_k,
then x - k*y = y;
i.e. x = (k+1)* y; (1)

If x_k = 0
then x- k*y = 0;
i.e x = k*y (2)

In other words x is an integral multiple of y; i.e. y

is the greatest common divisor of x and y. Since x_k = y_k

= y, the value x_k returned by the operator gcd would

represent the greatest common divisor of x and y. Note

that if in the input the relationship of x and y were

reversed, i.e. if in the input ( x <= y) then also the

same reasoning would hold.

Both of the relations (1) or (2) above also satisfy

the three assertions described in the beginning of the

section. This is trivially seen by equating y_k to y and

adjusting the constants m,n,p as follows:

x = k* x_k + y_k;
y = 0* x_k + y_k;
x_k = 1* y_k;

It is possible that after the k_th iteration the loop

does not terminate but x_k becomes less than y_k i.e. x_k

< y becomes true. There are two possible cases:

x k = 1;
(pi: 1 < x k < y;
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In each case looping would continue and the effect could

be described by the recurrence equations below.

(x0 yO) = (x_k y);
(x_k' y_k') = ( x_k (y - k'*(x_k)); since x_k < y;

If x k = 1 then it is obvious the loop would ter-

minate after another k' iterations. The termination condi-

tion (y - k'*1) = 1 will be satisfied no matter what the

value of y is since k' is monotonically increasing with

every iteration. In this case the value returned by the

operator gcd is 1 which is a divisor for any two integers.

It is obvious that if the operator returns 1, then the

assertions are satisfied as well.

If 1< x_k < y, then looping would continue with the

property that at each iteration one of the variables

decrease while other does not. This goes on till the

decreasing variable becomes larger than the non_decreasing

one. At this time the variables switch role; i.e. the

variable which was decreasing before becomes

non decreasing and the variable which was non decreasing

starts decreasing. None of the variable however can

decrease below 1 when the loop is guaranteed to terminate.

The more general case i.e. the case in which the

variables switch role can be analyzed in the following

manner. Let the initial values of v.intl and v.int2 be

x(0) and y(0) respectively and let ( x(0) > y(0) ) be

true. Let after p0 iterations v.intl have the value x(1)

such that (xl < yO) be true. Now the variables switch
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role; i.e now onwards value of v.intl remain constant and

value of v.int2 continue to decrease till another switch

occurs. Let after q0 iterations v.int2 have the value y(1)

such that (y(1) < x(1) ) be true. The switchings would go

on till at the beginning of a switch the values of v.intl

and v.int2 be x(k) and y(k) such that either (a) x(k) is

an integral multiple of y(k); or (b) x(k) = 1; or (c) y(k)

= 1. We have argued that under these conditions the loop

will terminate without any farther switching of role. If

x(k) is an integral multiple of y(k) then y(k) is the

greatest common divisor of these two integers. We will now

use inductive reasoning to show that y(k) would also be

the greatest common divisor of x(0) and y(0). The values

of x(i), y(j) and the relationship among them at the

beginning of every switch are described below:

( x(0) y(0) ); (y(0) < x(0)) /*initial condition*/
( x(1) y(0) ); (x(1) < y(0)); (x(0)=p0*y(0) +x(1)) ;
( x(1) y(1) ); (y(1) < x(1)) ; (y(0)=q0*x(1) +y(1));
( x(2) y(1) ); (x(2) < y(1)) ; (x(1)=pl*y(1) +x(2));
( x(2) y(2) ) ; (y(2) < x(2)) ; (y(l)= ql *x(2) + y(2)) ;

(x(k-1) y(k-1)); (y(k-1) < x(k-1));
(y(k-2)=q_(k-2)*x_(k-1) + y(k-1));

(x(k) y(k-1)); (x(k) < y(k-1));
(x(k-1)=p_(k-1) *y(k-1) +x(k));

(x(k) y(k)); (y(k) < x(k));
(y(k- 1)= q_(k -1) *x(k) +y(k));

(x(k +l) y(k)); (x(k +l) = y(k));
(x(k) =p_(k+1)*y(k) + 0 );

The above relationships show that y(k) is the

greatest common divisor of (x(k) y(k)). Now we shall apply

induction to prove that y(k) is the greatest common divi-
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sor of each preceding pair; i.e. y(k) is the greatest com-

mon divisor of the pairs ( x(k), y(k-1)), (x(k-1), y(k-

1)) ... (x(2) y(1)), (x(1) y(1)), (x(1) y(0)), (x(0)

y(0)). We know from the above:

x(k) = p_(k+1)*y(k);
We know from above :

y(k-1) = q_(k-1) *x(k) + y(k);
i.e. y(k-1) = m*x(k-1) + y(k)

where the integer m = q_(k-1).

Since y(k) is the greatest common divisor of (x(k) y(k)),

y(k) must also be the greatest common divisor of ( x(k)

(m*x(k) +y(k)) ); i.e. y(k) must also be the greatest com-

mon divisor of ( x(k) y(k-1)). Similarly by employing

simple algebra we can reduce x(k-1) and y(k-1) to expres-

sions of the following form:

x(k-1) = nl*x(k) + y(k);
y(k-1) = m*x(k) +y(k);

Since y(k) is the greatest common divisor of (x(k) y(k)),

y(k) must also be the greatest common divisor of (

(nl*x(k) +y(k)), (m*x(k) + y(k)) i.e. y(k) must be the

greatest common divisor of the pair ( x(k-1) y(k-1)).

Similarly we can show y(k) is the greatest common divisor

of the pairs (x(k-2) y(k-1)), ( x(k-2) y(k-2) (x(1)

y(1)), (x(1) y(0)), (x(0) y(0)). In general the proof

depends on our ability to express every (x(i) y(j)) pair

in the form ( (n_i* x(k) + y(k)) , (m_j*x(k) + y(k)) ).

Thus y(k) is the greatest common divisor of each such pair

as long as y(k) is the greatest common divisor of (x(k)

y(k)). Hence y(k) is the greatest common divisor of (x(0)
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y(0)) i.e. of the initial values of v.intl and v.int2.

Note that this analysis shows that the values of

x(0),y(0), x(k), y(k) are related by expressions of the

following form:

x(0) = m*x(k) + y(k);
y(0) = n*x(k) + y(k)
x(k) = p* y(k);

Thus all the assertions specified for the operator

o.gcd are shown to be true. Hence the operator o.gcd is

said to be verified.

We could mention here again that the application of

inductive reasoning to show that the loop terminates and

that it terminates to provide the greatest common divisor

has nothing to do with the EML language as such. If we

could generate the function for the loop statement by any

other means, the application of induction would be as easy

or as hard, depending on the that an expression for the

function computed by the loop. The beauty of EML lies in

the fact, that the function computed by the loop can be

obtained by simple application of the semantic specifica-

tion on the source code.

The main point of this discussion is this: Given an

EML operator we can transform it to an expression by fol-

lowing the semantic specification of the EML language.

The expression may be complex reflecting the complexity of

the algorithm implemented by the operator. However, by

assuming suitable constraints on the input set, many use-
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ful properties may be deduced from the expression. We have

shown above that such may not necessarily be the case for

programs implemented in von Neumann languages, because of

the presence of uncontrolled side effects. Note, for

instance that if o.gcd contained a statement " sqr(v.intl)

= v.P", our environment table would have appeared wider

but our analysis would have remained unchanged.

5.2.3 Example 3:

In this example, we approach the verification of the

operator o.factorial which employs recursion. This opera-

tor is designed to accept a positive integer as its input

and return the factorial of the integer as its output. The

operator o.factorial is shown in figure 5.6. Its environ-

ments are shown in table 5.5. The expressions relating the

values in some of the environments to the values in the

preceding environment are shown in table 5.6. From table

5.5, the effect of executing o.factorial(n) is given by:

factorial( n) = send_update ( ENV(6), (v.fact));

We can derive 3 specific solutions for factorial for

cases: n > 0, n=0, n <0. For these inputs, the environ-

ments in table 5.5 can be reworked to produce the follow-

ing specific solution for the equivalent function fac-

torial:

factorial(x) = if (x > 0) then x*factorial(x-1);
= if (x = 0) then 1;
= if (x < 0) then error;
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Like the loop statements discussed above, we should

note that in general there is no guarantee that a recur-

sive function on execution will terminate. The recursion

termination, like loop termination, must be proved, if

necessary, by independent inductive reasoning. If the

domain of x is restricted to positive integers, then it is

easy to prove that the above recursive function will

finally terminate.

Figure 5.6

Operator o.factorial

o.factorial
( vars :v.N, v.M, v.fact, v.next_fact,

v.next_num;

receive () = (v.N);
copy (v.N, 2) = (v.N, v.M);
if (eq(v.N,O)

copy(l,l) = v.fact;
if (gt( v.N, 0)

sub( v.M, 1) =venext_

=

num;
o.factorial(v.next_num)

v.next fact;
mult(v.N, v.next_fact)

= v. fact;
send (v.fact).



Table 5.5

Environments of o.factorial (n)

object
names

v.N

v.M

v.next
num

v.next_
fact

v. fact

c.zero

c.one

C.two

Environments

ENV ENV ENV ENV ENV ENV ENV
(0) (1) (2) (3) (4) (5) (6)

n n n n n n6

E n n m4 m4 m4

E E E n n4 n n4 n n5

E

E

E E E nf5 nf6

E f2 f2 f2 f6

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2 2

n6 = if (none_empty(n,nf5)) then (E) else ( n);
f2 = if (eq(n,0)) then (1) else (E);
m4 = if ( gt (n,0)) then ( E) else (n);
n_n4 = if (gt (n,0)) then (n-1) else (E);
nf5 = if (none_empty( n_n4)) then ( factorial(n_n4))

else ( E);
n_n5 = if (none_empty (n_n4)) then (E) else (n_n4);
nf6 = if (none_empty (n, nf5)) then (E) else (nf5);
f6 = if (none_empty (n, nf5)) then ( n* nf5)

else (f2);

5.2.4 Example 4:

The examples in this

non terminating loops.

o.non terminating_2 and

in figure 5.7.

110

section relate to

The operators o.non terminating_l,

o.may_not_terminate are described
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Figure 5.7
Description of operators containing

non terminating loops

o.non_terminating_l
{ vars v.x;

receive () = (v.x);
loop
[ if (true) o.add one(v.x) = (v.x);]
send (v.x).

}

o.non_terminating_2
{ vars v.x, v.y, v.z;

receive () = (v.x, v.y, v.z);
loop
[ if (gt(v.y, v.z))

o.add one(v.x) = (v.x);]
send(v.x).

)

o.may_not_terminate
{ vars v.x;
receive () = (v.x);
loop
[ if (gt(v.x,5))

o.addone(v.x) = (v.x);
send (v.x).

o.add one
{ vars v.x, v.xl;

receive () = (v.x);
add (v.x, 1) = v.xl;
send(v.x1).

All these there operators invoke the procedure o.add_one

in their loop statement. The three operators employ dif-

ferent condition expressions in their loop statement. The

effect of executing o.add_one is easily derived to be:

add one(x) = (x+1);

From the definition of the operators we can easily
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intuit the following: the operator o.non_terminating_l, if

invoked will run for ever since its the

condition expression of its loop statement always returns

true. Note the condition expression in a loop statement

actually represents condition for loop iteration. Simi-

larly, in the operator o.non_terminating_2 there is no

overlap of variables between condition expression and

procedure expression. Hence in this case, successive

iteration of the loop will not influence the result of

evaluating the condition expression. Thus in this opera-

tor if the loop statement executes once it will execute

for ever, or it will not execute at all. In the third

example the continuation of the loop is dependent on the

initial value of input variable. If the condition

'gt(v.intl,5)' is initially true then it will continue

forever since successive iteration of o.add one monotoni-

cally increases the value associated with v.intl. Hence

the condition 'gt(v.intl ,5)' will be true forever and the

loop will never terminate. If on the other hand, the con-

dition is initially is false then the loop statement will

not execute at all. It should be noted that the possibil-

ity of infinite loops in the first two operators can be

inferred by simple syntactic examination of the loop

statements in these operators. Thus it is possible that a

suitable compiler for the EML language could detect these

two types of nonterminating loops at compile time.



113

CHAPTER 6

DISCUSSION

6.1 Program Verification In General: EML vs. Impera-

tive Languages:

We will now compare some features of EML with those

of imperative languages to illustrate why it may be diffi-

cult to transform programs of the latter to expressions.

In transforming the operators in the EML languages we have

essentially used the technique of forward substitution,

i.e. the values resident in some state are used to gen-

erate values of variables in the next state. This is pos-

sible because of the following features of the EML

language:

(1) The EML language has a very simple control flow.

The syntax of the EML language does not allow any jump or

backward branching in the control flow during execution.

(2) The loop statement in EML is an atomic operation

the meaning of which is well defined by the function

loop-update.

(3) A value is never bound to more than one name at

any time; also the procedures never share either

data_space or name_space with other procedures. As a

result, the effect of executing a statement on the

environment containing the statement is very easily

deduced.

This method is not quite suitable for all syntacti-

cally valid programs in imperative languages because:
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(a) These languages often allow complex control flow

including backward branching. It is difficult to apply

forward substitution in these cases.

(b) Often in these languages it may be difficult to

transform loops into expressions.

(c) These languages allow a value to be associated

with more than one name; also the procedures often share

both name_space and data_space with other procedures.

Hence if the value associated with one variable name is

changed, then by side effect, states of other variables in

the same or different contexts may get changed. Hence the

effect of executing a statement on the environment con-

taining the statement is not easily deduced.

We shall first discuss the difficulty of transforming

the loop statements in the imperative languages. Let us

consider the program fragment shown below:

while ( x > k)
{ x = x -1;

y = y + 1;

In order to transform the while loop we need to

relate the values of X and Y after the execution of the

loop to values of the same variables before the execution

of the loop. Assume the values of X to be x and x_k

before and after the execution of the loop; similarly let

values of Y be y and y_k. We are to capture the effect of

executing the effect of the 'while' statement on the
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environment containing the statement. If we could be sure

that the execution of this statement does not affect the

state of any other variable in any other context, we could

express the effect of executing the statement by relating

x k and y_k to x and y as follows:

x k = if ( x > k) then k else x;
y_k = if ( x > k) then ( y + ( x - k)) else y;

Notice that as long as the threat of side effects

exist, there appears to be no algorithmic way to capture

the effect. We have to apply our intuition to achieve it.

There is no guarantee that such expressions will be intui-

tively obtained for all syntactically valid loop state-

ments. The loop-statement in the gcd procedure discussed

above ( figure 5.4) is a case in point. We suspect that

whenever there is a branch within a loop statement, it

will be difficult to represent the effect of loop computa-

tion as an expression.

In the traditional approach loop computation is veri-

fied by proving the existence of a loop-invariant for

each loop ( Manna '77, Misra '78). The problem of finding

a loop invariant is theoretically unsolvable ( Wegbreit

'74). Misra ( Misra '78) indicates that if a loop com-

putes a function then it must have a loop-invariant; how-

ever there is no certainity that every syntactically

correct loop statement will compute a function. Dunlop

and Basili ( Dunlop and Basili '82) have discussed an
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approach of loop verification based on the functional

correctness of a loop. In this method, one would deter-

mine the function computed by a loop and then attempt to

verify its properties. They (Dunlop and Basili) have

shown that the problem of finding a loop invariant and the

problem of finding the function computed by a loop are

theoretically equivalent. Hence the method of using

loop-invariant for loop verification is no better than the

method of transforming a loop to a function and then

determining its functional correctness. The difficulty is

that in the imperative languages there is no algorithmic

way to find the function computed by syntactically correct

loop statement. It is here that EML provides an advan-

tage. The semantics of EML specifies the function com-

puted by syntactically correct loop statements using the

meta functions like loop update and others described in

chapter 4. Thus transformation of loop statements into the

functions they compute is algorithmic. Once the function

is obtained, inductive reasoning may be applied to deter-

mine the properties of the loop. In order to avoid the

difficulty of loop verification Djikstra suggests that the

loop invariant be determined before the loop statement is

designed and that the loop statement be composed to

reflect the loop-invariant. This of course becomes a

matter of style. It will not be quite trivial for a com-

piler to determine if a loop statement has been composed

to satisfy a loop-invariant. On the other hand, the syn-
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tax and semantics of EML assures that every syntactically

correct loop statement can be replaced by a function

expression, though this expression may not in fact define

a function. It is not left to be a matter of good pro-

gramming practice. It ought to be noted that in EML the

loop_statement is an atomic statement. The operator in

the procedure expression of the loop statement, is like

any other user defined operator. We have already shown

that a syntactically correct EML operator may be easily

transformed to its equivalent function. Thus the pro-

gramming process in EML requires the programmer to con-

ceptualize loops so that they compute a function. Misra

( Misra '78) has indicated certain conditions which a pro-

gramming language should fulfill so that a loop statement

in the language would compute a function. These include

the following: initially the local variables in the loop

statement (procedure) should be undefined; a local vari-

able may not be accessed before it is assigned a value.

It is interesting to note that EML language enforces both

of these constraints.

We now return to the issue of side effects during the

execution of a procedure. It has been stated that if dur-

ing execution, a procedure modifies the value(s) of one or

more nonlocal variables, then a side effect is said to

occur. It is well known that if a procedure alters the

state of memory beyond its own context, then the procedure

may not be treated as a function. Hence the effect of
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executing a procedure may not be represented by an expres-

sion. In EML, a procedure is never allowed to access non-

local memory. A procedure Pi invoking another procedure

Pj, merely view the procedure Pj as a mapper of a

value list to another value list. The procedure Pi,

manages its own environment by the rules of consumption

and production described in this paper. The rules for

managing the environment are independent of the procedure

being invoked. Since an EML procedure never alters the

state of nonlocal memory, the effect of executing an EML

procedure may be equated to a function. This allows the

development of dual view for EML procedures. Internal to

each procedure there is the concept of environment and

state; external to the procedure it may be viewed as a

function.

These facts viz. the ability to view EML operators

as functions, the ability to express a loop computation as

an expression, and the ability to apply forward substitu-

tion make it possible to describe the meaning of executing

an EML operator in the form of an expression. This

expression embodies all properties of the procedure. We

may have a good chance to predict the properties of an

operator by analyzing its environments and the expression.

In general this is not possible for a syntactically valid

program in the imperative languages. We hope, therefore,

that the verification of programs ought to be easier if

the programs were coded in the EML language.
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Why did we choose to transform programs to expres-

sions as the method for verification of EML programs?

Currently there are two models for verifying programs in

imperative languages ( Basili 1980, Dunlop and Basili

1982). These are the axiomatic model proposed by Hoare

(Hoare 1969) and Floyd ( Floyd 1967) and the functional

model proposed by Mills ( Mills 1975). The goal of func-

tional model is to establish the functional correctness of

a program. This method tries to describe the effect of

executing the program on the data as an expression or

function relating the input values to output values. The

functional model of program verification is largely

defeated in the context of von Neumann languages because

of side effects. Side effects often make it impossible to

describe the effect of executing a procedure in terms of

an expression involving its input values. In the EML

language side effects are strictly controlled. The seman-

tics of the EML language allows an EML procedure to be

transformed to a function expression using a simple algo-

rithm. Once described as a function expression, the pro-

perties of the program can be analyzed and predicted with

mathematical rigor. The necessity for being clever or

inventive largely disappears. Therefore it is simple to

verify EML programs following the functional model.

The axiomatic model of program verification requires

an inductive assertion on each loop as well as input-

output specifications for the program ( Floyd 1967). An
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assertion itself is a relationship between states of vari-

ables involved. Using the methods of predicate calculus,

each assertion indicates what should be true about the

state of variables at the particular point in a program

where the assertion appears. Note that the method of

verification utilizing invariant assertions merely seek to

verify some specified relationship among some chosen vari-

ables. EML on the other hand specifies the value of each

variable (as an expression) at each stage of execution.

Creating or inventing appropriate inductive assertion,

loop invariant assertions included, is a very difficult

job. There is no known algorithm for constructing the

suitable assertions for all programs or loops. Inventing

the appropriate assertions often require intuition and

outright cleverness. Compared to these, verification of

EML programs can be done in a much more routine manner

following the functional model.

In our view the difficulty of verifying a program in

von Neumann language is in effect a result of complex

semantics employed in these languages. Even symbolic exe-

cution of programs in these languages are complicated by

their complex scope rules and side effects ( Howden 1977).

Compared to these efforts, the transformation of EML

operators are simple and straightforward. The simplicity

of the transformation of EML is a reflection of the simple

semantics employed by the language.

6.2 Dual view of operators:
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The procedures in von Neumann languages present a

state based view of the execution of a program. The pro-

cedures have variables, i.e. addresses in memory where

values are stored. They allow the variables to assume

different values during execution corresponding to change

of state. We have argued in the beginning of this paper

that because of the facilities which allow procedures to

share data space and name space with other procedures (

including the main procedure), it is not possible to

develop a functional view of von Neumann procedures. On

the other hand functional languages in their pure form

portray a state_less machine. The "read-eval-print"

model of pure Lisp (McCarthy 1960) is an example of this

model. The functional machine evaluates an expression and

delivers a value. It does not recognize the notion of

memory to store a value. Thus it cannot represent changes

of states as computation proceeds. The operators in EML on

the other hand provide a dual view. Internally the opera-

tors maintain the notion of variable names and binding

between values and names. The same name can be bound to

different values at different stages of computation

reflecting changes of state as execution proceeds. This

aspect has been adequately demonstrated in the environment

table of each operator. Also the definition of operators

in EML are such that, an operator may not share data

space or name space with any other procedure. This clear

separation of environments of an operator from all other
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operators allow us view an operator as a function from

environments external to the operator. THE NET EFFECT IS

THAT OPERATORS IN EML CAN MODEL BOTH THE STATE BASED VIEW

AND THE FUNCTIONAL VIEW DEPENDING ON WHETHER ONE IS VIEW-

ING THE INTERIOR OR THE EXTERIOR OF THE OPERATOR. The two

views are clearly separated and yet they are not mutually

exclusive. In fact the clear separation of the two views

of EML operators have allowed us to develop the simple

formalism for verifying EML program.

6.3 Efficiency of data transfer between contexts:

We have mentioned that in EML an operator shares nei-

ther name-space nor data space with other operators; yet

data values are transferred between contexts. In func-

tional environments as well as in data flow languages the

only method of data transfer is to copy the data from one

context to another context. There appears to be no excep-

tion. The method can become quite inefficient when com-

plex data structures like arrays, graphs or data bases are

to be transferred to a different context. In our opinion

the EML provides a quite inexpensive solution for data

transfer between contexts. In EML, when a variable is

consumed, the association between its name and its value

is broken. The same value is then associated with the

target name in the destination operator. In the source

operator the name of the consumed variable is associated

with the empty value. Thus there is no need to physically

copy data from one environment to another. This concept
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should improve performance by reducing the need to copy

and thereby allowing data spaces to be used more effi-

ciently. The figure 6.1 illustrates this concept.

Figure 6.1
Data Transfer between operators

o.progl

o.foo (v.Y)
= v.Y

send (v.Y).(v.Y).
}

o. foo
{ receive() = v.X;

----7'
send (v.X).

}
__E__---

Assume that the operator o.progl invokes the operator

o.foo with the value of a data base v.Y. The EML machine

breaks the association between the name v.Y and the value

of the data base and associates the same value to the name

v.X in the operator o.foo. After the operator has pro-

cessed the value, it is reassociated with the name v.Y in

o.progl. During the time o.foo was active, the name v.Y

in o.progl was bound to the value E. Thus no matter how

large the data is, the cost of transferring it from

environment to environment is quite negligible both in

terms of space and time. In the environment of the func-

tional and of data flow languages the same operation would

require the data to be copied twice. Note that the EML

machine does not copy a value unless it is specifically

asked to by invoking the 'copy' operator. In other words
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the EML restricts access to a value by only one operator

at time. Two operators may not access the same value at

the same time. This is possible because, we assume that

in EML, a name is bound to a value and we let the EML

machine take care of the physical location of the value.

In von Neumann languages however, the concept is somewhat

different. A variable name, in these languages is bound

to an address in the memory and there is no control over

the number of names which may be bound to an address.

Therefore in the von Neumann Languages, the only mechanism

to transfer data from one context to another is to copy

the data to the destination environment.

6.4 Position of EML in the family of programming

languages:

The programming languages may be broadly divided in

two groups: the applicative languages and the imperative

languages. We will discuss the relationship of EML to

these classes of languages, in general.

The applicative languages are built around the notion

of 'values' and mapping of a set of values to another set

of values via the application of functions. These

languages have no notion of variables as containers of

values; nor have they any notion of memory or state. The

effect of executing a function in the applicative

languages is to reach new values from input values; the

output and input values are related via an equation

involving the function. The effect of executing an EML
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operator may be viewed at two levels: the effect on values

and the effect on variables ( or memory). Viewed at the

level of values only, an EML operator appears more like a

function in the applicative languages since the output

values generated by executing an EML operator are related

to its symbolic input values by means of an equation

involving the equivalent function of the operator. Aside

from generating new values from existing values, the exe-

cution of an EML operator changes the state of memory as

well. The execution of an EML operator will alter existing

values in all variables in the procedure expression invok-

ing the operator. This is in contrast to the notion of

functions since the application of a function does not

alter any member in its domain or range. Thus the EML may

be viewed as an applicative language to which the notion

of environment has been added. The notion of environment

is captured and localized in the syntactic construct pro-

cedure expression.

The imperative languages, whether they are

D structured, L_structured or block-structured ( Kosharaju

'74) are all built around the notion of variables, memory

and assignment operator. Although the EML language recog-

nizes the first two, it has no notion of an assignment

operator. On the other hand, the imperative languages have

no notion of consumption and production of values, the

notions which are central to understanding the EML

language. The procedure expression in the EML is the
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closest construct to the assignment operators in impera-

tive languages. In the imperative languages, the execution

of an assignment statement will probably , but not neces-

sarily, change the value(s) of one ( or more ) variables

in the memory. In EML the execution of a procedure expres-

sion will surely change the values of all variables

referred to in the procedure expression. There is another

significant difference between the assignment statements

and the procedure expression. At run time, if an assign-

ment statement is accessed then the statement will defin-

itely be executed no matter what the values of the vari-

ables are. The executability of an assignment statement is

never sensitive to values of variables occurring in the

assignment statement. In contrast, in EML, the executa-

bility of a procedure expression is sensitive to the run

time values of its consume and produce variables. Even if

the statement containing the procedure expression is

accessed, the procedure expression may not be executed if

the readiness condition is not satisfied.

Whether or not the EML language will turn out to be a

useful tool for production and maintenance of software

remains a conjecture at this time. These issues can be

decided only after considerable experience has been gath-

ered in the use of the language. Certain features of the

language however deserve comment at this time. The notions

of consumption and production of variables allows the

variables of EML to be viewed as objects in the physical
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world. In the physical world, an object participating in

the production of other objects is itself consumed in the

process. We think that the view of variables implemented

in EML is more natural than the view of variables in the

imperative languages. Hopefully the more natural view of

variables will help reduce the semantic gap between the

application domain and programming domain ( Bergland '81)

and thus aid the design of software. The meaning of exe-

cuting an EML operator is not influenced by the calling

environment. This property should be useful in developing

an incremental programming environment using EML. Because

of the simpler semantics, programs in EML ought to be

easier to understand, maintain and modify compared to pro-

grams in the imperative languages. A number of studies

have indicated that higher the number of branches and

knots in the control flow of the program, more difficult

is it to understand, maintain and modify programs ( McCabe

'76, Chen '78). The syntax of the EML language does not

allow for any branch or jump to any statement other than

the immediate next statement. Each statement bounded by

the receive and send statements must be accessed in a

linear sequence. The control flow of an EML program thus

cannot have any branch or knot. This would suggest that

understanding and modifying EML programs should be

easier. Since the maintenance cost of a software is

approximately 50% of its total cost, this feature of EML

is quite attractive and deserves closer scrutiny.



128

BIBLIOGRAPHY

[1] W.B.Ackerman, "Data Flow Languages", Computer vol
15(2), February 1982.

T. Agarwala and Arvind, "Data Flow Systems", Com-
puter vol 15(2), February 1982.

Arvind and Kim P. Gostelow, The U-interpreter",
Computer vol 15(2), 1982.

[4] J. Backus, "Can Programming Be Liberated From The
von Neumann Style? A Functional Style And Its Alge-
bra Of programs", Commun. Ass. Comput. Mach, vol 21,
pp 613-644, Aug 1978.

V. R. Basili and R.E. Noonan, "A
Axiomatic And Functional Models Of
gramming", IEEE Trans. Software Eng.
Sept 1980.

[6] G. D. Bergland, "A Guided Tour Of
Methodologies", Computer vol 14, pp

[5] Comparison Of
Structured Pro-
vol SE-6 (6),

Program Design
13-37, 1981.

[7] E. T. Chen ,"Program Complexity and Programmer Pro-
ductivity", IEEE Trans. Software Eng. vol SE-4, pp
189-194, May 1978.

N. Dershowitz and
grams: Automatic
Software Eng. vol

E. W. Djikstra,
Englewood Cliffs,

Z. Manna, The Evolution Of Pro-
Program Modification ", IEEE Trans.
SE-3 (6), Nov 1977.

"A Discipline Of Programming",
N.J, Prentice-Hall, 1976.

[10] D. D. Dunlop and V. R. Basili, "A Comparative
Analysis Of Functional Correctness", ACM Computing
Surveys. vol 14(2),pp 229-245, 1982.

[11] R. W. Floyd, "Assigning Meaning To Programs", Proc.
Symp. Applied Math. vol 19, J.T Schwartz, Ed. Amer.
Math. Society, pp 19-32, 1967.

[12] J. W. Goodwin, "Why Programming Environments Need
Dynamic Data Types", IEEE Trans. Software Eng. vol
SE-7 (5), Sept 1981.

[13] P. Henderson ,"Functional Programming Application
and Implementation", Prentice Hall, 1980.

[14] C. A. R. Hoare, "An Axiomatic Basis For Computer



129

Programming", Commun. Ass. Comput. Mach, vol 12
(10), October, 1969.

[15] W. E. Howden,"Symbolic Testing And The Dissect Sym-
bolic Evaluation System", IEEE Trans. Software ENg.,
vol SE-3, 1977.

[16] R. Kosharaju, "Analysis Of Structured Programs", J.
Comput. And System Sciences, vol 9(3), 1974.

[17] T. J. McCabe, "A Complexity Measure",IEEE Trans.
Software Eng., vol SE-2, December 1976.

[18] J. McCarthy, "Recursive Functions Of Symbolic
Expressions and Their Computation By Machines",
Comm. ACM, 3(4), 184-195.

[19] H. D. Mills, "The New Math Of Computer Program-
ming", Commun. Ass. Comput. Mach. vol 8, January
1975.

[20] J. Misra, "Some Aspects Of The Verifications Of
Loop Computations", IEEE Trans. Software Eng. vol
SE-4, November 1978.

[21] R. W. Topor, "Interactive Program Verification
Using Virtual Programs", Ph.D dissertation, Dept. Of
Artificial Intelligence, University Of Edinburgh,
Edinburgh, Scotland 1975.

[22] B. Wegbreit, " The Synthesis Of Loop Predicates",
Commun. Ass. Comput. Mach, vol 17, February 1974.


