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TWO FINITE TCHEBICHEF TRANSFORMATIONS
Chapter 1

INTRODUCT ION
It is the intention of this paper to define and

develop two integral transforms and their operational
calculus using the Tchebichef polynomials as the kernel
function. In this we shall adopt a different approach
from that of Ta Li who, in a recent paper (12. vol. 11,

p. 290-298), defined a new transform which used as the
kernel function the Tchebichef polynomial of the first kind

divided by the weight function (1-X2)5. He was then able
to establish a closed form solution to the integral
equation thus formed.

We begin by defining the Tchebichef polynomials in
accordance with Lanczos (11, p. 179), Erdélyi (8, vol. 2,
p. 184) and Courant and Hilbert (7, vol. 1, p. 88).

Tn(x) = cos(n cos'lx).

U_(x) = &in [(n+l!cos'lx1
n ’
(1-X%)
where T (X) and U (X) are polynomials of the first and

second kinds respectively. By letting X = cos € we arrive
at the standard form of the polynomials as given in Erdelyi
(8, vol. 2, p. 184) namely:
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Tn(cos ) = cos nb, » 0 |

sin [(n+1)6
Un(cos 8) = -—;{-r(‘—a—l—l . 142

Though less useful for our immediate objective,
the Tchebichef polynomials may also be defined as the
polynomial solutions of the differential equations

(1-x2)YP(X) = XY](X) + ny (X) =0, 1.3

(1-x%)Y3(X) = 3XY3(X) + n(n+2)Y,(X) = 0 . 1.4

Here we have as solutions (8, vol. 2, p. 184)

[nézl
100 = To00 - § o, Ll o,
m=
[n/2]

Y,(X) = U_(X) = zo -‘ﬁf&,—.{,%'ﬂ’- (ax)an
m!

where n =1, 2, 3, ... .
It is readily seen that the polynomials satisfy
their respective orthogonality relationships

[} 100,00 (1) = {0 iy
1

[ v 0u (%) (13)ax = {0 =
1 n m

l n=0,
where &n =
2 n=l. 2. 3. LN .



The following set of relations will be useful:
Tﬂ+l(x) . Tﬁ-l(x)
n-l

=T = 21 _(X) , 1.5
ULy (X) = U1 (X) = 2(n+1)U_ (X) , 1.6
T (X) = nu__,(X) , 1.7
Zo41(X) +2 (X)) = 2xZ (X) , 1.8
Zo(=X) = (-1)7Z (x) , 1.9

where zn(x) represents either Tn(x) or Un(x).

The above formulas are taken or may be derived
from material contained in Erdélyi as follows: From for-
mulas 16, 28, and 37 (8, vol. 2, p. 185-187) we have 1.5,
1.7, and 1.8. Formula 1.6 may be derived from formulas

24 and 25 (8, vol. 2, p. 176) by recalling that
-
Un(X) Cn(X).
When zn(x) = Uh(x). 1.9 follows from formula 16 (8, vel. 2,
p. 175) by letting A = 1. When zn(x) = Tn(X). 1.9 may be
established by recalling that

cos™1x = - cos'l(-x)

and making use of well known trigonometric identities.



Chapter 2
DEFINITION OF THE TRANSFORMS

Suppose we desire to represent a function F(X)
which is at least sectionally continuous by one of the

following infinite series:

F(X) = ) i 2.1
F(X) = Zanun(x)(l-xz)!“' 2.2
n=0

From the orthogonality conditions we may determine the

constants A, and Bn obtaining

1
A, = i—" J i F(X)T (X)dX , 2.3
5 1
B, =2 [ | FU, (ax 2.4

Substitution then shows that F(X) may be represented respec-
tively by the series

(-]

T (X 1
F(X) = -,1? Z en-(-ﬁ((z%z j_l F(X) T, (X)dX

n=0

and



® 1
F(x) = 2 lo(l-xz)%lJn(x) j;l F(X)U_(X)dX .
n=

We now make the following definitions:

Definition 1. If fT(n) = Tn{F(X)} denotes the finite

Tchebichef transform of the first kind, then

1
fx(n) = I_l F(X)T, (X)dX .

Definition 2. If fU(n) = Uan(X)} denotes the finite

Tchebichef transform of the second kind, then

1
f,(n) = I_l F(X)U, (X)dX .

A set of inversion formulas follow immediately

from equations 2.1 through 2.4 giving respectively

T e, T, (X)
= ) D¢
" néo" TR
and
F(X) = 2 ), £,(n) (122 U (x)
n=0

provided F(X) may be represented by either 2.1 or 2.2.

2.5

2.6



Chapter 3

OPERATIONAL PROPERTIES OF THE FINITE TCHEBICHEF
TRANSFORMATIONS

The transforms will be said to be linear if, for

every pair of functions Fl(X)'and thx) and each pair of
constants c1 and 02, the following condition is satisfied:
z {CiF (X) + CoF,(X)} = ¢,z {F (X)} + Cyz {F,(X)}. 3.1

Application of this definition to the transforms yields
Theorem 1. The finite Tchebichef transforms are linear.

We now consider the effect of the transforms on
a function whose (k-1)st derivatives are continuous on the
closed interval [-1,1] and whose kth derivative is section-
ally continuous on [=1,1]. A function shall be said to be
sectionally continuous on [a,b] if the function has only
a finite number of discontinuities with finite limits on
[a,b], and no other discontinuities.

Theorem 2. If F(X) is a function satisfying the above
conditions of continuity, then

rn{(l-xz)F(m)(x) . 3xptm”l)(x)}

- (en?)1 {F02) (x)] - p(m-2)(q) L (y)np(m-2)



Proof: Let T = Tn{(l-xz)F(m)(x) - 3XF(m'1)(X)}

1 1 e
= . Fim) (x) (1-x2)T,_ (x)ax - 3 j-l xe(™1) (x)1_(x)ax .

Integrating the first integral by parts and then combining

with the second integral, we have

1
T= -f y F(m'l)(x)[(l-xz)Ta(x) + XTn(x)]dx ‘

Again integrating by parts we obtain
1
T = -F(m'z)(x)[(l-xz)TA(x) + X7, (X)] .
1
+J y F(m'Z)(X)[(l-x2)r;(x) - XT2(X) + rn(x)]dx :

Substituting 1.3 in the integral and simplifying we have
the desired result

T = -(-1)"%(™2 (1) - B2 (1) 4 (1n?)] i F(™2) (x)1_(x)dx
= ™2 (1) o ()™ (1) 4 (1T FD) 1))

Theorem 3. If F(X) is a function satisfying the above con-
ditions of continuity, then

Un{(l-xz)F(m)(x) - XF(m'l)(X)}

G (n+1)[;fm'2’(1) + (-1)"F(m'2)(-1)] - (n+1)%u_(F(™2)(x)} .



The proof is similar to that of theorem 2.
While the above two theorems state the fundamen-
tal operational properties of the two transforms, addi-

tional results are of interest. Let
G(X) = ij(t)dt. la] < 1.
a
Then upon integrating by parts we have

1
T .{6'(X)]} = j_ler(x)rn(x)dx

@ 1
= 6(1) - (-1)"%(-1) - [ “G(X)T!(X)dx .
-1 n
It follows from the differential recurrence formula 1.5
that

Tn-;{G'(x)} i Tnt;{s'(x)}
n=-1 n+l

2
= ——{6(1) + (-1)%6(-1)] + 271 {&(X)} .

Solving this difference equation, first for Tn[G(x)} and

then for T {G'(X)}, we arrive at the following two theorems:

Theorem 4. If F(t) is sectionally continuous, then
T _{F(X)} T_,,{F(X)}
e 1l n-l n+l
Tn{I:F(t)d£} 'E[ n-1 - n+l

1 1 _ n-l :|
. E:;E[J;F(t)dt + (-1) fa F(t)dt|, [a] <1.
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Theorem 5. If G(X) is continuous and G'(X) is sectionally

continuous, then

T, {G'(X)] A « il
2m2m g~ Z'{F L) - 6(-1) , Tzk-l{G(x)}]
k=2

+ 21, {6(X)} + 5(6(1) - G(-1)] .

T G' (X) o
T 2L e + Tadem]

1
+ G(1) + G(-1) - j lG(x)dx .

A simpler theorem for T {G'(X)} is the following:

Theorem 6. If G'(X) is sectionally continuous, then

T {6'(X)} = 6(1) - (-1)"a(-1) - nU__,{G(X)} .

Proof : Tn[G'(x)} = j is'(x)rn(x)dx

1 1
= G(X)T,(X) | L J ST (X)ax .

Making use of formula 1.7 we have the desired result after

simplification.

For Un{IxF(t)d%} and U {G'(X)}, we again let
a
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G(X) = jxr(t)at. la] < 1.
a
Then upon integrating by parts we have

1
v (6" (x)} = | 6" ()Y, (x)ax

= (n+1) [6(2) + (-1)"(-1)] - [ is(x)u;(x)dx ,

It follows from the differential recurrence formula 1.6

that

u__,{6' ()} - U, {G" (X))
= -2[6(1) = (-1)"6(-1) - <n+1)uh{c(x);] :

Solution of this difference equation, first for Uh[G(x)}

and then for U {G'(X)} gives the following two theorems:

Theorem 7. If F(t) is sectionally continuous, then

o[ erat) - ;(,,—in[u,,_lwtxn - U,y (F(X))
1 1
-2(-1)“f” F(t)dt + 2j F(t)dt], la] £ 1.
a a

Theorem 8. If G(X) is continuous and G'(X) is sectionally

continuous, then


http:u"frrr.rr
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m
Upn{G'(X)} = ) =4kUy,_1{G(X)} + 2m(G(1) + G(-1)]
k=1

+ G(1) - G(~1) .

Upme (6" (X)} = ) =2(2k+1)Up, {6(X)} + 2m[G(1) = G(-1)]
k=1

1
+2[6(1) +6(-1)] - 2 ] sxax.

Another relation may be developed from the recur=-
sion formula 1.8 by multiplying both sides of the equation
by F(X) and integrating over [-1,1], thereby obtaining

z, {XE(X)} = %[?D+I{F(x)} + Zn_l{F(X)}]. 3.2

If in deriving 3.2 we had multiplied 1.8 by XF(X)
instead of F(X) and then used 3.2 in the simplification,

we would have obtained

2, (F(X)) =}z, (FX0} + 22, (F0} + 2, ,(F0}] . 3.3

This suggests the following theorem which may be established
by mathematical induction:

Theorem 9. If F(X) is sectionally continuous, then

r
O

r 1 ¥
2000} = 1| [ (%) 207003
k=0
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We now make the following definition for the

derivative of the transform:

Definition 3. z(’){F(x)} = lim f 1F(x)z (sX)dX .
S 2 s~l ds® “-1 R

Using this definition the following theorem is easily
obtained:

Theorem 10. If F(X) is sectionally continuous, then

1
2P (r0) = [ xFE0z{T) (xax.

A number of relations may be obtained from this
theorem. For example, if we begin with the differentia-

tion formula

Ut 1 (X) = XUL(X) - nU_(X)

obtained from formula 24 of Erdélyi (8, vol. 2, p. 176)
by recalling that Un(x) = ci(x), multiply by F(X) and

integrate over [-1,1], we have
1 1 1
f_lF(x)U;(x)dx = f;lXF(X)U;+1(x)dX - (n+l) f-lF(x)uh+l(x)dx.

Application of theorem 10 reduces this to

1
J [FOOUR (X)ax = ull)(F(x)} - (n+1)u,,, (F(X)] .
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Integrating the left side by parts, we finally arrive at

Up(E'(X)] = =(ne1) [F(1) + (-1)PF(-1) + U, (F()}]

-ulEx)). s

A similar expression may be obtained for

Tn[F'(x)} by using the differentiation formula

nTA_l(x) = (n-l)XTa(x) - n(n-l)Tn(x)

obtained by recalling that T (X) = %ncgtx) and using

formula 24 of Erdélyi (8, vol. 2, p. 176). Proceeding

as before we finally have
T, (F'(X)} = (1) [F(1) = (-D)"F(-1)] + nlasd)T_,, (F(X)}

-atlF0). as

Comparison of formula 3.5 with theorems 5 and 6 suggests

a number of interesting identities, in particular a num-
ber of expressions for the sum of the finite series. It
will also be noted that other expressions and formulas may
be developed using other differentiation formulas.

A convolution theorem using the Tchebichef poly-
nomial of the second kind may be established by using the
addition theorem for the Gegenbauer polynomials (8, vol. 1,
p. 177) and the relation

U (x) = cL(x).
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For the Gegenbauer polynomials we have

T
I Cﬁ(cos ® cos © + sin 0 sin 6 cos a)(sin a)2p'1da
0

EZP'ln![[Ep)]zcE(cos m)cﬁ(cos 9)

[(2p + n) '
which yields for p = 1,
o B3l
Uh(cos m)Un(cos 8) 5~ OUn(eos A)sin ada 3.6

where cos

A =c¢os 0 cos O + sin O sin ® cos a.

Theorem 11. If F(X) and G(X) are continuous functions on
the interval [-1,1], then

fy(n)ay(n) = By (H(cos 1)}

where
H(cos 1) = JZJZF(cos 8)G(cos \ cos 6
- sin X\ sin @ cos B)sin « sin 6 dpdo
and
sin A si
e tiinzk sinzﬁ + (sin 9 c:snh§+ cos O sin X\ cos B)Z]K'

Proof: f,(n)gy(n)

= jZF(cos

ar
B)Un(cos 0)sin 6d6 I G(cos O)Un(cos 0)sin 040
0
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T T

= I F(cos 8)sin © j G(cos m)Un(cos m)Un(eos 8)sin 0d0d9 .
0 0

Substitution of the addition theorem, 3.6, yields

fU(n)gU(n) = ﬂil I;F(cos f)sin 6

T T
[J I G(cos m)Un(cos A)sin a sin 0 dadé]d@ 3.7
00

where cos A = cos O cos O + sin O sin O cos «.

Let us now make the following change of variable
cos O = cos © cos X - sin O sin A cos B,
sin 0 cos a = sin X cos B cos @ + sin 8 cos 2,
sin 0 sin a = sin A sin f.

Evaluating the Jacobian of the transformation we have

dod0 = SH0% dadp.

Hence the integral in the square brackets becomes

™
IOIOG(cos ® cos A - sin 6 sin )\ cos 5)Un(cos A)

*sin o sin X\ dAdP 3.8
where

Sin @ ® sin )\ sin B
2 2
[sin A sin“p + (sin © cos A + cos 6 sin A cos B)zi;

Substituting we have
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T
fU(n)gU(n) = E%l OF(cos 0)sin B[IZJZG(cos 8 cos A
- 8in © sin X\ cos B)Un(cos A)sin a sin A dhdé]de

ar| o or
= E%l IO[IOIOF(CO. 0)G(cos © cos A - sin 0 sin X\ cos B)
sin © sin a d@ dé]Un(eos A)sin A dA

Y
= Eii IOH(cos k)un(cos A)sin A dA

which establishes the theorem.
Theorem 11 may also be established by using the
convolution property for the Gegenbauer transform (6, p.

50) and the relation
U, (X) = (x)
n n

It is to be noted that the iterated integral
inside the square brackets in equation 3.7 can be inter-

preted as a surface integral over a unit hemisphere. Let

© represent arc length on the semicircle X2 + Y2 =1,

Z =0, Y> O measured from the point A(1,0,0) and let B
denote the terminal point of the arc. If C is any point
on the surface of the hemisphere, let 0 represent the arc

AC of the great circle through A and C, and let A represent



18

the arc BC of the great circle through B and C. Let a
and f represent the angles A and B respectively. Then
a and A are coordinates of the point C, and sin adadO
and sin A d\dR} represent an element of area.

Now from the cosine law of spherical trigonom-

etry we have
cos O = cos © cos A - sin 6 sin X\ cos B.
Also we have from spherical trigonometry

sin O cos a = sin A cos B cos © + sin @ cos A,

sin 0 sin « = sin X\ sin B.

Hence the iterated integral in square brackets in equation
3.7, which is the surface integral of the function
G(cos m)Un(cos A)sin a, becomes that given by equation 3.8.

The Tchebichef transform of the first kind does
not readily lend itself to the development of a convolu-
tion theorem at this time since an addition theorem for the
Tchebichef polynomial of the first kind is unknown to this

author.


http:roprGr.nt
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Definition 4. If T&(n) = TBIF(X)} denotes the alternate

finite Tchebichef transform of the first kind and F(X) is

at least sectionally continuous, then

1 !
T.(n) = j_lﬁ(x)rn(x)u-xz)"éax.

Definition 5. If Ty(n) = Uh{?(x)} denotes the alternate

finite Tchebichef transform of the second kind and F(X)

is at least sectionally continuous, then

1 )
Ty(n) = j_lr-'(x)un(x) (1-%2)%2dx.

By using the orthogonality properties of the
Tchebichef polynomials, inversion formulas for these two

transforms may be quickly established, giving

by
FIX) = ) = Tp(n)T (%),
n=0

and

F(X) = 2 ) F,(n)U, (X).
n=0

Using this approach several theorems may be

derived and are listed here without proof.
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Theorem 12, If F(X) is a function whose kP derivative

is at least sectionally continuous, then

Tn{(l-xz)P(k)(x) . XF(k'l)(X)} - -nzrh{s(k'z)(x)}.

Theorem 13. If F(X) is a function whose kth derivative

is at least sectionally continuous, then

ﬁh{(l-xz)F(k)(x) - SXP(k'l)(x)} = -n(n+2)Un{F(k"2)(X)}.

Theorem 14. If F(X) and G(X) are continuous functions on

the interval [-1,1], then

T,(n)Gy(n) = 2 U {H(cos 1)}

where
T Al

H(eos o) = I I F(cos 6)G(cos 6 cos A
0" 0

+ sin @ sin )\ cos ﬂ)sin28 sin B dédp .

The resemblance of theorems 12 through 14 to
theorems 2, 3, and 11 respectively, should be noted, the
proofs also being similar. In attempting to establish
theorems similar to theorems 4, 5, 7, and 8, difficulty
was encountered in evaluating the improper integral. For

example
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1 T (X)
T (£1(x)} = f_lf'(x)mdx

T (x) |
= f(x)—ﬂ(l_x ;

2y
) f 1 (1-X9)TA(X) + XT_(X)

dX,
" ol (1_x2)3/2

the first term being discontinuous at the end points
except for special cases of f(X). No attempt was made

to establish theorems similar to theorems 9 and 10.

Use of the transformation equations

T {(1-x2)%F(x)} = T_{F(X)}, 3.9

“n{ﬁi%%} = U_{F(X)}, 3.10

provides a connection between the two types of transforms.
In addition a convolution theorem for the alter-
nate Tchebichef transform of the first kind may be de-
rived using an approach similar to that for the Finite
Fourier Transforms (4, p. 296-298 and 15, p. 76-79).
Before establishing this theorem, we prove the following

lemma:

Lemma 1. If F(X) is a continuous function on the interval
['1.1] ’ th.n

?&(n)cos nd = %JFF[cos (b = 0)]F[cos (1 + 0)]cos nudu.
0
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T
Proof: T&(n)cos nd = f F(cos 6)cos n9 cos nO® db
0

T
= %jsF(cos 8)[cos n(6 + 0) + cos n(@ - 0)]do.
Since the integrand is an even function, we may write

?&(n)cos nd = %f TrF(cos 8)(cos n(® + 0) + cos n(® - 0)]dd
-1

1 w+0
zIw-w+O

Flcos (p - 0)]cos nudyu

A =0
+ IJ Flcos (p + 0)]cos nudu.
—Tr-o
But the integrands are periodic functions of 2w, hence

TT(n)cos nd = %I TrF[cos (b = 0)] + Fleos (1 + 0)]cos nudp
-1

- %IZF[°°3 (b = 0)] + Flcos (1 + 0)]cos pudu.

Theorem 15. If F(cos 6) and G(cos ©) are continuous func-

tions on [0,7], then
Tp(n)5p(n) = 3T, (F*c)

where

F*G = IZF(cos 8){G[cos (1 - )] + G[cos (1 + 6)]}do0.
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T
Proof: T&(n)gT(n) = IOF(cos G)QT(n)cos nb db
which becomes upon substitution of lemma 1

T(n)5p(n) = 4 Flcos 8) ["felcos (u - 0)]
+ G[cos (k + 8)]}cos nududd
= %chos ny f”{G[cos (p = 9)]
0 0
+ Glcos (u + 8)]1F(cos 9) dbdy

= 2T _{F+a}.

Finally we note that if we use (8, p. 187) for-
mulas 35 with m = 1 and n = n+l, and 37 with m = 1, we

may arrive at the following formulas respectively:
1
Ty(n) = -3{Fp(n) - Fp(ne2)] 3.11
and

£1(n) = 3[fy(n) - gy(n-2)]. 3.12

Use of formula 3.11 to attempt establishing a lemma for
the alternate transform of the second kind, similar to

lemma 1, shows

?U(n)sin (n+1)8 sin @ = %[?}(n)cos nd + T&(n+2)eos (n+2)0

- T(n)cos (n+2)6 - T&(n+2)cos né].
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Since the last two terms present difficulties, we have not

established a convolution theorem similar to theorem 15.
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Chapter 4

METHODS OF COMPUTATION AND APPLICATIONS

Some methods of computation of transforms may
best be presented by a few illustrative examples. The
results obtained are also presented in the two tables in
the Appendix. We first remark, however, that consider-
able use is made of formula 1.9 in the reduction of the
expressions.

By letting X = cos 6 the transform of a constant

is immediately obtained, for

1 T
| 1C'rn(x)dx - cjocos 20 sin 0. do = —--2-1c [1+(-1)"], n £ 1.
- -n
1
[ ety (x)ax = o
-1

I_iCUn(X)dX = Cf;rsin (n+1)6 dé = T-:'%I[“("l)n]-

A similar procedure enables us to obtain the
transforms of F(X) = X, the integration being accomplished
either by tables or by the use of well known trigonometric
formulas.

To obtain the transform of higher powers of X,

use may be made of theorems 2 and 3 with m = 2, For exam-

ple, consider the transform of F(X) = X2. We have
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Tn{(l-xz)F(z)(X) " 3XF(1)(X)}
= - F(1) - (-1)"F(-1) + (1-n)T {F(X)]}.
Letting F(X) = X2, we have on substitution
Tn{z(l-xa) x 6X2} = [14(-1)7] + (1-n?)T_{x%,

or transposing and collecting terms

T {2} + L1+¢-1)7]
9-n* .

2
T, (X} =
But T {2} = 2[%{1261{}. Substituting and simplifying we

obtain finally

1{2}-(3'%[% n 41, 3.

9=n“)

similarly, since
v {1-x?)E(2) (x) - XF(I)(X)}

= (ne1) [F(1) + (-1)PB(-1)] - (ne1)2U (F X0},
we have

(n+1) [14(- 1)"] - 02}
(n+1)Z -

U {x%) =

But Un{z] = E%I[1+(-1)ﬁ}. Hence
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2 24 2n -1
U (X7} = ?nz_l)?n+3)[;+(-1)ﬁ]. n £ 1.

The special cases were all found to be zero, the compu-
tation being made by means of the definition and the
substitution X = cos 0,

The computation of the transforms Tn{Tm(x)}.

U {T,(X)}, and T {U (X)} follow immediately upon making

the transformation X = cos ©. However, two cases must be

considered for T {U (X)}, or, since U {T (X)} = T {U (X)},
U, {T,(X)}, namely, n > m and m > n. We consider the

case when n > m, the other being similar. We have

Ty{Up(0] = Up{Ta00 = [stn (m+1)0 cos no a0

- .l[cos (n+m+1)6 . cos (n+l-m)6]"
2T n+m+l n+l-m 0

B ],z

(n+l)“em

For the transform U {U (X)} we have

sin ©

s
- cos (m-n)@ cos (m+n+2)6
fo[“z—sin—er)—":—i—a—)—s ppi2l8las,  myn.

To evaluate this integral we make use of the following

U, {u,(X)} = JZ’in (m+1)6 sin (n+1)6 4o
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formula (10, p. 126, formula 6e):

r-l
coS nx cos (n-2k-
Js S ZRZO ST )x s ln sin x

+ (l1-8) 1n tan % +C

O if n = 2nm,

where n = 2r+s and s wi(
l if n = 2m+l.

We have then

r-1 q..]_
Uﬂ{uﬁ(x)} » Z cos (m-n-2k-1)6 _ cos (m+n=-2k+1)0

MeN=2Ke m+ne
k=0
T
+ % In sin 6@ + 553 In tan g -‘§ ln sin 0 -« iil 1n tan % .
0

Before evaluating the integral at its end points, we ob-
serve that if m-n = 2h, then m+n+2 = 2n+2h+2 = 2p; and if
men = 2h+l, then m+n+2 = 2n+2h+3 = 2p+l. Consequently

s = t and we have

r-1
" cos (m-n-2k-1)0 _ cos (m+n-2k+1[6
Un{Um(x) } kzo M=N=sK= Z m+n=-

k=0

which finally becomes

M=N=8§=2 m+n-

Un{um(x)} = X 1"m-n£§k-1 z = %+n-2k+1
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O if m-n = 2h,
where s = and m > n. If n <m inter-
1 if m-n = 2h+l,
change m and n in the final formula.
From the uniformly convergent expansions for the

generating functions, namely

2 ©0
L2 -14+2) 1,027 4.1
l-2XZ +2Z o}
4 T (x)
In(1 - 2xz + 22"} 2{2 4.2
m=]
(1-2xz +23)"t = ) u (x)2", 4.3
m=0

we obtain another set of formulas.

Differentiation of both sides of 4.3 with res-
pect to Z followed by multiplication by Z leads to the
additional result

2XZ - 472

- m = A(n) + B(m,n)

where

Aln) = l—lr-?[n(-n"] tfnkl, Oif n=1,
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s 2
X n+m 1 2mn oM g 2 1,
S szl( ) + t(n-l-m)z-_lj [(n-m)z-l] n#t ﬁi

0 ifn+tm=+1.

If this process is continued, namely differentiation of
both sides with respect to Z followed by multiplication
by Z, additional transforms of more complicated functions
may be found.

Similarly, use of the other generating functions
will yield additional transforms although in the case of
4.2, we note that differentiation with respect to Z fol-
lowed by multiplication by -Z and the addition of 1 to
both sides yields 4.1.

A few additional formulas which may be consid-
ered as finite Tchebichef transforms may be found in
Erdélyi (9, p. 271-275).

As an example of the application of the theory,
consider the problem of solving the following differential

equation
(1-X2)£7(X) - 3XE£*(X) + af(X) = g(X)
subject to the boundary conditions
ftl) = A,
f("l) = Bo
Taking the transform of the differential equation, we have
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T {(1-x3)£"(X) = 3x£'(X) + af(X)} = T {g(X)}.
Applying theorems 1 and 2, this reduces to
(1-n+a)T_{£(X)} = £(1) = (-1)"£(-1) = T_{o(X)}
or '

A+ (-1)"8 + T {g(X)]
)

Tn[f(X)} ) len®+a

Solving this equation by means of inversion formula 2.5,

we have

A+ (-1)"B + T {9(X)}

A
1-n2+a

= &
£(x) = )+
n=0

1-x2)45rn(x). 4.5

Another example is to find the solution to the
differential equation

(1-X2)£"(X) = X£'(X) + af(X) = g(X)

subject to the boundary conditions

£(1) = A,

f(-1) = B.
Taking the transform of the differential equation, apply-
ing theorems 1 and 3, and simplifying, we have

(n+1)A + (-1)"8 - U _{g(X)}

U"{f(X)} ) (n+1)2-a

4.6

Using inversion formula 2.6, we arrive at
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(n+1)[a + (-1)"8) - U_{g(x 3,

e g xz)lsun(x). 4.7

£(X) = --Z

n=0
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Table 1

F(X) T, {F(x)}

c T.%z[h(-l)“] ifnAgl; Oifn=1

X :}—nz[l-(-l)“] ifn#A2; O0ifn-=2

x> (l_ng;?z_nz)[u(-l)“] ifngl, 33 Oifn=1, 3

x> (4_n%‘)"(';‘z_n2)[1-(-1)“] ifnk2,4; 0ifn=2,4
1 (%) 'f(n+m)z-ﬁrftn-m)z-l]_[“(-”nm] if no+mA +l;

0 ifnitm=4l1

g€



- Table 1 (cont.)

e T_{F(X)}
'“'g:%—-§[1+(—l)m+5] ifm>n; O 1if m#él = n
u_(X) (m+1)“-n

atl _ [14(-1)™"] ifn>m; O if ntl =m
(n+l)“=n

In(l - 2XZ + Z2)

A(n) + B(m,n) where

A(n) = E:l§[1+(-1)ﬁ] ifnfl; Oifn=1
-n

B(m,n) = =2 Z 1al=1 )"

2mn 7™
B [(n+m)2-i][(n-m)2-i]

if n + m £ +1; Oif n +m = +1

LE



Table 1 (cont.)

F(X) T, {F(X)}
- A(n) - B(m,n) where
A(n) = 1—15[1+(-1)“] ifnfl; Oifn-=1
8 "
1 - 2XZ +2 =
B(m,n) = -2 20 0D b 2mn z"
ﬁél[ ][(n+m)2-1][(n-m)2-1]
ifn+m#AZ+l; Oif n+m=+1
-1 1 n 1
Si X l-(=~1 if n 2 1; - if = ]
n m[ (-1)7 1f n 3 n
Cos™1x {“—1%2 if n A 13 2 ifn=1
-n

8¢



Table 1 (cont.)

F(X) T, [F(X)}
T n+m+l m
-1 T B ] L 5 4
mgl[( = ](n+l) -m ‘ Rz
- 5 ]
1l - 2XZ + Z Z[( 1)n+m+1 1] 2" 1 w3 ng
ol m+1) -n

0 ifn+l=m

6€



Table 2

F(X) U, {F(x)}
c -59;1-[1+(-1)“]
X F‘(’;—ifr[l-(-l)"] ifnAOC; 0ifn=0
2
2 n~ 4+ 2n - 1 n
X 1+(-1 ifnAl1l; Oifn=1
(n2-1)(n+a)[ +-1)") . !
3 (n+l)(n2+2n-6)[ n
X 1-(=-1 ifn# 0, 2 0ifn=0, 2
n(n2-4)(n+4) L3~(-1) ] . : N
sin™ix steryLi+ (-7 + L7

ov



Table 2 (cont.)

F(x) u_{F(X)}
T (X)
m
(n+m+T;%$n+1)[1+(-l)n+m] ifm>n; Oifm+n=-1
M=N=§=2 m+n=-$
-1)™-n-2k-1_, & (op)n=2k+l_y .
Z'i""m-n-ik-l = & min-ok+l  Wwhere m 2 nj
k=0 kao
N-m=s=2 m+n=-s
v, (X) e
where n > m

n-m-2k-1
k=0

s =0 ifm-n:Zh;

_1)n-m-2k-1_, (o1)mn-2k+l )
Z - - Z men-2K+1
k=0

1 if m=n = 2h+l

184



Table 2 (cont.)

F(X) U, {F(x)}
L[1e-0)] + 2}: [14(- 1)“‘”‘]
m=1 ) 8
ifm>n and m+l £ n;
W
1-2X2 +2 e[is-1)" + 22 [14(- 1)“"’“]-—-—'5—)%—-52“‘
m=] i
if n>m and n+l %~ m;
L1417 ifnm=n
Cos™1x lﬁ%%z

(24



Table 2 (cont.)

F(X)

U, {F(x)}

In(l - 2XZ + Z

<)

L [1e-1)7 + 2] [14(-1)29]

m=1

ifm>n and m+l £ n;

ﬁr[u(-l)“] + 2§ [19(-1)*]

m=1

if n>2m and n+l £ m;

-,;71[[14-(-1)"] if n-m = +1

m+1
(m+l)“-

n+l
(m+1)“-n

Z

z"

m
m

eV





