
AN ABSTRACT OF THE THESIS OF

DAVID WARREN AKERS for the MASTER OF SCIENCE
(Name)

in MATHEMATICS
(Major)

presented on

(Degree)

61Y(Dat,e )

Title: FIRST ORDER DIFFERENTIAL CORRECTIONS IN THE

EIGENVALUE PROBLEM
4 n

Redacted for Privacy
Abstract approved:

Ggheen

Let A be an n X n real, symmetric matrix with distinct

characteristic values Xl' X2' , X. Then there exists an ortho-

gonal matrix P such that PAPT = A = (Xi). Given a small sym-

metric change, AA, in the matrix A, we can calculate the re-

sulting changes, AP, and AA, in P and A respectively.

We next assume that the change in A is dependent on time t. In

particular, we assume that A(t) is a differentiable function of t.

Then, if A
0

A(0) has distinct characteristic values, we show that

for sufficiently small t, P and A are differentiable functions of

t, and that A(t) also has distinct characteristic values.



First Order Differential Corrections in the
Eigenvalue Problem

by

David Warren Akers

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 1969



APPROVED:

Redacted for Privacy

Professor o athematic s

in charge of major

Redacted for Privacy
Chairman of Department of Math(tmatics

Redacted for Privacy
Dean o`f Graduate School

Date thesis is presented

Typed by Clover Redfern for David Warren Akers



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. CHANGES IN THE CHARACTERISTIC VALUES AND
DIAGONALIZING MATRIX 3

III. PRINCIPAL THEOREM 8

IV. NUMERICAL EXAMPLE 19

BIBLIOGRAPHY 25



FIRST ORDER DIFFERENTIAL CORRECTIONS
IN THE EIGENVALUE PROBLEM

I. INTRODUCTION

From an historical standpoint, the theory of matrices and their

characteristic values has been of significant interest and importance

to many areas in the physical sciences. These characteristic values,

or eigenvalues as they are also called, of a square n X n matrix

A, are determined by solving the characteristic equation

det (A-XI) = 0. This equation is a polynomial of degree n, and by

the Fundamental Theorem of Algebra has exactly n (not necessar-

ily distinct) roots, each of which is called a characteristic value of

A, If X is a characteristic value of A, then X is said to be

a characteristic vector belonging to X if XA = XX.

As we have said, in many fields the characteristic values and

their corresponding vectors of a given matrix A may have a spe-

cial physical significance. For example, consider the theory of

molecular vibrations (2). A certain symmetric matrix arises in con-

nection with a particular kind of motion of a given molecule. By cal-

culating the characteristic values and vectors of that matrix, we de-

termine the frequency, amplitude, and phase of the vibration of each

atom of the molecule about its equilibrium position. Now suppose

that an atom of that molecule is replaced by an isotopic atom of the

same element. The result is a change in the frequencies of vibration
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because the original matrix, and consequently its characteristic val-

ues, have been changed due to the change in mass of the atom.

We can consider this problem entirely out of its physical con-

text and in a purely mathematical one. The problem can be stated

as follows. Suppose we have a given symmetric matrix A with

distinct characteristic values, and suppose we change A by a small

symmetric amount AA. What will be the change in the character-

istic values and in the diagonalizing matrix P, that is, the ortho-

gonal matrix P such that PAP T
= A, where A is the diagonal

matrix of characteristic values of A?

A reasonable extension of the problem is to next assume that

the change in A is dependent on time t. If, in fact, A(t) is a

differentiable function of t, and A
0

= A(0) has distinct charac-

teristic values, we are able to show that for sufficiently small t,

both P and A are differentiable functions of t, and A(t)

also has distinct characteristic values.

It is very important that we assume that A
0

has distinct

characteristic values, which, in the physical context, means that we

do not have any degenerate frequencies. If we do not make this as-

sumption, the procedures and calculations used here will clearly not

hold. For a treatment of the degeneracy problem in the setting of

quantum mechanics, see Kemble (1), who refers to a method first

used by Van Vleck.
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U. CHANGES IN THE CHARACTERISTIC VALUES AND
DIAGONALIZING MATRIX

Let A be a real, symmetric, n X n matrix with n dis-

tinct characteristic values Xi, X2, , Xn. Then by the Principal

Axes Theorem for real, symmetric matrices, we know that A is

simultaneously similar to and congruent to the diagonal matrix

A = (X.). Thus there exists an orthogonal matrix P such that

PAP-1 = PAPT = A. Since P is orthogonal, PP T
= PTP = I.

Suppose now that we change the matrix A by some small

amount AA such that A + LA is still symmetric. Then A

will be changed by some small amount, AA, and A + LA will

still be diagonal. The diagonalizing matrix P will then be changed

and P + AP will also be orthogonal. Thus we have the following

two equations.

(2. 1) (P+AP)(A+AA)(P+AP)T = A + LA

(2. 2) (P+AP)(P+AP)T = (P+AP)T(P+AP) = I.

We wish to determine LP and LA given a certain small change,

AA, in the matrix A. For notational convenience in the following

development, we will denote (LP)T by APT.

Carrying out the multiplication on the left hand side of Equation

(2. 1) we obtain
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(2. 3) (P+LP)(A+LA)(P+LP)T = (P+LP)(A+LA)(PT+LPT)

= PAPT + A PAP
T

+ PLAPT + APAAPT

+ PALPT + LPALPT + PLALPT + LPLALPT

= A + LA.

Now, if LA is sufficiently small, then so is LP. Thus any term

in the above expression containing at least two "L" terms can be

neglected. (This fact is readily seen when considering A, P, and

A as functions of time and the proof will be left until then). Since

PAPT = A we now have

(2. 4) A PAP
T

+ PLAPT + PALPT = AA.

Similarly, from Equation (2. 2) we obtain

(2. 5)

and this implies

(2. 6)

LPPT + PAP T = 0

LP = -PLPTP.

Now PAPT = A implies that PA = AP. Substituting this

expression and Equation (2. 6) into Equation (2. 4) we have

(-PLPTP)APT + PLAPT + APLPT = DA.

Thus

(-PLPT )(PAPT
) + PLAPT + APLPT = AA.
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and so

(2.7) (-PAPT )A +A (PAP T) = AA - PAAPT.

Recalling that we wish to solve for AP and AA given AA,

consider the (i, j)th element of each side of Equation (2.7). Since

(2. 7) is an equation of two matrices, these (i, j)th elements must

be equal. First, the (i, j)th element of A(PAPT) is X.(PAP T
).

where (PAP T ).. is the (i, j)th element of PAP T. Also, the
13

P(i,j)th element of (-PAPT
)A is (-PAPT )..X.

J
= -X.( APT )ij.

Hence the (i, j)th element of the left hand side of Equation (2. 7) is

(X.-X.)(PAPT)... Next, the (i, j)th element of AA is A VS..,
1 3 13 1 13

where 5.. is the Kronecker delta; that is, 5.. = 0 if i j and
13 13

5.. = 1 if i = j. Thus the (i, j)th element of the right hand side
13

of (2.7) is A X. 6 . . - (PAAPT)... Since these (i, j)th elements are
1 13

equal, it follows that

(2.8) (X.1 -X.)(PAP
T

= A X.6.. - (PAAPT)..
3 1 13

Suppose now that i = j. Then the left side of Equation (2. 8) is

zero, 5.. = 1, and we have
11

(2. 9) E X. = PAAPT)ii for i = 1, 2, ... n.

Since AA = (AX.) is a diagonal matrix, it is completely determined
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by Equation (2. 9).

Next suppose that i A j. Then we have

(Xi-Xj)(PAPT)ii = - (PAAPT)ij

since 5.. = 0. The characteristic values of A are distinct and so
13

X. - X. 0. Thus
1 3

(2. 10) (PAPT )ij - (PAAPT). .
X .

1

-X.
3

For convenience of notation, let B = PLAPT = (b..) and let
13

C = (c..) where c.. = 0 and
13

Then,

(2.11)

1
c

i3
bij.

3

PAPT = D + C

where D is some diagonal matrix. Clearly B is symmetric,

since AA is, and hence C is skew-symmetric, that is, CT = -C.

Consider now (PAPT
)
T. We see that

APPT = (PAPT)T
= (D+C)T = DT + CT = D - C .

By Equation (2. 5), PAPT
+ APPT = 0 and so

PAP T
+ APPT = (D+C) + (D-C) = 0.
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This implies that 2D = 0 and hence D = 0. From this and Equa-

tion (2. 11) it follows that

(2. 12)

Thus APT = PTC and so

(2. 13)

PAP T = C.

T T TAP = (P C) = C P = -CP.
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III. PRINCIPAL THEOREM

Equation (2. 9) of Chapter II shows how to determine a small

change in the characteristic values of a symmetric matrix A, given

a small symmetric change in that matrix. Similarly, Equation (2.13)

gives the change in the diagonalizing matrix P. Suppose now that

the change in A is dependent on time t. Let us further suppose

that A is a differentiable function of t. In particular, suppose

that A(t) = A0 + t(A1 -A0) for 0 < t .51, where A
0

and Al

are real, symmetric, n X n matrices, and A
0

has n distinct

characteristic values X
0

X
0 ... X

0
. Let P = (p0ij) be the

1' 2 n O

orthogonal diagonalizing matrix for A0. Then

P A PT =A = (Xi) T
) and P PT =PP = I .

0 0 0 0 i 0 0
PO PO

It is clear that at time t = 0, A(t) takes on the value A0.
0

Note also that A is symmetric for any t. Thus, for any t,

our two basic equations hold; that is, there exists an orthogonal ma-

trix P such that

(3. 1) PAPT = A

(3. 2)
T TPP = P P = I.

Since A is a function of time, it follows that P and A are also.

As in Chapter II, we obtain the following equation from (3. 1).
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(3. 3) APAPT
+ PLAPT + LPLAPT + PALPT

+ LPAAPT+PAAAPT + APAAAPT = AA.

Let us next assume that P and A are differentiable functions of

t. We will show that this assumption is a valid one when we prove

the existence of a set of continuous solutions to a certain system of

differential equations.

Now divide both sides of Equation (3. 3) by Lt. This gives

(3.4) ,IN_PAPT LA T AP MDT

At of P Tt °AP + PA At

AP T AA T AP T AA+
At

ADP + P
At Lst

AP + LALP _
At

Since A, P, and A are differentiable functions of t,

Also

lim LA = lim AP = lim APT = 0.
At-- 0 0 At--' 0

lim LA dA lim AP dP

0At--' 0
At dt ' dt '

T TdPAP LA dA
Alt and lim -

At dt '
Lt -4- 0 Lt--. 0 Lt dt

Thus, taking the limit of Equation (3.4) as At tends to zero gives

the following equation.
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,oTdP T dA T dA
(3. 5) d7 AP + P P + PA dt dt

We see now that the terms with two or more "A" terms as factors

become zero in the limit. This is why we were able, in Chapter II,

to neglect those terms, providing we chose AA small enough.

Similarly, from Equation (3. 1) we obtain

(3. 6)
dPTdP

PT + P dt °.

Now suppose that we can choose At = dt small enough so that

we do not go through a degenerate case. That is, suppose that we can

choose t
()

small enough such that A(t) will have distinct char-

acteristic values for every t such that 0 < t < t
0

. (Recall that

we have already assumed that A(0) = A
0

has distinct characteristic

values. This is essential. ) Once again, by showing the existence of

a unique set of continuous solutions to a certain system of differential

equations, we will show that this assumption is correct. This is, in

fact, the main result we are seeking.

We can now proceed with Equations (3. 5) and (3. 6) in an analo-

gous way to the method used in Chapter II. Doing so we obtain the

following equations.

dX.
(3. 7 ) dt dt= (P dA PT

). for i = 1, 2, . n
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(3. 8)
dP
dt -CP

where C = (c..) is defined by c.. = 0,
13

c..
X.-1X. 1

b.
3 13 dtwith b.. = (P dA PT )

ij
.

13

J

We can also write Equation (3. 8) in a more convenient fashion.

dp..
(3. 9) dt = -(CP).j for i, j = 1, 2, ... , n.

Since A(t) = A
0

ddt
+ t(A 1-A0), it is clear that A = Al - A0. Let

Al - A0 = M = (m..) and let P.
1

denote the ith row of P. Then
13

Equation (3.7) becomes

dX.
(3. 10) dt = P

i
MP T for i = 1, 2, ... n.

We can write out Equations (3. 9) and (3. 10) explicitly by carrying out

the indicated matrix multiplication.

(3. 11)
dX.

dt
1

1

2= P.MP. = m
11 i

p.
2

l + m
22

p.2
2
+...+mnnp. + 2 / mkj.p. p..

1

k< j

for i = 1, 2, ... n.



(3. 12)
dp..

dt

12

- = - c. pkj
k=1

(k=1 k=i+1

i- 1

k-Xi k K k - X
i

1= - (PMPT
). p

j
+ (PMPT )ikpkj

for i, j = 1, 2, ... , n.

We notice now that Equations (3. 11) and (3. 12) define a system

of n2 + n differential equations. This is the system of differen-

tial equations that we will show has a unique set of continuous solu-

tions. Furthermore, these solutions will assume the values
0 0 0 0 0X i', i'fp ,, Pnn f at time t= 0.l' 2 ' n 11

Before we can continue, we need several definitions and a gen-

eralized form of Taylor's Theorem.

Definition. Let f(x) be a real-valued function defined on an

open interval (a, b), and let xo be an interior point of (a, b).

Suppose there exists a neighborhood N(x0) and a positive number

L such that x E N'(x )
0

implies If(x) f(x0)I < Llx x01. Then

f is said to satisfy a Lipschitz condition at the point x0.
0

This definition can be extended easily to a function of several

variables as follows.

0"Definition. Let (x
0 x

2
x0) be a point in Rn. Let
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f(x1, x2, xn) be a real-valued function defined on the domain D,

where D is defined by
1x1

- xi 1 < al, 1x2
01x1 < a2, ,

1 x - x 01 < a . Then f is said to satisfy a Lipschitz condition at
n. n n

0 0the point (xi, x2, ... , x0) if there exists constants L1, L L2 " n
such that, for all interior points (x

1,
x2, , xn) of the domain D,

we have that

0 0lf(x x
' xn - f(x xl' 2' n l' 2' n

< LI 1x
1

- x
1

+ L x - x201 + ...+ Lnixn - 0

In order to state a generalized Taylor's Theorem for a function

of several variables in a form analogous to the theorem for a function

of one variable, we first need to define the concept of higher order

differentials.

Definition. Let f be a real-valued function defined on a sub-

set of Rn. The (first order) differential of f, denoted df, is a

function of 2n variables, defined for those points x E Rn where

f has all its partial derivatives, and for every t E Rn, by the

equation

df(x ; t) =

n

i=1

D.1 f (x)t.
1



where x = (x1, x2, ... , xn), t = (t1, tz, , tn) and

D.1 f(x) - ax. (x).
1

The second order differential of f, denoted d
2f,

by the equation

where

d
2f x; t

n n

i =1 j =1

D. .f(x)t.t.
1, 3 3 1

ofDi,
3.f

(x) - ax.ax. (x).
1 3

The third order differential of f, denoted d
3f,

by the equation

d
3 f(x; t) =

n n n

i=1 j=1 k=1

D. . f(x)t t.t .3, kk ij

The mth order differential, denoted d f, is defined similarly.

We can now state the following

14

is defined

is defined

Theorem (Taylor). Let f have continuous partial derivatives

of order m at each point of an open set S in Rn. If a c S,

b E S, a b, and if the line segment, L(a, b), joining a and b



15

lies entirely in S, then there exists a point z on L(a, b) such

that

m-1

k=1

The proof of this theorem can be found in many analysis texts and

will be omitted here.

f(b) = f(a) kli d
kf(a;b-a)+ 1m! dmf(z ;b-a).

We can again consider our system of n2 + n differential

equations. Instead of writing the actual expressions, we will use the

following function notation for convenience.

dX
1(3.13) dt '1"1' ' Xn' P11' ' Pnn)

dX2

dt 21' Xn' P11' ' Pnn)

dXn

dt fn(X1' ' Xn' P11' ' Pnn)

dpil
dt fn+1 (X 1' ' X n' 1311' ' P nn)

dPnn
dt = fn2+n (X l' ' Xn' P11' ' Pnn).

It is clear from Equations (3. 11) and (3. 12) that each of the above



16

functions f1" f
n

2
+n

, is continuous and satisfies the conditions
2

of Taylor's Theorem for the open set S in Rn+n that is defined
0by to. Now let a = o

'
. . ,

X0 , P0 1' ' Pnn' and let

b = (X1, ...
' ' p11, p

o
). Then for i = 1, ..,n2+n,n " nn we can

expand f. into the following Taylor's series.

m-1
1f.(b) = f.(a) +

k!
d

kf.(a;b-a) + R.
k=1

where R.
1

=
1

m! dmf (z
i

; b-a), m any fixed integer, z. E L(a, b).

Hence, for i = 1, ...,n2+n,

f. (b) = fi
1.(a) + dfi(a;b-a) + d

2
f

1+ ...+ (m-1)! drn-1 f (ab-a) + R. .

Now if we choose t small enough, then b is not too far from a.

Thus the higher order differentials can be neglected since they can be

made as small as we wish. Hence f.(b) - f.(a) will be approxi-

mately df.(a; b-a). We now have the following system.

dX1 8f1
1

8f1
(3. 14) dt - f

1
(b) = f

1
(a) +

ax (a)(X -X ) + ...+ (a)(pnn-pnn)
uPnn

dXn of 8f af
0= f (b) = f (a) + (a)(X. -X,

0 n) + ...+ (a)(p-p)dt n n ax i uPnn
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af afn+1
cIP11 - f (b) - f (a) +

n+1
(a )(X -X

0
. . .) + + (a)(p-p0 )

1dt n+1 n+1 ax
1 Pnn

dpnn

dt

Now let

L11

- f 2 (b) - f 2 (a) +
n(am ..x0)+...+afn2+na nf 2+

n +n n +n 1 1 apnn (a)(pnn-Pnn)

'
L12 , , Ln n2+n

afn2+n
(a)

aPnn

Then, by the triangle inequality, we see that, for i = 1, ...,n2+n,

f. satisfies the following Lipschitz condition.

f. (b) - f. (a)I < L. IX - X
01 +...+ L.

1, n2+n Pnn Pnn3.1 1

Since each f. is continuous and also satisfies the above

Lipschitz condition at 0 0 0 0
lA P 13P h' ; 11 nn we know from the

theory of differential equations that for small enough t, the system

(3. 13) has a unique set of continuous solutions X (t), Xn(t),

p
11

(t)" pnn (t). Furthermore, these solutions assume the values
0 0

' 1 nn
0

X ... X p
1

p respectively at time t = 0."
We now state this result formally as a theorem.

Theorem. Let A
0

and Al be real, symmetric, n X n

matrices, and suppose that A
0

has n distinct characteristic

values. Let A(t) be a differentiable function of t. In particular,
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let A (t) = A
0

+ t(A 1-AO) for 0 < t < 1. Then, providing t is

chosen small enough, A(t) will also have distinct characteristic

values. Furthermore, P(t) and A(t) will also be differentiable

functions with respect to t, where P(t) is the orthogonal diago-

nalizing matrix for A(t), and A(t) is the diagonal matrix of

characteristic values of A(t).

It should be noted here that we know that the system (3. 13) has

a set of solutions even if we only know that each function f. is con-

tinuous, regardless of whether or not we know that each satisfies a

Lipschitz condition. However, we want to be sure that the solutions

are unique, since we want a uniquely determined diagonalizing matrix

and unique characteristic values for a given matrix A(t). To

guarantee this, it is sufficient (but not necessary) to show, as we

have done, that each of the functions satisfies a Lipschitz condition.
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IV. NUMERICAL EXAMPLE

Let us now consider an example to illustrate some of the meth-

ods and results of the previous chapters.

Let A
0 1

= (21 2). Then A
0

is clearly symmetric, and to

determine the characteristic values, we solve the characteristic

equation det (A0- XI) = 0. Thus we solve

Then

det (A0 -XI) = det (12X 12 X) = 0.

(1402 - 4 = 0

- 2X + 1 - 4 =0

X2 - 2X - 3 = 0

(X-3)(X+1) = 0 .

Hence the characteristic values of A
0

are X1 = 3 and

0
X2 = -1.

We next find the diagonalizing matrix P0. It is easy to prove

that the characteristic vectors belonging to distinct characteristic

values of a real, symmetric matrix are orthogonal. Thus, to deter-

mine P0, we need only find the characteristic vectors X1 and

0
X2 belonging to X = 3 and X2

0 = -1 respectively, and normalize
1

them. Then Po will be the matrix whose rows are X1 and X2.

Let X1 = (x1, y1) and X2 = (x2, y2). Then X1A0 = XiXi
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and X A = XoX We first solve for X
2 0 2 1

1
(x

1, y 1)(2 1

2
) = 3(x

1'
y 1) = (3x 1' 3y 1)

xi + 2y1 = 3)(1

2x
1

+ y
1

= 3y
1

Solving this system of linear equations, we see that x1 must equal
1 1So let 1

y1. x1 - - yi. Then X1 = (-- ,-N-r_z) and X1 is

already normalized, that is, has length one. Similarly, we can show
1 -1 ,that X

2
= / and so

1 1

Nrz-P
0 1 1

\\72-

A check shows that P
0
A

0
P

0
= (

0 -1
0) = A

0
and that P

0 0
P= (1

0)=
I.

T
1

Now let A A
0

= (
. 02 . 04)' Then by Equation (2. 9) we have

Now

A (X.= P
0
A

0
PT

0
).. for i = 1, 2.ii

1 1

T NFT NI-Z-P AA P =
0 0 0 1 1

.055 -. 005

-.005 . 015

.03 .02

.02 .04
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Hence AX
1

. 055 and AX
2

= . 015. We see then that the charac-
1. 03 2. 02teristic values of the matrix AO + AA

0
= (

2. 02 1. 04)
should be

X
1

= 3. 055 and X
2

= -. 985. Calculating the characteristic values

of A
0

+ AA
o

directly from the characteristic equation we obtain

1
= 3. 04 and X

2
= -. 98. (If we had chosen AA() even smaller,

and had carried out the arithmetic to more decimal places, we could

have made the results even closer. )

From Equation (2. 13) we see that Ap.. = -(CP0)ii. Now

where

and

Hence

CPO =

IO

c
21

c
12

0

1 1 \
Nr2.-

1

c12 0 0 1- 0AOPO )12
X

2-X 1

c 12 c1 2
Nrr Nr2-

\ c21 c21

Nrz- Nr2-

and c
21 12'

= -c Thus

c
12 4= - (-. 005) = . 001251

c
21

= -. 00125.

-1 1
Ap11 = NT,2-X (. 00125), Ai)

12 NfT
= X (. 00125),

1 1
Ap

21
=

NI-2
X (. 00125), and Ap

22 NI-2-
= X (. 00125)

It is obvious from our example so far that the calculations for even a
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2 X 2 case are rather tedious, and for larger cases, calculation by

hand becomes quite impractical.
1 2Again let AO = (2

1)
and let Al = (21

-31). Define A(t)

by the equation A(t) = AO + t(A1 -A0) for 0 < t < 1. Let

Al AO = M. Then

dAM = dt

By Equation (3. 11) we have that

dX.

dt1 = m
11 i

p.
2

l + m
22

p.
2

2
+ 2 / mkjp. p.. for i = 1, 2

k< j

By Equation (3. 12) we have

dp..
13

dt

i- 1 2

-
-X.

(PMPT ). pkj- 1 1 (PMPT) pik kj
k=1

k
1 k=i+1 k

for i, j = 1, 2

We thus obtain the following system of six differential equations.

dX
1 2 2

dt - p
11

+ 2p
12

- 6p
1 1

p
12

dt

dX
2 - p

21
+ 2p

22
2

- 6p
21

p
22
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dp
11 1 2 2

dt X -X (P 11 P 21 -3P 11 P 21 P 22 -3P12P 21 +2P 12 P 21 P22)
1 2

dpi2
dt

1

1 2 2

-X
2

(P 11 P 21 P 22 -3P 11 P 22 -3P12 P 21 P22+2P 12P22)

dp2i
1 2 2

dt X -X (P11P21-3P11P22-3P11P12P21+2P11P12 P22)
2 1

dp22

dt
1 2 2

X
2

-X (P11 P 12 P 21 -3P 11 P 12P22 -3P 12P 21+2P 12P22).
1

As we have shown in Chapter III, each of these functions satisfies a

Lipschitz condition at the point

0 0 0 0 0 0 1 1 1 1

(X1' X2' P11' P12' P21' P22) = (3, -1, ' ' )Nr2 Nr2 Nr7 Nrz-

providing we choose t small enough. To demonstrate the

Lipschitz conditions explicitly for the system, it is necessary to cal-

culate 36 Lipschitz constants. These are determined by taking the

partial derivative of each function with respect to each of X1' X2'

P11' P12' P21 and p22 successively, and evaluating that partial
1 1 1 1

(3' -1' 1'71' 77'derivative at the point

Since each function is continuous and satisfies a Lipschitz con-

dition, for sufficiently small t, the system has a unique set of

continuous solutions X 1(t), X2(t), p11(t), pip), p21(t) and p22(t)



that assume the values 3, -1
'

1 1 1

NI2' Nr2" Nr2"

tively, at time t = 0.

and
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re spec-
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