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CHAPTER 1: INTRODUCTION 
 

Survey nonresponse occurs when a complete response cannot be obtained for a portion 

of the sample (Lessler and Kalsbeek, 1992; Lohr, 1999; Little and Rubin, 2002).  In a 

survey involving the use of questionnaires, missing data may result from the inability 

to contact a person chosen for the sample or from refusal to participate in the survey.  

In an ecological survey, selected sites may be inaccessible due to rough terrain or 

because a landowner denies access.  If the reason for the missingness is unrelated to 

the survey design, the outcome of interest, or any covariates, then ignoring the 

nonresponse should still provide valid inference (Little and Rubin, 2002).  However, if 

the reason for the missingness is related to any of these, ignoring the nonresponse may 

lead to invalid inference in the form of biased estimates and poor confidence interval 

coverage (Särndal, Swensson, and Wretman, 1992).   

 

When the mechanism causing the missingness is related to the outcome of interest, the 

nonresponse is called nonignorable (Little and Rubin, 2002).  In this case, the 

information obtained from respondents is inadequate to provide unbiased estimation.  

Model-based approaches are used to explicitly describe the relationship between the 

response mechanism and the outcome of interest under the assumption of 

nonignorable nonresponse.  However, model-based inference adds more complexity to 

the analysis and relies on accurate model specification (Särndal et al., 1992).  When 
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feasible, a nonrespondent subsample provides information about the subpopulation of 

nonrespondents (Bartholomew, 1961; Hansen and Hurwitz, 1946; Rao, 1983).   

 

In many large governmental surveys with available list frames for the population units, 

surveys are conducted periodically to monitor parameters of interest.  However, 

nonrespondent subsamples require additional effort and cost that may not be feasible 

for every survey.  Intermittent nonrespondent subsampling could be used to accurately 

model the relationship between the response mechanism and the outcome of interest.  

It may be feasible to apply the nonresponse model to data from similar surveys 

conducted on the same population but at different times.  These studies are also 

subject to nonresponse but not augmented by a nonrespondent subsample.  The 

objective of the work in this thesis is to obtain a model-assisted estimator of the 

population total that minimizes mean square error and is applicable to data from a 

complex survey design with nonignorable nonresponse.   

 

In Chapter 2, a general background on nonresponse error is first provided, and the 

mechanisms generating missing data are described.  Methods for nonresponse 

adjustment are discussed with an emphasis on nonresponse weighting.  The primary 

approach used in this work, propensity score methodology, is reviewed in detail.   

 



3 
 
 

Propensity score methodology is extended to the case of nonignorable nonresponse in 

Chapter 3, providing a new application of propensity score methodology.  Assuming a 

binary outcome of interest and estimation of the population total, propensity scores 

estimated from the combined information from respondents and subsampled 

nonrespondents are used to create adjustment classes for a weighting technique called 

the weighting class adjustment (Oh and Scheuren, 1983).  Other approaches for 

forming weighting classes are examined under a range of assumptions and compared 

to the novel approach incorporating nonignorable nonresponse.  The performances of 

the estimators are compared with data from a survey of about 40,000 New Mexico elk 

hunters.   

 

In Chapter 4, the propensity score methodology from Chapter 3 is applied to the 

weighting approach examined by Cassel, Särndal, and Wretman (1983) in which the 

reciprocal of the propensity score is used to weight respondent outcomes for 

nonresponse.  Propensity score methodology for nonignorable nonresponse is applied 

to a modified Horvitz-Thompson (1952) estimator, referred to as the propensity score 

adjustment estimator, using three approaches to model the response probability 

estimation.  The estimators are compared to the weighting class adjustment estimators 

from Chapter 3 using the New Mexico case study data by comparing the relative bias, 

confidence interval coverage, and root mean square error of the estimates.  
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Simulations comparing all estimators discussed in Chapters 3 and 4 are summarized in 

Chapter 5.  In contrast to the large population size observed in the case study, the 

simulations assess the performance of the estimators for a smaller population of 1,000 

units assuming a binary response.  Simulation scenarios incorporate a range of 

response rates, success rates, and odds ratios of response relative to successful and 

unsuccessful units.  Furthermore, response rates and/or success rates are allowed to 

vary between the modeling data set and the verification data set so that model 

robustness may be examined.  The performances of the estimators are compared using 

relative bias, confidence interval coverage, and root mean square error.   

 

In Chapter 6, the results of the pilot data analysis and the simulations are compared 

and discussed.  In recent years, the New Mexico Department of Game and Fish has 

penalized nonrespondents by prohibiting participation in the subsequent year's hunt.  

This response incentive has nearly tripled the response rate and provides more 

complete data for interpretation of the pilot data analysis results.  Conclusions 

regarding the utility and feasibility of this work are stated, and directions for future 

work are proposed.   
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 INTRODUCTION 

 

Two types of survey error affect the accuracy and precision of estimates: sampling 

error and nonsampling error (Lessler and Kalsbeek, 1992; Lohr, 1999; Särndal et al., 

1992; Thompson, 1992).   Sampling error is caused by the uncertainty that is 

generated from surveying only a portion of the population, and nonsampling error 

arises from the imperfect execution of a sampling design.  Nonresponse error is a type 

of nonsampling error that occurs when data are missing from a survey.   Nonresponse 

error may cause the nonrandom exclusion of a portion of the target population (Cassel 

et al., 1983).  The failure to obtain a complete response from every sampling unit may 

produce biased estimates if the missing outcomes differ substantially from the 

observed outcomes.  In this chapter, a review of relevant literature provides the 

motivation for the nonresponse bias adjustment approaches proposed in subsequent 

chapters.   

 

Nonresponse error affects inference from surveys across many subject areas such as 

wildlife management (MacDonald and Dillman, 1968; Pendleton, 1992), economics 
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(Detlefsen, 2007), and the National Crime Survey of the U.S. Census Bureau (Bailey, 

1986).  Nonresponse rates as low as 10% can affect inference (Lohr, 1999).  An 

estimated undercount of 1.18% in the 2000 U.S. Census prompted nonresponse 

adjustments to account for disparities in response rates among different minority 

groups (US Census Monitoring Board Presidential Members, 2001).  Biased inference 

due to nonresponse may adversely affect policy and management decisions (Kauff, 

Olsen, and Fraker, 2002; Pickreign and Gabel, 2005).  The only assurance that a 

researcher has to be certain that nonresponse error does not cause misleading inference 

is to fully observe the sample (Kalton and Kasprzyk, 1986).  However, avoiding 

nonresponse is not always possible.  The goal of this review is to summarize the 

research on nonresponse error and to establish the basis for proposing new methods of 

error reduction for unbiased estimation.  Nonsampling error sources will be briefly 

addressed followed by a more detailed discussion of nonresponse error and 

nonresponse adjustment techniques.  One such nonresponse adjustment technique, 

propensity score methodology, will be explored more fully to provide a foundation for 

the research proposed in the subsequent chapters of this thesis.   
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2.2 NONSAMPLING ERROR 

 

Nonsampling error arises when the sampling design is not perfectly implemented.  

Only a perfectly designed survey, executed perfectly, could avoid generating 

nonsampling errors.  While little can be done to avoid nonsampling error completely, 

measures may be taken to minimize the effects of nonsampling error.  The bias 

introduced by nonsampling error may be reduced by careful planning prior to survey 

execution and by applying appropriate techniques during the analysis phase.  The 

source of the nonsampling error must be identified to assess the impact of that error 

source and determine the appropriate adjustments.    

 

Nonsampling error is categorized in several different ways.  Lessler and Kalsbeek 

(1992) classify nonsampling error into three types: frame error, measurement error, 

and nonresponse error.  Lohr (1999) defines nonsampling error as any error that 

cannot be attributed to variation among samples, such as selection bias and response 

inaccuracy.  By Lohr's definition, measurement error and nonresponse error are 

classified as types of selection bias.  Särndal et al. (1992) categorize nonsampling 

error as “errors due to nonobservation” and “errors in observations.” The former 

principally include errors due to undercoverage and nonresponse, while the latter 
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consist of data collection and data processing errors.  The categorization by Lessler 

and Kalsbeek (1992) provides the most detailed breakdown of nonsampling error 

among those reviewed and will be used to guide the current discussion.   

 

Frame error is a type of nonsampling error originating from problems with the 

sampling frame.  The sampling frame is the inventory of all units in the population 

from which the sample is drawn (Lessler and Kalsbeek, 1992).  The target population 

is the group of population units to which the researcher wants to make inference (Kish 

1978).  The associations between the sampling frame and the target population are 

referred to as linkages (Särndal et al., 1992).  A one-to-one linkage exists when every 

unit in the target population is associated with a single unit in the sampling frame, and 

every unit in the sampling frame is associated with a single unit in the target 

population.  A many-to-one linkage occurs when every unit in the sampling frame is 

linked to only one unit in the target population, but a unit in the target population may 

have more than one link to a unit in the sampling frame.  A one-to-many linkage exists 

when a unit in the sampling frame is associated with more than one unit in the target 

population, but every unit in the target population is linked to a single unit in the 

sampling frame.  Frame error arises when a one-to-one linkage does not occur.  For 

instance, frame error occurs when some target population units are not linked to any 

units in the sampling frame (undercoverage); when some units in the sampling frame 
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are linked to units that are not members of the target population (overcoverage); when 

some target population units are linked to multiple frame units (duplicate listings); 

when the frame contains incorrect information that is used for stratification, 

probability-proportional-to-size selection, or regression estimation; and when the 

frame is obsolete or too coarsely-grained to provide linkages to every target 

population member (Särndal et al., 1992).  Sampling frames may be subject to one or 

more of these problems.  These types of frame errors can occur for many types of 

surveys including aerial surveys of animal populations and surveys of human 

populations.   

 

Consider a target population of elk within a specific habitat type within a park 

boundary and a GIS vegetation coverage as a sampling frame.  Undercoverage may 

occur if the sampling frame excludes small unknown pockets of habitat within the 

park.  Frame overcoverage may exist if observers are unsure of park boundaries and 

count elk outside the park.  Errors in the GIS coverage could cause inaccurate 

stratification that adds to overall error by inflating variance estimates.  For a survey 

that involves completing a questionnaire, duplicate listings of individuals in the target 

population could be obtained from merging sampling frames obtained from multiple 

sources (known as dual-frame sampling).  The target population is therefore perceived 

to be larger than it truly is, and estimates of the population total may be inflated.  
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Similarly, an obsolete frame may contain individuals that no longer meet the definition 

of the target population, and additional error may be generated by making inference to 

an inflated population.   

 

Measurement error, another nonsampling error source, occurs when an inaccurate 

response is obtained for a unit (Lessler and Kalsbeek, 1992; Thompson, 1992).    

Särndal et al. (1992) identify three types of measurement error sources in surveys: the 

use of an inaccurate instrument, an inaccurate measure provided by a respondent, and 

an interviewer influencing the response.  One type of measurement error is the use of 

an inaccurate instrument, such as an uncalibrated thermometer, poorly constructed 

questionnaire, or an inadequately-trained observer who miscounts elk during an aerial 

survey.  A second type of measurement error, often called response error, can be 

generated when survey respondents give false information, change their behavior due 

to survey involvement, or cannot recall relevant details.  In the elk aerial survey 

example, response error may occur when elk are classified by the observer into the 

wrong age group which is a key variable of interest in the study.  Elk age groups are 

useful for assessing elk productivity and predicting future population changes.  The 

third type of measurement error may result when the experience and personal 

characteristics of the interviewer/observer or survey timing affect the outcome.  For 

example, aerial survey observers could have very different levels of experience and 
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may introduce differing levels of error into data collection.  In regard to error 

associated with the timing of the survey, vegetation surveys could be conducted before 

or after peak vegetation occurs, causing underestimation of true vegetative cover or 

abundance.  Methods to reduce measurement error have been documented in areas of 

study such as aerial surveys of animal populations (Buckland, Anderson, Burnham, 

and Laake, 1993), water quality surveys (Helsel, 2005), and cognitive studies 

(Salvucci, Walter, Conley, Fnk, Saba, and Kaufman, 1997).    

 

The third type of nonsampling error, called nonresponse error, occurs when 

incomplete responses are obtained from sampling units (Lessler and Kalsbeek, 1992; 

Lohr, 1999; Thompson 1992).  When the outcomes of nonrespondents are 

substantially different from outcomes of respondents, the survey results based on only 

the survey respondents can greatly distort inference to the target population.  

Nonresponse error is further classified based on the amount of missing information.  If 

all outcomes for the entire sampling unit are not observed, then the data are subject to 

unit nonresponse.  If some information is collected on the sampling unit but at least 

one outcome of interest is missing, then the unit has experienced item nonresponse 

(Little and Rubin, 2002).  In a survey using questionnaires, for example, unit 

nonresponse would occur if a person was solicited for survey involvement but 

declined to participate.  However, a person might decide to answer the questionnaire 
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but leave several items blank.  These omissions result in item nonresponse.   

Nonresponse error is specifically addressed in this research and is discussed in more 

detail below.   

 

2.3 NONRESPONSE ERROR 

 

Many factors can lead to missing data and generate nonresponse error.  A sampling 

frame, for example, may contain remote areas where sites cannot be accessed due to 

observer constraints.  A poorly planned survey design can include, for instance, a 

telephone solicitation effort scheduled when people are rarely home.   If the 

solicitation is only conducted for a brief period of time, sample members have fewer 

opportunities to respond and unit nonresponse will result (Dillman, Eltinge, Groves, 

and Little, 2002).  Including features in the survey operation such as a reference to the 

sponsoring agency's reputation in the introduction, response incentives, and follow-up 

procedures to contact nonrespondents generally increases the level of cooperation.  

The survey mode may also influence a person's level of participation.  For example, 

Dillman (2000) determined that face-to-face interviews generate higher response rates 

than telephone surveys, and telephone surveys successfully obtain more respondents 

than do mail questionnaires.   However, more recent research found that a mail survey 
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with a small monetary incentive obtained a response rate nearly twice that observed 

from a telephone survey (Dillman, Phelps, Tortora, Swift, Kohrell, Berck, et al., 2009; 

Lesser, Dillman, Carlson, Lorenz, Mason, and Willits, 2001).  Some researchers have 

observed declines in telephone survey response rates in the previous decade or more 

due to increases in refusals and noncontacts (Curtin, Presser, and Singer, 2005; Keeter, 

Kennedy, Dimock, Best, and Craighill, 2006).  Regardless of the effort expended to 

avoid nonresponse, missingness is often a factor in many surveys.   

 

Nonresponse occurs commonly in large-scale surveys conducted by federal and state 

agencies.  In many cases, survey research organizations consider the consequences of 

nonresponse error so critical as to warrant the application of adjustment techniques.  

The Office of Management and Budget recommends nonresponse adjustments such as 

weighting adjustments and imputation in the analysis of surveys exhibiting response 

rates of 80% or less or item nonresponse at or exceeding 30% (Standards and 

Guidelines for Statistical Surveys, 2006).  The U.S. Census Bureau uses weighting 

methods (Bailey, 1986; Bailey, 2005) and imputation (Bailey, Jansto, and Smith, 

1991) to reduce the impact of nonresponse error on estimates from its Survey of 

Income and Program Participation (SIPP).  The U.S. Census Bureau's economic 

surveys generally obtain response rates ranging from 75% to 79%.  Therefore, 

imputation and nonresponse weighting adjustments are used to adjust for nonresponse 
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error (Detlefsen, 2007).  The Centers for Disease Control (CDC) conduct annual 

telephone surveys to track behaviors and conditions related to health.  An example of 

one of these surveys is the Behavioral Risk Factor Surveillance System.   In 2007, 

state-level response rates ranged from 15% to 70% (2007 Behavioral Risk Factor 

Surveillance System Summary Data Quality Report, 2008).  Post-stratification 

adjustments are applied to these data to account for the nonresponse.  Post-strata cells 

are created using demographics such as age, gender, race, and the geographic area of 

the country.  New Mexico Department of Game and Fish annually censuses hunters 

licensed in New Mexico to hunt elk; however, only 6% to 45% of licensees returned 

questionnaires for any year between 1988 and 2003 (Harrod, 2007).  Subsamples of 

nonrespondents indicate that estimates based on using only the returned questionnaires 

overestimate the elk harvest by 28% in both 2001 and 2003.  Overestimation of the 

annual elk harvest results in reductions of future hunt licensing, which may stimulate 

undesired growth in elk populations in the state of New Mexico.  Adjustment 

techniques incorporating the nonrespondent subsample data will be discussed in later 

chapters. 

 

When the outcomes of nonrespondents are substantially different from outcomes of 

respondents, survey results based on a sample may be unrepresentative of the target 

population and subject to nonresponse error.  Therefore, understanding how 
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nonresponse error affects the survey outcome is important. Missing data are often 

categorized by the pattern of missingness exhibited by the data (Little and Rubin, 

2002).  Identifying this pattern is often helpful when selecting an appropriate analysis 

strategy because many methods require assumptions on the characteristics of the 

missingness.   

 

The pattern of missingness may be defined by the number of outcomes affected by the 

missingness.  Univariate nonresponse occurs when all of the missingness is limited to 

one outcome of interest.  With multivariate missingness, the missingness occurs for 

more than one outcome.  Monotone missingness is a pattern of missingness occurring 

in clinical trials where repeated measures are taken over time from the same 

individuals.  Missingness is considered monotone when no outcomes are measured for 

a unit once the initial missingness occurs.  Consider a clinical trial where subjects with 

a particular disease are administered treatments and followed through time.  Monotone 

missingness would occur when the subjects that are cured of a disease drop out of the 

study and do not return.  Missingness that is not strictly monotonic may easily be 

made monotone by dropping all responses after the first occurrence of missingness.   

 

Missingness that follows no specific pattern is classified as a general missingness 

pattern.  An example of general missingness is a data set obtained from a survey 
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subject to both unit and item nonresponse.  The missing data from item nonresponse 

often differs among respondents and no specific pattern emerges. 

 

Nonresponse error is a ubiquitous sample survey problem generated from many 

uncontrollable sources.  Robust and effective analytical methods to account for 

nonresponse error are needed in many areas of research using surveys where data are 

missing.   The work included in this thesis will address analytical methods to reduce 

nonresponse error for unit nonresponse.  In order to determine which analytical 

methods might be appropriate for the analysis of a particular data set, the mechanism 

causing the missingness must first be examined. 

 

 

2.4 MISSINGNESS MECHANISMS 

 

The type of data missingness influences the approach taken to account for 

nonresponse.  Missing data are categorized into three types: missing completely at 

random (MCAR), missing at random (MAR), and not missing at random (NMAR) 

(Dillman et al., 2002; Little and Rubin, 2002; Lohr, 1999).   These three categories are 

defined by the mechanisms which generate the missingness.  Let Y be the complete 
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data outcome for the sample; let R be the vector of missing data indicators for the 

sample; let X be the complete set of covariates associated with Y and R; and let φ be a 

set of unknown parameters.  Then the conditional distribution of R, ( ), ,φf R Y X , 

may be used to characterize the missing data mechanism (Little and Rubin, 2002).   

This parameterization provides a framework for the relationship of the outcome of 

interest to the covariate information and response mechanism.   

 

When data are MCAR, the missingness mechanism does not depend on either the 

outcome of interest or any covariates (Little and Rubin, 2002).  In this case, the 

response probabilities are mutually independent and the response indicators are 

conditionally independent of each other given the responding sample size (Lohr, 

1999).  Therefore, the conditional distribution of the missingness indicator reduces 

to ( ) ( ), ,φ φf f=R Y X R  for all Y and φ.  The missingness pattern itself may not be 

random, but the mechanism behind the missingness is random.  An example of MCAR 

missingness would be an observer not interviewing a sampling unit due to vehicle 

malfunctioning or a laboratory worker accidentally dropping a water chemistry 

sample.  If these events are unrelated to the outcome of interest or any related 

covariates, then the missing data are MCAR.  For the analyses, the sample of 

respondents is treated as representative of the original sample that was selected (Lohr, 
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1999).  Standard analysis techniques are used with the reduced sample and unbiased 

estimates of population parameters may be obtained. 

 

MAR missingness occurs when the data missingness is related to covariates (X) but 

not the missing outcomes (Y) (Little and Rubin, 2002; Lohr, 1999).  Little and Rubin 

(2002) partition the outcome of interest Y as ( ),o mY Y  where oY   represents the 

vector of observed outcomes and mY   represents the vector of missing outcomes.  

Under this parameterization, the conditional distribution of the response indicator 

under MAR missingness is ( ) ( ), ,φ , ,φof f=R Y X R Y X  for all mY  and φ.  

Therefore, the missingness depends on observed outcomes which can be explained by 

related covariates.  For MAR missingness, nonresponse adjustments may be made on 

the vector of observed outcomes, oY  , if the covariates related to the missingness (X) 

are available (Lohr, 1999).   This type of missingness is also referred to as ignorable 

missingness because the response mechanism is MCAR once the nonresponse 

adjustment model is applied, not because the nonresponse bias may be ignored.  An 

example of MAR missingness might include the situation in which an observer cannot 

survey a site because it is physically inaccessible.  If accessibility is unrelated to the 

response outcome but is related to covariates such as elevation or slope, then these 

covariates may be used to model the missing outcomes.  Let X = ( )1 2,X X , where 1X  
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represent a subset of available covariates that are associated with the response 

mechanism, and let X2 represent the complement of covariates that are unassociated 

with the response mechanism.  A slightly stronger assumption of MAR missingness is 

the case when ( ), ,φf R Y X  ( )1,φf= R X , for all X2 and φ.  This assumption is 

related to the assumption of quasi-randomization proposed by Oh and Scheuren (1983) 

and identifies a subset of covariates for which nonresponse adjustment provides 

unbiased estimation.  Furthermore, unconfounded missingness is defined as 

missingness that depends only on the design variables, X, but does not rely on either 

the observed outcomes or missing outcomes.  This slightly stronger assumption of 

MAR requires that ( ) ( ), ,φ ,φf f=R Y X R X  for all Y and φ (Dillman et al., 2002; 

Little and Rubin, 2002).   

 

Of the three types of nonresponse, NMAR missingness can be the most challenging to 

correct because the response mechanism is related to the unknown values of mY .  For 

this type of missingness, the conditional distribution of the response indicator cannot 

be simplified from the form ( ), ,φf R Y X  (Lohr, 1999; Little and Rubin, 2002; 

Dillman et al., 2002).  This type of missingness is also called nonignorable 

nonresponse.  In this case, further survey effort must be expended to obtain 

information from nonrespondents (Bartholomew, 1961; Elliott, Little, and Lewitsky, 



20 
 
 

2000; Hansen and Hurwitz, 1946; Rao, 1983) or strong modeling assumptions must be 

made to adjust observed outcomes for nonresponse bias (Rotnitzky and Robins, 1995; 

Stasny, 1991).  An example of NMAR missingness is the case of an observer who has 

been denied access to a survey site by a private landowner.  If the landowner is 

influencing the outcome of interest at the site by environmental degradation, then the 

missing outcomes are substantially different from the observed outcomes with no 

environmental degradation.  Therefore, further information is needed to model this 

difference accurately.  Modeling the nonresponse on only the covariates and observed 

outcomes or ignoring the nonresponse completely will produce biased estimates and 

statements on confidence will be invalid (Lessler and Kalsbeek 1992; Särndal et al. 

1992; Thompson, 1992; Lohr, 1999).   

 

 

2.5 APPROACHES FOR NONRESPONSE ADJUSTMENT 

 

Choosing a nonresponse adjustment approach requires identifying the type of 

missingness encountered by the data.  If data are MCAR, then no adjustments are 

necessary.  If the data are MAR, then respondent data may be used to adjust for 

nonresponse bias using covariate information related to the missingness.  If the 
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missingness is NMAR, then information on the relationship between the outcome of 

interest and the response mechanism is needed to adjust for the nonresponse.  This 

additional information will be collected either from a subsample of nonrespondents or 

from assumptions on the missingness.  Approaches to correct for nonresponse bias are 

subsequently discussed for the cases of ignorable and nonignorable nonresponse.   

 

 
2.5.1 Ignorable missingness 
 

Analysis methods to account for missing data must be appropriate for the missing data 

mechanism.  For MCAR missingness, standard analysis tools using no adjustment 

methods may be used with the sample of respondents to obtain unbiased estimates 

(Lohr, 1999).  When the missingness mechanism is MAR, several adjustment methods 

are available which include weighting adjustments, imputation, and parametric 

models.   

 

2.5.1.1 Weighting adjustments 
 

Weighting adjustment methods employ weights so that observed responses are 

extrapolated appropriately to the sampled population. Weighting adjustment 

procedures include weighting class adjustment, post-stratification adjustment, raking, 
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and response propensity adjustment (Holt and Smith, 1979; Little and Rubin, 2002; 

Lohr, 1999; Oh and Scheuren, 1983). The goals of these methods are to weight 

observed outcomes so that discrepancies between the sample and the population may 

be minimized to obtain estimates that are unbiased under repeated sampling (Gelman 

and Carlin, 2002).  These methods require covariate information to form weighting 

classes.  Within each weighting class, adjusted weights are computed to reduce the 

distortion of nonresponse so that nearly-unbiased estimates may be obtained. 

 

2.5.1.1.1 Weighting class adjustment 
 

The weighting class adjustment requires information from the sample rather than the 

entire population to account for nonresponse (Lessler and Kalsbeek, 1992).  Covariate 

information is used to form weighting classes within which nonresponse adjustments 

are made (Lohr, 1999).  The weighting class adjustment is biased, and the bias is a 

function of the difference between the estimate of interest for respondents differs and 

the estimate of interest for nonrespondents (Lessler and Kalsbeek, 1992).  However, 

the weighting class adjustment estimator is conditionally unbiased given the intended 

and obtained sample sizes, and this added level of uncertainty requires an additional 

variance component to account for the potential bias when the variance is calculated 

without conditioning on the observed sample sizes (Oh and Scheuren, 1983).   
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The weighting class adjustment requires the "quasi-randomization" assumption 

introduced by Oh and Scheuren (1983), which handles the missing data problem like a 

two-stage sample.  Sample inclusion is treated as the first-stage.  In the second stage, 

each unit within a subpopulation is subject to an independent Bernoulli response 

process with a common positive probability of response within each weighting class.  

When the weighting class variables are chosen so that the quasi-randomization 

assumption is met, the missingness mechanism is MCAR within each weighting class 

(Little and Rubin, 2002).  The quasi-randomization approach also requires the 

assumption that units in different subpopulations have independent response 

mechanisms.  The weighting classes, created to approximate these subpopulations, are 

formed by levels of variables that are associated with the response mechanism.  The 

weights to adjust estimates for nonresponse are calculated within each weighting class.   

 

Oh and Scheuren (1983) suggest that a smaller, more robust set of classification 

variables be used so that weighting class sample sizes are large and variances within 

weighting classes are controlled.  Even if the response mechanism can be perfectly 

modeled by a large set of covariates, the small class sizes may cause variance 

instability and violate assumptions of normality for means within weighting classes 

which affects confidence interval coverage.  Therefore, the authors recommend that an 
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estimator with small bias and stable variance is preferred over an unbiased estimator 

with unstable variance and a non-normal distribution.   

 

Response rates are estimated within each adjustment class in one of two ways.  Oh and 

Scheuren's (1983) weighting class adjustment approach assumes that the response 

mechanism is a simple random sample within each weighting class.  Therefore, the 

response rate within each adjustment class is simply the proportion of respondents for 

sampling units within that adjustment class.   When the sampling design is complex, 

design weights may be incorporated into the estimation of within-class response rates 

(Lessler and Kalsbeek 1992; Little and Vartivarian, 2003).  These design weights are 

known at the time of survey execution and may be used to obtain accurate estimates of 

the response rate given the complex survey design (Gelman and Carlin, 2002).  The 

two methods of computing these adjustment weights are referred to as post-

stratification weighting and inverse-probability weighting, respectively.  The quasi-

randomization assumption of Oh and Scheuren (1983) assumes that the missingness 

mechanism is a simple random sample within each subpopulation.  This assumption 

may simplify the computational requirements but may not precisely reflect the 

response rates in the corresponding subpopulations when complex surveys designs are 

used (Lessler and Kalsbeek, 1992).                                                                                                           
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2.5.1.1.2 Post-stratification adjustment 
 

Post-stratification (Holt and Smith, 1979) was originally developed to obtain domain 

estimates for covariates that were not used as design strata.  For example, a researcher 

may want to make inference by gender from a sampling design that did not include 

gender as a stratification variable.  Because sample sizes are not predetermined in 

unplanned post-strata, the unconditional variance of post-strata estimators is increased 

by a variance component that accounts for random sample sizes.  The benefits of post-

stratification include conditional unbiasedness and gains in efficiency.  Like weighting 

class adjustments, post-stratification adjustments require the quasi-randomization 

assumption to define the response mechanism.  Furthermore, response rates may be 

estimated with post-stratification weighting or inverse-probability weighting within 

each adjustment class.  Post-stratification adjustments differ from weighting class 

adjustments by the amount of covariate information needed.  When covariate data 

used to create weighting classes is known for the entire population, post-stratification 

adjustments may be used.   
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2.5.1.1.3 Raking adjustment 
 

Raking (also called ratio raking adjustment, iterative proportional fitting, or 

multiplicative weighting) is another weighting adjustment to account for MAR 

missingness (Bethlehem, 2002).  Raking is an iterative post-stratification technique 

used when more than one post-stratum is needed but only marginal totals of each post-

stratum are known (Lohr, 1999).  The sums of the sampling weights are calculated 

within each weighting class and then the weights are adjusted by the ratio of the true 

marginal total divided by the estimated marginal total calculated from the weights.  

This process is repeated for each weighting variable until the estimated marginal totals 

calculated from the adjusted weights converge to the true marginal totals (Little and 

Rubin, 2002).  The sum of the weights within each weighting class is an 

asymptotically unbiased estimate of the true parameter within each weighting class 

(Oh and Scheuren, 1983).   The raking procedure requires the quasi-randomization 

assumption (response mechanisms are independent Bernoulli processes with a 

common response probability within post-strata and are independent among post-

strata) as well as the additional assumption of no interaction among weighting class 

variables with the response mechanism.  Benefits of raking adjustment include the 

ability to incorporate outside data sources when only marginal totals are available.  In 

addition, using the marginal totals rather than weighting classes with small sample 
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sizes common with post-strata reduces the problem of variance inflation from small 

cell sizes.  Disadvantages of the raking adjustment include lack of convergence to the 

true marginal total if some of the cell totals are zero.  In addition, the variance may be 

inflated if the weighting classes are weakly correlated with the within-class means 

(Lohr, 1999).  Oh and Scheuren (1983) also warn that raking adjustments are 

computationally more complex and may result in unstable estimates that do not 

converge to marginal totals.   

 

 

2.5.1.1.4 Response propensity adjustment 
 

Other methods of estimating the probability of response are used in adjustments for 

MAR nonresponse.  Politz and Simmons (1949) propose a method of estimating 

response probabilities based on information related to the number of times a 

nonrespondent was available during a survey period.  This approach assumes that 

multiple contacts were planned in the survey protocol as a mechanism to reduce 

nonresponse.  Assuming that the most accessible respondents are overrepresented in a 

sample, respondents who are less accessible are given more weight to represent the 

inaccessible nonrespondents (Lohr, 1999).   
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The probability of response conditional on sample inclusion, also called the propensity 

score, may be directly estimated to account for nonresponse.  Propensity score 

methodology, first proposed by Rosenbaum and Rubin (1983), was originally used to 

match treatment and control units in a nonrandomized treatment so that the treatment 

effect could be estimated within levels of potentially-confounding covariates.  Logistic 

or probit regression is used to directly estimate the probability of response from 

related covariates (Steinhorst and Samuel, 1989; Cassel et al., 1983).  A benefit of this 

approach is that response probabilities may be modeled for each combination of 

covariates.  However, the inverse of each response probability is used to weight for 

nonresponse.  If very small propensity scores are estimated for response, then the 

corresponding weights will increase variance estimators. Therefore, variance estimates 

may be unstable when very small propensity scores are obtained.   The resulting 

variance inflation may cause an overall increase in the mean squared error (MSE) 

despite the reduction in bias.  This method also requires accurate logistic regression 

model specification (Little and Rubin, 2002).   Model misspecification may not reduce 

the bias or may even increase the bias of estimates adjusted with the erroneous 

propensity scores.    

 

Propensity score classification is an extension of propensity score methodology and 

was first used to compare treatment and control groups within subclasses of related 
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covariates in observational studies (Rosenbaum and Rubin, 1983).  In this application, 

the propensity score measures the probability that, conditional on observed covariates, 

a unit belongs to the treatment group.  A sample is "balanced" when treatment and 

control units are grouped so that the effects of confounding covariates are diminished 

and the treatment effect may be estimated.  Samples may be balanced retrospectively 

by creating groups based on covariates that influence the treatment effect.   When a 

large number of covariates are available, the number of distinct covariate 

combinations may be reduced by forming groups defined by quantile of the propensity 

score.  Within subclasses based on the propensity score, the distribution of the 

covariates conditional on the propensity score is the same for treatment and control 

units, or is balanced.  Furthermore, the covariates and the treatment indicator are 

independent, conditional on the propensity score.   

 

Propensity score methodology was first applied in a missing data context by David, 

Little, Samuhel, and Triest (1983).  The goal of their work is to avoid stratifying on 

the complete set of covariates in order to simplify estimation.  By categorizing the 

propensity score into groups with similar response propensities, the response 

mechanism within each class is independent of the outcome of interest.  Therefore, the 

propensity score stratification creates subpopulations within which the distribution of 

the covariates is the same for respondents and nonrespondents.  The benefits of this 
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approach are that any number of covariates related to the response mechanism can be 

summarized by one explanatory variable, the propensity score.  The propensity score 

is relatively easy to calculate, requiring logistic or probit regression, quantile 

estimation, and the Horvitz-Thompson (1952) estimator.  Subsequent chapters of this 

thesis will focus on propensity score stratification and its application in missing data 

settings, and a more thorough discussion of the relevant literature will be discussed in 

a later section of this chapter. 

 

All of the weighting adjustments discussed require the formation of weighting classes 

within which adjustment weights are calculated.  Weighting classes should be 

constructed so that each class contains a "reasonable" number of respondents.  Lessler 

and Kalsbeek (1992) propose at least 20 respondents per class and Lohr (1999) adds 

the additional requirement of a response rate of 50% or more within each weighting 

class.  Weighting classes should be formed for post-stratification adjustments so that 

measures of the population size within each post-stratum are accurate.  Choosing 

weighting classes that are associated with the response mechanism reduces bias.    

 

The simplicity of using a single set of weights to account for nonresponse comes at the 

cost of variance inflation in the weighted estimates (Little and Rubin, 2002).  

Variances from weighting class adjustments will be inflated due to the variation 
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among the adjustments from different weighting classes (Lessler and Kalsbeek, 1992).  

Assuming simple random sampling within weighting classes and constant variance, 

the inflation factor due to weighting is one plus the squared coefficient of variation of 

the weights for all responding units.  While nonresponse weighting decreases bias, the 

introduction of variable weights increases the variance.  Imputation is a technique used 

for nonresponse adjustment that does not inflate the variance of the estimator. 

 

2.5.1.2 Imputation 
 

Imputation is a MAR nonresponse adjustment technique that works by filling in 

missing values to create complete data sets (Little and Rubin, 2002).  Imputation may 

be used for unit nonresponse or item nonresponse, and imputed data may be generated 

once (single imputation) or many times (multiple imputation).  Advantages of using 

imputation include the ability to use complete-case analysis methods and its use with 

complex surveys.   Imputation is used widely for nonresponse adjustment by agencies 

such as the U.S. Census Bureau (Bailey et al., 1991) and the U.S. Department of 

Justice (Kennickell, 1997).    Imputation has the advantage of controlling variance and 

bias.  However, estimates from imputation may be susceptible to bias depending on 

the imputation procedure used.  In addition, accounting for imputation variance should 

be incorporated into the mean square error. 
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The two general approaches for imputation are explicit modeling and implicit 

modeling (Little and Rubin, 2002).  In explicit modeling, a formal predictive 

distribution is assumed.  Mean imputation, regression imputation, and stochastic 

regression imputation are examples of explicit modeling imputation approaches.  

Implicit modeling employs an algorithm to obtain imputed values and is used in 

approaches such as hot deck imputation, cold deck imputation, and substitution.  

Furthermore, several imputation methods may be combined in one analysis.   

 

Mean imputation, in which means of cells or subclasses are substituted for missing 

values, is an explicit modeling method similar to weighting class adjustments in that 

the subclass means are substituted for missing values.  Regression imputation uses an 

explicit regression model to predict missing values, and stochastic regression 

imputation incorporates an added residual to account for the uncertainty in the 

prediction.  Mean imputation may distort the distribution of outcomes within a 

weighting cell because all of the missing data are assigned the same imputed value 

(Little, 1986).  Imputation using draws from a predictive distribution is another form 

of explicit modeling.  This approach is superior to mean imputation because the 

imputed data sets reflect the variance of the sample.  This extension of the mean 
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imputation methodology motivates the use of Bayesian models in imputation 

adjustments (Little and Rubin, 2002; Zhang, 2003).    

 

In contrast to the predictive model used in explicit modeling, implicit modeling 

employs an algorithm to obtain imputed values.  Several methods of implicit 

imputation have been developed.  Hot deck imputation substitutes observed values 

from responding units with similar characteristics in place of the missing values.  Cold 

deck imputation uses information from external sources to obtain complete data sets.  

Substitution is used to replace missing observational units by substituting a 

nonresponding unit with a unit not previously included in the sample.  Little and 

Rubin (2002) warn that complete data sets from substitution are still affected by 

missingness after the imputations are made because the substitutions are not the actual 

outcomes.  Therefore, the additional error introduced by the imputation should be 

incorporated in estimates of precision.   

 

Each of these implicit and explicit modeling imputation methods produces a data set 

without missing outcomes.  Comparisons of implicit and explicit models for the U.S. 

Census Bureau's Current Population Survey (CPS) revealed that the use of hot deck 

imputation corrected more error than stochastic regression imputation methods and 

was only slightly less efficient than regression imputation methods (David, Little, 
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Samuhel, and Triest, 1986).   However, matching nonrespondents and respondents 

with similar characteristics is difficult when extensive covariate information is 

available, because no respondents are available for specific combinations of variables.  

CPS researchers concluded that the modeling approaches would be superior to hot 

deck imputation because these methods can incorporate any number of variables and 

only the significant interactions need to be included in the model.   

 

Single imputation substitutes only one value for each missing unit; the drawback of 

this approach is its inability to account for all of the variability in the outcome or the 

additional variability due to the correction with imputation (Little and Rubin, 2002; 

Wang, Sedransk, and Jinn, 1992).  Multiple imputation involves creating several 

complete data sets to provide an estimate of imputation error.  Multiple imputations 

may be derived from draws from the posterior predictive distribution of the missing 

outcomes or within adjustment cells defined by propensity scores when the 

missingness pattern is monotone (Zhang, 2003).  The variance of an imputation 

estimator is a function of the variance of the outcome within each imputed data set and 

the variance of the estimator among the imputation data sets.   Other methods of 

calculating variances for imputation estimates include explicit variance estimators 

such as that used for the weighting class adjustment, imputation modification that 

preserves the complex survey design, and resampling methods such as the bootstrap 
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and jackknife.   While multiple imputation is somewhat model-specific, the procedure 

is easy to implement and valid even for small samples.   

 

Weighting adjustments and imputation techniques may incorporate the survey design 

while making weak model assumptions to account for the nonresponse.  These model-

assisted techniques incorporate modeling approaches with design-based estimation 

and allow adjustment for nonresponse with consideration for survey complexity.  

Model-based approaches require more stringent assumptions on the nature of the 

nonresponse and do not directly incorporate the inclusion weights.  However, model-

based analyses for nonresponse are especially useful when data are NMAR.    

 

 

2.5.1.3 Model-based approaches 
 

Weighting adjustments and some types of imputation (e.g. mean imputation or 

imputation based on propensity score classification) represent randomization 

approaches in which the outcomes are treated as fixed and the mechanisms of sample 

inclusion and response are considered random (Little, 1982; Rubin, 1983).  Modeling 

approaches to nonresponse treat the outcomes as random with distributions specified 
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by some model.  Model-assisted and model-based approaches differ because design 

weights are ignored in model-based approaches.   

 

Approaches to modeling nonresponse vary depending on the missing data patterns.  

When data exhibit monotone missingness, the likelihood may be factored for complete 

and incomplete data (Little, 1982).  If the parameters corresponding to the complete 

and incomplete data are distinct, then maximum likelihood methods may be used to 

model them separately.  For general missingness patterns, the EM algorithm may be 

used with regression imputation used in the expectation step and an adjustment to the 

covariance in the maximization step to account for additional variation from the 

imputation (Dempster, Laird, and Rubin, 1977).  Drawbacks of likelihood approaches 

to modeling nonresponse include the possibility of non-unique maximum likelihood 

solutions and the effects on bias due to assumptions on the distribution of the outcome 

that are not met (Lessler and Kalsbeek, 1992).  However, likelihood methods are 

desirable because the analysis is straightforward after the set of assumptions on the 

nature of the nonresponse are made.  These methods are especially useful when data 

are NMAR and the outcomes of nonrespondents cannot be accounted for by covariate 

information alone.  
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2.5.2 Nonignorable missingness 
 

When the missingness mechanism is NMAR, then either further effort is needed to 

obtain information from nonresponding units or a model must be used.  Hansen and 

Hurwitz (1946) first proposed subsampling nonrespondents to account for missing 

data.  Extensions of this work incorporate the survey mode and number of survey 

attempts to obtain responses from sample members who originally did not respond to 

the survey (Bartholomew 1961; Rao 1983; Elliott et al. 2000).  Singh and Sedransk 

(1983) outline a Bayesian approach to estimate the mean outcome and provide 

information on optimal choices of sample sizes for initial samples and subsamples.   

 

Often, nonrespondents cannot be subsampled.  If a site is inaccessible to an observer 

crew or a landowner denies access to a site on private property, then no amount of 

additional effort will make it possible to include those sites in the sample.  In this case, 

a modeling approach must be used to account for the nonresponse bias.  Nonignorable 

response models offer the advantage of formally incorporating subjective information 

about the response mechanism, but a drawback of these methods is the added 

complexity of inference and increased model dependence (Lessler and Kalsbeek, 

1992).  

 



38 
 
 

A variety of models is available to account for nonignorable nonresponse.  The EM 

algorithm may be used to obtain maximum likelihood estimates regardless of the type 

of missing data pattern encountered (Ibrahim, Chen, and Lipsitz, 2001; Little, 1982).  

Copas and Farewell (1998) reduce the effects of nonignorable item nonresponse by 

incorporating an "enthusiasm to respond" variable that accounts for nonrespondents' 

reluctance to discuss personal information.  This variable is modeled as a propensity 

score from covariates that might affect response, such as the age of the respondent, the 

perceived level of embarrassment from sensitive questions, and the respondent's 

ability to understand the questions.  Scharfstein, Rotnitzky, and Robins (1999) use 

semiparametric response models and assume that the selection bias parameter is 

known.  Similarly, Qin, Leung, and Shao (2002) use a semiparametric maximum 

likelihood approach but the response indicator is modeled parametrically in this 

application.  Efficiency is also increased by incorporating auxiliary information.  

Birmingham and Fitzmaurice (2002) apply the multivariate logistic model with 

pattern-mixture models to account for nonignorable nonresponse.  Tang, Little, and 

Raghunathan (2003) use the marginal distribution of the covariates in a multivariate 

regression analysis in which the missingness mechanism does not need to be specified.  

Regardless of the parameterization of the missingness, nonignorable nonresponse 

models are highly sensitive to error from model misspecification.  A range of model 

assumptions must be explored to assess model sensitivity (Birmingham and 
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Fitzmaurice, 2002; Little, 1982; Scharfstein et al., 1999).   Assumptions of 

missingness may also be evaluated with tests of the available data.   

 

 

2.5.3 Tests for Missingness Types 
 

The data available from the sampling frame and respondents are used to evaluate the 

type of missingness and identify covariates for analysis.  If covariate data are available 

for both respondents and nonrespondents, then a logistic regression analysis of the 

response indicator is used to determine if nonresponse adjustment procedures should 

be used.  If any covariates are significant explanatory variables in the model of 

response probabilities, then data are not likely to be MCAR (Lohr, 1999).   

 

Chi-square goodness-of-fit tests may be used to test the null hypothesis that the levels 

of an auxiliary variable are not associated with response rates.  If response differs 

significantly by the levels of the auxiliary variable, then that auxiliary variable might 

be an appropriate weighting class variable for a MAR adjustment technique.  

Regressing the respondent outcomes on the estimated propensity score provides 

information to test the hypothesis of MAR data (Little, 1986).  For example, assume 

that the response propensity can be effectively modeled from a suite of available 

covariates.  Then the estimated propensity score can be used as a predictor in a model 
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of the outcome of interest.  If the coefficient for the propensity score is significantly 

different from zero, then the outcome of interest is related to the response mechanism 

and nonresponse adjustment is recommended.  The inability to detect variables for 

which response rates vary does not imply that no covariates are associated with the 

response mechanism.  In this case, even a simple nonresponse adjustment across all 

nonrespondents may reduce nonresponse bias.  These tests are most useful when 

available covariate information is highly correlated with both the missingness 

mechanism and the outcome of interest.   

 

 

2.5.4 Summary 
 

The vast majority of literature about nonresponse adjustment has focused on the case 

of MAR missingness.  However, many surveys encounter NMAR missingness 

(Birmingham and Fitzmaurice, 2002; Ibrahim et al., 2001; Kott, 2005) and inference 

may be misleading if adjustment methods are not incorporated.  A drawback of many 

nonignorable nonresponse models is that they are very complex and difficult to apply 

unless one is experienced in statistical theory and software use.  Propensity score 

methodology offers a simpler approach that requires the use of logistic or probit 

regression, the calculation of quantiles, and the use of Horvitz-Thompson (1952) 

estimators.  Propensity score methodology is reviewed more thoroughly in the 
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subsequent section, and this background will be used to construct the theory for 

propensity score methodology for NMAR missingness when a subsample of 

nonrespondents is available. 

 

 

2.6 PROPENSITY SCORE METHODOLOGY 

 

2.6.1 Background 
 

Propensity score methodology was first developed by Rosenbaum and Rubin (1983) to 

estimate a treatment effect in an observational study setting.  In this setting, the 

propensity score is defined as the probability that a unit is assigned to a specific 

treatment group.  In a randomized clinical trial, the propensity score is known and is 

part of the experimental design.  In a nonrandomized survey, assignment to the 

treatment group is not randomized.  The propensity score must be estimated from data 

to understand the mechanism behind treatment assignment.  The treatment effect may 

be confounded with many variables associated with treatment assignment.  By 

matching treatment subjects with control subjects that exhibit similar covariate 

information, the effect of the treatment is more accurately estimated.  The covariate 

information used for matching may be summarized by the propensity score, 
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simplifying the matching process and ensuring that sample sizes within each matching 

class are adequate.   

 

Several terms are defined to help in the discussion of propensity score methodology.  

When treatment and control units are grouped so that the effects of confounding 

covariates on the treatment effect are diminished, the sample is considered "balanced".  

A balancing score is defined as a function of the covariates such that conditioning on 

the balancing score yields conditional independence between the covariates and the 

treatment assignment.  Therefore, the information contained in the balancing score is 

adequate in grouping treatment and control units so that treatment effects are 

accurately estimated.  Strongly ignorable missingness is missingness in which, given a 

set of covariates, the outcome of interest is independent of the treatment assignment.  

This assumption is analogous to the MAR assumption in the nonresponse setting.   

 

In the observational clinical study setting, Rosenbaum and Rubin (1983) use large-

sample theory to propose three theorems which provide the basis for propensity score 

methodology.  The first theorem is that, conditional on the propensity score, treatment 

assignment and observed covariates are independent.  In this case, the information 

contained in the observed covariates is summarized by the propensity score.  The 

second theorem states that a function of the covariates is a balancing score if and only 
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if the propensity score can be expressed as a function of the balancing score.  In the 

third theorem, if the treatment assignment is strongly ignorable given a set of 

covariates, then treatment assignment is strongly ignorable given any balancing score 

that is a function of that set of covariates.   These three theorems form the arguments 

for the techniques of pair matching and subclassification.  Pair matching on balancing 

scores occurs when the treatment effect is estimated by conditioning on the propensity 

score.   Subclassification on balancing scores requires forming subclasses with similar 

treatment propensity scores so that unbiased estimates of treatment effects may be 

obtained within each group.   

 

Applications of propensity score methodology are used extensively for matched case-

control studies (Dehejia and Wahba, 2002; Foster, 2003; Imbens, 2000).  In clinical 

research, propensity score matching is useful to account for the effects of many 

covariates while utilizing a simple adjustment tool.  Rubin and Thomas (2000) extend 

the theory so that variables highly correlated with the outcome may be used in 

addition to the propensity score for matching.   Lu (2005) uses propensity score 

matching to balance time-related covariates in longitudinal studies.  Variable numbers 

of matched controls may be obtained through propensity score matching to increase 

the proportion of bias removed (Ming and Rosenbaum, 2000).  Clinical studies often 

involve a large number of covariates; selecting a subset for nonresponse adjustment 
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can be difficult.  Propensity score methodology offers an approach that allows the 

incorporation of many covariates and simple model selection tools may be used to 

obtain a highly-correlated subset of covariates for matching.   The application of 

propensity score methodology to missing data problems does not focus on matching 

but rather on the grouping of respondents with similar scores.   

 
 
 
2.6.2 Propensity score methodology in nonresponse adjustment 
 

 

In nonresponse adjustment, inference on treatment assignment is replaced by inference 

on the response indicator, with the propensity score measuring the propensity to 

respond for a given unit.  The inverse of the estimated response propensity is used to 

obtain a modified Horvitz-Thompson (1952) estimator of the parameter of interest.  

This estimator may inflate the variance of estimates when the estimated response 

propensity is very small (Little, 1986).  Stratification on the response propensity score 

can approximately balance the outcomes between respondents and nonrespondents if 

the stratification on the propensity score is "fine" enough (David et al., 1983).  The 

stratification must be fine enough so that outcomes for respondents and 

nonrespondents are approximately equal within each stratum but coarse enough so that 

sample sizes are adequate within each stratum.  The classification of propensity scores 
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into five or six quantiles provides the basis for defining weighting adjustment classes 

called response propensity strata within which missingness is approximately MCAR 

(Little and Rubin, 2002).   Weights within each stratum are usually estimated 

nonparametrically as the inverse of the observed response rate within each adjustment 

cell.  This approach to weighting is similar to Oh and Scheuren's (1983) post-

stratification approach assuming quasi-randomization if the weighting classes are 

structured appropriately on the propensity score. 

 

A benefit of propensity score stratification is observed when the full set of covariates 

is prohibitively large for adjustment.  The propensity scores computed from the full set 

of covariates are highly model-dependent and may lack respondents within every level 

of the suite of variables.  If a large number of covariates are available, a reduced set of 

covariates must be identified for propensity score estimation.  For logistic regression, 

this reduced set of covariates may be obtained from model selection using drop-in-

deviance tests or information criteria.   

 

A similar approach to forming adjustment classes is predictive mean stratification 

(Little, 1986).  In this approach, the outcome of interest is modeled as a function of 

related covariates.  The predictions are grouped into intervals which define adjustment 

classes.  Values of the outcome are approximately constant within each adjustment 
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class, so the independence of the outcome and the response mechanism holds 

approximately within each adjustment class when data are MAR.   

 

Nonresponse adjustment cells may be formed on quantiles of the propensity score or 

the predicted mean, and each approach has advantages and disadvantages.  

Nonresponse adjustment within cells formed by the propensity score is effective for 

reducing bias when missingness is MAR (David et al., 1983).  However, weighting 

methods inflate variances, especially when the propensity score is associated with 

covariates that are unrelated to the outcome of interest (Little, 1986).  Adjustment cells 

based on the predicted mean are effective in mean imputation approaches to control 

variance but may be biased.  Weighting by the inverse of the response rate within each 

cell is equivalent to mean imputation within adjustment cells for estimates of totals, 

means, and domain means.  Classification on both classes formed by the response 

propensity and classes formed by the predicted mean, called joint classification, has 

the benefit of both gains in efficiency and bias reduction (Vartivarian and Little, 

2003).    

 

Instrumental variable regression is an estimation approach which models the mean of 

the outcome of interest as a function of the response propensity score (David et al., 

1983).  However, the response propensity is not modeled as a function of the outcome 
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because only respondent data are used and nonrespondent outcomes are not available.  

Assuming missing data are MAR, the regression model includes effects for the 

propensity score and auxiliary data associated with the outcome mean.  To avoid 

collinearity problems, different covariates should be used in the predicted mean model 

than are used in the response propensity model.  The instrumental variable regression 

model includes the response propensity in the case that the mean is poorly predicted 

by the model covariates.   

 

When a subsample of nonrespondents is available, joint classification and instrumental 

variable regression may be adapted for nonignorable nonresponse adjustments.  Joint 

classification involves modeling the predicted mean and the response propensity 

independently which is not practical with nonignorable nonresponse because the 

outcome of interest and the response mechanism are correlated.  Instrumental variable 

regression can be extended so that, in addition to modeling the predicted mean from 

response propensities, the response propensity score may be modeled from the 

predicted mean or some function of the predicted mean.  Then the relationship 

between the outcome and the response mechanism inherent in nonignorable 

nonresponse may be reflected in the estimated response propensities.   
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2.7 RESEARCH DIRECTIONS 

 

Joint classification by both response propensity scores and predicted means, along 

with instrumental variable regression, motivate the use of propensity score 

methodology in the case of NMAR missingness.  The correlation between the 

response indicator and the outcome of interest may be used to model predicted means 

as a function of response.  Response propensities may be modeled as a function of the 

outcome when nonrespondent information is available from a subsample.  A benefit of 

this approach is the ability to develop a predictive mean model that may be applied in 

repeated surveys of the same population.  This predictive model will be applied to 

binary outcomes to obtain a success propensity score that is used to model response 

when the outcome of interest is unavailable for nonrespondents.  Propensity score 

methodology and predictive mean theory are used to form weighting classes for two 

nonresponse adjustment approaches.   

 

In Chapter 3, propensity score methodology is extended to the case of nonignorable 

nonresponse.  This new methodology is applied to the weighting class adjustment 

(Chapter 4) and the Cassel et al. (1983) estimator (Chapter 5) using pilot data from a 

survey of New Mexico elk licensees.  In Chapter 6, the estimators are compared for a 

wider range of scenarios with simulations.   
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CHAPTER 3: PROPENSITY SCORE METHODOLOGY FOR 

NONIGNORABLE MISSINGNESS 

 

Propensity score methodology has been used primarily in the MAR missingness 

setting.  In this chapter, propensity score theory is extended to the case of 

nonignorable nonresponse for a new application of propensity score methodology.  

Notation is first established, and then the motivation and assumptions for the 

methodology are discussed.  Properties of the NMAR propensity score methodology 

are proposed for nonignorable nonresponse (Chapter 3) and then examined with pilot 

data for two estimators (Chapters 4 and 5) and simulations (Chapter 6). 

 

 

3.1 NOTATION 

 

Consider a finite population { }1,..., Nu u=U .  For each unit ui, there exists a real-

valued outcome Yi and a vector ( )1 ,...,i i piX X ′=X of covariates.  Let ( )1,..., NY Y=Y  

and { }1,..., N=X X X .  Denote a nonempty set s such that s ⊆ U  refers to an 

unordered sample.  Let n, the number of elements of S, represent the intended sample 
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size before nonresponse occurs, and assume that n is fixed.   Let the set of all sets s be 

denoted as T.   Define a function ( )p s on T  such that ( )p s  > 0, for all s∈T , and 

( ) 1p s =∑
T

, where the summation occurs across all possible sets s in T.   Then 

( )p s is the function that specifies the sampling design (Cassel, Särndal, and Wretman, 

1977).   

 

Let D = (D1, D2, …, DN) describe the implementation of the sampling design, where 

iD  is the indicator that unit i is included in the sample, i.e. 

 

1, unit  included in the sample
0, otherwisei

i
D ⎧

= ⎨
⎩

.  

 

Let D consist of a vector of independent and identically distributed binary random 

variables where ( )~i iD Bernoulli π  and ( )1i iP Dπ = =  is the probability of sample 

inclusion for unit i.  Furthermore, let ( )1, 1ij i jP D Dπ = = =  be the joint inclusion 

probability for units i and j.  Note that the inclusion probabilities and joint inclusion 

probabilities may depend on the individual covariate values as well as the full set of 
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covariate information, i.e. ( ) ( )1 ,i iπ = π X X  and ( ) ( )2 , ,ij i jπ = π X X X , where ( )1π  and 

( )2π  are known functions.  Let { }: 1D ii D= =I . 

 

We assume that the covariates Xi are observed for every unit of the sample.  However, 

when nonresponse occurs, the outcome of interest, Yi, is not observed for every unit in 

the sample.  For D∈i I , let Ri be the indicator that unit i responds, i.e.   

 

1, unit  responded
0, otherwisei

i
R ⎧
= ⎨
⎩

.          

 

Let R denote a Bernoulli random vector of missing data indicators for the sample with 

indices in increasing order and define { }: 1R D ii R= ∈ =I I .  Let 

( )1 1ri i ip P R D= = =  be the probability of response for unit i given sample inclusion.  

When data are MAR, we can model the response propensity as ( );ri ip p= X β  where p 

is a known function and β  is a vector of unknown parameters.  Under nonignorable 

nonresponse, we must assume that ( ), ;ri i ip p Y= X β  because the response indicator 

and the outcome of interest are not independent.  Let oY denote the vector of observed 

iY , R∈i I , such that such that { }: 1, 1o
i i iY D R= = =Y  for i = 1,…n with indices in 
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increasing order.  Let 
1

n

i
i

m R
=

= ∑  be the number of responding units, where m < n when 

nonresponse occurs.  

 

The conditional distribution of Ri, ( ),i i if R Y X , is used to describe missing data 

mechanisms and their inherent assumptions (Little and Rubin, 2002).   When 

nonresponse is nonignorable, the conditional distribution of Ri cannot be simplified.  

Nonresponse adjustment techniques must account for the correlation between the 

response indicator and the outcome of interest.   

 

 

3.2 MISSINGNESS 

 

Survey nonresponse is a potentially serious source of error in estimation from survey 

data (Lessler and Kalsbeek, 1999).  Nonresponse occurs when a unit selected for the 

sample does not provide a complete response.  In surveys using questionnaires, 

nonresponse may occur when a person selected for the survey is not home when called 

or refuses to participate in the survey.  Nonresponse is found in ecological surveys 

when a sample site is inaccessible or located on private property where a landowner 
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denies access.  The inability to obtain complete responses for all sampled units can 

produce biased estimates of parameters and variance, leading to erroneous inference 

(Lohr, 1999).   

 

Two types of nonresponse behavior may be observed: unit nonresponse and item 

nonresponse (Little and Rubin, 2002).  Unit nonresponse occurs when the entire set of 

variables for a unit is missing.  When a partial response is obtained, then the sample is 

said to be subject to item nonresponse.  Nonresponse bias impacts estimation when the 

nonresponse rate is substantial and missing outcomes differ substantially from the 

observed outcomes (Lessler and Kalsbeek, 1999).  Nonresponse bias may cause 

invalid inference due to variance inflation and biases in point and precision estimates 

(Dillman et al., 2002).  Methods to reduce bias from nonresponse error have been 

developed to correct this problem (David et al., 1983; Holt and Smith, 1979; Little, 

1986; Oh and Scheuren, 1983).  In selecting the appropriate method with which to 

reduce nonresponse bias, it is helpful to understand the mechanism that generates the 

data missingness.  We will restrict further discussion to the case of unit nonresponse. 

 

The conditional distribution of R, ( ),φf R Y, X , is used to describe missing data 

mechanisms and their inherent assumptions, where φ  represents all unknown 

parameters related to response (Little and Rubin, 2002).   Missingness is classified into 



54 
 
 

three categories (Dillman et al., 2002; Little and Rubin, 2002; Lohr, 1999): missing-

completely-at-random (MCAR), missing-at-random (MAR), and not-missing-at-

random (NMAR) missingness.  These three categories are distinguished by the 

conditional distribution of the response indicator, R.  When MCAR missingness 

occurs, the mechanism generating the missing data is not related to the outcome of 

interest, any covariates, or any unknown parameters.  In this case, the conditional 

distribution of R reduces to ( ) ( ), ,φ φf f=R Y X R  for all Y and φ.  The realized 

sample is considered a random subsample of the full sample and statistical analysis 

without any corrections for nonresponse may be conducted.   

 

When data are MAR, then the missingness mechanism is related to the outcome of 

interest through covariates.  If these covariates can be identified, then the distribution 

of the response indicator conditional on the observed outcomes and related covariates 

is independent of the missing outcomes and reduces to ( ) ( ),φ ,φf f=R Y, X R X  for 

all Y and φ.  Many methods are available to correct nonresponse bias from MAR 

missingness.  Adjustment methods include weighting methods (Holt and Smith, 1979; 

Oh and Scheuren, 1983), which modify design weights to account for missing 

outcomes, and imputation (Little and Rubin, 2002; Wang et al., 1992), which uses 

various methods of substitution to obtain complete-case data sets not subject to 

missingness.   
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When data are NMAR, the missingness mechanism is related to the missing outcomes.  

In this case, conditioning on the observed data does not remove the dependence on 

missing outcomes.  The conditional distribution of the response indicator cannot be 

simplified from its fullest form, ( ),φf R Y, X .  Also called nonignorable 

nonresponse, this type of missingness requires further survey effort to obtain 

information from nonrespondents (Bartholomew, 1961; Elliott et al., 2000; Hansen 

and Hurwitz, 1946; Rao, 1983) or stronger modeling assumptions (Rotnitzky and 

Robins, 1995; Stasny, 1991).  Correct specification of the missingness mechanism is 

necessary to obtain unbiased inference.   

 

 

3.3 INFERENCE 

 

Inference will be made on the population total, 
1

N

i
i

yτ
=

=∑  for values iy  of variables Yi, 

i = 1, …, N.   Using design weights iπ  for units in the sample, the Horvitz-Thompson 

(1952), or HT, estimator of the population total, τ, is: 
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1 1

ˆ
N n

i i
i i

i ii

D yT w y
= =

= =
π∑ ∑ ,       (3.1) 

 

where 1
i iw −= π .  In the case of nonresponse, the following modified Horvitz-

Thompson estimator (Little and Rubin, 2002) is used: 

 

1 1

N m
i i i

i i i
i ii i

D R yT w y
p= =

= = θ
π∑ ∑ ,       (3.2) 

 

where 1
i ip−θ =  is the response weight to account for nonresponding units.  Several 

methods are used to estimate the response probability.  Weighting class adjustments 

and post-stratification employ adjustment cells within which the response probability 

is estimated using post-stratification weighting or inverse-probability weighting 

(Gelman and Carlin, 2002).  Logistic regression may also be used to estimate the 

response propensity for each unit (Cassel et al., 1983).   

 

Note that i iD R  in equation (3.2) is an indicator for the event that unit i is both included 

in the sample and is observed, where 

 

( ) ( ) ( ) ( )1 1, 1 1 1 1i i i i i i i i iP D R P D R P D P R D p= = = = = = = = = π . 
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Therefore, T  may be regarded as a Horvitz-Thompson estimator and is unbiased for 

the true population total, i.e. ( )E T T= .  To calculateT , iπ  and ip are needed.  The 

inclusion probabilities, ( ) ( )1 ,i iπ = π X X , may be calculated given a specified sampling 

design.  Three difficulties exist with the calculation of ( ), ;i i i rp p y= X β .  First, 

ip depends on the unknown parameter, rβ .  Therefore, ip cannot be calculated, only 

estimated.  Second, when nonresponse is nonignorable, the probability of response 

depends on the outcome of interest, i.e. ( ) ( ), ; 1 , ;i i r i i i rp y P R y= =X Xβ β .  The 

response probability rip  cannot be accurately estimated from the observed data 

because the observed outcomes are insufficient to provide information on missing 

outcomes when nonresponse is nonignorable.  Third, suppose we obtain an estimate  

ˆ
rβ  for rβ .  Then we can estimate ip  by ( )ˆˆ ,i i i rp p y= X β; .  However, when yi is 

missing, ip cannot be calculated.   

 

The second difficulty may be dealt with by obtaining a subsample of nonrespondents.  

Let { }: 0b D ii R= ∈ =I I .  Let ( )bs  denote a set of size nb that is randomly selected 

from all units indexed by i such that bi∈I , where nb  ≤ (n – m).  Let ( )bY  represent 

the outcomes for the set ( )bs , and ( )bX represents the covariate matrix for the 
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subsampled nonrespondents.  The nonrespondent subsample is assumed to come from 

a probabilistic design obtained by randomization.  The outcomes in the nonrespondent 

subsample may be used to estimate rip  to alleviate the second difficulty described 

above.  A logistic regression model of the response indicator based on the combined 

data from the original survey and the nonrespondent subsample may provide estimates 

of the response probability for each unit based on related covariates.  Methods to 

obtain unbiased estimates of the response probabilities for NMAR missingness are 

discussed in this chapter and in Chapters 4 and 5.  The third difficulty is addressed by 

assuming a superpopulation model for the unknown parameter, rβ .  The model for rβ  

may be constructed from information in the subsample and applied to data from 

similar surveys with nonresponse but without a nonrespondent subsample.  The 

estimate of rβ  will depend on both the initial respondents and a subsample of 

nonrespondents, i.e. ˆ
rβ ( )( ) ( )ˆ , , , ,o b b

r R Y X Y Xβ= .  Because the nonrespondent 

subsample is used only in the superpopulation setting, the nonrespondent subsampling 

design is left unspecified.   
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3.4 SUPERPOPULATION MODEL  

 

Under the superpopulation model setting, assume that the vector ( )1 2, ,..., Ny y yy =  is 

a realization of the random variable ( )1 2, ,..., NY Y YY = .  Let Xi be the complete set of 

covariates associated with unit i, and let X represent the covariate data set for all units.  

Assume that 1,..., NX X  are independent with density ( ; )fX x ψ  for some unknown 

parameter ψ  and assume that the pairs ( ),i iY X  are independent.  Further assume that 

the outcomes are independent and identically distributed conditionally on the 

covariates with densities ( ; , )Y i if y ςX .  Assume that the sample size n is fixed for all s.  

Now the inclusion probabilities and joint inclusion probabilities are defined as: 

 

( ) ( ) ( )11 ,i i iP D = = π = πY, X X X  

 

and  

 

( ) ( ) ( )2
i1, 1 , ,i j i i j ijP D D Y= = = π = πX X X X, . 

 

Similarly, under the superpopulation model, define the response probability as: 
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( ) ( )1 , ;i i i r i i r riP R Y p Y p= = =X X, β . 

 

We also assume that the sampling design and the response mechanism are independent 

conditional on the outcome of interest and the covariate matrix, i.e.  

 

,i i i iD R Y⊥ X . 

 

Define a covariate matrix sX that contains all the columns of X, the response indicator 

vector, R, and any relevant interactions between R and columns of X.   Similarly, 

define a covariate matrix rX that contains all the columns of X, the outcome vector, Y, 

and any relevant interactions between Y and columns of X.   Then the covariate 

matrix, sX  may be used to model the outcome of interest and rX  may be used to 

model the response probability, rip .   

 

Assume that the outcome of interest is a binary indicator of success, where 

( ) ( )1 , ;i i i s i si s siP Y R p R p= = =X X, β .  The distributions of the outcome of interest 

and the response indicator are explicitly defined under the superpopulation model by 
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logistic regression models for the binary outcome of interest and the response 

indicator: 

 

( ) ( ) 1
, 1 expi i i si si sE Y R p

−
′= = + −⎡ ⎤⎣ ⎦X X β      (3.3) 

 

( ) ( ) 1
, 1 expi i i ri ri rE R Y p

−
′= = + −⎡ ⎤⎣ ⎦X X β ,     (3.4) 

 

where ps is the vector of "conditional" success propensity scores, sβ is the set of 

unknown regression coefficients for the success propensity model, pr is the vector of 

"conditional" response propensity scores, and rβ  is the vector of unknown regression 

coefficients.  The term "conditional" is used to describe ps and pr to emphasize their 

conditionality on the response mechanism and outcome of interest, respectively.  We 

may also express the models for the conditional success and response propensity 

scores, respectively, as follows: 

 

( )logit , ;s i i s si sp R ′=⎡ ⎤⎣ ⎦X Xβ β ,  

 

and 
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( )logit , ;r i i r ri rY ′=⎡ ⎤⎣ ⎦X Xp β β , 

 

where ( )logit log
1

aa
a

⎛ ⎞= ⎜ ⎟−⎝ ⎠
.   

 

 

3.5 PROPENSITY SCORE METHODOLOGY 

 

When data are MAR, the probability of response depends on the outcome of interest 

only through covariates related to response; i.e. 

 

( ) ( )Y ,i i i i iP R P R=X X .   

 

The propensity score was originally defined by Rosenbaum and Rubin (1983) under 

MAR missingness as: 

 

( ) ( )1i i ie P R= =X X , 
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where, in this setting, the response mechanism represents the treatment.  Rosenbaum 

and Rubin (1983) state that ( )ie X  functions as a balancing score, meaning that the 

distribution of iX  conditional on ( )ie X  is the same for responding (treated) units and 

nonresponding (untreated) units.  Therefore, the missingness within each level of the 

balancing score is no longer dependent on the covariates, X, so missingness is MCAR 

within these levels.  The finest balancing score is the set of covariates, iX , and the 

coarsest balancing score is the propensity score, ( )ie X .  We see that, because iX  is 

finer than ( )ie X : 

 

( )( ) ( )( ) ( )

( ) ( )
( )

1  1 ,  

                          

                         

i i i i i i

i i

i

P R e E P R e e

E e e

e

⎡ ⎤= = =⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

X X X X

X X

X

.   

 

Furthermore, because iX  is finer than ( )ie X , we have that: 

 

( )( ) ( ) ( )1  , 1  i i i i i iP R e P R e= = = =X X X X . 
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Therefore, ( )( ) ( )( )1  , 1  i i i i iP R e P R e= = =X X X  and ( )i i iR e⊥X X .  This result 

implies that the covariates are independent of the response mechanism conditional on 

the propensity score.  Therefore, the distribution of the covariates conditional on the 

propensity score is the same for respondents and nonrespondents.  This balance allows 

the construction of adjustment classes containing units with similar response rates.  

Therefore, the independence of the response mechanism and covariates holds 

approximately, and the MCAR missingness may be assumed within each adjustment 

class.  Quintiles are used to group propensity scores into adjustment classes (Little and 

Rubin, 2000).  The coarsening of the propensity score reduces model dependence 

while balancing the responding and nonresponding subpopulations relative to 

covariates.  The quintiles can be used to create groups within which response rates are 

modeled.   

 

When data are NMAR, the probability of response is dependent on both related 

covariates and the outcome of interest, so ( )( ), ,i i i iP R Y eX X  cannot be further 

simplified without additional information about the missingness mechanism.  

Therefore, the MAR definition of the propensity score given by Rosenbaum and Rubin 

(1983) cannot be used to balance the covariate distribution with respect to the response 
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indicator.  For NMAR data, the response propensity score is analogous to the 

probability of response defined earlier as: 

 

( ) ( ), 1 ,ri r i i i i ip p Y P R Y= = =X X       (3.5) 

 

Using this new definition of the response propensity score for NMAR missingness, its 

properties as a balancing score are shown in the proof of the following lemma.   

 

Lemma:  The NMAR response propensity score, ( ),ri r i ip p Y= X , is a balancing score 

for the response mechanism when nonresponse is nonignorable. 

 

Proof:  Because ( ),i iY X  is finer than ( ),r i ip Y X , the information provided by 

( ),r i ip Y X  is redundant when combined with ( ),i iY X .  Using the definition of 

( ),r i ip Y X  we have: 

 

( )( ) ( ) ( )1 , , , 1 , ,i i i r i i i i i r i iP R Y p Y P R Y p Y= = = =X X X X .  
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Conditioning on only the NMAR response propensity score, applying the Law of 

Iterated Expectations (Billingsley, 1995, p. 448, Theorem 34.4), and using the result 

from above, we have that: 

 

( )( ) ( )( ) ( )

( ) ( )

( )

1  , 1 , , ,  ,

                                 ,  ,

                                 , .

i r i i i r i i i i r i i

r i i r i i

r i i

P R p Y E E R p Y Y p Y

E p Y p Y

p Y

⎡ ⎤= = =⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

X X X X

X X

X

 

 

Therefore, ( )( ) ( )( )1 , , , 1  ,i i i r i i i r i iP R Y p Y P R p Y= = =X X X and 

( ) ( ),  ,i i i r i iY R p Y⊥X X .  The NMAR response propensity score balances the 

distribution of the covariates between respondents and nonrespondents, and we have 

the following result from Rosenbaum and Rubin's Theorem 1 in the notation of Dawid 

(1979): 

 

( ) ( ), ,i i i r i iY R p Y⊥X X .       (3.6) 

 
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Let ( )* * ,ri r i ip p Y= X be the quintile of the response propensity score associated with the 

ith unit.  Balance holds approximately when conditioning on quintiles, ( )* ,r i ip Y X , of 

the response propensity score under nonignorable missingness (Vartivarian and Little, 

2003).  If the covariates, iX , are good predictors of response, then the units within 

each adjustment group based on quintiles of the NMAR response propensity score 

should have approximately equal response probabilities.      

 

When nonresponse occurs, the outcome of interest is not available.  When 

nonignorable nonresponse occurs, the missing outcomes may be substantially different 

from the respondent outcomes.  Modeling the NMAR response propensity score from 

the outcome of interest is not possible unless a nonrespondent subsample or a model 

for the outcome is available.  Often, obtaining a subsample of nonresponding units is 

not possible, such as when a landowner denies access to a survey site.  In some cases, 

such as in large governmental surveys with list frames, a nonrespondent subsample 

may be obtained.   However, regularly obtaining a nonrespondent subsample for 

periodic surveys may not be feasible due to the extra time, effort, and expense 

required for each survey.  In this case, nonrespondent subsamples conducted every 

few years may provide the information to create a predictive model for the outcome of 

interest.  This predictive model of success may be applied during years when a 

nonrespondent subsample is not available.   
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Assume that the outcome of interest is a binary indicator of success, where Yi = 1 

indicates a success.   Propensity score methodology is used to obtain estimates of 

success propensity from a predictive model of success so that the information obtained 

from the nonrespondent subsample can be used for similar surveys for which a 

nonrespondent subsample is not available.  An implicit assumption is that the success 

mechanism does not differ substantially between the modeling data set and the 

estimation data set. 

 

Define the conditional success propensity score as: 

( ) ( ), 1 ,si s i i i i ip p R P Y R= = =X X . 

 

The conditional success propensity score is shown to be a balancing score for the 

outcome of interest so that the joint distribution of the success covariates and the 

response mechanism is the same for successful and unsuccessful units.   

 

Lemma: The conditional success propensity score, ( ),s i sip R X , is a balancing score for 

Y. 
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Proof:  Adding ( ),s i ip R X  to the terms of conditioning in the conditional success 

propensity score, we can simplify the expression because ( ),i iR X  is finer than 

( ),s i ip R X :  

 

( )( ) ( ) ( )1 , , , 1 , ,i i i s i i i i i s i iP Y R p R P Y R p R= = = =X X X X .   

 

Furthermore, conditioning on only the conditional success propensity score, applying 

the Law of Iterated Expectation (Billingsley, 1995, p. 448, Theorem 34.4), and using 

the result from above, we have that: 

 

 
 

 
( ) ( )                                ,  ,s i i s i iE p R p R⎡ ⎤= ⎣ ⎦X X  

 
( )                                , .s i ip R= X                    (3.7)                     

  
 
 

Therefore, the conditional success propensity score balances the distribution of the 

covariates between successful and unsuccessful units, rendering the response indicator 

( )( ) ( )( ) ( )1  , 1 , , ,  ,i s i i i i i s i i s i iP Y p R E E Y R p R p R⎡ ⎤= = =⎣ ⎦X X X X
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and related covariates redundant.  We may obtain the following result from 

Rosenbaum and Rubin's Theorem 1, using the notation of Dawid (1979): 

 

( ) ( ), ,i i i s i iR Y p R⊥X X .       (3.8) 

 

Let ( )* * ,si s i ip p R= X  represent the success propensity quintile corresponding to the ith 

unit. These results hold approximately for quintiles of the conditional success 

propensity score, ( )* ,s i ip R X , so that ( ) ( )*, ,i i i s i iR Y p R⊥X X  approximately. 

        

Often a nonrespondent subsample is not available for every survey exhibiting 

nonresponse. For these surveys, the outcome of interest is unknown for 

nonrespondents.  One approach is to replace the outcome of interest with its 

expectation conditional on the response indicator and the covariates.  When a 

nonrespondent subsample is not possible for every survey occasion, information from 

a previous nonrespondent subsample from a similar population may be used to 

estimate the expectation of the outcome of interest.  Then predictions from the 

conditional success propensity model may be used as covariates in the response 

propensity model to account for NMAR missingness when a nonrespondent 
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subsample is not available.  Define the conditional response propensity score 

( ),cri cr si ip p p= X  as: 

 

( ) ( )( ), 1 , ,cr si i i i i i ip p P R E Y R= =X X X  

( )( )                  1 , ,i s i i iP R p R= = X X .     (3.9) 

 

Notice that  ( ),r i ip Y X  conditions on the outcome of interest but ( ),cr si ip p X  

conditions on the conditional success propensity score.  The term "conditional" is used 

to describe the response propensity score to emphasize the dependence on the 

conditional success propensity score rather than the outcome of interest.  Note that 

under nonignorable missingness, the success propensity for respondents differs from 

that of nonrespondents for a given set of covariates that are related to the success 

mechanism.  In other words, 

 

( ) ( )1, 0,s i i s j jp R p R= ≠ =X X       (3.10) 

 

for i j≠  but for i j=X X .   
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Now the conditional response propensity score may be expressed as: 

 

( )( )

( )( )

, ,

     1 , ,

cri cr s i i i

i s i i i

p p p R

P R p R

=

= =

X X

X X

 

 

for all ,r x with positive probability.  By (3.10) we have that ( ) ( ), ,s i sp R p r=x x  

iR r⇒ = .  Therefore, because ( ),i iR X  is finer than ( ),s i ip R X  we have that: 

 

( )( )

( )

( )

, ,

     ,

     1 ,

     

cri cr s i i i

cr i i

i i i

p p p R r

p R r

P R R r

r

= = = =

= = =

= = = =

=

X x X x

X x

X x

 

 

for all ,r x with positive probability (Birkes, 2009).  Since this result holds for all 

values of iR , we have that cri ip R= .   
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The fact that conditioning on the conditional success propensity score reduces 

to cri ip R=  appears to be a trivial result.  However, equation (3.9) defines a useful 

expression for iR  that leads us to the formation of bias-reducing adjustment cells.  We 

can consider crip  a balancing score for the response indicator because, for cri ip R= , 

we have that ( ),i i i criR R p⊥X  because iR  is constant conditional on itself and 

therefore independent of all random variables.  An alternate proof is provided in 

Appendix B.  Balance holds approximately for quintiles of the conditional response 

propensity score, *
crp . 

 

Define the conditional response propensity score modeled from the quintiles of the 

conditional success propensity score as ( ) ( )* *, 1 ,qcr si i i si ip p P R p= =X X .  When the 

quintiles of the conditional success propensity score ( *
sip ) are used to predict response, 

units within each class formed by the quintiles are assigned the same success 

probability, i.e. ( ) ( )* *1, 0,s hi hi s hi hip R p R= = =X X  for all units i in success propensity 

quintile class h.  Therefore, the trivial solution found above is not obtained when 

quintiles of the conditional success propensity score are used to predict response 

because each quintile is not associated with a single response disposition.  Both 

respondents and nonrespondents can occur within each quintile, so coarsening the 

conditional success propensity score as a predictor of response prevents simplification 
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of the response propensity score to the observed response.  In addition to avoiding the 

issue of the trivial solution, coarsening the conditional success propensity scores into 

quintiles may reduce success model dependence for the response propensity model.  

Note that the actual quintile values are use for response model prediction rather than a 

class designation because the relative quintile values are informative.  Let 

( )* * ,qcr si ip p X represent the quintiles of qcrp .  Balancing properties of the quintiles of 

qcrp  with respect to R are expected to be affected by the coarsening of sp  as a 

response model predictor.   

 

In summary, an estimator of the success propensity score ( )( ),si s i ip p R= X and three 

estimators of the response propensity are proposed under nonignorable nonresponse: 

the NMAR response propensity score ( )( ),ri r i ip p Y= X , the conditional response 

propensity score ( )( ),cri cr si ip p p= X , and the conditional response propensity score 

from the quintiles of the conditional success propensity score ( )( )* ,qcri qcr si ip p p= X .  

The estimates are obtained in a model-based setting and represent a new application of 

propensity score methodology.  In subsequent chapters, the success and response 

models are assumed known and applied in model-assisted inferential approaches that 

permit use of inclusion probabilities from complex survey designs.  The performance 

of these new approaches for nonignorable nonresponse bias adjustment is evaluated 
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for two model-assisted estimators with pilot data for the weighting class adjustment in 

Chapter 4 and with a novel approach called the propensity score adjustment estimator 

in Chapter 5.  In Chapter 6 all estimators are examined with simulations.    
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CHAPTER 4: WEIGHTING CLASS ADJUSTMENT FOR NMAR DATA 
WHEN THE OUTCOME IS BINARY AND A NONRESPONDENT 

SUBSAMPLE IS AVAILABLE 
 

 

4.1 INTRODUCTION 

 

Superpopulation approaches treat the outcome of interest as a random variable. In the 

design-based setting, the outcome of interest for unit i, Yi and the related covariates Xi 

are treated as fixed.  In model-assisted estimation, adjustments for nonsampling errors 

are made by assuming models for the error structure while applying design-based tools 

to account for the survey design (Särndal et al., 1992).  In this thesis, model-assisted 

approaches are used to account for nonsampling error due to nonresponse for data 

from complex survey designs.   

 

The modified Horvitz-Thompson estimator in equation (3.2) weights each respondent 

outcome by the inverse of its propensity to respond (Little and Rubin, 2002).  This 

estimator is considered a model-assisted estimator because the superpopulation model 

is assumed known for the response propensity score.  Superpopulation parameters, 

specifically logistic regression coefficients for the models of the outcome and the 

response mechanism, are treated as known through conditioning.  The weighting class 
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adjustment further incorporates the quasi-randomization assumption to estimate the 

response propensity within each adjustment class.  

 

First, the motivation for the model assisted setting is established.  Then, methodology 

for the weighting class adjustment and propensity score methodology under 

nonignorable missingness are reviewed.  Finally, the NMAR weighting class 

adjustment approach is applied to pilot data from a survey of elk hunters in New 

Mexico and the results are discussed.   

 

 

4.2 MOTIVATION 

 

Ecological agencies often experience survey nonresponse.  For NMAR missingness, 

inference based only on respondent outcomes may be biased.  When a nonrespondent 

subsample is feasible, the information from nonrespondents may be used in an 

adjustment procedure for nonresponse called double sampling for stratification.  

Nonrespondent subsampling often requires considerable effort and cost and may not 

be possible for every survey that is subject to nonresponse.  When the factors affecting 

nonresponse are consistent over time, information from a nonrespondent subsample 
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may be used to develop a predictive model to reduce nonresponse bias when a 

nonrespondent subsample is infeasible.   

 

This work adapts MAR methods for NMAR missingness when a nonrespondent 

subsample is available.  First, the MAR adjustment approaches, weighting class 

adjustment and propensity score classification, are discussed.  Second, given that a 

nonrespondent subsample is available, propensity score classification based on results 

from Chapter 3 is applied to the weighting class adjustment to adjust for NMAR 

missingness when the outcome is a binary variable.  Finally, a case study is examined 

in which a survey of elk hunters is found to generate biased estimates of elk harvest 

when no nonresponse adjustment is incorporated in the analysis.   

 

 

4.3 MAR WEIGHTING ADJUSTMENT APPROACHES 

 

Weighting adjustment methods are used to adjust the sampling design weights to 

account for missing data (Little and Rubin, 2002; Lohr, 1999; Oh and Scheuren, 

1983).  When units are missing, the sampling weights from responding units do not 

sum to the population size.  The observed units must be weighted so that the entire 
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population is represented and estimation is unbiased.  MAR weighting adjustment 

methods are used to weight observed outcomes so that the sample is extrapolated 

appropriately to the larger population and resulting estimates are unbiased under 

repeated sampling (Gelman and Carlin, 2002).  An extension of the HT estimator for 

MAR missingness (equation 3.2) weights each outcome by the inverse of its 

propensity to respond, ip  (Little and Rubin, 2002).  This estimator is approximately 

design-unbiased for the population total if the missingness is MCAR within 

adjustment cells defined by related covariates (Little and Vartivarian, 2003).   

 

When covariates related to the response mechanism are available, the response 

propensity (pi) can be estimated directly by logistic or probit regression (Little and 

Rubin, 2002).  Adjusting the design weights in equation (3.2) with the inverse of ˆ ip  

from the regression model will help to reduce nonresponse bias (Cassel et al., 1983).  

However, inadequate response within levels of covariate combinations may generate 

estimated response propensities that are unstable.  For example, if estimated response 

propensities are very small, the variance of the estimator will be inflated.   

 

To avoid unstable estimates from direct estimation, the response propensities may be 

estimated within coarser groupings of related covariates called adjustment classes.  

These classes are structured so that response probabilities for subjects within each 
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group are approximately equal.  Weighting classes are formed from covariates related 

to the propensity to respond, the outcome of interest, or a combination of both sets of 

variables.  The weighting class adjustment is used for each weighting class to adjust 

for nonresponse.  Weighting class adjustment and propensity score methodology are 

two MAR adjustment techniques that employ adjustment classes.  These two methods 

are discussed in a MAR context and then adapted for NMAR missingness when a 

nonrespondent subsample is available. 

 

 

4.3.1 Weighting class adjustment 
 
 

Weighting class adjustment is a nonresponse adjustment originally developed for 

domain estimation for covariates not used as design strata (Oh and Scheuren, 1983).  

This estimator is similar to the post-stratification adjustment (Holt and Smith, 1979), 

except in this case the population sizes are unknown for each adjustment class.  The 

unconditional variance of the estimator includes an additional variance component for 

random sample sizes, but this is often ignored due to its relatively small effect on the 

variance (Gelman and Carlin, 2002).  The weighting class adjustment estimator is 

biased to the degree that the estimated population sizes for each adjustment class are 

biased for the true population sizes for each adjustment class.   
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Let h  index the set of adjustment classes, h = 1, …, H..  Let hN , hn , and hm  be the 

population total, sample size, and number of respondents, respectively, within the hth 

adjustment class.  A general form of the weighting class estimator of the total is given 

by:  

 

1

ˆ
ˆ

h

H
hi

WC
h i S hi h

yT
pπ= ∈

=∑∑ ,          (4.1) 

 

where hS  is the set of responding units within weighting class h, hiy  is the outcome of 

interest for unit i with in weighting class h,  hiπ  is the inclusion probability of the ith 

unit with weighting class h, and ˆ hp is the estimated response probability within 

adjustment cells h =1,..., H.    

 

Response propensities are calculated within each adjustment class assuming the quasi-

randomization assumption.  Quasi-randomization treats the response mechanism as the 

second-phase of a two-phase sampling design.  In this setting, the first phase is 

represented by selection in the sample.  The second phase is assumed to be a stratified 

random sample of respondents with weighting classes functioning as strata.  The 

response indicator, R, conditional on first-stage sample inclusion, represents an 
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independent Bernoulli process with a common positive probability of response, hp , h 

= 1, …, H.  The response mechanism is assumed uniform within subpopulations and 

independent among subpopulations.   Therefore, within each subpopulation, the 

missingness mechanism is MCAR.   When the quasi-randomization assumption is 

met, estimation is unbiased within these subpopulations when the estimated 

subpopulation sizes are unbiased.  

 

Nonresponse adjustment weights, iw , are computed within each weighting class by 

one of three methods: post-stratification weighting, weighting class weighting, and 

inverse probability weighting (Gelman and Carlin, 2002).  Post-stratification 

weighting involves calculating adjustment weights based on known sample and 

population sizes within each weighting class.  Within any given adjustment class, the 

post-stratification weight is calculated proportional to the number of population units 

divided by the number of population units within that class, i.e. iw  is proportional to 

h

N
N

 for a unit in post-stratum h.  When post-stratum information is not available for 

all units in the population but is available for all units in the sample, the weighting 

class adjustment is used rather than the post-stratification adjustment.  In this case, the 

adjustment weight is proportional to the number of sampled units divided by the 
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number of sampled units in each class, i.e. iw  is proportional to 
h

n
n

 for a unit in post-

stratum h.  The weights for the post-stratification adjustment and the weighting class 

adjustment are also proportional to the observed response rate within each class, h

h

n
m

.  

Inverse probability weighting incorporates the inverse of design probabilities to 

compute weighting adjustments, such that inverse probability weights are a function of 

1
i
−π  .  This approach requires that inclusion probabilities are known at the time of 

survey execution.   

 

Oh and Scheuren (1983) assume a simple random sampling design for the following 

form of the weighting class adjustment estimator of the population total: 

 

1 1

ˆˆ
H H

h h
WC OS h h

h hh h

n NNT y y
n m m−

= =

= =∑ ∑ ,        (4.2)      

 

where ˆ h
h

NnN
n

=  is the estimated size of the subpopulation in weighting class h and 

( )
1

hm

h i h
i

y y
=

= ∑ .  The theoretical variance is approximated as: 
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( ) ( )2

1

ˆ
1

H

WC OS h h
h

N N nVar T h N Y Y
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=
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1 1
      1 1

H H
h h h h

h h
h hh h h

m V m VN N
N m n m= =

⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ,      (4.3) 

 

where hnNn
N

=  is the expected overall sample size in cell h, h h hm n= φ  is the expected 

number of respondents in cell h, hφ  is the uniform response probability in weighting 

class h, and hV  is the variance of the outcome of the hm  responding units in weighting 

class h.  This estimator uses the weighting class approach to weighting when 

subpopulation sizes, Nh, are unknown.   

 

The weighting class estimator for inverse-probability weighting (Lessler and 

Kalsbeek, 1992) is given by: 

 

*

1 1

ˆ
hmH

WC IP hi hi
h i

T w y−
= =

= ∑∑ ,          (4.4) 

where * hi
hi

h

ww
p

= , 1
hi hiw −= π , and 1

1

h

h

n

hi
i

h m

hi
i

w
p

w

=

=

=
∑

∑
.  Here hp  is estimated by inverse-

probability weighting.  This method provides a more general approach for complex 
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survey designs (Lessler and Kalsbeek, 1992).  Variance estimators are not as 

straightforward to compute with inverse probability weighting, and linearization 

methods must be used to approximate the variance as a function of the inverse 

probability weights, iw  (Wolter, 2007; Woodruff, 1971).  Little and Vartivarian 

(2003) caution that estimators based on inverse probability weighting are not 

necessarily unbiased and suggest that a more robust approach is to use post-

stratification weights within weighting classes formed from variables associated with 

the response mechanism as well as design variables.   

 

Särndal et al. (1992) propose the response homogeneity group (RHG) model which, in 

practice, is equivalent to the quasi-randomization assumption of Oh and Scheuren 

(1983).  Särndal et al. (1992) provide the following general variance estimator for the 

weighting class estimate of the total under a complex survey design:  

 

( ) 2 2

1 1 1

ˆ ˆ
m m H

ij i j ji h h
Gen WC h h

i j hij ij i j h h

yy n mV T n S
p n m= = =

π − π π ⎛ ⎞−
= + ⎜ ⎟π π π ⎝ ⎠
∑∑ ∑ ,    (4.5) 

 

where 2
hS  is the variance among design-weighted outcomes hi

hi

y
π

for respondents in the 

hth stratum.  This variance estimator is a general form that must be tailored to reflect 
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the specific sampling design used.  Särndal et al. (1992) give the corresponding 

variance estimator for the weighting class adjustment under simple random sampling: 

 

 ( ) ( ) ( )22 2
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ˆ ˆ ˆ1
1 1
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h h h

SRS WC h h
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Nn n n m n n= =

⎡ ⎤⎛ ⎞−−⎛ ⎞= − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  

2
2 2

1

                
H

h h h
h

h h h

n n mN s
n n m=

⎛ ⎞−⎛ ⎞+ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ,          (4.6) 

where 
1

1 hm

h hi
ih

y y
m =

= ∑ , 1

1

ˆ

H

h h
h

H

h
h

m y
y

m

=

=

=
∑

∑
, and 2

hs  is the variance among the outcomes in 

the hth weighting class.   This variance form, which assumes weighting within 

adjustment classes for unknown subpopulation sizes, will be used for subsequent 

analyses.  Note that this variance estimator does not account for the randomness of the 

propensity scores on which weighting classes are based.   

 

The weighting class adjustment provides estimation within levels of variables that may 

or may not be incorporated into the survey design.  Stratification reduces the variation 

of estimates of the population total when outcomes are similar within strata and 

different among strata (Cochran, 1977).  However, stratification may increase the 

overall variance if the stratification variables are unrelated to the outcome of interest.  
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Like stratification, weighting class adjustments works best when the variance among 

adjustment cells is high relative to the variance within adjustment cells (Little, 1986).   

 

Weighting class adjustments depend on the appropriate choice of adjustment variables 

from which to form adjustment classes.  When the dimension of X is large, calculation 

of propensity scores for every covariate combination may result in subgroups that do 

not contain both treatment and control units.  To remedy this problem, one method of 

obtaining a coarse partition of adjustment is classes is propensity score classification 

(Rosenbaum and Rubin, 1983). Recall that the estimated propensity score is used in 

non-randomized studies of a treatment effect to classify treatment and control units 

into subclasses with similar covariate distributions so that unconfounded inference on 

the treatment effect may be made.  Cochran (1968) suggests that five covariate 

subclasses are effective in removing roughly 90% of bias.  Therefore, quintiles of 

estimated propensity score from a logistic or probit regression are used to define the 

subclasses.  Within these subclasses, the distribution of the covariates for treatment 

and control units is approximately equal, i.e. balanced.  If the assumption of strongly 

ignorable missingness can be made, then estimation of the average treatment effect 

within each subclass is unbiased.  Any residual bias is due to the heterogeneity of 

propensity scores within subclasses.   
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Propensity score classification is an extension of the propensity score methodology to 

missing data applications (David et al., 1983).  If the propensity score is estimated 

from covariates that are related to the response mechanism, then grouping on the 

propensity score creates classes within which the independence of the response 

mechanism and the covariates holds approximately.  A benefit of this approach is the 

ability to use any number of covariates since they will be summarized by a single 

variable, the propensity score.  This ensures that sample sizes within adjustment 

classes will be reasonably large for estimation of within-class response rates and 

variance estimates.    

 

 

4.3.2 MAR adjustment class construction 
 

The response propensity may be modeled with logistic regression (David et al., 1983).  

Quantiles of the propensity score form H = 5 adjustment classes used in the weighting 

class adjustment estimators in (4.3) and (4.4).   Using design-weighted logistic 

regression to estimate the propensity scores was found to have little benefit compared 

to ordinary logistic regression (Little and Vartivarian, 2003).  Bias is slightly increased 

when the sampling weights are included as compared to results from logistic 

regression modeling that did not incorporate design weights.  Therefore, all 
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subsequent discussion of logistic regression models and propensity scores refers to 

unweighted logistic regression. 

 

One method to form adjustment classes is to create groups based on a classification of 

the predicted mean (David et al., 1983).  Related covariates are used to model the 

outcome of interest, and then quantiles of the fitted values are used to form adjustment 

classes.  This approach is called "predicted mean classification." 

 

Response propensity classification and predicted mean classification possess different 

benefits (Little, 1986).  Forming adjustment cells from the response propensity 

produces approximately unbiased estimates of domain and cross-class means (means 

calculated across levels of adjustment classes), but weighting inflates the variance.  

However, weighting within adjustment cells based on the predicted mean controls bias 

and variance for overall means and domain means, but cross-class means may be 

substantially biased from weighting within groups formed on the predicted mean.  

Combining response propensity classification and predicted mean classification may 

be more beneficial than using either approach.  Instrumental variable regression and 

joint classification are two methods that combine predicted mean classification with 

response propensity classification for MAR data.   
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In the joint classification approach, adjustment cells are formed by cross-classifying 

on classes formed from the predicted mean and classes formed from the predicted 

response probability.  Joint classification controls bias, increases efficiency, and 

allows unbiased estimation of cross-class means (Vartivarian and Little, 2003).  With 

MAR missingness, joint classification enjoys a "double robustness" property where 

correct specification of either the predicted mean or the response propensity provides 

benefits.  If the predicted mean model is correctly specified but the response 

propensity model is misspecified, then joint classification controls bias of the overall 

mean and improves efficiency compared to single classification on the response 

propensity alone.  If only the response propensity model is correctly specified, then 

joint classification controls bias for overall means and cross-class means.  Note that 

joint classification approaches require the use of 25 adjustment classes rather than the 

five classes used by single classification approaches because adjustment classes are 

formed from quintiles of the response propensity score as well as quintiles of the 

success propensity score.   

 

Instrumental variable regression employs a function of the estimated propensity score 

to model the predicted mean of the outcome of interest (David et al., 1983).  Examples 

of such functions include predictive mean modeling within classes formed by the 

propensity score or using standard normal densities of the propensity score as a 
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covariate in a regression model of the outcome.  The modeled response propensity 

score is used as a covariate in the predicted mean model.  Including the response 

propensity score as a predictor of success protects against bias introduced by the 

misspecification of the relationship between the outcome and covariates.  When the 

predicted mean is accurately modeled within classes formed by the response 

propensity, the distribution of covariates for respondents and nonrespondents is the 

same.  Then the bias is corrected within adjustment classes where covariate 

information is balanced even if the model of the outcome is misspecified.  Models for 

the response and for the outcome should be constructed from different covariates to 

avoid multicollinearity problems (David et al., 1983).   

 

Joint classification and instrumental variable regression for MAR data motivate the 

development of a methodology that can be used to reduce nonresponse bias when data 

are NMAR.  If information on response from a nonrespondent subsample can be 

obtained, then the information from that survey may be used to develop models for 

response that account for its conditional dependence on the outcome of interest.  MAR 

adjustment models that incorporate the subsample data are examined to determine if 

the data from a nonrespondent subsample is sufficient to reduce bias from 

nonignorable missingness.  Two response propensity models for NMAR data are 

proposed.  A case study involving an annual survey of elk hunters in New Mexico is 



92 
 
 

examined.  First, approaches for variable selection and model selection techniques are 

discussed.  

 

 

4.3.3 NMAR adjustment class construction 
 

When data are NMAR, the response mechanism is dependent on the outcome of 

interest, and the distribution of the response mechanism cannot be simplified from the 

form ( ), ,φf R Y X .  To accurately model the outcome, the response indicator must be 

included as a covariate.  Since outcomes are not available for survey nonrespondents, 

modeling the mean is possible only if nonrespondents can be subsampled or if further 

modeling assumptions are made.   

 

The goal of this work is to develop a method for obtaining an unbiased estimate of the 

population total for a binary outcome subject to nonignorable nonresponse.  If a 

subsample of nonrespondents is obtained, then a predictive mean model can provide 

information on the outcomes of nonrespondents and may be used with similar data sets 

when nonrespondent subsamples are not available.  New techniques are proposed for 

forming adjustment cells under nonignorable missingness by incorporating the 

subsample information so that MCAR missingness is achieved within subgroups.  
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In Chapter 3, three estimators of the response propensity were proposed for 

nonignorable nonresponse: the NMAR response propensity score ( )( ),ri r i ip p Y= X , 

the conditional response propensity score ( )( ),cri cr si ip p p= X , and the conditional 

response propensity score from the quintiles of the conditional success propensity 

score ( )( )* ,qcri qcr si ip p p= X .  In Chapter 3, the three response propensity score 

estimators were shown to balance the response mechanism for successful and 

unsuccessful units when the outcome of interest is a binary response.  These three 

response propensity score estimators are used as the basis for NMAR classification in 

approaches referred to, respectively, as NMAR response propensity classification 

(indexed by "R"), conditional response propensity classification (indexed by "CR"), 

and conditional response propensity classification based on quintiles of the 

conditional success propensity score (indexed by "QCR").  The conditional success 

propensity score is also used to form adjustment cells in an approach referred to as 

conditional success propensity classification (SUCC), which reflects predicted mean 

stratification for NMAR missingness.  Additionally, classes formed from each of the 

response propensity scores are cross-classified with those formed by the conditional 

success propensity score in the spirit of joint classification (Vartivarian and Little, 

2003) and are referred to as NMAR joint response propensity classification (JR), joint 
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conditional response propensity classification (JCR), and joint conditional response 

propensity classification based on quintiles of the conditional success propensity score 

(JQCR), respectively.  The MAR approaches for weighting class formation motivated 

by David, et al. (1983) and Vartivarian and Little (2003) and the eight NMAR 

approaches to weighting class formation are described in Table 4.1.  These ten 

weighting class formation approaches are applied to pilot data from annual surveys of 

elk hunters in New Mexico.   

 

 

4.4 CASE STUDY 

 

Annual surveys of elk hunters in the state of New Mexico are subject to nonresponse.  

A subsample of nonrespondents is used to determine if the estimates of annual harvest 

are biased.  These data will be used as a case study to compare models for selecting 

adjustment classes for weighting class adjustments when data are NMAR. 
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4.4.1 Background 
 

New Mexico Department of Game and Fish (NMDGF) oversees licensing for annual 

elk hunts.   To maintain a sustainable harvest each year, game managers need accurate 

estimates of elk harvest.  The elk hunter questionnaire is attached to every elk hunting 

permit sold so that the population of elk licensees is censused.  However, since survey 

return is not mandatory, response rates are rather low (Table 4.2).  Game managers 

feel that successful hunters are more likely to return surveys than licensees who did 

not harvest an elk.  If this claim is true, then annual harvest is overestimated when the 

results obtained from respondents are extrapolated to the total population.  To assess 

this hypothesis, NMDGF conducted a subsample of nonrespondents to obtain 

information on elk harvest.  From this subsample, model-assisted estimators of elk 

harvest based on the double sample may be compared to unadjusted estimates from the 

original sample to evaluate the impact of nonresponse on the elk questionnaire results.   

 

When applying for an elk hunt license, applicants are required to specify the area of 

the hunt, land ownership type, bag limit, and weapon type of the hunt.  Licensee 

applicants must also provide information on the demographic variables such as age, 

residency, and gender.   Appendix C provides descriptions of all of the covariates 

available for the data analysis process.   



 

Table 4.1:  Success and response model covariates and adjustment cell formation for the weighting class adjustment 
 

WC 
Adjustment 
Approach 

Missingness 
mechanism 

Success propensity 
scores used for 

adjustment classes 

Response propensity 
scores used for 

adjustment classes 

Description 

JC MAR ( )ˆ sMARp X  ( )ˆ rMARp X  Joint classification  
(Vartivarian and Little, 2003) 

IVR MAR ( )ˆ sIVR rMARp p X,  ( )ˆ rMARp X  Instrumental variable regression 
(David, et al., 1983) 

INT MAR ( )ˆ sp R X,  ( )ˆ rMARp X  Intermediate approach between 
MAR and NMAR 

R NMAR - ( )ˆ rp Y, X  Classification on the NMAR 
response propensity 

CR NMAR - ( )ˆ cr sp p X,  Classification on the conditional 
response propensity 

QCR NMAR - ( )*ˆ qcr sp p X,  
Classification on the conditional 

response propensity based on 
quintiles of the conditional 

success propensity 

SUCC NMAR ( )ˆ sp R X,  - Motivated by definition of 
NMAR missingness 

JR NMAR ( )ˆ sp R X,  ( )ˆ rp Y, X  Joint classification  

JCR NMAR ( )ˆ sp R X,  ( )ˆ cr sp p X,  Novel approach 

JQCR NMAR ( )ˆ sp R X,  ( )*ˆ qcr sp p X,  Novel approach 
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Table 4.2: Elk hunter harvest survey return rates by year 
 

 
Hunt Year 

Elk Harvest Survey 
Return Rate (%) 

1988-1989 29.7 
1989-1990 30.9 
1990-1991 30.1 
1991-1992 31.7 
1992-1993 32.8 
1993-1994 30.4 
1994-1995 26.9 
1995-1996 26.1 
1996-1997 27.8 
1997-1998   6.1* 
1998-1999 40.2 
1999-2000 44.9 
2000-2001 24.4 
2001-2002 29.5 
2002-2003 NA** 
2003-2004 24.2 

* Questionnaires for the 1997-98 hunt year appear to have been lost at the post office.   
** Respondent information unavailable to author. 
 

The population of licensees for the 2001-02 hunts consists of 38,209 licensees.  A total 

of 11,258 licensees responded to the tear-off survey questionnaire via mail or the 

Department’s web site for a total response rate of 29.5%.  A total of 4,181 respondents 

reported bagging an elk for a reported harvest rate of 37.1%.  Using a simple 

extrapolation of sample results to the entire population, an estimated 14,190 elk were 

harvested statewide during the 2001-02 hunt year with a 95%-confidence interval of 

(13849, 14531).   
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From the population of 26,951 nonrespondents, a two-stage cluster sample was 

selected.   Hunts served as primary sampling units and licensees within hunts acted as 

secondary sampling units.  A total of 190 hunts were randomly selected from the 

population of 572 hunts for which nonresponse occurred.  This first-stage sample of 

primary sampling units represented a total of 9,113 nonrespondents for the 190 hunts.  

The second stage sample was conducted employed unequal probability sampling for 

different hunt size classes.  For small hunts (≤ 30 licensees) selected in the first-stage 

sample, the second-stage licensees were censused.  Medium-sized hunts (31 to 170 

licensees) were sampled at a rate of 0.30 and large hunts (> 170 licensees) were 

sampled at a rate of 0.15.  The second-stage sample consisted of 3,078 nonresponding 

licensees.  Mail surveys were undeliverable for 188 licensees, reducing the effective 

sample size to 2,890 licensees.  The sample was stratified by Weapon Type, 

Landowner Type, and Hunt Size.  An overall 82.2% response rate was obtained from 

three mailing/internet waves followed by a telephone survey.  This response rate was 

adjusted for undeliverable mail surveys.  Most of the remaining nonresponse in the 

subsample was due to incorrect or out-of-service telephone numbers.  Response status 

was not tracked by license number, so the effective sample size could not be decreased 

for invalid telephone numbers.    

 

For the 2003-04 hunt season, a total of 40,503 elk hunt licenses were issued in New 

Mexico and 24.2% of the questionnaires were returned.  The unadjusted harvest 

estimate from the 2003-04 questionnaire survey was calculated as 15,446 elk with a 
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95%-confidence interval of (15056, 15835).  A nonrespondent subsample from the 

30,693 nonrespondents was also obtained for the 2003-04 hunt season, and similar 

design and analysis methods were used.  A total of 175 hunts were randomly selected 

from the population of 555 hunts for which nonresponse occurred.  This first-stage 

sample of primary sampling units represented a total of 10,965 nonrespondents for the 

175 hunts.  A second-stage subsample of 3,019 licensees was selected.  Mail surveys 

were undeliverable for 271 licensees, decreasing the effective subsample size from 

3,019 to 2,748 licensees.  An overall nonrespondent subsample response rate of 81.0% 

was observed from three mailing and internet waves and a telephone follow-up.  

Again, the response rate was adjusted for undeliverable mail surveys but response 

status was not tracked by license number so response rates cannot be adjusted for 

inoperable telephone numbers.   

 

Contingency tables summarizing the distribution of response and success for each year 

are provides in Table 4.3  Chi-square tests of homogeneity between harvest and 

success rates indicate that response is not independent of success in 2001 ( 2χ =204.45, 

df = 1, p-value < 0.0001) or in 2003 ( 2χ =174.61, df = 1, p-value < 0.0001).  The odds 

ratio of the odds of response for successful licensees against the odds of response for 

unsuccessful licensees is 2.12 for 2001 and 2.35 for 2003.  An odds ratio that is greater 

than one indicates that successful units are more likely to respond than unsuccessful 

units.  The result of a Mantel-Haenszel test for a common odds ratio of 1 indicates that 

the odds of response for successful licensees compared to unsuccessful licensees is 
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significantly different from 1 ( 2χ =379.49, df = 1, p-value < 0.0001) across the two 

surveys.  This implies that the difference in response rates between successful 

licensees and unsuccessful licensees is not likely due to chance and that nonresponse 

bias may be a persistent issue in the NMDGF elk hunter survey.  Notice that the 

success rates are fairly consistent for the respondents and nonrespondents to the initial 

survey between the two years.  This suggests that nonresponse bias may also be 

consistent in its effect on estimates of total elk harvest. 
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Table 4.3: Contingency table for response and success for the 2001 and 2003 NMDGF 
elk licensee surveys and nonrespondent subsamples 

 2001 2003 
 Respondents 

to initial 
survey 

Nonrespondents 
to initial survey 
contacted in the 
nonrespondent 

subsample  

Respondents 
to initial 
survey 

Nonrespondents 
to initial survey 
contacted in the 
nonrespondent 

subsample  

Successful 4181 
(0.37) 

517 
(0.22) 

3746 
(0.38) 

519 
(0.23) 

Unsuccessful 7077 
(0.63) 

1858 
(0.78) 

6069 
(0.62) 

1708 
(0.77) 

TOTAL 11258 2375 9815 2227 
 

 

4.4.2 Double-sampling for stratification  
 

The nonrespondent subsample was conducted using double-sampling for stratification, 

a sampling design that uses a two-phase sampling approach to obtain outcomes from 

first-phase nonrespondents (Thompson, 1992).  The design-based estimator provides 

an unbiased estimate of the population total with which the estimates from the model-

assisted approaches may be assessed.  The estimate of the population total for the 

double-sampling for stratification is given by: 

 

1 2
1 2d̂ d

n nT Ny N y y
n n
′ ′⎛ ⎞= = +⎜ ⎟′ ′⎝ ⎠

,           (4.7) 
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where dy  is the double-sampling for stratification estimator of the population mean, 

n′  is the phase 1 sample size, 1n′  is the number of first-phase respondents, and 2n′  is 

the number of first-stage nonrespondents where 2 1n n n′ ′= −  (Thompson, 1992).  The 

variance estimate of the estimate of the population total for the double-sampling for 

stratification is: 

 

( ) ( )
^

2
d̂ dVar T N Var y=      

( ) ( )
^ ^

2 1 1 2 2
1 1 2 2

1 1 1 11
1 1 1 1

n n n nNN w Var y w Var y
N n N n N

′ ′ ′⎡ − − − − ⎤− ⎛ ⎞ ⎛ ⎞⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

( ) ( ) ( )2 2
1 1 2 2     

1 d d
N n w y y w y y

N n
⎛ ⎞′− ⎡ ⎤+ − + −⎜ ⎟⎜ ⎟ ⎣ ⎦′ −⎝ ⎠

    (4.8) 

 

where N is the population size, 2n  is the size of the phase-two sample, h
h

nw
n
′

=
′

, 

( )
^

1Var y  is the estimated variance of phase 1 outcome mean, and ( )
^

2Var y  is the 

estimated variance of phase-two outcome mean.  In the NMDGF case study, the 

licensees are censused each year, so the phase 1 sample size n′ = N.   Censusing at the 

first phase simplifies the variance estimator to the following form: 

 



 
 
 

103 
 

( ) ( )

( )

( ) ( )

^
2 2 2

2 2

^

2 22 2 2

^

2 2 2 2

1 11ˆ
1 1

1 11            
1 1

            

d
n nNVar T N w Var y

N n N

n Var yn nNN
N N N N

n n n Var y

′⎡ − − ⎤− ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥′ − −⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤′′ − −− ⎛ ⎞⎛ ⎞ ⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠
⎣ ⎦

′ ′= −

 

 

The second-phase nonrespondent subsample for the NMDGF elk hunter survey 

employed a two-stage cluster sample of hunts stratified by weapon type, landowner 

type, and hunt size with second-stage licensees selected within first-stage hunts.  In 

this setting, the population refers to the population of nonresponding units to the first-

phase sample.  The mean of the outcome from a two-stage stratified sampling design 

is given by: 

 

2
1 12

1 lnL
l

li li
l il

Ny M y
n n= =

=
′ ∑ ∑ , 

 

where l indexes the L strata in the second phase of the double sample such that l =1, 

…, L; lN  is the number of hunts in the population in stratum l, ln  is the number of 

sampled hunts in stratum l, liM  is the number of licensees in the ith hunt of stratum l, 

and liy  is the mean of the outcome within stratum l and hunt i.  The estimated variance 

of the phase-two mean from a two-stage stratified sampling design is: 
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where lim  is the number of licensees in the sample for the ith hunt of stratum l, 

( )22

1

1
1

ln

l li l
il

s y y
n =

= −
− ∑ , 2

lis  is the sample variation for the ith hunt of stratum l, 

1

1 ln

l li
il

y y
n =

= ∑ , and liy  is the sample mean among licensees in the ith hunt of stratum l.  

The estimates from the double-sampling for stratification (DSS) analysis demonstrate 

that the design-based estimator provides a much smaller estimate of harvest than the 

unadjusted estimates obtained by simple extrapolation of the respondent outcomes to 

the population (Table 4.4).  Dividing the 2001 and 2003 estimates of the total elk 

harvest from double sampling for stratification by the total number of licensees (38209 

and 40503, respectively) yields estimates of success rates of 0.28 and 0.29, 

respectively.   

 

Table 4.4: Double-sampling for stratification and unadjusted estimates of total elk 
harvest for 2001 and 2003 
Estimation 
Approach Metric 2001 2003 

DSS Est. Total 
95%-CI 

10523 
(10299, 10747) 

11672 
(11339, 12005) 

Unadjusted 
estimates 

Est. Total 
95%-CI 

14190 
(13849, 14531) 

15446 
(15056, 15835) 
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NMDGF personnel would like to develop a method to adjust survey return 

information so that unbiased estimates of harvest might be obtained for years in which 

a subsample was not conducted.  The NMAR models to obtain weighting adjustment 

classes for weighting class adjustments are examined with the data from the two elk 

hunt years.  The 2001-02 data will serve as the modeling data set.  For approaches that 

do not require a nonrespondent subsample complement to every survey, performance 

is evaluated with the 2003-04 data set.  The double sampling for stratification 

estimates that combine the original surveys and nonrespondent subsamples will be 

assumed to be the "true" values and will be used to assess the performance of the 

NMAR weighting class adjustments.   

 

These data sets are relatively rich in covariate information.  Identification of the 

appropriate predictors of success and response are integral to unbiased estimation.  

Variable and model selection techniques are reviewed and the results of the models are 

compared for the two hunt years for the weighting class adjustment.  

 

4.4.3 Variable selection 
 

Because all elk hunts in New Mexico limit the hunter to a total of one elk, the outcome 

of interest is a binary indicator of elk harvest.   Therefore, the logistic regression 

model may be used to model both the response propensity and the success propensity.  

Following recommendations for logistic regression modeling from Hosmer and 

Lemeshow (2000), variable selection begins with a univariate analysis of all potential 
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covariates.  Pearson's chi-square test of association is used to establish which variables 

are associated with response and success (Table 4.5).   

 

Table 4.5: Pearson chi-square tests of association for indicators of response and 
success 

Variable Response Success 
Weapon Type 29.06   (p < 0.0001) 379.84  (p < 0.0001) 

Hunt Size 636.82   (p < 0.0001) 4.22    (p = 0.1261) 
Age Class 146.61   (p < 0.0001) 22.90   (p = 0.0001) 
Resident 44.15   (p < 0.0001) 449.29   (p < 0.0001) 

Bag 66.23   (p < 0.0001) 668.95   (p < 0.0001) 
Area 139.60   (p < 0.0001) 275.91   (p < 0.0001) 

Land Type 2.34     (p = 0.1261) 1146.49   (p < 0.0001) 
Month 117.85   (p < 0.0001) 410.56   (p < 0.0001) 

Sex 0.1123   (p = 0.7375) 0.0405   (p = 0.8405) 
 

 

David et al. (1983) recommend that response propensity models and predicted mean 

models should employ mutually exclusive sets of covariates to avoid multicollinearity 

problems.  Based on the results of the chi-square tests of association, the variables 

Weapon Type, Residency, Bag Limit, Area, and Month exhibit significant associations 

with both the response indicator and the success indicator.  However, the test results 

for these variables indicate higher significance for tests of association with success.  

Age Class also exhibits associations with both response (p < 0.0001) and success (p = 

0.0001) but the p-value is smaller for the association with response.  Hunt Size is 

associated with response (p < 0.0001) but not success (p = 0.1261).  Land Type is 

associated with success (p < 0.0001) but not response (p = 0.1261).  Sex is not 
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associated with either response (0.1123) or success (p = 0.8405), so this variable is not 

used for response propensity or success propensity modeling.  Therefore, success will 

be modeled from Weapon Type, Residency, Bag Limit, Area, Land Type, and Month 

while response will be modeled from Hunt Size and Age Class.  The covariate for 

licensee sex does not appear closely associated with either outcome, so this covariate 

is not used for multivariable modeling of either success or response.   

 

 

4.4.4 Regression estimation and model selection  
 

The goal of model selection in this exercise is to obtain a robust predictive model that 

is applicable among several years of survey data.  If the model is overfit, it may not 

apply well in other survey years.  If the model is underspecified, then it may not be 

sensitive enough to produce accurate predictions.  Design-weighted logistic regression 

was ineffective in providing estimated propensity scores that were effective in 

reducing bias.   Little and Vartivarian (2003) also find that logistic regression 

weighted by design weights was not beneficial.  Therefore, unweighted logistic 

regression modeling is used to model success and response propensities.  Maximum 

penalized likelihood estimates (Firth, 1993) of regression coefficients are used to 

ensure that the propensity scores are unbiasedly estimated. 

 

Shrinkage estimation was considered for the estimation of parameters from logistic 

regression.  Steyerberg, Eijkeman, Harrell, and Habbema (2000) recommend 
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shrinkage estimators for regression coefficients when data sets from clinical trials are 

small and prediction is the goal.  However, shrinkage will not improve mild overfitting 

when fitted values are used for ranking (Harrell, Lee, and Mark, 1996).  This caveat 

may then also apply to the formation of propensity score classes since this approach 

involves ranking.  Shrinkage is not deemed necessary when the ratio of the number of 

model coefficients to the number of observations is less than 0.02 (Shtatland, 

Kleinman, and Cain, 2004).  This ratio is roughly 0.0019 for the pilot data set, so 

estimation with shrinkage is unnecessary for these data.   

 

Several tests and information criteria are available to select the appropriate logistic 

regression models for success and response.  Hosmer and Lemeshow (2000) suggest 

stepwise selection using the likelihood ratio test to compare models.  The p-value for 

variable entry into the model should range from 0.15 to 0.20.  The p-value for 

removing a variable should exceed the p-value for entry to avoid repeated entry and 

removal of the same variable.  For a very full model, the removal p-value may be as 

high as 0.9 while a more parsimonious model may employ a removal p-value only 

slightly larger than the entry p-value.  The likelihood ratio test performs poorly when 

the probabilities of entry and removal are low (Steyerberg et al., 2000).  While 

Hosmer and Lemeshow (2000) prefer the likelihood ratio test for stepwise procedures, 

their example analyses produced the same models when score and Wald tests were 

used.   
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Model selection with AIC is equivalent to backwards elimination with a probability of 

removal of 0.157 (Steyerberg et al., 2000).  Benefits of AIC include its ability to 

optimize model parsimony, estimation accuracy, testing of both nested and unnested 

models, and its asymptotic equivalence to cross-validation techniques (Shtatland, 

Moore, Dashevsky, Miroshnik, Cain, and Barton, 2000).  AIC penalizes new terms 

less severely than both likelihood ratio tests and Wald tests (Venables and Ripley, 

2002).   This tendency toward overfitting may lead to bias when applied to small 

samples because AIC loses its asymptotically optimal properties.  AIC is not 

consistent, so the probability of selecting the wrong model does not decrease as the 

number of predictors increases, as is true with the BIC.  For this large pilot data set, 

use of the AIC should satisfy asymptotic properties.   

 

The best subset method is another model selection procedure that allows identification 

of a specified number of models that meet a selection criterion for a specified number 

of variables.  This model selection strategy is implemented in SAS (2002) PROC 

Logistic using the score test statistic as the selection criterion for the "best" models.  

Hosmer and Lemeshow (2000) prefer Mallows (1973) pC  statistic and show how this 

criterion may be calculated from the score test results provided in the output from SAS 

Proc Logistic.  The pilot data set, which includes all main effects and second-order 

interactions, consists of 71 explanatory variables.  This large number of potential 

covariates motivates the use of other model selection methods to reduce the dimension 

of the data set for best subsets modeling and to suggest a potential range for the 
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number of explanatory variables.  Best subset models will be obtained from the 

reduced data set for the range of possible covariate sizes.   

 

Based on the available literature, the model selection approach will begin with two 

stepwise model selection approaches.  The first approach will use the score test for 

variable entry and the Wald test for variable removal.  This approach will be 

implemented in SAS Proc Logistic.  The entry and removal p-values of 0.15 and 0.20, 

respectively, will produce a more restricted model.  A stepwise selection procedure 

using AIC as the evaluating criterion will also be examined using the stepAIC function 

from the R MASS package.  Given the tendency for AIC to overfit, this stepwise 

selection approach should produce a fuller model than that obtained from SAS Proc 

Logistic.  The significant covariates from both stepwise approaches will be used in the 

"best subsets" procedure in SAS Proc Logistic.  For a range of sizes of model 

covariate data sets, Mallows pC  statistic is computed and used to compare models.  

Mallows pC  statistic is calculated for each of the best subsets models as well as for 

the models selected with stepwise regression, and the model with the lowest pC  

statistic is selected.  Goodness of fit is assessed with the Pearson chi square goodness-

of-fit test.   

 

The best subsets model selection approach in SAS produces models that are improper 

in the sense that interactions are included for excluded main effects.  Both stepwise 

selection procedures produce proper models.  The final model is selected among the 
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set of proper models obtained from the two stepwise procedures, the proper model 

with the lowest pC  statistic from the best subsets approach, and the model with the 

lowest pC  statistic from the best subsets approach with main effects added to make 

the model proper.  In almost every case, the lowest pC  best subsets model that is made 

proper involves fewer design variables and removes more bias than the proper model 

with the lowest pC  statistic.   

 

Three success models and four response models are considered for adjustment cell 

formation.  All models incorporate data from the original sample and the subsample.  

Success is modeled as MAR in the joint classification approach (Little, 1986; 

Vartivarian and Little, 2003).  In instrumental variable regression, the response 

propensity score ( rMARp ) under MAR missingness is used as a predictor in the success 

model (David et al., 1983).  For the intermediate approach and all of the NMAR 

approaches, the success model is a function of the response indicator and is only 

possible when a nonrespondent subsample is available.   

 

The response model for the joint classification approach (Little, 1986; Vartivarian and 

Little, 2003), instrumental variable regression (David et al., 1983), and the 

intermediate model is obtained independently from the success model assuming MAR 

missingness.   The NMAR response model (indexed by R) employs the nonrespondent 

subsample to model response as a function of the outcome of interest.  The conditional 



 
 
 

112 
 

response model (indexed by CR) includes the conditional success propensity score as 

a predictor rather than the outcome of interest.  The model indexed as QCR 

incorporates the conditional response propensity score modeled from quantiles of the 

conditional success propensity score.  The variables selected in the model selection 

approach are given in Appendix D for each success and response propensity model.    

 

4.4.5 Results and discussion 
 

The weighting class adjustment estimates, 95%-confidence intervals, root mean 

squared error (RMSE), and relative bias from the ten different weighting class 

adjustment approaches are given in Table 4.8 with the double sampling for 

stratification and unadjusted estimates for comparison.  Relative bias is calculated 

relative to the design-based estimate obtained from the double sample for 

stratification.  Despite this estimator's design-unbiasedness, note that this estimate may 

still exhibit some bias due to nonresponse.  When adjustment cells contain fewer than 

20 respondents, these adjustment cells are absorbed into other adjustment cells so that 

response rates within adjustment cells may be accurately estimated (Lohr, 1999).  The 

weighting class adjustment is then computed for the set of adjustment cells for which 

at least 20 respondents were obtained. 

 

The two MAR estimators, joint classification and instrumental variable regression, are 

ineffective in nonresponse adjustment for these data as compared to the double 

sampling for stratification estimator.  The joint classification approach exhibits 
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relative bias of 0.32 for both 2001 and 2003.  These estimates are only slightly less 

biased than the unadjusted estimates but still indicate that the MAR joint classification 

is inappropriate for these data.  Similarly, MAR instrumental variable regression 

generates estimates of total elk harvest with relative bias of 0.31 for 2001 and 0.34 for 

2003 compared to the double sampling for stratification estimators.  These results 

underscore that appropriate models must be used for adjustment cell formation when 

data are NMAR, even when information from the nonrespondent subsample is used.   

 

Table 4.6: 2001 and 2003 weighting class adjustment estimates  
Estimator Metric 2001  2003 

WC Adj.  
(Joint classification) 

(JC) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

13888 
(13618, 14158) 

3368 
0.32 

15404 
(15058, 15751) 

3736 
0.32 

WC Adj.  
(Instrumental 

variable regression) 
(IVR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

13805 
(13537, 14074) 

3285 
0.31 

15593 
(15247, 15939) 

3925 
0.34 

WC Adj.  
(Intermediate) 

(INT) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11409 
(11010, 11809)  

909 
0.08 

13525 
(12944, 14107) 

1877      
0.16 

WC Adj.  
(R) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

9460 
(9234, 9686) 

1069 
-0.10 

12207 
(11912, 12502) 

556  
0.05 

WC Adj.  
(CR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11796 
(11388, 12203) 

1290 
0.12 

13058 
(12687, 13430) 

1399 
0.12 

WC Adj.  
(QCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

12284 
(11924, 12643) 

1771 
 0.17 

13557 
(13188, 13927) 

1894 
0.16 
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Estimator Metric 2001  2003 

WC Adj.  
(JR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

9356 
(8421, 10292)  

1261 
-0.11 

10656 
(10147,11165) 

1049 
-0.09 

WC Adj.  
(JCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11327 
(10760, 11894)   

854 
0.08 

13409 
(12796, 14021) 

1765 
0.15 

WC Adj.  
(JQCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11479 
(10999, 11959)  

987 
0.09 

13742 
(13076, 14408) 

2098 
0.18 

WC Adj. 
(SUCC) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11109 
(10462, 11757) 

673 
0.06 

13128 
(12573, 13684) 

1483 
0.12 

Double sampling for 
stratification  

(DSS) 
 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

10523 
(10299, 10747) 

114 
0.00 

11672 
(11339, 12005) 

170 
0.00 

Unadjusted estimates 
(MCAR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

14190 
(13849, 14531) 

3671 
  0.35 

15446 
(15056, 15835) 

3779 
  0.32 

 

 

The intermediate method incorporates a MAR model for response with a NMAR 

model for success.  Therefore, the response model is the same as that used in the joint 

classification and instrumental variable approaches, but the success model includes the 

response indicator as a predictor.  The intermediate approach is more effective than 

either of the two MAR approaches, with relative bias of 0.08 for 2001 and 0.16 for 

2003.  The RMSE is also considerably smaller for the intermediate approach 

compared to the estimates from the MAR approaches and the unadjusted estimates.   
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The R approach, which requires a nonrespondent subsample for every sample, 

underestimates the 2001 total elk harvest as compared to the double sample for 

stratification estimator, with relative bias of -0.10.  However, the 2003 estimate 

overestimates the total by 5%.  The CR approach, which incorporates the conditional 

success propensity score in the response propensity model rather than the outcome of 

interest, generates estimates of 2001 and 2003 total elk harvest with relative biases of 

0.12.  Similarly, the QCR approach, which incorporates quintiles of the conditional 

success propensity scores as predictors in the response propensity model, exhibits 

slightly more positive bias than the CR approach for both the 2001 and 2003 estimates 

of the total elk harvest with relative bias of 0.17 and 0.16, respectively.   

 

NMAR joint classification approaches perform with mixed results.  The JR approach, 

which forms adjustment cells on quintiles of the NMAR response propensity score and 

on quintiles of the conditional success propensity score, performs similarly to the R 

approach for 2001 and underestimates the harvest total by 11%.  However, absolute 

relative bias for the 2003 data increases when NMAR joint classification is used, 

taking the relative bias from 0.05 for the R approach to -0.09 for the JR approach.  The 

opposite pattern is observed for the JCR approach.  NMAR joint classification 

improves the 2001 estimate of total elk harvest, decreasing the relative bias to 0.08 

from 0.12 when joint classification is not used (CR).  However, NMAR joint 

classification slightly increases the 2003 relative bias increases to 0.15 for the JCR 

approach compared to 0.12 from the CR approach.  The JCQR approach performs 
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similarly, with a decrease in the 2001 relative bias from 0.17 for the QCR approach to 

0.09 with the JQCR approach and an increase in the 2003 relative bias from 0.16 for 

the QCR approach to 0.18 with the JQCR approach.  The increases in bias from 

NMAR joint classification may result from applying the 2001 conditional success 

propensity model to the 2003 data. 

 

Using the conditional success propensity score as the basis for adjustment cell 

formation (SUCC) performs well with relative bias of 0.06 for 2001 and 0.12 for 2003.  

This result illustrates that the conditional success propensity score are also effective as 

a balancing score.  This approach generated the least biased estimate of the harvest 

total and the smallest RMSE across all of the weighting class adjustment estimates 

obtained for the 2001 data.   

 

The only weighting class adjustment approach yielding confidence intervals that cover 

the design-based estimates of total elk harvest obtained from double sampling for 

stratification is the SUCC approach for the 2001 data.  Otherwise, the lack of coverage 

indicates either poor confidence interval coverage by the weighting class adjustment 

or bias in the design-based estimates.  Simulations will be conducted (Chapter 6) and 

these approaches for adjustment class formation will be assessed with known 

population totals to determine which perform best over a range of conditions.   
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4.5 CONCLUSIONS 

 

Extensions of propensity score methodology to nonignorable missingness were 

proposed in Chapter 3.  By accounting for the NMAR missingness mechanism in 

logistic regression models of the response indicator and/or binary outcome of interest, 

response and/or success propensity scores are used to form adjustment classes that 

satisfy the quasi-randomization assumption for the weighting class adjustment (Oh 

and Scheuren, 1983).  These new approaches for forming adjustment cells under 

NMAR missingness are motivated by propensity score methodology (Rosenbaum and 

Rubin, 1983) and MAR nonresponse adjustment approaches, including joint 

classification (Little, 1986, Vartivarian and Little, 2003) and instrumental variable 

regression (David et al., 1983).   

 

In this case study, MAR approaches to weighting class formation are not effective in 

reducing nonresponse bias as compared to the design-based estimates from double 

sample for stratification.  NMAR approaches to forming weighting classes are more 

effective in reducing nonresponse bias.  However, all but one (SUCC approach for the 

2001 data) of the confidence intervals for the MAR and NMAR weighting class 

adjustment approaches did not cover the design-based estimates of elk harvest 

obtained from double sampling for stratification.  Simulation will be used to determine 
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if low coverage rates are due to poor coverage from the weighting class adjustment or 

bias in the design-based estimates obtained from double sampling for stratification. 

 

The response propensity score quintiles are used in this chapter to form adjustment 

cells within which response rates are estimated by weighting class adjustments.  The 

response propensity scores are more informative than simple adjustment cell 

classification variables.  The response propensity scores and quintiles of the response 

propensities may be used as direct estimates of the response probability within each 

adjustment class.  In Chapter 5, this additional model dependence is explored with the 

modified Horvitz-Thompson estimator of equation (3.2) as an improvement on the 

weighting class adjustment for NMAR data.  Chapter 6 will include simulation results 

for testing and comparing the performance of all approaches under a range of 

conditions. 
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5: THE PROPENSITY SCORE ADJUSTMENT ESTIMATOR FOR A 
MISSING BINARY RESPONSE UNDER NONIGNORABLE NONRESPONSE 

 

5.1 INTRODUCTION 

 

When data are not-missing-at-random (NMAR), the distribution of the response 

indicator is dependent upon the outcome of interest.  Therefore, the response 

propensity score and predicted mean of the outcome cannot be estimated 

independently.  In Chapter 3, propensity score methodology was extended to the case 

of NMAR missingness.  For a binary outcome, the conditional success propensity 

score is modeled from the response indicator when data are available from a 

subsample of nonrespondents.  The conditional success propensity score or its 

quintiles are used as covariates in the response propensity model when the outcome of 

interest is missing.  This mutual dependence between the response and the outcome of 

interest is consistent with the definition of NMAR missingness.   

 

In Chapter 4, weighting class adjustments were used for different approaches to 

adjustment cell formation based on several ignorable and nonignorable models of 

missingness.  When these techniques were applied to the case study data, the NMAR 

approaches for weighting class formation reduced nonresponse bias.  However, 

confidence intervals did not cover the design-based estimators, indicating either poor 
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coverage or bias in the estimates of the total obtained from double sampling for 

stratification.   

 

When the response propensity model accounts for nonignorable nonresponse, is not 

just a covariate for NMAR weighting class formation; it is also an estimate of the 

response rate under the NMAR assumption.  In this chapter, response propensity 

scores are estimated with different MAR and NMAR approaches and the response 

propensity scores or their quintiles are used directly as estimates of the response 

probability in a modified Horvitz-Thompson estimator for nonresponse (equation 3.2).  

This estimator, referred to as the "propensity score adjustment estimator" (PSAE), and 

its variance are developed and then applied to the case study data used in Chapter 4.   

 

 

5.2 PROPENSITY SCORE ADJUSTMENT ESTIMATOR 

 

In the MAR missingness case, Cassel et al. (1983) applies the predicted response 

propensities from logistic regression to directly adjust the modified Horvitz-Thompson 

estimator in equation (3.2).  This approach, while unbiased for accurate estimation of 

response propensity scores, may produce inflated variance estimates when some of the 

estimated response propensities are very small (Little and Rubin, 2002).  Several 

approaches to weight trimming have been proposed to avoid the problem of variance 
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inflation (Deville and Särndal, 1992; Elliott and Little, 2000; Potter, 1988).  

Propensity score methodology from Chapter 3 is used to obtain unbiased estimates of 

the response propensity under NMAR missingness.  Furthermore, quantiles of the 

response propensity scores are used to trim response propensity weights so that 

extreme weights do not inflate the variance of the estimator.   

 

The propensity score adjustment estimator incorporates several different approaches 

for estimating the response propensity when nonresponse is nonignorable.  Three main 

models for the response propensity score under nonignorable nonresponse were 

discussed in Chapter 3.  The differences among the three models are distinguished by 

the information available for predicting success.  The NMAR response propensity 

score ( rip ) is predicted directly from the outcome of interest when a nonrespondent 

subsample is available.  The conditional response propensity score ( crip ) is modeled 

from estimates of the expectation of the outcome of interest from a response model, 

which are the estimated conditional success propensity scores when nonresponse is 

nonignorable.  In Chapter 3, we found that the conditional response propensity score 

based on the conditional success propensity score ( )sip  is either 0 or 1.  We attempt to 

avoid this trivial result by modeling response from the quintiles of the conditional 

success propensity score.  Using quintiles of the conditional success propensity score 

may also reduce success model dependence.  The conditional response propensity 

scores modeled from the quintiles of the estimated conditional success propensity 
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scores are ( qcrip ).  Furthermore, we will compare the results to the Cassel et al. (1983) 

estimator which uses the estimated response propensities from a MAR logistic 

regression model of the response indicator ( rMARip ).   

 

For each of the four response propensity models, the inverse of the estimated response 

propensity score may be used directly to weight each respondent outcome, or the 

weights may be coarsened into quintiles that are then used in the modified Horvitz-

Thompson estimator from equation (3.2).   These scenarios produce eight models for 

estimating the response propensity under nonignorable nonresponse.  After a review of 

notation, the approach used to coarsen the response rate is discussed.  Subsequently, 

the propensity score adjustment estimator and its variance estimator are derived and 

applied to the NMDGF case study data.  The predictive performance of the conditional 

success propensity score and its quintiles will be assessed.   The effects of coarsening 

the response propensity scores on the estimator of the total will also be examined.   

 

 

5.2.1 Notation and assumptions 
 

Assume that inference on the population total, τ, is made based on a sample of n units 

selected from a population of size N.  The sampling design may be simple or complex, 

but inclusion probabilities are assumed known.  Let y = (y1, y2,…, yN) be the complete 

data binary outcome of interest where, for i = 1,…N, 
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1, unit  is successful
0, otherwise.i

i
y ⎧
= ⎨
⎩

 

 

As in the weighting class adjustment, the outcome of interest is considered a fixed 

covariate while the sample and response indicators are treated as random variables.  

Let D = (D1, D2,…,DN) be the vector of sample inclusion indicators where, for i = 

1,…N, 

 

1, unit  is included in the sample
0, otherwise.i

i
D ⎧

= ⎨
⎩

. 

 

Assume that iD  is distributed as a Bernoulli random variable with mean iπ , where iπ  

represents the sample inclusion probability for unit i.  Assume that iπ  is a function 

only of design variables such that: 

 

( ) ( ) ( )1 , 1 ,i i i iP D P Dπ = = = = = πy X X X X . 

 

Similarly, assume that the joint inclusion probability for units i and j, where i ≠ j, also 

depends only on design variables and not the outcome of interest, such that: 

 

( ) ( ) ( ) ( )21, 1 , 1, 1 , ,ij i j i j i jP D D P D Dπ = = = = = = = πy X X X X X . 
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Let R = (R1, R2,…, Rn) be the indicator of response for unit i given inclusion in the 

sample where, for i = 1,…n, 

 

1, unit  responds
0, otherwise.i

i
R ⎧
= ⎨
⎩

 

 

 

Assume that i iR D  is distributed as a Bernoulli random variable with mean ip , where 

ip  represents the response probability, or response propensity score, for unit i.  The 

general form of the response propensity, ip , is discussed initially and then the models 

for the response propensity discussed in Chapter 3 are applied.  Let 
1

n

i
i

m R
=

= ∑  denote 

the number of responding units where m < n when nonresponse occurs.  Define oy  as 

the observed outcome of interest such that { }: 1, 1o
i i iy D R= = =y  for i = 1,…n.   

Assume further that the response probability for unit i does not depend on sample 

inclusion of any other unit other than itself, such that: 

 

( ) ( ) ( )1 , , , 1 1 , , 1 , , ,i i i i i i ip P R D P R D p y= = = = = = =y X D y X X y X . 

 

Define the response probability weight as ( ) 1, , ,i i i i iy pθ θ −= =X y X . 
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Similarly, assume that the joint response probability for units i and j, where i ≠ j, is 

only a function of related covariates as well as the outcome of interest under 

nonignorable nonresponse given sample inclusion: 

 

( )

( )

( ) ( )2

1, 1 , , , 1, 1

    1, 1 , , 1, 1

    , , , , , .

ij i j i j

i j i j

i i j j

p P R R D D

P R R D D

p y y

= = = = =

= = = = =

=

y X D

y X

X X y X

 

 

Recall that the covariate matrix sX  contains all the columns of X, the response 

indicator vector, R, and any relevant interactions between R and columns of X.   

Similarly, the covariate matrix rX  contains all the columns of X, the outcome vector, 

y, and any relevant interactions between y and columns of X.   Two variations on the 

design matrix used to model response are also used in response propensity models.  

crX does not include information on y  but incorporates the conditional success 

propensity score, sp .  Similarly, qcrX  does not include information on y but contains 

quintiles of the conditional success propensity score, *
sp .     

 

Let ξ  = ξ ( ),s rβ β  denote the superpopulation model for the success and response 

propensities.  Let sβ  and rβ  represent the vectors of regression coefficients from 

logistic regression models of success and response propensities, respectively.   
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Assume that inference is based on a known model for sβ  and rβ , the estimated 

logistic regression coefficients used to estimate success and response propensities, 

respectively.   For the logistic regression model ( )logit si si sp ′= X β  where 

( )logit log
1

si
si

si

pp
p

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, the success propensity score is calculated as 

( ) 1ˆ 1 expsi si sp
−

′= + −⎡ ⎤⎣ ⎦X β .   

 

 

5.2.2 Coarsening the response rate 
 

In MAR approaches to weighting adjustments for nonresponse, response rates may be 

estimated with inverse-probability weighting or by observed response rates within 

each adjustment class from values in the sample (Gelman and Carlin, 2002).  Cassel et 

al. (1983) use response propensities estimated from logistic regression models 

incorporating as predictors variables related to the missingness mechanism.  

Weighting by the estimated response propensity weight obtained from logistic 

regression may inflate the variance unnecessarily for low estimated response 

propensities and places more reliance on correct logistic regression model 

specification (Little and Rubin, 2002).  For this application, we examine this approach 

for NMAR missingness and attempt to alleviate the problems of variance inflation and 

model dependence by coarsening the response propensity score using the quintiles of 

the response propensity score.    
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In this application, let H = 5 as recommended by Cochran (1977).  When coarsening is 

used, quintiles of the response propensity score are used to form five adjustment 

classes.  The median of the response propensity scores within a given adjustment class 

is used to assign an overall response rate for units in each adjustment cell.  Using the 

median has two advantages.  First, the median is not influenced by very small 

propensities that cause variance inflation as are other measures of central tendency, 

such as the mean.  Second, using the either the lower bound or the upper bound of the 

response propensity scores in each adjustment class cause the population total to be 

overestimated or underestimated, respectively, so using the median should provide a 

relatively unbiased estimate of the total.   

 

Define *
iθ  as the quintile of the conditional response propensity weights corresponding 

to the ith conditional response propensity weight, *
iθ , for ( )1 5,...,q q=q .  In notation, 

this quantity is defined for each approach as: 

 

( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,i h i hi

hQ Q q Q q
H −

⎧ − ⎫⎛ ⎞θ < θ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

qθ θ θ θ  

 

as the quantile corresponding to the ith conditional response weight.  This value is used 

as the estimate of the response rate for nonresponse adjustment in approaches that 
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employ coarsening of the response propensity scores.  Because quintiles are used for 

coarsening, q = {0.1, 0.3, 0.5, 0.7, 0.9}.   

 

Similarly, let *
sip  be defined similarly as the quintile corresponding to the ith 

conditional success propensity score, sip .  In the QCR approach, these values are used 

as predictors in the conditional response propensity model.  The conditional success 

propensity score is preferred over the conditional success propensity weight for 

estimating the response propensity because the success propensity score is bounded in 

(0,1).  This boundedness performs better in predictive logistic regression response 

modeling than the success propensity weight which falls in the ranges (1, +∞).  The 

response propensity scores are not used as predictors in the models examined in this 

chapter.    

 

Maximum likelihood estimates (MLEs) of logistic regression coefficients are biased to 

order 1n−  (Maiti and Pradhan, 2007).  To remove this bias, Firth (1993) maximizes the 

penalized likelihood function with the invariant Jeffreys prior.  These maximum 

penalized likelihood estimates (MPLEs) are asymptotically equivalent to MLEs as 

sample sizes increase.  To ensure that the propensity scores are unbiasedly estimated, 

the Firth (1993) approach is employed.  The first-order asymptotic equivalence of 

MLEs and MPLEs allows the assumption of asymptotic normality for MPLEs (Bull, 

Mak, and Greenwood, 2002).  Therefore, the assumption of approximate unbiasedness 

for *ˆ sip  may be made.  Model selection follows the process outlined in Chapter 3.  
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Standard MLEs are used during the model selection process so that information 

criteria are appropriately implemented, but final estimates are calculated using the 

Firth (1993) method. 

 

After the success and response models are selected, the quintiles of the conditional 

response propensity weights may be used to extrapolate outcomes from responding 

units to account for nonresponding units.  Using the sample quantiles of the 

conditional response propensity weights, the Horvitz-Thompson estimator from 

equation (3.2) may be used to obtain an unbiased estimator of the population total.  

The propensity score adjustment estimator and its variance are derived and then 

applied to the case study from Chapter 4 to assess its performance when missingness 

is NMAR.  Simulations are used in Chapter 6 to examine the estimator under a 

broader range of conditions.   

 

 

5.2.3 The propensity score adjustment estimator 
 

The goal of this work is to unbiasedly and precisely estimate of the population total,  

1

N

i
i

yτ
=

=∑  for i = 1, …, N.   The modified Horvitz-Thompson estimator of the 

population total under nonresponse from equation (3.2) is adapted to incorporate the 

conditional response propensity scores under nonignorable missingness.   The general 

form of the propensity score adjustment estimator for the population total, τ, is: 
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1 1

ˆ ˆ
ˆ

N m
i i i i i i

i ii i

D R y yT
= =

θ θ
= =

π π∑ ∑ ,                     (5.1) 

 

where ˆ
iθ  is the general form of the estimated response propensity weight.     

 

To derive formulas for ( )ˆ ,E T y X  and ( )ˆ ,Var T y X , the following lemma is 

proposed: 

 

Lemma.  Suppose 
1

N

i i i
i

S a BU
=

= ∑  where ia  is a constant, iB  is distributed as a 

Bernoulli random variable with mean ip , iU  is a random variable jointly distributed 

with iB , and ( )1, 1i j ijP B B p= = = .  Then  

 

(a) ( ) ( )
1

1
N

i i i i
i

E S a p E U B
=

= =∑ , 

(b) ( ) ( )2

1 1

1, 1
N N

i j i j i j i j
i j

E S a a p p E U U B B
= =

= = =∑∑ , 

(c) ( ) ( ) ( ) ( )
1 1

1, 1 1 1
N N

i j ij i j i j i j i i j j
i j

Var S a a p E U U B B p p E U B E U B
= =

⎡ ⎤= = = − = =⎣ ⎦∑∑  

(d) ( ) ( )
1 1

, 1, 1
N N

i j ij i j i j
i j

Var S a a p Cov U U B B
= =

= = =∑∑  
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( ) ( )

( ) ( )
1 1

1 1

           1, 1 1, 1

           1 1

N N

i j ij i i j j i j
i j

N N

i j i j i i j j
i j

a a p E U B B E U B B

a a p p E U B E U B

= =

= =

+ = = = =

− = =

∑∑

∑∑
 

Proof. 

(a) ( ) ( )
1 1

N N

i i i i i i
i i

E S E a BU a E BU
= =

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑ ∑  

 

Because iU  is a function of the Bernoulli random variable, iB , we can express the 

expectation of their product as: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

              1 1 1  + 0 0 0

              1

i i i i i i i i

i i i i i i

i i i

E BU E E BU B E B E U B

E U B P B E U B P B

E U B p

⎡ ⎤= ⎡ ⎤ =⎣ ⎦ ⎣ ⎦

= × = = × = =

= =

 

 

Therefore,  

( ) ( )
1

1
N

i i i i
i

E S a p E U B
=

= =∑ . 

 

(b)  ( ) ( )2

1 1 1 1

N N N N

i j i j i j i j i j i j
i j i j

E S E a a B B U U a a E B B U U
= = = =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑∑ ∑∑  
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( ) ( ) ( ), ,i j i j i j i j i j i j i j i jE B B U U E E B B U U B B E B B E U U B B⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

 

Because the expectation is non-zero only when 1i jB B= = , the expectation simplifies 

to: 

 

( ) ( ) ( )

( )

1 1, 1 1, 1

                      1, 1

i j i j i j i j i j

ij i j i j

E B B U U E U U B B P B B

p E U U B B

= × = = = =

= = =

 

 

Therefore, 

( ) ( ) ( )2

1 1 1 1

1, 1
N N N N

i j i j i j i j ij i j i j
i j i j

E S a a E B B U U a a p E U U B B
= = = =

= = = =∑∑ ∑∑ . 

 

(c) The result in (c) is obtained directly from the proofs for parts (a) and (b) as: 

 

( ) ( ) ( )

( ) ( ) ( )

22

1 1

1, 1 1 1 .
N N

i j ij i j i j i j i i j j
i j

Var S E S E S

a a p E U U B B p p E U B E U B
= =

= − ⎡ ⎤⎣ ⎦

⎡ ⎤= = = − = =⎣ ⎦∑∑

 

 

(d) To obtain the proof for (d), use the result from part (c) and the fact that: 
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( ) ( )

( ) ( )

1, 1 , 1, 1

        1, 1 1, 1 .

i j i j i j i j

i i j j i j

E U U B B Cov U U B B

E U B B E U B B

= = = = =

+ = = = =

 

 

Now we have that: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

1 1

1 1 1 1

1 1

1, 1 1 1

1, 1 1 1

, 1, 1

            1, 1 1,

N N

i j ij i j i j i j i i j j
i j

N N N N

i j ij i j i j i j i j i i j j
i j i j

N N

i j ij i j i j
i j

i j ij i i j j i

Var S a a p E U U B B p p E U B E U B

a a p E U U B B a a p p E U B E U B

a a p Cov U U B B

a a p E U B B E U B B

= =

= = = =

= =

⎡ ⎤= = = − = =⎣ ⎦

= = = − = =

= = =

+ = = =

∑∑

∑∑ ∑∑

∑∑

( )

( ) ( )

1 1

1 1

1

            1 1

N N

j
i j

N N

i j i j i i j j
i j

a a p p E U B E U B

= =

= =

=

− = =

∑∑

∑∑

 

⁪ 

 

The lemma is used to obtain forms of the bias and variance of the propensity score 

adjustment estimator.  Given the form of the propensity score adjustment estimator, 
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the bias of the estimator is defined as ( ) ( )ˆ ˆ ,Bias T E T= − τy X , where τ  is the 

population total.  Express the propensity score adjustment estimator as: 

 

( )( )1

1 1 1

ˆ ˆˆ
N N N

i i i i
i i i i i i i i

i i ii

D R yT y D R a BU−

= = =

θ
= = π θ =

π∑ ∑ ∑ , 

 

where 1
i i ia y−= π  is a constant, i i iB D R= , and ˆ

i iU = θ  is a random variable jointly 

distributed with iD  and iR .  The random variable, i i iB D R= , has a Bernoulli 

distribution with mean i ipπ  because 

 

( ) ( )

( ) ( )

1 , 1, 1 ,

                           1 , 1 , , 1

                           .

i i i i

i i i

i i

P D R P D R

P D P R D

p

= = = =

= = = =

= π

y X y X

y X y X  

 

By part (a) of the lemma, the expectation of the propensity score adjustment estimator 

is: 
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( ) ( )( ) ( ) ( )

( ) ( )

( )

1 1

1 1

1

1

1

ˆ ˆˆ , , ,

ˆ                 , , 1, 1

ˆ                 , , 1, 1 .

N N

i i i i i i i i i i
i i

N

i i i i i i i
i

N

i i i i i
i

E T E y D R y E D R

y p E D R

y p E D R

− −

= =

−

=

=

⎡ ⎤ ⎡ ⎤= π θ = π θ⎢ ⎥ ⎣ ⎦⎣ ⎦

= π π θ = =

= θ = =

∑ ∑

∑

∑

y X y X y X

y X

y X

 

 

 

Now the bias of the propensity score adjustment estimator may be expressed as:  

 

( ) ( )

( )

( )

1 1

1

ˆ ˆ ,

ˆ              , , 1, 1

ˆ              , , 1, 1 1 .

N N

i i i i i i
i i

N

i i i i i
i

Bias T E T

y p E D R y

y p E D R

= =

=

= − τ

= θ = = −

⎡ ⎤= θ = = −⎣ ⎦

∑ ∑

∑

y X

y X

y X

    

 

To calculate the bias of the propensity score adjustment estimator, the value of the 

expectation ( )ˆ , , 1, 1i i iE D Rθ = =y X  must be calculated at least approximately.  For 

nonignorable nonresponse, a nonrespondent subsample (either from the current year or 

a previous year if the underlying populations are similar) allows estimation of ip  and 

therefore 1ˆ ˆi ip−θ = .  Note that, in this case, conditioning on y implies conditioning on 
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the set of observed outcomes and outcomes obtained in the nonrespondent 

subsample, ( )( )o , by y .   

 

Let ( )iX denote the covariate matrix X omitting the vector iX .  Define ( )iD  and ( )iR  

similarly.  Consider the estimator ( ) ( ) ( )( )ˆ ˆ , , , , , ,o
i i i i i i iD Rθ = θ X y X D R .  Then 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

ˆ ˆ, , 1, 1 , , , , , , , , 1, 1

ˆ                                       , 1, 1, , , , , , 1, 1

o
i i i i i i i ii i i

o
i i i i ii i i

E D R E D R D R

E D R D R

⎡ ⎤θ = = = θ = =⎣ ⎦

⎡ ⎤= θ = = = =⎣ ⎦

y X X y X D R y X

X y X D R y X

 

 

Applying the method of moments, the expectation is obtained as: 

 

( ) ( ) ( ) ( )( )ˆ ˆ, , 1, 1 , 1, 1, , , ,o
i i i i i i i i iE D R D Rθ = = = θ = =y X X y X D R . 

 

Note that this value is not the same as the observed ˆ
iθ  when 0iR = .   

 

For example, if ip  were estimated with logistic regression, then the nonignorable 

response propensity weight is obtained with the following model: 
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( ) ( ) ( )( )

( )

( )

1

1

ˆ ˆ ˆ, , , , , ,

ˆ    1 , , 1

    1 exp ,

o
ri i i i rii i i

i i

i i

D R p

P R D

a by

−

−

θ = θ =

⎡ ⎤= = =⎣ ⎦

′= + − + +⎡ ⎤⎣ ⎦

X y X D R

y X

c X

 

 

where a, b, and c are calculated by including the nonrespondent subsample in the 

logistic regression data set.  Alternatively, the expectation of yi from the 

superpopulation model could be used as a predictor in the response propensity model.  

Let the notation ( ) ( )oˆ , , , ,i i iE y R⎡ ⎤
⎣ ⎦y X D R X  indicate that the estimated conditional 

expectation of a binary outcome, iy , is a function of iR  and iX , and define this 

quantity as: 

 

( ) ( )oˆ , , , ,i i iE y R⎡ ⎤
⎣ ⎦y X D R X  = ( ){ } 1

1 exp i if gR
−

′+ − + +⎡ ⎤⎣ ⎦h X . 

 

( ) ( )oˆ , , , ,i i iE y R⎡ ⎤
⎣ ⎦y X D R X  estimates the conditional expectation of yi, where f, g, and 

h are calculated from the nonrespondent subsample.  When a nonrespondent 

subsample is not available for the current survey, the expectation may be estimated 

from a predictive mean model for the outcome of interest based on the previous 

sample and nonrespondent subsample.   Then the conditional response propensity 

weight may be estimated as:   
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( ) ( ) ( )( )

( ) ( )( )o

ˆ ˆ , , , , , ,

ˆ     1 exp , , , , .

o
cri i i i i i i

i i i i

D R

a b E y R

θ = θ

⎡ ⎤⎡ ⎤ ′= + − + +⎢ ⎥⎣ ⎦⎣ ⎦

X y X D R

y X D R X c X

 

 

Note that, in this case, the coefficients a, b, and c do not take the same values as those 

in the definition of the conditional response propensity weight, ˆ
riθ . 

The general estimator ( ) ( ) ( )( )ˆ ˆ , , , , , ,o
i i i i i i iD Rθ = θ X y X D R  approximates 

( )ˆ , , 1, 1i i iE D Rθ = =y X , so the resulting bias estimate is also approximate: 

 

( ) ( ) ( )
1 1

ˆ ˆˆ , , 1, 1 1 1
N N

i i i i i i i i
i i

Bias T y p E D R y p
= =

⎡ ⎤≈ θ = = − = θ −⎣ ⎦∑ ∑y X , 

 

where ˆ
iθ  in this case is the theoretical value assuming both sample inclusion and 

response and not necessarily the observed value of ˆ
iθ .   Therefore, for each method of 

obtaining ˆ
iθ , the bias is a function of the ratio of ˆ

iθ  to the true response propensity 

score. 
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5.2.4 The variance of the propensity score adjustment estimator 
 

The variance of the propensity score adjustment estimator is obtained with part (c) of 

the lemma such that: 

 

( ) ( )

( ) ( )

1 1

1 1

1 1

1 1

ˆ ˆˆ , 1, 1, 1, 1

ˆ ˆ                           1, 1 1, 1

N N

i i j j ij ij i j i i j j
i j

N N

i i j j i j i j i i i j j j
i j

Var T y y p E D R D R

y y p p E D R E D R

− −

= =

− −

= =

= π π π θ θ = = = =

− π π π π θ = = θ = =

∑∑

∑∑

y X

 

 

Assume again that ( ) ( ) ( )( )ˆ ˆ , , , , , ,o
i i i i i i iD Rθ = θ X y X D R  approximates 

( )ˆ , , 1, 1i i iE D Rθ = =y X  well.  There is no clear approach for approximating the 

expectation ( )ˆ ˆ , , 1, 1, 1, 1i j i i j jE D R D Rθ θ = = = =y X  , so the quantity is approximated 

in this application by ˆ ˆ
i jθ θ .   Now the form of the variance simplifies to: 

 

( ) ( )1 1

1 1

ˆ ˆ ˆ ˆˆ ,
N N

i i j j ij ij i j i j i j i j
i j

Var T y y p p p− −

= =

= π π π θ θ − π π θ θ∑∑y X  

( )1 1

1 1

ˆ ˆ                   
N N

i i j j i j ij ij i j i j
i j

y y p p p− −

= =

= π π θ θ π − π π∑∑   

( ) ( )
2

1 1

ˆ ˆˆ
                   1

N N
i j i ji i i

i i ij ij i j i j
i i j ii i j

y yp y p p p p
= = ≠

θ θθ
= − π + π − π π

π π π∑ ∑∑        (5.2) 
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The response mechanism is further assumed to be independent among all units, i.e. 

i jR R⊥  for all i j≠ .  This assumption implies that ij i jp p p= .  This further simplifies 

the variance of the propensity score adjustment estimator (equation 5.2) of the 

population total given in equation (5.1) to the following form: 

 

( ) ( ) ( )
2

1 1

ˆ ˆˆˆ 1
N N

i j i j i ji i i
i i ij i j

i i j ii i j

p p y yp yVar T p
= = ≠

θ θθ
= − π + π − π π

π π π∑ ∑∑   (5.3) 

 

 

5.2.5 Estimator of ( )ˆVar T  

 

To obtain an unbiased estimate of the variance of the propensity score adjustment 

estimator of the total give in equation (5.1), the sample responses are weighted to 

account for sampling and nonresponse error.   The following lemma provides an 

estimator for the variance of the propensity score adjustment estimator of the total.   

 

Lemma: An unbiased estimator for the variance of the propensity score adjustment 

estimator is given by: 

 

( ) ( )
2^

2
1 1

ˆ 1 1ˆ ˆˆ 1
m m

i i
i i i j i j

i i j ii i j ij

yVar T p y y
= = ≠

⎛ ⎞θ
= − π + θ θ −⎜ ⎟⎜ ⎟π π π π⎝ ⎠
∑ ∑∑    (5.4) 
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Proof:  Stating the variance estimator in terms of the random vectors, D and R, we 

have: 

( ) ( )

( )

2^

2
1 1

2

2
1 1

ˆ 1 1ˆ ˆˆ 1

ˆ 1 1ˆ ˆ            1

m m
i i

i i i j i j
i i j ii i j ij

N N
i i i i

i i i j i j i j i j
i i j ii i j ij

yVar T p y y

D R y p D D R R y y

= = ≠

= = ≠

⎛ ⎞θ
= − π + θ θ −⎜ ⎟⎜ ⎟π π π π⎝ ⎠

⎛ ⎞θ
= − π + θ θ −⎜ ⎟⎜ ⎟π π π π⎝ ⎠

∑ ∑∑

∑ ∑∑

 

 

Assuming that the response mechanism is independent among units, i.e. 

( )1, 1i j ij i jP R R p p p= = = = , the expectation of the variance estimator is computed as 

follows: 

 

( ) ( )

( )

( )
( ) ( )

^ ^

2

2
1 1

2

2
1

ˆ ˆ

ˆ 1 1ˆ ˆ            1

ˆ
ˆ ˆ            1

D R

N N
i i i i

D R i i i j i j i j i j
i i j ii i j ij

N i R i i i
D i i i j R i j i j

i i

E Var T E E Var T

D R yE E p D D R R y y

D E R y
E p D D E R R y

= = ≠

=

⎧ ⎫⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞θ⎪ ⎪= − π + θ θ −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟π π π π⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

θ
= − π + θ θ

π

∑ ∑∑

∑

( )

1

2

2
1 1

1 1

ˆ 1 1ˆ ˆ            1

N

i j
i j i i j ij

N N
i i i i

D i i i j i j i j i j
i i j ii i j ij

y

D p yE p D D p p y y

= ≠

= = ≠

⎡ ⎤⎛ ⎞⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥π π π⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞θ
= − π + θ θ −⎢ ⎥⎜ ⎟⎜ ⎟π π π π⎢ ⎥⎝ ⎠⎣ ⎦

∑∑

∑ ∑∑
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( )

( ) ( )

2

2
1 1

2

1 1

ˆ 1 1ˆ ˆ            1

ˆ ˆˆ
            1

N N
i i i i

i i ij i j i j i j
i i j ii i j ij

N N
i j i j i ji i i

i i ij i j
i i j ii i j

p y p p p y y

p p y yp y p

= = ≠

= = ≠

⎛ ⎞π θ
= − π + π θ θ −⎜ ⎟⎜ ⎟π π π π⎝ ⎠

θ θθ
= − π + π − π π

π π π

∑ ∑∑

∑ ∑∑

 

 
 

which is equivalent to (5.4), proving that ( )
^ ˆVar T  is unbiased for the true variance of 

the propensity score adjustment estimator of the total given in equation (5.1).   

 

 

5.2.6 Response propensity approaches 
 

In Chapter 3, propensity score methodology was extended to the case of nonignorable 

missingness.  In Chapter 4, MAR and NMAR approaches to adjustment class 

formation for weighting class adjustment were developed based on the proposed 

NMAR propensity score methodology.  In the current chapter, these approaches are 

used to obtain response propensities that directly adjust the respondent outcomes in a 

Horvitz-Thompson estimator that is adjusted for nonresponse (equation 3.2).    

 

In Chapter 3, three estimators of the response propensity under nonignorable 

nonresponse were proposed: the NMAR response propensity score ( )( ),ri r i ip p Y= X , 

the conditional response propensity score ( )( ),cri cr si ip p p= X , and the conditional 

response propensity score from the quintiles of the conditional success propensity 
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score ( )( )* ,qcri qcr si ip p p= X .  The balancing properties of the three response propensity 

score estimators relative to the response mechanism were shown for a binary outcome 

of interest.  These three response propensity models are used to estimate the response 

propensity score for the adjusted Horvitz-Thompson estimator (equation 3.2) in 

approaches referred to, respectively, as NMAR response propensity modeling (indexed 

by "R"), conditional response propensity modeling (indexed by "CR"), and 

conditional response propensity modeling based on quintiles of the conditional 

success propensity score (indexed by "QCR").  A MAR approach obtains response 

propensity scores from a logistic regression of the covariates, X, on the response 

indicator with no additional predictors for the outcome of interest.   These four models 

(R, CR, QCR, and MAR) are used to obtain response propensity score for use in 

equation 3.2.  Additionally for each model, quintiles of the response propensity scores 

are used to form adjustment classes, and the median score within each class is used as 

the estimate of the response rate for nonresponse adjustment in equation 3.2.  This 

provides four additional models, denoted as R*, CR*, QCR*, and MAR* to emphasize 

that quintiles are used, for nonresponse adjustment with the propensity score 

adjustment estimator.  Notation for the response propensity weights, design matrices, 

and regression coefficients, as well as some information on model assumptions, is 

provided in Table 5.1 for the eight response propensity models.   

 

Several of the same response propensity modeling approaches from Chapter 4 are used 

in this chapter to estimate response propensity scores.  Specifically, the CR and QCR 
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approaches employ the exact models used in Chapter 3.  However, the R and MAR 

approaches were based on a subset of covariates deemed related more closely to the 

response mechanism (Xr) because joint classification with success propensity scores 

might cause collinearity issues (David et al., 1983).  Since this is not an issue with the 

propensity score adjustment estimator, the complete set of covariates (X) is used to 

model response in the R and MAR approaches described in this chapter.   



 

 

Table 5.1: Models examined for the propensity score adjustment estimator 
PSAE 

Approach 
Missingness 
mechanism 

Response 
propensity 
scores, p  

Response 
propensity 

weights, 
1−θ = p  

Design 
matrix, 

X  

Covariates for 
modeling 

response, R 

p /θ  a 
function 

of R? 

β  Estimator 
of the 
total 

1 MAR rMARp  rMARθ  X X No rMARβ  ˆ
MARΤ  

2 MAR *
rMARp  *

rMARθ  X X No 
rMARβ  *

ˆ
MARΤ  

3 NMAR rp  rθ  rX  Y, X No rβ  ˆ
rΤ  

4 NMAR *
rp  *

rθ  rX  Y, X No rβ  
*

ˆ
rΤ  

5 NMAR crp  crθ  crX  ( ),sp R X , X Yes crβ  ˆ
crΤ  

6 NMAR *
crp  *

crθ  crX  ( ),sp R X , X Yes crβ  
*

ˆ
crΤ  

7 NMAR qcrp  qcrθ  qcrX  ( )* ,sp R X , X Yes qcrβ  ˆ
qcrΤ  

8 NMAR *
qcrp  *

qcrθ  qcrX  ( )* ,sp R X , X Yes qcrβ  
*

ˆ
qcrΤ  
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5.3 CASE STUDY 

 

The propensity score adjustment estimator from equation (5.1) and variance estimator 

from equation (5.4) are applied to the NMDGF elk hunter survey introduced in 

Chapter 4.  This approach incorporates propensity scores from various MAR and 

NMAR models to form adjustment classes.  The estimates of elk harvest from the 

propensity score adjustment estimator are compared to the weighting class adjustment 

estimates obtained in Chapter 4.  Covariates selected in the model selection procedure 

detailed in Chapter 4 are provided for each model in Appendix D.   

 

Quintiles are obtained using L-estimators, which are weighted sums of order statistics 

used to estimate quantiles (Harrell and Davis, 1982; Kaigh and Lachenbruch, 1982; 

Sfakianakis and Verginis, 2008; Stromberg, 1997).  An L-estimator of a vector X has 

the following form: 

 

( ) ( )p
1

Q
n

i i
i

w X
=

=∑X , 
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where iw  is the weight and ( )iX  is the ith order statistic. The response propensities 

exhibited considerable skewness.  Harrell and Davis (1982) estimate quantiles with 

weighted sums of order statistics and a jackknife procedure to estimate the variance.  

Other L-estimators for quantiles have been developed (Kaigh and Lachenbruch 1982), 

but the Harrell-Davis estimator was found to be superior in performance (Stromberg 

1997).   

 

Recent work by Sfakianakis and Verginis (2008) provides three new quantile 

estimators with weights calculated from binomial probabilities.  These estimators 

outperform the Harrell-Davis quantile estimator for asymmetric distributions and 

extreme quantiles.  The "SV3" estimator has the least bias and smallest MSE for 

asymmetric distributions of their three proposed estimators.  The SV3 estimator is 

biased (Sfakianakis and Verginis, 2008) but is the least biased of all L-estimators 

examined for two skewed distributions.  Absolute bias of the SV3 estimator for 

lognormally-distributed random variables with a mean of 0 and a standard deviation of 

1 are positively biased for upper quantiles, and lower quantiles are slightly 

underestimated (Verginis, personal communication).  However, absolute relative bias 

for a range of quantiles falls below 0.2% when sample sizes are large (>750).  The 

SV3 estimator is also examined for the exponential distribution with mean 1.  For 

large samples, absolute relative bias of the 20th percentile is highest at 2.7%, with bias 
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for all other quantile estimates falling below 1%.  Therefore, the bias of the SV3 

estimator is relatively small and is assumed to contribute minimally to the MSE.  The 

SV3 L-estimator is used to obtain quintiles of the response and success propensity 

scores assuming that the bias in the quantile estimator is negligible for large samples.   

 

 

5.3.1 Results 
 

The results of the propensity score adjustment estimator analysis for the New Mexico 

Department of Game and Fish elk hunter survey and nonrespondent subsample are 

provided in Table 5.2.  For survey years 2001 and 2003, the estimate of the total elk 

harvest, the 95%-confidence interval, RMSE, and relative bias are provided.  

Confidence interval coverage, root mean square error (RMSE), and relative bias are 

evaluated to assess the performance of the estimators.  Relative bias is measured 

relative to the design-based estimator obtained from double-sampling for stratification.  

The unadjusted estimates calculated under the MCAR assumption are also compared 

to the estimates from each NMAR estimator.   The predictive capability of the 2001 

success model is assessed with the 2003 data to determine if the models derived from 

the nonrespondent subsamples can be applied to data not augmented by a 

nonrespondent subsample.    
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Table 5.2: 2001 and 2003 propensity score adjustment estimates (PSAE) of total 
harvest  

Approach Metric 
2001 2003 

R 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

4706 
(4651, 4760) 

5818 
-0.55 

4269 
(4216, 4322) 

7403 
-0.63 

R* 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

4681 
(4631, 4731) 

5842 
-0.56 

4311 
(4259, 4364) 

7360 
-0.63 

CR 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11209 
(10886, 11532) 

706 
0.07 

12692 
(12264, 13120) 

1043 
0.09 

CR* 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11333 
(11022, 11644) 

825 
0.08 

13165 
(12743, 13586) 

1502 
0.13 

QCR 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11818 
(11487, 12149) 

1306 
0.12 

13343 
(12911, 13776) 

1688 
0.14 

QCR* 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11772 
(11449, 12096) 

1260 
0.12 

13517 
(13090, 13943) 

1862 
0.16 

MAR 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

5035 
(4960, 5110) 

5488 
-0.52 

4646 
(4571, 4720) 

7027 
-0.60 

MAR* 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

4905 
(4842, 4968) 

5618 
-0.53 

4575 
(4508, 4643) 

7097 
-0.61 
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Approach Metric 
2001 2003 

DSS 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

10523 
(10299, 10747) 

114 
0.00 

11672 
(11339, 12005) 

170 
0.00 

Unadjusted 
Est. Total 
95%-CI 
RMSE 

Rel. Bias 

14190 
(13849, 14531) 

3671 
0.35 

15446 
(15056, 15835) 

3779 
  0.32 

 

 

The R and R* approaches generate estimates of the total elk harvest that are very low, 

with relative bias values indicating that harvest is underestimated by at least 50% for 

both approaches and both years as compared to the double sampling for stratification 

estimates.  This result is surprising given that the response propensity model 

accurately reflects the NMAR missingness mechanism by modeling the response 

indicator as a function of the outcome of interest and a large suite of covariates using 

the subsample of nonrespondents.  The estimates of total harvest from the R and R* 

approaches are only slightly higher than the reported harvest (see Table 4.3), 

indicating that the estimated NMAR response propensity weights are very close to one 

for respondents.   

 

The CR approach generates estimates of total elk harvest with much higher accuracy.    

The 2001 CR estimate of the total exhibits relative bias of 0.07, and the 2003 estimate 
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demonstrates a higher positive relative bias of 0.09.  This approach performs better 

than expected since it was shown both in Chapter 3 and Appendix B that the 

conditional response propensity score mathematically reduces to the response 

indicator.  The quintiles of the conditional response propensity scores (CR*) did not 

change these results substantially, with relative biases of 0.08 for 2001 and 0.13 for 

2003.     

 

The approaches that employ the quintiles of the conditional success propensity scores 

as predictors in the response model (QCR and QCR*) are just slightly more biased 

than the approaches that use the uncoarsened conditional success propensity scores as 

predictors (CR and CR*).  The QCR approach provides estimates of total elk harvest 

with relative bias of 0.12 for 2001 and 0.14 for 2003.  The QCR* approach yields 

similar estimates with relative bias of 0.12 for 2001 and 0.16 for 2003.  Using 

quintiles of the conditional success propensity scores as predictors in the response 

model increases the RMSE as compared to the CR and CR* approaches.  The RMSE 

for the CR estimates are 706 in 2001 and 1043 in 2003.  When the quintiles of the 

conditional success propensity score are used (QCR approach), the RMSE increases to 

1306 in 2001 and 1688 in 2003.  Similar results are found when comparing the 

approaches with coarsened response propensity scores.  The RMSE values from the 

CR* approach are 825 in 2001 and 1502 in 2003.  Coarsening the conditional success 
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propensity score (QCR*) increases the RMSE to 1260 in 2001 and 1862 in 2003.  This 

increase in RMSE results from increases in both variance and bias.   

 

The MAR approaches generate estimates of total elk harvest that are very similar to 

those obtained from the R approach.  This approach underestimates the harvest total 

by more than half despite incorporating information from the nonrespondent 

subsample.  Confidence interval width is relatively narrow for these estimates, 

indicating that the inflated RMSE values are due to the large negative bias of the 

estimates.   

 

Coarsening was used in the propensity score adjustment estimator in two ways.  First, 

estimates of the response rate were obtained by using either the estimated response 

propensities or the values obtained from quintiles of the response propensity scores.  

This level of coarsening was used to alleviate the variance-inflating effects of small 

response propensities.  Second, in the QCR and QCR* approaches, quintiles of the 

success propensity score were used as predictors in the response propensity model.  

This level of coarsening was used to reduce dependence on the success propensity 

model.  With respect to the first level of coarsening, the use of quintiles of response 

propensity scores rather than the response propensity scores did not greatly affect 

inference.  Coarsening the response propensity scores increases bias slightly in this 
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example and exhibit no obvious benefit in this case.  To evaluate the second level of 

coarsening, the CR approach is compared to the QCR approach, and the CR* approach 

is compared to the QCR* approach.  In each case, modeling response with coarsened 

success propensity scores increased bias and RMSE.  This result suggests that 

coarsening the success predictor may not be prudent.  These two levels of coarsening 

will be examined further for a range of scenarios in the simulations described in 

Chapter 6.  

 

Overall, the R, R*, MAR, and MAR* approaches perform poorly by greatly 

underestimating the elk harvest total as compared to the design-based estimates 

obtained from double sampling for stratification.  An examination of the estimated 

response propensity scores from each approach revealed that the estimated response 

propensity scores are generally much closer to one for the R and MAR approaches 

compared to the CR and QCR approaches (Figure 5.1).  The methods also generate 

extremely low propensities, generally for nonrespondents within certain combinations 

of weapon type, hunt size, and landowner type.  This tendency of the estimated 

response propensity scores toward 0 or 1 is referred to as separation and can be a 

problem in discrete-data regression, especially when binary predictors that exhibit 

collinearity are used (Gelman, Jakulin, Pittau, and Su, 2001).  In this case, linear 

combinations of certain model variables more perfectly predict the response indicator.  
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Weakly informative priors may help this problem, but the Jeffrey's prior (Firth, 1993) 

incorporated in this approach did not resolve the issue.  The simplest correction to this 

problem may be the use of the CR or QCR approaches which employ a real-valued 

estimate of the success propensity rather than the binary outcome of interest to obtain 

more stable models and unbiased estimates.  The CR approach was expected to exhibit 

separation as evidenced by the theoretical simplification of 

( )( ),cri cr si i ip p p R r r= = =X .  However, the CR approach worked well in practice.  

This favorable performance may be a result of large samples and conditional response 

models consisting of many predictors and interactions with the conditional success 

propensity score so that simplification to the response indicator is not possible.  These 

considerations will discussed further for the simulations reviewed in Chapter 6.   

 

Overall, the CR approach for the propensity score adjustment estimator yielded 

estimates with the least bias and RMSE.  However, none of the confidence intervals 

for the propensity score adjustment estimator approaches covered the design-based 

estimates.  Furthermore, the degree of bias is slightly higher for the 2003 estimates 

than for the 2001 estimates.  As discussed in Chapter 4, these issues may result from 

unanticipated bias in the design-based estimates from double sampling for 

stratification or poor performance of the 2001 success propensity model for the 2003 

data.  We will examine these issues further in the simulations discussed in Chapter 6. 



   

 

Figure 5.1: Boxplots of estimated response propensities for the eight propensity score adjustment estimator approaches

155
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5.3.2 Comparison to weighting class adjustment 

 

The results from the weighting class adjustment analysis in Chapter 4 (Table 4.8) are 

provided again in Table 5.3 for ease of discussion.  In the previous section, the poor 

performance of the R and R* approaches for the propensity score adjustment estimator 

was discussed.  The NMAR response propensity score perform better as the basis for 

adjustment cells in a weighting class adjustment even when subject to separation 

(Table 5.3).  The weighting class adjustment estimates of the total for the R approach 

exhibited relative bias of -0.10 for 2001 and 0.05 for 2003, and when joint 

classification was used with the conditional success propensity score (JR approach), 

the relative bias was -0.11 and -0.09 for 2001 and 2003, respectively.  The R and JR 

approaches to the weighting class adjustment exhibited the least absolute relative bias 

for the 2003 pilot data as compared to all other approaches.  This result indicates that, 

when separation is a problem, the NMAR response propensity scores are not accurate 

enough for direct nonresponse adjustment but are more effective for grouping units 

with similar response rates.  However, the relative bias for the R weighting class 

adjustment approach is -0.10 for 2001, and the relative bias for the R* weighting class 

adjustment approach is -0.11 for 2001 and -0.09 for 2003.  These are the only 

weighting class adjustment approaches that underestimate the total relative to the 

double sampling for stratification estimator, indicating that the NMAR propensity 

scores may also perform poorly for weighting class adjustment when separation 

occurs. 
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Because the propensity score adjustment estimator greatly underestimates the 

population total when the R, R*, MAR, and MAR* approaches are used, the CR and 

QCR approaches are compared between the weighting class adjustment and the 

propensity score adjustment estimators.  In most cases, the propensity score 

adjustment estimates exhibit smaller RMSE than the weighting class adjustments 

based on the same propensity scores.  For example, the 2001 relative bias for the CR 

and CR* propensity score adjustment estimator approaches is 706 and 825, 

respectively.  For the 2001 weighting class adjustment estimates, the RMSE is higher 

for both the CR approach (1290) and the JCR approach (854).  Similarly, the 2003 

relative bias for the CR and CR* propensity score adjustment estimator approaches is 

1043 and 1502, respectively.  For the 2003 weighting class adjustment estimates, the 

CR approach (1399) and the JCR approach (1894) both produce higher RMSE values.  

An exception occurs with the JQCR estimator for 2001 from the weighting class 

adjustment.  In this case, the RMSE of 987 is lower than the RMSE from the 

propensity score adjustment estimator for the QCR approach (1306) and the QCR* 

approach (1260).  Across both estimators, the CR approaches are less biased than the 

QCR approaches, indicating that the coarsening of the success propensity score as a 

predictor in the response propensity model may not be helpful.
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Table 5.3: 2001 and 2003 weighting class adjustment estimates  

Estimator Metric 2001  2003 

WC Adj.  
(Joint classification) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

13888 
(13618, 14158) 

3368 
0.32 

15404 
(15058, 15751) 

3736 
0.32 

WC Adj.  
(Instrumental 

variable regression) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

13805 
(13537, 14074) 

3285 
0.31 

15593 
(15247, 15939) 

3925 
0.34 

WC Adj.  
(Intermediate) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11409 
(11010, 11809)  

909 
0.08 

13525 
(12944, 14107) 

1877      
0.16 

WC Adj.  
(R) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

9460 
(9234, 9686) 

1069 
-0.10 

12207 
(11912, 12502) 

556  
0.05 

WC Adj.  
(CR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11796 
(11388, 12203) 

1290 
0.12 

13058 
(12687, 13430) 

1399 
0.12 

WC Adj.  
(QCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

12284 
(11924, 12643) 

1771 
 0.17 

13557 
(13188, 13927) 

1894 
0.16 

WC Adj.  
(JR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

9356 
(8421, 10292)  

1261 
-0.11 

10656 
(10147,11165) 

1049 
-0.09 

WC Adj.  
(JCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11327 
(10760, 11894)   

854 
0.08 

13409 
(12796, 14021) 

1765 
0.15 

WC Adj.  
(JQCR) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11479 
(10999, 11959)  

987 
0.09 

13742 
(13076, 14408) 

2098 
0.18 

WC Adj. 
(SUCC) 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

11109 
(10462, 11757) 

673 
0.06 

13128 
(12573, 13684) 

1483 
0.12 
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Estimator Metric 2001  2003 

Double sampling for 
stratification  

 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

10523 
(10299, 10747) 

114 
0.00 

11672 
(11339, 12005) 

170 
0.00 

Unadjusted estimates 

Est. Total 
95%-CI 
RMSE 

Rel. Bias 

14190 
(13849, 14531) 

3671 
  0.35 

15446 
(15056, 15835) 

3779 
  0.32 

 

 

5.3.3 Comparison to additional NMDGF hunt information 

 

Additional information may help in assessing the performance of the propensity score 

adjustment estimator and the NMAR weighting class adjustment estimators in the case 

study.  In 2006, NMDGF discontinued the censusing of licensees and changed to a 

mandatory survey return program.  Licensees that do not respond via telephone or 

internet are now fined and considered ineligible for any big game hunts in the state 

during the following hunt year.  Success rates are calculated as the estimated harvest 

divided by the number of licensees for each year.   NMDGF success rates for 2001, 

2003, and 2006 through 2008 are provided for comparison in Table 5.4.   
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Table 5.4: Estimated success rates from all approaches and sources 
Estimate 2001 2003 2006 2007 2008 

Response rate 0.29 0.24 0.83 0.86 0.86 
WC Adj. (JC) 0.36 0.38    

WC Adj. (IVR) 0.36 0.38    
WC Adj. (INT) 0.30 0.33    
WC Adj. (R) 0.25 0.30    

WC Adj. (CR) 0.31 0.32    
WC Adj. (QCR) 0.32 0.33    
WC Adj. (JR) 0.24 0.26    

WC Adj. (JCR) 0.30 0.33    
WC Adj. (JQCR) 0.30 0.34    
WC Adj. (SUCC) 0.29 0.32    

PSAE (R) 0.12 0.11    
PSAE (R*) 0.12 0.11    
PSAE (CR) 0.29 0.31    
PSAE (CR*) 0.30 0.33    
PSAE (QCR) 0.31 0.33    
PSAE (QCR*) 0.31 0.33    
PSAE (MAR) 0.13 0.11    
PSAE (MAR*) 0.13 0.11    

MCAR 0.37 0.38 0.28* 0.32* 0.33 
DSS 0.28 0.29    

Min. success rate 0.11 0.09 0.23 0.28 0.29 
Max. success rate 0.81 0.85 0.40 0.42 0.43 
* Estimates from a subpopulation of hunts in core occupied elk range 

 

Response rates in 2006, 2007, and 2008 increased to 83%, 86%, and 86%, 

respectively, from the low response rates observed in 2001 and 2003 before the 

mandatory survey return program began.   Propensity score adjustment, weighting 

class adjustment, and MCAR estimates of the success rate are provided for 

comparison of the 2001 and 2003 estimates to those obtained from a similar survey 

with a higher response rate.  Furthermore, the minimum and maximum success rates 

are provided as "realistic intervals" on the true success rate.  These bounds are 
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calculated assuming that either all nonrespondents are unsuccessful or all 

nonrespondents are successful and provide a realistic interval of the success rate 

(Molenberghs, Kenward, Verbeke, Beunckens, and Sotto, 2009).  It is important to 

note that the estimates for 2006 and 2007 represent only hunts in core occupied elk 

range rather than all hunts statewide.  MCAR success rate estimates based only on the 

survey returns were lower in 2006 through 2008 (0.28, 0.32, and 0.33, respectively) 

than in 2001 and 2003 (0.37 and 0.38, respectively).  This result may indicate either a 

decrease in overall success during that period of time or sampling that better captures 

the subpopulation of licensees that would not respond to the original survey without 

deleterious consequences.  Information from the 2001 and 2003 nonrespondent 

subsamples suggest that the latter is plausible.   

 

To compare the propensity score adjustment and weight class adjustment estimates 

directly to the MCAR estimates, one must be willing to make several assumptions.  

First, one must assume that the annual success rates have not changed significantly 

over the period from 2001 to 2008.   Also, the success rate in core occupied elk range 

must not be substantially different from the statewide success rate to make 

comparisons.  Furthermore, one must assume that the remaining 14% to 17% 

nonresponse in the mandatory return survey is missing completely at random with 

response to the binary outcome for success.  Under these assumptions, we can 

compare the propensity score adjustment and weight class adjustment estimates to the 

MCAR estimates, which are now taken as "true" values of the success rate.   
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If these assumptions are valid, then the success rate is generally about 0.28 to 0.33 and 

ranges from 0.23 to 0.43 based on the realistic intervals from 2006 through 2008.  The 

success rate estimates from double sampling for stratification of 0.28 in 2001 and 0.29 

in 2003 fall within this interval.  The R, R*, MAR, and MAR* approaches of the 

propensity score adjustment estimator greatly underestimate the success rate with 

respect to the mandatory return estimates.  The CR, CR*, QCR, and QCR* approaches 

for the propensity score adjustment estimator yield success rates that fall within the 

range of mean success for the 2006, 2007, and 2008 estimates.  For the weighting 

class adjustment, the INT, CR, QCR, JCR, JQCR, and SUCC approaches provide 

estimates of the success rate that fall between 0.28 and 0.33, the range of the estimated 

success rates from 2006 though 2008.  However, all of the estimates of the success 

rate from the weighting class adjustment fall within the range of realistic interval 

endpoints (0.23 to 0.43) observed between 2006 and 2008.   

 

If the previous assumptions are not valid, then the more conservative approaches may 

be more reasonable for wildlife management.  Conservative approaches include those 

that tend to slightly overestimate rather than underestimate total elk success, such as 

the CR and CR* approaches of the propensity score adjustment estimator and the INT, 

JCR, and SUCC approaches for the weighting class adjustment.  Underestimating 

harvest could prompt NMDGF to increase license numbers, resulting in increased 

hunting pressure that may negatively impact the elk population.  Therefore, a 
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moderate bias adjustment would be more prudent that an overcorrection that resulted 

in underestimation of the total harvest and an unsustainable increase in elk licenses.   

 

 

5.4 DISCUSSION 

 

In this chapter, the propensity score adjustment estimator is introduced for 

nonignorable nonresponse.  This estimator uses NMAR extensions of propensity score 

methodology to estimate response propensities used in a modified Horvitz-Thompson 

estimator for nonresponse (equation 3.2).  These techniques require obtaining a 

nonrespondent subsample.  Four modeling approaches were examined, three of which 

are appropriate for NMAR missingness.  For each response propensity modeling 

approach, either the estimated response propensity scores or quintiles of the estimated 

response propensity scores were used to estimate the response rate in equation 3.2.   

 

In the case study example, the propensity score adjustment estimator was applied to 

two years of data from an elk hunter survey.  For each year, a nonrespondent 

subsample was obtained and design-based estimates of total harvest were calculated.  

Modeling the response propensity scores from the binary indicator of success 

performed surprisingly poorly due to collinearity issues from a large suite of binary 

predictors.  Because response propensity models for the CR, CR*, QCR, and QCR* 
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approaches incorporate real-valued estimated success propensity scores or quintiles of 

estimated success propensity scores, estimated response propensity scores were less 

susceptible to bias from separation (Gelman et al., 2001).   Overall, the CR approach 

was found to provide the least bias and smallest RMSE across all propensity score 

adjustment estimate approaches, indicating that coarsening of the response propensity 

scores or success propensity scores provides no benefit for these data sets.   

 

Estimation with the propensity score adjustment estimator is dependent on large 

samples, data sets with rich covariate information, and the ability to subsample 

nonrespondents.  Therefore, this approach may be most useful to state and federal 

resource management agencies with large list frames containing numerous explanatory 

variables.  Accurate and complete databases are needed to appropriately identify 

nonrespondents and a substantial subsample of nonrespondents must be obtained to 

accurately model the success outcome.  The cost of the NMDGF nonrespondent 

subsample exceeded $10,000 each year, but the additional data collection and analysis 

allows the severity of the bias to be assessed and adjusted if necessary.  If factors 

influencing success do not change greatly over time, then the success model from one 

nonrespondent subsample could be used for multiple years for a savings in survey 

costs and improved accuracy in harvest estimates.  Bias may be reduced for only the 

cost of data analysis.     
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5.5 CONCLUSIONS 

 

The propensity score adjustment estimator, a novel extension of the estimator 

proposed by Cassel et al. (1983), may be a useful tool for nonignorable nonresponse 

adjustment.  Accounting for the dependence between the response indicator and the 

outcome of interest in the response propensity model allows propensity score 

adjustment to be used when data are NMAR.  When a nonrespondent subsample is 

available, methods incorporating the conditional success propensity score rather than 

the outcome of interest may be more robust and unbiased.  Coarsening of either the 

response propensity score for nonresponse adjustment or the success propensity score 

for response propensity prediction did not demonstrate any benefits in the analysis of 

the pilot data sets.  Simulations are employed to determine how the propensity score 

adjustment estimator approaches perform under various conditions, including a range 

of odds ratios, success rates, and response rates.  Changes in success and response 

rates between the population used for modeling and the population to which the 

success model is applied are generated to determine how approaches perform and if 

coarsening is effective.   
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6: SIMULATION STUDY 
 

6.1 INTRODUCTION 

 

When data are NMAR, a subsample of nonrespondents may be used to develop 

propensity score methodology to deal with nonignorable nonresponse. In Chapter 4, 

several success and response propensity score models were used to form adjustment 

classes for estimation with the weighting class adjustment (Oh and Scheuren, 1983).  

These models reflected a range of assumptions of missingness.  For example, MAR 

approaches to propensity score estimation were obtained from Vartivarian and Little 

(2003) and David et al. (1983).  An intermediate approach between MAR and NMAR 

missingness was developed by incorporating the success propensity score as a 

predictor of response but modeling response independently of success.  Several new 

NMAR approaches to adjustment class formation were also proposed.   

 

NMAR models that account for the dependence of the response on success were also 

developed from the nonrespondent subsample information.  NMAR response 

propensity classification (indexed by "R") is based on a response propensity score that 

includes the outcome of interest for both respondents and nonrespondents.  A 

nonrespondent subsample is necessary for this estimator.  Conditional response 

propensity classification (indexed by "CR") is based on a response propensity model 
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which includes estimates of the predicted mean of the outcome of interest; when the 

outcome of interest is a binary response, the predicted mean may also be called the 

success propensity score.  When the model for success accurately predicts success for 

respondents and nonrespondents, the predictions are used to model the propensity to 

respond under nonignorable missingness when a nonrespondent subsample is not 

available.  A similar NMAR modeling approach, the conditional response propensity 

classification, is based on quintiles of the conditional success propensity score 

(indexed by "QCR").  In this approach, quintiles of the conditional success propensity 

scores are used as predictors of response propensity rather than the conditional success 

propensity scores.  In conditional success propensity classification (SUCC), the 

conditional success propensity score is used alone to form adjustment cells and 

represents predictive mean stratification (Little, 1986) for NMAR missingness.  

Additionally, classes formed from each of the response propensity scores are cross-

classified with those formed by the conditional success propensity score in the spirit of 

joint classification discussed by Vartivarian and Little (2003) and are referred to as 

joint NMAR response propensity classification (JR), joint conditional response 

propensity classification (JCR), and joint conditional response propensity 

classification based on quintiles of the conditional success propensity score (JQCR).   

 

The adjusted Horvitz-Thompson estimator of the population total under nonresponse 

(equation 3.2) incorporates response propensity estimates from each of the MAR and 

NMAR response models.  In Chapter 5, this estimator is called the propensity score 
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adjustment estimator, or PSAE, and is given in equation (5.1).  Either the estimated 

response propensity scores or quintiles of the response propensity scores were used as 

the estimate of the response rate for each responding sampling unit.   

 

A simulation is conducted to examine the performance of the NMAR propensity score 

methodology for weighting class adjustments and the propensity score adjustment 

estimator discussed in Chapters 4 and 5, respectively.  A variety of success and 

response propensities, degrees of model specification, and odds ratios were considered 

to determine how well each estimator performs under a range of conditions.  The role 

of each factor is discussed in the subsequent sections.  Performance is measured with 

relative bias, confidence interval coverage, and root mean square error (RMSE). 

 

 

6.2 SIMULATION METHODS 

 

6.2.1 Description of the simulation populations 

 
First, the success and response covariates are obtained.  For both the outcome of 

interest and the response indicator, independent sets of covariates including a four-

level factor and a Bernoulli random variable are generated as predictors.  These 

variables reflect the factors and binary covariates used for modeling success and 



 
 
 

169  
 

response in the NMDGF case study.  A multinomial random variable is generated with 

four levels occurring with probabilities 0.4, 0.3, 0.2, and 0.1.  These probabilities were 

chosen so that they sum to 1 and roughly reflect the frequencies observed among 

weapon types for the NMDGF pilot data.  Therefore, in this example, roughly 40% of 

the licensees in the simulation are licensed for the combined hunt category consisting 

of center-fire, muzzle-loader, or bow hunts (referred to as "rifle hunts" because rifles 

are most commonly used), 30% are licensed for bow-only hunts, 20% are licensed for 

muzzle-loader only hunts, and 10% are licensed in hunts for impaired hunters.   Three 

binary random variables are obtained from the first three levels of the multinomial 

random variable by creating indicator variables for the first three levels.  The fourth 

level is treated as a reference factor.  In other words, let 0s iX  represent the 

multinomial random variable influencing success such that 0s iX  is distributed as a 

( )Multinomial 0.4,0.3,0.2,0.1  random variable for all i.  Three binary random 

variables are defined as: 

 

1

1,  unit  in rifle hunt
0,  otherwise            s i

i
X ⎧

= ⎨
⎩

  

2

1,  unit  in bow-only hunt
0,  otherwise                    s i

i
X ⎧

= ⎨
⎩

 

3

1,  unit  in muzzle-loader only hunt
0,  otherwise                                   s i

i
X ⎧

= ⎨
⎩
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A separate Bernoulli random variable, 4s iX , with an arbitrarily-chosen mean of 0.5 

was independently generated.as a predictor of the binary outcome of interest.  This 

dichotomous covariate mirrors predictors from the NMDGF pilot data such as 

landowner type or residency.  Therefore, the set of success model predictors for unit i 

includes 1s iX , 2s iX , 3s iX ,  and 4s iX .  Response covariates 1r iX , 2r iX , 3r iX ,  and 4r iX   

were generated similarly as the success covariates.   

 

The true success propensity is obtained from a logistic regression model, 

( )logit s s s=p X β , where ( )1 2 3 4, , ,s s s s s=X X X X X .  The values of sβ  were selected to 

generate mean success propensities of 0.3, 0.6, and 0.9 so that a wide range of success 

propensities could be examined (Table 6.1).  The same approach was also used to 

compute response propensities, and success and response covariates were obtained 

from independent processes.  Recall from section 4.4.2 that the success rate for the 

NMDGF pilot data was 0.28 in 2001 and 0.29 in 2003.  Recall that the NMDGF 

response rates for 2001 and 2003 were 0.29 and 0.24, respectively.  Therefore, the 

range of mean success rates ( )sp and mean response rates ( )rp  examined in the 

simulation treats the observed success and response rates from the pilot data as lower 

limits.   
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Table 6.1: Values of regression coefficients for each mean success/response 
propensity 

 ors rp p  sβ  or rβ  
0.3 1, -1.5, -1.5, -1.5 
0.6 1, 1, -1, -1 
0.9 1, 1, -1, 1 

 

 

Given the success and response propensities, the response mechanism (R) and 

Bernoulli outcomes (Y) were generated from a multivariate Bernoulli distribution.  

The correlation between R and Y was calculated as a function of the odds ratio (OR).  

The odds ratio is defined as follows: 

 

( ) ( )
( ) ( )

1 1 0 0
1 0 0 1

P R Y P R Y
OR

P R Y P R Y
= = = =

=
= = = =

 

 

Therefore, the odds ratio represents the ratio of the odds of response for successful 

units to the odds of response for unsuccessful units.  When the odds ratio is greater 

than one, successful units are more likely to respond than unsuccessful units.  When 

the odds ratio is less than one, unsuccessful units are more likely to respond.  When 

the odds ratio is 1, the nonresponse is ignorable (Nandram and Choi, 2000).  When the 

odds ratio is substantially different from one, then the nonresponse is nonignorable 

and appropriate adjustment techniques must be used.  Odds ratios of 0.33, 0.5, 1, 2, 

and 3 were considered in this exercise to examine a range of bias severity.  These odds 
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ratios were chosen to exemplify a plausible range of odds ratios based on results from 

the case study.   

 

Four types of populations were generated.  The first population has correct 

specification for success and response models.  The second population exhibits a 30% 

decline in the mean response rate.  The third population is generated with a 30% 

decline in the mean success rate.  The fourth population demonstrates 30% declines in 

both the mean success rate and mean response rate.  Declines of 30% were used 

because this decline is large enough to affect inference but small enough to avoid 

generating very small values of the mean response rate.  Declines are generated by 

changing the regression coefficients in the success and/or response propensity models 

to produce propensity scores with the desired mean.  NMAR approaches in which a 

nonrespondent subsample is only available for Population 1 and not for Populations 2 

through 4 include the CR, CR*, QCR, and QCR* approaches of the propensity score 

adjustment estimator and the CR, QCR, JCR, and JQCR approaches of the weighting 

class adjustment.  For these approaches, the success model based on Population 1 is 

used to predict success for samples from Populations 2 through 4.  The bias and 

precision of the estimators indicate how approaches perform when the models are not 

correctly specified.   

 

To summarize, the factors listed in Table 6.2 are used to generate a variety of 

populations in the simulation.  A total of 180 scenarios are created from all possible 
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combinations of the simulation factors which include 5 levels of the odds ratio, 3 

levels of the mean success rate, 3 levels of the mean response rate, 2 levels of change 

in the mean success rate, and 2 levels of change in the mean response rate.  This range 

of conditions will be used to examine the performance of the estimators from Chapters 

4 and 5.   

 

Table 6.2: Simulation factors and levels 
Factor Levels 

Odds ratio 0.33, 0.5, 1, 2, 3 
Mean success rate, sp  0.3, 0.6, 0.9 

Mean response rate, rp  0.3, 0.6, 0.9 
Decrease in mean success rate, sp  None, 30% 

Decrease in mean response rate, rp  None, 30% 
 

 

6.2.2 Simulation steps 

 

For each of the 180 scenarios enumerated by Table 6.2, a total of 100 populations 

were generated in the simulation.  For each population generated as described in 

section 6.2.1, three simple random samples of size 300 were drawn from each 

population.  We assume that complete outcomes for all nonrespondents in the sample 

are obtained in a nonrespondent subsample.  For each sample, each of the 21 

estimators is calculated.  Means and variances of the total, relative bias, confidence 
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interval coverage, and root mean square error (RMSE) are summarized across all 

samples and iterations.  Relative bias for each estimator was calculated as follows: 

 

Estimate of totalRelative bias =   1
True total

− . 

 

The true total is known for each simulated population, so relative bias is known rather 

than estimated.  This summary statistic is negative if the estimate underestimates the 

true total and positive if overestimation occurs.   

 

 

6.2.3 Estimation methods 

 

The weighting class adjustment estimator of the total (equation 4.1) and the variance 

estimator (equation 4.6) proposed in Chapter 4 were applied in the simulation.  In 

Chapter 5, three NMAR response propensity models and one MAR response 

propensity model provide estimates of the response propensities that are used either 

directly or are used to obtain quintiles of the response propensity weights in the 

propensity score adjustment estimator (equation 5.1).   

 

A total of 21 estimators are calculated in this simulation study.  In addition to the ten 

weighting class adjustment approaches examined in Chapter 4 and eight propensity 

score adjustment estimator approaches from Chapter 5, the double-sampling for 
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stratification estimator will be calculated assuming that a nonrespondent subsample is 

available for each population (equations 4.7 and 4.8).  Furthermore, two MCAR 

estimators are examined.  The approach denoted as MCAR applies the MCAR 

assumption that the responding units are a random sample of the original sample 

(Little and Rubin, 2002).   The nonresponse is accounted for by reducing the sample 

size to that observed (m) and adjusting inclusion probabilities as if a sample of m 

respondents had been actually drawn.  The MCAR estimator using the Horvitz-

Thompson estimator for a reduced sample size of m respondents is: 

 

1 1

1

ˆ
m

MCAR i i
i

T p yπ − −

=

=∑ , 

 

where mp
n

=  adjusts the inclusion probabilities for the reduced sample size.  When 

the sampling design is a simple random sample, the adjusted inclusion probability 

simplifies to i i
n m mp
N n N

′π = π = × = , which would be the inclusion probability for a 

simple random sample of size m from a population of size N.   The variance estimator 

for the Horvitz-Thompson estimate of the total is the standard estimator but 

incorporates the adjusted weights for the reduced sample of m respondents.  This 

estimator is given by: 

 



 
 
 

176  
 

( ) ( )
( )

^
2

2
1 1

1ˆ
m m

ij i ji
MCAR i i j

i i j i ij i j

Var T y y y
= = ≠

′ ′ ′′ π − π π− π
= +

′ ′ ′π π π′π
∑ ∑∑ , 

 

where iy  is the outcome of interest for unit i and 2
ij ijp′π = π  is the adjusted joint 

inclusion probability for units i and j.   

 

A second MCAR estimator, MCAR2, is used assuming that no adjustments for 

nonresponse are made.  In this approach, the nonresponse is completely ignored and 

inclusion probabilities are not adjusted for nonresponse.  This estimator of the total, 

referred to as the MCAR2 estimator, is given by the standard Horvitz-Thompson 

estimator: 

 

1
2

1

ˆ
m

MCAR i i
i

T y−

=

= π∑  

 

with the estimator of the variance given by: 

 

( ) ( )^
2

2 2
1 1

1ˆ
m m

ij i ji
MCAR i i j

i i j ii ij i j

Var T y y y
= = ≠

π − π π− π
= +

π π π π∑ ∑∑ . 
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6.3 SIMULATION RESULTS 

 

The performance of the 21 estimators is evaluated by examining the mean relative 

bias, mean confidence interval coverage, and mean root mean square error (RMSE) 

summarized across simulation iterations (Appendix E).  These summary statistics are 

used to assess the accuracy and precision of the estimators under a range of conditions.  

General plots are provided subsequent to the discussion of each summary statistic, and 

more specific discussion may be verified by referring to Appendix E.  

 

 

6.3.1 Relative bias 

 

Boxplots of the estimates of relative bias for each of the 21 estimators are provided 

across odds ratios (Figures 6.1 to 6.5).  Each box plot represents the range of estimates 

for each approach across the levels of the odds ratio, mean success rate, and mean 

response rate.  Most approaches tend to underestimate the true population total when 

the odds ratio is less than one and tend to overestimate the total when the odds ratio is 

greater than one.  As the odds ratio increases or decreased from one, the absolute 

relative bias increases.  When the odds ratio is one, the missingness mechanism is 

MAR, so bias is generally less severe in this case.  Relative bias for the MCAR and 

MCAR2 estimators is almost identical, indicating that a simple adjustment for 

nonresponse is inadequate in for bias reduction.  The design-based estimator for 
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double-sampling for stratification (DSS) exhibits near-unbiasedness across all 

scenarios.  For most estimators, the relative bias is very low when the mean success 

rate and the mean response rate are high ( sp = rp = 0.9).   

 

For Population 1, the MCAR estimators (MCAR and MCAR2) and the MAR 

approaches for weighting class adjustment (JC and IVR) are most biased (Figure 6.1).  

However, some of the results from the QCR and QCR* approaches of the propensity 

score adjustment estimator and the QCR approach of the weighting class adjustment 

produce estimates are as or more biased than the estimates from the MCAR and MAR 

approaches.  The weighting class adjustments using the INT, R, JR, JCR, and JCQR 

approaches to adjustment class formation reduce bias as compared to the MCAR 

approaches over the range of scenarios.  The intermediate (INT) approach and the 

three NMAR joint classification approaches (JR, JCR, and JCQR) all incorporate joint 

classification on response and success propensities.  The favorable performance of the 

intermediate (INT) approach is surprising considering that the response propensity is 

based on a MAR model for missingness.  When the odds ratio is less than 1, the 

SUCC approach also provides nearly-unbiased estimation of the population total.  The 

MAR propensity score adjustment estimators (MAR and MAR*) are as or more biased 

as the estimates from the MCAR approaches for all scenarios except when the mean 

success rate is high ( sp = 0.9).  The increase in bias from using the MAR and MAR* 

approaches for the propensity score adjustment estimator is most extreme when the 

mean response rate is low ( rp = 0.3) and the mean success rate is low to moderate 
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( sp ≤ 0.6).  The NMAR propensity score adjustment estimators (R and R* approaches) 

are more negatively biased when the odds ratio is less than 1, the mean response rate is 

low ( rp = 0.3), and the mean success rate is low to moderate ( sp ≤ 0.6).  

 

For Population 2, the mean response rate, rp , declines by 30% overall producing a 

mean response rate of about 0.21.  For a mean success rate of 0.9, the relative bias 

decreases to a range of -0.04 to 0.04 for the MCAR approaches (Figure 6.2).  The 

propensity score adjustment estimates tend to underestimate the population total for all 

odds ratios examined and increase the bias most severely when the odds ratio is less 

than one or the mean response rate is 0.3.  This result suggests that, in these cases, the 

estimated response propensities are overestimated by the logistic regression model.  

The weighting class adjustment estimates for the JR adjustment class approach are 

nearly unbiased except when the odds ratio is 0.33; in this case, the JR approach can 

underestimate the population total up to 16%.  When the odds ratio is less than 1, the 

SUCC approach of the weighting class adjustment performs well.  The INT, JCR, and 

JQCR approaches also reduce bias due to nonresponse and often perform as well as 

the JR and SUCC approaches.  The estimates from the QCR weighting class 

adjustment approach were most consistently biased across the scenarios for Population 

2 and, in some cases, inflate the bias more severely than either of the MCAR 

approaches.  The MAR propensity score adjustment estimators (MAR and MAR* 

approaches) increased the severity of the bias as compared to the two MCAR 

estimators, with relative bias nearly doubling for odds ratios greater than one and 
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underestimating the population total by nearly a half even when the odds ratio is one 

and missingness is truly MAR. 

 

Population 3 exhibits a 30% decline in mean success rates compared to the population 

on which the model was obtained.  Absolute relative bias is uniformly less than 0.10 

when the mean response rate is high ( rp = 0.9).  Relative bias of the estimates from 

the R and R* approaches of the propensity score adjustment estimator is not affected 

by the decline in the mean success rate because these estimators incorporate a 

nonrespondent subsample of Population 3 rather than the conditional success model 

that is based on Population 1 (Figure 6.3).  These estimators are least-biased for most 

scenarios except when the mean response rate and the mean success rate are low 

( rp = sp  = 0.3).  In these cases, the INT, JCR, and JQCR approaches of the weighting 

class adjustment provide less-biased estimates.  The propensity score adjustment 

estimator approaches incorporating the conditional success model rather than the 

actual outcome of interest (CR, CR*, QCR, QCR*) exhibit relative bias ranging from -

0.39 to 0.22 for moderate to high mean success rates ( sp ≥ 0.6) and low to moderate 

mean response rates ( rp ≤ 0.6).  For odds ratios less than one, these propensity score 

adjustment estimators generate estimates that exhibit more severe bias than those 

obtained from the two MCAR estimators.   

 

Population 4 experiences 30% declines in both the mean response rate and the mean 

success rate.  In this case, all of the propensity score adjustment estimates demonstrate 
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extreme negative bias that is more severe than that observed in the estimates from the 

two MCAR approaches (Figure 6.4).  When the mean response rate is low ( rp = 0.3) 

and the odds ratio is less than one, the NMAR propensity score adjustment estimator 

approaches (R, R*, CR, CR*, QCR, and QCR*) underestimate the population total 

and exhibit relative bias ranging from -0.57 to -0.19.  The NMAR weighting class 

adjustments (INT, R, CR, QCR, JR, JCR, JQCR, and SUCC) perform better than the 

NMAR propensity score adjustment estimators when the mean response rate is low 

( rp = 0.3), with the INT, JCR, and JQCR approaches providing the least biased 

estimates of the population total.  Note that these three approaches employ NMAR 

joint classification which appears to be effective in reducing bias.  However, when the 

mean success rate is high ( sp = 0.9), the relative bias for these three approaches falls 

as low as -0.20 for an odds ratio of 0.33 and is as high as 0.19 when the odds ratio is 3 

which is more extreme than the relative bias of MCAR estimates which ranges from -

0.18 to 0.15 when the mean success rate is high ( sp = 0.9).  Relative bias is 

consistently poor across scenarios for the QCR approach of the weighting class 

adjustment.  

 



 

 

Figure 6.1: Relative bias across all scenarios and odds ratios for the population with no change (Population 1 – correct 
specification for success and response propensity models) 

182 



 

 

Figure 6.2: Relative bias across all scenarios and odds ratios for the population with a 30% decline in the mean response rate 
(Population 2 – incorrect specification for response propensity model) 
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Figure 6.3: Relative bias across all scenarios and odds ratios for the population with a 30% decline in the mean success rate 
(Population 3 – incorrect specification for success propensity model)
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Figure 6.4: Relative bias across all scenarios and odds ratios for the population with 30% declines in the mean success and 
mean response rates (Population 4 – incorrect specification for success and response propensity models)
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6.3.2 Confidence interval coverage 

 
 

Confidence interval coverage is compared among the 21 estimators.  Box plots 

comparing results are provided in Figures 6.5 through 6.8.  Confidence intervals are 

calculated for a Type I error level of 0.05.  Confidence interval coverage is considered 

nominal for rates of 0.93 to 0.97.   

 

For Population 1, confidence interval coverage achieves nominal coverage rates when 

the propensity score adjustment estimator is used for odds ratios greater than 1 and the 

NMAR weighting class adjustments are used for odds ratios less than 1.  The poorest 

confidence interval coverage across odds ratios and levels of mean response and 

success rates is obtained when the MAR or MCAR methods are used (Figure 6.5).  

When the mean success rate is high ( sp = 0.9), confidence intervals from the MAR 

propensity score adjustment approaches cover the population total 98% to 100% of the 

time, indicating large variance estimates.  The MCAR2 approach provides poor 

coverage even when the odds ratio is one and missingness is MAR.  The CR, CR*, 

QCR, and QCR* approaches of the propensity score adjustment estimator provide 

poor coverage when odds ratios are less than one, the mean success rate is moderate 

( sp  = 0.6),  and the mean response rate is low to moderate ( rp ≤ 0.6).  Under these 

circumstances, the confidence interval coverage ranges from 0.37 to 0.82.  Confidence 
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interval coverage for the INT, JCR, JQCR, and SUCC weighting class adjustment 

approaches demonstrates nominal levels for moderate odds ratios (0.5, 1, and 2).     

 

For Population 2, confidence interval coverage for the population total is uniformly 

low for all propensity score adjustment estimates that employ the conditional success 

propensity model (CR, CR*, QCR, QCR*) when the mean response rate is low ( rp = 

0.3).  For this population, the mean response rate decreases 30% from 0.3 to 0.21, and 

coverage falls below 0.64 for all scenarios.  When the mean response rate is moderate 

to high ( rp  ≥ 0.6), the R weighting class adjustment approach more consistently 

provides produces nominal confidence interval coverage than any other NMAR 

propensity score adjustment or weighting class adjustment estimator.  An exception 

occurs when the mean response rate is moderate to high ( rp ≥ 0.6), the mean success 

rate is moderate ( sp = 0.6), and the odds ratio is 0.33 or 3; in these cases, the 

confidence interval coverage is below the nominal rate.  For rp  = 0.6, sp = 0.3, and an 

odds ratio greater than 0.33, the CR and CR* propensity score adjustment estimators 

also achieve nominal coverage.  The MAR propensity score adjustment estimates 

yield extremely low coverage rates overall with less than 10% coverage when odds 

ratios are less than one.  The MCAR weighting class adjustment approach exhibits 

nominal confidence interval coverage only when the odds ratio is one or when the 

mean success rate is high, the mean response rate is low, and the odds ratio is less than 

one.  When the mean response rate declines by 30%, nominal coverage rates are most 
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consistently obtained through design-based estimation from double-sampling for 

stratification.   

 

Estimates from Population 3, which experiences a 30% decline in the mean success 

rate ( sp ), obtain the most nominal coverage rates for low mean response rates of ( rp = 

0.3) with the R and R* approaches of the propensity score adjustment estimator.  

These approaches of the propensity score adjustment estimator are maintain better 

coverage rates than any of the weighting class adjustment approaches, which exhibit 

poor coverage as the mean success rate ( sp ) increases from 0.3.  However, coverage 

can fall below 0.90 when the odds ratio is less than one and the mean response rates is 

low ( rp = 0.3).  With the exception of the double sampling for stratification estimator, 

the R approach for the weighting class adjustment provides the best confidence 

interval coverage when the mean response rate is moderate to high ( rp ≥ 0.6).  Given 

that these approaches all require a nonrespondent subsample for every sample, the 

double sampling for stratification design-based estimator is more appropriate because 

it is design unbiased under all scenarios.  It is unsurprising that approaches that 

incorporate the success propensity model do not perform well when the mean success 

rate declines by 30%.     

 

For Population 4, 30% declines in both the mean response rate and the mean success 

rate impact the confidence interval coverage most severely.  As with Populations 2 

and 3, the confidence interval coverage was best overall for the R approach to the 
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weighting class adjustment (Figure 6.8).  When the mean response rate is low ( rp = 

0.3) and the odds ratio is less than 1, the JR approach for the weighting class 

adjustment gives the better, but less than nominal, confidence interval coverage.  

Confidence interval coverage for the MAR propensity score adjustment estimators 

(MAR and MAR*) is uniformly low, and coverage rates for the MAR weighting class 

adjustment approaches (JC and IVR) are low overall except when the missingness is 

truly MAR (for an odds ratio of one).  When both the mean response rate and the 

mean success rate change in a population whose surveys exhibit NMAR missingness, 

confidence interval coverage is best achieved by obtaining a nonrespondent subsample 

and using design-based estimators from the double sample for stratification. 

 



 
 

Figure 6.5: Confidence interval coverage across all scenarios and odds ratios for the population with no change (Population 1 

– correct specification for success and response propensity models) 
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Figure 6.6: Confidence interval coverage across all scenarios and odds ratios for the population with a 30% decline in the 
mean response rate (Population 2 – incorrect specification for response propensity model) 
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Figure 6.7: Confidence interval coverage across all scenarios and odds ratios for the population with a 30% decline in the 
mean success rate (Population 3 – incorrect specification for success propensity model)
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Figure 6.8: Confidence interval coverage across all scenarios and odds ratios for the population with 30% declines in the 
mean success rate and the mean response rate (Population 4 – incorrect specification for success and response propensity 
models)
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6.3.3 Root mean square error 

 

The effects of bias and variance on inference are mitigated when the root mean square 

error is minimized.  However, low values of RMSE for estimators with poor 

confidence interval coverage may result from variance underestimation.  Therefore, an 

acceptable estimator will minimize RMSE while maintaining nominal coverage rates. 

 

For Population 1, the JR approach of the weighting class adjustment minimizes bias 

and variance to obtain the smallest measures of RMSE overall (Figure 6.9).  However, 

several NMAR weighting class adjustments (INT, R, JCR, and JQCR) achieve 

similarly low values of the RMSE when the mean response rate is low to moderate 

( rp ≤ 0.6) and the odds ratio is greater than one for Population 1.  For odds ratios less 

than 1 and low to moderate mean response rates ( rp ≤ 0.6), the SUCC model also 

provides low RMSE.  When the mean response rate is moderate ( rp = 0.6) and the 

mean success rate is low to moderate ( sp ≤ 0.6), the R approach for the weighting 

class adjustment provides slightly smaller RMSE.  When the odds ratio is 1, the 

MCAR2 approach obtains RMSE values similar to that obtain from the double 

sampling for stratification estimator.  When the mean response rate ( rp ) is 0.9, RMSE 

values of the MCAR2 approach are less than those from the preferred NMAR 

weighting class adjustment estimators.  Given the low confidence interval coverage of 
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the MCAR2 approach discussed in the previous section, the low RMSE values for the 

MCAR2 method do not necessarily indicate a favorable performance. 

 

For Population 2, RMSE nearly doubles for the propensity score adjustment estimates 

as compared to Population 1 (Figure 6.10).  RMSE values are comparable between 

Populations 1 and 2 for the INT, JR, JCR, JQCR, and SUCC approaches to the 

weighting class adjustment.  Typically, the SUCC approach performs better when the 

odds ratio is less than one, and the INT, JCR, and JQR approaches provide lowest 

RMSE when odds ratios are greater than one.  The INT, JCR, JQCR, and SUCC 

approaches of the weighting class adjustment provide comparable RMSE values to 

those of the JR approach, indicating that the conditional success propensity score may 

perform as well as the outcome of interest when the success propensity model is 

correct.  These weighting class adjustments also provide lower RMSE values than 

either of the MCAR estimators.   

 

When the mean success rate declines by 30% relative to that on which the success 

propensity model is based (Population 3), the JR weighting class adjustment approach 

generates the lowest values of RMSE when the mean success rate is low ( sp = 0.3), 

and the R weighting class adjustment approach performs best when the mean success 

rate is moderate to high ( sp ≥ 0.6) (Figure 6.11).  In most cases, the propensity score 

adjustment estimators exhibit higher RMSE values compared to those obtained from 

the weighting class adjustment.  When the mean response rate is 0.9, the MCAR2 
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approach generates RMSE values less than those from the preferred NMAR weighting 

class adjustment estimators.  The smaller RMSE values for the weighting class 

adjustments and the MCAR2 approaches are a result of the variance underestimation 

which causes the poor confidence interval coverage discussed in the previous section.     

 

When both the mean response rate and the mean success rate decline by 30% relative 

to the rates for the population used to obtain the success model (Population 4), the 

RMSE values from the weighting class adjustment are uniformly low compared to 

those from the propensity score adjustment estimator (Figure 6.12).  However, this 

comparison is confounded by the poor confidence interval coverage of the weighting 

class adjustment for some scenarios and the increased bias for NMAR propensity 

score adjustment estimator approaches (R and R*).  When the mean response rate is 

low to moderate ( rp ≤ 0.6), the JR weighting class adjustment approach generally 

provides the lowest values of RMSE.  When the mean response rate is high ( rp  = 0.9) 

or for moderate response and moderate to high mean success rate ( rp  = 0.6 and sp  ≥ 

0.6), the R approach of the weighting class adjustment provides the lowest RMSE 

across estimators and scenarios.  As mentioned previously, the poor confidence 

interval coverage discussed in the previous section indicates variance underestimation.  

Therefore, minimizing RMSE may not be appropriate when choosing among these 

estimators of the population total.   

   



 
 

 

Figure 6.9: RMSE across all scenarios and odds ratios for the population with no change (Population 1 – correct specification 
for success and response propensity models) 
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Figure 6.10: RMSE across all scenarios and odds ratios for the population with a 30% decline in the mean response rate 
(Population 2 – incorrect specification for response propensity model) 
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Figure 6.11: RMSE across all scenarios and odds ratios for the population with a 30% decline in the mean success rate 
(Population 3 – incorrect specification for success propensity model) 
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Figure 6.12: RMSE across all scenarios and odds ratios for the population with 30% declines in the mean success rate and the 
mean response rate (Population 4 – incorrect specification for success and response propensity models) 
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6.3.4 Discussion 

 

6.3.4.1 General results 

 

When the response propensity model and the success propensity model are correctly 

specified (Population 1), the most accurate and precise estimates of the total are 

obtained with INT, JR, JCR, JQCR, and SUCC approaches for the weighting class 

adjustment.  The INT, JR, JCR, or JQCR approaches perform best when the odds ratio 

is greater than 1, and the SUCC approach is preferred when the odds ratio is less than 

1.  The INT, JR, JCR, JQCR, and SUCC approaches generate RMSE values only 

slightly larger than those observed for the JR weighting class adjustment approach, 

indicating that the conditional success model performs well in adjustment class 

formation when the conditional success and conditional response propensity models 

are accurately specified.  The weighting class approaches provide confidence interval 

coverage slightly below the nominal rate for an odds ratio of 3 for low mean response 

and success rates, and the CR propensity score adjustment estimator provide better 

accuracy and confidence interval coverage in this scenario.   

 

When the mean response rate declines by 30% (Population 2), the estimates exhibiting 

the least bias and RMSE are obtained with the JR, JCR, JQCR, and SUCC weighting 
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class adjustments.  However, none of these approaches provide nominal coverage rates 

when the mean response rate is low ( rp  = 0.3) because all of these approaches 

incorporate the conditional success propensity score.  The R weighting class 

adjustment approach, which does not rely on the conditional success propensity 

model, provides nominal coverage rates for most scenarios in which the mean 

response rate is moderate to high ( rp ≥ 0.6).  The CR and CR* approaches of the 

propensity score adjustment estimator provide relatively unbiased estimates with 

nominal coverage rates when the response rate is moderate to high ( rp ≥ 0.6) and the 

mean success rate is low ( sp = 0.3).  For Population 2, the mean response rate has 

decreased by 30%, so the relationship between the outcome of interest and the 

response indicator is different than that described by the conditional success 

propensity model.  When the mean response rate is small ( rp  = 0.3), a 30% decline 

yields a mean response rate of 0.21.   Such low response may be prohibitive for 

attaining nominal coverage rates in this population with either the weighting class 

adjustment estimator or the propensity score adjustment estimator.   

 

When the mean success rate exhibits a 30% decline (Population 3), the INT, R, JR, 

JCR, and JQCR approaches for weighting class adjustments provide estimates with the 

least bias and the lowest RMSE overall.  The INT, JCR, and JQCR approaches are 
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nearly as unbiased as the JR approach but do not require a nonrespondent subsample 

for each sample.  However, nominal confidence interval coverage is only obtained for 

the R approach when either the mean response and success rates are low ( sp = rp  = 

0.3) or the mean response rate is moderate to high ( rp ≥ 0.6).  When the mean success 

rate and the mean response rate are low ( sp = rp = 0.3), the CR weighting class 

adjustment provides unbiased estimation and nearly nominal coverage of at least 0.87.  

The R and R* propensity score adjustment approaches provide nominal or nearly-

nominal coverage when rp = 0.3 but the coverage rate tends to be too high when the 

mean response rate is moderate to high ( rp ≥ 0.6).  An exception occur when the 

response rate is high ( rp = 0.9) and the success rate is low ( sp = 0.3); in this case, the 

R and R* propensity score adjustment approaches achieve nominal rates for most odds 

ratios. 

 

When both the mean response rate and the mean success rate exhibit a 30% decline 

(Population 4), the INT, JCR, and JQCR weighting class adjustment approaches 

perform well overall in reducing bias and RMSE but demonstrate poor coverage rates.  

When the mean success rate is low ( sp  = 0.3) and the mean response rate is moderate 

to high ( rp ≥ 0.6), the CR weighting class adjustment and the CR, CR*, QCR, and 

QCR* approaches of the propensity score adjustment estimator reduce bias and RMSE 
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as well as obtain nominal or nearly nominal (≥ 0.88) confidence interval coverage.  

For a moderate to high mean success rate ( sp ≥ 0.6), bias is more severe and/or 

confidence interval coverage is poor for all of the estimators.  The double sampling for 

stratification estimator is the only estimator that consistently reduces bias and RMSE 

while providing confidence interval coverage when the mean success rate ( sp ) 

exceeds 0.3 for Population 3.   

 

In many scenarios, the approaches that yield relatively unbiased and precise estimates 

for low mean response rates require a nonrespondent subsample.  If a nonrespondent 

subsample is feasible for each sample, the least biased and most precise estimator of 

the population total is obtained from the design-based estimator for double sampling 

for stratification.  This estimator was least biased across all scenarios with relative bias 

ranging from -0.01 to 0.01.  Confidence interval coverage ranged from 0.85 to 0.99 for 

the double sampling for stratification estimator, with the poorest coverage occurring 

for high mean success rate ( sp = 0.9) and an odds ratio greater than one.  The RMSE 

did not exceed 25 for the double sampling for stratification estimator.  This estimator 

minimizes bias and variance which achieving nominal coverage rates, indicating that 

the most optimal use of the nonrespondent subsample incorporates the survey design.   
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The R and R* approaches performed well overall in the simulation exercise, exhibiting 

very little bias and attaining nominal confidence interval coverage.  Recall that these 

estimators performed poorly in the case study example in Chapter 5.  Estimated 

response propensities for certain combinations of correlated binary predictors tended 

toward 0 or 1, a phenomenon called separation (Gelman et al., 2001).  The binary 

predictors used in the simulation were generated from independent random processes, 

so separation did not affect the simulation estimates. 

 

 

6.3.4.2 Applying the conditional success propensity model 

 

The effectiveness of the methods that incorporate information from a previous 

nonrespondent subsample is examined.  When the mean response rate and mean 

success rate are stable between surveys (Population 1), the conditional success 

propensity model obtained from a subsample of nonrespondents is an effective tool for 

nonresponse adjustment.  The INT, JR, JCR, JQCR, and SUCC weighting class 

adjustment approaches provide low relative bias and nominal confidence interval 

coverage.  All of these estimators use the conditional success propensity score, 

indicating that predictions from this model are effective in weighting class formation.  

When the mean response rate demonstrates a 30% decline (Population 2), the 
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conditional success propensity score provides unbiased inference with nominal 

coverage rates for a low mean success rate ( sp = 0.3), moderate to high mean response 

rates ( rp  ≥ 0.6), and odds ratios of at least one with the CR and CR* approaches of 

the propensity score adjustment estimator.  Similarly, when the mean success rate 

declines by 30% (Populations 3 and 4) and the mean success rate is low ( sp = 0.3), the 

CR, CR*, QCR, and QCR* approaches of the propensity score adjustment estimator 

provide estimates of the harvest total that are nearly unbiased and exhibit nominal or 

nearly nominal coverage rates.  When both the mean response rate and the mean 

success rate decline by 30% (Population 4), the weighting class adjustment approaches 

that incorporate the conditional success propensity score (INT, CR, QCR, JCR, JQCR, 

and SUCC) exhibit lower coverage rates when odds ratios are 0.33 or 3.  These 

specific scenarios emphasize the cases in which a modeling approach may be used 

with nonrespondent subsample data to apply to surveys not augmented by additional 

sampling.  These approaches often perform best in the simulation when the mean 

success rate is low ( sp  = 0.3).   In this case, a 30% decline in a mean success rate of 

0.3 (which decreases by 0.09 to 0.21) represents a smaller absolute decline as would 

be observed in a mean success rate of 0.6 (which decreases by 0.18 to 0.42) or 0.9 

(which decreases by 0.27 to 0.63).  Therefore, predictions from the conditional success 
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model are more accurate when the absolute change in the mean success rate ( sp ) is 

small.   

 

6.3.4.3 Effectiveness of joint classification 

 

Joint classification for NMAR methods is applied in the weighting class adjustment 

for the INT, JR, JCR, and JQCR approaches.  In most cases, NMAR joint 

classification reduces bias and RMSE and improves confidence interval coverage as 

compared to methods that form adjustment cells from a single propensity score (CR, 

QCR, and SUCC).  Benefits of NMAR joint classification are greater when the mean 

response rate is low ( rp = 0.3) or the odds ratio is less than one, and benefits are 

negligible when the mean success rate is high ( sp  = 0.9).  Note that joint classification 

approaches require the use of 25 adjustment classes rather than the five classes used 

by single classification approaches because adjustment classes are formed from 

quintiles of a response propensity score as well as quintiles of the conditional success 

propensity score.  Using more adjustment classes may allow more precise estimation 

of response rates for weighting class adjustment.  
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6.3.4.4 Effectiveness of coarsening 

 

Two levels of coarsening were examined in this simulation: coarsening of the response 

propensity scores in the propensity score adjustment estimator to reduce variance 

inflation due to small response propensities and coarsening of the success propensity 

scores used as predictors in the response propensity model.  The first level of 

coarsening is evaluated by comparing the results of the four response propensity 

models to their coarsened counterparts, i.e. comparing the R approach to the R* 

approach, the CR approach to the CR* approach, etc.  Compared to the approaches 

that do not use coarsening, coarsening reduces bias and improves confidence interval 

coverage when the mean response rate declines by 30% for all propensity score 

adjustment estimator approaches when the mean response rate is low ( rp = 0.3).  

However, under these circumstances, the confidence interval coverage is uniformly 

below the nominal rate and the design-based estimator from double-sampling for 

stratification is preferred. 

 

The second level of coarsening is examined by comparing the approaches that do and 

do not incorporate the quintiles of the success propensity score as predictors in the 

response propensity model.  Comparing the CR approach of the propensity score 

adjustment estimator with the QCR approach, bias is reduced when the mean response 
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rate is low ( rp = 0.3), the mean success rate is low to moderate ( sp ≤ 0.6), and the 

odds ratio is at least one.  However, this improvement is not observed when 

comparing the CR* approach to the QCR* approach.  Comparing the CR and QCR 

approaches of the weighting class adjustment, the only benefit to coarsening the 

success propensity scores is found when the mean response rate is low to moderate 

( rp ≤ 0.6), the mean success rate is high ( sp = 0.9), and the mean success rate 

experiences a 30% decline (Populations 3 and 4).  In these cases, coarsening reduces 

bias and improves confidence interval coverage.   

 

 

6.4 REVISITING THE CASE STUDY 

 
For the New Mexico Department of Game and Fish elk hunter questionnaire, the 

response rates were 30% and 24% in 2001 and 2003, respectively.  The estimates of 

the success rates from double sampling for stratification were 0.28 for 2001 and 0.29 

for 2003 (Table 5.4).   Both the response rate and the success rate exhibit declines but 

not of the magnitude used in the simulation study.  Given the separation problems 

exhibited by the R approach to the propensity score adjustment estimator, the design-

unbiased estimator of the total from double sampling for stratification is assumed to be 

the least biased estimate of the total for assessing the performance of the model-
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assisted approaches.  Assuming that the estimates under double sampling for 

stratification are accurate, the response rate declined 20% between 2001 and 2003, and 

the success rate increased by 4% between the two years.   The ratio of the odds of 

response for successful hunters to the odds of response for unsuccessful hunters was 

estimated to be 2.12 in 2001 and 2.35 in 2003.   

 

Using these measures of the response rate, success rate, and odds ratio, the simulation 

results are examined to determine which approaches best suit the case study data.  The 

2001 estimates are compared to those from Population 1 from the simulation because 

the response and success models are obtained from the 2001 pilot data set and are 

assumed correct.  With the exception of the R and JR approaches of the weighting 

class adjustment, the pilot data exhibit slightly higher but similar relative bias as 

compared to estimates from Population 1.   

 

The 2003 pilot data are examined to determine which simulation population is most 

appropriate for comparison.  The results of a two-sided test assuming large-sample 

asymptotic properties of and independence between the success rates from 2001 and 

2003 provides suggestive but inconclusive evidence of a difference between years (p = 

0.0521).  For the comparison of the 2003 pilot data results to the simulation results, 

the mean success rate will be assumed stable.  The scenario for the 2003 data shows 
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similarities with both Population 1, which exhibited both stable success and response 

rates, and Population 2, which exhibited a stable success rate but a declining response 

rate.  The 20% decline in response rate is not as extensive as the response rate decline 

examined in the simulations (30%).  Overall, the relative bias estimates from the 

NMDGF pilot data are more similar to those observed for Population 1, indicating that 

either the observed declines in the success rate and response rate were not 

substantially large or the double sampling for stratification estimates of harvest total 

were slightly biased in the case study.    

 

Several factors may explain the discrepancies observed between the pilot data results 

and the simulation results.  First, the simulations were conducted assuming that a 

complete sample was obtained through nonrespondent subsampling.  In the pilot 

study, only about 10% of the nonrespondents were contacted which may explain 

additional bias and variation.  The double sampling for stratification estimator 

demonstrated near-perfect accuracy in the simulation but might be slightly more 

biased in simulations in which missingness is not completely resolved.   
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Table 6.3: Pilot data and simulation relative bias results for an odds ratio of 2, a mean 
success rate of 0.3, and a mean response rate of 0.3 

Estimator NMDGF 
2001 

NMDGF 
2003 Pop. 1 Pop. 2 Pop. 3 Pop. 4 

WC Adj. (INT) 0.08 0.16 0.04 0.02 0.00 -0.03 
WC Adj. (R) -0.10 0.05 0.07 0.16 0.10 -0.26 

WC Adj. (CR) 0.12 0.12 0.10 0.14 0.04 0.10 
WC Adj. (QCR) 0.17 0.16 0.14 0.10 0.09 0.08 
WC Adj. (JR) -0.11 -0.09 0.03 0.00 -0.01 -0.18 

WC Adj. (JCR) 0.08 0.15 0.04 0.01 0.00 -0.04 
WC Adj. (JQCR) 0.09 0.18 0.04 0.01 0.00 -0.04 
WC Adj. (SUCC) 0.06 0.12 0.09 0.07 0.05 0.04 

PSAE (CR) 0.07 0.09 0.02 -0.23 -0.05 -0.25 
PSAE (CR*) 0.08 0.13 0.05 -0.18 -0.01 -0.19 
PSAE (QCR) 0.12 0.14 0.07 -0.16 0.01 -0.22 
PSAE (QCR*) 0.12 0.16 0.10 -0.11 0.04 -0.15 

DSS 0.00† 0.00† 0.00 0.00 0.00 0.01 
† Unbiased by assumption 
 
 

Secondly, the simulations were based on a few covariates, and the models were 

correctly specified.  The pilot data consist of a large number of variables, and 

important variables may not have been collected.  Third, the declines in the mean 

success rate and/or the mean response rate were generated in the simulations by 

changing the regression coefficients in the success and/or response propensity 

regression models.  Relationships between success and response may be more 

complex in the NMDGF elk hunter survey.   
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Final inference requires a consideration of the effects of the nonresponse bias.  If total 

harvest is overestimated, elk licenses sales may be reduced and elk populations may 

grow beyond levels considered sustainable by the New Mexico Department of Game 

and Fish.  Underestimation of harvest might encourage an increase in elk license sales, 

putting the population at risk.  The conservative approach is to tend toward 

overestimation of the elk harvest rather than underestimation.   

 

 

6.5 CONCLUSIONS 

 

A simulation study conducted over a range of odds ratios, mean success and response 

rates, and population changes to reflect changes in the success and/or response rate 

was used to assess the precision and accuracy of the NMAR propensity score 

methodology introduced in Chapter 3 and implemented in Chapters 4 and 5.  A 

nonrespondent subsample forms the basis of a predictive model for success and can be 

applied to data from surveys not augmented by a nonrespondent subsample if the 

mean response and mean success rates do not differ between the populations.  When 

the mean response rate and/or mean success rate differ, weighting class adjustment 

and propensity score adjustment estimators may provide biased estimates and/or poor 
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confidence interval coverage.  In these cases, a nonrespondent subsample and design-

based estimation with double sampling for stratification provide the best basis for 

unbiased inference with nominal coverage rates.   
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7: CONCLUSIONS 
 

The results of this thesis research may be summarized in several main points.  First, 

the propensity score methodology extensions to nonignorable missingness proposed in 

this thesis are effective in reducing bias in modified Horvitz-Thompson approaches for 

nonresponse adjustment when propensity score models are correct.  Second, when 

propensity score models are incorrect due to population-level changes in the response 

and/or success rate, NMAR adjustments that employ the conditional success 

propensity score may increase bias and RMSE and produce confidence interval with 

less than nominal coverage rates.  Third, using MAR adjustments when data are 

NMAR may increase the bias of the estimate of the total compared to simply ignoring 

the nonresponse.   

 

The methods proposed in this thesis are relatively easy to implement.  Weighting class 

adjustments and the propensity score adjustment estimator require the use of logistic 

regression, quantile calculation, and weighting.  The methods in this thesis provide 

straightforward methodology that might encourage agencies to examine their survey 

nonresponse more closely and evaluate the direction and degree of nonresponse bias.   

An application and improvements of the methods proposed in this thesis are discussed 

further in this chapter.   
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7.1 APPLICATIONS 

 

The approaches discussed in this thesis may be applied to surveys from other agencies 

that conduct surveys for which unit nonresponse occurs and for which the outcome of 

interest is a binary response.  These agencies might include federal, state, and private 

organizations that survey individuals regarding hunting, fishing, or use of a natural 

resource.  These approaches have more general applications to surveys obtaining any 

dichotomous outcome that is NMAR, such as a yes/no question on a sensitive topic or 

presence/absence of a species in an occupancy survey.   

 

Occupancy estimation under imperfect detection is an area for possible application of 

these methods.  Occupancy estimation typically involves estimating the proportion of 

area that is occupied by a species (MacKenzie, Nichols, Royle, Pollock, Bailey, and 

Hines, 2006).  The outcome of interest is a binary indicator of presence or absence of 

the species.  Under imperfect detection, an additional level of error is introduced when 

an entity is present but not detected during the survey.  Logistic regression models 

incorporate covariates related to occupancy and detection rates, and maximum 

likelihood is used to obtain estimates of occupancy and detection rates.  These 

occupancy estimation methods are model based.  Complex survey designs are not 

recommended for model-based occupancy estimation because the survey design 



217 
 
 

probabilities currently cannot be incorporated into this model-based approach, 

potentially causing invalid inference.  Model-assisted occupancy estimation for 

complex survey design is an interesting area for further research.   

 

When complex survey designs must be used, the propensity score techniques proposed 

in this thesis may provide model-assisted approaches for occupancy estimation.  In 

this setting, occupancy rates are represented by the success rates explored in this 

thesis, and detection rates correspond to response rates.  Therefore, nondetection is 

analogous to nonresponse.  Results for the NMAR weighting class adjustment and 

propensity score adjustment estimators are expected to apply for the levels of the 

occupancy and detection rates investigated in this thesis.  A nonrespondent subsample 

is necessary to use the NMAR propensity score methods discussed in this thesis.  This 

subsample establishes the conditional success propensity score model which is the 

occupancy model in this setting.  It is important to note that occupancy inference 

relative to the odds ratio requires the implicit assumption that the probability of a 

false-positive detection is non-zero, i.e. ( )1 0 0i iP R Y= = > , where in the occupancy 

setting iR  is 1 when the species of interest is detected in unit i and iY  is 1 when the 

species of interest occupies unit i.  Because the odds of a false positive detection are 

likely to be small relative to the odds of a true detection, occupancy analysis will more 

often involve odds ratios greater than one.   
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7.2 FUTURE WORK 

 

First, an additional area of development for the NMAR propensity score methodology 

includes an examination of how these methods perform for estimates of cross-classes, 

which cut across adjustment cells (Little, 1986).  Because adjustment cells are based 

on propensity scores which reduce the dimension of the covariate data set to a single 

variable, subpopulations of interest are more likely to cut across adjustment classes, 

especially if the factors defining the subpopulation exhibit interactions with other 

factors.  For example, NMDGF obtains elk harvest estimates for subpopulations such 

as each weapon type which exhibits many significant interactions with other variables 

in the pilot data and for which each level occurs in several adjustment classes.   

 

Secondly, in the simulation, the nonrespondent subsample was assumed to census all 

nonrespondents from the original sample so that a complete sample was ultimately 

obtained.  Examining what proportion of a nonrespondent subsample is necessary for 

unbiased inference under a range of conditions would provide information on a 

minimum proportion or number of nonrespondents that are needed for unbiased and 

precise inference with nominal coverage rates.  Factors that are likely to influence 

these results are the odds ratio of response for successful versus unsuccessful units, the 

second-phase response rate, and the survey mode.   
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Third, propensity score methodology for nonignorable nonresponse could be extended 

to non-binary outcomes by replacing the logistic regression model for the binary 

outcome of interest with the appropriate predictive mean model.  These predictions 

could be used as covariates in the response propensity model in an approach analogous 

to the CR approaches of the propensity score adjustment estimator or the weighting 

class adjustment.   

 

Finally, NMAR propensity score methodology may be extended to approaches that do 

not use weighting, such as imputation techniques.  Stochastic regression imputation 

could be applied in a multiple imputation approach using the conditional response 

propensity score model to impute missing outcomes.  Methods that accommodate 

complex survey design should also be investigated.   

 

 

7.3 CONCLUSIONS 

 

For declining success rates, some of the scenarios examined in the simulation produce 

biased estimates with very poor confidence interval coverage.  Paradoxically, declines 

in success rates are difficult to detect due to the nature of nonignorable nonresponse.  
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Means from respondent outcomes might not be similar to nonrespondent means.  

Overall, the presence and rate of declines in the response rate and/or the success rate 

affect the choice of a nonresponse adjustment approach.  When the response rate fell 

below 0.3 in the simulation, the design-based estimate from double sampling for 

stratification was the only method that provides unbiased estimation with nominal 

coverage rates.  If the cost of biased inference (for example, overhunting an elk 

population) outweighs the cost of additional sampling, then the reduction of bias due 

to nonresponse is paramount.  Changes in the survey design or mode might be needed 

to find a method less subject to nonresponse bias.  Nonrespondent subsampling with 

double sampling for stratification could be included as a regular feature of the survey 

design.  The initial sampling effort may be scaled back to accommodate the additional 

survey costs of the nonrespondent subsample.   

 

Ultimately, NMDGF applied the best approach for reducing nonresponse bias by 

minimizing the nonresponse rate (Lohr, 1999).  Incentives and dual-language survey 

instruments were ineffective in increasing response rates from the original 

questionnaire.  The mandatory survey return program, discussed in Chapter 6, roughly 

tripled the return rate compared to the original survey design.  Harvest data are 

collected automatically in the mandatory program with telephone and internet survey 

modes.  The penalties obtained from nonrespondents cover the costs of the mandatory 
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return program, and the resulting estimates are less susceptible to error from 

nonresponse.   

 

Despite response rates of 83% to 86%, the NMDGF estimates may still be subject to 

bias and error from nonresponse.  The simulation results for an odds ratio of 2, a 

success rate of 0.3, and a response rate of 0.9 indicated a relative bias of 0.12 for the 

MCAR2 approach.  If this level of bias is unacceptable for management, then 

nonrespondent subsampling would provide additional information to determine if the 

remaining missingness is MAR or NMAR.   This information would aid in selecting 

the appropriate adjustment approach.  The methodology proposed in this thesis 

provides an approach that could provide NMDGF with a more accurate and complete 

set of annual harvest information by adjusting harvest data sets from the original 

questionnaire using the information from the 2001 and 2003 nonrespondent 

subsamples.  Resolving the problem of nonignorable nonresponse bias is not trivial 

and requires additional survey effort at the design and analysis stages.  Applying the 

appropriate survey methodology may improve estimates subject to bias and error from 

nonignorable nonresponse so that management decisions are made on the best possible 

information.   
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APPENDIX A: Notation definition and glossary of terms 
 

A.1  Notation definition 

 

• crβ :  Vector of regression coefficients from the logistic regression model of 

conditional response propensity scores. 

• qcrβ : Vector of regression coefficients from the logistic regression model of 

conditional response propensity scores calculated from the quintiles of the 

conditional success propensity score. 

• rβ : Vector of regression coefficients from the logistic regression model of 

NMAR response propensity scores. 

• rMARβ : Vector of regression coefficients from the logistic regression model of 

MAR response propensity scores. 

• sβ : Vector of regression coefficients from the logistic regression model of 

success propensities. 

• ( )1,..., n= θ θθ : Vector of response propensity weights for the sample where iθ  

is the response propensity weight of unit i and 1
i ip−θ =  for general response 

propensity score pi.   
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• *
iθ : The response propensity weight quintile associated with the ith unit where 

( )*  = Q ,  i i
θ qθ .  We will assume that * 1

ri rip−θ ≈  for the approaches propensity 

score adjustment estimator that employ coarsening. 

• iπ : The inclusion probability for unit i, where ( )1i iP Dπ = = .   

• ijπ : The joint inclusion probability for units i and j 

where ( )1, 1ij i jP D Dπ = = = .   

• τ: the population total parameter such that τ = 
1

N

i
i

y
=
∑  for values iy  of variables 

Yi, i = 1, …, N.    

• φ :all unknown parameters related to response 

• ψ : Unknown parameters in the independent distributions of 1,..., NX X .   

• D = (D1, D2,…,DN): the vector of sample inclusion indicators where, for i = 

1,…N,  

 
1, unit  is included in the sample
0, otherwise.i

i
D ⎧

= ⎨
⎩

, 

 ( )i iE D = π  , and ( ) ( )1i i iVar D = π − π . 

• ( )ie X : Response propensity score in the MAR setting of Rosenbaum and 

Rubin (1983) such that ( ) ( )R 1i i ie P= =X X . 
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• ( ),i i if R Y X : The conditional distribution of Ri, which is used to describe 

missing data mechanisms. 

• ( ; )fX x ψ : The distribution of the independent covariate matrices, X.   

• m:  The number of respondents in the sample such that 
1

n

i
i

m R
=

= ∑  and m ≤ n. 

• N: The population size. 

• n: the number of elements of s, i.e. the sample size.  

• nb : The nonrespondent subsample size. 

• crp : The vector of conditional response propensity scores where 

( ) ( )1 , ;cri i si i cr si i crp P R p p p= = =X X, β  and crβ  is a vector of logistic 

regression coefficients.   

• *
crp : The vector of quintiles of the conditional response propensity scores such 

that ( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,cri cr cr cr h cr i cr hi

hp Q Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  for h 

= 1, …, H where H = 5. 

• qcrp : The vector of conditional response propensity scores based on quintiles 

of the conditional success propensity score where 

( ) ( )* *1 , ;qcri i si i qcr si i qcrp P R p p p= = =X X, β  and qcrβ  is a vector of logistic 

regression coefficients. 
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• *
qcrp : The vector of quintiles of qcrp  such that 

( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,qcri qcr qcr qcr h qcr i qcr hi

hp Q Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  for h 

= 1, …, H where H = 5. 

• rp : The vector of NMAR response propensity scores such that 

( )1,...,r r rnp p=p .  For  i = 1,…n, rip  is  the probability of response for unit i 

such that ( )1 1ri i ip P R D= = = .  In the modeling context, rip  is characterized 

as ( ) ( )1 Y , ;ri i i i r i i rp P R p Y= = =X X, β , where rβ  is a vector of logistic 

regression coefficients.   

• *
rp : The vector of quintiles of the NMAR response propensity scores such that 

( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,ri r r r h ri r hi

hp Q Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  for h = 1, 

…, H where H = 5.   

• rp : Mean response rate used in the simulations taking the value of 0.3, 0.6, or 

0.9.   

• rMARp : The vector of estimated MAR response propensity scores.  For the 

weighting class adjustment rMARp  is modeled only from variables related to 

response to avoid collinearity problems.  For the propensity score adjustment 

estimator, rMARp  is modeled from all variables related to response or success. 
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• *
rMARp : The vector of quintiles of the MAR response propensity scores such 

that *  = rMARip

( ) ( ) ( )1
0.5Q ,  = , : , ,rMAR rMAR rMAR h rMARi rMAR hi

hQ Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p   

for h = 1, …, H where H = 5.   

• rijp : The joint probability of response for units i and j where 

( )1, 1 1, 1rij i j i jp P R R D D= = = = = .   

• sp : The vector of true conditional success propensity scores, where 

( )1,...,s s snp p=p , ( ) ( )R ,X Y 1 R ,Xsi s i i i i ip p P= = = , and 

( )logit log
1

si
si si s

si

pp
p

⎛ ⎞
′= =⎜ ⎟−⎝ ⎠

X β . 

• *
sp : The vector of conditional success propensity score quintiles 

( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,si s s s h si s hi

hp Q Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  for h = 1, …, 

H where H = 5. 

• sp : Mean success rate used in the simulations taking the value of 0.3, 0.6, or 

0.9.   

• sIVRp : The vector of estimated MAR success propensity scores for instrumental 

variable regression (David et al., 1983) modeled from variables related to 
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success and the MAR response propensity score such that 

( )1 ,sIVR rMARP= =p Y p X . 

• *
sIVRp : The vector of success propensity score quintiles for instrumental 

variable regression used for adjustment cell formation in weighting class 

adjustment calculated such that 

( ) ( ) ( )*
1

0.5 = Q ,  = , : , ,sIVRi sIVR sIVR sIVR h sIVRi sIVR hi

hp Q Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  

for h = 1, …, H where H = 5. 

• sMARp : The vector of estimated MAR success propensity scores modeled from 

variables related to success. 

• *
sMARp : The vector of MAR success propensity score quintiles such that 

*  = sMARip  

( ) ( ) ( )1
0.5Q ,  = , : , ,sMAR sMAR sMAR h sMARi sMAR hi

hQ Q q p Q q
H −

⎧ − ⎫⎛ ⎞ < ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

p q p p p  

for h = 1, …, H where H = 5. 

• ( ),Q qW : The quintile function for a vector, W, evaluated at the probability q 

such that ( ) ( ){ }, :Q q w P W w q= ≤ =W .  When q is a vector, ( ),Q W q  is a 

vector of quintiles evaluated at those proportions.   
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• ( ). i
Q : Quintile (with probability notation suppressed) corresponding to the ith 

unit. 

• q: Vector of probabilities for which the quintiles of propensity scores are 

calculated. 

• R = (R1, R2,…,Rn): the indicator vector of response given inclusion in the 

survey where, for i = 1,…n,  

1, unit  responds
0, otherwise.i

i
R ⎧
= ⎨
⎩

 

 ( )i riE R p=  , and ( ) ( )1i ri riVar R p p= −  

• hS : The set of units in the sample falling in weighting class h, where h = 1, …, 

5. 

• S: nonempty set such that S ⊆ U  represents an unordered sample   

• T̂ : The general form for the estimated total from the propensity score 

adjustment estimator 

• d̂T : The estimated total from the design-based estimator for double sampling 

for stratification.   

• M̂CART : Estimator of the population total for the MCAR method.  See MCAR 

definition (3).   
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• 2M̂CART : Estimator of the population total for the MCAR method.  See MCAR2 

definition.   

• T: the set of all sets s. 

• U : finite population consisting of the set of all units for which inference is to 

be made 

• ui: the ith unit in the finite population set 

• iw : the sample inclusion weight such that 1
i iw π −=  

• X : The complete set of available covariates such that { }1,..., N=X X X . 

• ( )bX : The covariate matrix for outcomes observed in the nonrespondent 

subsample.  

• rX : The covariate matrix used to model response containing variables related 

to success, the outcome of interest (Y), and their interactions.   

• crX : The covariate matrix used to model response containing variables related 

to success, the estimated conditional success propensity score ( ˆ sip ), and their 

interactions   

• qcrX : The covariate matrix used to model response containing variables related 

to success, the estimated conditional success propensity score quintile ( *ˆ sip ), 

and their interactions.   



241 
 
 

• sX : The covariate matrix used to model success containing the response 

indicator (R) and its interactions. 

• ix : Realized covariate matrix for unit i. 

• Y: The vector of binary outcomes in the population such that Y = (Y1, 

Y2,…,YN), where, for i = 1,…N 

 

1, unit  is successful
0, otherwise.i

i
Y ⎧
= ⎨
⎩

. 

• mY : the vector of missing iY  such that { }Y Y : 1, 0m
i i iD R= = =  for i = 1,…n. 

• oY : the vector of observed iY  such that { }Y Y : 1, 1o
i i iD R= = =  for i = 1,…n.   

• ( )bY : the outcomes obtained from a nonrespondent subsample 

• iy : observed value of the random variable, Yi 

• ( )by : The vector of observed values of the random vector, Y, from responding 

units in the nonrespondent subsample.  

• yo: The vector of observed values of the random vector, Y, from responding 

units.  
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A.2  Glossary of terms 

 

Conditional classification:  Term introduced here to indicate that the adjustment 

classes are constructed under the assumption of nonignorable nonresponse. 

 

Conditional propensity score:  General reference to propensity scores computed from 

models that account for nonignorable missingness.  This is a general term for the 

conditional response propensity score or the conditional success propensity score.   

 

Conditional response propensity score ( rip ):  The response propensity score from a 

logistic or probit regression model that that accounts for nonignorable nonresponse.  In 

the methods proposed here, this requires modeling the response weight from the 

conditional success propensity score quintile.   

 

Conditional response propensity weight ( 1
i ripθ −= ):  The inverse of the response 

propensity score from a regression model that accounts for nonignorable nonresponse.  

In the methods proposed here, this requires modeling the response weight from the 

conditional success propensity score quintile. 

 

Conditional response propensity weight quintile ( *
iθ ): The quintile of the conditional 
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response propensity weights associated with unit i.   

 

Conditional success propensity score ( sip ): The probability of success from a logistic 

or probit regression model that accounts for nonignorable nonresponse such that 

( ) ( )Y 1 R ,X R ,Xsi i i i s i ip P p= = = . 

 

Conditional success propensity score quintile ( *
sip ): The quintile of the conditional 

success propensity scores associated with unit i.   

 

CR:  (1) NMAR classification approach of the weighting class adjustment in which 

adjustment classes are formed from quintiles of the conditional response propensity 

score, crp .  (2) Propensity score adjustment estimator approach in which the response 

rate for a modified Horvitz-Thompson estimator (equation 3.2) is estimated by the 

conditional response propensity scores, crp .  

 

CR*:  Propensity score adjustment estimator approach in which the response rate for a 

modified Horvitz-Thompson estimator (equation 3.2) is estimated by the quintiles of 

the conditional response propensity scores, *
crp .  
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Double-sampling for stratification (DSS): Design-based approach that employs a two-

phase sample to account for nonresponse.  Using the initial sample as the first phase, a 

sample or census of the nonrespondents is contacted in a second-phase.   

 

INT:  NMAR joint classification approach of the weighting class adjustment in which 

adjustment classes are formed from quintiles of the MAR response propensity score, 

rMARp , and quintiles of the conditional success propensity score, ps.   

 

JR:  NMAR joint response propensity classification.  A NMAR joint classification 

approach of the weighting class adjustment in which adjustment classes are formed 

from quintiles of the NMAR response propensity score, rp , and quintiles of the 

conditional success propensity score, ps.   

 

JCR:  Joint conditional response propensity classification.  NMAR joint classification 

approach of the weighting class adjustment in which adjustment classes are formed 

from quintiles of the conditional response propensity score, crp , and quintiles of the 

conditional success propensity score, ps.   

 

JQCR:  Joint conditional response propensity classification based on quintiles of the 

conditional success propensity score. A NMAR joint classification approach of the 
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weighting class adjustment in which adjustment classes are formed from quintiles of 

the conditional response propensity classification based on quintiles of the conditional 

success propensity score, qcrp , and quintiles of the conditional success propensity 

score, ps.   

 

MAR: (1) Missingness mechanism for which the response indicator is related to the 

outcome of interest through covariates.  The distribution of the response indicator 

conditional on the observed outcomes and related covariates is independent of the 

missing outcomes and reduces to ( ) ( ), ,φ ,φf R Y X f R X=  for all Y and φ.  (2) 

MAR classification approach of the weighting class adjustment in which adjustment 

classes are formed from quintiles of the MAR response propensity score, rMARp .  (3) 

Propensity score adjustment estimator approach in which the response rate for a 

modified Horvitz-Thompson estimator (equation 3.2) is estimated by the MAR 

response propensity scores, rMARp . 

 

MAR*:  Propensity score adjustment estimator approach in which the response rate for 

a modified Horvitz-Thompson estimator (equation 3.2) is estimated by the quintiles of 

the MAR response propensity scores, *
rMARp .  
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MAR response propensity score ( )rMARp : Response propensity scores under MAR 

missingness such that ( ) ( )1 ;rMARi i i r i rMARp P R p= = =X X β , where rMARβ  is a vector 

of logistic regression coefficients.   

 

MCAR:  (1) Missingness mechanism for which the missing data is not related to the 

outcome of interest, any covariates, or any unknown parameters.  In this case, the 

conditional distribution of R reduces to ( ) ( ), ,φ φf R X f R=Y  for all Y and φ.  (2) 

References a design-based estimator used in the simulation to demonstrate the effect 

of assuming MCAR missingness under a range of circumstances.  For this estimator, 

the standard Horvitz-Thompson estimator is used but inclusion probabilities are 

adjusted for nonresponse by assuming MCAR missingness, i.e. i
m
N

π = .   

 

MCAR2:  References a design-based estimator used in the simulation to demonstrate 

the effect of assuming MCAR missingness under a range of circumstances.  For this 

estimator, the standard Horvitz-Thompson estimator is used and inclusion 

probabilities are not adjusted for nonresponse, i.e. i
n
N

π = .   
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NMAR: Not missing at random missingness mechanism.  This missingness mechanism 

is related to the outcome of interest, and the form of the conditional distribution of the 

response indicator, ( ), ,φf R Y X , cannot be simplified. 

 

NMAR joint classification: Extension of joint classification (Vartivarian and Little, 

2002) for MAR missingness in which adjustment classes for weighting class 

adjustments are formed from quintiles of the conditional success propensity score and 

quintiles of either the MAR response propensity score (INT approach), NMAR 

response propensity score (JR approach), conditional response propensity score (JCR 

approach), or the conditional response propensity score from the quintiles of the 

conditional success propensity score (JQCR approach).   

 

NMAR response propensity score ( )rp : Response propensity scores under NMAR 

missingness such that ( ) ( )1 Y , ;ri i i i r i i rp P R p Y= = =X X β, , where rβ  is a vector of 

logistic regression coefficients.   

 

Odds ratio (OR):  The ratio of the odds of response for successful units to the odds of 

response for unsuccessful units, such that: 
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( ) ( )
( ) ( )

1 1 0 0
1 0 0 1

P R Y P R Y
OR

P R Y P R Y
= = = =

=
= = = =

. 

 

Propensity score: Term developed by Rosenbaum and Rubin (1983) to describe the 

conditional probability of assignment to a treatment group versus a control group.  In 

this application, "treatment" may represent assignment to the respondent group or the 

binary outcome group.  This term is used to apply to propensity scores in general.  The 

propensity score is often estimated from logistic or probit regression modeling. 

 

Propensity score adjustment estimator (PSAE): Modified Horvitz-Thompson 

estimator for NMAR missingness that employs conditional response propensity 

weight quintiles to weight for nonignorable nonresponse.  See equation (5.2.3).   

 

QCR:  (1) NMAR classification approach of the weighting class adjustment in which 

adjustment classes are formed from quintiles of the conditional response propensity 

score based on quintiles of the conditional success propensity score, qcrp .  (2) 

Propensity score adjustment estimator approach in which the response rate for a 

modified Horvitz-Thompson estimator (equation 3.2) is estimated by the conditional 

response propensity score based on quintiles of the conditional success propensity 

score, qcrp .  
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QCR*:  Propensity score adjustment estimator approach in which the response rate for 

a modified Horvitz-Thompson estimator (equation 3.2) is estimated by the quintiles of 

the conditional response propensity score based on quintiles of the conditional success 

propensity score, *
qcrp .  

 

R:  (1) NMAR classification approach of the weighting class adjustment in which 

adjustment classes are formed from quintiles of the NMAR response propensity score, 

rp .  (2) Propensity score adjustment estimator approach in which the response rate for 

a modified Horvitz-Thompson estimator (equation 3.2) is estimated by the NMAR 

response propensity scores, rp .  

 

R*:  Propensity score adjustment estimator approach in which the response rate for a 

modified Horvitz-Thompson estimator (equation 3.2) is estimated by the quintiles of 

the NMAR response propensity scores, *
rp .  

 

Response probability (or response rate): the probability of response but not 

necessarily a propensity score.   The response probability could be the estimated by 
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the observed response rate within an adjustment cell or the ratio of sums of design 

weights. 

 

Response propensity score: the probability of response estimated from logistic or 

probit regression.  This is a general term that includes conditional response propensity 

scores. 

 

Response propensity weight: Inverse of the probability of response estimated from 

logistic or probit regression modeling.  This is a general term that includes conditional 

response propensity weights. 

 

Response propensity weight quintile: Quintile of the vector of response propensity 

weights from the sample. 

 

SUCC:  NMAR approach of the weighting class adjustment in which adjustment 

classes are formed from quintiles of the conditional success propensity score, ps.   

 

Success propensity score: the probability of success estimated from logistic or probit 

regression modeling.  This is a general term that includes conditional success 

propensity scores. 
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Success propensity score quintile: The quintile of the vector of response propensity 

scores associated with unit i.  . 

 

Success propensity weight ( 1
si sipθ −= ): Inverse of the probability of success estimated 

from logistic or probit regression modeling. This is a general term that includes 

conditional success propensity weights. 

 

VL: MAR joint classification approach of the weighting class adjustment in which 

adjustment classes are formed from quintiles of the MAR response propensity score, 

rMARp , and quintiles of the MAR success propensity score, psMAR.   



252 
 
 

APPENDIX B: Proof that crip  is a balancing score for R.   

 
 

Lemma:  ( ),cr si ip p X  is a balancing score for R. 

 

Proof:  Conditioning on all other potentially relevant variables, we see that:  
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( )            ,  for all possible values of .cr si i ip p y= X       

 

Therefore, ( ),cr si ip p X  is a balancing score for R. 
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APPENDIX C:  Model variable definitions 
 
 
Variable Variable Definition 

Age1 Licensee age class: <18 years old 
Age2 Licensee age class: 18 to 34 years old 
Age3 Licensee age class: 35 to 49 years old 
Age4 Licensee age class: 50 to 64 years old 
ES Bag limit class: either-sex hunt 
Harv Indicator of harvest success: 1 = harvested an elk 
LandPub Indicator of public landowner hunt: 1 = public land, 0 = private land 
Male Indicator of male licensee: 1 = male, 0 = female 
MB Bag limit class: mature-bull hunt 
MBA Bag limit class: mature-bull or antlerless hunt 
Month Month of the hunt beginning in October at the beginning of the hunt year 
NW Area of the state: NW 
NE Area of the state: NE 
Resident Indicator of NM residency: 1 = NM resident, 0 = out-of-state licensee 
Size1 Hunt size: ≤30 licensees in hunt 
Size2 Hunt size: 30 to 170 licensees in hunt 
SW Area of the state: SW 
TOResp Indicator of response to original survey: 1 = respondent, 0 = nonrespondent 
Wpn1 Weapon type: Center-fire, muzzle-loader, or bow hunts 
Wpn2 Weapon type: Bow-only hunts 
Wpn3 Weapon type: Muzzle-loader only hunts 
Wpn4 Weapon type: Hunts for impaired hunters 
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APPENDIX D: Success and response model selection results 
 
Table D.1:  Explanatory variables for final success propensity models 

Model Success propensity model variables 

MAR 
 

(Y ~ Xs) 

Wpn1, Wpn2, Wpn3, LandPub, NW, NE, SW, MBA, MB, ES, 
Resident, Month, Wpn1*LandPub, Wpn3*LandPub, 
Wpn3*NW, Wpn2*NE, Wpn1*MB, Wpn2*ES, 
Wpn1*Resident, Wpn2*Resident, Wpn3*Resident, 
Wpn3*Month, NW*LandPub, ES*LandPub, 
Resident*LandPub, ES*NW, MB*NE, ES*NE, NE*Month, 
SW*Month, Resident*MB, MBA*Month, MB*Month, 
ES*Month 

Instrumental 
variable 

regression 
 

(Y~ prMAR, Xs) 

prMAR, Wpn1, Wpn2, Wpn3, LandPub, NW, NE, SW, MBA, 
MB, ES, Resident, Month, Wpn1*prMAR, LandPub*prMAR, 
NE*prMAR, MBA*prMAR, MB*prMAR, ES*prMAR, Month*prMAR, 
Wpn2*LandPub, Wpn3*NW, Wpn2*NE, Wpn2*ES, 
Wpn1*Resident, Wpn2*Resident, Wpn3*Resident, 
Wpn3*Month, NW*LandPub, SW*LandPub, 
Resident*LandPub, MBA*NW, ES*NW, MB*NE, ES*NE, 
Resident*NE, NE*Month, SW*Month, Resident*MB, 
MBA*Month, MB*Month, ES*Month 

Conditional 
 

(Y~ R, Xs) 

TOResp, Wpn1, Wpn2, Wpn3, LandPub, NW, NE, SW, MBA, 
MB, ES, Resident, Month, TOResp*NW, TOResp*SW, 
TOResp*MBA, TOResp*Resident,  Wpn1*LandPub, 
Wpn3*LandPub, Wpn3*NW,  Wpn2*NE,  Wpn3*SW,  
Wpn2*ES,  Wpn1*Resident, Wpn2*Resident, Wpn3*Resident, 
Wpn2*Month, Wpn3*Month, LandPub*NW, LandPub*ES, 
NW*ES, NE*MB, NE*ES, NE*Month, SW*Month, 
MB*Resident, MBA*Month, MB*Month, ES*Month, 
Resident*Month 
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Table D.2:  Explanatory variables for final response propensity models  
Response propensity model variables Model 2001 2003 

MAR 
(WC Adj) 

 
(R ~ Xr) 

Age1, Age2, Age3, Age4, Size1, 
Size2, Age2*Size1, Age1*Size2, 
Age2*Size2 

Age1, Age2, Age3, Age4, Size1, 
Size2, Age1*Size1, Age2*Size1, 
Age3*Size1, Age1*Size2, 
Age2*Size2, Age3*Size2, 
Age4*Size2 

MAR 
(PSAE) 

 
(R ~ X) 

Wpn1, Wpn2, Wpn3, LandPub, 
NW, NE, SW, MBA, MB, ES, 
Resident, Month, Age1, Age2, 
Age3, Age4, Size1, Size2, 
Wpn1*NW, Wpn2*NW, 
Wpn3*NW, Wpn1*NE, 
Wpn1*SW, Wpn2*SW, 
Wpn1*MB, Wpn1*ES, Wpn2*ES, 
Wpn1*Resident, Wpn2*Resident, 
Wpn3*Resident, Wpn1*Month, 
Wpn3*Month, NE*LandPub, 
SW*LandPub, ES*LandPub, 
ES*NW, MB*NE, MB*SW, 
Resident*NW, Resident*NE, 
NW*Month, Resident*MBA, 
MBA*Month, MB*Month, 
LandPub*Age1, SW*Age1, 
Resident*Age1, Age1*Month, 
Wpn1*Age2, Wpn2*Age2, 
Wpn3*Age2, LandPub*Age2, 
Resident*Age2, Wpn1*Age3, 
Wpn2*Age3, Wpn3*Age3, 
LandPub*Age3, ES*Age3, 
Wpn1*Age4, Wpn2*Age4, 
Wpn3*Age4, LandPub*Age4, 
ES*Age4, Wpn1*Size1, 
Wpn2*Size1, Wpn3*Size1, 
NE*Size1, MBA*Size1, ES*Size1, 
Size1*Month, Wpn1*Size2, 
Wpn2*Size2, NE*Size2, 
SW*Size2, ES*Size2, Age1*Size2, 
Age3*Size2 

Wpn1, Wpn2, Wpn3, LandPub, 
NW, NE, SW, MBA, MB, ES, 
Resident, Month, Age1, Age2, 
Age3, Age4, Size1, Size2, 
Wpn2*LandPub, Wpn2*NW, 
Wpn3*NW, Wpn1*NE, 
Wpn1*Month, NW*LandPub, 
SW*LandPub, MB*LandPub, 
ES*LandPub, Resident*LandPub, 
MB*NW, MB*NE, ES*NE, 
MB*SW, NW*Month, NE*Month, 
Resident*Month, Wpn1*Age1, 
Wpn2*Age1, Wpn3*Age1, 
LandPub*Age1, Age1*Month, 
Wpn2*Age2, MB*Age2, 
Age2*Month, NE*Age3, 
Resident*Age3, Age3*Month, 
SW*Age4, Resident*Age4, 
Month*Age4, Wpn2*Size1, 
NE*Size1, SW*Size1, ES*Size1, 
Size1*Month, NW*Size2, 
SW*Size2, MBA*Size2, 
MB*Size2, Age1*Size1 



257 
 
 

Response propensity model variables Model 2001 2003 

R  
(WC Adj) 

 
(R ~ Xr) 

Harv, Age1, Age2, Age3, Age4, 
Size1, Size2, Age2*Harv, 
Age3*Harv, Size1*Harv, 
Size2*Harv, Age2*Size1, 
Age1*Size2, Age2*Size2 

Harv, Age1, Age2, Age3, Size1, 
Size2, Age2*Harv, Age3*Harv, 
Harv*Age4, Size1*Harv, 
Size2*Harv, Age1*Size1, 
Age2*Size1, Age3*Size1, 
Age2*Size2, Age3*Size2 

R (PSAE) 
 

(R ~ Y, 
X) 

Harv, Wpn1, Wpn2, Wpn3, 
LandPub, NW, NE, SW, MBA, 
MB, ES, Resident, Month, Age1, 
Age2, Age3, Age4, Size1, Size2, 
NW*Harv, Wpn1*LandPub, 
Wpn1*NW, Wpn2*NW, 
Wpn3*NW, Wpn1*NE, 
Wpn1*SW, Wpn2*SW, 
Wpn1*MB, Wpn1*ES, Wpn2*ES, 
Wpn1*Month, Wpn3*Month, 
NE*LandPub, SW*LandPub, 
ES*LandPub, ES*NW, MB*NE, 
MB*SW, Resident*NW, 
Resident*NE, NW*Month, 
Resident*MBA, MBA*Month, 
MB*Month, Wpn1*Age1, 
Wpn2*Age1, Wpn3*Age1, 
LandPub*Age1, SW*Age1, 
ES*Age1, Age1*Month, 
LandPub*Age2, Wpn1*Age3, 
LandPub*Age3, Wpn1*Age4, 
LandPub*Age4, Wpn1*Size1, 
Wpn2*Size1, MBA*Size1, 
ES*Size1, Size1*Month, 
Wpn1*Size2, Wpn2*Size2, 
NE*Size2, SW*Size2, ES*Size2, 
Age1*Size2, Age3*Size2, 
Size2*Age4 

Harv, Wpn1, Wpn2, Wpn3, 
LandPub, NW, NE, SW, MBA, 
MB, ES, Resident, Month, Age1, 
Age2, Age3, Age4, Size1, Size2, 
LandPub*Harv, NW*Harv, 
NE*Harv, Wpn2*LandPub, 
Wpn1*NW, Wpn1*NE, 
Wpn3*SW, Wpn1*Month, 
Wpn3*Month, NW*LandPub, 
SW*LandPub, MB*LandPub, 
ES*LandPub, MB*NW, MB*NE, 
MB*SW, NW*Month, NE*Month, 
Resident*MB, ES*Month, 
Wpn1*Age1, Wpn2*Age1, 
Wpn3*Age1, LandPub*Age1, 
Age1*Month, Resident*Age3, 
Resident*Age4, Wpn2*Size1, 
NE*Size1, SW*Size1, ES*Size1, 
Size1*Month, NE*Size2, 
MBA*Size2, MB*Size2, 
Age1*Size1, Age3*Size2, 
Size1*Age4 
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Response propensity model variables Model 2001 2003 

CR 
 

(R ~ ps, 
X) 

ps, Age1,  Age2 ,  Age3,  Age4,  
Size1,  Size2,  Age3*ps, Age4*ps, 
Size1*ps, Size2*ps, Age1*Size1, 
Age2*Size1 

ps, Age1, Age2, Age3, Age4, 
Size1, Size2, Age1*ps, Age2*ps, 
Age3*ps, Age4*ps, Size1*ps, 
Size2*ps, Age1*Size1, 
Age2*Size1, Age3*Size1, 
Age4*Size1, Age1*Size2, 
Age2*Size2, Age3*Size2, 
Age4*Size2 

QCR 
 

(R~ *
sp , 

X) 

*
sp , Age1,  Age2 ,  Age3,  Age4,  

Size1,  Size2,  Age1* *
sp ,  

Age3* *
sp ,  Age4* *

sp ,   Size1* *
sp ,  

Size2* *
sp ,  Age1*Size1, 

Age2*Size1, Age3*Size1, 
Age4*Size1 

*
sp , Age1,  Age2 ,  Age3,  Age4,  

Size1,  Size2,  Age1* *
sp ,  

Age2* *
sp ,  Age3* *

sp ,   Size1* *
sp ,  

Size2* *
sp ,  Age1*Size1, 

Age2*Size1, Age3*Size1, 
Age4*Size1 



 
 

APPENDIX E: Simulation results (Means across 100 simulated populations with 3 samples each) 
 
Table E.1: Mean relative bias for four PSAE approaches (R, R*, MAR, MAR*) 

Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
R R* MA

R 
MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

3.00 0.3 0.3 -0.06 -0.02 0.32 0.36 -0.24 -0.13 -0.30 -0.26 -0.05 0.00 0.44 0.46 -0.31 -0.23 -0.34 -0.31 
2.00 0.3 0.3 -0.05 -0.02 0.19 0.21 -0.25 -0.19 -0.34 -0.32 -0.06 -0.03 0.30 0.31 -0.26 -0.18 -0.35 -0.33 
1.00 0.3 0.3 -0.04 -0.04 -0.03 -0.01 -0.30 -0.22 -0.46 -0.43 -0.05 -0.04 0.10 0.12 -0.34 -0.25 -0.47 -0.45 
0.50 0.3 0.3 -0.10 -0.11 -0.26 -0.24 -0.26 -0.16 -0.58 -0.56 -0.09 -0.09 -0.17 -0.16 -0.38 -0.28 -0.57 -0.56 
0.33 0.3 0.3 -0.10 -0.13 -0.37 -0.35 -0.32 -0.17 -0.64 -0.62 -0.12 -0.14 -0.29 -0.28 -0.36 -0.29 -0.60 -0.58 
3.00 0.6 0.3 -0.05 0.00 0.20 0.23 -0.25 -0.16 -0.34 -0.32 -0.03 0.02 0.47 0.48 -0.27 -0.19 -0.28 -0.25 
2.00 0.6 0.3 -0.05 -0.01 0.13 0.15 -0.28 -0.23 -0.38 -0.36 -0.03 0.00 0.30 0.31 -0.34 -0.30 -0.37 -0.35 
1.00 0.6 0.3 -0.05 -0.03 -0.03 0.00 -0.31 -0.23 -0.46 -0.44 -0.07 -0.05 0.05 0.08 -0.22 -0.18 -0.43 -0.41 
0.50 0.6 0.3 -0.07 -0.07 -0.21 -0.19 -0.35 -0.25 -0.55 -0.53 -0.06 -0.08 -0.20 -0.19 -0.42 -0.30 -0.58 -0.56 
0.33 0.6 0.3 -0.09 -0.08 -0.32 -0.30 -0.30 -0.22 -0.59 -0.58 -0.08 -0.12 -0.32 -0.31 -0.37 -0.23 -0.62 -0.60 
3.00 0.9 0.3 -0.05 -0.03 0.01 0.03 -0.28 -0.18 -0.42 -0.39 -0.04 0.01 0.31 0.32 -0.26 -0.17 -0.32 -0.30 
2.00 0.9 0.3 -0.05 -0.03 -0.01 0.02 -0.33 -0.23 -0.45 -0.43 -0.04 0.00 0.25 0.25 -0.27 -0.20 -0.37 -0.34 
1.00 0.9 0.3 -0.04 -0.02 -0.02 0.00 -0.25 -0.19 -0.46 -0.44 -0.06 -0.04 0.02 0.03 -0.32 -0.22 -0.47 -0.44 
0.50 0.9 0.3 -0.05 -0.04 -0.07 -0.06 -0.27 -0.17 -0.48 -0.46 -0.06 -0.06 -0.12 -0.11 -0.30 -0.19 -0.53 -0.50 
0.33 0.9 0.3 -0.06 -0.04 -0.11 -0.08 -0.31 -0.22 -0.50 -0.48 -0.07 -0.07 -0.22 -0.21 -0.37 -0.29 -0.58 -0.56 
3.00 0.3 0.6 0.00 0.01 0.19 0.19 0.00 0.04 -0.09 -0.09 0.00 0.02 0.18 0.18 -0.02 0.01 -0.14 -0.14 
2.00 0.3 0.6 0.00 0.02 0.13 0.13 -0.01 0.01 -0.17 -0.17 0.01 0.03 0.15 0.14 0.00 0.03 -0.16 -0.16 
1.00 0.3 0.6 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.29 -0.29 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.30 -0.30 
0.50 0.3 0.6 -0.01 -0.03 -0.14 -0.14 -0.03 -0.06 -0.42 -0.42 0.00 -0.02 -0.10 -0.10 -0.02 -0.03 -0.38 -0.38 
0.33 0.3 0.6 -0.02 -0.05 -0.22 -0.22 -0.03 -0.07 -0.47 -0.48 -0.02 -0.05 -0.18 -0.18 -0.06 -0.10 -0.47 -0.47 
3.00 0.6 0.6 0.00 0.02 0.15 0.15 0.00 0.02 -0.16 -0.16 0.01 0.02 0.22 0.22 0.00 0.03 -0.10 -0.10 
2.00 0.6 0.6 0.00 0.01 0.10 0.10 -0.01 0.01 -0.19 -0.19 0.01 0.02 0.16 0.16 -0.02 0.01 -0.18 -0.18 
1.00 0.6 0.6 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.29 -0.30 0.00 0.00 0.02 0.02 -0.01 -0.01 -0.29 -0.29 
0.50 0.6 0.6 0.00 -0.02 -0.10 -0.10 -0.03 -0.04 -0.39 -0.39 0.00 -0.03 -0.13 -0.13 -0.03 -0.05 -0.41 -0.41 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
R R* MA

R 
MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

0.33 0.6 0.6 0.00 -0.02 -0.15 -0.15 -0.03 -0.04 -0.44 -0.44 -0.01 -0.04 -0.20 -0.20 -0.05 -0.08 -0.48 -0.48 
3.00 0.9 0.6 0.00 0.01 0.04 0.04 -0.01 0.00 -0.27 -0.27 0.01 0.02 0.17 0.16 -0.01 0.02 -0.15 -0.16 
2.00 0.9 0.6 0.00 0.00 0.02 0.03 -0.02 -0.01 -0.27 -0.27 0.00 0.01 0.11 0.11 -0.01 0.01 -0.20 -0.20 
1.00 0.9 0.6 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.29 -0.29 0.00 0.00 0.02 0.02 -0.01 -0.01 -0.28 -0.28 
0.50 0.9 0.6 0.00 0.00 -0.02 -0.02 -0.02 -0.02 -0.31 -0.31 0.00 -0.01 -0.08 -0.08 -0.02 -0.03 -0.38 -0.38 
0.33 0.9 0.6 0.00 0.00 -0.03 -0.03 -0.02 -0.02 -0.32 -0.33 0.00 -0.02 -0.13 -0.13 -0.03 -0.03 -0.43 -0.43 
3.00 0.3 0.9 0.01 0.01 0.06 0.04 0.01 0.03 -0.13 -0.15 0.02 0.01 0.07 0.04 0.01 0.02 -0.16 -0.18 
2.00 0.3 0.9 0.01 0.01 0.04 0.02 0.00 0.01 -0.19 -0.21 0.01 0.00 0.04 0.02 0.02 0.02 -0.19 -0.20 
1.00 0.3 0.9 0.01 0.00 0.00 -0.01 0.00 0.00 -0.27 -0.29 0.00 -0.01 0.00 -0.01 0.00 0.00 -0.27 -0.28 
0.50 0.3 0.9 0.02 0.00 -0.02 -0.03 0.01 -0.02 -0.36 -0.37 0.02 0.00 -0.01 -0.02 0.00 -0.02 -0.35 -0.36 
0.33 0.3 0.9 0.01 -0.02 -0.05 -0.06 -0.01 -0.05 -0.41 -0.42 0.00 -0.03 -0.04 -0.05 -0.01 -0.04 -0.39 -0.40 
3.00 0.6 0.9 0.01 0.01 0.05 0.03 0.01 0.03 -0.17 -0.19 0.00 0.00 0.05 0.03 0.00 0.02 -0.14 -0.16 
2.00 0.6 0.9 0.01 0.01 0.03 0.02 0.01 0.02 -0.21 -0.23 0.01 0.01 0.05 0.02 0.01 0.02 -0.19 -0.21 
1.00 0.6 0.9 0.01 0.00 0.01 -0.01 0.01 0.01 -0.27 -0.29 0.00 -0.01 0.00 -0.02 0.00 0.00 -0.27 -0.29 
0.50 0.6 0.9 0.01 -0.01 -0.02 -0.03 0.00 -0.01 -0.33 -0.35 0.00 -0.01 -0.03 -0.04 0.00 -0.02 -0.36 -0.37 
0.33 0.6 0.9 0.01 -0.01 -0.03 -0.04 0.00 -0.01 -0.37 -0.38 0.00 -0.03 -0.06 -0.07 -0.01 -0.03 -0.40 -0.41 
3.00 0.9 0.9 0.01 0.00 0.02 0.00 0.00 0.01 -0.25 -0.27 0.01 0.02 0.05 0.03 0.00 0.02 -0.18 -0.20 
2.00 0.9 0.9 0.01 0.00 0.01 0.00 0.00 0.01 -0.26 -0.27 0.01 0.01 0.03 0.02 0.00 0.01 -0.22 -0.23 
1.00 0.9 0.9 0.01 0.00 0.01 -0.01 0.00 0.00 -0.27 -0.29 0.00 0.00 0.01 -0.01 0.01 0.00 -0.27 -0.28 
0.50 0.9 0.9 0.01 0.00 0.00 -0.01 0.00 0.00 -0.28 -0.30 0.01 -0.01 -0.01 -0.03 0.00 -0.01 -0.34 -0.35 
0.33 0.9 0.9 0.01 0.00 0.00 -0.01 0.00 0.00 -0.29 -0.31 0.01 -0.01 -0.03 -0.04 0.00 -0.01 -0.35 -0.37 
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Table E.2: Mean relative bias for four PSAE approaches (CR, CR*, QCR, QCR*) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR CR* QC
R 

QCR
* 

CR CR* QC
R 

QCR
* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QCR
* 

3.00 0.3 0.3 0.04 0.09 0.11 0.15 -0.14 -0.03 -0.07 0.05 -0.04 0.00 0.04 0.08 -0.32 -0.24 -0.23 -0.18 
2.00 0.3 0.3 0.02 0.05 0.07 0.10 -0.23 -0.18 -0.16 -0.11 -0.05 -0.01 0.01 0.04 -0.25 -0.19 -0.22 -0.15 
1.00 0.3 0.3 -0.03 -0.02 -0.02 0.00 -0.28 -0.17 -0.27 -0.17 -0.02 -0.01 -0.01 0.01 -0.32 -0.15 -0.30 -0.13 
0.50 0.3 0.3 -0.16 -0.15 -0.17 -0.16 -0.32 -0.19 -0.33 -0.23 -0.05 -0.06 -0.07 -0.08 -0.35 -0.20 -0.37 -0.20 
0.33 0.3 0.3 -0.18 -0.19 -0.22 -0.23 -0.38 -0.24 -0.39 -0.26 -0.10 -0.10 -0.14 -0.11 -0.31 -0.20 -0.32 -0.23 
3.00 0.6 0.3 0.10 0.14 0.39 0.24 -0.28 -0.14 -0.26 -0.11 0.15 0.19 0.21 0.21 -0.14 0.09 -0.07 0.08 
2.00 0.6 0.3 0.01 0.05 0.05 0.08 -0.19 -0.05 -0.13 -0.08 0.09 0.15 0.12 0.17 -0.31 -0.18 -0.28 -0.18 
1.00 0.6 0.3 -0.04 -0.03 -0.03 -0.02 -0.33 -0.23 -0.33 -0.25 -0.06 -0.03 -0.05 -0.03 -0.26 -0.17 -0.26 -0.18 
0.50 0.6 0.3 -0.18 -0.12 -0.19 -0.13 -0.45 -0.36 -0.44 -0.36 -0.23 -0.19 -0.24 -0.20 -0.50 -0.42 -0.51 -0.44 
0.33 0.6 0.3 -0.35 -0.29 -0.35 -0.30 -0.50 -0.44 -0.49 -0.40 -0.39 -0.35 -0.39 -0.35 -0.55 -0.46 -0.57 -0.52 
3.00 0.9 0.3 -0.04 -0.02 -0.03 -0.01 -0.25 -0.15 -0.27 -0.15 0.18 0.21 0.20 0.22 -0.13 0.01 -0.15 0.00 
2.00 0.9 0.3 -0.03 -0.01 -0.05 -0.02 -0.31 -0.20 -0.31 -0.20 0.10 0.11 0.10 0.10 -0.15 -0.04 -0.16 -0.03 
1.00 0.9 0.3 -0.03 -0.01 -0.04 -0.03 -0.24 -0.16 -0.26 -0.16 -0.04 -0.03 -0.05 -0.03 -0.30 -0.18 -0.30 -0.18 
0.50 0.9 0.3 -0.04 -0.03 -0.06 -0.05 -0.25 -0.15 -0.26 -0.16 -0.20 -0.18 -0.20 -0.18 -0.38 -0.28 -0.38 -0.32 
0.33 0.9 0.3 -0.05 -0.03 -0.08 -0.06 -0.31 -0.22 -0.33 -0.25 -0.31 -0.29 -0.31 -0.30 -0.52 -0.45 -0.52 -0.45 
3.00 0.3 0.6 0.01 0.03 0.05 0.06 0.04 0.07 0.10 0.13 -0.05 -0.03 0.00 0.02 -0.08 -0.04 -0.01 0.02 
2.00 0.3 0.6 0.01 0.02 0.04 0.05 0.01 0.04 0.06 0.08 -0.02 -0.01 0.01 0.02 -0.04 -0.02 0.02 0.03 
1.00 0.3 0.6 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.00 -0.01 0.00 -0.01 -0.01 -0.01 0.01 0.00 
0.50 0.3 0.6 -0.02 -0.04 -0.04 -0.05 -0.04 -0.06 -0.06 -0.09 0.05 0.03 0.03 0.01 0.08 0.06 0.05 0.02 
0.33 0.3 0.6 -0.06 -0.07 -0.08 -0.09 -0.07 -0.08 -0.10 -0.12 0.06 0.04 0.04 0.01 0.04 0.01 0.00 -0.03 
3.00 0.6 0.6 0.01 0.08 0.05 0.04 0.04 0.23 0.12 0.16 0.05 0.13 0.08 0.08 0.11 0.31 0.19 0.26 
2.00 0.6 0.6 0.00 0.04 0.03 0.02 0.05 0.16 0.09 0.10 0.04 0.07 0.06 0.06 0.06 0.13 0.10 0.09 
1.00 0.6 0.6 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.01 -0.01 0.00 -0.01 -0.01 
0.50 0.6 0.6 -0.11 -0.09 -0.10 -0.09 -0.17 -0.15 -0.18 -0.15 -0.14 -0.12 -0.14 -0.13 -0.20 -0.17 -0.20 -0.17 
0.33 0.6 0.6 -0.22 -0.18 -0.21 -0.18 -0.34 -0.31 -0.33 -0.29 -0.27 -0.23 -0.25 -0.21 -0.39 -0.36 -0.38 -0.32 
3.00 0.9 0.6 0.00 0.01 0.01 0.01 -0.01 0.00 -0.01 0.00 0.14 0.14 0.15 0.14 0.18 0.20 0.18 0.20 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR CR* QC

R 
QCR

* 
CR CR* QC

R 
QCR

* 
CR CR* QC

R 
QC
R* 

CR CR* QC
R 

QCR
* 

2.00 0.9 0.6 0.00 0.00 0.00 0.00 -0.02 -0.01 -0.03 -0.02 0.09 0.08 0.09 0.09 0.11 0.11 0.11 0.12 
1.00 0.9 0.6 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 
0.50 0.9 0.6 0.00 0.00 0.00 0.00 -0.02 -0.01 -0.02 -0.01 -0.10 -0.10 -0.10 -0.10 -0.16 -0.15 -0.16 -0.15 
0.33 0.9 0.6 0.00 0.00 0.00 0.00 -0.02 -0.01 -0.03 -0.02 -0.15 -0.15 -0.15 -0.15 -0.24 -0.23 -0.24 -0.23 
3.00 0.3 0.9 0.02 0.02 0.02 0.02 0.05 0.06 0.08 0.08 0.01 0.00 0.01 0.00 -0.01 0.00 0.02 0.03 
2.00 0.3 0.9 0.01 0.01 0.01 0.00 0.04 0.04 0.06 0.06 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.03 
1.00 0.3 0.9 0.01 -0.01 0.01 -0.01 0.00 0.00 0.01 0.00 0.00 -0.02 0.00 -0.02 0.01 0.01 0.01 0.01 
0.50 0.3 0.9 0.01 -0.01 0.00 -0.02 -0.04 -0.05 -0.04 -0.06 0.02 -0.01 0.01 -0.02 0.02 0.00 0.01 -0.01 
0.33 0.3 0.9 0.00 -0.03 -0.01 -0.04 -0.06 -0.07 -0.07 -0.08 0.01 -0.02 0.00 -0.03 0.06 0.04 0.05 0.02 
3.00 0.6 0.9 0.01 0.01 0.02 0.01 0.04 0.08 0.06 0.06 0.01 0.01 0.02 0.01 0.04 0.08 0.06 0.06 
2.00 0.6 0.9 0.01 0.00 0.02 0.01 0.03 0.05 0.04 0.04 0.01 0.01 0.02 0.01 0.04 0.05 0.05 0.04 
1.00 0.6 0.9 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.02 -0.02 -0.02 -0.02 
0.50 0.6 0.9 -0.02 -0.02 -0.01 -0.01 -0.12 -0.09 -0.11 -0.10 -0.03 -0.03 -0.02 -0.02 -0.14 -0.13 -0.14 -0.13 
0.33 0.6 0.9 -0.05 -0.02 -0.01 0.00 -0.22 -0.16 -0.21 -0.19 -0.08 -0.04 -0.04 -0.03 -0.26 -0.19 -0.25 -0.19 
3.00 0.9 0.9 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.04 0.03 0.05 0.03 0.12 0.13 0.13 0.13 
2.00 0.9 0.9 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.03 0.02 0.08 0.08 0.08 0.08 
1.00 0.9 0.9 0.01 -0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 
0.50 0.9 0.9 0.01 0.00 0.01 0.00 0.00 -0.01 0.00 -0.01 -0.02 -0.03 -0.02 -0.03 -0.09 -0.09 -0.09 -0.10 
0.33 0.9 0.9 0.00 -0.01 0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.03 -0.04 -0.03 -0.04 -0.14 -0.14 -0.14 -0.14 
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Table E3: Mean relative bias for four weighting class adjustment approaches (JC, IVR, R, JR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

3.00 0.3 0.3 0.23 0.23 0.11 0.06 0.18 0.19 0.22 0.01 0.18 0.20 0.12 0.02 0.13 0.14 0.19 -0.05 
2.00 0.3 0.3 0.12 0.13 0.07 0.03 0.11 0.12 0.16 0.00 0.09 0.10 0.10 -0.01 0.09 0.11 0.16 -0.04 
1.00 0.3 0.3 -0.04 -0.03 0.05 0.02 -0.02 -0.01 0.03 -0.02 -0.06 -0.03 0.06 0.02 -0.02 -0.01 0.03 -0.01 
0.50 0.3 0.3 -0.20 -0.19 -0.04 -0.03 -0.18 -0.18 -0.07 -0.08 -0.18 -0.17 0.01 0.05 -0.18 -0.16 0.00 -0.05 
0.33 0.3 0.3 -0.30 -0.28 -0.11 -0.06 -0.26 -0.24 -0.14 -0.11 -0.27 -0.24 -0.05 0.04 -0.22 -0.20 -0.02 -0.04 
3.00 0.6 0.3 0.17 0.18 0.10 0.05 0.16 0.17 0.12 0.04 0.25 0.27 0.13 0.08 0.21 0.21 0.24 0.07 
2.00 0.6 0.3 0.11 0.12 0.05 0.02 0.11 0.11 0.08 0.03 0.15 0.16 0.06 0.04 0.13 0.14 0.15 0.05 
1.00 0.6 0.3 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 0.00 0.00 0.02 -0.01 
0.50 0.6 0.3 -0.15 -0.14 -0.07 -0.05 -0.12 -0.11 -0.11 -0.06 -0.19 -0.19 -0.07 -0.10 -0.16 -0.15 -0.15 -0.08 
0.33 0.6 0.3 -0.23 -0.23 -0.10 -0.12 -0.18 -0.18 -0.19 -0.09 -0.29 -0.28 -0.15 -0.15 -0.22 -0.22 -0.19 -0.10 
3.00 0.9 0.3 0.04 0.04 0.02 0.02 0.03 0.03 0.00 0.01 0.18 0.18 0.11 0.19 0.15 0.16 0.11 0.16 
2.00 0.9 0.3 0.02 0.02 0.01 0.00 0.02 0.02 0.00 0.01 0.11 0.11 0.04 0.11 0.11 0.11 0.09 0.12 
1.00 0.9 0.3 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.01 0.01 -0.01 0.01 0.01 0.01 0.00 0.01 
0.50 0.9 0.3 -0.03 -0.03 -0.02 -0.01 -0.03 -0.03 -0.03 -0.02 -0.11 -0.11 -0.06 -0.12 -0.10 -0.10 -0.10 -0.10 
0.33 0.9 0.3 -0.05 -0.05 -0.02 -0.02 -0.04 -0.04 -0.03 -0.02 -0.20 -0.20 -0.07 -0.20 -0.15 -0.16 -0.16 -0.16 
3.00 0.3 0.6 0.16 0.16 0.01 0.01 0.25 0.25 0.08 0.03 0.14 0.14 0.02 0.00 0.19 0.20 0.06 -0.01 
2.00 0.3 0.6 0.11 0.11 0.02 0.00 0.14 0.15 0.05 -0.01 0.09 0.09 0.02 0.01 0.13 0.14 0.07 0.00 
1.00 0.3 0.6 -0.02 -0.02 0.00 -0.01 -0.01 -0.01 0.01 0.00 -0.03 -0.03 0.00 0.00 -0.02 -0.01 0.01 0.01 
0.50 0.3 0.6 -0.15 -0.14 -0.02 -0.02 -0.19 -0.18 -0.04 -0.04 -0.13 -0.13 -0.01 0.05 -0.15 -0.14 -0.02 0.07 
0.33 0.3 0.6 -0.22 -0.22 -0.04 -0.06 -0.26 -0.26 -0.08 -0.06 -0.20 -0.20 -0.04 0.05 -0.24 -0.23 -0.07 0.03 
3.00 0.6 0.6 0.14 0.14 0.02 0.00 0.18 0.19 0.07 0.02 0.20 0.20 0.03 0.01 0.25 0.25 0.08 0.03 
2.00 0.6 0.6 0.09 0.09 0.01 -0.02 0.13 0.13 0.04 0.00 0.12 0.12 0.02 0.01 0.15 0.15 0.04 -0.01 
1.00 0.6 0.6 -0.01 -0.01 0.00 -0.02 -0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 
0.50 0.6 0.6 -0.10 -0.10 -0.01 -0.05 -0.12 -0.12 -0.03 -0.07 -0.14 -0.14 -0.01 -0.09 -0.17 -0.16 -0.05 -0.09 
0.33 0.6 0.6 -0.15 -0.14 -0.01 -0.11 -0.20 -0.20 -0.05 -0.16 -0.20 -0.20 -0.03 -0.17 -0.27 -0.27 -0.11 -0.20 
3.00 0.9 0.6 0.03 0.03 0.01 0.00 0.04 0.04 0.02 0.01 0.15 0.15 0.03 0.10 0.18 0.18 0.07 0.17 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

2.00 0.9 0.6 0.02 0.02 0.01 0.00 0.02 0.02 0.01 -0.01 0.09 0.09 0.01 0.06 0.11 0.11 0.04 0.10 
1.00 0.9 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.01 0.01 0.00 0.00 
0.50 0.9 0.6 -0.02 -0.02 0.00 0.00 -0.03 -0.03 -0.01 -0.01 -0.09 -0.09 -0.01 -0.10 -0.12 -0.12 -0.04 -0.13 
0.33 0.9 0.6 -0.03 -0.03 -0.01 0.00 -0.05 -0.05 -0.01 -0.02 -0.13 -0.14 -0.01 -0.14 -0.19 -0.19 -0.04 -0.20 
3.00 0.3 0.9 0.04 0.04 0.00 -0.01 0.19 0.19 0.02 0.03 0.03 0.03 0.00 -0.01 0.17 0.17 0.02 0.02 
2.00 0.3 0.9 0.02 0.02 -0.01 -0.01 0.12 0.12 0.00 0.02 0.01 0.01 -0.01 -0.02 0.12 0.12 0.01 0.01 
1.00 0.3 0.9 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.00 0.00 -0.02 -0.02 -0.03 -0.02 0.01 0.01 -0.01 0.02 
0.50 0.3 0.9 -0.03 -0.03 -0.01 -0.01 -0.11 -0.11 -0.01 -0.02 -0.03 -0.03 -0.02 0.00 -0.09 -0.09 -0.02 0.03 
0.33 0.3 0.9 -0.05 -0.05 -0.02 -0.02 -0.18 -0.18 -0.04 -0.05 -0.06 -0.06 -0.04 -0.01 -0.14 -0.14 -0.03 0.06 
3.00 0.6 0.9 0.03 0.03 0.01 0.00 0.15 0.15 0.03 0.01 0.03 0.03 -0.01 -0.01 0.17 0.17 0.03 0.02 
2.00 0.6 0.9 0.02 0.02 0.01 0.00 0.09 0.09 0.01 0.01 0.02 0.03 0.00 0.00 0.12 0.12 0.02 0.01 
1.00 0.6 0.9 0.00 0.00 0.01 0.00 0.01 0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 -0.01 
0.50 0.6 0.9 -0.02 -0.02 0.00 -0.01 -0.08 -0.08 -0.01 -0.06 -0.03 -0.03 -0.01 -0.02 -0.11 -0.11 -0.01 -0.10 
0.33 0.6 0.9 -0.03 -0.03 0.00 -0.01 -0.13 -0.13 -0.01 -0.12 -0.06 -0.06 -0.02 -0.03 -0.19 -0.19 -0.03 -0.18 
3.00 0.9 0.9 0.01 0.01 0.01 0.00 0.03 0.03 0.01 0.00 0.04 0.04 0.02 0.03 0.13 0.13 0.02 0.08 
2.00 0.9 0.9 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02 0.01 0.01 0.08 0.08 0.01 0.05 
1.00 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 
0.50 0.9 0.9 -0.01 0.00 0.00 0.00 -0.02 -0.02 0.00 0.00 -0.02 -0.02 0.00 -0.02 -0.08 -0.08 -0.01 -0.09 
0.33 0.9 0.9 -0.01 -0.01 0.00 0.00 -0.03 -0.03 -0.01 0.00 -0.03 -0.03 0.00 -0.03 -0.12 -0.12 -0.01 -0.13 
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Table E4: Mean relative bias for three weighting class adjustment approaches (CR, QCR, SUCC) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 
3.00 0.3 0.3 0.15 0.21 0.13 0.17 0.17 0.11 0.06 0.18 0.08 0.11 0.12 0.08 
2.00 0.3 0.3 0.10 0.14 0.09 0.14 0.10 0.07 0.04 0.09 0.05 0.10 0.08 0.04 
1.00 0.3 0.3 0.00 0.01 0.06 0.02 -0.03 0.04 0.02 -0.06 0.08 0.05 -0.03 0.05 
0.50 0.3 0.3 -0.12 -0.13 0.00 -0.14 -0.19 -0.03 -0.02 -0.19 0.10 -0.05 -0.19 -0.01 
0.33 0.3 0.3 -0.18 -0.20 -0.03 -0.20 -0.27 -0.09 -0.07 -0.28 0.08 -0.07 -0.23 -0.01 
3.00 0.6 0.3 0.12 0.13 0.09 0.14 0.16 0.10 0.19 0.26 0.14 0.19 0.21 0.15 
2.00 0.6 0.3 0.08 0.09 0.06 0.10 0.11 0.06 0.12 0.15 0.08 0.13 0.13 0.08 
1.00 0.6 0.3 0.00 0.00 0.01 -0.01 -0.01 0.00 0.01 -0.01 0.01 0.01 0.00 0.01 
0.50 0.6 0.3 -0.10 -0.11 -0.05 -0.12 -0.12 -0.06 -0.14 -0.19 -0.09 -0.15 -0.16 -0.07 
0.33 0.6 0.3 -0.16 -0.18 -0.11 -0.17 -0.18 -0.09 -0.22 -0.29 -0.14 -0.20 -0.22 -0.10 
3.00 0.9 0.3 0.03 0.03 0.03 0.03 0.03 0.02 0.23 0.18 0.19 0.19 0.15 0.16 
2.00 0.9 0.3 0.02 0.01 0.01 0.02 0.02 0.02 0.14 0.11 0.11 0.15 0.11 0.11 
1.00 0.9 0.3 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 
0.50 0.9 0.3 -0.01 -0.02 -0.01 -0.03 -0.03 -0.01 -0.15 -0.11 -0.12 -0.13 -0.10 -0.10 
0.33 0.9 0.3 -0.02 -0.04 -0.01 -0.04 -0.04 -0.01 -0.26 -0.20 -0.21 -0.19 -0.15 -0.16 
3.00 0.3 0.6 0.03 0.06 0.05 0.09 0.22 0.11 -0.03 0.13 0.06 -0.04 0.17 0.06 
2.00 0.3 0.6 0.02 0.05 0.04 0.05 0.12 0.05 -0.01 0.08 0.06 0.00 0.10 0.08 
1.00 0.3 0.6 -0.01 -0.01 0.01 0.01 -0.03 0.05 0.00 -0.03 0.03 0.00 -0.05 0.08 
0.50 0.3 0.6 -0.04 -0.05 0.01 -0.07 -0.22 0.02 0.03 -0.13 0.09 0.04 -0.18 0.14 
0.33 0.3 0.6 -0.07 -0.09 -0.02 -0.10 -0.29 0.00 0.03 -0.20 0.11 -0.02 -0.27 0.12 
3.00 0.6 0.6 0.05 0.05 0.05 0.09 0.18 0.08 0.09 0.19 0.09 0.13 0.25 0.11 
2.00 0.6 0.6 0.02 0.02 0.03 0.05 0.12 0.05 0.05 0.12 0.05 0.06 0.15 0.05 
1.00 0.6 0.6 0.00 -0.01 0.00 0.00 -0.01 0.00 0.01 0.00 0.00 0.00 -0.01 0.01 
0.50 0.6 0.6 -0.04 -0.04 -0.03 -0.07 -0.13 -0.04 -0.07 -0.14 -0.06 -0.10 -0.18 -0.06 
0.33 0.6 0.6 -0.07 -0.07 -0.06 -0.14 -0.21 -0.11 -0.12 -0.20 -0.11 -0.19 -0.28 -0.15 
3.00 0.9 0.6 0.02 0.02 0.02 0.03 0.03 0.02 0.15 0.15 0.15 0.21 0.18 0.19 
2.00 0.9 0.6 0.01 0.01 0.01 0.01 0.02 0.01 0.10 0.09 0.09 0.13 0.12 0.12 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 

1.00 0.9 0.6 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 
0.50 0.9 0.6 0.00 0.00 0.00 -0.01 -0.03 0.00 -0.10 -0.09 -0.10 -0.15 -0.12 -0.13 
0.33 0.9 0.6 0.00 0.00 0.00 -0.01 -0.05 -0.01 -0.15 -0.14 -0.15 -0.22 -0.19 -0.20 
3.00 0.3 0.9 0.02 0.02 0.01 0.06 0.16 0.07 0.01 0.03 0.00 0.00 0.13 0.06 
2.00 0.3 0.9 0.01 0.01 0.00 0.04 0.10 0.05 0.00 0.01 0.00 0.01 0.08 0.05 
1.00 0.3 0.9 0.00 0.00 0.00 0.00 -0.01 0.03 -0.01 -0.02 0.00 0.01 -0.02 0.05 
0.50 0.3 0.9 -0.01 -0.01 0.00 -0.04 -0.13 0.00 0.00 -0.03 0.01 0.00 -0.12 0.07 
0.33 0.3 0.9 -0.02 -0.03 -0.01 -0.07 -0.21 -0.02 -0.01 -0.06 0.00 0.04 -0.17 0.11 
3.00 0.6 0.9 0.02 0.02 0.01 0.07 0.14 0.07 0.01 0.03 0.00 0.08 0.16 0.07 
2.00 0.6 0.9 0.01 0.01 0.01 0.04 0.09 0.04 0.01 0.02 0.00 0.06 0.11 0.05 
1.00 0.6 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
0.50 0.6 0.9 -0.01 -0.01 -0.01 -0.05 -0.09 -0.05 -0.02 -0.03 -0.02 -0.08 -0.12 -0.07 
0.33 0.6 0.9 -0.01 -0.02 -0.01 -0.08 -0.14 -0.07 -0.04 -0.06 -0.04 -0.12 -0.20 -0.12 
3.00 0.9 0.9 0.01 0.01 0.01 0.02 0.03 0.02 0.04 0.04 0.03 0.14 0.13 0.13 
2.00 0.9 0.9 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.09 0.08 0.08 
1.00 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 
0.50 0.9 0.9 0.00 0.00 0.00 -0.01 -0.02 0.00 -0.03 -0.02 -0.02 -0.09 -0.08 -0.10 
0.33 0.9 0.9 0.00 0.00 0.00 -0.01 -0.03 0.00 -0.04 -0.03 -0.04 -0.14 -0.12 -0.14 
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Table E5: Mean relative bias for three weighting class adjustment approaches (INT, JCR, JQCR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 
3.00 0.3 0.3 0.08 0.08 0.08 0.03 0.02 0.02 0.03 0.04 0.03 -0.04 -0.04 -0.03 
2.00 0.3 0.3 0.04 0.04 0.04 0.02 0.01 0.01 0.00 0.00 0.00 -0.03 -0.04 -0.04 
1.00 0.3 0.3 0.02 0.02 0.02 -0.01 -0.02 -0.02 0.01 0.02 0.01 0.00 -0.01 -0.01 
0.50 0.3 0.3 -0.04 -0.03 -0.04 -0.07 -0.07 -0.08 0.05 0.05 0.05 -0.04 -0.05 -0.06 
0.33 0.3 0.3 -0.07 -0.06 -0.06 -0.11 -0.11 -0.11 0.03 0.04 0.04 -0.03 -0.04 -0.04 
3.00 0.6 0.3 0.08 0.08 0.08 0.07 0.07 0.08 0.13 0.13 0.13 0.11 0.12 0.13 
2.00 0.6 0.3 0.03 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 
1.00 0.6 0.3 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 
0.50 0.6 0.3 -0.06 -0.05 -0.05 -0.06 -0.06 -0.06 -0.10 -0.09 -0.09 -0.07 -0.08 -0.08 
0.33 0.6 0.3 -0.11 -0.11 -0.10 -0.09 -0.09 -0.09 -0.14 -0.14 -0.14 -0.09 -0.10 -0.10 
3.00 0.9 0.3 0.02 0.02 0.02 0.01 0.01 0.01 0.20 0.20 0.20 0.17 0.17 0.17 
2.00 0.9 0.3 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.12 0.11 0.12 0.12 0.12 
1.00 0.9 0.3 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.50 0.9 0.3 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.12 -0.12 -0.12 -0.10 -0.10 -0.10 
0.33 0.9 0.3 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.21 -0.21 -0.21 -0.16 -0.16 -0.16 
3.00 0.3 0.6 0.03 0.03 0.03 0.07 0.06 0.06 0.02 0.01 0.02 0.03 0.00 0.01 
2.00 0.3 0.6 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.01 0.02 0.04 0.01 0.01 
1.00 0.3 0.6 -0.02 -0.01 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 0.03 0.02 0.02 
0.50 0.3 0.6 -0.04 -0.03 -0.03 -0.02 -0.05 -0.05 0.02 0.04 0.04 0.08 0.06 0.05 
0.33 0.3 0.6 -0.08 -0.07 -0.06 -0.04 -0.06 -0.06 0.01 0.03 0.04 0.06 0.03 0.03 
3.00 0.6 0.6 0.05 0.05 0.05 0.07 0.07 0.08 0.09 0.08 0.08 0.10 0.10 0.10 
2.00 0.6 0.6 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.03 0.03 
1.00 0.6 0.6 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
0.50 0.6 0.6 -0.04 -0.03 -0.03 -0.05 -0.04 -0.05 -0.06 -0.07 -0.06 -0.06 -0.07 -0.07 
0.33 0.6 0.6 -0.06 -0.06 -0.06 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.15 -0.15 -0.14 
3.00 0.9 0.6 0.02 0.02 0.02 0.01 0.01 0.01 0.15 0.15 0.15 0.19 0.19 0.19 
2.00 0.9 0.6 0.01 0.01 0.01 0.00 0.00 0.00 0.09 0.09 0.09 0.12 0.12 0.12 

267



 
 
 

Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 

1.00 0.9 0.6 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 
0.50 0.9 0.6 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.10 -0.10 -0.10 -0.13 -0.13 -0.13 
0.33 0.9 0.6 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.15 -0.15 -0.15 -0.20 -0.20 -0.20 
3.00 0.3 0.9 0.00 0.00 0.00 0.07 0.06 0.06 -0.01 -0.01 -0.01 0.05 0.03 0.03 
2.00 0.3 0.9 -0.01 -0.01 -0.01 0.05 0.04 0.04 -0.01 -0.01 -0.01 0.05 0.03 0.02 
1.00 0.3 0.9 -0.01 -0.01 -0.01 0.02 0.00 0.00 -0.02 -0.02 -0.02 0.03 0.01 0.02 
0.50 0.3 0.9 -0.01 -0.01 -0.01 -0.02 -0.03 -0.03 -0.01 -0.01 -0.01 0.04 0.02 0.03 
0.33 0.3 0.9 -0.03 -0.03 -0.03 -0.05 -0.06 -0.06 -0.02 -0.02 -0.02 0.07 0.05 0.06 
3.00 0.6 0.9 0.01 0.01 0.01 0.07 0.07 0.07 0.00 0.00 0.00 0.08 0.07 0.07 
2.00 0.6 0.9 0.00 0.00 0.00 0.04 0.04 0.04 0.00 0.00 0.00 0.05 0.05 0.05 
1.00 0.6 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
0.50 0.6 0.9 -0.01 -0.01 -0.01 -0.05 -0.05 -0.05 -0.02 -0.02 -0.02 -0.07 -0.07 -0.07 
0.33 0.6 0.9 -0.01 -0.01 -0.01 -0.08 -0.07 -0.07 -0.04 -0.04 -0.04 -0.11 -0.12 -0.12 
3.00 0.9 0.9 0.00 0.00 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.13 0.13 0.13 
2.00 0.9 0.9 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.08 0.08 0.08 
1.00 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
0.50 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.02 -0.10 -0.10 -0.10 
0.33 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 -0.04 -0.04 -0.14 -0.14 -0.14 
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Table E6: Mean relative bias of MCAR, MCAR2, and DSS estimates 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

MCA
R MCAR2 DSS MCA

R 
MCAR

2 DSS MCA
R MCAR2 DSS MCA

R MCAR2 DSS 

3.00 0.3 0.3 0.28 0.28 0.00 0.21 0.21 0.00 0.25 0.25 0.01 0.18 0.18 0.00 
2.00 0.3 0.3 0.17 0.17 0.00 0.14 0.14 0.00 0.15 0.15 0.00 0.13 0.12 0.01 
1.00 0.3 0.3 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 
0.50 0.3 0.3 -0.15 -0.15 0.00 -0.16 -0.16 0.00 -0.13 -0.13 0.01 -0.14 -0.14 0.00 
0.33 0.3 0.3 -0.26 -0.26 0.00 -0.23 -0.23 0.00 -0.21 -0.21 0.00 -0.19 -0.19 0.01 
3.00 0.6 0.3 0.18 0.18 -0.01 0.17 0.17 0.00 0.27 0.27 0.00 0.22 0.22 -0.01 
2.00 0.6 0.3 0.13 0.13 0.00 0.11 0.11 0.00 0.16 0.16 0.00 0.14 0.14 0.00 
1.00 0.6 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 
0.50 0.6 0.3 -0.13 -0.13 0.00 -0.11 -0.11 0.00 -0.17 -0.17 0.00 -0.15 -0.15 0.00 
0.33 0.6 0.3 -0.21 -0.21 -0.01 -0.17 -0.17 0.00 -0.26 -0.26 0.00 -0.21 -0.21 -0.01 
3.00 0.9 0.3 0.04 0.04 0.00 0.03 0.03 0.00 0.18 0.18 0.00 0.15 0.15 0.00 
2.00 0.9 0.3 0.02 0.02 0.00 0.02 0.02 0.00 0.11 0.11 0.00 0.11 0.11 0.00 
1.00 0.9 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00 
0.50 0.9 0.3 -0.03 -0.03 0.00 -0.03 -0.03 0.00 -0.11 -0.11 0.00 -0.10 -0.10 0.00 
0.33 0.9 0.3 -0.04 -0.04 0.00 -0.03 -0.03 0.00 -0.19 -0.19 0.00 -0.15 -0.15 0.00 
3.00 0.3 0.6 0.18 0.18 0.00 0.26 0.26 0.00 0.16 0.16 0.00 0.21 0.21 0.00 
2.00 0.3 0.6 0.12 0.12 0.00 0.15 0.16 -0.01 0.11 0.11 0.01 0.16 0.16 0.01 
1.00 0.3 0.6 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 
0.50 0.3 0.6 -0.13 -0.13 0.00 -0.18 -0.18 0.00 -0.11 -0.11 0.00 -0.13 -0.13 0.01 
0.33 0.3 0.6 -0.20 -0.20 0.00 -0.25 -0.25 0.00 -0.18 -0.18 0.00 -0.23 -0.23 0.00 
3.00 0.6 0.6 0.14 0.14 0.00 0.19 0.19 0.00 0.20 0.20 0.01 0.25 0.25 0.00 
2.00 0.6 0.6 0.10 0.10 0.00 0.13 0.13 0.00 0.12 0.12 0.00 0.15 0.16 -0.01 
1.00 0.6 0.6 -0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
0.50 0.6 0.6 -0.09 -0.09 0.00 -0.12 -0.12 0.00 -0.13 -0.13 0.00 -0.16 -0.16 0.00 
0.33 0.6 0.6 -0.14 -0.14 0.00 -0.20 -0.20 0.00 -0.19 -0.18 0.00 -0.27 -0.27 -0.01 
3.00 0.9 0.6 0.03 0.03 0.00 0.04 0.04 0.00 0.14 0.14 0.00 0.18 0.18 0.00 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 

MCA
R MCAR2 DSS MCA

R 
MCAR

2 DSS MCA
R MCAR2 DSS MCA

R MCAR2 DSS 

2.00 0.9 0.6 0.02 0.02 0.00 0.02 0.02 0.00 0.09 0.09 0.00 0.11 0.11 0.00 
1.00 0.9 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 
0.50 0.9 0.6 -0.02 -0.02 0.00 -0.03 -0.03 0.00 -0.09 -0.09 0.00 -0.12 -0.12 0.00 
0.33 0.9 0.6 -0.03 -0.03 0.00 -0.04 -0.04 0.00 -0.13 -0.14 0.00 -0.18 -0.18 0.00 
3.00 0.3 0.9 0.04 0.04 0.00 0.19 0.18 0.01 0.04 0.04 0.01 0.16 0.16 0.00 
2.00 0.3 0.9 0.03 0.03 0.00 0.11 0.12 0.00 0.02 0.02 0.00 0.11 0.12 0.01 
1.00 0.3 0.9 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 0.00 
0.50 0.3 0.9 -0.02 -0.02 0.01 -0.11 -0.12 0.01 -0.02 -0.02 0.01 -0.11 -0.10 0.00 
0.33 0.3 0.9 -0.04 -0.04 0.00 -0.19 -0.19 0.00 -0.04 -0.04 0.00 -0.15 -0.16 0.01 
3.00 0.6 0.9 0.03 0.03 0.00 0.14 0.14 0.00 0.03 0.03 -0.01 0.17 0.17 0.00 
2.00 0.6 0.9 0.02 0.02 0.00 0.09 0.09 0.00 0.03 0.03 0.00 0.12 0.12 0.00 
1.00 0.6 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 
0.50 0.6 0.9 -0.02 -0.02 0.00 -0.08 -0.08 0.00 -0.03 -0.03 0.00 -0.11 -0.12 0.00 
0.33 0.6 0.9 -0.03 -0.03 0.00 -0.13 -0.13 0.00 -0.05 -0.05 -0.01 -0.19 -0.19 0.00 
3.00 0.9 0.9 0.01 0.01 0.00 0.03 0.03 0.00 0.03 0.03 0.00 0.13 0.13 0.00 
2.00 0.9 0.9 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.08 0.08 0.00 
1.00 0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 
0.50 0.9 0.9 0.00 0.00 0.00 -0.02 -0.02 0.00 -0.02 -0.02 0.00 -0.08 -0.08 0.00 
0.33 0.9 0.9 -0.01 -0.01 0.00 -0.03 -0.03 0.00 -0.03 -0.03 0.00 -0.12 -0.12 0.00 
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Table E7: Mean confidence interval coverage for four PSAE approaches (R, R*, MAR, MAR*) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

3.00 0.3 0.3 0.92 0.93 0.94 0.93 0.40 0.46 0.46 0.52 0.91 0.95 0.91 0.91 0.40 0.51 0.48 0.55 
2.00 0.3 0.3 0.92 0.94 0.96 0.96 0.37 0.47 0.37 0.41 0.91 0.93 0.93 0.93 0.36 0.51 0.42 0.47 
1.00 0.3 0.3 0.90 0.92 0.88 0.89 0.30 0.47 0.20 0.25 0.89 0.91 0.85 0.86 0.32 0.50 0.25 0.27 
0.50 0.3 0.3 0.86 0.88 0.60 0.62 0.31 0.57 0.08 0.09 0.88 0.88 0.63 0.65 0.29 0.50 0.13 0.15 
0.33 0.3 0.3 0.82 0.85 0.44 0.47 0.27 0.56 0.04 0.05 0.84 0.85 0.50 0.51 0.31 0.56 0.10 0.11 
3.00 0.6 0.3 0.94 0.96 1.00 0.99 0.43 0.43 0.26 0.28 0.94 0.96 0.78 0.76 0.47 0.46 0.43 0.50 
2.00 0.6 0.3 0.96 0.98 0.99 0.99 0.40 0.43 0.20 0.22 0.95 0.99 0.93 0.91 0.37 0.43 0.25 0.32 
1.00 0.6 0.3 0.95 0.97 0.95 0.95 0.44 0.50 0.09 0.11 0.91 0.90 0.89 0.88 0.35 0.50 0.14 0.17 
0.50 0.6 0.3 0.90 0.92 0.68 0.71 0.30 0.46 0.05 0.07 0.88 0.91 0.62 0.65 0.26 0.47 0.04 0.05 
0.33 0.6 0.3 0.85 0.85 0.40 0.45 0.41 0.52 0.00 0.02 0.82 0.84 0.43 0.43 0.31 0.52 0.03 0.04 
3.00 0.9 0.3 0.99 0.99 0.99 0.99 0.32 0.51 0.08 0.08 0.95 0.97 0.85 0.82 0.38 0.42 0.24 0.28 
2.00 0.9 0.3 0.96 0.97 0.98 0.98 0.37 0.53 0.04 0.07 0.96 0.97 0.89 0.88 0.42 0.49 0.17 0.24 
1.00 0.9 0.3 0.98 0.98 0.98 0.98 0.38 0.54 0.04 0.06 0.94 0.96 0.85 0.88 0.37 0.49 0.06 0.11 
0.50 0.9 0.3 0.97 0.96 0.95 0.95 0.35 0.47 0.04 0.05 0.91 0.92 0.73 0.71 0.37 0.46 0.04 0.05 
0.33 0.9 0.3 0.97 0.98 0.92 0.90 0.39 0.50 0.02 0.05 0.88 0.89 0.61 0.63 0.26 0.40 0.02 0.03 
3.00 0.3 0.6 0.99 1.00 0.73 0.75 1.00 1.00 0.84 0.85 0.99 0.99 0.87 0.87 0.99 0.99 0.78 0.76 
2.00 0.3 0.6 0.99 1.00 0.90 0.90 1.00 1.00 0.63 0.63 0.99 1.00 0.88 0.91 0.99 1.00 0.74 0.72 
1.00 0.3 0.6 1.00 1.00 0.97 0.97 0.99 1.00 0.22 0.23 0.99 0.99 0.96 0.96 0.98 0.99 0.35 0.34 
0.50 0.3 0.6 1.00 0.99 0.77 0.77 0.99 0.98 0.01 0.01 1.00 1.00 0.84 0.84 0.99 0.99 0.15 0.14 
0.33 0.3 0.6 0.99 0.98 0.48 0.45 0.99 0.99 0.01 0.01 1.00 0.99 0.63 0.63 0.97 0.97 0.05 0.04 
3.00 0.6 0.6 1.00 1.00 0.66 0.67 1.00 1.00 0.48 0.48 1.00 1.00 0.50 0.50 1.00 1.00 0.80 0.78 
2.00 0.6 0.6 1.00 1.00 0.91 0.91 1.00 1.00 0.34 0.32 0.99 0.99 0.69 0.70 1.00 1.00 0.49 0.51 
1.00 0.6 0.6 1.00 1.00 0.99 0.98 1.00 1.00 0.07 0.06 1.00 1.00 0.95 0.94 1.00 1.00 0.14 0.13 
0.50 0.6 0.6 1.00 1.00 0.82 0.81 0.99 1.00 0.00 0.00 1.00 1.00 0.64 0.64 0.99 0.99 0.00 0.00 
0.33 0.6 0.6 1.00 1.00 0.52 0.53 0.99 0.99 0.00 0.00 1.00 0.99 0.45 0.42 0.99 0.98 0.00 0.00 
3.00 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.02 1.00 1.00 0.53 0.56 1.00 1.00 0.49 0.48 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
R R* MA

R 
MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

2.00 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03 1.00 1.00 0.74 0.74 1.00 1.00 0.30 0.29 
1.00 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.02 1.00 1.00 0.93 0.94 1.00 1.00 0.07 0.06 
0.50 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.01 1.00 1.00 0.77 0.77 1.00 1.00 0.01 0.01 
0.33 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.57 0.57 1.00 1.00 0.00 0.00 
3.00 0.3 0.9 0.99 0.99 0.98 0.99 1.00 1.00 0.65 0.53 0.97 0.96 0.93 0.95 0.99 0.99 0.65 0.60 
2.00 0.3 0.9 0.98 0.97 0.97 0.97 1.00 1.00 0.38 0.27 0.98 0.98 0.95 0.96 0.99 0.99 0.54 0.46 
1.00 0.3 0.9 0.99 0.99 0.98 0.98 0.99 0.99 0.12 0.08 0.97 0.96 0.95 0.95 0.99 0.99 0.27 0.18 
0.50 0.3 0.9 1.00 1.00 0.99 0.98 1.00 0.99 0.02 0.02 0.97 0.96 0.96 0.95 0.99 0.99 0.07 0.04 
0.33 0.3 0.9 0.99 0.97 0.93 0.90 0.99 0.99 0.00 0.00 0.99 0.97 0.90 0.90 0.99 0.99 0.04 0.03 
3.00 0.6 0.9 1.00 0.99 0.96 0.97 1.00 1.00 0.18 0.07 0.98 0.98 0.92 0.95 1.00 1.00 0.49 0.34 
2.00 0.6 0.9 1.00 1.00 0.98 1.00 1.00 1.00 0.07 0.02 1.00 1.00 0.96 0.98 1.00 1.00 0.26 0.15 
1.00 0.6 0.9 1.00 1.00 1.00 0.99 1.00 1.00 0.01 0.00 0.99 0.98 0.94 0.94 1.00 1.00 0.03 0.01 
0.50 0.6 0.9 1.00 1.00 0.99 0.97 1.00 1.00 0.01 0.00 1.00 0.99 0.95 0.94 1.00 1.00 0.01 0.00 
0.33 0.6 0.9 0.99 0.98 0.96 0.92 1.00 1.00 0.00 0.00 0.99 0.95 0.85 0.84 1.00 0.99 0.00 0.00 
3.00 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.99 0.99 0.91 0.95 1.00 1.00 0.15 0.05 
2.00 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.00 0.99 1.00 0.95 0.97 1.00 1.00 0.05 0.02 
1.00 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.00 1.00 1.00 0.96 0.95 1.00 1.00 0.02 0.00 
0.50 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.99 0.95 0.94 1.00 1.00 0.01 0.00 
0.33 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.95 0.91 1.00 1.00 0.00 0.00 
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Table E8: Mean confidence interval coverage for four PSAE approaches (CR, CR*, QCR, QCR*) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QCR
* 

3.00 0.3 0.3 0.97 0.96 0.98 0.98 0.46 0.59 0.54 0.64 0.81 0.81 0.89 0.92 0.40 0.47 0.46 0.57 
2.00 0.3 0.3 0.93 0.95 0.95 0.95 0.45 0.57 0.50 0.64 0.83 0.84 0.88 0.90 0.38 0.52 0.43 0.55 
1.00 0.3 0.3 0.91 0.93 0.90 0.94 0.35 0.55 0.35 0.54 0.82 0.84 0.85 0.86 0.38 0.60 0.40 0.61 
0.50 0.3 0.3 0.75 0.78 0.74 0.76 0.32 0.55 0.30 0.51 0.82 0.83 0.79 0.80 0.38 0.56 0.34 0.56 
0.33 0.3 0.3 0.68 0.72 0.61 0.66 0.22 0.47 0.21 0.43 0.80 0.80 0.76 0.80 0.36 0.62 0.33 0.56 
3.00 0.6 0.3 0.91 0.91 0.89 0.92 0.43 0.63 0.48 0.60 0.89 0.92 0.89 0.91 0.52 0.65 0.53 0.68 
2.00 0.6 0.3 0.95 0.95 0.96 0.96 0.45 0.64 0.45 0.61 0.92 0.91 0.91 0.93 0.42 0.64 0.44 0.64 
1.00 0.6 0.3 0.95 0.95 0.94 0.95 0.42 0.50 0.43 0.48 0.90 0.88 0.89 0.90 0.37 0.49 0.37 0.47 
0.50 0.6 0.3 0.70 0.75 0.68 0.76 0.22 0.27 0.23 0.29 0.60 0.69 0.60 0.61 0.20 0.28 0.19 0.26 
0.33 0.6 0.3 0.39 0.45 0.38 0.44 0.17 0.26 0.19 0.29 0.35 0.43 0.36 0.41 0.11 0.21 0.12 0.17 
3.00 0.9 0.3 0.98 0.97 0.94 0.97 0.37 0.56 0.35 0.53 0.99 0.99 1.00 1.00 0.61 0.82 0.61 0.79 
2.00 0.9 0.3 0.97 0.98 0.95 0.95 0.41 0.59 0.37 0.60 0.99 0.99 0.99 0.99 0.63 0.81 0.60 0.78 
1.00 0.9 0.3 0.98 0.99 0.97 0.98 0.45 0.60 0.41 0.59 0.93 0.95 0.92 0.93 0.47 0.54 0.45 0.56 
0.50 0.9 0.3 0.98 0.98 0.97 0.97 0.41 0.51 0.34 0.50 0.66 0.68 0.66 0.70 0.30 0.35 0.28 0.36 
0.33 0.9 0.3 0.97 0.96 0.95 0.93 0.48 0.55 0.40 0.52 0.44 0.45 0.42 0.45 0.17 0.22 0.16 0.21 
3.00 0.3 0.6 0.99 0.99 0.99 0.98 0.94 0.95 0.95 0.94 0.92 0.93 0.96 0.96 0.88 0.90 0.92 0.91 
2.00 0.3 0.6 0.99 0.99 0.99 0.99 0.97 0.97 0.98 0.99 0.93 0.95 0.95 0.96 0.90 0.92 0.95 0.96 
1.00 0.3 0.6 1.00 0.99 0.99 0.99 0.95 0.95 0.97 0.97 0.95 0.94 0.93 0.93 0.94 0.93 0.93 0.93 
0.50 0.3 0.6 0.99 0.99 0.98 0.96 0.95 0.93 0.91 0.91 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.97 
0.33 0.3 0.6 0.96 0.95 0.94 0.93 0.91 0.91 0.90 0.88 0.97 0.96 0.95 0.94 0.96 0.95 0.94 0.94 
3.00 0.6 0.6 0.93 0.94 0.94 0.95 0.88 0.91 0.86 0.88 0.89 0.87 0.87 0.87 0.87 0.88 0.87 0.86 
2.00 0.6 0.6 0.99 0.98 0.99 0.99 0.94 0.95 0.96 0.98 0.95 0.94 0.94 0.95 0.92 0.92 0.93 0.93 
1.00 0.6 0.6 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.97 0.98 0.98 0.96 0.97 0.98 
0.50 0.6 0.6 0.73 0.79 0.73 0.82 0.65 0.71 0.62 0.69 0.67 0.73 0.67 0.69 0.65 0.71 0.64 0.69 
0.33 0.6 0.6 0.37 0.47 0.38 0.51 0.23 0.30 0.19 0.30 0.25 0.40 0.30 0.42 0.22 0.28 0.20 0.25 
3.00 0.9 0.6 1.00 0.99 1.00 1.00 0.98 0.99 0.98 0.98 0.77 0.73 0.72 0.72 0.91 0.86 0.92 0.87 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR CR* QC

R 
QC
R* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QCR
* 

2.00 0.9 0.6 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.94 0.95 0.93 0.94 0.98 0.98 0.99 0.98 
1.00 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
0.50 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.81 0.80 0.78 0.70 0.72 0.70 0.75 
0.33 0.9 0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.53 0.52 0.51 0.51 0.37 0.41 0.36 0.38 
3.00 0.3 0.9 1.00 0.99 0.99 0.99 0.91 0.90 0.89 0.89 0.95 0.95 0.96 0.97 0.89 0.90 0.92 0.93 
2.00 0.3 0.9 0.98 0.98 0.98 0.97 0.93 0.92 0.93 0.92 0.96 0.95 0.95 0.95 0.92 0.93 0.95 0.94 
1.00 0.3 0.9 0.98 0.99 0.99 0.98 0.91 0.93 0.94 0.93 0.96 0.96 0.97 0.96 0.89 0.89 0.90 0.90 
0.50 0.3 0.9 1.00 0.99 1.00 0.99 0.88 0.88 0.88 0.88 0.97 0.95 0.98 0.95 0.92 0.92 0.91 0.91 
0.33 0.3 0.9 0.98 0.96 0.98 0.94 0.92 0.89 0.86 0.86 0.98 0.96 0.97 0.94 0.93 0.92 0.93 0.91 
3.00 0.6 0.9 1.00 0.99 0.99 0.99 0.88 0.89 0.88 0.88 0.95 0.97 0.96 0.97 0.88 0.89 0.88 0.87 
2.00 0.6 0.9 0.99 0.99 1.00 1.00 0.92 0.92 0.91 0.90 0.98 0.99 0.98 0.99 0.91 0.90 0.92 0.91 
1.00 0.6 0.9 0.99 1.00 1.00 1.00 0.95 0.97 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.97 0.97 0.96 
0.50 0.6 0.9 0.94 0.98 1.00 0.98 0.72 0.80 0.73 0.74 0.95 0.96 0.98 0.96 0.64 0.71 0.66 0.69 
0.33 0.6 0.9 0.81 0.92 0.98 0.96 0.36 0.49 0.35 0.43 0.78 0.88 0.88 0.91 0.32 0.38 0.31 0.38 
3.00 0.9 0.9 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.98 0.97 0.98 0.80 0.78 0.78 0.77 
2.00 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.99 0.97 0.96 0.96 0.95 
1.00 0.9 0.9 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.00 0.99 
0.50 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.95 0.97 0.96 0.83 0.84 0.83 0.81 
0.33 0.9 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.94 0.96 0.94 0.55 0.56 0.55 0.53 
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Table E9: Mean confidence interval coverage for four weighting class adjustment approaches (JC, IVR, R, JR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

3.00 0.3 0.3 0.58 0.57 0.86 0.92 0.79 0.77 0.80 0.85 0.81 0.76 0.93 0.85 0.86 0.85 0.90 0.78 
2.00 0.3 0.3 0.85 0.85 0.86 0.95 0.91 0.87 0.85 0.90 0.91 0.86 0.93 0.86 0.88 0.83 0.92 0.81 
1.00 0.3 0.3 0.90 0.92 0.95 0.96 0.90 0.89 0.92 0.85 0.87 0.86 0.95 0.77 0.92 0.90 0.93 0.89 
0.50 0.3 0.3 0.59 0.63 0.92 0.95 0.72 0.72 0.79 0.81 0.73 0.70 0.93 0.75 0.79 0.74 0.78 0.83 
0.33 0.3 0.3 0.25 0.32 0.87 0.90 0.52 0.57 0.69 0.79 0.49 0.54 0.90 0.76 0.68 0.68 0.79 0.80 
3.00 0.6 0.3 0.37 0.35 0.75 0.94 0.53 0.50 0.50 0.82 0.42 0.39 0.77 0.87 0.64 0.62 0.67 0.86 
2.00 0.6 0.3 0.68 0.67 0.85 0.98 0.74 0.70 0.70 0.84 0.79 0.71 0.90 0.82 0.84 0.81 0.83 0.89 
1.00 0.6 0.3 0.93 0.94 0.94 0.96 0.91 0.92 0.91 0.87 0.94 0.92 0.94 0.88 0.92 0.89 0.91 0.87 
0.50 0.6 0.3 0.58 0.62 0.85 0.96 0.76 0.71 0.82 0.85 0.57 0.60 0.87 0.79 0.75 0.73 0.77 0.84 
0.33 0.6 0.3 0.23 0.22 0.76 0.78 0.50 0.50 0.57 0.81 0.23 0.27 0.75 0.63 0.53 0.53 0.59 0.79 
3.00 0.9 0.3 0.62 0.62 0.86 0.88 0.74 0.71 0.80 0.83 0.28 0.29 0.66 0.28 0.51 0.52 0.57 0.51 
2.00 0.9 0.3 0.83 0.88 0.94 0.93 0.81 0.81 0.84 0.84 0.66 0.66 0.87 0.71 0.69 0.68 0.72 0.72 
1.00 0.9 0.3 0.91 0.92 0.95 0.96 0.93 0.88 0.92 0.89 0.93 0.94 0.92 0.95 0.94 0.93 0.94 0.95 
0.50 0.9 0.3 0.89 0.88 0.95 0.95 0.90 0.86 0.92 0.86 0.71 0.69 0.83 0.68 0.80 0.79 0.80 0.80 
0.33 0.9 0.3 0.74 0.73 0.95 0.86 0.86 0.84 0.92 0.91 0.30 0.31 0.78 0.35 0.62 0.63 0.67 0.61 
3.00 0.3 0.6 0.64 0.69 0.94 0.95 0.43 0.43 0.93 0.85 0.83 0.81 0.95 0.88 0.69 0.70 0.99 0.83 
2.00 0.3 0.6 0.83 0.83 0.96 0.96 0.77 0.74 0.95 0.90 0.89 0.89 0.97 0.90 0.85 0.80 0.97 0.86 
1.00 0.3 0.6 0.94 0.94 0.97 0.96 0.94 0.94 0.98 0.85 0.96 0.95 0.98 0.88 0.91 0.91 0.98 0.80 
0.50 0.3 0.6 0.67 0.69 0.97 0.92 0.55 0.58 0.95 0.81 0.80 0.79 0.99 0.78 0.76 0.77 0.97 0.73 
0.33 0.3 0.6 0.38 0.35 0.96 0.85 0.26 0.27 0.94 0.86 0.54 0.55 0.97 0.77 0.52 0.54 0.95 0.80 
3.00 0.6 0.6 0.33 0.36 0.92 0.93 0.21 0.20 0.85 0.86 0.39 0.42 0.93 0.87 0.29 0.29 0.86 0.88 
2.00 0.6 0.6 0.67 0.70 0.93 0.95 0.51 0.50 0.93 0.89 0.78 0.77 0.95 0.92 0.70 0.72 0.94 0.91 
1.00 0.6 0.6 0.97 0.96 0.98 0.98 0.96 0.96 0.98 0.92 0.97 0.97 0.99 0.95 0.94 0.96 0.99 0.90 
0.50 0.6 0.6 0.64 0.66 0.96 0.85 0.59 0.62 0.94 0.79 0.66 0.67 0.97 0.67 0.58 0.61 0.95 0.79 
0.33 0.6 0.6 0.34 0.37 0.91 0.70 0.20 0.19 0.91 0.53 0.37 0.40 0.94 0.49 0.17 0.20 0.87 0.50 
3.00 0.9 0.6 0.61 0.62 0.95 0.91 0.60 0.56 0.86 0.80 0.23 0.23 0.93 0.58 0.15 0.16 0.83 0.29 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

2.00 0.9 0.6 0.82 0.83 0.99 0.93 0.81 0.80 0.94 0.91 0.67 0.68 0.96 0.84 0.56 0.58 0.92 0.65 
1.00 0.9 0.6 0.96 0.96 0.99 0.95 0.91 0.91 0.98 0.86 0.97 0.98 0.98 0.96 0.96 0.96 0.99 0.94 
0.50 0.9 0.6 0.91 0.90 0.98 0.99 0.83 0.84 0.99 0.89 0.71 0.72 0.96 0.58 0.59 0.55 0.95 0.58 
0.33 0.9 0.6 0.81 0.82 0.98 0.95 0.67 0.70 0.98 0.83 0.42 0.41 0.91 0.36 0.25 0.24 0.91 0.25 
3.00 0.3 0.9 0.99 0.99 0.99 0.99 0.55 0.56 0.92 0.85 0.95 0.97 0.99 0.95 0.74 0.74 0.95 0.80 
2.00 0.3 0.9 0.97 0.98 0.98 0.97 0.78 0.79 0.94 0.87 0.97 0.96 0.99 0.94 0.84 0.84 0.96 0.85 
1.00 0.3 0.9 0.98 0.99 0.99 0.98 0.96 0.96 0.97 0.87 0.95 0.96 0.97 0.96 0.95 0.94 0.98 0.80 
0.50 0.3 0.9 0.98 0.98 0.99 0.99 0.78 0.78 0.95 0.84 0.93 0.95 0.97 0.94 0.86 0.88 0.99 0.78 
0.33 0.3 0.9 0.93 0.93 0.95 0.98 0.52 0.53 0.93 0.81 0.92 0.91 0.98 0.94 0.74 0.74 0.99 0.73 
3.00 0.6 0.9 0.94 0.96 0.93 0.98 0.26 0.27 0.87 0.84 0.98 0.97 0.97 0.98 0.48 0.50 0.92 0.87 
2.00 0.6 0.9 0.97 0.97 0.96 0.99 0.67 0.69 0.94 0.83 1.00 0.99 0.99 0.99 0.74 0.75 0.96 0.89 
1.00 0.6 0.9 1.00 0.99 0.99 1.00 0.97 0.96 0.97 0.85 0.98 0.98 0.97 0.98 0.99 0.98 0.99 0.90 
0.50 0.6 0.9 0.99 0.99 0.99 1.00 0.79 0.79 0.91 0.80 0.98 0.99 0.99 0.98 0.76 0.74 0.96 0.65 
0.33 0.6 0.9 0.96 0.96 0.96 0.99 0.47 0.47 0.88 0.58 0.92 0.91 0.95 0.95 0.37 0.38 0.91 0.44 
3.00 0.9 0.9 0.95 0.95 0.95 0.96 0.63 0.65 0.96 0.83 0.96 0.96 0.94 0.97 0.35 0.37 0.92 0.65 
2.00 0.9 0.9 0.97 0.97 0.99 0.99 0.80 0.81 0.97 0.82 0.98 0.98 0.97 0.98 0.72 0.70 0.96 0.86 
1.00 0.9 0.9 0.97 0.97 0.97 0.97 0.97 0.97 0.99 0.86 0.99 0.99 0.99 1.00 0.96 0.96 0.96 0.94 
0.50 0.9 0.9 0.98 0.99 0.99 0.99 0.94 0.94 0.98 0.90 0.97 0.97 0.97 0.98 0.78 0.78 0.94 0.65 
0.33 0.9 0.9 0.98 0.99 0.99 0.98 0.84 0.88 0.98 0.93 0.97 0.97 0.98 0.96 0.47 0.47 0.86 0.42 
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Table E10: Mean confidence interval coverage for three weighting class adjustment approaches (CR, QCR, SUCC) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 
3.00 0.3 0.3 0.92 0.82 0.84 0.82 0.80 0.83 0.90 0.79 0.84 0.89 0.86 0.86 
2.00 0.3 0.3 0.95 0.92 0.91 0.88 0.90 0.87 0.90 0.90 0.86 0.90 0.87 0.86 
1.00 0.3 0.3 0.97 0.95 0.97 0.92 0.89 0.89 0.89 0.87 0.74 0.90 0.91 0.93 
0.50 0.3 0.3 0.88 0.85 0.97 0.82 0.70 0.84 0.86 0.72 0.77 0.80 0.76 0.87 
0.33 0.3 0.3 0.80 0.76 0.94 0.70 0.50 0.83 0.87 0.48 0.76 0.83 0.67 0.81 
3.00 0.6 0.3 0.78 0.76 0.84 0.63 0.54 0.69 0.71 0.40 0.73 0.71 0.65 0.76 
2.00 0.6 0.3 0.88 0.85 0.94 0.76 0.74 0.78 0.82 0.78 0.82 0.86 0.83 0.86 
1.00 0.6 0.3 0.99 0.98 0.98 0.91 0.92 0.89 0.90 0.94 0.89 0.91 0.92 0.88 
0.50 0.6 0.3 0.89 0.84 0.96 0.80 0.76 0.86 0.74 0.57 0.79 0.77 0.75 0.84 
0.33 0.6 0.3 0.65 0.58 0.78 0.61 0.51 0.81 0.56 0.24 0.66 0.62 0.53 0.78 
3.00 0.9 0.3 0.72 0.69 0.82 0.77 0.75 0.78 0.22 0.27 0.25 0.46 0.51 0.49 
2.00 0.9 0.3 0.87 0.84 0.92 0.81 0.81 0.81 0.61 0.65 0.67 0.66 0.69 0.71 
1.00 0.9 0.3 0.92 0.93 0.95 0.89 0.92 0.88 0.91 0.93 0.93 0.93 0.94 0.95 
0.50 0.9 0.3 0.95 0.92 0.95 0.88 0.89 0.87 0.61 0.70 0.67 0.78 0.81 0.78 
0.33 0.9 0.3 0.97 0.90 0.88 0.95 0.85 0.90 0.20 0.29 0.32 0.60 0.62 0.60 
3.00 0.3 0.6 0.99 0.97 0.96 0.92 0.51 0.79 0.94 0.85 0.85 0.91 0.74 0.82 
2.00 0.3 0.6 0.99 0.97 0.96 0.94 0.83 0.88 0.95 0.90 0.88 0.93 0.87 0.83 
1.00 0.3 0.6 1.00 0.99 0.98 0.93 0.94 0.81 0.95 0.94 0.85 0.90 0.88 0.75 
0.50 0.3 0.6 0.98 0.96 0.96 0.90 0.44 0.88 0.96 0.80 0.72 0.95 0.67 0.68 
0.33 0.3 0.6 0.94 0.91 0.94 0.85 0.22 0.88 0.92 0.54 0.71 0.92 0.43 0.76 
3.00 0.6 0.6 0.91 0.91 0.92 0.77 0.25 0.73 0.82 0.41 0.80 0.78 0.32 0.82 
2.00 0.6 0.6 0.97 0.98 0.96 0.86 0.61 0.85 0.93 0.76 0.93 0.91 0.71 0.88 
1.00 0.6 0.6 0.99 0.99 0.99 0.91 0.97 0.91 0.98 0.96 0.94 0.94 0.93 0.87 
0.50 0.6 0.6 0.96 0.96 0.98 0.84 0.58 0.90 0.85 0.64 0.78 0.84 0.56 0.85 
0.33 0.6 0.6 0.89 0.89 0.92 0.65 0.18 0.71 0.73 0.37 0.64 0.60 0.18 0.63 
3.00 0.9 0.6 0.87 0.81 0.78 0.73 0.64 0.75 0.23 0.24 0.26 0.13 0.13 0.14 
2.00 0.9 0.6 0.96 0.95 0.90 0.87 0.86 0.86 0.66 0.69 0.67 0.48 0.55 0.51 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 

1.00 0.9 0.6 0.98 0.96 0.96 0.88 0.91 0.80 0.97 0.97 0.96 0.94 0.96 0.94 
0.50 0.9 0.6 0.99 0.99 0.98 0.90 0.83 0.85 0.68 0.71 0.64 0.50 0.60 0.55 
0.33 0.9 0.6 0.98 0.98 0.97 0.88 0.66 0.82 0.35 0.40 0.35 0.18 0.26 0.22 
3.00 0.3 0.9 1.00 1.00 0.99 0.89 0.67 0.84 0.97 0.96 0.96 0.90 0.84 0.74 
2.00 0.3 0.9 0.99 0.99 0.98 0.91 0.86 0.86 0.98 0.96 0.95 0.92 0.90 0.80 
1.00 0.3 0.9 1.00 1.00 0.99 0.93 0.96 0.88 0.98 0.94 0.95 0.90 0.93 0.74 
0.50 0.3 0.9 1.00 1.00 0.99 0.88 0.70 0.84 0.98 0.94 0.94 0.90 0.82 0.71 
0.33 0.3 0.9 0.99 0.99 0.98 0.87 0.39 0.83 0.99 0.92 0.94 0.88 0.61 0.65 
3.00 0.6 0.9 0.98 0.98 0.99 0.79 0.32 0.76 0.98 0.97 0.97 0.86 0.56 0.85 
2.00 0.6 0.9 0.99 0.99 1.00 0.83 0.72 0.81 0.99 1.00 0.99 0.88 0.77 0.87 
1.00 0.6 0.9 1.00 1.00 1.00 0.93 0.97 0.91 0.98 0.98 0.98 0.96 0.98 0.91 
0.50 0.6 0.9 0.99 0.99 1.00 0.86 0.76 0.86 1.00 0.98 0.98 0.82 0.71 0.73 
0.33 0.6 0.9 0.98 0.99 1.00 0.79 0.43 0.83 0.95 0.92 0.94 0.69 0.31 0.62 
3.00 0.9 0.9 0.96 0.95 0.95 0.86 0.71 0.75 0.94 0.95 0.96 0.32 0.36 0.35 
2.00 0.9 0.9 0.99 0.99 0.98 0.87 0.85 0.82 0.97 0.98 0.98 0.69 0.70 0.72 
1.00 0.9 0.9 0.97 0.97 0.97 0.93 0.97 0.88 1.00 1.00 0.99 0.98 0.97 0.95 
0.50 0.9 0.9 0.99 0.99 0.99 0.93 0.93 0.90 0.97 0.97 0.97 0.71 0.79 0.67 
0.33 0.9 0.9 0.99 0.99 0.98 0.94 0.82 0.94 0.96 0.97 0.96 0.41 0.44 0.39 
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Table E11: Mean confidence interval coverage for three weighting class adjustment approaches (INT, JCR, JQCR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 
3.00 0.3 0.3 0.89 0.90 0.89 0.86 0.86 0.86 0.85 0.85 0.87 0.80 0.82 0.82 
2.00 0.3 0.3 0.95 0.95 0.95 0.92 0.90 0.90 0.86 0.86 0.85 0.82 0.83 0.82 
1.00 0.3 0.3 0.96 0.96 0.96 0.86 0.85 0.85 0.75 0.77 0.77 0.90 0.89 0.89 
0.50 0.3 0.3 0.93 0.94 0.95 0.84 0.82 0.82 0.75 0.77 0.75 0.86 0.84 0.84 
0.33 0.3 0.3 0.91 0.91 0.91 0.81 0.80 0.80 0.75 0.76 0.75 0.81 0.80 0.80 
3.00 0.6 0.3 0.90 0.90 0.87 0.84 0.76 0.76 0.77 0.79 0.79 0.84 0.80 0.79 
2.00 0.6 0.3 0.95 0.95 0.95 0.82 0.82 0.82 0.82 0.83 0.83 0.87 0.87 0.87 
1.00 0.6 0.3 0.97 0.97 0.97 0.88 0.87 0.87 0.88 0.86 0.86 0.88 0.87 0.87 
0.50 0.6 0.3 0.96 0.96 0.96 0.86 0.86 0.87 0.77 0.78 0.78 0.85 0.85 0.85 
0.33 0.6 0.3 0.80 0.80 0.82 0.81 0.81 0.81 0.65 0.67 0.68 0.80 0.79 0.79 
3.00 0.9 0.3 0.87 0.86 0.86 0.83 0.83 0.82 0.24 0.23 0.23 0.46 0.47 0.46 
2.00 0.9 0.3 0.93 0.94 0.93 0.84 0.84 0.84 0.66 0.66 0.67 0.68 0.68 0.68 
1.00 0.9 0.3 0.96 0.96 0.96 0.89 0.89 0.88 0.93 0.93 0.93 0.94 0.95 0.94 
0.50 0.9 0.3 0.96 0.96 0.95 0.87 0.85 0.85 0.69 0.68 0.68 0.79 0.79 0.79 
0.33 0.9 0.3 0.87 0.86 0.86 0.90 0.90 0.90 0.34 0.33 0.33 0.59 0.61 0.61 
3.00 0.3 0.6 0.97 0.99 0.98 0.85 0.86 0.84 0.87 0.87 0.86 0.86 0.85 0.85 
2.00 0.3 0.6 0.96 0.97 0.96 0.91 0.90 0.91 0.89 0.91 0.91 0.89 0.85 0.87 
1.00 0.3 0.6 0.96 0.96 0.96 0.87 0.83 0.84 0.89 0.86 0.85 0.80 0.80 0.80 
0.50 0.3 0.6 0.95 0.95 0.95 0.85 0.82 0.82 0.83 0.78 0.79 0.76 0.74 0.78 
0.33 0.3 0.6 0.90 0.91 0.92 0.84 0.84 0.85 0.79 0.79 0.79 0.82 0.79 0.78 
3.00 0.6 0.6 0.91 0.92 0.92 0.80 0.80 0.79 0.81 0.82 0.83 0.84 0.82 0.82 
2.00 0.6 0.6 0.98 0.97 0.97 0.89 0.90 0.90 0.93 0.94 0.93 0.88 0.88 0.90 
1.00 0.6 0.6 0.99 0.99 0.99 0.92 0.91 0.91 0.95 0.95 0.95 0.90 0.89 0.88 
0.50 0.6 0.6 0.98 0.97 0.98 0.89 0.90 0.91 0.80 0.76 0.78 0.85 0.87 0.87 
0.33 0.6 0.6 0.93 0.91 0.91 0.72 0.73 0.73 0.67 0.65 0.67 0.69 0.65 0.68 
3.00 0.9 0.6 0.87 0.86 0.87 0.80 0.80 0.80 0.27 0.26 0.27 0.16 0.15 0.16 
2.00 0.9 0.6 0.95 0.95 0.95 0.87 0.90 0.89 0.69 0.68 0.70 0.55 0.54 0.54 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 

1.00 0.9 0.6 0.96 0.95 0.96 0.86 0.85 0.83 0.96 0.95 0.97 0.93 0.94 0.94 
0.50 0.9 0.6 0.98 0.98 0.98 0.89 0.86 0.85 0.63 0.64 0.62 0.56 0.56 0.54 
0.33 0.9 0.6 0.99 0.97 0.97 0.84 0.82 0.81 0.34 0.32 0.32 0.22 0.23 0.24 
3.00 0.3 0.9 0.99 0.99 0.99 0.85 0.87 0.87 0.96 0.97 0.97 0.83 0.82 0.83 
2.00 0.3 0.9 0.98 0.97 0.97 0.86 0.89 0.89 0.95 0.95 0.95 0.84 0.84 0.85 
1.00 0.3 0.9 1.00 0.99 0.99 0.89 0.88 0.86 0.96 0.96 0.96 0.82 0.82 0.77 
0.50 0.3 0.9 0.99 0.99 0.99 0.86 0.80 0.80 0.95 0.95 0.95 0.79 0.78 0.76 
0.33 0.3 0.9 0.97 0.97 0.96 0.84 0.78 0.78 0.95 0.94 0.95 0.75 0.69 0.71 
3.00 0.6 0.9 0.98 0.99 0.98 0.78 0.78 0.78 0.97 0.97 0.98 0.86 0.85 0.85 
2.00 0.6 0.9 1.00 1.00 1.00 0.82 0.81 0.83 0.99 0.99 0.99 0.87 0.89 0.89 
1.00 0.6 0.9 1.00 1.00 1.00 0.89 0.90 0.91 0.98 0.98 0.98 0.93 0.90 0.91 
0.50 0.6 0.9 0.99 0.99 0.99 0.88 0.86 0.85 0.99 0.98 0.99 0.77 0.73 0.76 
0.33 0.6 0.9 0.99 0.99 0.99 0.82 0.82 0.82 0.94 0.96 0.96 0.65 0.62 0.63 
3.00 0.9 0.9 0.96 0.95 0.96 0.79 0.83 0.82 0.95 0.95 0.95 0.39 0.36 0.36 
2.00 0.9 0.9 0.98 0.99 0.98 0.82 0.84 0.83 0.98 0.98 0.98 0.74 0.72 0.70 
1.00 0.9 0.9 0.97 0.98 0.98 0.89 0.87 0.86 1.00 1.00 1.00 0.96 0.95 0.95 
0.50 0.9 0.9 0.99 0.99 0.99 0.91 0.89 0.88 0.97 0.96 0.97 0.66 0.70 0.69 
0.33 0.9 0.9 0.98 0.98 0.98 0.93 0.93 0.92 0.96 0.97 0.96 0.39 0.38 0.36 
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Table E12: Mean confidence interval coverage of MCAR, MCAR2, and DSS estimates 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

MCA
R MCAR2 DSS MCA

R MCAR2 DSS MCA
R MCAR2 DSS MCAR MCAR2 DSS 

3.00 0.3 0.3 0.53 0.20 0.98 0.84 0.35 0.98 0.78 0.35 0.97 0.89 0.43 0.98 
2.00 0.3 0.3 0.82 0.40 0.95 0.90 0.47 0.96 0.90 0.50 0.96 0.93 0.46 0.97 
1.00 0.3 0.3 0.94 0.65 0.96 0.95 0.57 0.96 0.93 0.63 0.94 0.95 0.59 0.96 
0.50 0.3 0.3 0.78 0.40 0.95 0.84 0.37 0.94 0.84 0.57 0.95 0.85 0.46 0.94 
0.33 0.3 0.3 0.49 0.14 0.93 0.66 0.25 0.93 0.75 0.38 0.94 0.80 0.44 0.91 
3.00 0.6 0.3 0.31 0.08 0.94 0.52 0.15 0.95 0.36 0.11 0.96 0.66 0.22 0.93 
2.00 0.6 0.3 0.61 0.22 0.93 0.76 0.31 0.93 0.73 0.31 0.99 0.83 0.40 0.96 
1.00 0.6 0.3 0.95 0.67 0.94 0.94 0.59 0.92 0.95 0.63 0.96 0.94 0.55 0.94 
0.50 0.6 0.3 0.66 0.26 0.96 0.80 0.38 0.97 0.64 0.31 0.96 0.80 0.41 0.94 
0.33 0.6 0.3 0.29 0.06 0.95 0.59 0.15 0.95 0.33 0.09 0.94 0.61 0.22 0.92 
3.00 0.9 0.3 0.56 0.31 0.89 0.76 0.39 0.85 0.29 0.05 0.93 0.55 0.16 0.92 
2.00 0.9 0.3 0.85 0.52 0.91 0.81 0.45 0.89 0.67 0.28 0.93 0.73 0.29 0.94 
1.00 0.9 0.3 0.91 0.64 0.93 0.94 0.59 0.97 0.94 0.64 0.95 0.96 0.56 0.94 
0.50 0.9 0.3 0.94 0.55 0.97 0.93 0.47 0.95 0.69 0.33 0.93 0.81 0.39 0.96 
0.33 0.9 0.3 0.85 0.37 0.98 0.93 0.47 0.97 0.30 0.09 0.96 0.67 0.20 0.98 
3.00 0.3 0.6 0.60 0.41 0.96 0.49 0.15 0.95 0.83 0.59 0.96 0.77 0.44 0.96 
2.00 0.3 0.6 0.79 0.58 0.95 0.80 0.42 0.98 0.89 0.69 0.96 0.86 0.56 0.96 
1.00 0.3 0.6 0.95 0.81 0.95 0.94 0.78 0.96 0.94 0.83 0.94 0.94 0.70 0.95 
0.50 0.3 0.6 0.71 0.51 0.94 0.66 0.33 0.95 0.80 0.64 0.94 0.85 0.58 0.92 
0.33 0.3 0.6 0.44 0.25 0.94 0.41 0.15 0.94 0.65 0.45 0.90 0.63 0.31 0.92 
3.00 0.6 0.6 0.24 0.10 0.94 0.18 0.06 0.92 0.29 0.16 0.95 0.28 0.09 0.94 
2.00 0.6 0.6 0.55 0.37 0.93 0.47 0.17 0.94 0.68 0.45 0.93 0.68 0.30 0.95 
1.00 0.6 0.6 0.93 0.85 0.95 0.95 0.77 0.94 0.95 0.78 0.94 0.94 0.71 0.93 
0.50 0.6 0.6 0.60 0.39 0.95 0.59 0.24 0.96 0.59 0.37 0.95 0.61 0.27 0.97 
0.33 0.6 0.6 0.31 0.14 0.96 0.18 0.03 0.95 0.32 0.13 0.94 0.18 0.05 0.90 
3.00 0.9 0.6 0.54 0.36 0.89 0.56 0.30 0.88 0.17 0.09 0.94 0.12 0.04 0.96 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 

MCA
R MCAR2 DSS MCA

R MCAR2 DSS MCA
R MCAR2 DSS MCAR MCAR2 DSS 

2.00 0.9 0.6 0.75 0.60 0.96 0.79 0.53 0.92 0.57 0.39 0.93 0.54 0.25 0.92 
1.00 0.9 0.6 0.93 0.82 0.92 0.92 0.70 0.93 0.95 0.78 0.96 0.95 0.73 0.98 
0.50 0.9 0.6 0.93 0.73 0.98 0.86 0.56 0.95 0.62 0.41 0.94 0.53 0.25 0.96 
0.33 0.9 0.6 0.82 0.61 0.95 0.75 0.39 0.95 0.31 0.12 0.96 0.21 0.05 0.98 
3.00 0.3 0.9 0.97 0.91 0.98 0.54 0.39 0.97 0.93 0.88 0.94 0.80 0.58 0.97 
2.00 0.3 0.9 0.92 0.90 0.94 0.78 0.57 0.97 0.94 0.90 0.95 0.87 0.67 0.95 
1.00 0.3 0.9 0.96 0.94 0.96 0.93 0.80 0.95 0.96 0.92 0.93 0.94 0.82 0.92 
0.50 0.3 0.9 0.96 0.90 0.96 0.74 0.53 0.96 0.94 0.91 0.95 0.83 0.68 0.95 
0.33 0.3 0.9 0.88 0.86 0.95 0.47 0.30 0.94 0.91 0.87 0.95 0.74 0.52 0.96 
3.00 0.6 0.9 0.88 0.82 0.93 0.19 0.10 0.94 0.92 0.86 0.93 0.40 0.22 0.96 
2.00 0.6 0.9 0.92 0.89 0.94 0.57 0.37 0.96 0.96 0.93 0.98 0.68 0.47 0.96 
1.00 0.6 0.9 0.94 0.89 0.94 0.95 0.84 0.96 0.95 0.91 0.95 0.98 0.88 0.96 
0.50 0.6 0.9 0.94 0.89 0.95 0.66 0.44 0.96 0.95 0.91 0.98 0.67 0.47 0.96 
0.33 0.6 0.9 0.88 0.85 0.94 0.34 0.18 0.97 0.84 0.79 0.95 0.29 0.13 0.95 
3.00 0.9 0.9 0.89 0.85 0.93 0.61 0.46 0.92 0.86 0.83 0.97 0.26 0.13 0.95 
2.00 0.9 0.9 0.92 0.90 0.94 0.76 0.60 0.93 0.92 0.87 0.93 0.60 0.41 0.96 
1.00 0.9 0.9 0.92 0.89 0.94 0.94 0.84 0.94 0.96 0.91 0.96 0.93 0.84 0.95 
0.50 0.9 0.9 0.97 0.92 0.97 0.90 0.74 0.95 0.92 0.88 0.95 0.67 0.44 0.96 
0.33 0.9 0.9 0.95 0.91 0.95 0.82 0.61 0.97 0.88 0.85 0.97 0.35 0.19 0.95 
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Table E13: Mean RMSE for four PSAE approaches (R, R*, MAR, MAR*) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

3.00 0.3 0.3 66 68 140 154 141 139 109 102 56 57 143 146 102 94 86 83 
2.00 0.3 0.3 74 74 112 119 144 135 121 116 60 60 116 115 104 99 91 88 
1.00 0.3 0.3 84 82 83 84 149 140 151 146 67 66 85 87 110 103 111 108 
0.50 0.3 0.3 90 87 104 101 164 150 185 181 72 70 72 71 114 105 130 127 
0.33 0.3 0.3 101 97 131 128 170 162 203 200 78 74 88 86 121 107 137 134 
3.00 0.6 0.3 108 116 182 200 246 242 218 206 82 91 250 252 176 165 137 127 
2.00 0.6 0.3 110 113 149 164 249 234 239 228 90 93 185 187 186 170 168 160 
1.00 0.6 0.3 118 117 118 122 260 233 289 276 96 95 113 117 194 175 196 188 
0.50 0.6 0.3 136 132 162 157 280 249 334 325 120 111 127 125 206 182 248 242 
0.33 0.6 0.3 150 146 215 207 276 259 362 353 128 120 163 159 213 194 267 260 
3.00 0.9 0.3 148 143 146 152 377 336 394 370 113 123 262 263 257 248 222 209 
2.00 0.9 0.3 151 147 148 155 373 323 418 397 115 118 222 225 256 236 245 231 
1.00 0.9 0.3 148 145 144 148 374 327 426 410 123 120 130 133 270 242 302 288 
0.50 0.9 0.3 154 150 153 150 387 349 444 426 139 135 146 142 280 258 337 326 
0.33 0.9 0.3 160 156 166 161 380 335 454 438 153 147 180 175 299 271 367 358 
3.00 0.3 0.6 33 34 74 73 44 48 46 47 29 30 53 53 38 39 43 44 
2.00 0.3 0.6 35 36 58 57 47 49 64 65 31 31 48 47 40 41 46 47 
1.00 0.3 0.6 38 38 38 38 52 52 95 96 33 32 32 32 45 44 72 72 
0.50 0.3 0.6 42 41 55 55 61 59 135 136 35 34 38 38 48 47 88 88 
0.33 0.3 0.6 45 45 76 76 66 62 151 151 37 36 49 49 54 52 106 106 
3.00 0.6 0.6 46 48 107 107 64 69 106 106 39 41 106 105 51 56 59 60 
2.00 0.6 0.6 48 49 80 79 66 68 124 125 40 42 83 81 55 57 85 85 
1.00 0.6 0.6 51 51 51 50 72 72 184 184 44 44 45 45 61 60 128 127 
0.50 0.6 0.6 55 54 77 76 81 80 234 234 49 48 70 70 71 69 179 179 
0.33 0.6 0.6 58 57 102 102 88 86 266 267 52 51 93 93 78 77 207 208 
3.00 0.9 0.6 59 59 69 68 85 85 245 248 47 49 121 118 65 70 108 110 283



 
 
 

Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
R R* MA

R 
MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

R R* MA
R 

MA
R* 

2.00 0.9 0.6 59 59 64 65 85 84 251 252 49 50 91 90 67 69 133 134 
1.00 0.9 0.6 60 60 60 59 87 86 268 270 52 52 54 53 73 73 183 185 
0.50 0.9 0.6 61 60 62 62 89 88 285 288 57 55 71 71 82 81 241 241 
0.33 0.9 0.6 62 61 65 64 92 90 297 299 59 58 96 97 89 87 272 272 
3.00 0.3 0.9 27 27 34 31 33 35 50 55 24 23 29 26 28 29 41 45 
2.00 0.3 0.9 28 27 31 28 34 35 65 70 24 23 26 24 29 30 47 50 
1.00 0.3 0.9 29 28 28 27 37 36 89 94 24 23 24 23 31 31 63 66 
0.50 0.3 0.9 30 28 28 28 41 39 115 119 25 24 24 24 34 33 79 82 
0.33 0.3 0.9 31 28 31 31 43 42 129 132 26 24 25 26 35 34 87 89 
3.00 0.6 0.9 35 36 46 40 45 48 108 118 30 30 38 33 37 39 69 75 
2.00 0.6 0.9 36 35 42 37 46 47 130 142 31 31 38 33 39 40 85 93 
1.00 0.6 0.9 37 35 36 35 49 49 165 174 32 31 32 31 42 42 119 125 
0.50 0.6 0.9 38 36 37 39 53 52 203 212 33 32 33 35 47 46 154 160 
0.33 0.6 0.9 39 36 39 42 56 54 223 231 34 34 39 41 50 49 173 178 
3.00 0.9 0.9 41 39 43 39 56 56 232 248 36 37 50 42 45 48 119 130 
2.00 0.9 0.9 41 39 42 39 56 56 234 248 36 36 43 38 47 48 141 151 
1.00 0.9 0.9 42 39 41 39 57 57 248 264 37 36 37 36 50 49 171 182 
0.50 0.9 0.9 42 40 40 40 58 57 259 272 38 37 37 39 54 53 213 221 
0.33 0.9 0.9 42 40 40 41 59 58 265 279 39 37 40 43 56 55 227 235 
 

284



 
 
 

Table E14: Mean RMSE for four PSAE approaches (CR, CR*, QCR, QCR*) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR CR* QC
R 

QCR
* 

CR CR* QC
R 

QCR
* 

CR CR* QC
R 

QC
R* 

CR CR* QC
R 

QCR
* 

3.00 0.3 0.3 80 89 90 101 142 146 143 157 59  62  63  69 103  95  98  91 
2.00 0.3 0.3 81 85 86 91 135 122 134 123 62  62  65  66 104  96 100  94 
1.00 0.3 0.3 84 82 85 85 144 134 144 133 69  66  70  68 107 102 106 101 
0.50 0.3 0.3 92 90 93 91 167 154 168 153 74  70  73  69 112 103 113 106 
0.33 0.3 0.3 106 102 110 107 179 165 182 169 77  74  77  75 121 107 124 110 
3.00 0.6 0.3 222 236 500 313 250 232 242 235 173 179 204 194 189 252 197 238 
2.00 0.6 0.3 138 154 156 165 254 250 261 237 138 159 148 168 174 159 173 158 
1.00 0.6 0.3 123 122 126 125 260 233 259 234 97 100  98 100 189 177 189 178 
0.50 0.6 0.3 160 157 161 154 315 301 319 299 137 131 139 133 232 219 235 220 
0.33 0.6 0.3 233 216 235 219 343 323 346 322 185 176 186 178 262 247 264 254 
3.00 0.9 0.3 151 148 164 167 374 330 380 343 190 207 221 227 219 229 220 236 
2.00 0.9 0.3 150 155 154 156 362 314 370 321 152 153 163 150 230 217 235 230 
1.00 0.9 0.3 146 146 148 147 366 312 373 324 124 121 124 123 262 234 264 235 
0.50 0.9 0.3 152 151 154 150 385 345 391 353 167 160 168 160 307 273 308 276 
0.33 0.9 0.3 160 159 162 158 377 326 384 336 219 209 219 211 352 315 352 316 
3.00 0.3 0.6 35 36 40 41 51 56 61 67 30  29  29  30  41  41  40  42 
2.00 0.3 0.6 36 37 40 40 50 53 55 59 30  30  31  31  39  39  41  42 
1.00 0.3 0.6 38 38 38 37 52 52 53 52 33  32  32  32  45  44  46  45 
0.50 0.3 0.6 43 42 43 43 62 61 62 61 40  37  38  35  58  54  54  50 
0.33 0.3 0.6 47 47 48 50 67 66 68 69 43  40  40  37  60  57  57  53 
3.00 0.6 0.6 66 101 76 70 118 255 159 190 59  93  70  67 112 215 150 185 
2.00 0.6 0.6 56 68 61 58 108 179 133 135 53  61  59  55  85 123 105  96 
1.00 0.6 0.6 52 51 52 51 74 74 75 75 45  44  45  44  63  63  63  62 
0.50 0.6 0.6 82 75 80 77 126 118 128 119 75  69  75  72 102  96 103  97 
0.33 0.6 0.6 141 122 133 121 213 197 205 190 120 107 115 106 171 160 169 161 
3.00 0.9 0.6 60 64 63 62 91 97 95 97 103 108 109 107 145 155 152 157 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR CR* QC

R 
QCR

* 
CR CR* QC

R 
QCR

* 
CR CR* QC

R 
QC
R* 

CR CR* QC
R 

QCR
* 

2.00 0.9 0.6 60 60 61 60 88 87 90 89 78  76  79  77 109 103 110 113 
1.00 0.9 0.6 60 60 61 60 87 86 89 88 52  52  52  52  74  73  75  74 
0.50 0.9 0.6 62 61 62 61 89 89 90 90 79  79  80  81 121 117 121 117 
0.33 0.9 0.6 63 62 63 62 93 93 94 93 106 105 107 107 162 157 164 161 
3.00 0.3 0.9 28 28 28 27 39 41 44 45 23  23  23  23  28  28  29  30 
2.00 0.3 0.9 28 27 28 27 38 38 41 41 24  23  23  23  29  29  30  30 
1.00 0.3 0.9 28 27 28 27 37 36 37 36 24  23  24  23  32  31  32  31 
0.50 0.3 0.9 29 28 28 28 41 41 41 42 25  24  25  24  35  33  35  33 
0.33 0.3 0.9 29 29 29 30 45 45 45 46 26  24  26  25  41  38  39  37 
3.00 0.6 0.9 37 35 39 37 62 85 72 70 32  32  34  32  50  66  56  56 
2.00 0.6 0.9 37 35 38 35 58 65 63 60 32  31  33  31  48  53  52  48 
1.00 0.6 0.9 36 35 37 35 50 50 50 50 32  31  32  31  43  43  43  43 
0.50 0.6 0.9 38 37 37 37 85 75 83 80 35  33  33  33  73  68  72  71 
0.33 0.6 0.9 45 39 39 38 138 115 133 126 44  37  38  35 115 103 111 104 
3.00 0.9 0.9 41 39 43 39 58 59 60 59 47  40  49  42  94  98  99  98 
2.00 0.9 0.9 41 39 42 39 57 57 59 58 41  37  42  37  72  72  73  72 
1.00 0.9 0.9 41 40 41 39 57 57 58 57 37  36  37  36  50  50  51  50 
0.50 0.9 0.9 41 40 42 40 59 58 59 59 38  40  39  40  76  76  76  77 
0.33 0.9 0.9 41 40 42 40 60 59 60 60 42  44  42  44  98  98  98  99 
 
 

286



 
 
 

Table E15: Mean RMSE for four weighting class adjustment approaches (JC, IVR, R, JR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

3.00 0.3 0.3 84 84 61 43 75 77 95 49 55 58 54 32 54 54 72 42 
2.00 0.3 0.3 56 58 57 41 60 63 82 48 41 42 53 33 49 52 69 42 
1.00 0.3 0.3 42 42 56 42 48 48 63 49 37 35 50 36 44 44 56 44 
0.50 0.3 0.3 73 71 55 45 73 72 63 55 52 51 50 40 56 54 55 47 
0.33 0.3 0.3 100 96 64 49 93 89 71 62 68 63 50 42 64 61 55 47 
3.00 0.6 0.3 114 116 82 65 109 113 92 72 118 123 77 69 104 107 120 75 
2.00 0.6 0.3 82 85 64 56 83 86 79 65 79 84 62 57 80 82 92 67 
1.00 0.6 0.3 49 49 56 51 56 57 65 58 48 49 57 50 55 57 67 58 
0.50 0.6 0.3 101 97 70 61 92 90 94 70 93 92 65 66 85 84 89 68 
0.33 0.6 0.3 144 144 83 88 121 123 130 81 130 128 87 83 107 109 101 74 
3.00 0.9 0.3 42 42 37 33 38 39 38 36 123 124 88 125 109 110 89 114 
2.00 0.9 0.3 31 31 35 30 35 35 39 34 83 84 60 83 88 89 83 90 
1.00 0.9 0.3 27 28 36 29 33 33 42 35 48 49 56 50 56 56 65 57 
0.50 0.9 0.3 39 38 38 30 44 45 50 37 85 88 65 89 84 85 91 87 
0.33 0.9 0.3 53 56 40 32 51 53 54 38 133 135 67 139 111 114 121 118 
3.00 0.3 0.6 61 59 27 28 85 86 47 35 41 40 26 23 53 54 39 27 
2.00 0.3 0.6 46 46 31 29 58 59 44 34 34 34 29 24 43 45 41 27 
1.00 0.3 0.6 32 32 33 32 35 35 43 36 27 27 31 26 30 30 39 30 
0.50 0.3 0.6 55 54 33 34 68 67 44 40 38 38 31 30 44 42 39 36 
0.33 0.3 0.6 74 75 33 38 89 88 49 43 50 50 31 32 59 58 42 36 
3.00 0.6 0.6 91 90 32 40 118 119 60 55 93 92 31 38 115 116 54 52 
2.00 0.6 0.6 65 64 32 40 86 86 52 49 64 64 32 38 78 77 47 48 
1.00 0.6 0.6 38 38 35 39 43 43 45 45 37 38 35 38 42 43 45 44 
0.50 0.6 0.6 70 70 31 50 86 85 47 64 68 69 32 54 81 81 50 59 
0.33 0.6 0.6 95 95 29 77 129 129 50 108 90 91 33 80 121 121 64 97 
3.00 0.9 0.6 35 34 25 23 39 40 33 28 98 98 34 72 122 121 63 113 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
WC 
JC 

WC 
IVR 

WC  
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

WC 
JC 

WC 
IVR 

WC 
R 

WC  
JR 

2.00 0.9 0.6 27 27 24 22 29 30 29 29 67 67 33 52 82 82 49 76 
1.00 0.9 0.6 22 22 23 21 25 25 28 26 38 38 35 38 43 43 45 44 
0.50 0.9 0.6 30 31 22 20 38 37 28 26 68 68 31 74 87 88 47 92 
0.33 0.9 0.6 37 37 22 19 51 50 28 28 93 93 28 94 125 125 47 136 
3.00 0.3 0.9 30 30 29 26 69 69 25 29 24 24 27 22 46 46 24 23 
2.00 0.3 0.9 28 29 30 27 49 49 27 29 23 23 27 23 37 37 26 24 
1.00 0.3 0.9 28 28 30 27 31 31 32 31 23 23 28 23 26 26 29 26 
0.50 0.3 0.9 29 29 30 28 46 46 31 33 23 24 27 23 33 33 29 28 
0.33 0.3 0.9 32 32 30 28 63 63 32 36 26 26 28 23 40 40 29 31 
3.00 0.6 0.9 38 38 31 32 95 95 32 38 35 36 31 32 82 82 30 37 
2.00 0.6 0.9 35 35 32 32 67 67 31 37 34 35 31 32 63 63 31 36 
1.00 0.6 0.9 33 33 32 33 37 37 34 38 33 33 32 33 36 37 34 37 
0.50 0.6 0.9 36 36 31 33 61 62 29 53 35 35 32 33 59 60 30 56 
0.33 0.6 0.9 38 38 30 33 86 86 27 80 41 41 32 35 86 86 30 85 
3.00 0.9 0.9 19 20 21 18 33 33 23 22 40 40 31 36 88 88 31 63 
2.00 0.9 0.9 19 19 20 19 27 27 22 21 35 35 31 34 63 63 31 46 
1.00 0.9 0.9 19 19 20 18 21 21 22 21 34 34 31 33 37 37 33 38 
0.50 0.9 0.9 20 20 20 18 26 27 21 19 36 36 30 35 64 64 28 66 
0.33 0.9 0.9 20 20 20 18 34 34 22 19 40 40 30 37 86 86 27 87 
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Table E16: Mean RMSE for three weighting class adjustment approaches (CR, QCR, SUCC) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 
3.00 0.3 0.3 72 87 56 83 72 59 49 54 38 60 53 47 
2.00 0.3 0.3 63 72 49 77 59 53 48 41 36 61 48 45 
1.00 0.3 0.3 54 55 46 63 49 51 48 37 40 57 44 48 
0.50 0.3 0.3 65 66 44 73 75 52 49 53 45 55 58 47 
0.33 0.3 0.3 78 81 47 84 95 59 51 69 46 56 65 48 
3.00 0.6 0.3 94 95 76 103 109 84 102 119 82 104 104 87 
2.00 0.6 0.3 75 79 61 86 83 69 79 80 63 85 80 69 
1.00 0.6 0.3 57 57 49 65 57 57 58 48 50 67 55 57 
0.50 0.6 0.3 83 88 59 95 92 69 83 94 63 87 85 67 
0.33 0.6 0.3 115 123 84 119 121 81 109 130 80 102 107 74 
3.00 0.9 0.3 42 42 36 41 38 36 150 124 128 131 110 112 
2.00 0.9 0.3 36 35 30 40 35 35 100 83 85 110 88 89 
1.00 0.9 0.3 34 35 27 39 33 32 57 48 49 65 56 56 
0.50 0.9 0.3 36 42 27 50 45 31 113 85 91 104 83 88 
0.33 0.9 0.3 39 52 28 55 53 33 175 133 141 137 111 119 
3.00 0.3 0.6 35 40 35 51 78 48 29 38 27 37 49 31 
2.00 0.3 0.6 36 40 33 46 52 38 30 32 29 37 37 33 
1.00 0.3 0.6 36 36 32 44 37 39 32 27 27 39 32 35 
0.50 0.3 0.6 38 39 33 49 76 39 33 39 34 42 49 45 
0.33 0.3 0.6 42 45 34 54 95 40 33 51 39 41 66 44 
3.00 0.6 0.6 51 53 52 74 114 70 56 91 55 77 113 67 
2.00 0.6 0.6 43 43 43 59 81 54 46 62 44 57 75 51 
1.00 0.6 0.6 39 39 38 47 43 44 40 37 38 48 42 44 
0.50 0.6 0.6 48 49 44 66 88 54 50 69 47 64 86 52 
0.33 0.6 0.6 59 59 54 98 134 84 67 90 63 93 124 79 
3.00 0.9 0.6 29 30 29 36 37 31 103 98 98 136 122 127 
2.00 0.9 0.6 25 26 25 30 28 26 71 66 66 93 83 86 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
CR QCR SUCC CR QCR SUCC CR QCR SUCC CR QCR SUCC 

1.00 0.9 0.6 23 23 22 28 26 24 39 38 38 46 43 44 
0.50 0.9 0.6 22 22 20 27 39 23 73 68 76 104 87 96 
0.33 0.9 0.6 21 21 19 28 51 23 102 93 103 147 125 135 
3.00 0.3 0.9 32 32 27 39 60 38 28 24 22 28 38 27 
2.00 0.3 0.9 32 32 27 37 44 35 28 23 22 30 31 27 
1.00 0.3 0.9 32 32 28 35 31 33 28 23 22 31 26 28 
0.50 0.3 0.9 32 32 28 38 51 32 29 24 23 31 36 31 
0.33 0.3 0.9 33 33 28 40 71 33 29 26 23 32 45 37 
3.00 0.6 0.9 36 36 33 58 89 58 35 35 33 52 79 50 
2.00 0.6 0.9 35 35 33 46 63 46 35 34 33 47 60 44 
1.00 0.6 0.9 34 34 33 39 37 38 35 33 33 39 37 37 
0.50 0.6 0.9 35 35 33 51 64 48 36 35 33 51 62 49 
0.33 0.6 0.9 35 35 34 64 89 59 38 41 36 65 90 63 
3.00 0.9 0.9 21 21 19 28 31 28 42 40 39 94 89 91 
2.00 0.9 0.9 21 21 19 25 25 25 36 35 35 65 63 62 
1.00 0.9 0.9 20 20 19 23 22 21 34 34 34 38 37 38 
0.50 0.9 0.9 20 20 18 23 28 20 38 36 37 70 65 71 
0.33 0.9 0.9 20 20 18 25 36 20 42 40 41 94 87 94 
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Table E17: Mean RMSE for three weighting class adjustment approaches (INT, JCR, JQCR) 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 
3.00 0.3 0.3 48 47 47 50 50 50 34 34 34 42 42 42 
2.00 0.3 0.3 42 42 42 49 48 48 33 34 34 42 42 42 
1.00 0.3 0.3 42 42 42 49 49 49 35 36 35 44 44 44 
0.50 0.3 0.3 45 45 45 54 55 55 40 40 40 46 47 47 
0.33 0.3 0.3 49 49 49 62 62 62 41 42 42 47 48 47 
3.00 0.6 0.3 74 74 74 78 77 78 81 80 81 83 83 85 
2.00 0.6 0.3 58 58 59 68 67 67 60 60 60 68 68 68 
1.00 0.6 0.3 51 51 51 58 58 58 50 50 50 58 58 58 
0.50 0.6 0.3 61 60 61 69 69 69 66 65 65 67 67 68 
0.33 0.6 0.3 85 84 83 81 81 81 80 81 79 73 74 74 
3.00 0.9 0.3 34 34 34 36 36 35 132 132 132 118 118 118 
2.00 0.9 0.3 30 30 30 34 34 34 87 87 86 93 92 92 
1.00 0.9 0.3 29 29 29 35 35 35 50 50 50 57 57 57 
0.50 0.9 0.3 30 30 29 36 36 36 90 90 91 87 87 87 
0.33 0.9 0.3 32 31 31 37 37 38 140 141 141 118 117 117 
3.00 0.3 0.6 32 33 33 43 40 40 25 25 25 29 28 28 
2.00 0.3 0.6 31 31 31 36 35 35 26 26 26 30 28 29 
1.00 0.3 0.6 32 32 32 36 36 36 26 26 26 32 31 31 
0.50 0.3 0.6 35 35 35 39 41 41 29 30 30 38 36 35 
0.33 0.3 0.6 41 40 39 42 43 43 29 30 31 38 36 36 
3.00 0.6 0.6 51 50 51 68 66 68 56 54 54 68 68 68 
2.00 0.6 0.6 42 42 42 52 52 52 45 45 45 51 50 51 
1.00 0.6 0.6 39 39 39 44 45 45 38 38 38 44 44 44 
0.50 0.6 0.6 45 45 45 56 54 54 48 49 48 54 55 55 
0.33 0.6 0.6 55 55 54 84 84 83 62 63 61 78 80 77 
3.00 0.9 0.6 27 27 27 29 29 29 99 100 99 126 128 127 
2.00 0.9 0.6 24 24 24 27 28 28 67 66 66 84 86 86 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 
INT JCR JQCR INT JCR JQCR INT JCR JQCR INT JCR JQCR 

1.00 0.9 0.6 22 22 22 26 26 26 39 39 39 44 44 44 
0.50 0.9 0.6 20 20 20 25 25 24 75 77 77 95 95 96 
0.33 0.9 0.6 20 20 20 26 25 25 103 105 105 134 134 134 
3.00 0.3 0.9 27 27 28 38 36 36 23 23 23 27 26 26 
2.00 0.3 0.9 28 28 28 34 33 33 23 23 23 27 26 26 
1.00 0.3 0.9 28 28 28 32 32 32 23 23 23 27 26 26 
0.50 0.3 0.9 28 28 28 33 34 34 23 23 23 29 28 28 
0.33 0.3 0.9 29 29 29 36 38 37 23 23 24 32 31 31 
3.00 0.6 0.9 33 33 33 56 56 56 33 33 33 51 50 50 
2.00 0.6 0.9 33 33 33 46 44 45 33 33 33 44 44 43 
1.00 0.6 0.9 33 33 33 38 38 38 33 33 33 38 38 38 
0.50 0.6 0.9 34 34 34 49 50 50 34 34 34 48 49 49 
0.33 0.6 0.9 34 34 34 61 60 60 36 36 36 62 65 64 
3.00 0.9 0.9 19 19 19 26 26 26 40 39 40 89 91 91 
2.00 0.9 0.9 19 19 19 24 24 24 35 35 35 62 62 63 
1.00 0.9 0.9 19 19 19 21 21 21 34 34 34 38 38 38 
0.50 0.9 0.9 19 19 19 20 20 20 37 37 37 72 72 72 
0.33 0.9 0.9 19 18 18 20 21 21 41 41 41 95 96 96 
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Table E18: Mean RMSE of MCAR, MCAR2, and DSS estimates 
Population 1 Population 2 Population 3 Population 4 Odds 

Ratio 
ps pr 

MCA
R 

MCAR
2 DSS MCA

R MCAR2 DSS MCA
R MCAR2 DSS MCA

R 
MCAR

2 DSS 

3.00 0.3 0.3 99 89 24 87 69 23 70 60 22 66 45 21 
2.00 0.3 0.3 70 57 23 72 49 23 54 39 21 59 35 21 
1.00 0.3 0.3 46 22 22 56 22 22 41 20 20 50 20 20 
0.50 0.3 0.3 64 53 21 72 54 21 48 34 19 55 35 19 
0.33 0.3 0.3 90 83 21 89 76 21 60 50 18 63 47 19 
3.00 0.6 0.3 120 113 22 114 102 22 124 116 24 109 95 24 
2.00 0.6 0.3 89 80 23 86 69 23 85 73 24 83 63 24 
1.00 0.6 0.3 48 24 24 59 24 24 49 24 24 59 24 24 
0.50 0.6 0.3 91 80 24 91 73 24 87 78 23 84 66 23 
0.33 0.6 0.3 133 126 25 118 104 24 121 114 23 105 92 23 
3.00 0.9 0.3 43 38 12 41 31 12 122 116 21 109 97 22 
2.00 0.9 0.3 33 24 13 38 26 12 82 72 22 89 74 22 
1.00 0.9 0.3 29 14 14 35 14 14 48 24 23 58 24 23 
0.50 0.9 0.3 39 28 16 45 28 16 85 73 24 85 66 24 
0.33 0.9 0.3 53 44 17 51 35 16 130 123 24 113 98 24 
3.00 0.3 0.6 65 61 24 91 85 24 46 41 21 59 51 21 
2.00 0.3 0.6 50 44 23 63 54 23 38 32 21 51 41 21 
1.00 0.3 0.6 31 22 22 38 22 22 28 20 20 34 20 20 
0.50 0.3 0.6 51 46 22 66 59 21 36 31 19 43 34 19 
0.33 0.3 0.6 70 67 21 85 81 21 47 44 19 59 54 18 
3.00 0.6 0.6 91 89 23 118 115 22 92 89 25 116 110 25 
2.00 0.6 0.6 66 62 23 86 81 23 63 58 24 77 70 24 
1.00 0.6 0.6 33 24 24 41 24 24 34 24 24 41 24 24 
0.50 0.6 0.6 65 61 24 83 75 24 65 61 24 79 71 23 
0.33 0.6 0.6 90 86 25 126 122 25 86 82 23 119 115 23 
3.00 0.9 0.6 35 32 12 40 36 12 95 93 22 119 115 22 
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Population 1 Population 2 Population 3 Population 4 Odds 
Ratio 

ps pr 

MCA
R 

MCAR
2 DSS MCA

R MCAR2 DSS MCA
R MCAR2 DSS MCA

R 
MCAR

2 DSS 

2.00 0.9 0.6 27 23 13 30 25 13 64 60 23 80 74 22 
1.00 0.9 0.6 20 14 14 25 14 14 33 23 23 40 24 23 
0.50 0.9 0.6 27 23 15 36 28 16 65 61 24 86 79 24 
0.33 0.9 0.6 34 30 16 49 43 17 91 88 25 123 118 25 
3.00 0.3 0.9 28 26 23 67 62 24 24 22 20 45 41 21 
2.00 0.3 0.9 26 24 23 47 43 23 22 21 20 38 33 21 
1.00 0.3 0.9 24 22 22 30 22 22 21 20 20 27 20 20 
0.50 0.3 0.9 24 23 22 47 42 22 22 20 20 35 30 19 
0.33 0.3 0.9 27 25 22 65 62 21 23 22 20 42 39 19 
3.00 0.6 0.9 32 31 24 91 89 23 29 27 24 79 76 25 
2.00 0.6 0.9 29 27 24 64 61 23 28 27 24 60 55 24 
1.00 0.6 0.9 25 24 24 32 24 24 26 24 24 32 24 24 
0.50 0.6 0.9 28 27 24 59 55 24 28 27 24 58 55 24 
0.33 0.6 0.9 30 28 24 85 83 25 34 32 24 85 83 24 
3.00 0.9 0.9 16 16 14 32 30 13 33 31 23 86 85 23 
2.00 0.9 0.9 15 14 14 26 23 13 27 25 23 60 57 23 
1.00 0.9 0.9 15 14 14 19 14 14 25 24 24 32 23 23 
0.50 0.9 0.9 16 15 15 26 22 15 28 27 24 61 57 24 
0.33 0.9 0.9 16 15 15 34 30 16 32 31 24 83 80 24 
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