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Ductile Fracture of Metals Under Triaxial States of Stress

INTRODUCTION

Interlayers of soft ductile materials bonded between stronger base metals
may exhibit very high tensile strengths due to the constraint provided by the
stronger base metal. This occurs, for example, in the application of brazing of a
soft interlayer material to bond two larger sections of base metal [1]. If the
thickness of the interlayer is thin in comparison to its diameter, the constraint
provided by the stronger base metal produces large multiaxial stresses in the
interlayer. In the extreme, a tensile load applied uniaxially to the base metal can
produce conditions approaching pure hydrostatic tension (which consists of a large
hydrostatic tension and low effective stress) in the interlayer [2]. Although these
highly constrained interlayers fail in a ductile manner, they do so with considerably
higher strength and less ductility than that of the bulk interlayer material [1]. It is
currently unclear how constraint of a low-strength high elongation material results

in a high-strength bond that is without significant plastic strain.

Since the fracture mechanism of both the bulk interlayer material and the
bonded interlayer material is ductile, the difference appears to be due to alteration
of the stress state. French and Weinrich [3] found that the superimposition of a
large hydrostatic pressure (compression) to a tensile test of a-brass completely
suppressed the nucleation of cavities and allowed the samples to fail by shear. In
general, increasing the hydrostatic pressure increased the strain to fracture. At
lower superimposed hydrostatic pressures, French, Weinrich and Weaver [4] found
some suppression of cavity nucleation. As the superimposed pressure increased,

the number of cavities decreased and the strain to fracture increased. Mackenzie,



Hancock, and Brown [5] investigated the effects of hydrostatic tension on ductile
failure by manipulating the state of stress by notching tensile bars and evaluating
the results by means of the Bridgman analysis. They found that as the hydrostatic
tension increased, the strain to failure decreased and the true stress increased.
Hydrostatic stresses appear to affect cavity nucleation and/or growth. Hydrostatic
pressure suppresses nucleation and increases strain to failure; hydrostatic tension
decreases strain to failure. Lonsdale and Flewitt [6] investigated the effects of
hydrostatic pressure on time-dependent (creep) failures of steel and found the

similar effects on cavity suppression and ductility.

Ductile fracture may consist of a chisel point shear failure, a single cavity
growing to failure, or the nucleation and growth of many cavities. A metal with
inclusions or second phase particles will have void initiation occur primarily
because of decohesion of the particle from the matrix [7]. Nucleation in pure single
phase metals is more difficult and is thought to occur at inhomogeneities in the

lattice.

Klassen, Weatherly, and Ramaswami [8] examined void nucleation in
constrained silver interlayers and found void nucleation occurred at the silicon
oxide inclusions. Finite element modeling showed the highest interfacial stress for
an inclusion near the steel interface. When they examined the growth of the voids
[9], they observed little growth and concluded that fracture in the interlayers
occurred by nucleation at pre-existing inclusions followed by coalescence without
growth. Although ductile failure was influenced by hydrostatic stresses, it was the
inclusion density that controlled the fracture process. Saxton, West, and Barrett’s
work on silver brazed joints [10], however, found that in the absence of large
inclusions, the fracture mode is best described as the growth of voids due to

hydrostatic tension.
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Several theories are available for predicting the growth of cavities subjected
to large multiaxial stresses. The first theory examined will be that of Rice and
Tracey [11]. Rice and Tracey examined a single spherical void in an infinite body
of an incompressible rigid-plastic material subjected to a highly triaxial stress state.
Given a final far-field strain, the Rice and Tracey theory can be used to predict
cavity expansion. The next theory to be examined will be that by Huang,
Hutchinson, and Tvergaard (HHT) [12] for a cavity instability. The growth of
cavities is considered to be a bifurcation from the fundamental stress-strain
solution. HHT predict that when a cavitation limit (or stress) is reached, a single
void in an infinite body will grow without bound. At the cavitation instability, far-
field stress and strain remain constant while the cavity continues to grow. Given
the ratio of applied stress, the HHT theory can be used to predict the stress at which
the material “cavitates™ or fails. Tvergaard, Huang, and Hutchinson [13] later
return to the concept and examine cavitation instabilities for the case of hardening

materials utilizing two different types of plasticity theories.

Neither the Rice and Tracey theory nor the cavity instability theory has been
found to adequately explain the experimental results of Tolle and Kassner [14].
Fractography and scanning electron microscopy suggested that failures in
constrained silver interlayers were the result of cavity nucleation, growth, and
coalescence. Rather than a single cavity in an infinite solid as modeled by Rice and
Tracey and Huang, Hutchinson, Tvergaard, many cavities were involved in the
failure process. Although Rice and Tracey and HHT can be used in an approximate
way to estimate strains to coalescence, neither theory includes the interaction of the

stress state surrounding the cavities.

Rather than assuming a single cavity in an infinite solid, Gurson [15] [16]

examined ductile fracture of a material containing multiple cavities. The technique



used by Gurson accounts for multiple cavities by using a void volume fraction of
cavities in an incompressible rigid-plastic material. Unlike the Rice and Tracey and
HHT theories, which can be used to predict cavity growth, Gurson’s theory showed
how the von Mises yield cylinder was bounded at higher triaxial stress states as a
function of void volume fraction. Rather than a cylinder that continues to infinity,
Gurson predicted a highly triaxial stress state will have an "endcap"” that depends on
void volume fraction. Because of the endcap, Gurson’s theory predicts that
yielding will occur at values less than those predicted by the von Mises yield
criteria. Gurson plotted yield loci for different void volume fractions and showed
that as the void volume fraction increased, the stress at which yielding occurred
decreased below that predicted by the von Mises yield criteria. The applicability of

all three theories will be considered in more detail in the following section.

It is the purpose of this thesis to evaluate the validity of the ductile fracture
theories in describing the observed behavior in constrained silver interlayers. Three
main theories are described in this section, (1) uniform cavity wall expansion, (2)
cavity instability, and (3) dilatant plasticity. The necessary equations and
explanations are presented in the following sections. The theories are developed in

detail in Appendix B.

Cavity Expansion

Rice and Tracey consider a spherical cavity in an infinite non-hardening,
incompressible, rigid-plastic body subjected to a remote tensile extension with
superimposed hydrostatic stresses, figure 1. Assuming that the volume changing
component, D, overwhelms the shape changing component, £, when the mean

remote normal stress is large, Rice and Tracey obtain a closed form approximate
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Figure 1. Spherical cavity of radius R, in an infinite
incompressible body. Applied tensile loads are S and T.
Incompressibility requires an extension in the S direction to
be balanced by contractions in the T directions.

formula for D when the stress is highly triaxial. This is known as the "high

triaxiality approximation." This can be expressed as:

[

&
T

D=028e’ © M

where ¢ “ is the mean remote normal stress and 1 o 1s the yield stress in shear.



Since D can be interpreted as the ratio of average strain rate of the sphere

radii to the remotely imposed strain rate, then:

:
D=L @
€ N

and the high triaxiality approximation can be re-written in terms of radial

expansion:

B V3o
0 - 0083¢e 1 o A3)
RO

The high triaxiality approximation is shown graphically in figure 2.

Equation (3) can also be expressed as a volume expansion. Assuming that
the cavity expands uniformly under the influence of a spherically symmetric stress

state, the volume expansion can be expressed as:

= 0.850¢e 0 C))

Equations (3) and (4), based on the high triaxiality approximation, will be

examined for applicability in the growth of cavities in constrained thin layers.

Rice and Tracey predict that the void enlargement rate is amplified over the
remote strain rate by a factor that rises exponentially. The amount of the

exponential increase is a function of the ratio of mean normal stress to yield stress
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Figure 2. High triaxiality solution for the Rice and Tracey equation.
Radial expansion of a cavity is exponentially related to the mean
stress/yield stress ratio.

in shear, which Rice and Tracey define as a measure of "triaxiality". Triaxiality is

considered "high" when 07/t is large and "low"” when 07/1 small.

Now consider the remote axisymmetric stress field in figure 1. Since the
material is rigid-perfectly plastic, material far from the hole flows plastically due to

any small increment of strain. Therefore,

S-T=o0 )
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where o, is the yield stress in tension, S is the axial stress and 7 is the radial stress.

Let

T=mS (6)

where m is a proportionality constant that relates how large 7 is in relation to S.

Then

S—mSzoy (7

or

Now, the mean stress can also be calculated based on the relationship

between S and 7.

0°°:%(S+T+T):%(S+mS+mS) t))
oo — (1+2m)S
3 9
or ¢ = (+2m) % ¥
3 1-m

o
Substitute this into equation (3) with Ty = 7; Equation (3) uses the high

triaxiality formulation for simple tension in a remote field, with the Lode parameter



v = 1. The pre-exponential factor for the high triaxiality approximation depends
weakly on the Lode parameter, so use of equation (3) is reasonable for approximate

results.

R 3 (e2m) 1
% - 0283ge2 3 ™ (10)
R
0
P (1+2m)
2 - 0283ge20™ (11)
R
0
Rewrite
(1+2m)
1 9R, 2(1-m) OF
— 0 =0283e20m 12
R, o R (12
Integrate
(1+2m)
1 R, f 2(1-m) OF
— % = [0283e20m = 13
R, o ¢ 3t (13)
r._ dR (A+2m)
el 0 = 0283 ¢ 21 f e (14)
k. R 0

init
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R (1+2m)
In "% = 0.283 ¢ %1

init

€ tnal (15)

Solving equation (15) for €, results in an equation for the final strain

“final
needed to produce a prescribed radial cavity expansion:

~(1+2m)
_ 2(1-m) final
=353 In 2 (16)

init

€ fina

For example, to expand the cavity by a factor of 100, the remote strain is:

~(1+2m)

€ = 1626 207 an

Radial cavity expansion by a factor of 100, 5, and 1.6 is shown graphically

in figure 3.

As the triaxiality increases, the final strain decreases rapidly. Figure 3
illustrates the rapidly decreasing strain with increasing triaxiality. The high
triaxiality case is presented in figure 4 for m > 0.7. As can be seen, the final strain
decreases rapidly until it is essentially zero for m>0.85. For uniaxial loading of
constrained interlayers, negligible cavity expansion is predicted for the

experimentally determined strain.

Since this material was initially defined to be incompressible, and the
difference between S and T must always equal the yield strength, a case of pure

hydrostatic loading is not possible. With the definition of T = mS, the loads
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Figure 3. The axial strain resulting from radial expansion of a cavity by a
Rice and Tracey mechanism.

required to produce these cavity expansions must be extremely large in the high

triaxiality case in order to have the difference equal the yield strength.

An approximate evaluation of interaction effects on final strain can also be
done. Due to the cavity spacing to cavity radius, Speight and Harris [17] predict a

change in void growth rate at a cavity spacing to cavity radius ratio of 13:1. This
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Figure 4. The axial strain resulting from radial expansion of a cavity by a
Rice and Tracey mechanism under highly triaxial loading. Final axial
strain for cavity growth during uniaxial loading of interlayers (m = 0.82) is
at the place shown by the dotted line.

suggests that cavities roughly located less than //d = 10 apart, where / is the spacing
between the cavities and d is the diameter of the cavities, may be interacting with

each other. This can be approximated by using a spherical cell model and defining
cavitation as occurring at the moment the cavities touch the cell walls gives a radial

expansion of 5. The final strain for a cavity expansion of 5 is shown in both figures
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3 and 4. Even with an expansion this small, the final strain at m=0.82 for uniaxial
loading of interlayers is about 0.008, which is in excess of experimental values
[14]. Marini, Mudry, and Pineau [18] evaluated the void growth rate as a function
of stress triaxiality for a number of different materials. They found that the Rice
and Tracey model underestimated the actual cavity growth rate. The pre-
exponential term was found to increase as a function of void nucleation sites, so

they attribute the deviation to interaction between neighboring voids.

Rice and Tracey also consider the case of multiaxial loading. Rather than
just consider a tensile strain rate field, they consider a spherical void in a general
remote strain rate field of éijm. If one assumes that dilational growth dominates, the
velocity field involves only contributions from the remote strain rate field and a

spherically symmetric void expansion field. Then,

. DD
4 =¢x +Du " (18)
1 g J
where
2 .. R
.D _ ot 172,000
i = GGE e iy, )

2 wrm12 . . . .
The term (§ €€, )2 is the equivalent tensile strain rate and equals € when

the remote field is simple tension.

Assuming D is large, all terms of order 1/D can be dropped. This results in

the high triaxiality result:
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D = c(v)exp (@:—M) 20)
0

The pre-exponential constant depends on the Lode variable, v. For remote
extension or biaxial compression, v =+1. For remote simple shear, v=0. For

remote simple compression or biaxial extension, v = -1.
Rice and Tracey developed an approximation for ¢(v) as follows:
c(v) = 0.279 + 0.004 v 21)
As can be seen, the result is nearly independent of the Lode variable.
For simple remote tension, v =+1, and ¢(v) = 0.283. This is referred to as
the "high triaxiality approximation”. The result is nearly indistinguishable from the

exact solution for values of ¢/ T, > 1.5. The high triaxiality result holds fairly

well even when shape changing becomes significant.

Cavity Instability

A cavity instability occurs when an isolated void in a remotely stressed
infinite solid grows without bound under no change of remote stress or strain.
Cavitation occurs when the stress levels are high enough that the elastic energy
stored in the remote field is sufficient to drive the continued plastic expansion of

the void. In nonlinear elasticity theory, a cavitation instability is often interpreted
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as either a bifurcation from a homogeneously stressed solid to a solid containing a

void or as the growth of a pre-existing void.

Cavitation differs from the usual concept of void growth. In the usual
concept of void growth, growth occurs directly in relation to the deformation
imposed on the solid, such as is seen by the Rice and Tracey analysis. For a cavity
to expand by the Rice and Tracey mechanism, the load must be increased. The
volumetric void growth is proportional to the average strain rate in the material and
the growth rate increases strongly with increasing stress triaxiality. For the HHT
mechanism, the cavity will expand slowly until the cavitation limit stress is

reached, at which point the cavity will grow without bound.

Huang, Hutchinson, and Tvergaard consider a spherical cavity in an infinite
remotely stressed elastic-plastic solid, figure 5, top. Initially, the material is
defined as incompressible and elastic-perfectly plastic. R, is the radius of the cavity
and p is the distance to an arbitrary point before deformation. Upon loading, the
radius of the cavity increases to R, and the distance to the arbitrary point increases

to R, figure 5, bottom.

Cavitation occurs when RO/Ri - OO [f the stress at which this occurs is

defined to be S, then HHT find the approximate relation:

:%[1 +ln3i} (22)

which is accurate for ey < (0.01.
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Figure 5. The calculations for a cavitation
instability are based on an unloaded void of
radius R, in an infinite body with distance to an
arbitrary point of p. After applying a far-field
stress, the cavity radius is R, and the arbitrary
point has moved to R.
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The radius of the plastically deformed region surrounding the void can be

calculated as:

R oo
(815
y

This plastic zone has a fixed size that is relative to the current size of the
cavity. This depends on &, and is typically 2 - 4 times the current diameter of the
cavity. Outside the plastic zone is an elastic field where the strains diminish to zero
as a function of R3. This also suggests that as the separation ratio decreases, the

stress or strain fields may interact and alter the cavity growth rate.

Equation (22) was solved for an elastic-perfectly plastic solid. In addition, a
power-law hardening solid can be examined numerically. The elastic-perfectly
plastic analytical solution, equation (22), is shown in figure 6 in addition to the
numerical solution for strain hardening of N = 0.1. For both elastic-perfectly
plastic materials and power law hardening materials, it is seen that cavitation
instability stresses are approached asymptotically. The cavitation stress is observed
to increase significantly with strain hardening. Even for power hardening
materials, once cavities have expanded to about 3 times their original radius, the

cavitation limit stress has been reached.

If the incompressibility requirement is relaxed, then the equation for an

elastic-perfectly plastic material with Poisson's ratio v can be calculated to be:

2 2
3

ﬁ = 1 +1In
o 3(1 - v)e (24)
y y
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Figure 6. Remote mean normal stress to yield stress versus
radius of the cavity for spherically symmetric loading (S =
T). Results are for an incompressible solid with 6,/E =
0.003. After [12].

As can be observed from Equation (24), the critical stress for cavitation will
decrease with an increase in €,. Including elastic compressibility (v = 0.3 versus v
= 0.5) decreases the critical stress slightly. The cavitation stress depends on 0,,/0,

and weakly on v.

Most of the calculations were performed with a coupling radius to void
initial radius of 100. The coupling radius is the radius dividing the inner region
from the outer plastic region. Except when (S-T) approaches the yield stress, this

was sufficient to ensure that the plastic region surrounding the void was entirely
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within the inner region. The plastic region grew and approached 15 times the
current average void diameter in the cavitation state at (S-T)/a, = 0.98, or near the
yield stress whereas the plastic zone was about 4 times the void diameter in the
spherically symmetric case. This is in comparison to Speight and Harris [17]
change in void growth rate at 13. Clearly, if cavities are closely spaced, the growth

mechanism may change.

Tvergaard, Huang, and Hutchinson determine cavitation instabilities for
power law hardening elastic-plastic solids subject to axisymmetric, as opposed to

spherical, stress states in a subsequent paper [13].

A significant difference in cavitation is observed when hardening is
included. For an elastic-perfectly plastic material, the cavitation limit curves
terminate when S-T=0, since the effective stress cannot exceed the yield stress.
However, because of the hardening behavior, cavitation can occur for a power
hardening material when the effective stress exceeds the yield stress. The results
for the numerical procedure for axisymmetrically loaded spheres with power
hardening, including compressibility in the elastic region, are shown in figure 7.
The term m is used as a measure of the degree of axisymmetry of the stress state

and is defined as m = 7/S. When m = 1, the loading is spherically symmetric.

When compressibility is included, the results are about 5% lower than when
the material is considered incompressible. The behavior after the onset of remote
yielding differs from an elastic-perfectly plastic solid. A strain hardening material
with remote plastic yielding may have cavitation with a range of m values. This
means that a cavitation instability may be reached after a finite amount of plastic

straining in the remote field.
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Figure 7. Cavitation limit for a spherical void in an elastic-
plastic power hardening solid (c,/E = 0.003 and v = 0.3).
After [13].

The size of the coupling radius, the radius used to ensure all plasticity

surrounding the void was within the inner region of the numerical solution, was

found to have a large effect on the critical stress for cavitation. A small coupling

radius was found to have a lower critical stress than a large coupling radius. In

addition, when a small coupling radius is used, a cavitation instability may appear

in cases in which a large coupling radius does not show an instability. This again

suggests that as the cavities become more closely spaced, the growth rate may be

altered. Previous work on constrained silver interlayers [14] experimentally

determined O / o, = 3.3 for cavitation and concluded that in comparison to the

HHT predicted value of 3.8, the validity of the theory was inconclusive. However,
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if multiple, closely spaced cavities were in the interlayers, a small coupling radius,
e.g., closely spaced interacting voids, could help explain the discrepancy between

the results and the theory.

Tvergaard et al. concluded that since the cavitation limit curves are
essentially flat when plotted as 0,,/0,, a critical value of the mean stress or remote
maximum principal stress can serve as a reasonable criterion for cavitation. The
critical value depends on the uniaxial stress-strain curve of the material, primarily
the strain hardening exponent, and can be determined using the spherically
symmetric result or the slightly more conservative result for a cylindrical void. The
cavitation instability theory has found support in the experimental results of a lead
wire constrained by a glass cylinder by Akisanya and Fleck [19]. They found o/c,
at failure to be between 4 and 5 for the highly constrained case of a single internal
void. This is virtually identical to the cavitation limits predicted for an isolated
void in an elastic-perfectly plastic material subject to remote axisymmetric

stressing.

Huang, Hutchinson, and Tvergaard initially produced a curve relating the

> R

o 0
remote mean stress to yield stress ratio, 5ot the radial expansion, -

: s Ri , figure 6.

A comparison curve can be developed from the equations presented by Rice and
Tracey. The following example assumes growth in a general remote strain rate
field with high stress triaxiality. For simplicity, only dilational growth will be
considered. This can be expressed as:

. 2 o |2
ROK = §8L sL) D}R L =111 (25)

0




Referring to the expression before D simply as E, the equation can be

written as:
R, = DeR,
Rearranging
R .
- pe
R,
Then
1 aRo _ de
R, ot ot
Integrating
1 R, f b€ 4
R, ot
Rﬁmlﬁg D f Eﬁnal d—
init 0 0
R
final —=
In 7 -, = Deﬁnal
Now since € nal In(e nat 1) where €  nal

is engineering strain:
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In Rﬁ nal

= Din(e,,, + 1) (32)

init

Rﬁnal - D
In 2 = ln(eﬁml + 1) (33)

init

R _
P = (€ + D (34)
init
Now consider the case of simple tensile extension, é3 = -1/2 é2 = -12 él.

D can be replaced by the high triaxiality approximation of equation (3). Converting

this approximation from shear stress in yield to yield stress in tension results in:

D = 0.283 exp (% ) (35)

ko‘o

For the case of remote plastic yielding in a simple tension field

§-T-= 0, (36)
or
r==S- o, (37)

Now,
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S + 2(S - oy) (38)

Combining equations (35) and (38):

3§ - 20

y

39)

A material that behaves according to Rice and Tracey's equations does not
have a cavitation stress as defined by Huang et al. According to Tvergaard et al.
[13], a cavitation instability occurs when a void grows without bound even when
the remote stresses and strains are kept fixed. A material that follows the Rice and

Tracey equations expands only with increases in the far-field stresses.

So, in order to compare the Rice and Tracey equations with a material with
a cavitation instability as defined by Huang et al, some parameters must be set.
Choosing a final engineering strain of 20% (€ = 0.20), a yield strength of 250
MPa, with S starting at 251 MPa and increasing (T starting at 1 MPa and
increasing), the result shown in figure 8 is obtained. Even with a radial cavity
expansion of 1000 (with the resulting S = 983 MPa and T = 733 MPa), a Rice and
Tracey material will never achieve the mean to yield stress ratio predicted by HHT.
This suggests that a material capable of achieving large strains would experience
large cavity expansions by a Rice and Tracey mechanism and would not achieve

the stress levels necessary for a cavitation instability.
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Figure 8. Comparison of Rice and Tracey predictions for
constrained silver interlayers at a final strain of 0.2% and
20% to the Huang, Hutchinson, and Tvergaard solution for
spherically symmetric loading. Rice and Tracey require an
increase in stress to drive the cavity expansion. Huang,
Hutchinson, Tvergaard predict a cavitation instability.

However, the final engineering strain tends to be quite small in the case of
constrained interlayers. Choosing a final strain of 0.2% (€ = 0.002) results in
higher stress levels being required to drive the same amount of cavity growth.
However, the mean to yield stress ratio now exceeds the values predicted by HHT
for N = 0. Since the radial increase is a function of the final strain, equation (34), a
cavity increase of 4 by the Rice and Tracey mechanism would require larger

stresses than predicted by the cavitation instability theory. This suggests that
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materials capable of sustaining only limited strain would achieve the stress levels
necessary for a cavitation instability at lower stresses than required to grow by a
Rice and Tracey mechanism. The cavitation instability theory appears to be more

applicable for the analysis of constrained silver interlayers.

An additional difficulty in using the Rice and Tracey theory for constrained
silver interlayers is the requirement that the material be rigid-perfectly plastic. As
seen in figure 8, the Rice and Tracey curves begin with a low stress level of S =
251, T =1 and continue to increase with the difference S - T = 5,. Because of this,
the ratio of the stresses are continually increasing. The curves begin with m =
0.004 and finish with m = 0.65 and m = 0.83 for the 20% and 0.2% cases,
respectively. The Rice and Tracey theory becomes unrealistically large as the
stress state approaches spherical symmetry. On the other hand, the cavitation
instability theory was initially calculated for the spherically symmetric case and
then expanded to include axisymmetric loading. The Rice and Tracey theory
appears to be more useful at lower levels of triaxiality. At higher levels of
triaxiality, especially as the stress state approaches spherical symmetry, the

cavitation instability theory would be expected to fit the results better.

Dilatant Plasticity

Constitutive laws such as the von Mises yield criteria assume plastic
incompressibility which preclude the generation of porosity within the matrix, yet
void nucleation and growth are experimentally observed. In addition, the
subtraction of the spherical state of stress in calculation of the von Mises effective
stress results in no effect on yield from the hydrostatic component of stress. Since

the material in these constitutive laws is considered incompressible, the dilatation
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of the material surrounding the void is entirely due to void growth. Gurson's
objective was to develop an approximate yield criteria and flow rule for porous (or
dilatant) ductile materials as well as to show the role of hydrostatic stress on yield

and void growth.

For his purposes, Gurson considers a rigid-perfectly plastic material that
yields when the von Mises effective stress equals the yield stress. Like Rice and
Tracey, Gurson develops velocity fields for the matrix which conform to the
macroscopic flow behavior of the bulk material. Using a distribution of
macroscopic flow fields and working through a dissipation integral, upper bounds
to the macroscopic stress fields required for yield were calculated. This locus in
stress space forms the yield locus. As an end result, Gurson developed approximate
functional forms for the yield loci. This can be considered an approximate plastic

constitutive theory that takes into account void nucleation and growth.

The yield function for a spherical void with a simple flow field was found to

be:

+2 fcosh(l _Oﬂ) -1 -/=0 (40)
2 g,

LS

I
olo
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where G, is the equivalent tensile yield stress in the matrix, o, is the von Mises

effective stress, oy, is the deviatoric stress, and fis the initial void volume fraction.

Gurson notes that the macroscopic dilation of a material increases with the
hydrostatic component of stress. Since the material is incompressible, the dilation
is entirely due to void growth. The yield loci expression in equation (40) is based

on porosity that is initially present, and because of the dilatancy due to hydrostatic
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stresses, will differ from the von Mises yield loci. In his companion paper [16],
Gurson noted that nucleation changes the void volume fraction. He then developed
a relationship for the change in the void volume fraction due to nucleation of new

voids and growth of existing voids. He expressed this as:

f - (f )nucleation * (f )growth (41)

The material was considered to be a rigid, work hardening ductile matrix
that contained voids and rigid particles. The rigid particles were assumed to

debond from the matrix when the critical stress was attained.

Whereas the yield loci of equation (40) is a plastic potential when
nucleation is ignored, it is not a plastic potential once nucleation is included. In the
case of nucleation, the plastic potential differs from the yield loci. The flow field

can no longer be determined by normality to the yield loci.

To include nucleation effects, Gurson derived a stress amplification factor,
M(c), which is a function of the local particle concentration based on work by
Argon, Im, and Safoglu [20] who proposed a critical normal interfacial stress
condition for nucleation. Gurson notes that as the far-field hydrostatic stress
increases, the stress amplification factor needed to attain nucleation decreases until
a point was reached at which nucleation takes place at all particles not yet debonded
from the matrix. A burst of nucleation would cause instantaneous bulk softening,
which could lead to a bifurcation of the macroscopic flow field, ultimately causing
ductile fracture. Gurson plotted the ratio of the change in void volume fraction due
to nucleation versus the change in void volume ratio due to growth. He showed

that nucleation rapidly overwhelms growth in his model.
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Several investigators have modified the original Gurson formulation.
Tvergaard performed a finite element analysis of an elastic-plastic material
containing a doubly periodic array of circular cylindrical voids [21]. He compared
his results with Gurson's yield loci and made some modifications. Tvergaard
expresses Gurson's yield loci as (0", g, f) = 0, where 6" is the average
macroscopic Cauchy stress tensor, g, is the equivalent tensile flow stress in the
matrix, and fis the current void volume fraction. Gurson restricted his analysis to
Cartesian or cylindrical coordinates, and therefore proportional loading histories.
Tvergaard expanded the yield loci equation to include void interaction effects and
void shape changes in curvilinear convected coordinates. Gurson's concept was

further developed by Richelsen and Tvergaard [22] to include elasticity.

Tvergaard re-expressed the yield loci (or yield condition) as:

T e 0’2) \
®—§+2fqlcosh70—0 -1 +4,/)=0 (42)

0

When ¢, = g, = q; = 1, the equation reduces to Gurson's yield loci for a

spherical void in a rigid-perfectly plastic material.

Tvergaard included the ¢'s because Gurson's yield criterta resulted in
maximum loads that are higher than predicted by Tvergaard's finite element model.

Empirically, Tvergaard suggests the use of ¢, = 1.5, ¢, =1, and ¢, = ¢,°.

Koplik and Needleman [23] state that the g parameters are arbitrary
constants required to ensure that the dependence on void volume fraction is linear
when the hydrostatic stress component is zero (as in shear) and that the dependence

on stress triaxiality is exponential, as per Rice and Tracey. Koplik and Needleman
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suggest ¢, = 1.25 and ¢, = 1.0 as a reasonable choice that effectively covers a wide
range of conditions, although they also note that g, increases with decreasing strain

hardening.

Tvergaard [24] further developed the meaning of ¢,. Assuming that the
ultimate value of void volume fraction at which the macroscopic stress carrying
capacity vanishes, f;,, is a property of the assumed yield function, then equation (42)

reduces to:

2f,9, -1 - g,/ =0 (43)

For the case where ¢; = g,%, the ultimate void volume fraction is calculated
as fy = 1/q,. In Gurson's original formulation the ultimate void volume fraction is
fu = 1. Conceptually, this agrees with his model because the average macroscopic
stress can be carried by the remaining material so long as the volume of the central
hole is smaller than the unit sphere. However, for the more realistic case of a close-
packed array of spheres (body centered cubic structure), the volume fraction at
which the spheres "touch" is 0.68. Tvergaard's suggestion of ¢, = 1.5 gives an
ultimate void volume fraction of f;,=2/3 = 0.67, which is remarkably close.
Assuming that the spheres touch in a diagonal close-packed array of spheres (face
centered cubic structure), the volume fraction can be calculated to be 0.74. For f,,
= (.74, the value for g, can be calculated to be 1.35, which is between the values of
q, = 1.5 suggested by Tvergaard and g, = 1.25 suggested by Koplik and
Needleman. The parameter ¢, can therefore be considered to be the inverse of the

void volume fraction at which all the pores would touch.

However, Brown and Embury [25] indicate that voids coalesce before they

grow to the point at which they touch. They indicate that coalescence occurs
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between two voids when the length of the voids is approximately equivalent to the
spacing. So now a critical void volume fraction, f., is used in addition to the
ultimate void volume fraction, f;,. The critical void volume fraction, f, is

calculated to be approximately 0.15.

Once the voids begin to coalesce, there is an enhancement in the change of
void volume fraction during an increment of deformation. Tvergaard and
Needleman [26] propose a two part yield condition, the first part producing the
original yield loci for void volume fractions less than f,. and the second part
including the enhancement occurring for void volume fractions greater than f. The

yield condition is of the form:

o a
® = _; + 2f*qlcosh(—i) - {1l + (qlf*)Z} =0 (44)
o, 20,

The yield loci now depends on the function £ (f) specified by:
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where f- 1s the void volume fraction at fracture. Tvergaard and Needleman
recommend f,. = (.25 based on the results of a numerical model analysis by
Andersson [27] for initially spherical voids in a rigid-perfectly plastic matrix
subjected to a highly triaxial stress state. Gurson's original yield loci has now been
modified to allow for non-proportional loading, void coalescence, void nucleation
(through incremental changes in f), and void interaction. For the modified yield
loci, Needleman and Rice [28] show that normality holds, and that the yield loci

can be used as a plastic flow rule, except when cavity nucleation occurs by a
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maximum stress dependent criterion. However, even in this case once nucleation
occurs, normality does apply. With these modifications, it is now possible to

evaluate the failure of constrained thin silver with Gurson’s yield loci.

It is the purpose of this thesis to characterize the number, size shape and
spacing of cavities in silver interlayers and, with this information, evaluate the
applicability of the ductile fracture theories. The Rice and Tracey theory is based
on a rigid perfectly-plastic assumption that requires extremely high stresses for
cavity growth as the loading becomes more highly triaxial. The HHT cavitation
instability theory is not limited by highly triaxial stress states, nor is the material
required to be rigid perfectly-plastic. Tolle and Kassner [14] examined the stress
state of constrained silver interlayers and the cavitation instability theory and were
unable to rule out a cavitation instability. The validity of the assumption of a single
cavity in an infinite solid will be examined in this thesis, as will the presence of
residual stresses produced by cooling from the diffusion bonding temperature. As
will be seen, the cavitation instability theory matches the experimental results well
when accurate material properties are used. The Gurson yield loci will also be
examined for applicability to the data, since the reduction in the yield loci due to
the presence of voids may be sufficient for the material to exceed yield. Finally,
the non-uniform cavity distribution will be examined for insight into cavity

nucleation.
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EXPERIMENTAL PROCEDURE

Sample Fabrication

The samples for this study were fabricated at Lawrence Livermore National
Laboratory (LLNL) by dc planar-magnetron sputtering and diffusion welding.
Mechanical tests to determine the stress-strain behavior of the interlayer, as well as
creep testing to failure and to percentages of the expected rupture life, were also
performed at LLNL. The procedures were published previously [29], [30], [31],

but portions are repeated here for completeness.

The specimens were fabricated from maraging steel (18% Ni, 9% Co, 5%
Mo). Maraging steel was chosen as the substrate because it is an ultra high strength
steel which exhibits elastic defermation to over 1518 MPa (0.2% plastic strain

offset), thus providing maximum constraint to the deforming silver interlayer.

The maraging steel was machined into right cylinders with a diameter of
15.3 mm and a length of 38.8 mm. For coating, the specimens were loaded into a
150 mm diameter copper fixture that positions 24 cylinders. A silver disk, used as
the sputtering target, was attached to the internally mounted magnetron. The
cylinders were cleaned by sputter etching for 35 minutes. A total of 700 nm was
etched from the steel surfaces. A shutter was placed between the silver target and
specimen surfaces to prevent any deposition of sputtered atoms onto the silver

surface during the etch-cleaning phase.

The coating phase was initiated by using a separately controlled dc power
supply that applied a voltage to the PM source, thereby establishing a plasma

adjacent to the silver target surface. The silver deposition rate at the specimen
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surface was determined to be 20 nm/s. The maraging steel cylinders received a

layer of 75 um of silver.

The cylinders were removed from the coating fixture in pairs, silver surfaces
placed in contact and encapsulated in stainless steel cans. The evacuated
assemblies were placed in an autoclave and isostatically compressed with argon to a
pressure of 139 MPa. The temperature was raised to 673 K while the gas pressure
was increased to 207 MPa. The peak temperature and pressure were maintained for

2 hours. The autoclave was cooled below 373 K before venting.

Standard 6.35 mm diameter, 25.4 mm reduced gage length threaded
specimens were machined from the autoclaved cylinders, figure 9. The 150 pm

thick silver joints were located in the center of the gage section.

Creep rupture tests were performed at LLNL by loading to a level below the

ultimate tensile strength as determined at a conventional testing loading rate and

|[~— 3175 mm —|
A
\—R =438 mx_ﬁ?) > mm
silver interlayer

Figure 9. Standard test sample machined from autoclaved cylinders.
Silver interlayer was located in the center of the gage section and normal
to the long axis.
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maintaining the load until the specimen fractured. Figure 10 shows a typical
tensile bar with the interlayer located perpendicular to the applied load, S,. The
applied load induces an axial stress, 0, a hoop stress, Ogq, and a radial stress, o,
in the interlayer. The induced stresses are considered far-field or macroscopic
stresses for comparison with the theories. Creep rupture tests were performed at
ambient temperature (295 K or 22 "C) using simple lever dead weight type creep

rupture testing machines. Plastic strain measurements of the interlayer and base

TSZ

>

3

Figure 10. The uniaxial load applied to the test specimen, S,,
induces an axial stress (o,,), hoop stress (o4) and radial stress (o,,)
in the interlayer. The induced stresses are the far-field stresses
considered in the ductile fracture theories.

z
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metal were performed by measuring specimen diameters using an optical
comparator. Plastic tensile strain measurement within the 150 pm thick silver
interlayer was estimated to be accurate to within + 10 strain. In some cases,
plastic strain was measured by optically profiling the interlayer at high (500x)

magnification. This was estimated to be accurate to within + 2x10 strain.

In order to investigate theories for ductile failure, creep specimens were
loaded at LLNL to various fractions of the predicted creep-rupture life. Specimens
were loaded to approximately 70% of the ultimate tensile strength (552 MPa) for 1,
10, 25, 50, and 99% of the expected rupture time, t,, where t. = 1000 s. Specimens
loaded to approximately the ultimate tensile strength undergo “rapid™ time-
dependent failure at roughly one second. Thus, fractures are by an identical
mechanism as UTS failures which allows for sequential observation of the

cavitation process leading to fracture.

Finite Element Modeling

Finite element modeling of the interlayer stress state was done using
ANSYS version 5.4. Because the samples and loading are symmetrical, a 1/4
symmetry model of the cylinder was developed using a 2-D structural solid as an
axisymmetric element. This element allows non-linear material behavior and has

four nodes, each capable of translations in the x and y directions.

The dimensions of the sample were normalized for modeling purposes. The
interlayer thickness was modeled as 1/42 the width of the model. This follows
from the ratio of one-half the interlayer thickness (75 um) to one-half the diameter

(3.175 mm). The height of the cylinder was arbitrarily drawn as three times the
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A base metal affected layer was created with a mesh identical to that of the
interlayer, since it is reasonable to expect stresses to change rapidly in the vicinity
of the interface. The mesh in the remainder of the base metal, called the unaffected
layer, is ten elements tall (with a height ratio that varies by 200) by 50 wide, with a
width ratio of 50 that matches the mesh of the interlayer. The full model is shown

in figure 12.

The model was loaded to 552 MPa in the y-direction by pressure-loading
the line at the top of the model. The nodes on the bondline are constrained to zero
displacement in the y-direction. The nodes on the centerline are constrained to zero

displacement in the x-direction, figure 13.

The initial material properties are given in Table 1. The maraging steel base
metal is modeled as linear elastic. The interlayer silver exceeds uniaxial yield and
must be modeled as a non-linear material. The effective plastic strain from [30]
was converted to total (elastic plus plastic) effective strain for the material property
table. The resulting curve is shown in figure 14. This was entered into ANSYS as

a 50 point multilinear isotropic hardening material property table at 22 C.

Table 1. Initial material properties used for silver and maraging steel in finite
element model.

Poisson's | Modulus of coefficient of thermal
ratio, v Elasticity, E (GPa) expansion,
[29] [29] o (mm/mm/ C) [31]
maraging steel | 0.3 186 10.1 x 10°¢
PVD silver 0.37 71 19.7x 10°
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Figure 14. True stress versus total (elastic + plastic) strain for silver.
These data were used as silver material properties in finite element
analysis.

Multilinear isotropic hardening (MISO) is a rate-independent plasticity
theory. Strain is instantaneous upon loading the material and plastic strain is
irreversible. The uniaxial stress-strain curve is characterized by the maximum
stress in tension being equal to the yield stress in compression, figure 15. The
curve is drawn as straight lines between the designated stress points, with each line
having a different modulus of elasticity. With isotropic work hardening, figure 16,
the subsequent yield surface will remain centered around the initial centerline and
will expand in size as the plastic strain increases. MISO uses the von Mises yield

criterion and associated flow rule in an incremental fashion, which allows a
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20

max

Figure 15. Multilinear isotropic
hardening theory used for modelling
silver behavior. The maximum strength
in tension is equal to the yield strength
in compression.

comparison to both the Huang, Hutchinson, and Tvergaard theory as well as the
Gurson theory. The yield surface is the plastic potential, so plastic strains occur in

a direction normal to the yield surface.

The finite element solution was obtained using the frontal solver, a direct
elimination solver used for robustness in nonlinear analysis. The model was
ramped to 552 MPa with auto time-stepping set to adjust the substeps from the
initial value of 10. A maximum of 25 equilibrium iterations were allowed per

substep. This model will be referred to as the uniaxially loaded model.
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initial yield surface

/— subsequent yield surface

Figure 16. Isotropic work hardening
results in concentric yield surfaces.
Plastic strains occur in a direction normal
to the yield surface.

An additional finite element analysis was run to investigate the effects of
residual stress. Since maraging steel and silver have different coefficients of
thermal expansion, it is reasonable to expect that residual stresses have developed
because of differential thermal contraction upon cooling from the bonding
temperature. Residual stresses may cause plastic deformation, so it is necessary to
investigate their magnitude. The reference temperature, or temperature at which the
sample is considered to be strain-free, was set at 400 ‘C. The uniform temperature

was chosen as 22 "C. The thermal strain at a node is calculated by:

{e"} = AT{a}" (46)

where {&"} represents the thermal strain vector, {a} represents the thermal
coefficient of expansion vector, and AT represents the difference between the
reference temperature and the uniform temperature. Total strain is calculated by

adding the thermal strain vector and the strain vector due to loading.
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Results for the residual stress model were obtained by use of two load steps.
The first load step "cools" the sample from the strain-free state, or the temperature
of diffusion welding, to room temperature. The second load step ramps from the
state resulting from the first load step (stress state after cooling to room
temperature) to the 552 MPa pressure applied uniaxially to the top of the model.

The results of this model were called the residual stress model.

The parameters inserted into the residual stress model assume that the
material properties are not temperature dependent. Since the yield strength of silver
has a strong dependence on temperature and strain rate, the results of the residual

stress analysis should be viewed as being approximate.

Scanning Electron Microscopy

The interrupted creep samples were examined previously [30] for the
location of microvoids. The sample preparation included mechanical polishing
followed by a chemical etch, after which the samples were viewed on a scanning
electron microscope (SEM) equipped with a tungsten filament. The smallest cavity
observed was estimated to be 0.2 pm. Since transmission electron microscopy
(TEM) identified cavities in the silver interlayers as small as 0.05 pm, it was
unknown whether the chemical etching had enlarged the cavities or the resolution
of the SEM had prevented the detection of the smaller cavities. This thesis attempts
to address the size and distribution issues. The samples previously prepared were
repolished, ion etched, and examined using a field emission gun SEM. The

following section describes the sample preparation for the field emission gun SEM.



45

Cross-sections of silver interlayers subjected to interrupted creep tests were
ground successively from 240- through 600-grit silicon carbide. The samples were
finished on 4000-grit silicon carbide (FEPA Standard P-Series) before placing on a
vibratory polisher. The samples were polished 16-20 hours on a nylon cloth with
0.05 um OP-S abrasive. The grinding and polishing steps were designed to

minimize surface damage and deformation [32].

In order to observe sub-micrometer size cavities, the samples were further
subjected to an ion etch using argon atoms. The etch was designed to removed 200
to 300 nm of the exposed surface. This was accomplished by directing the ion
beam 45 to the surface and rotating the sample during the 11 minute etch cycle.
The etching was performed by Ion Tech, Inc. at Fort Collins, Colorado and was
performed on a horizontal dual gun system. A total of 8 samples were ion etched in
two batches approximately four months apart. The etch conditions are presented in

Table 2.

The samples from the first batch showed enhanced etching effects near the
maraging steel-silver interface. Two of the samples had been mounted inside a
stainless steel ring and severe overetching of the surface was observed. The steel
may have had residual magnetism which deflected the ion beam, so the ring was

removed and samples repolished. After repolishing, but prior to ion etching, the

Table 2. Ion etch conditions.

cathode discharge beam accelerator plasma bridge neutralizer | current pressure

density

current |current |voltage |current |voltage |current |voltage [heater {body |emission

(amp) (amp) [(volt) [|(mA) (volt) |(mA) (volt) (amp) f(volt) |(mA) (mA/cm?)  |(torr)

6.91 52 55 80 500 5.0 600 493 |20 100 .29 1.74
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samples in the second batch were de-gaussed. The resulting etch was smoother
across the silver bond. The interface between the silver and the maraging steel
appeared less overetched and more clearly defined. A further benefit was better
stability of the electron beam in the scanning electron microscope. In general, the
ion etch technique was found to be superior to earlier chemical etching techniques
and resulted in less cavity enlargement. Some microstructural features were

evident other than cavities.

The polished and ion etched samples were analyzed using an Amray 3300
field emission gun scanning electron microscope at 5 keV accelerating potential.
The microscope was fitted with a 305 Schottky field emission gun with rated
performance of 1.5 nm at 30 kV and 7.0 nm at 1 keV. The interlayer was aligned
horizontally and assigned a coordinate value of (0,0) at the bondline on the outside

edge of the sample.

SEM examination consisted of two phases: (1) Preliminary viewing of one
sample in contiguous fields-of-view, and (2) statistical sampling of all samples at a

higher magnification.

The preliminary viewing was done at a magnification of 700x in a series of
overlapping 0.1mm increments. Cavity coordinates and selected details were
recorded. Details recorded for cavities in the preliminary sample included the
location of the cavity (bondline, columnar region, recrystallized region) and cavity
shape (spherical, prolate, or clustered). After cavity locations were recorded at the
lower magnification, higher magnifications were used to check for smaller cavities.
The fields-of-view did not overlap at the higher magnifications, so some small
cavities may not have been observed. Once the sample had been viewed, the

coordinates were plotted graphically.
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The initial findings indicated that the interlayer consisted of four distinct
regions. The distinct regions are shown in figure 17 and are: the interface between
the maraging steel and silver (starting at the interface and reaching approximately
15 um into the silver), a recrystallized region of silver between the interface region
and the bondline, the silver-silver bondline, and a region of columnar grains
between the interface region and the bondline. For further study, the sample was
defined to consist of five regions and coordinates as follows (using the bondline as

a zero reference line):

Region I - interfacial region between maraging steel and silver. From 75
um to 60 um.

Region II - silver deposit, either columnar or recrystallized. From 60 um to
5 pm.

Region III - silver bondline. Defined as 5 pm to -5 um.

Region IV - columnar or recrystallized silver deposit. From -5 pm to -60
um.

Region V - interfacial region between silver and maraging steel. From -60

um to -75um.

The regions are somewhat arbitrary. The interfacial region varied from a
few micrometers to over 15 um. The thickness of the interlayers was often less
than 150 um because non-uniform depths were deposited on each cylinder half.
Because of the non-uniformity, the actual bondline could shift into region II or IV,
depending on the thickness difference of the coatings. Nevertheless, the allocation
of regions allowed a manner in which to approximate the progression of cavities

over time.
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study was designed to evaluate the number, size, and volume fraction of cavities in
a region over time. Each of the eight samples was allocated 200 images for a total
of 1600 images in the study. Each region was assigned a number of images and a

viewing magnification as follows:

Region I - 25 images at 10,000X magnification
Region II - 50 images at 10,000X magnification
Region III - 50 images at 20,000X magnification
Region IV - 50 images at 10,000X magnification
Region V - 25 images at 10,000X magnification

The preliminary work found few cavities in the interfacial regions. The
preliminary work also found that the smallest cavities were present on the bondline.
This is reflected in the allocation of samples. The design allows for comparison of
the regions across samples (e.g., 1% of expected rupture life versus 50% of
expected rupture life) as well as between similar regions in a given sample. The
preliminary work indicated that either Region II or Region IV would be columnar
and the other would be recrystallized and that cavities seemed to appear frequently
in columnar regions and infrequently in recrystallized regions. The statistical
design allows for quantification of location effects, such as the perceived difference
between the columnar and recrystallized regions. In addition, it was not known if
cavity appearance in the interfacial regions would differ because of proximity to a
columnar or recrystallized region, so these were also kept separate. Hence, the
necessity for five regions. The sites were randomly selected based on a 10 um grid
at 10,000X and a 5 pm grid at 20,000X. The same sampling pattern was used for

all eight samples.
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Image Analysis

Images were acquired digitally from the scanning electron microscope.
Images at sites where cavities were observed were saved at a resolution of 2048 x
2048 pixels in 8 bit uncompressed TIFF format with 16 point averaging. Images at
sites without cavities were saved at a reduced resolution of 512 x 512 pixels to
conserve disk space. Contrast and brightness settings on the SEM were adjusted
for optimal detection of cavities. Calibration was performed using a Planotec Si 5
mm X 5 mm single crystal silicon test specimen with repeating squares of 0.01mm.
Calibration images were obtained at SEM settings of 1000X as well as 10,000X
and 20,000X. The test specimen required calibration of the image analysis system
based on the 1000X image. The 10,000X and 20,000X calibrations were scaled

accordingly.

Ion-etched silver samples tended to be uniformly gray with hillocks that
charged in the presence of the electron beam. Small cavities appeared as black
spots while larger cavities were defined by glowing white edges attributed to
charging from the electron beam. Because of the limited gray values of the images,
the image analysis procedure involved individual manipulation of each image. For
optimal edge detection in the image analysis system, a cavity delineated by either a
white edge or white background was necessary. The appearance of the cavities
necessitated individual treatment. First, raw images from the SEM were archived.
Then, files for image analysis were prepared from the archived images. An
unaltered image is shown in figure 18(a). Manipulations, including quantitative
numbers and subjective evaluations, were recorded on data sheets. Using Adobe
Photoshop 3.0.5 on a Power Macintosh, the median gray value was centered at the
peak of the gray level histogram. Brightness and contrast were increased and a

median filter of radius 3 was applied to the image to reduce noise. Some cavities
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received additional, localized image manipulation. The localized procedure
consisted of a sharpen more filter, adjustments to brightness and contrast, and a
median filter of radius 3. This procedure results in the image shown in figure

18(b).

After the initial manipulation, Optimas 5.23 on an IBM compatible
computer was used for the image analysis. Two macros were written for the initial
image analysis procedure. In the initial stage, the image was pulled in and saved.
A new image was created that consisted of the original image with gray levels
adjusted down by one value (pure white of 255 was lowered to 254, a gray level of
1 became pure black of 0). A Sobel edge finding filter was performed on the
adjusted image. The result of the Sobel filter was added to the adjusted image and
resulted in enhanced "whiteness" of the edges of the cavities. This result was also
adjusted down by one gray level. The adjustment assured that the current image
did not have any values that were pure white. This was necessary for performance

of a later image analysis step.

After the first macro was run, gray level thresholding was performed
manually. The threshold was typically set at a gray level of 230, although values as
low as 200 were sometimes used. The exact value was recorded and depended on a
personal evaluation of the thresholded levels to represent filling of the cavity. Once
the threshold was set, an outline filter was applied that drew a line of pure white
(gray level 255) at all locations in the image that separated gray levels below the
threshold from gray levels above the threshold. The ideal result was the complete
delineation of all the cavities. However, this was seldom accomplished, so the
outline was superimposed over the previous adjusted image for touch-up, figure

18(c).
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Up to this point, the procedure was completely reproducible using the data
sheets and archived images. The next step, touch-up of the cavity outlines, was
subjective. The image with the overlay was brought back into Photoshop. A white
pencil was used to complete the outline of the cavity and a black pencil or eraser
was used to remove extraneous spots, figure 18(d). The operations were rated as
"none", "minimum", "middle", "significant", or "%z hand drawn". Cavities that
were rated as requiring minimal or no touch-up are almost completely reproducible.
Cavities rated as having minimal touch-up were judged to have insignificant effects
on the resulting data values. Cavities rated as having significant touch-up or as
having been %2 hand drawn may have significant reproduction errors. Cavities with
significant touch-up often included the smallest of the cavities (less than 100 pixels
total), where the difference of including or excluding a few pixels would
significantly alter the results. Cavities that were reported as 2 hand drawn were
often large cavities where part of the boundary became indistinct and could not be

adequately thresholded.

Once the touch-up was complete, the images were brought back into
Optimas where they were converted to binary using a threshold of 255. Because
the original image had been reduced to 254 maximum gray levels, only the white
outline and white pencil touch-up remained. This was inverted to produce black

lines on a white background, figure 19(¢).

Solely because of speed, the black outlined image was again pulled into
Photoshop. The wand tool was used to make sure the cavity outlines were
continuous. A black pencil was used to fill in where necessary. The cavity, defined
as the inside line of the outline, was then filled with black, figure 19(f), and the
resulting image returned to Optimas. In Optimas, a close filter of one iteration was

performed. One iteration of a close filter consists of a dilate filter followed by an
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erode filter. The dilate filter adds one white pixel to the edge of all the white
pixels. This removes all outlines that were not filled and essentially shrinks the
cavity by one pixel completely around the perimeter. The erode filter subtracts one
white pixel from all remaining black pixels. This returns one pixel to the edge of
the cavity, and smooths rough edges, figure 19(g). Finally, data collection could be

performed on the cavities.

Data collected for each cavity included area, equivalent diameter based on
area, circularity, and center of mass. Estimated data based on measured values
consisted of volume fraction and distance between cavities. It is expected that the

image analysis procedure slightly underestimates the actual size of the cavities.
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approximately halfway through both the columnar and recrystallized regions of the

sample.

To examine axial uniformity, three axial paths were defined at constant
radius. These extend from the bondline through the silver and into the maraging
steel unaffected layer. One path was established axially along the centerline of the
sample at r = 0. Another path was defined at the point at which peak stresses were
observed, approximately r = 0.9R. The peak path represents the stress state at a
radius 2.9 mm from the centerline (or 0.32 mm from the surface). The surface path
was defined to be the outside surface of the sample and represents the
experimentally observed strains. The model was not set up to calculate surface

stress, so surface stress is not reported for the surface path.

The element used for this analysis, PLANE42, is a quadrilateral element
with 2 x 2 gauss integration points, figure 21. The quadrilateral element (E) has 4
nodes (I-L), and four integration points (1-4). Results are calculated at the
integration points. The usual procedure is to move the results to the nodes for
nodal results or the centroid (C) for element results by extrapolation or
interpolation. In the model, each node is shared by up to 4 elements, each of which
has calculated a different nodal value. The default is to take the average of the
results from connecting elements. In the case of a nonlinear material (silver)
bonded to a linear material (maraging steel), element averaging produces
anomalous results such as plasticity in a linear-elastic material. When material
nonlinearities are present, ANSYS transfers the integration point results to the
nearest node, instead of performing element averaging. Because material non-
linearities were present in the model, element averaging was not used and the
values reported for an element will be those from the nearest integration point.

Principal stresses, strains, equivalent stress, hydrostatic pressure, and accumulated
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Figure 21. Quadrilateral element (E) with
2x2 gauss integration points (1-4) used in
analysis. Results are calculated at
integration points and then moved to the
centroid (C) for element results or nodes (I-
K) for nodal results. Nodal results can be
averaged with the results from adjacent
elements or unaveraged. The nonlinearity of
the silver required that the results be
unaveraged.

equivalent plastic strain were calculated from the component data after these were

first mapped to the path.

The data calculated includes stresses in the radial (x), axial (y) and hoop (z)
directions, principal stresses, von Mises equivalent stress, plastic strain in the

radial, axial, and hoop directions, principal plastic strains, equivalent plastic strain,
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nonlinear hydrostatic pressure, and nonlinear accumulated equivalent plastic strain.

In some cases, total strain (elastic plus plastic) was reported.

As mentioned previously, ANSYS calculates some of the results in the
postprocessor using primary data. Von Mises equivalent stresses and strains are
calculated in the postprocessor based on the resultant nodal stresses and strains.
The nonlinear accumulated equivalent plastic strain, however, is an incremental
value. An equivalent plastic strain increment is calculated from the plastic potential
at each substep and added to the previous nonlinear accumulated equivalent plastic
strain value. Although similar to the von Mises equivalent strain, the nonlinear
accumulated equivalent plastic strain value is dependent on the loading history.
The accumulated equivalent plastic strain will differ from the von Mises equivalent
strain unless the material is incompressible and the element is loaded
proportionally. A comparison of the von Mises equivalent strain and the
accumulated equivalent plastic strain is used to evaluate the applicability of the
assumption of incompressibility and proportional loading used in the Gurson

theory.

Uniaxially Loaded Model

Principal stresses on the bondline are compared to radial, axial, and hoop
stresses in figure 22. Principal stresses and component stresses are identical.
Therefore, the principal stress directions occur in the axial, hoop, and radial

directions, respectively.

Principal stresses, von Mises equivalent stress, and hydrostatic pressure are
compared for the bondline, 30 um, and interface paths in figures 23, 24, and 25,

respectively. The peak hydrostatic pressure is approximately 540 MPa for the
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Figure 22. The radial, axial, and hoop stresses are
coincident with the third, first, and second principal
stresses, respectively, for the model loaded uniaxially to
552 MPa.
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Figure 23. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the bondline path
of the model loaded uniaxially to 552 MPa.
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Figure 24. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the 30 pm path of
the model loaded uniaxially to 552 MPa.
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Figure 25. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the interfacial path
of the model loaded uniaxially to 552 MPa.
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Normal and shear strains for the bondline paths are shown in figure 27.
Two of the three shear strains are zero. Near the surface, the radial-axial shear
strain peak reflects the highly localized deformation at the surface. Atr <0.9R, the
shear strain is negligible. As can be seen in figure 28, the presence of the shear
strain has a negligible effect on the principal strains for this particular coordinate
system. For the uniaxially loaded model, the principal strains will be considered to

be aligned in the axial, hoop, and radial directions.
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Figure 27. Radial, axial, and hoop strains for the model
loaded uniaxially to 552 MPa. Shear strains are negligible
in the interior of the interlayer.
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Figure 28. The radial, axial, and hoop strains are
coincident with the third, first, and second principal
stresses, respectively, for the model loaded uniaxially to
552 MPa.
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Principal plastic strains, von Mises equivalent plastic strain, and nonlinear
accumulated plastic strain are compared for the bondline, 30 um, and interface
paths in figures 29, 30, and 31, respectively. The peak von Mises equivalent strain
is approximately 0.012 for the bondline and the intermediate path. A strain plateau
exists from the centerline to approximately r = 0.8R. The plateau von Mises
equivalent strain value for all three paths is approximately 0.0037. The interface
path has increasing plastic strain as the path approaches the outside surface. This
reflects the highly localized deformation observed at the outside corner of the silver
bond in figure 26. The von Mises equivalent plastic strain and the nonlinear
accumulated plastic strain are similar for all three paths, but diverge at r = 0.8R.
Since the divergence is so slight, the loading was considered proportional. Any of

the models (R&T, HHT, or Gurson) should apply to the uniaxially loaded model.
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Figure 29. Principal strains, von Mises equivalent strain,
and nonlinear accumulated plastic strain determined for the
bondline path of the model loaded uniaxially to 552 MPa.
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Principal strains, von Mises equivalent strain,

and nonlinear accumulated plastic strain determined for the
30 um path of the model loaded uniaxially to 552 MPa.
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Figure 31. Principal strains, von Mises equivalent strain,
and nonlinear accumulated plastic strain determined for the
interfacial path of the model loaded uniaxially to 552 MPa.

70



71

The principal stresses, von Mises equivalent stress, and hydrostatic pressure
on for the centerline path are plotted in figure 32. The silver has a constant
equivalent stress of 137 MPa which jumps to 576 MPa once the path crosses into
the maraging steel. The hydrostatic pressure has a constant value of 473 MPa in
the silver. Because the values on the centerline path are constant, it is presumed
that the plateau seen in the radial paths is characterized by a constant stress state
from the bondline to the interface. Only near the outside surface is the stress state

expected to change in a traverse from bondline to interface.
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Figure 32. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the centerline path
of the model loaded uniaxially to 552 MPa.
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Constant values for principal stresses, von Mises equivalent stress, and
hydrostatic pressure are not observed on the peak path (r = 0.9R), figure 33. The
axial and hoop stresses decrease from the bondline to the interface, while the radial
stress increases. This is reflected in the von Mises equivalent stress, which drops
8% from 161 MPa near the bondline to 147 MPa at the interface, and the
hydrostatic stress, which drops 2% from 535 MPa at the bondline to 523 MPa at the

interface. These changes are small and probably do not affect the observed results.
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Figure 33. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the peak path of the
model loaded uniaxially to 552 MPa.
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The principal strains, von Mises equivalent plastic strain, and accumulated
equivalent plastic strain for the centerline, peak (r = 0.9R), and surface paths are
presented in figures 34, 35, and 36, respectively. The plastic strains in the
centerline path are nearly constant. The equivalent strains are equal to each other
and the first principal strain of 0.0036, confirming that the material is
incompressible. As is seen in figure 35, the plastic strains are not constant across
the r = 0.9R path. The axial plastic strain, at 0.0072, is much larger than the
centerline value, and drops to 0.0049 at the interface. The radial and hoop strains
increase from the bondline to the interface. The equivalent plastic strains are nearly
identical to each other and to the first principal strain, showing that the material is

incompressible at the peak path as well.
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Figure 34. Principal strains, von Mises equivalent
strain, and nonlinear accumulated plastic strain
determined for the centerline path of the model
loaded uniaxially to 552 MPa.
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Experimentally, strain is measured on the outside surface of a sample.

Displacement measurements taken after the sample is removed from the test will be

based on plastic strain and should correspond to the graph in figure 36.

Measurements taken during the test will also include elastic strain. The total strain

calculated for the surface path is shown in figure 38. As seen when comparing the

surface strains at the bondline, the elastic component of strain is significant for

these samples. At the bondline, the total axial strain is 0.0038 and the total radial

strain is 0.0016. This is in comparison to a plastic axial strain of 0.0020 and plastic

radial strain of 0.0010.
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Figure 38. Total radial, axial, and hoop strains determined
for the surface path of the model loaded uniaxially to 552

MPa.
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Although the figures show the strain across the interlayers, this is not
directly useful for a comparison to experimentally determined results. Strain,
measured either optically or by an extensometer, will be an average of the
displacement across the interlayer. An extensometer will measure elongation in the
axial direction, but is incapable of measuring contraction in the radial or hoop
directions on a small interlayer. The measured strain, therefore, will be the axial
strain. A comparison finite element analysis strain can be obtained by determining
the axial displacement at the "corner" node and dividing by the length of the
interlayer. The resulting total axial strain in the interlayer is calculated to be 0.012
at the outside edge of the sample. Averaging the nodal strains results in a total
axial strain of 0.011 in the interlayer. The plastic axial strain calculated is 0.0089.
If incompressibility and pure tensile loading are assumed, then the total von Mises
equivalent strain is 0.012 and the plastic von Mises equivalent strain is 0.0089. The
plastic von Mises equivalent strain is 30% less than the averaged plastic von Mises
equivalent strain of 0.013 at the surface, is more than twice the plastic von Mises
equivalent strain of 0.0036 at the centerline, and 40% greater than the average
plastic von Mises equivalent strain of 0.0065 at the peak stress. Effective strain
calculated from experimental measurements on the outside surface should be

considered a generous upper bound for the actual equivalent strains in the interior.

Residual Stress Model

Principal stresses are compared to radial, axial, and hoop stresses in figure
39 at the bondline for the residual stress model, which includes strain induced by
coefficient of thermal expansion differences. As was found in the uniaxially loaded
model, no discernable difference is observed between the principal stresses and the

component stresses. The axial stress and first principal stress are assumed to be
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Figure 39. The radial, axial, and hoop stresses are
coincident with the third, first, and second principal
stresses, respectively, for the residual stress model
(cooled from bonding and loaded to 552 MPa.).

interchangeable, as are the hoop stress and the second principal stress, and the

radial stress and the third principal stress.

Principal stresses, von Mises equivalent stress, and hydrostatic pressure are
compared for the bondline, 30 um, and interface paths in figures 40, 41, and 42,
respectively. The peak hydrostatic pressure is approximately 533 MPa for the
bondline and the intermediate path. The peak hydrostatic pressure drops to 529
MPa for the interface. The plateau that was seen in the uniaxially loaded model is

again seen in the residual stress model and runs from the centerline to
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and hydrostatic pressure determined for the bondline path
of the residual stress model (cooled and loaded to 552

MPa).
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Figure 41. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the 30 pm path of
the residual stress model (cooled and loaded to 552 MPa).
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of the residual stress model (cooled and loaded to 552
MPa).
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approximately r = 0.8R. The stress plateau value for all three paths is

approximately 467 MPa, 12% lower than the peak values. The peak von Mises
stresses are 175 MPa, 177 MPa, and 225 MPa, for the bondline, intermediate, and

83

interface paths, respectively. The von Mises equivalent stress plateau values drop

to 150 MPa for all three paths, a decrease of 14% from the bondline peak.

A comparison of the peak and plateau values for the hydrostatic pressure

and equivalent stress for the uniaxial model and residual stress model are presented

in Table 3. With the exception of the plateau values for the von Mises equivalent

stress (attributable to larger radial and hoop stresses in the residual stress case), the

stress values do not appear to be affected by residual stresses. This is in agreement

with a study by Cao, Thouless, and Evans on residual stresses in a thin ductile layer

[33]. They found the plastic zones created on cooling and upon loading to be

essentially inverted. The residual stress field was essentially eliminated by the

loading-induced deformation, resulting in little effect on the bond strength.

Table 3. Summary of hydrostatic pressure and von Mises equivalent stress results
for various radial paths of the FEA models.

hydrostatic stress (MPa)

von Mises equivalent stress

peak plateau peak plateau
bondline path 540 475 177 138
- with residual stress | 533 467 175 150
30 pm path 540 475 177 138
- with residual stress | 533 467 177 150
interface path 535 475 227 138
- with residual stress | 529 467 225 150
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Normal and shear plastic strains for the bondline path are shown in figure
43. Two of the three shear strains are zero. The third shear strain differs from zero
only near the surface. The principal strains are compared with the normal strains in
figure 44. When the shear strain is negligible, at r < 0.9R, then the component
strains and the principal strains are identical. Near the surface where there is a
conflicting effect of contraction due to cooling and expansion from loading, the

principal strains and the component strains are not the same.
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Figure 43. Radial, axial, and hoop strains for residual
stress model (cooled and loaded to 552 MPa). Shear strains
are negligible in the interior of the interlayer. A significant
compressive strain is present in the radial direction.
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(cooled and loaded to 552 MPa).
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Principal plastic strains, von Mises equivalent plastic strain, and nonlinear
accumulated plastic strain are compared for the bondline, 30 um, and interface
paths in figures 45, 46, and 47, respectively. Like the stresses and the uniaxially
loaded model, each strain has a plateau value at r <0.8R. The interface path
continues to have increasing plastic strain as the path approaches the outside
surface. Once again, this reflects the highly localized deformation at the outside
corner of the silver bond. The von Mises equivalent plastic strain in the residual
stress model shows both a high peak and a low peak in close proximity. The
residual strain pattern after the first load step of cooling (no subsequent loading) is
shown in figure 48. Upon cooling, the hoop strain at the bondline is nearly
constant. The axial strain is highly negative with a slightly less negative peak. The
radial strain is slightly positive with a slightly more negative peak. A sample
loaded from a strain-free state, figure 29, has a large positive peak for the axial
strain and negative peaks for the radial and hoop strains. When the two stress states
are combined, but not necessarily superimposed, the result is double peaks for the
axial strain and the von Mises equivalent plastic strain. The von Mises equivalent
plastic strains and nonlinear accumulated plastic strains for the axisymmetric model

and the residual stress model are tabulated and compared in Table 4.
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Figure 46. Principal strains, von Mises equivalent strain,
and nonlinear accumulated plastic strain for the 30 um path
of the residual stress model (cooled and loaded to 552
MPa).
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Table 4. Summary of effective plastic strain and accumulated plastic strain results
for various radial paths of the FEA models.

effective plastic strain accumulated plastic
strain
high low plateau | peak | plateau
peak peak
bondline path 0.012 | N/A 0.0036 | 0.012 | 0.0036

- with residual stress | 0.0052 | 0.0012 | 0.0039 ]0.011 | 0.0054

30 pum path 0.012 N/A 0.0036 |0.012 | 0.0036

- with residual stress | 0.0060 | 0.0014 | 0.0039 }0.012 | 0.0054

interface path 0.050 N/A 0.0036 |0.051 |0.0036

- with residual stress | 0.046 N/A 0.0039 |0.049 | 0.0054

As can be seen in Table 4, at r > 0.8R, the inclusion of residual stress
decreases the effective von Mises plastic strain. The von Mises effective strain at
the plateau strains are essentially unaffected by residual stresses. The accumulated
plastic strains do not differ much at the peak between the residual stress case and
the uniaxially loaded case, although the residual stress case shows more
accumulated strain in the plateau region. Whereas the accumulated plastic strain
and the von Mises effective plastic strain are nearly identical in the uniaxially
loaded case, they are not in the residual stress case. This implies that the residual
stress case involves non-proportional loading, even in the interior, where r < 0.8R.
Since Rice and Tracey and Gurson assume proportional loading, these two theories
are not strictly applicable if residual stress is present. If residual stress is present, it
would be better to use a failure theory capable of dealing with non-proportional

loading, such as the cavitation instability theory, which is based on the J, flow

theory.
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The principal stresses, von Mises equivalent stress, and hydrostatic pressure
on the centerline path are plotted in figure 49. The silver has a constant equivalent
stress of 150 MPa which jumps to 576 once the path crosses into the maraging
steel. The hydrostatic pressure starts at the value of 465 MPa. Since the values at r
= 0 are constants, it is assumed that the plateau seen in the radial paths is
characterized by a constant stress state axially in the silver. As was seen in the
comparison of the radial paths, the equivalent stress is slightly higher in the residual

stress case and the hydrostatic pressure is slightly less.
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Figure 49. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the centerline path
of the residual stress model (cooled and loaded to 552
MPa).
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The principal stresses, von Mises equivalent stress, and hydrostatic pressure
at the peak observed in the radial path r = 0.9R, figure 50, are not constant across
the silver. The axial and hoop stresses decrease slowly from the bondline to the
interface while the radial stress increases slightly. This is reflected in the von
Mises equivalent stress, which drops 5% from 164 MPa at the bondline to 155 MPa
at the interface, and the hydrostatic stress, which drops 3% from 535 at the
bondline to 518 at the interface. These results did not differ greatly from those

found in the uniaxially loaded model.
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Figure 50. Principal stresses, von Mises equivalent stress,
and hydrostatic pressure determined for the peak path of the
residual stress model (cooled and loaded to 552 MPa).
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The principal strains, von Mises equivalent plastic strains, and accumulated
equivalent plastic strain are presented for the centerline, r = 0.9R, and surfaces
paths in figures 51, 52, and 53, respectively. The plastic strains are nearly constant
on the centerline path, but not across the r = 0.9R path. The axial and radial strains
increase from the from the bondline to the interface and the hoop strain decreases.
The surface strains, plotted in the axial, radial, and hoop directions are nearly
constant across the first three elements, but change rapidly at the two elements near
the interface. The results are summarized in Table 5 and compared with the

uniaxially loaded model.
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Figure 51. Principal strains, von Mises equivalent strain,
and nonlinear accumulated plastic strain for the centerline
path of the residual stress model (cooled and loaded to 552
MPa).
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and nonlinear accumulated plastic strain for the peak path
of the residual stress model (cooled and loaded to 552
MPa).
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Table 5. Summary of effective plastic strain and accumulated plastic strain results
for various axial paths of the FEA models.

von Mises effective plastic | accumulated plastic
strain strain
bondline interface | bondline interface
centerline path 0.0036 0.0036 0.0036 0.0036
- with residual stress 0.0039 0.0039 0.0054 0.0054
r=0.9R path 0.0073 0.0050 0.0073 0.0050
- with residual stress 0.0012 0.0027 0.0079 0.0061
surface path 0.0020 0.063 0.0020 0.065
- with residual stress 0.0052 0.060 0.0052 0.063

The addition of residual stress to the model does not alter the resulting
stress state appreciably, but it does alter the resultant strain state. Although residual
strain does not come into account in the cavity growth models, it may affect the
nucleation of cavities, thereby affecting the assumption of an isolated cavity in an

infinite solid.

Scanning Electron Microscopy

Cavity Locations in 50% of Expected Rupture Life Sample

Initial SEM work consisted of viewing contiguous images in the sample

loaded to 50% of its expected rupture life at 552 MPa. Coordinates consisting of



98

(x,y) pairs were recorded for all observed cavities. These are plotted and shown in
figure 54. The silver-silver bondline is oriented horizontally with the right of the
figure corresponding to the outside surface of the sample. The left side of the
figure is 2.5 mm (2500 um) into the sample from the surface. The stress state of
the sample should be symmetrical about the axial centerline, which would be 3175

pum into the sample from the surface, but the FEA results indicate that a plateau in
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Figure 54. Cavities identified in preliminary SEM work on the sample
removed at 50% of the expected rupture life. Images were contiguous and
low magnification. Cavities were not observed at the interfacial regions or
in the recrystallized zone.
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the stress state is reached by approximately r = 0.8R. Therefore, 2200 um was
considered sufficient to evaluate cavity response to the stress state. To better
evaluate the distribution of cavities in the interlayer, the number of cavities within 5
um intervals was plotted in figure 55. The interface is at -75 and +75; the bondline
is at 0. Cavities were not observed at either interface with the maraging steel, nor
in the recrystallized region. A small region between the bondline and the columnar
zone also appears to be free of cavities. The cavities in the bondline region are
primarily observed within 2.5 pm of the bondline. The cavities in the columnar
region are normally distributed about a point 30 um from the bondline. The largest
number of cavities are located in the columnar region, although the largest number
of cavities in a localized band are located in the bondline region. Failures in the

axially loaded silver interlayers occur along the localized bondline cavities.

If there is a relationship between stress and cavity formation, then the cavity
histogram in figure 55 should be related to the FEA results shown for the axial
paths in figures 49 and 50 (with residual stress) or figures 32 and 33 (without
residual stress). Because of axisymmetry, the FEA model predicts constant stress
from interface to interface in the plateau region. The overall stresses are slightly
higher at r = 0.9R, but decrease axially from bondline to interface with less than a
10% drop for both von Mises equivalent stress and hydrostatic stress. Whereas the
stress increase at the bondline might be a slight driving force for cavity formation
and growth, the normal distribution of cavities in the columnar region, and lack of
cavities in the recrystallized region cannot be explained by the axial stress

distribution alone.

The radial cavity distribution, however, matches slightly better with the
stress results. The number of cavities within 200 pm intervals from the outside

surface is plotted in figure 56. No cavities were observed within 200 um of the
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surface, and only 4 were observed within 400 um of the surface. The largest
number of cavities within a 200 pm interval is observed at 750 pm. Cavities are
found in every interval except the first, but the numbers range from 14 to 34.
Radially, the distribution appears much more random that in the axial direction.
This is most likely a reflection of the uniformity of the microstructure in the radial
direction. Each bar in the cavity distribution histogram includes cavities from
approximately 60 pm in depth of recrystallized silver, 60 um in depth of columnar
silver and 10 um in depth of the bondline microstructure. The microstructure of the
recrystallized, columnar, and bondline regions did not differ between the surface

and interior.

The cavity distribution fits the stress profile slightly better in the radial
direction. The stress drops to zero at the surface, which is reflected by the absence
of cavities near the surface. The stress profile reaches a peak at about r = 0.9R and
then plateaus at less than r = 0.8R. The cavity distribution reaches a maximum at r
= ().78R after which the number of cavities flattens out. It should be noted that the
location of peak stress differs from the location of peak number of cavities. These

conclusions persist even when the bin size is altered.

Number of Cavities Observed at Sites in Interrupted Creep Samples

In the second phase of the SEM evaluation, 200 sites in each sample were
randomly selected for viewing. The 200 sites were allocated as 50 randomly
selected sites in each of the bondline, recrystallized, columnar, and interfacial
regions. The sites were not intended to be contiguous, but were randomly selected
to allow for statistical inference to be made about differences in the regions and

between the 8 samples. The sites started from the surface and extended (nominally)
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to the center of the sample. The sites were plotted on a Cartesian graph where x = 0
um is the outside surface and x = 3175 pm was the axial centerline. The y
coordinates range from a silver-maraging steel interface at y =-75 pm to the
bondline at y = 0 um and the other silver-maraging steel interface at y = +75 um.
The region between the interface and the bondline contains either columnar grains
or recrystallized grains. The interface region is defined to be the region within 15
um of the interface. A few interface cavities were identified, but due to the
enhanced etching at the interface leading to roughened texture and difficulties with

interpretation, no further image analysis was performed on interface cavities.

The sites examined using the scanning electron microscope are plotted in
figures 57-64. The small dots indicate sites devoid of cavities. Sites containing
cavities are differentiated to show the number of cavities observed. The field of
view in the columnar and recrystallized regions was 10.64 um by 10.64 um. The
field of view in the bondline region was 5.32 um by 5.32 um. Cavities as small as
20 nm in diameter were identified in the bondline region. The performance of the
field emission gun is listed as 1.5 nm at 30 keV and 7.0 nm at 1 keV. The samples
were viewed at 5 keV, so it is felt that (for practical purposes), the smallest cavities

observed were at the limits of resolution of the system.

In the two samples at 0% of the expected rupture life shown in figures 57
and 58, cavities were only observed on or close to the bondline. The number of
cavities found differed between the two samples. M75 had a total of 13 cavities, all
found on the bondline with at most two cavities per site. M67 had 20 cavities,
found either on the bondline or within 10 pm of the recrystallized region. Up to
three cavities were found at a site. Sample M72, at 1% of the expected rupture life
figure 59, looks similar to the 0% samples, with a total of 12 cavities were found on

the bondline and four in the recrystallized region within 10 um of the bondline. In
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addition, three cavities have now appeared in the columnar region. The interrupted
creep samples initially have a small number of cavities present on the bondline, or
in the recrystallized region near the bondline, and few or no cavities in the

columnar region.

The samples at 10% of the expected rupture life, figure 60, continue the
progression. A total of 12 cavities were found on the bondline (defined as being
within 2.5 pm of the bondline) and five in the recrystallized region within 20 pm of
the bondline. Two cavities were found between the columnar region and the
interface region. The second sample at 10%, figure 61, follows the trend, but has
more cavities. A total of 48 cavities were identified on the bondline, one cavity
was found near the bondline in the recrystallized region, and 17 in the columnar
region. (As will be shown later, the cavities in the columnar region are convoluted.
Image analysis was performed based on the plane of sectioning, which may
incorrectly identify number and shape of cavities.) The sample at 25% of the
expected rupture life, figure 62, has 34 cavities on the bondline, nine in the
recrystallized region within 10 um of the bondline, and 22 cavities in the columnar
region. Between 10 and 25% of the expected rupture life, the number of cavities on
the bondline increases, while the number of cavities in the recrystallized region
remains small and near the bondline. Even considering clustering effects, the

number of cavities in the columnar region increases rapidly.
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Figure 61. Statistical observation of sites in sample loaded to 10% of
expected rupture life (M76). More cavities are appearing on the bondline
and in the columnar region. Sites without cavities are indicated by small
dots; sites with cavities are indicated by larger symbols.
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The sample at 50% of the expected rupture life, figure 63, has
approximately the same number of cavities as the sample at 25% (33 on the
bondline, four in the recrystallized region, and 28 in the columnar region), but the
distribution is different. The cavities in the columnar region are widely dispersed,
and for the first time, a cavity is observed in the recrystallized region that is more
than 20 pm from the bondline. The sample at 99% of the expected rupture life,
figure 64, observed to have 49 cavities on the bondline, 16 in the recrystallized
region, and 42 in the columnar region. The number of cavities has increased in
each of the regions, with more sites containing cavities. The samples near the end
of their expected rupture life continue to increase in number of cavities in each of
the three regions. The number of cavities in the columnar region increases more
rapidly than in the bondline or recrystallized region. Only near the end of the
expected rupture life were cavities observed in the recrystallized region well away

from the bondline.
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Figure 63. Statistical observation of sites in sample loaded to 50% of
expected rupture life (M74). For the first time, a cavity has appeared in
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symbols.
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Figure 64. Statistical observation of sites in sample loaded to 99% of
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Based on these eight samples, it appears that some cavities are initially
present on the bondline or in the recrystallized region near the bondline. As the
samples are loaded, the number of cavities on or near the bondline increases. Once
cavities begin to appear in the columnar region between 1 and 10% of the expected
rupture life, their numbers increase rapidly while the number of cavities on the
bondline grows at a slower rate. Near the end of the expected rupture life, cavities

begin to appear in the recrystallized region away from the bondline.

The appearance of cavities in the three regions does not appear to be
entirely influenced by the stress distribution across the interlayer. As seen in the
finite element plots, both the von Mises equivalent stress and the hydrostatic stress
appear relatively constant across the silver from interface to interface. If cavity
location were entirely due to stress state, it would be expected that the distribution
of cavities would be relatively random within the interlayer. The dearth of cavities
in the recrystallized region and the explosive growth of cavities in the columnar
region cannot be explained by the stress state alone. The finite element analysis
also found peaks in the von Mises equivalent stress and hydrostatic stress at a radial
distance of about r = 0.9. This peak would be found at approximately 300 um in
figures 57 through 64, yet cavities are no more prevalent between 200 and 400 um
from the surface than elsewhere in the samples. The interlayer stress state resulting
from the constraint of the silver interlayer, predicted to be essentially uniform from
top to bottom and side to side, is not reflected in the distribution of cavities within

the interlayer.
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Cavity Appearance in Interrupted Creep Samples

The ion etching procedure was designed to (1) remove the deformed layer
from mechanical polishing and to (2) lightly etch the microstructure. All eight of
the samples consisted of an interfacial region beginning at the maraging steel and
extending about 15 pum into the silver interlayer. A definitive boundary could be
identified separating the interfacial region from either the columnar or
recrystallized regions. Figure 65 is a digital image of the boundary between the
interf