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THE EXPONENTIAL FAMILY OF PROBABILITY DISTRIBUTIONS 
GENERATED BY o-- FINITE MEASURES 

INTRODUCTION 

The exponential family of probability distributions can be ob- 

tained from o-- finite measures on the real line. This family of dis- 

tributions is of interest in mathematical statistics and is usually 

studied in that context; however, the exponential family is considered 

here from the standpoint of elementary probability and measure 

theory. 

In general, given a o-- finite measure µ, we will consider 

probability measures Po) satisfying 

P(A) = ß(W) 
wxdµ 

(x) 
A 

(1) 

where ß(w) is a normalizing factor. The density of P , with 

respect to µ, is 

pw(x) = ß(w) e 
COX 

(2) 

To see the statistical application of the exponential family, 

let X1, X2, ' , Xn be a sample from a distribution with density 

(2). Then 

n 

i=1 

Xi is a minimal sufficient statistic for w. 

J 

w 



Conversely, let X1, X2, ' ' , XII be a sample from a distribution 

with a density p 
w 

and suppose that {x; p(x) > 01 is independ- 

ent of w. Then, according to Lehmann [ 6] , under certain regu- 

larity conditions, if there exists a one -dimensional sufficient statistic, 

then the densities 
w 

p compose an exponential family. Also, as an 

application of likelihood ratio, there exists a UMP test for testing 

H1; w < w0 against H2: w > w0. 

We define the spectrum of the measure µ, A(p.), to be the 

smallest (closed) interval that contains all the points x such that 

µ(U) > 0 for all open sets U containing x. The parameter space, 

is the set of points w such that (1) has meaning. (These 

definitions are made precise below. ) 

First some relationships between µ, A(p.), and Z (p) are 

examined. Whenever A(p.) is bounded on the left, S-2 (p,) is un- 

bounded on the left. Thus whenever 11(µ) is a bounded set, 

S2(µ) = R. It is known that SZ(p.) is convex [6] . Finally, conditions 

equivalent to S-2(p) being bounded are given. 

Next it is shown that all moments of P 
w 

exist if w be- 

longs to the interior of SZ(µ). Denoting the mean of pw by m(w ), 

m(w) is a continuous increasing function on the interior of Z (p), 

and its range is contained in A(p.). Surprisingly enough the range of 

m(w) frequently contains the interior of A(p.), and the main result 

of this thesis, Theorem 1.10, states when this occurs. 

2 

S2 (µ), 
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Many well known distributions belong to the exponential family 

and some of these are given here, including the binomial, Poisson, 

and negative binomialdistributions on the integers and the exponential, 

Gamma, and normal with known variance in the absolutely continuous 

case. 

Finally, Chapter 2 concerns discrete or atomic probability 

distributions. A characterization of exponential family distributions 

on the non -negative integers with positive weights at 0 is given. 

A very interesting subclass of these distributions found in [4] is 

presented and discussed. 

For our discussion, we will have a fixed measurable space 

(R, E) where R denotes the real line and E the o--algebra of 

Borel subsets of R; when measures on I, the integers, or N, 

the natural numbers, are considered, one could reduce the o--algebra. 

However, the use of (R, E) is sufficient for all practical purposes, 

and the use of a fixed measurable space eliminates needless changes 

of the underlying space. 

The set theoretic notation and definition of terms from meas- 

ure theory will be found in [5] and are, for the most part, omitted 

here. 
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CHAPTER 1. THE EXPONENTIAL FAMILY 

1.1 Definition of the Exponential Family 

Consider an arbitrary o-- finite measure µ on R (so that 

(R, E, µ) is now a measure space). We make the added assumption 

that B is a bounded subset of R, B E E, such that 

µ(B) > 0. (1.1) 

This restricts µ to nontrivial measures. Next define a and b 

by 

a= inf {x:µ([x, x +E))> 0 for all c> 0 } , 

b = sup {x: µ((x -E, x] ) > 0 for all c > 0} . 

Here a = - o0 or b = + oo is allowed. If a and b are finite, 

(1. 2) 

define the spectrum of the measure µ,11(µ), by 

A(.) = [a,b] . (1. 3) 

If a or b are infinite, use open or half open intervals in equation 

(1. 3). 

The parameter space of µ , S2(µ), is defined by 

S2(µ) = {w: 0 < J endµ (x) < +oo } . (1. 4) 
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This is the major step in defining the exponential family. The 

parameter space has been considered as a subset of the extended real 

line [1] but such an approach admits parameters which do not, in 

general, specify probability distributions. We have chosen the param- 

eter space to be one -dimensional and the exponent to be linear in x. 

For a more general definition of the exponential family see [6] . By 

the existence of the set B in (1. 1) we have 

S 
ewxdµ 

(x) > J ewx,dµ.(x) > inf {e} (B) > 0 

B XEB 

for all WER, so that finiteness of the integral in (1. 4) is the pri- 

mary concern. For convenience we write, for all wESZ(µ), 

n(w) = J ewxdµ (x), 

R(W) = [n(w) 

The objective of our discussion is to generate probability 

measures from certain o-- finite measures. To accomplish this we 

define a distribution function, F( ; w), for each wESZ(µ) by 

(1. 5) 

w"tdN (t) 
(-0°, x] 

F (x; co) _ (1. 6) 

rewtdN(t) 

-1 

J 



The mean of this distribution (if it exists) is 

S'xewxdp.(x) 

m(w) _ 

Se(')xdp, (x) 

(1. 7) 

For each F(-; w), there is a probability measure P such 

that equation (1) holds. It is clear that we could write 

m(w) = gxdPw(x). 

The set of distribution functions and the set of probability measures 

are equivalent; we choose to define the exponential family to be the 

set of distribution functions satisfying (1. 6) for some o-- finite 

measure µ. 

1. 2 Relationships between A(µ) and S2(µ) 

This section is a study of the relationships between the spec- 

trum of a o-- finite measure µ and the parameter space S2(µ). 

Some of the results, besides being of independent interest, will have 

application to the problem discussed in 1. 3. 

Proposition 1. 1. Suppose S2(µ) is non -empty. Then, if A is 

any bounded subset of R, µ (A) < + oo . 

Proof: There exists west(µ). Clearly 

w 

6 

J w 
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and 

0 < y = inf {ewx: xeA} < + oo 

+oo > 5(X edµ(x) ? edµ(x) ? y F(A) 

Dividing by y yields µ(A) < + oo . 

Next we consider certain conditions on 11(µ) and make some 

conclusions about µ and OW. The first consideration allows us 

to characterize a certain class of probability distributions. 

Proposition 1. 2. Assume a is finite and A(µ) _ [a, a] . Then 

0(µ) = R and p. determines an improper distribution with jump at 

x = a. 

Proof: Since p. is o-- finite, 0 < p. ( {a }) < +00 . We have 

dµ(x) = eW µ({a}) < weR, 

which implies S2(µ) = R. 

co) 
ewtdµ(t) 

( - 00, x] 

0, x < a, 

1, x>a . 

1 

S 
ecu(t-a)dµ 

(t) µ({a}) 
(-00,x1 

(1. 8) 

A 

, 

F(x; =ß(w) _ 

_ 

J 
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We have established the intuitively obvious fact that the set of 

measures satisfying the hypothesis of Proposition 1. 2 determines all 

improper distributions on R. 

Having fixed the measure µ, we then consider F( ; w) 

for wES2 (µ). Denoting the variance of this distribution by o (w), 
2 

we have the following proposition. 

Proposition 1. 3. Suppose there is some wES2(µ) such that 

v2( w) = O. Then 

Proof: 

A(µ) _ [m(w), m(w)] 

0'2(w) = ß (w) Ç(xrn(w))2ewxdµ (x) = O. 

Thus x -m(w) = 0 a. e. [p.] , and m(w) is the a of 

Proposition 1. 2. 

It follows from Proposition 1. 3 that wES2 (p.) such that 

2 2 
cr (w) = 0 implies cr (w) = 0 for all wES2 (p.). A similar result is 

given in [8] . 

Proposition 1. 4. Assume S2 (p) 4 . If b < + co, then S2 (p) 

is an interval, unbounded on the right. If a > - 00, then S2 (p) is 

an interval, unbounded on the left. 

Proof: Assume w1ES2(p.) and a > - 00. Whenever w2 < w1 and 
w x w x 

X E[ 0, oo), e 2< e 1 Thus we have . 



w x w w 

e d(x) < 
S e 1 d(x) < 

$e1X dµ (x) < + oo 
. 

[0, 00) [0,00) 

If a > 0, then w2ES2(µ) and 

(-00, wj S2(µ) 

If a < 0, then, by Proposition 1. 1, µ([a, 0)) < + 00 . 

Ca) x 
Since e 2 is a bounded function on [a, 0), we have 

Se2X dµ(x)<+00 

which implies w2E S2(µ) and (1. 9) holds. 

The proof of the corresponding result for b < + 00 is 

analagous. 

9 

(1. 9) 

Proposition 1. 5. Assume S2(µ) . If A( p.) is a bounded subset 

of R (that is, _oo<a and b < + oo ), then S2(µ) = R. 

Proposition 1. 5 follows directly from either Proposition 1. 1 

or 1.4. Whenever 0 ES2(µ), we have 11(R) < + 00. It should also be 

noted that, while A(µ) bounded implies µ (R) < + 00, S2(µ) = R 

does not follow from µ (R) < + 00. This is illustrated by the follow- 

ing example. 

e 

_ 

e 

1 

# 



10 

Example 1. 1. Define a measure on N by 

µ( {k }) = k -n for k E N, 

where ne N. For n = 1 we have 

00 

S7(µ) _ {w:0 < ew 
k 
k-1 < +00 } = (-00,0) 

kLLL...=1 

and µ(R) = µ(N) = 

00 

=+00. 
k=1 

Notice that for n > 2 we obtain SZ (µ) _ (-00,0] and 

µ(R) <+oo. 

The example is also of interest because, for n > 2, SZ(p.) 

is not an open set in R. If we consider the moments of the resulting 

distributions, it is clear that, for n > 2, there are exactly n- 2 

moments corresponding to w = 0. However, all moments exist in 

the interior of SZ(µ). This is a very suggestive property of this 

example and that it is true in general for the exponential family will 

be shown in 1. 3. 

The following theorem can be found in [6] . The proof is 

short and is also given. 

Theorem 1. 1. The parameter space of p., 0(p..), is a convex set. 

Proof: If SZ(µ) = or SZ(µ) _ Iwo}, there is nothing to show. 

k=1 

1 

cl) 
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Otherwise we have col, cot ES2(µ) such that col 4 cot. Take 

0 < a < 1 (a + (1 -a) = 1). 

Sexp{(ia 
(' wlax co(1-a)x 

+ w2(1-a)x}dµ(x) = Je e dµ (x) 

(1.10) 

wlx a 5e2d(x)} e 

by Holder's inequality. Each term of (1. 10) is finite which implies 

wla + co2(1- a)ES2(µ). Therefore S2(µ) is a convex set. 

An obvious restatement of the theorem is that S2(µ) is always 

an interval. Some authors have not realized this fact. Propositions 

1. 2, 1. 4, and 1.5 lead to the conclusion (independent of Theorem 1. 1) 

that S2(µ) is an interval having special properties due to the assump- 

tions on A(µ). 

Next, certain assumptions are made about S2(µ) and conclu- 

sions derived concerning µ and A( p.). The definition of 0(0, 

equation (1. 4), leads us to a close consideration of n(w), equation 

(1. 6). 

We first inquire whether there are o-- finite measures 

such that S2(µ) is empty; above we have frequently assumed that 

this was not the case. The existence of such measures is shown by 

example. 

< { d µ (x)} { 

P. 
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Example 1. 2. Let µ be a measure such that 

2 
x 

e x> 0 , 

d µ 
= dm 

x < 0 

(1.11) 

where m denotes, as it shall throughout, Lebesgue measure on R. 

Consider, for any wE R, 

2 
ewxdµ 

(x) = ex +`,x dm(x). 

J (0, °o) 

This integral diverges so (µ) = 

We next consider measures that have bounded parameter 

spaces. Suppose we have a measure µ such that, for all E > 0, 

and 

Sewxdµ 
(x) <+co, w0 e w< col' (1. 12) 

(' (w1+E )x 
J e dµ (x) _ + 00, (1. 13 ) 

R+ 

S(w0-E)x 
e dµ (x) _ + 00, 

R 

(1.14) 

where R+ = {x: x > 0} and R = R - R+ . Define M(w0, col) to 

(x) 

, 

Sb 

e 

J 
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be the set of measures satisfying (1. 12), (1. 13), and (1. 14). The 

following proposition is simply a restatement of definition and finds 

use in determining whether S2(i) is bounded. We denote the interior 

of the set A by Int(A). 

Proposition 1.6. IntSZ(µ) = (c00, if and only if p. E M(w0, col). 

Proof: (1. 13) and (1. 14) with the identity 

SfdI. = fdµ + fdµ 

R+ 

imply IntS2(µ)C(w0, col). 

and 

and 

(1. 12) assures us that equality holds. 

Conversely, suppose IntSZ(p.) = (w0, col) 4 cp. Since we have 

(w0-E)x < (w0 + E)X, 

(w1 -£ )x > (col + E)x, 

xER+, 

xER ; 

(w0-E)x (W +e)x 
e dµ (x) < 1 e dµ (x) 

R+ R+ 

(1. 15) 

C e 
(wl -E)xdµ 

(x) > Se (w1-£)Xdµ (x). (1. 16) 
J 

col) 

R R 

J 

R 



For 0 < e < w1 -w0, (w0 + c)ES2(µ) and 

(w0-c)x 
e dµ (x) < 

se(0)0+E)x 
dµ (x) < + oo 

R+ 

Thus (1. 15) yields (1. 14). Similarly from (1. 16) we have (1. 13). 

(1. 12) follows directly. 

M("0, wl ), w0 

shows. 

14 

is non -empty as the following example 

Example 1. 3. Define a measure µ on I by 

({k}) = 

for S > O. Let J = I-10} . 

0, k = 0, 
w k 1+S 1 )-1, k> 0, (1.17) 
w k l+ó 

e 0) 1, k< 0, 

Suppose wl 
< wl 

+ e = W. Then 

.0 
ck 

µ ({k})ewk> kl+ 5 - +00 . 

keJ k= 

Similarly 

. 

wl, 

e 

k 

< 



µ({k})ewk = +ao 

kEJ 

But when w0<w<wl 

when w< w0 . 

µ({k})ewk < + ao . 

keJ 
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The end points, w0 and col' in 0(µ) if E > 0. 

If w0 = w1, we require b > 0 so that S2(µ) 4 (4). The measure 

in this example has no moments at w0 or col if S < 1 and has 

exactly n moments if n + 1 > S > n. Obvious variations on this 

example allow w0 or col to belong to 0(p.). 

For the case S2(µ) = {w0} , we have certain properties listed 

below. 

Corollary. Suppose S2(µ) = {w0 }. Then 

(i) 1 e 
J + 

R 

(coo -e)x 
dµ (x) < + o0 

(w0+e)x 
e dµ (x) < + ao ; 

, 

0 < 

are 

; 
( 

¡ 
(ii) 1 
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(iii) If w0 > 0, then 0 < µ (R +) < + co and µ (R ) =+ 00; 

(iv) If w0 < 0, then 0 < µ (R-) < + oo and µ (R 
+ )=+ 00. 

1. 3 Moments and Related Problems 

In this section we suppose µ to be such that 

Int S2(µ) = (w0, col 

and (1.18) 

Int A (µ) (I 

The proof of the following theorem can be found in [4] and is indicated 

here. 

Theorem 1. 4. Suppose µ satisfies (1. 18) and F( ; w) is the 

distribution corresponding to wE IntS2(µ ) . Then all of the moments 

of F( ; w) exist, and dd,w) exists and is positive. 

Proof: Let w be such that w0 < w < col and let 

T = min {w -w0, col -co} > 0 . 

For all t such that ti < T, t + wESl(µ ). Therefore 

0 < 
e(w+ 

t)xdµ 
(x) < + 

t , 

* 

I 

00 



which implies 

41(t) = ß (w) J e (w+ t)xdµ 
(x) < + 00 . 

17 

Thus ii(t) exists whenever I ti < t, and all moments of F( ; w) 

exist for w0 < w < col 

Specifically 

m(w) = ß(w) Sxewxdp, (x) < + co . 

Sx2ecuxdN (x) - ( SxewxdN. (x))2 
dm(w) 
dw (W) 

[n(W)] 2 

= 
J n(w) 2 n(w) dµ. (x) - [ m(w)] 

= ß (w) S(x-m(w))2ewxdN (x) 

= o-2(w) > O 

It is intuitively clear that the mean of a distribution generated 

by µ must be contained in 1(µ ). The range of a function f is 

a set denoted by R (f( )). 

Theorem 1.5. R(m( ))CA (µ). 

Proof: By definition of b, 

(' 

J 

. 



Then 

and 

x<b a. e. [µ] . 

wx wx xe < be a. e. 

R (w) gxecoxdp. (x) < P (w) gbewxdµ (x) = b. 

Thus m(w) < b. Similarly ( > a. 

18 

We have established the existence of a one -one continuous 

mapping of IntS2(µ) onto R(m( ))CA (µ). Therefore there 

exists a function w( ) = m -1( ) which is a one -one continuous map- 

ping of R(m( )) onto IntS2(p. ). We have 

m(w(X)) = X , X ER (m( )). (1. 19) 

(1.19) is a very convenient equation since we can alter the parameter 

space to R(m( )) as shown in the following equation. 

F(x;w(%-)í` = F(xj X ) = ß(w(k )) J 
eW(X )xdµ 

(x), 

(-Op, x] 

for XER(me )). 

The parameter space corresponding to the distribution func- 

tions F( I X.) is R(m( )). By Proposition 1. 5, coienever 
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A(µ) is a bounded subset of R, S2(µ) = R. Thus, the new parameter 

space must be a bounded set. 

We now consider two important examples. 

Example 1.4. Let m be Lebesgue measure restricted to R 

A(m) = [ 0, co). 

oo 
x co x -1 

n(w) = e dx = 

0 
w 

-1 
m(w)= 

whenever wES2(m) = ( -00, 0). 

It is easily verified that 

1 
[ w ] = 

-1 

m(w) has the desired properties and we ) is defined by 

Thus 

Example 1.5. 

w(X) _ 1 for XE(O,00). 

t x 
F(xiX) _s 5: e 

A 
dt,, x> 0. (1.20) 

0 

Let y be counting measure on M = N v {0} 

(M will be used below). (y (A) is defined to be the number of 

elements of M contained in A.) A(v) = [ 0, oo). 

w 

1 



n(w) = 

00 

k=0 

COX 
e <+ co 

whenever e < 1 or we( - , 0) = 0(v ). Therefore 

It can be verified that 

n(w) - 1 

1-e o.) 

m( )= 1-e 

e 
W 

which has the properties listed above. cw(X) is defined by 

Thus 

() =:Qn w 1` 
1-X 

[x] 

F (x I A ) 
1+X. 

) 
k 

1+X 
9 x > 0 . 

k=0 

20 

(1. 21) 

In equation (1. 20), F(. ¡X ) is the distribution function of an 

exponential random variable with parameter 1A . In equation (1,21), 

F( I X) is a geometric distribution function with parameter 1 /(1 +X). 

In each example m(.) accomplished a mapping of IntS2 onto 

Intl. There are examples (the binomial distribution, for instance) 

1 

- 
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of the mean mapping the real line onto Intl, a bounded set. 

We now consider the question of how often m() maps 

IntS2 onto Int A. In [4] a parameterization of exponential type 

distributions is given in which it is assumed that (1. 19) holds for all 

X E 1i(µ ). To explore the generality of this assumption we consider 

slightly weaker conditions. Our object is to characterize measures 

such that 

R(m( )) =IntA (µ). (1. 22) 

We will examine the problem in detail, but we first consider a very 

restricted set of measures. 

Theorem 1. 6. Assume A(µ) = [a,b] is a bounded subset of R 

and that a and b are atoms of F1. Then R (m( ))IntA(µ) 

Proof: By the bounded convergence theorem 

lim 1 ek(x-b)dN (x) = N ( {b} ), 
k -oo .J 

and 

lim 
k-oo 

Therefore 

f ek(x-b) dµ (x) = µ ({b}) 
x 



r xekxdµ (x) 

lim = lim 
k --oo rekxdµ(x) k -ooekbµ({b}) 

J 

bekbµ ({b}) =b. 

22 

Similarly lim m(k) = a. 
k --o0 

Suppose, however, that 1.1.({b}) = O. Then we have 

lim ek(x -b) dµ (x) = 0 , 

k o0 

and the method of the preceding theorem does not apply. To proceed 

we use an idea of Laplace (known as Laplace's method [ 2} ) about 

the asymptotic expansion of integrals and apply it to the integrals 

under consideration. We will take 

to mean 

a(x) 
1 

Lemma. Suppose A(µ) = [ a, b] , S2(µ) + cf:), f > 0, f E Ll (µ ) 

and 0 < c < b -a. Then, if Ship. > 0 for all ó > 0, we have 

[b -S, b] 

-. 

J - 

lim 
b(x) = 

x-.x0 



5f(x)ed(x) ^- 5f(x)e kx dµ (x) (k 

[a,b] [b-E, la] 

Proof: 

) 

23 

f(x)ek(x-b+e)dµ (' f(x)ek(x-b+e)dN. f(x)ek(x-b+e)dµ 
(x) 

v 
[a, b] [a, b-c] [b-e, b] 

By the bounded convergence theorem, 

lim J f(x)ek(x-b+e)dµ = O. 

k~ 00 [a, b-e] 

Also, by the monotone convergence theorem, 

Sf(x)ek(x-b+e)dµ 

[b-e, b] 

becomes unbounded as k 00 . Thus we may conclude 

f(x)ek(x-b+e)dµ ^ f(x)ek(x-b+e)dN. (x). (k - oo ) 

[a, b] [b-e,b] 

Whenever a b anon, we have b c. n n n n n n 
k( -b +c) Therefore, letting ak = e 

' 

Sb 

= 1 5 

(x) 

5 

(x) 

, 

J 



Sf (x)ekxdµ (x) ,,, J f (x)ekxdµ (x) . 

[a, b] [b-e,b] 

The above lemma is extended to 11(µ) unbounded in the 

lemma preceding Theorem 1. 8. 

As an application of such an expansion let g(x) = dm (x) 

be bounded on [a, b], and left -continuous and non -zero at b. 

Then it can be shown that 

and 

g(x)ekxdx g(b)ekbk -1 

a 

xg(x)ekxdx^- bg(b)ekbk-1 

a 

This, of course, implies lim m(k) = b. 
k-oo 

Theorem 1. 7. Let µ be a measure such that A (µ) _ [a,13] 

and SZ (p. ) = R. Then 

and 

lim m(x) = b. 
x -- 00 

24 

(1. 23) 

lim m(x) = a. (1. 24) 
x -- - 00 

fb ti 

b 



25 

Proof: Note that the assumption S2(µ) = R is implied by S2(µ) 4 . 

If a = b, the conclusion is obvious. Thus we assume Int 11(µ) 

We will prove (1. 23) by taking the limit of a sequence and then ap- 

plying the continuity of m( ). 

By an application of the lemma, 

J xekxdµ (x) J xekxdµ (x) 

[a,b] [b-e,b] 
lim - lim 

k ~ oo ekxdµ 
(x) 

[a,b] 

k 
00 ekxdµ 

(x) 

[b-s,b] 

b ekxdµ (x) 
gxekxdµ 

(x) Se'dFi (x) 

[b-s,b] [b-s,b] [b-s,b] 
lim 

C 
> lim > lim 

k 
00 

-` 
ekxdµ 

(x) 
k- oo ('ekxdµ 

(x) k -i 00 
Sekxdµ (x) 

[b-e,b] [b-E,b] [b-s,b] 

Thus we may conclude b > lim m(k) > b -c for arbitrary c > O. 

0 

Therefore lim m(k) = b. (1. 24) follows in the same manner. 
k 0 

It should be noted that Theorem 1. 7 implies Theorem 1. 6 

which is presented for its simple proof and motivation for new con- 

siderations. Thus (1, 22) is true for all measures with non -empty 

parameter spaces and bounded spectra. 

4 1. 

-` 
. 

5 (b-E) 

k -- 

J 
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Lemma. Suppose A(µ) is unbounded on the right and S2(µ) = R. 

If g E L1(µ) is a non -negative function such that, for every B <+ 00, 

then 

g(x) dµ (x) > 0, 

[B,00) 

Sg(x)ekxdµ(x) 
^' 

Sg(x)ekxdµ(x) (k-'+0o) 

[A, 00) 

for all A < + Oo. 

Proof: 

and 

Therefore 

and 

lim J g(x)ek(x-A)dµ (x) = 0 

k a 00 (-°o,A) 

lim g(x)ek(x-A)dµ (x) = + oo, 

k-'Oo 
[A, 00) 

k(x-A) (' k(x-.A) g(x)e dµ (x) ^- J g(x)e dµ (x) 

[A,00) 

g(x)ekxdµ (x) ^' J g(x)ekxdµ (x) 

[A, oo ) 

1" 

J 

J 

J 
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Theorem 1. 8. Let µ be a measure such that A(µ) is unbounded 

on the right (that is, b = + 00) and S2(µ) = R. Then 

R (m( Int A(11). 

Proof. 

xekxdµ (x) µ J Xekxd (x) 

[A, 00) 
lim = lim 

k 00 
sekxdµ (x) k 

-00 ('ekxdW 
(x) 

[A,00) 

Aje kxdµ (x) 

[A,oO) 
> lim -A, 

k-- oo yekxdp, 
(x) 

{A,00) 

or lim m(k) > A for all A < + oo Thus (1. 23) holds. 
k --oo 

If a = -00, then (1. 24) follows by a similar argument. If 

a > _oo, then we can apply the proof of Theorem 1. 7 to yield (1. 24). 

The remaining cases are treated in the following theorem. 

We study only lim m(x). However, the limits we do not treat 
x --col 

follow from the theorems we present, and our treatment of the prob- 

lem is complete with Theorem 1. 9. 

Theorem 1. 9. Let µ be a measure such that A(µ) is unbounded 

on the right and IntQ(p.) = (ca, 

(i) If wl 0(µ ), 

where col < + 00 . Then 

lim m(w) = + 00; (1. 25) 
w--W 1 

-- (' 
J e e dµ 

(01) 

)) 

$ ' . 



(ii) If w1ESZ(µ) but xewlx 

lim m(w) = + 00 ; 

w-w 
1 

wlx 
(iii) If w1ES2(p.) and xe E L1(µ ), 

28 

(1. 26) 

lim m(w) < + 00 . (1. 27) 
w- CO 

1 

Note that (iii) implies that there are members of the exponential 

family such that m() maps IntS2 into Int A. 

Proof: (i) If coil SZ(µ ), we have, for west(µ), 

and 

Sb 

ewlxdµ wxdµ 
(x) < + 00, (1. 28) 

R R 

wlx i 
xI dµ (x) < x) ewxdµ (x) <+co, 

R R 

wlx (' wlx 
xe dµ (x) > J e dµ (x) _ + 00 . 

x > 1 

For A > 1 we have 

x> 1 

(L 29) 

(1.30) 

L1(µ)' 

e < 

J 

S 

J 



ewxdµ 
(x) j ewxdµ (x) (w ) 

by (1.28), and 

Jxe (x) ti J xecoxdµ (x) (w- co- 

[A,00) 

by (1. 29) and (1.30). 

Thus 

lim m(w) = lim 
w- wl w-- wl 

and (1. 25) follows. 

SXewxdw (x) 

[A, °O ) 

Sewxdp.(x) 

[A, 00) 

> A, 

(ii) By the monotone and bounded convergence theorems, 

` xe(4xdµ (x) 

Sedµ (x) 

= lim 
w-wl 

Sixewxdp. (x) 

Swlx 
e dµ (x) 

- + 00 . 

29 

^- -~ 
1 

J [A, co) 

) 

lim_ 

wW1 
J 



Using the bounded convergence theorem, 

w x 
rXewxdµ 

(x) Sxe 1 dµ (x) 

lim - (' W X 

W wl J edµ (x) e l dµ (x) 

<+ 00. 
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Therefore (1.23) holds unless the situation described in (iii) 

of Theorem 1. 9 occurs. Clearly, Int 11(µ) = 4 implies A(µ) = [a, a] 

for some a, and R(m( )) = A(µ). Since (iii) is the only case in 

which (1.22) is false, we refer to Example 1.3 with 6 > 1 for an 

example of this situation. We summarize our results in the following 

theorem. 

Theorem 1. 10. Let µ be a measure such that IntS2(p.) _ (we, wl) 

is non -empty. Then 

unless (i) w, < + co, 

R(m( ))=Int A(µ) 

W1X 
and xe is integrable; 

W 

or (ii) -oo< W0, and xe is integrable. 

1.4 Members of the Exponential Family 

This section gives futher examples of distributions found in 

(iii) 

µ 

- 
.51 
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the exponential family. Propositions 1. 2 and 1.3 dealt with improper 

distributions. Besides this, five examples have been given; two of 

these are catalogued below for completeness. One of the more fre- 

quently encountered distributions on the non- negative integers not 

found below is the hypergeometric. Indeed, it is not a member of the 

exponential family. Despite this omission many of the common prob- 

ability distributions belong to the exponential family. 

The first group of distributions will be generated by measures 

on M, the non- negative integers. If µ is such a measure, it will 

be assumed that 

= O. 

The function p(x; w) will represent the probability mass function of 

the distribution corresponding to w. 

(A) Suppose µ is a measure such that µ( {a }) > 0 and 

µ (R- {a }) = O. Then µ determines an improper distribution with 

jump at x = a. (See equation (1. 8). ) 

(B) Suppose µ is a measure such that 

p,({0 }) = 1, 

µ( {1 }) = 1, 

µ(M-{0, l})=0. 

µ (R -M) 



and 

Clearly 
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n(w) = 1 + ew so that 

p( ; w) 

p(0; w 

w 
p(l;w) = 

eco 

w l+e 

is the mass function of a Bernoulli random variable 

with probability of " success" equal to 

(C) Define µ by 

µ( {x }) = (X), xe {0,1,2,,n }, 
and 

n(w) = 

co 
e 

l+ew 

µ(M-{0,1,2,,n}) = O. 

n 
n) 

eco = (l+ew) 
n 

k=0 

w n-k 
p(k;(a)= (k)( e ) ( ) , k=0,1,...,n. 

l+e l+e 

p( ; w) is the mass function of a binomial random variable with 
co 

parameters n and 
1+ eco 

e 

Of course (C) contains (B) but they are listed separately. 

This will also occur with (F) and (E) below and will not be mentioned 

= 
1 

1+ew 
, 

. 

. 

k 

. 



again. 
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(D) Let µ be a measure such that 

P( ; w) 

n(w) = 

µ({x})=1 
X! 

, xeM. 

00 

k=0 

c,.>k 
X 

k! = e where X = ew. S2(µ) = R. 

-Ak 
p(k; w) _ 

k, 
, keM 

is the probability mass function of a Poisson random variable 

with mean ew. 

(E) Assume µ is a measure with 

µ({x} ) = 1, xEM. 

n(w) = (1- w)-1. 0(1) = (- co , 0). 

p(k; w) = (1- 

p(. ; w) is the mass function of a geometric probability law with 

parameter 1 -ew. (See Example 1, 6.) 

(F) Define µ by 

e 

e 

L) 



where mE N. 
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µ ({x}) - 
(m+xx-1)' 

XE M, 

oo 
-m ewk (mkk-1). , 

- (1- w) 

k=0 

whenever w ESt(µ) = ( -oo, 0). 

p(k;(0)=(mk-1)(1-ew) 
m ewk, kE1vI 

k 

Therefore we have the negative binomial distribution with parameters 

m and 1-em. 

(G) Suppose 

and 

µ({x}) = 1, x = 0,1,,n, 

µ(M-{0,1, ,n}) = 0 . 

This measure generates the truncated geometric distribution 

(see (D)). SZ(i) = R so that, in particular, OESZ(p.). 

n 

and 

n(0) = 

k=0 

= n+1 

p(k, 0) = 
1 

n+1' 0 , 1 , 

, 

n(w) _ 1 
(m-1)! 

. 

k = ,n 

e 

1 
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Thus we have the probability measure on {0, 1, 2, ,n in which 

each point is equally likely. 

(H) Assume 

and 

Then 

n(w) = 

whenever weS2(p.) = ( -0, 0). 

p(k; w) _ 

µ({x}) = 1, XE N, 
x 

p.({0}) = 0 . 

w 
_ -.en(1-e ) 

-1 
wk 

k , 
k e N. 

(1-e(4) ) 

p( ; w) is the mass function for Fisher's logarithmic series d.istri- 

bution. 

Next we turn to the absolutely continuous distributions. m, 

as above, denotes Lebesgue measure, and we define measures on 

R by their Radon - Nikodym derivatives with respect to Lebesgue 

measure. The probability measures we generate will also be abso- 

lutely continuous and so will be characterized by their density func- 

tions f( ; w). 

e 

ro 
wk 

e k 
k=1 



(I) Restrict m to [ 0, oo). 

n(w) = - 1 for e S2(µ ) = (-co, 0). 
w 

f(x; w) = 

-we I = wlewx , x> 0 

0, x < 

f( ; w) is the density function of an exponential random variable 

with mean I wI . (See Example 1. 5. ) 

(J) Define µ by 

2 

dm (x) = exp { --x- 
2 

}, xeR . 

20- 

(' 2 

n(w) = J exp{- x + wx} dx 
2o- 

2 2 
(('' 

2 2 

= exp { w 2 } J exp{- (x 6 ) } dx 

2 2 

= o-NTE; exp {w 2 } . 

Therefore 
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2 2 2 2 2 

1 exp { -w 2 + cox - 
x 

} - 1 exp {- 2 ( x 6 ) } , 

T NTT Er 2ar o- 

0 . 

f(x;w)= 



and f( ; w) is the density function of a normal random variable 

with mean coo- 2 and variance o-2. 

(K) Restrict m to [a, b] . 

If w+ 0, 

and 

b S'e wxdx 1 ewb-e 
w 

a 

f(x; w) 

w wx 
e , x E [a, b] , 

e 
bw -e aw 

o, xi[a,b] . 
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When a = 0 we have the density function of a truncated exponential 

distribution. When w = 0, n(0) = b -a and 

f(x.' 0) - 1 xE [ a,b ] b-a' 

Thus we have the uniform distribution on [a, b] . 

(L) Define a measure p. by 

dm (x) 

for r > O. 

r-1 
x , x > 0, 

o, 

n(w) = = , 

x < 0 , 
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._ c'eP xr-lewxdx = r(r) 
r 

= r(r) 

whenever ox S2(µ) = (-co, 0). 

wlrr -1 
-Iwx 

x dx 
r(r) 

r r-1 - w) x 
I f(x; (0) - x e , x> 0, 

and is the density of a Gamma random variable with parameters r 

and 

(M) Let p. be determined 

dµ 
= 

by 

-1 
x 2 

0, 

x> 0 

x< 0 , 

dm 

for n N. 

co n-1 n 
n( w) = 

(" 2 
ewxdx = 

2( 1 

for weS2(µ ) = (-co, 0). 

f(x; c,á x 

n 

2 

42 0) 

-1 
edwix, x> 0 . 

00 
n(w) 

0 0 

I wI -r, 

F(r) 

Iwi 

(x) 

, 

x 
0 

- 

) r ( 1 1 ) 

(101)2 

F(Z) 



Thus we have the density of a 

n and 1 

'r2T 

2 

39 

random variable with parameters 

From (K) and (G) it can be noted that any truncation of a 

distribution in the exponential family is again in the exponential family. 

It should not be supposed that these examples are shown here for the 

first time. Most of them are well known, yet do not appear in any 

collected form that this author could locate. Therefore it seemed 

worthwhile to compile a collection of examples and present them in 

the spirit of this discussion. Several sources have been helpful in 

this task [1,3,4,7,8] . 

x 
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CHAPTER 2. ATOMIC PROBABILITY DISTRIBUTIONS 

The following definitions are taken from [3} . A point xER 

is an atom of the measure la if µ ( {x }) > O. Let the distribution 

F be generated by p.. F is concentrated on the set A if 

µ (R -A) = O. F is said to be atomic if it is concentrated on the set 

of its atoms. 

A well known atomic measure is counting measure on N. 

In this chapter we consider a- finite atomic measures that are abso- 

lutely continuous with respect to counting measure on M = Ni {0} . 

As seen in 1. 4, many of the classical probability measures on M 

can be obtained from this class of measures. Throughout this chap- 

ter v will denote counting measure on M. 

2. 1 Exponential Distributions on 

In this section we study exponential family distributions gen- 

erated by a measure µ such that 11 v and µ ({ 0 }) > O. A 

completely analogous treatment of absolutely continuous distributions 

exists and will be commented on below. Suppose we have such a 

measure. Since d (x) = h(x) exists, 

00 

Sed(x) _ h(k). 

M 

« 

k=0 

¡' 
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Therefore S2(µ) = {w: 0 < ewkh(k) < + oo } . 

k =0 

We define n(w) and ß (w) as above and suppose that S2(µ) 4 . 

Of course, since 11(µ)C[0, oo), S2(1.1.) is unbounded on the left 

by Proposition 1.4. 

For XEM, h(x) > 0 and, moreover, h(x) = µ( {x }). 

For our purposes, then, we need only consider non -negative functions 

h() on M such that h(0) > O. 

For examples consider (B) through (G) in 1.4. The func- 

tion h(x) has the form (n) l 1, and (m +x -1)! 
x x' , x! 

The measures are exactly the same as in 1.4. 

Proposition 2.1. Assume 

(a) h(k) > 0, 

(b) h(0) > 0, 

(c) S2 = {w : 

h() is defined on M and 

kE N, 

00 

k=0 

ew h(k) < +00 } is non -empty. 

Then, for each west, h( ) determines a probability measure on 

M with positive weight on {0} . Furthermore, any function g( ) 

such that g(k) = ah(k), kE M, a > 0, determines the same measure. 

00 

1 

/ 

e 
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Proof: Suppose F( ; w) is the distribution function associated 

with h() and G( ; w) the distribution function associated with 

g() . Then 

[x] 

ah(k)ewk 

k=0 
G(x; co) _ - F (x; o.)). 

oo` 

) ah(k)ewk 

k=0 

Proposition 2. 1 implies a decomposition of the set of functions 

(or measures) satisfying (a), (b), and (c) into equivalence classes. 

Our equivalence relation n = n is, of course, defined by f = g 

if and only if there is an a > 0 such that f = ag. The functions 

within an equivalence class determine the same probability measure. 

Assume that F( ; w) is the distribution function generated 

by h( ). Since h(0) > 0, we may, without loss of generality, 

assume h(0) = 1. (According to Proposition 2. 1, g(x) = h(0) 

generates the same distribution as h(x). ) For XE M 

f(x) = 
( 

Substituting x = 0, we obtain 

ß(w) h(x)ewx, weS2 . 

f(0) = ß(w)h(o) = ß(w) 



or 

Now 

Clearly 
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f(0) = 

00 
-1 

h(x)ec`lx ] 

f(0)f(x+y) h(x+y) 
f(x) f(y) h(x) h(y) 

We have shown sufficiency in Theorem 2. 1 below. The proof 

of necessity is due to Patil and Seshadri [7] . 

Theorem 2. 1. Let f() be the density function of an atomic prob- 

ability distribution on M such that f(0) > O. Then the distribution 

function of f() belongs to the exponential family if and only if there 

exists a non- negative function h() on M such that 

f(0) f(x h(x 
f(x) f(y) h(x) h(y) 

whenever f(x) > 0 and f(y) > O. 

Proof: To complete the proof let 

(2. 1) 

[ 

x= 

f(x) = f(0)h(x)e wx 



Then 

U(x) - f (x) f(0)h(x) 
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(2. 2) 

U(x+y) = U(x) U(y) (2. 3) 

which is Cauchy's equation. Since U(0) = 1, (2.3) has a nontrivial 

solution and U(x) = e for some constant co. Thus 

f(x) = f(0)h(x)é''. 

Letting p. be a measure such that p. « v and 

p. ( {x }) = h(x), we have shown that f is a member of the exponential 

family. 

The point of view in [ 7] is different from the one presented 

here and is enhanced by equation (2. 4) below. 

Suppose X and Y are independent random variables with 

atomic distributions and denote the conditional distribution of X 

given X+ Y by c(x, x +y). Then 

c (x+y, x+y) c (0, y) f(0) f (x+y) 
c(x, x+y) c (y, y) f(x) f(y) 

where f is the density of X. 

From a set of assumptions involving X and Y, it is 

(2, 4) 



concluded that 

f(x) = f(0)h(x) eWx. 
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Theorem 2. 1 has an immediate generalization. Let 

supp (µ) = {x: µ (U) > 0 for all open U containing x }. Measures 

absolutely continuous with respect to µ are characterized by non - 

negative functions h() on supp(p.). Suppose f() is the density 

of some probability measure with respect to µ and A E supp(p.) 

is such that f(X) > O. Then f is the density of an exponential 

family distribution if and only if there exists a non -negative function 

h() defined on supp(..) such that 

f (x+y)f (X ) h(x+y) 
f(x) f(y) h(x)h(y) 

whenever f(x) > 0 and f(y) > O. 

2. 2 A Class of Distributions on M 

The class of distribution functions, F1, defined below 

appears in [4], and we define F1 here for completeness. Fl 
provides a very good illustration of the concepts in Chapter 1 and 

some observations will be made. 

We define a class of measures on M by their Radon - Nikodym 

derivatives with respect to counting measure. Let µ be a measure 

on M such that 



1, x=0, 

(a+ß) (a+(x-1)(3) 
x! 

, XE N, 
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(2.5) 

where a and ß are numbers such that (i) a > 0 and ß > 0 

a 
or (ii) a > 0 and ß - b for some bE N. Clearly, for case (i), 

A(µ) = [0,00 ) and, for case (ii), 11(µ) _ [0,13 ] , Now define Fl 

to be the set of exponential family distribution functions generated by 

the measures defined above. The following theorem is taken from 

[4] 

Theorem 2. 2. Assume that µ satisfies (2. 5) with a > 

Then w(X) is given by 

Furthermore 

w(X) = Qn a+ß X 

R(m( ))= lilt A(µ). 

The proof follows from a consideration of the generating 

function 

r (x)tx = 

e 
at 

R= 0, 

a 

1-ßt)- ß , ß 0. 

(2.6) 

(2.7) 

= 

O. 

x=0 

á (x) 

y 
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When b = +00 , S2(1.1,) _ ( -oo, /nß -1). Thus Theorem 1. 10 implies 

R( ( )),= lilt A(µ). 

It can be noted that f(k) = p(w) (a+ )k dv (k) and 
ß 

00 
-1 

f(0) = [ / X 
)k d (k)1 

k=0 

F1 is defined as a subclass of the exponential family. The 

next proposition relates F1 to Theorem 2. 1. 

Proposition 2. 2. F1 is a subclass of the distributions described 

in Theorem 2. 1 with 

Proof: 

and (2. 1) is satisfied. 

Examples. 

h(x) = LIE (x) . 

clE 
(x+y) f(0)f(x+y) dv 

f(x) f(y) d (x) cll. 
(Y) 

(a) Let a = 1 and 13 = -1. Then 

T 



w(.) X 
e = 

1-X 

The corresponding distribution is of a Bernoulli random variable 

having the value 1 with probability X . 

(b) Let a= m and ß = -1. Then 

w (A ) h 
e - 

m-X 

We obtain the distribution function of a binomial random variable 

with parameters m and X 

m 

(c) Let a = 1 and ß = O. Then 

eco(X) 
= A . 

We get the mass function for a Poisson random variable with mean 

A. 

(d) Let a= r and ß= 1 when r E N. 

w ( ) X 

r+X 

r x 
P (x ) (r+X-1) 

( r+A ) (r+X ) ° 
x e N; 

48 

e 

I X _ 

. 



49 

which is the mass function of a negative binomial random variable. 

From the many examples of distributions belonging to Fl 

it might be supposed that all the distributions described in Theorem 

2. 1 belong to Fl. The following example illustrates that this is 

false. 

Example 2. 1. Define a distribution F(x; w) on M by 

h (x) 

, x = 0,1,2,- , n , 

, x> n+l . 

This clearly is a distribution in the exponential family. (See Example 

(G).) However, if n > 2 we have enough conditions to determine 

a and P from the equations 

h(x) 
dv 

(x) 
, 0, 1, . ,n . 

This yields a = ß = 1. Therefore, if F(x; w) belongs to F1, 

it must be a geometric distribution. However, it is the truncated 

geometric. Thus F1 is a proper subclass of the distributions in 

Theorem 2. 1. 

It is also possible, by making h( ) sufficiently irregular, 

to construct distributions in the exponential family that are not even 

truncations of distributions in F1. 

= x = 

= 
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