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Within this dissertation, we develop tools and techniques to demonstrate the

feasibility of real-time optimization of a magnetohydrodynamics generator. To ease

computational complexity, we work on the kinematic magnetohydrodynamic system,

prescribing the fluid-flow and model the material response of the system through an

updated Generalized Ohm’s law. We focus on two optimization di�culties specific

for this application: model accuracy and feasibility. These both are crucial in the

determination of optimal operating conditions, and thus optimal power.

To address these concerns, several concepts are introduced to the model. First,

we introduce the ion-slip parameter, a term which characterizes the material interac-

tions between the fluid and electromagnetic fields. It is shown that this mechanism

does not disrupt the well-posedness of the system. We then develop a function space

parameter estimation convergent deterministic parameter estimation scheme, imply-

ing that recovery of a more realistic functional parameter set is possible.

We also discuss the inclusion of uncertainty within the theoretical MHD frame-

work. This uncertainty is introduced through the parameters, viewing them as random

processes rather than deterministic functions. We extend the well-posedness of the de-

terministic system to the stochastic system, demonstrating that the uncertain forward

problem is well-posed, and that the finite-dimensional approximation to the inverse

problem method stable.



We validate the theoretical results using simulations for both the deterministic

and stochastic magnetohydrodynamic systems. For the numerical implementation of

the deterministic system, we make use of COMSOL, a finite-element based di↵erential

equation solver. We investigate two distinct Faraday geometries, the continuous and

the segmented. To verify the numerical model, we develop new ideal power equations

for each geometry, again introducing the concept of the ion-slip mechanism into pre-

vious theory. Under the deterministic scheme, we also implement a numerical method

for recovering parameters from fabricated ‘true’ data. Furthermore, the results from

these numerical tests again confirmed the need for uncertainty to be included, as re-

covery was not only sensitive to noise, but also asymmetric with respect to expected

error.

To verify the stochastic theory developed for the forward and inverse problem,

we utilize the cross-platform compatibility of Matlab and COMSOL. We use the native

optimization techniques and data manipulation capabilities of Matlab, paired with the

deterministic forward solver in COMSOL. We apply an existing numerical method,

stochastic collocation, under the new context of the kinematic MHD system, for the

numerical treatment of the propagation of uncertainty within the forward problem.

This method e↵ectively capitalizes on assumed orthogonality of a finite number of

random variables describing the system. We perform an error analysis of stochastic

collocation, and then demonstrate that the inclusion of uncertainty does not propagate

linearly through the magnetohydrodynamics system, i.e. the expected value of the so-

lutions is not the deterministic solution of the expected value of the parameter set. We

then confirm the numerical theory as well, discussing the necessary assumptions and

implementation steps to apply the stochastic collocation in the uncertain parameter

estimation problem. Finally, we turn to a numerical demonstration of the feasibility

of a two stage optimization of an MHD generator. We use fabricated data to recover

the parameters’ distributions on the domain. Using these recovered distributions, we

then optimize the performance of the generator, using a single optimization variable.
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Optimization under Uncertainty of a Magnetohydrodynamics

Generator

1 Introduction

Magnetohydrodynamics (MHD) generators harvest power from an electric field

and current density which spontaneously arise from plasma flowing through an intense

applied magnetic field. In this thesis, we demonstrate the feasibility of optimization

under uncertainty of an MHD generator, of a given geometry. To do so, we develop

both theoretical and numerical tools, derive analytic results, and implement several

di↵erent numerical approaches with a focus on MHD generators.

MHD is the study of an electrically-conductive medium flowing through a mag-

netic field [42]. It is a multi-physics problem, governing the behavior of fluid flow,

electric fields and currents, magnetic fields, and their interactions. It is complex, be-

ing a non-linear coupled system of equations of many di↵erent components and scales.

Thus, to simplify the numerical implementation, we prescribe the fluid-flow, leading

to the kinematic MHD model. This model consists of Maxwell’s equations, which

describe the coupling of the electric field, magnetic field, and electric currents within

the system, as well as constitutive laws to complete the system.

In the MHD setting, the constitutive law which completes the system is the

Generalized Ohm’s law. This law couples the current density with the electric field

and magnetic field, describing the response of the material to electric and magnetic

fields, caused by the Lorenz force. This force, and thus the complete law, describes the

impact of these fields on any point-charge. However, these e↵ects are inversely related

to the mass of the point-charge, and thus their e↵ects on ions is often neglected [36].

In the law itself, this constitutes a neglect of the ion-slip parameter. For instance,
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[56] analyzes the performance of a particular MHD generator, but neglects the ion-

slip parameter entirely. This can lead to an overestimation of the performance of the

generator. Some other models go further, neglecting the Hall parameter, an analogous

parameter to the ion-slip term, but for electrons; one such model is the MACH2 MHD

solver [27]. Both of these terms are scalar, and take into account the mass of the

associated point-charge, as well as the strength of the magnetic field, by taking the

product of the two. The formal parameter definitions can be seen in Section 3.2. It

will later be shown that neglecting both parameters in the MHD generator setting

can lead to non-optimal operating conditions, and sub-par performance. We will also

explore the qualitative impacts these parameters have on the system, such as causing

a tilt in the electric field.

To address the feasibility of optimization within an MHD generator setting,

we now explore some of the model-specific di�culties we must overcome. The first

of these challenges is model accuracy. In order to properly assess the optimization

problem, we implement and verify a numerical model of the MHD generator. This

problem encompasses di�cult geometrical properties, due to the physical shape of the

MHD generator, and also includes solving complex multi-physics partial di↵erential

equations (PDEs). Thus, we choose to utilize the finite-element numerical software

COMSOL [32] as our deterministic solver, which has a native library for solving elec-

trostatic systems. To do so, we develop theory regarding the inclusion of the ion-slip

parameter in the kinematic MHD model, which will allow the utilization of this soft-

ware, as well as its LiveLink compatibility with Matlab [28]. Also included in model

accuracy is the uncertainty in the prescription of system parameters. Although a

reduction in the uncertainty of some parameters can be expected, such as fluid-flow,

due to more accurate modeling [21], the parameters of the MHD system are not di-

rectly observable, and therefore must be inferred from exterior measurements. Thus,

uncertainty must be considered in the numerical model, as well as in the optimization

problem.
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The second challenge we must overcome is the feasibility of real-time optimiza-

tion. As mentioned previously, the state parameters of the MHD system are not

directly measurable, and must be estimated by observations of the electric potential

and electric current. Therefore, accurate parameter estimation methods must be avail-

able, in order to determine the optimal set of operating conditions. As well, as noted

above, the prescription of these parameters is uncertain, and thus, so is the parameter

estimation from data. It follows that the parameter estimation problem must also

include uncertainty, much as the forward problem does.

To address these obstacles, the thesis is divided into three parts. The first is an

examination of the kinematic MHD theory. We investigate the well-posedness of both

the forward problem and subsequent inverse problem. We then turn to the inclusion

of uncertainty in these problems, again showing existence and uniqueness of solutions.

We also demonstrate that the approximations made in the parameter estimation prob-

lems result in a method-stable numerical estimation problem. The next portion of the

thesis showcases numerical results that demonstrate the theory discussed in the first

portion. We validate the numerical model with newly developed ideal power equations,

and then demonstrate the feasibility of the parameter estimation problem. Further-

more, we examine how the shape and variance of the parameters’ distributions impacts

the shape and variance of the solutions, and demonstrate the continuous dependence

of the solutions’ distributions upon the parameters’. The final portion of the thesis is

a numerical investigation into the optimization of the numerical model, representing

the possibility of real-time optimization of an MHD generator. The work has resulted

in the papers [38, 39, 40].
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2 Background

2.1 Mangetohydrodynamics Generators

MHD generators utilize the physics of MHD to generate power within a channel.

They have been investigated previously as a source of steady power [42], but recently

have been shown to have increased potential [26, 54], due to improved production

methods of large-scale and high-Tesla magnets, among other technological improve-

ments. The overarching layout of all MHD generators are the same; there is some

electrically conductive fluid forced through a magnetic field. The fluid and magnetic

field interact to generate a Lorenz force, which lies in the direction of the curl of the

two. This Lorenz force is a measure of the fields’ collective impact on the point-charges

within the fluid, and is what causes the generation of the electric field and current.

This force is described by the generalized Ohm’s law, which characterizes the material

response of the fluid to the electromagnetic fields. A much more robust investigation

into the Lorenz force, the generalized Ohm’s law, and the parameters of the kinematic

MHD system can be seen in Section 3.2 and in [50]. Further analyses on the physics

behind MHD generators can also be found in Rosa [42].

In general, every direct-fired MHD generator is a complex system of sonic ac-

celerators, combustion chambers, among other technical components. One simple

schematic can be seen in Figure 2.1. For our purposes, we consider only the portion

of an MHD generator in which the kinematic MHD equations apply. Thus, for the

remainder of this paper, any mention of an MHD generator refers to only this specific

portion, and within Figure 2.1, this is the section referred to be MHD Channel. This

section of the generator contains a channel, which houses the fluid, electrodes, to har-

vest the power, and an array of connections in order to complete the circuit and attach

the generator to some load. There are many di↵erent types of such generators, each

with unique applications and benefits [50]. However, the governing equations that

are pertinent in each section remain the same, and thus the theory we develop in the
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FIGURE 2.1: Example schematic of an open-cycle MHD generator [54].

theoretical sections apply to a wide range of MHD generators. We choose a specific

type of MHD generator, the Faraday generator, which we will use for the remainder

of this thesis, for numerical implementation ease, and demonstrated performance [22].

2.1.1 MHD Generator Components

An MHD generator is composed of many components. However, our simple

representation of an MHD generator is a domain containing a channel, electrode(s),

and a load. Each of these components are governed by the MHD equations to some

capacity. However, as each component is composed of very di↵erent materials, the

generalized Ohm’s law applied to each changes to reflect this. We now expand upon

these components individually. Note that for computational simplicity, all walls are

assumed to be infinitely thin.

First, we introduce the channel. The channel is the portion of the generator

which the plasma flows through under an applied magnetic field. This is where the

full MHD system is in e↵ect, and is where the electric field and current spontaneously

arise. Thus, there is no reduction from the full governing equations. Furthermore,

the operating conditions of the MHD system render the channel unobservable, neces-

sitating the need for the parameter estimation scheme in the real-time optimization

problem.
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The next component included in the model are the electrodes. By definition,

these are electrically conductive materials that allow current to flow, if there is a

closed circuit or path available for the electrons to move through. Thus, they have

some assigned conductivity based on the material type. In our case, we use the

conductivity of copper, 61 × 106S�m [16]. Being a solid material, electrodes have

negligible ion and electron mobilities, by definition. Thus, the governing Ohm’s law

includes only the relation between the conductivity of the material, the current density,

and the electric field.

The last component left to discuss is the load. We replicate a load being placed

on a channel by placing a resistor on one electrode, and numerically implementing a

periodic boundary condition between the open side of the resistor, and on an opposing

electrode. Thus, we now view the load on the channel instead as a resistor on the

electric current circuit, with varied resistance to vary the load. The material properties

of the resistor are the same as the electrodes, save for the conductivity. This implies

that there is negligible ion and electron mobilities, and a simplified Ohm’s law governs

their behavior. We measure the variance of the load through the load-factor (see more

in 5.1.3).

By modeling the resistor, electrode, and channel connections simply as continu-

ity or periodic boundary conditions, we now have described each physical component

in our simple MHD generator model. The boundary conditions we choose represent

both generator configurations and ideal conditions. Firstly, the resistor, in order to

replicate a load, must represent the connection between paired electrodes, as noted

previously. Thus, a periodic condition is placed on the outer boundaries of the resistor

and opposing electrode. For model verification, the channel is assumed to be infinitely

long, and thus periodic boundary conditions are placed on the inlet and outlet to the

computational domain. For other studies of the model, the inlet and outlet are simply

perfectly electrically insulating, i.e. the normal vector of the electric field is 0 on the

boundaries. All other boundaries of the computational domain also satisfy the per-
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fectly electrically insulating boundary condition. Any boundary between components

is assumed to be a continuity condition placed on each of the solutions. We now turn

to the specific geometries of two di↵erent types of Faraday generators.

2.1.2 MHD Generator Geometry: Continuous Faraday

There are many di↵erent electrode configurations for an MHD generator. Some

that have been explored previously include the Faraday, Hall, and disc geometries

[50, 25]. We focus on the Faraday geometry. Within a Faraday MHD generator

framework, the channel and flow are linear, with electrodes placed to allow current to

flow with the ideal Lorenz force, on opposing sides of the channel. Many other MHD

numerical models use this configuration, but neglect at least the ion-slip parameter

in the Generalized Ohm’s law, and potentially the Hall parameter. In Section 5.1.3,

we explore how this neglect can lead to exaggerated estimated power of the numerical

model. To aid in later discussions, we now outline the schematics of di↵erent Faraday

generator models.

There are two di↵erent Faraday geometries we consider: the continuous and

segmented. We first examine the continuous Faraday channel geometry. A continuous

Faraday MHD generator is simpler than a segmented one, at least qualitatively. It

consists of only four components, the channel, resistor, and two block electrodes, all

as described above. We choose the channel to have length 1.5 times the total electrode

length to satisfy the ideal geometry restrictions presented in Rosa [42]. The electrode

configuration is chosen to lie in parallel with the direction of current, i.e. in the

direction of the Lorenz force. For all geometries, we arbitrarily set the coordinate

system such that the flow is dominated by the x-direction, and that the applied

magnetic field lies solely in the z-direction. As the curl of these two fields determines

the magnitude and direction of the Lorenz force, the current density is dominated by

the y-direction.

A simple schematic of a continuous Faraday geometry is presented in Figure 2.2.
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Each component described in Section 2.1.1 is labeled. Periodic boundary conditions

are noted with the coordinated dashed lines, with red lines representing the electrode-

resistor periodic boundary conditions, and blue lines denoting the channel inlet and

outlet locations.

The continuous Faraday generator serves as an ideal model. With no Hall or

ion-slip terms, this simple electrode configuration will result in an e�cient generation

of power. However, these terms arise naturally within an MHD generator, and may be

non-negligible. We will later see that these terms alter the ideal operating conditions

of an MHD generator, and inspires other MHD generator geometries. We therefore

investigate a second Faraday geometry, segmented, which also is a more reasonable

generator to expect to build.

2.1.3 MHD Generator Geometry: Segmented Faraday

Much like the continuous Faraday geometry, the segmented Faraday geometry

consists of a channel, resistors, and electrodes. However, unlike the continuous ge-

ometry, segmented refers to, as one can imagine, the electrodes. These electrodes

run the entire length (again, in the y-direction, the same as the Lorenz force) of the

channel, but are separated by some inter-electrode space. The ratio of the electrode

length (in x) and the inter-electrode space is critical [42], and the ideal distance is

chosen such that the inter-electrode space is half the length of an electrode. We then

assign the total channel length of a segmented Faraday generator, unless otherwise

specified, to be (k + 1.5)0.1, for a segmented Faraday channel with k electrodes, and

with electrode width of 0.1 m. Each electrode is paired with another somewhere across

the channel, again with a resistor acting as the load-interface between the two. For

the segmented geometry, we will make the assumption that the load is distributed

evenly across the channel. Matching the periodic boundary condition notation from

the continuous geometry section, a simple schematic of a segmented Faraday MHD

generator is presented in Figure 2.3.
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This schematic displays the ideal electrode configuration for an MHD system

with a negligible Hall parameter. Under ideal conditions,1 the electrodes connect por-

tions of the channel which have the same electric potential, maximizing the output of

the generator [42]. However, we will see in Section 5.1.4 that the Hall parameter tilts

this electric potential! Thus, for non-negligible Hall parameter, the paired electrodes

must be staggered by some angle, which clearly will depend upon the Hall parame-

ter. This further emphasizes the need for parameter estimation in the optimization

problem, as the Hall parameter is not directly observable.

2.2 Notation

In this section, we will introduce some standard notation and concepts that will

be used throughout this dissertation. Each mathematical object, function, parameter,

etc., is a vector in R3 or a mapping to R3 if it is bolded. Thus, in the above schematics,

both u,B are considered fields, as they map to R3. We may refer to their scalar

individual components by referencing the direction we consider, e.g. for the typical

Cartesian coordinate system (which is used for the duration of this paper), we have

u = (ux,uy,uz).

Next, we define the computational domain. Let D ⊂ R3 denote the spatial domain.

We always assume D is open with compact closure, and denote the boundary as @D.

In the above geometry schematics, the entire domain is D, as the numerical model is

implemented on the channel, electrodes, and resistors.

With these basic ideas down, we now define the standard function spaces which

will be used in the theoretical sections. We use the standard definitions of L2(D), as

1
Negligible Hall or ion-slip parameters
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FIGURE 2.2: A simple schematic of the spatial domain for our continuous Faraday
MHD generator.

FIGURE 2.3: A simple schematic of the spatial domain for our segmented Faraday
MHD generator.



11

FIGURE 2.4: A 3D schematic of (top) continuous and (bottom) segmented Faraday
geometries, as implemented in COMSOL [32].

can be seen in [17], i.e.

L2(D) ∶=
�������
f ∶D → R

�����������
�
D
f2 dx <∞

�������
,

with norm

��f ��L2(D) ∶= ��
D
f2 dx�

1�2
.

Similarly, we define

L∞(D) ∶= �g ∶D → R � max
x∈D g(x) <∞� ,

with norm

��g��L∞(D) ∶=max
x∈D g(x).

One last notational remark for this paper; when we wish to denote that some vector,

f , of length k ∈ N, has components in some space, e.g. L2(D), we will use the notation

f ∈ �L2(D)�k. This implies that each component of f , denoted fi, for i ∈ {1, . . . , k},

is in L2(D), and the norm used on this tensor product space is the traditional tensor

product norm [44], e.g. for h ∈ �L2(D)�3,

��h���L2(D)�3 ∶=
�
�

3

�
k=1
��hk��2L2(D)

�
�

1�2
.
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We also use the standard Sobolev spaces [44] within the weak-form solution

spaces of the MHD equations, namely

W 1,2(D) =H1(D) ∶= �f ∈ L2(D) � ��∇f ���L2(D)�3 <∞� .

Finally, for any vector space V over R, we denote its algebraic dual, i.e. the set of all

linear functions mapping from V to R, by V ′. Note that this also applies to function

spaces, i.e. the dual of the Sobolev space W 1,2 = W is denoted W ′. With these

function spaces defined, we now move onto an investigation into some basic finite

element theory.

2.3 Finite Elements

Finite elements is a branch of numerical methods used to discretely approximate

the solutions to di↵erential equations. It is an extremely wide field of mathematics,

and there are many di↵erent textbooks delving into a small subset of finite elements,

both theoretical and nature, and those more dedicated to the implementation. It

is most notably compared to finite di↵erence, in that both were created to solve

di↵erential equations numerically. However, its most distinct di↵erence with this

other branch of numerical methods is that finite elements attempts to solve the weak-

form of the di↵erential equation, and approximate integrals, whereas finite di↵erence

approximates the derivative. For a small selection of such references, see [14, 7, 1].

To examine a finite element method in general, we consider any PDE on the

domain space D and function space H, given in the weak form by

A(u, v) = f(v) ∀v ∈H, (2.1)

where A is some bilinear form on H, and f is an operator on H mapping to R.

We would like to find some numerical approximation to this problem that provides a

numerical approximation to u. We let HN be PN ∩H, i.e. the intersection of the space

of polynomials up to order N , and the solution space. For the numerical analogue
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to (2.1), we search for our approximate solution uN ∈ V N . We then choose a basis

for V N , specifically the basis where each basis element takes a value of 1 at a unique

vertex, and has support in only one spatial element. We denote this basis {vk}Kk=1.
There is not a convenient analytic function for generating the number of bases, as it’s

incredibly dependent upon the sampling distribution across the domain, and thus we

simply let K denote the number of basis functions. The main purpose for choosing

this basis is that

�
D
vjvk = �j,k,

the Kronecker-delta function. Further justification of this basis can be seen in [1].

With this unique property of the basis, the bilinear form simplifies, and there

is some matrix-equivalent form, AN . Thus, the numerical implementation results in

a matrix-form of

ANuN = fN ,

where fN = [f(v1) . . . f(vK)]. Although not explicitly laid out for the kinematic MHD

equations, a similar discretization method is applied within COMSOL, with piece wise

linear functions as our basis for each solution space, i.e. V and each component for

a function in W . Further analysis finite element method with relation to COMSOL

can be seen in Section 5.1.2.

2.4 Probability Theory

We now go onto describe some necessary background information for the inclu-

sion of uncertainty within the MHD system. We let the random domain be denoted by

⌦, with the associated Borel sigma-algebra B(⌦), and continuous probability measure

P . On this space, we now introduce the concept of a random-process.

Definition: 2.4.1 (Random process). Let O be some function space on D, e.g.

L2(D), complete under some metric ⌘. Then Y is a random process on O, if it
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is an (O,⌘)−valued random variable, e.g. for any ! ∈ ⌦, Y (!) ∈ O, and Y is a

measurable function, i.e. for any set O ⊂ O, Y −1(O) is measurable by P .

First, note that for the purposes of this dissertation, we will only consider

random processes on complete metric spaces. We now commit an abuse of notation,

as for any random process Y on O and every !, ∈ ⌦, Y (!) ∶ D → R is a real-valued

function on D. Thus, we may only emphasize either the stochastic or deterministic

domain by explicitly writing the arguments into the random process, e.g. Y (!) and

Y (x). With this in mind, a random process is also a real-valued random variable for

fixed x ∈D, e.g. Y (x) ∶ ⌦→ R is a measurable function.

With a random process, much like a random variable, there is some associated

probability distribution.

Definition: 2.4.2 (Probability Distribution of a Random Process). Let Y be a ran-

dom process on (O,⌘), a complete metric space. Then the Probability Distribution of

Y is given by P ∶ O → R, defined by

P (o) ∶= ⇢Y P �Y −1(o)� ,
where ⇢Y ∈ R is a normalization constant, i.e. ⇢Y = P�Y −1(Y (⌦))�. With an appro-

priate extension to the Borel subsets of O, this satisfies the definition of a probability

distribution for a random variable.

These distributions will play a critical role in the exploration of including un-

certainty in the kinematic MHD equations. As is traditional with probability theory,

we define the expected value of an random process to be

E[Y ] ∶= �
⌦
Y (!) dP (!).

Equivalently, to explicitly include the distribution P , one can consider the probability

space {Y (⌦),B(Y (⌦)), P}, and define the expected value of any random function

f ∶ ⌦ ×O → R, which inherently depends on Y as a parameter, to be

E[Y �P ] ∶= �
Y (⌦) Y (!) dP (!)
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We now define two examples of probability distributions that will be used

throughout the dissertation, the beta and uniform distributions. These two defini-

tions come from [52].

Definition: 2.4.3 (Beta Distribution). A family of continuous distributions which are

characterized by two shape parameters, denoted ↵,� > 0. This distribution assumes a

probability space of the interval [0,1]. Formally, the probability distribution function

is given by

p(x) ∶= x↵−1(1 − x)�−1
�(↵)�(�)
�(↵+�)

,

where �(x) = ∫
∞
0 xz−1ez dz, which simplifies to �(x) = (x − 1)! if x ∈ N.

Definition: 2.4.4 (Uniform Distribution). A continuous distribution which operates

on a space of [a, b] and whose probability distribution function is defined by

p(x) =

�����������

1
b−a if x ∈ [a, b]

0 else
.

Note that the uniform distribution on[0,1] is a beta distribution with shape parameters

↵ = � = 1.

Note that the expected value of a random variable with a given beta distribution

is ↵�(↵+�), with variance given by ↵��(↵+�)2(↵+�+1). For the uniform distribution,

the expected value is (a+b)�2, with a variance of 1
12(b−a)

2. Both of these distributions

will play a large role in the numerical demonstrations of the forward problem, inverse

problem, and optimization problem.

We also state a critical algebraic property of random processes, how to ‘combine’

them. If Y1 and Y2 are two di↵erent random processes on O, then one can consider

the random process Y ∶ ⌦ → O × O, Y (!) = (Y1(!), Y2(!)). Under the continuous

probability measure P , the associated distribution for Y is the convolution of the

individual processes, i.e.

P Y = P Y1 ⋅ P Y2 .
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As the kinematic MHD equations have several random processes within the model,

we will have to utilize this property to generate the distributions of the solutions.

In the uncertain parameter estimation scheme, we will also need to consider finite-

dimensional (FD) approximations to these distributions. To show convergence, we

must have some way to measure the di↵erence between distributions. To this end, we

introduce the Prokhorov metric.

2.4.1 Prokhorov Metric

For this section, we use the sources [4, 3]. The Prokhorov metric is a metric

developed to characterize the di↵erences between di↵erent probability distributions

quantitatively. We present this metric in the most general sense, and will later adapt

it to the kinematic MHD framework. Let (O,⌘) and (⌦,B(⌦), P ) be as before. We

let P(O) represent the space of all probability measures on O, i.e. for any countable

collection {Ei}i∈I ⊂B(O),

P(O) ∶= �P ∶B(O)→ [0,1] � P (�) = 0, P (O) = 1, P��
i∈IEi� =�

i∈I P (Ei)� .

Then for any closed subset F ⊂ O, and " > 0, define an " neighborhood of F by

F " ∶= {o ∈ O ∶ d(õ, o) < ", õ ∈ F}.

Finally, define the metric ⇢ ∶ P(Q̃N) ×P(Q̃N)→ R+ by

⇢(P1, P2) ∶= inf{" > 0 ∶ P1[F ] ≤ P2[F "] + ", F closed, F ⊂ Q̃N}.

It follows from [3] that

● ⇢ is a metric (called the Prohorov metric) on P(Q̃N).

● (P (Q̃N),⇢) is a complete metric space.

● If Q̃N is compact, then P (Q̃N) is compact.
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Our goal is to utilize this metric to show convergence of the uncertain parameter

estimation problem. Within that framework, we require a dimension-reduction of the

probability space to have a numerically implementable algorithm. To this end, we

would like to further understand the convergence of the approximation distributions

to the full infinite-dimensional problem, particularly under this metric.

To this end, let Pk ∈ P(O) be some sequence of distributions that converge to

some distribution P ∈ P(O) under the Prokhorov metric. It is well known that if

P(O) is complete under this metric, given that (O,⌘) is a complete metric space.

Then the following are equivalent:

1. ⇢(Pk, P )→ 0;

2. ∫O f dPk(o) → ∫O f dP (o) for all bounded and uniformly continuous functions

f ∶ O → R;

3. Pk(A) → P (A) for all Borel sets A ⊂ O with P (@A) = 0. Here @A denotes the

boundary of A.

Thus, it immediately follows that convergence in the ⇢ metric and convergence of the

distributions P are equivalent, by the equivalence of 1 and 3. For the purposes of the

parameter estimation problem, we utilize the equivalence of 1 and 2, as this is the

same as

E[f(o)�Pk]→ E[f(o)�P ]

We will see in Section 4.2 how this convergence will be used to guarantee continuity

of the uncertain parameter estimation problem.

To aid in the numerical implementation further, we must consider the problem

of generating a countable dense subset of P(O). Using the same topology as seen in

[3], that is we define a W neighborhood of P ∈ P(O) by

N�(P ) ∶= {P1 ∈ P(O) � P1(Fi) < P (Fi) + �, i = 1, . . . , k, Fi ∈B(O)}
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for a given � > 0 and {Fi}ki=1 is some finite set. This W topology is equivalent to the

topology of weak convergence on P(O), which is equivalent to the topology of the ⇢

metric, if O is separable [5] p. 236-239. We now state a result from [3] that will be

critical in showing the well-posedness of the uncertain inverse problem.

Theorem 2.4.1 (Theorem 3.1 from [3]). Let O be a complete, separable metric space

with metric ⌘, and let B(O) be the class of all Borel subsets of O, and let P(O) be

the space of all probability measures on O,B(O). Let O0 = {oj}∞j=1 be a countable

dense subset of O. Then the set of P ∈ P(O) such that P has finite support in O0 and

rational masses is dense in P(O), under the ⇢ metric. That is,

P0(O) ∶=
�������
P ∈ P(O) � P =

k

�
j=1pj�oj , k ∈ N, oj ∈ O0, pj ∈ Q, pj ≥ 0,

k

�
j=1pj = 1

�������

is dense in P(O) relative to ⇢.

A proof of this theorem is provided by Banks, utilizing the Prokhorov metric.
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3 A Deterministic Approach to Kinematic MHD

3.1 Introduction

In this section, we explore the deterministic side of the kinematic MHD theory.

This work builds upon a previous foundation established by Rosa [42], and expand

the well-posedness of the kinematic MHD model to include the ion-slip parameter.

We introduce the components and parameters of the kinematic MHD model, estab-

lishing the deterministic strong-form of the system we use for the remainder of the

dissertation. We then show equivalence of this form to several others, most notably a

mixed-Poisson system. Using this, we establish the well-posedness using the Babuska-

Brezzi-Kovalevskaya theorem [14], and establishing the continuous dependence of the

solutions on the parameters.

3.2 Model Formulation

We begin with the governing equations for our application: Maxwell’s equations,

coupled with the generalized Ohm’s law, as given in Rosa [42] section 2.7. As noted

in the background section, we use the kinematic MHD model to simplify computation

complexity, and thus prescribe the fluid flow, u ∶D → R3, as well as assuming a steady-

state system. We also assume that all other system parameters: the conductivity, �,

electron-mobility, µe, and ion-mobility, µi are prescribed. Note that these system

parameters are scalar, i.e. map from D to R. Furthermore, we assume that the

applied magnetic field, B, is given, and that this field dominates the induced field [6].

Then the kinematic MHD system for J and E, the electric current density and electric

field respectively, is described by

∇×E = 0, on D, (3.1a)
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J = �(E + u ×B) + �e
��B��
(J ×B) + �i

��B��2
�(J ×B) ×B�, on D, (3.1b)

∇ ⋅ J = 0, on D. (3.1c)

Here, �e and �i, the Hall parameter and ion-slip parameter respectively, are defined

as

�e(x) = µe(x)��B(x)��l2 , and �i(x) = µe(x)µi(x)��B(x)��2l2 .

We complete the system of equations with appropriate boundary conditions for power

generation, assuming perfectly electrically insulating boundary conditions. For J this

implies

J ⋅ n = 0, on @D, (3.2a)

while E satisfies

E × n = 0, on @D. (3.2b)

Here, n represents a vector normal to @D.

With some algebra, the kinematic model, (3.1), can be reduced to a mixed-

Poisson form. This is done by first rewriting the generalized Ohm’s Law, so that the

dependence on E is explicit. A simpler form of this transformation is presented in

Rosa [42], but neglects the ion-slip parameter. The following section demonstrates

how to include �i.

3.2.1 An Explicit Generalized Ohm’s Law

To rewrite (3.1b) in an explicit form, first consider that the cross product can

be written as a matrix applied to a vector, e.g.

J ×B =

����������

0 Bz −By

−Bz 0 Bx

By −Bx 0

����������

����������

Jx

Jy

Jz

����������

= [B]×J,
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where [B]× denotes the cross-product matrix operator. Clearly, [B]2×J denotes the

vector triple product between J,B,B, as [B]2×J = [B]×(J ×B) = (J ×B) ×B. Using

this, Ohm’s law can be rewritten as

J = �(E + u ×B) + µe(J ×B) + µi�(J ×B)

= �(E + u ×B) + �e
��B��
[B]×J + �i

��B��2
[B]2×J

(I − �e
��B��
[B]× − �i

��B��2
[B]2×)J = �(E + u ×B).

Noting that the determinant of (I − �e��B��[B]× − �i��B��2 [B]2×) is given by 1+ �2i + �2e + 2�i
and since �i > 0 by definition, the LHS is always invertible, implying that

J = (I − �e
��B��
[B]× − �i

��B��2
[B]2×)−1�(E + u ×B)

Defining � as the conductivity tensor � = �(I − �e��B��[B]× − �i��B��2 [B]2×)−1 yields the

following explicit generalized Ohm’s law,

Ji = �(E + u ×B). (3.3)

We now turn to using this to manipulate (3.1) into a mixed-Poisson form.

3.3 Well-Posedness: Existence and Uniqueness of Solutions

In the following section, we establish the well-posedness of the kinematic MHD

system by first transforming (3.1) into a form for which the Babushka-Brezzi-Kovalevskaya

(BBK) theorem is applicable. This section follows the work in Mcgregor [30] and Rosa

[42] closely, but furthers the kinematic MHD theory by including the ion-slip param-

eter. We now state the BBK theorem in it’s entirety, and then develop the operator

model and operator properties necessary to apply it.

Theorem 3.3.1 (BBK theorem). Let A ∶ V → V ′ and B ∶ V → W ′ be continuous

operators from the Hilbert spaces V,W to their duals. In addition, assume
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● A is V-coercive on V , i.e. ∃↵ > 0 such that

Av(v) ≥ ↵��v��2V , v ∈ V,

● B obeys the following inf sup condition: ∃� > 0

inf
q∈W sup

v∈V
�Bv(q)�
��v��V ��q��W

≥ �.

Given these conditions, then ∀f ∈ V ′, ∀g ∈W ′ there exists a unique pair v,w ∈ V ×W

such that

Av +B′w = f ∈ V ′, (3.4a)

Bv = g ∈W ′, (3.4b)

which obey the following a priori estimates:

��v��V ≤
1

↵
���f ��V ′ +

1

�
(��A��L(V,V ′) + ↵)��g��W ′�, (3.5a)

��w��W ≤
1

�
���f ��V ′ + ��A��L(V,V ′)��g��W ′�. (3.5b)

A proof of BBK can be found in Bo�, Brezzi, and Fortin [14], Corollary 4.2.1.

To apply BBK directly, we need to convert the given system to a weak mixed-Poisson

system, and then to an equivalent dual operator form.

3.3.1 Mixed-Poisson Strong Form

First, we reduce the representation of the electric field E within the kinematic

MHD framework, with a scalar-valued electric-potential V. From (3.1a), and the

assumption that D is a bounded open domain, it follows from Stoke’s theorem [45]

that

E = ∇V. (3.6)
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Now, define Ji to be

Ji = �E = �∇V, (3.7)

which, coupled with the divergence-free condition, (3.1c), implies

0 = ∇ ⋅ J = ∇ ⋅ �Ji + �(u ×B)�.

This of course implies

∇ ⋅ Ji = −∇ ⋅ ��(u ×B)�. (3.8)

Substituting the definitions of Ji and V ((3.7) and (3.6) respectively) into (3.3)

and combining the resulting equation with the divergence condition (3.8) yields the

mixed-Poisson system

�−1Ji −∇V = 0, (3.9a)

−∇ ⋅ Ji = ∇ ⋅ ��(u ×B)�. (3.9b)

Using the definitions of Ji,V, we have that J,E are described by

J = Ji + �(u ×B), (3.10a)

E = ∇V. (3.10b)

Implying that solving (3.9) is equivalent to solving (3.1). We now convert this into a

weak-form by first defining appropriate solution function spaces.

3.3.2 Weak and Operator Forms

The perfectly-electrically insulating boundary conditions imply that we seek our

voltage V in the subspace of W 1,2(D) defined by

V ∈W (D) ∶=W 1,2
0 (D) = �f ∈W

1,2(D) ∶ T (f) = 0�,
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where T (f) is the trace of f on D. These same boundary conditions imply we seek

Ji ∈ V (D), defined as

Ji ∈ V (D) ∶= �f ∈ (L2(D))3 ∶ f ⋅ n = −��(u ×B)� ⋅ n on @D�.

Multiplying (3.9) by test functions in the appropriate spaces and integrating, we arrive

at the weak form of the MHD equations, given as

�
D
�−1Ji ⋅ � −�

D
∇V ⋅ � = 0 ∀� ∈ V (D), (3.11a)

−�
D
Ji ⋅ ∇ = �

D
(�u ×B)∇ ⋅  ∀ ∈W (D). (3.11b)

Recall the definition of the dual space, as defined in 2.2, which for any vector space

V , we denote with V ′. Using this, define the mapping from V → V ′ by

A(F)(○) ∶= �
D
(�−1F) ⋅ ○, (3.12)

and define the mapping from V →W ′ by

B(G)(○) ∶= −�
D
G ⋅ ∇ ○ . (3.13)

Note now that the dual, in the operator sense (See [44] Section 4.4), of B is given by

B′(H)(○) = −�
D
∇H ⋅ ○.

Using these operators, (3.11) can be written as

�A(Ji) +B′(V)�(�) = 0 ∀� ∈ V (D), (3.14a)

B(Ji)( ) = �
D
��u ×B� ⋅ ∇ ∀ ∈W (D). (3.14b)

For ease of notation, denote the operator g ∈W (D)→ R by

g(!) = �
D
��u ×B� ⋅ ∇!.
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Then (3.14) is equivalent to

A(Ji) +B′(V) = 0 ∈ V ′(D), (3.15a)

B(Ji) = g ∈W ′(D). (3.15b)

Clearly, (3.15) is equivalent to (3.11). We denote (3.15) the operator form. We now

establish properties of these operators in the kinematic MHD framework.

3.3.3 Properties of the dual operators A,B
As can be seen in the assumptions, to apply Theorem 3.3.1, certain properties

of the mixed-Poisson operators must be established. The following lemmas show that

the operators A,B have these necessary properties, under assumptions regarding the

parameters. These assumptions are all valid within a realistic MHD generator, and

thus do not overly simplify the model. Note that the domain of the functional spaces

is assumed to be the given D, unless specifically stated otherwise.

Lemma 3.3.1. If B ∈ (L2(D))3, �,�e and �i positive, bounded, real-valued functions

on D, then the operator A is coercive and continuous.

Proof. Coercivity: A is coercive if and only if ∃↵ > 0 such that

A(F)(F) ≥ ↵��F��V ∀F ∈ V.

Let F ∈ V and consider that

A(F)(F) = �
D
�−1F ⋅F

= �
D

1

�
�I − �e

��B��l2
[B]× − �i

��B��2
l2
[B]2×�F ⋅F

= �
D

1

�
�F ⋅F − �e

��B��l2
(F ×B) ⋅F − �i

��B��2
l2
�(F ×B) ×B� ⋅F�.
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Given that � is essentially positive and bounded, the function 1
� is also essentially

positive and bounded, and achieves a minimum value of 1�����L∞(D) implying

A(F)(F) ≥ 1

�����L∞(D) �D �F ⋅F −
�e
��B��l2

(F ×B) ⋅F − �i
��B��2

l2
�(F ×B) ×B� ⋅F�

= 1

�����L∞(D) �D �F ⋅F −
�i
��B��2

l2
�(F ×B) ×B� ⋅F�,

as (F ×B) ⋅F = 0 almost everywhere. Using properties of triple vector products and

dot products, we have

1

�����L∞(D) �D �F ⋅F − �
�i
��B��2

l2
�(B ⋅F)B − (B ⋅B)F� ⋅F��

= 1

�����L∞(D) �D �F ⋅F −
�i
��B��2

l2
�(B ⋅F)(B ⋅F) − (B ⋅B)(F ⋅F��

= 1

�����L∞(D) �D(F ⋅F)�1 −
�i
��B��2

l2
(B ⋅B)� cos2(✓) − 1��

= 1

�����L∞(D) �D(F ⋅F)�1 +
�i
��B��2

l2
(B ⋅B) sin2(✓)�

= 1

�����L∞(D) �D(F ⋅F)�1 + �i sin
2(✓)�.

Thus, finally

A(F)(F) ≥ 1

�����L∞(D) ��F��V > 0.

We show continuity of A by showing that it is bounded. To see boundedness of

A, it remains to be seen that

�A(f)(g)� < c��f��V ��g��V ,

for some c ∈ R. Thus, let f,g ∈ V and consider the following.

�A(f)(g)� = ��
D
�−1f ⋅ g �

= ��
D

1

�
�I − �e

��B��l2
[B]× − �i

��B��l2
[B]2×�f ⋅ g �

= ��
D

1

�
�f ⋅ g − �e

��B��l2
(f ×B) ⋅ g − �i

��B��2
l2
�(f ×B) ×B� ⋅ g� �
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≤ �
D
� 1
�
���f ⋅ g − �e

��B��l2
(f ×B) ⋅ g − �i

��B��2
l2
�(f ×B) ×B� ⋅ g� �

≤ �
D
� 1
�
���f ⋅ g� + � �e

��B��l2
(f ×B) ⋅ g� + � �i

��B��2
l2
�(f ×B) ×B� ⋅ g��

≤ 1

ess inf �

�
��D

�f ⋅ g�
��������������������������������

I1

+�
D

�e
��B��l2

�(f ×B) ⋅ g�

���������������������������������������������������������������������������������������������������������������������������
I2

+�
D

�i
��B��2

l2
��(f ×B) ×B� ⋅ g�

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������
I3

�
�
.

Rewriting the integrals I1, I2, I3 in terms of ��f��V ��g��V will yield the desired result.

Consider first I1.

I1 = �
D
�f ⋅ g� ≤ ��f��V ��g��V by Cauchy-Schwartz.

Now, consider I2. First, note that ��(f ×B)��l2 ≤ ��f��l2 ��B��l2 . As well, note that

�u ⋅ v� ≤ ��u��l2 ��v��l2

by Cauchy-Schwartz. Applying these two ideas to I2 yields

I2 = �
D

�e
��B��l2

�(f ×B) ⋅ g�

≤ �
D

�e
��B��l2

��(f ×B)��l2 ��g��l2 by Cauchy-Schwarz

≤ �
D

�e
��B��l2

��f��l2 ��B��l2 ��g��l2

= ���e��L∞(D)�
D
��f��l2 ��g��l2

≤ ���e��L∞(D)��f��V ��g��V by Cauchy-Schwartz.

By a similar argument, we have for I3

I3 = �
D

�i
��B��2

l2
��(f ×B) ×B� ⋅ g�

≤ �
D

�i
��B��2

l2
��(f ×B) ×B��l2 ��g��l2

≤ �
D

�i
��B��2

l2
��f��l2 ��B��2l2 ��g��l2

= ���i��L∞(D)�
D
��f��l2 ��g��l2
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≤ ���i��L∞(D)��f��V ��g��V by Cauchy-Schwartz.

Combining all three inequalities yields

A(f)(g) ≤ �1 + ���e��L∞(D) + ���i��L∞(D)���f��V ��g��V ,

and as A is both linear and bounded, we have that A(f)(○) is continuous on V .

To see a similar result for B, an inequality that bounds the norm of a function

by the norm of its derivative must be utilized. The Poincaré inequality does so, and

is thus presented next.

Lemma 3.3.2 (Poincaré Inequality). Let 1 ≤ p <∞ and let ⌦ be bounded on at least

one side. Then ∃C > 0, depending only on p,⌦, such that ∀u ∈W 1,p
0 (⌦) where u is a

zero-trace function, the following holds

��u��Lp(⌦) ≤ C ��∇u��Lp(⌦).

This inequality is well-known, and complete proofs are presented in a variety of

textbooks. One such book is Rudin [44]. Now, to give the desired properties of B.

Lemma 3.3.3. The operator B ∶ V →W ′ is continuous and obeys the following inf-sup

condition

inf
g∈W sup

f∈V
�B(f)(g)�
��f��V ��g��W

≥ � > 0.

Proof. Fix g ∈W. This immediately implies that ∇g ∈ (L2(D))3, by definition of W .

Therefore,

supf∈V �B(f)(g)���f��V ��g��W
≥ �B(∇g)(g)�
��∇g��L2(D)��g��W

=
� ∫D∇g ⋅ ∇g�

� ∫D∇g ⋅ ∇g�
1�2
���g��2

L2(D) + ��∇g��2L2(D)�
1�2

=
��∇g��L2(D)

���g��2
L2(D) + ��∇g��2L2(D)�

1�2
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≥
��∇g��L2(D)

�(1 +Cp.f.)��∇g��2L2(D)�
1�2 by Poincare’s Inequality,

=
��∇g��L2(D)

�1 +Cp.f.�
1�2
��∇g��L2(D)

= 1

(1 +Cp.f.)1�2 .

Here, Cp.f. represents the constant from the Poincare inequality, which has no depen-

dence on g. This immediately implies that the supremum is bounded below indepen-

dent of the choice of g, i.e.

inf
g∈W sup

f∈V
�B(f)(g)�
��f��V ��g��W

≥ 1

(1 +Cp.f.)1�2 > 0,

and thus the inf-sup condition holds. To see continuity, recall that B is linear, and

thus boundedness implies continuity. Fix f ∈ V, g ∈W , and consider

�B(f)(g)�2 = ��
D
f ⋅ ∇g�

2

≤ �
D
�f ⋅ ∇g�2

≤ �
D
��f��2l2 ��∇g��

2
l2

≤ ��f��2V ��∇g��2L2(D)
≤ ��f��2V (��∇g��2L2(D) + ��g��2L2(D))
= ��f��2V ��g��2W .

Taking the square-root of both sides implies that B(f)(g) is bounded by the norms of

f, g, which in turn implies continuity.

With these properties of the operators established, BBK can now be applied.

3.3.4 Existence and Uniqueness of Solutions

The operators A, defined in (3.12), and B, defined in (3.13), have been shown

to have the desired properties to apply BBK in Lemmas 3.3.1 and 3.3.3. This leads to



30

the first of three main theorems, the existence and uniqueness of solutions to (3.15),

the operator form of the kinematic MHD model, which in turn implies existence and

uniqueness of solutions to (3.11), the weak-form, and subsequently the original model

(3.1).

Theorem 3.3.2. Given u,B ∈ (L2(D))3, bounded, �,�e and �i positive, bounded,

and real-valued on D, there exist unique solutions, Ji,V, to

A(Ji) +B′(V) = f ∈ V ′, (3.16a)

B(Ji) = g ∈W ′, (3.16b)

which obey the following a priori estimates:

��Ji��V ≤
1

↵
��f ��V ′ +

1

↵�
���A��L(V,V ′) + ↵���g��W ′ , (3.17)

��V ��W ≤
1

�
���f ��V ′ + ��A��L(V,V ′)��g��V ′�, (3.18)

where ↵ is the coercive constant for A and � is the bounding constant for B, i.e.,

↵ = 1 + ���e��L∞(D) + ���i��L∞(D) and � = (1 +Cp.f.)1�2.

Proof. Let A and B be defined as above. Then by Lemmas 3.3.1 and 3.3.3, A is

coercive, B obeys the inf sup condition, and both are continuous. Applying BBK

implies both existence and uniqueness of the solutions Ji,V in their respective spaces.

The estimates follow from BBK as well.

Moreover, applying Theorem 3.3.2 when f = 0, g(○) = ∫D∇ ⋅ �(u ×B)○ gives

that there exists a pair of unique solutions to (3.15), in turn implying existence and

uniqueness of solutions to (3.11). We now show that not only the solutions, Ji,V, to

(3.11) exist uniquely, but that the solutions depend continuously upon the parameters,

namely u,B,�,�e, and �i.
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3.4 Well-posedness: Continuous Dependence on Parameters

In the following section, continuous dependence of the solutions on the param-

eters, B,u,�,�e,�i, is established. We show this by perturbing the parameters, and

bounding the changes in the solutions by these pertubations. We do this systemati-

cally, first for the state parameters, �, �e,�i, and then for the field parameters, u,B.

Normally, the coupling of the full MHD system accounts for the latter dependence, but

the reduction in model complexity (by the prescription of the fields and assumption of

steady-state) necessitates a direct demonstration. We will make use of Kato’s theorem

[14], which gives a useful bound for perturbing linear operators. First, however, we

have a definition of a bounding operator.

3.4.1 Background

In the proof of continuous dependence, we make use of Kato’s theorem, which

in turn requires the definition of a bounding operator.

Definition: 3.4.1. Let V,W be hilbert spaces, and let M be a linear mapping between

them. Then M is bounding if there exists a M∗ > 0 such that

��Mv��W ≥M∗��v��V ∀v ∈ V. (3.19)

Note, a bounding operator is an injective operator with a continuous inverse

[14]. With this definition in mind, we state Kato’s theorem.

Lemma 3.4.1 (Kato’s Theorem). Let V,W be Hilbert spaces, and let T1 and T2 be

linear operators from V to W . If T1 is bounding, then there exists "0 > 0 such that for

all " ∈ R with �"� ≤ "0, the perturbed operator T1 + "T2 is also bounding, and we have

moreover

��T−11 − (T1 + "T2)−1��L(V,W ) ≤ C �"�,
with C depending on "0 but independent of ".

A proof is presented in Fortin, [14]. Utilizing this theorem, it is now shown that

the solutions Ji,V depend continuously on the parameter set.
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3.4.2 Continuous Dependence

We now establish that a perturbation of the system parameters, whether they

be the state scalar parameters or the fields used in the model, results in a change of

the solutions which can be bounded by the norm of the perturbation.

Theorem 3.4.1. Solutions to (3.11) depend continuously on �,�e and �i.

Proof. Fix u,B ∈ (L2(D))3, bounded, and let �, �e, �i be positive and bounded

functions on D. We show that the theorem holds for �e only, as a similar proof

follows for �i,�. Thus, consider a small pertubation function to �e given by ��e such

that �e + ��e ≥ 0 on D and consider the following perturbed system:

�
D

1

�
�I − (�e + ��e)[B]× − �i[B]2×�J′i ⋅ � −�

D
∇V ′ ⋅ � = 0 ∀� ∈ L2(D), (3.20a)

�
D
J
′
i ⋅∇ = −�

D
∇⋅
�
�
��I−(�e+��e)[B]×−�i[B]2×�

−1
(u×B) 

�
�

∀ ∈W. (3.20b)

Here J
′
i,V ′ is the unique solution as guaranteed by Theorem 3.3.2. Let Ji,V be the

solution to the unperturbed system, i.e the solution to (3.11) and let �Ji = J
′
i − Ji

and �V = V ′ − V denote the di↵erences between the solutions to the perturbed and

unperturbed system. Subtracting (3.11) from (3.20) yields

0 =
�
��D

1

�
�I − (�e + ��e)[B]× − �i[B]2×�J′i ⋅ � −�

D

1

�
�I − �e[B]× − �i[B]2×�Ji ⋅ �

�
�

− ��
D
∇V ′ ⋅ � −�

D
∇V ⋅ ��

= �
D

1

�
��I − (�e + ��e)[B]× − �i[B]2×�J′i − �I − �e[B]× − �i[B]2×�Ji� ⋅ �

−�
D
�∇V ′ −∇V� ⋅ �

= �
D

1

�
��I − �e[B]× − �i[B]2×�(J′i − Ji) − ��e[B]×J′i� ⋅ � −�

D
�∇(V ′ − V)� ⋅ �

= �
D

1

�
��I − �e[B]× − �i[B]2×�(�J) − ��e[B]×J′i� ⋅ � −�

D
∇�V ⋅ �
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= �
D
�−1(�J) ⋅ � −�

D
∇�V ⋅ � −�

D

1

�
(��e[B]×J′i) ⋅ �.

Rewriting this with the operators as defined in Section 3.3.2 yields

A(�J)(�) +B′(�V)(�) = �
D

1

�
(��e[B]×J′i) ⋅ �. (3.21)

Similarly, for the second equation, we have:

�
D
J
′
i ⋅ ∇ −�

D
Ji ⋅ ∇ = −�

D
∇ ⋅
�
�
��I − (�e + ��e)[B]× − �i[B]2×�

−1
(u ×B) 

�
�

+�
D
∇ ⋅ ��(u ×B) �.

Cancelling like terms yields

�
D
�Ji ⋅ ∇ = −�

D
∇ ⋅
�
�
��I − (�e + ��e)[B]× − �i[B]2×�

−1
(u ×B) − �(u ×B) 

�
�

B(�Ji)( ) = −�
D
∇ ⋅ ����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B)� .

Now, for notational simplicity, let

F1(�) = �
D

1

�
(��e[B]×J′i) ⋅ �

and

G1( ) = −�
D
∇ ⋅ ����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B)� .

Then combining this with (3.21) yields the following system,

A(�J)(�) +B′(�V)(�) = F1�, (3.22a)

B(�Ji)( ) = G1( ). (3.22b)

Applying Theorem 3.3.2 gives that �Ji, �V must exist. Applying the estimates from

Theorem 3.3.2 will give the desired dependence result, but first, to simplify the esti-

mate, we apply Green’s theorem [47] to the operator G1 ∈ W ′. For any  ∈ W , this

gives

G1( ) = −�
@D
����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B)� ⋅ n.
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Taking the absolute value of each side, we have

�G1( )� = ��
@D
����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B)� ⋅ n�

≤ �
@D
�����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B)� ⋅ n�.

Applying Cauchy-Schwarz [45] and noting that ��n��l2 on @D yields

�G1( )� ≤ �����I − (�e + ��e)[B]× − �i[B]2×�−1 − ��(u ×B) ��
L2(D),

≤ �����I − (�e + ��e)[B]× − �i[B]2×�−1 − ����
V ′ ��(u ×B) ��L2(D).

Noting now that � is bounding, define T1 = �−1, T2 = [B]×, " = ��e. Applying Kato’s

theorem yields ∃C > 0, not depending ��e such that

�����I−(�e+��e)[B]×−�i[B]2×�−1−����
V ′ ��(u×B) ��L2(D) ≤ C ����e��L∞(D)��(u×B) ��L2(D)

Applying this to the above inequality yields

�G1( )� ≤ ����e��L∞(D)C ��(u ×B) ��L2(D).

For notational simplicity in this proof, let K = 1
↵����A��L(V,V ′) + ↵�. Then, using the

a-priori estimate from Theorem 3.3.2, we have

���Ji��V ≤
1

↵
��F1��V ′ +K ��G1��W ′ .

Now, as these operator norms are minimizations over the spaces V,W , where appli-

cable, it follows that for any � ∈ V and  ∈ W such that �����V = �� ��W = 1, it holds

that

���Ji��V ≤
1

↵
��

D

1

�
(��e[B]×J′i) ⋅ �� +KC ����e��L∞(D)��(u ×B) ��L2(D)

≤ ����e��L∞(D)��
1

↵

�����������
�
D

1

�
([B]×J′i) ⋅ �

�����������
+KC ��(u ×B) ��L2(D)��.

As �, were arbitrary, it follows that as as ��e → 0, �Ji → 0. Given that V depends

continuously on Ji, as apparent from (3.11), it follows that the solutions, Ji,V, depends

continuously upon �e. Similar logic shows that the solutions also continuously depend

on �i,�.
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Theorem 3.4.2. Solutions to (3.11) depend continuously on u and B.

Proof. We first show that the solutions to (3.11) depend continuously on B. Fix

u,B ∈ (L2(D))3, bounded, and let �, �e,�i be positive, bounded functions on D.

Let �B be a small perturbation on B in any one direction and consider the following

perturbed system

�
D

1

�
�I − �e[B + �B]× − �i[B + �B]2×�J′i ⋅ � −�

D
∇V ′ ⋅ � = 0, ∀� ∈ V, (3.23a)

�
D
J
′
i ⋅ ∇ = −�

D
∇ ⋅
�
�
��I − �e[B + �B]× − �i[B + �B]2×�

−1
(u ×B) 

�
�
, ∀ ∈W,

(3.23b)

where J
′
i,V ′ denote the solutions, guaranteed by Theorem 3.3.2. Let Ji,V denote the

solutions to the unperturbed system, (3.11), and let �Ji, �V denote the di↵erences

between the perturbed and unperturbed solutions. Subtracting (3.11) from (3.23)

yields

�
D

1

�
�I − �e[B + �B]× − �i[B + �B]2×�J′i ⋅ � −�

D

1

�
�I−�e[B]× − �i[B]2×�Ji ⋅ � NADADAD

= −
�
��D

∇V ′ ⋅ � −�
D
∇V ⋅ �

�
�

�
D

1

�
��I − �e[B + �B]× − �i[B + �B]2×�J′i − �I−�e[B]× − �i[B]2×�Ji� ⋅ �

= −
�
��D

�∇V ′ −∇V� ⋅ ��
�
.

By linearity it is apparent that [B + �B]× = [B]× + [�B]× and [B + �B]2× = [B]2× +
[B]×[�B]× + [�B]×[B]× + [�B]2×. Applying this to the above yields

�
D

������

1

�
��I − �e[B]× − �e[�B]× − �i([B]2× + [B]×[�B]× + [�B]×[B]× + [�B]2×)�J′i

−�I − �e[B]× − �i[B]2×�Ji� ⋅ �
������
= −
�
��D

∇�V ⋅ �
�
�
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�
D
� 1
�
� − �e[�B]× − �i�[B]×[�B]× + [�B]×[B]× + [�B]2×��J′i − �−1�Ji� ⋅ �

=
�
��D

∇�V ⋅ �
�
�

For simplicity, let �i denote a vector of indicator functions in the ith direction. Then

−�
D

�B

�
� − �e[�i]× − �i�[B]×[�i]× + [�i]×[B]× + �B[�i]2×��J′i ⋅ �

= A(�Ji)(�)B′(�V)(�).

For notational convenience, define

F2(�) = −�
D

�B

�
� − �e[�i]× − �i�[B]×[�i]× + [�i]×[B]× + �B[�i]2×��J′i ⋅ �

For the second equation, we have

�
D
�J′i ⋅ ∇ = −�

D
∇ ⋅
�
�
��I − �e[B + �B]× − �i[B + �B]2×�

−1
(u ×B) 

�
�
−∇ ⋅ �(u ×B) 

Writing this in the notation of Section 3.3.2, we have

B(�Ji)( ) = −�
D
∇ ⋅
�
�
���I − �e[B + �B]× − �i[B + �B]2×�

−1
− ��(u ×B) 

�
�
.

Again, for notational convenience, define

G2( ) = −�
D
∇ ⋅
�
�
���I − �e[B + �B]× − �i[B + �B]2×�

−1
− ��(u ×B) 

�
�
.

Thus, we have the following system,

A(�Ji)(�) +B′(�V)(�) = F2(�) (3.24a)

B(�Ji)( ) = G2( ). (3.24b)

By applying Theorem 3.3.2, �Ji, �V both exist. Similar to the proof of Theorem 3.4.1,

we apply Kato’s theorem to simplify the estimates given by Theorem 3.3.2. For  ∈W ,

we have

�G2( )� ≤
�����������

�����������

�
�
���I − �e[B + �B]× − �i[B + �B]2×�

−1
− ��(u ×B) 

�
�

�����������

�����������L2(D)
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≤ ���B��L∞(D)C ��(u ×B) ��L2(D)

for some C ∈ R. Utilizing the a priori estimates given in Theorem 3.3.2, we have

���Ji��V ≤
1

↵
��F2��V ′ +

1

↵�
���A��L(V,V ′) + ↵���G2��W ′

Using the definition of opertator norms, for any � ∈ V and  ∈ W such that �����V =

�� ��W = 1

���Ji��V ≤
1

↵

�����������
�
D

�B

�
��e[�i]× + �i�[B]×[�i]× + [�i]×[B]× + �B[�i]2×��J′i ⋅ �

�����������
+

1

↵�
���A��L(V,V ′) + ↵����B��L∞(D)C ��(u ×B) ��L2(D)

≤ ���B��L∞(D)
������

1

↵

�����������
�
D

1

�
� − �e[�i]× − �i�[B]×[�i]× + [�i]×[B]× + �B[�i]2×��J′i ⋅ �

�����������

+ 1

↵�
���A��L(V,V ′) + ↵�C ��(u ×B) ��L2(D)

������
.

Thus, it is clear that the solutions are continuously dependent upon B. Continuous

dependence on u follows immediately from (3.11) and the continuous dependence of

integrals on their arguments.

With this last theorem, we have completed the well-posedness of the determin-

istic forward problem. This theory will be computationally-verified within Section 5.1,

and extended to include uncertainty within Section 6.1. For now, however, we move

onto establishing more of the theoretical aspects of the deterministic kinematic MHD

model, the inverse problem.

3.5 Parameter Estimation Theory

3.5.1 Introduction

In this section, we introduce the first inverse problem for our real-time optimiza-

tion problem. Under the framework of the real-time optimization problem of MHD
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generators, there is no feasible (and in many cases, physically possible) way for direct

observation of the states. However, one can expect to obtain data from the resistors,2

measuring the MHD generator’s electrical output through a measure of the current

density, J, and electric field, E. Thus, in order to choose optimal operating condi-

tions of an MHD generator, we must estimate the state of the MHD generator from

these measurements. This problem is called the deterministic parameter-estimation

problem.

In general, the well-posedness of any inverse problem equates to showing that

some numerical approximation method for the inverse map of the forward problem

is method-stable, in the sense of numerical stability. As the parameter estimation

problem is infinitely-dimensional, we must make some reductions to the parameter

space over which we search, and the norms which we will measure our residual with.

We pair these reductions with likely compact function spaces that are computationally

realistic, with values across D lying in intervals given in [56]. We then establish the

numerical method to implement the dimension-reduced problem, i.e. (IDN
M), and

show that this is method-stable. This is done by showing that the method converges

to any set of parameter functions, as the dimension goes to infinity, applying ideas

from [4], and demonstrating that the method satisfies the necessary postulates.

3.5.2 Parameter Estimation Scheme

Parameter estimation is an optimization problem in which if u is the solution to

a system of equations, and d represents provided data, the goal is to find parameter(s)

q to minimize the di↵erence between the solution and data, i.e.

Minimize J(q) ∶= ��u(⋅; q) − d��,

where q varies over some admissible parameter space, and J is defined in some ap-

propriate norm. We will denote this problem for our system of equations the ID or

2
See Section 2.1
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identification problem. To match the notation of Banks [4], we define the following:

U = �Ji
V � , A(q) = �A B′

B 0 � , F (q) = �0G� ,

where A,B,G are as defined in the above sections. Then the system of equations,

(3.11), can be written as

AU = F. (3.25)

Clearly, U ∈ V ×W for any solution of (3.11), and we denote this space H ∶= V ×W .

The set of unknowns for this specific parameter estimation problem is given by

q = (u,B,�,�e,�i).

We now define a series of parameter spaces over which a solution to the inverse problem

exists, following from the stipulations within Theorem 3.3.2. We begin with the most

general, which is given by

Q ∶= �L2(D)�3 × �L2(D)�3 ×L∞+ (D) ×L∞+ (D) ×L∞+ (D)

where

L∞+ (D) = {f ∈ L∞(D) ∶ f > 0 on D}.

For any parameter set chosen within Q, there will be a solution to (4.7), guaranteed

by Theorem 3.3.2. For simplicity, denote the solution to the system with a given

parameter set q as U(⋅; q). For notational purposes, letM = L∞(D). We now further

refine the admissible parameter set to reflect the underlying physics of the problem

that is not captured by the system of equations, i.e. the realistic admissible parameter

set, which will be denoted by Q̃. Note that we choose this subset to be compact. First,

define

̃̃Q ∶= {q ∈ Q ∶ ��u��M3 < umax, ��B��M3 <Bmax, �min < �����M < �max,

���e��M < �e,max, ���i��M < �i,max},
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and then characterize Q̃ as the subset of ̃̃Q where u,B both have uniform Lipschitz

bounds, denoted l1,i, l2,i for i = 1,2,3. Notationally, ∀" > 0,

Q̃ ∶= {q ∈ ̃̃Q ∶ �ui(xi, ; ) − ui(xi + ", ; )� ≤ "l1,i, �Bi(xi, ; )−Bi(xi + ", ; )� ≤ "l2,i, for i = 1,2,3

and �, µe, µi are equicontinuous on D}.

This implies that the identification problem that defines this parameter estimation is

to minimize

(ID) J(q) ∶= ��U(⋅; q)−U ��H , nada

over q ∈ Q̃ and for some given state U . Now, for both numerical and theoretical con-

siderations, we define a finite-dimensional approximation to Q̃. Let D be partitioned

into M subsets, and define

Q̃M ∶= �q ∈ Q̃ ∶ u�Dk
∈ Pn, B�

Dk
∈ Pn, ��

Dk
∈ P0, �e�Dk

∈ P0, �i�Dk
∈ P0 for k = 1, . . .M�,

for some n ∈ N. Here, Pn is the space of polynomials of degree at most n on Dk, and

P0 is clearly the space of constant functions. As well, note that as Q̃M ⊂ Q̃, u,B will

still be continuous functions for any q ∈ Q̃M . Finally, we complete the statement of

the parameter estimation problem by turning the discussion to partial observational

data.

Realistically, the data provided will not be known across the domain. Thus, for

incomplete or partial observational data, define {xk}lk=1 ⊆D to be the points at which

the data, d, is given. Define the projection operator to be

C(F) = {F(xk)}lk=1,

where F denotes any function mapping D → R4. This implies that the restricted

domain ID problem is given by

(IDM) JM(q) ∶= ��C(U(⋅; q))−d��(L2)4 nada.
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over q ∈ Q̃M . Note now that the weak solution space, H, does not necessarily lie in

the domain of C. Thus, we define a continuously imbedded Banach space into H by

continuous functions, i.e.

H̃ = ��C(D)�3 × C(D)� ∩ �V ×W�.

Then define the domain of C to be:

C ∶ H̃ → Z = (Rl)4,

where l is determined by the number of observation points. This projection operator

represents where the data will be provided within the domain D.

We also seek our solutions to (3.11) in some finite-dimensional (FD) space. The

particular FD approximation to H we use, denoted HN , is defined as a space of linear

functions. Define ⌧ to be a given Delauney [11] finite element triangularization of

D with N elements.3 Then clearly the dimension of HN is finite, with a basis of

linear functions, {�j}, where �j will be 1 on the jth node, and 0 on every other node,

vanishing at the endpoints. Similar to HN , define H̃N = HN ∩ ��C(D)�3 × C(D)�.

With this finite dimensional approximation space, we arrive at the final version of the

identification problem, analogous to (IDM ): find the minimum of

(IDN
M) JN

M(q) ∶= ��C(UN(⋅; q))−d��l2 , nada

over q ∈ Q̃M , with UN(⋅; q) ∈ H̃N(q).

With the identification problem now clear, we state the definition of a function

space parameter estimation convergent or FSPEC set, as seen in [4]. This will in turn

allow us to show that the inverse problem is well-posed.

Definition: 3.5.1. For notational convenience, let xk ∶= xNk
Mk

where appropriate.

Then, a set consisting of a finite-dimensional approximation to the solutions space of

3
See Section 5.1.2 for examples of this mesh
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(3.14), HN , a finite-dimensional approximation to the solutions of (3.14), UN(q),

a projection operator, C and a finite-dimensional approximation to the admissible

parameter space, Q̃M is FSPEC if it satisfies the following.

i. For each N = 1,2, . . . there exists a solution qNM ∈ Q̃M of IDN
M .

ii. Every convergent subsequence {qk} converges to a solution q∗ ∈ Q̃ of ID.

iii. Jk(qk)→ J(q∗).

iv. ��UNk(⋅; qk) −U(⋅; q∗)��H̃(qk) → 0 .

v. There exists at least one subsequence satisfying ii. − iv.

We now go on to show that the identification problem as defined above satisfies

the requirements to be FSPEC.

3.5.3 Necessary Postulates

In this section, several propositions are presented concerning the parameter

estimation problem. These are then utilized to construct a set which is function space

parameter estimation convergent, implying that the parameter estimation problem is

method-stable. All of the following propositions stem from similar postulates found

in Banks [4], and are labeled to correspond accordingly. We begin with properties of

the solution Hilbert space, and its finite dimensional approximation. Note here that

we state a dependence of the solution space on the parameter set, out of notational

convenience to match that in Banks.

Proposition 3.5.1 (HS). For each q in the metric space Q,⇢, the space H is a

Hilbert space, H̃ is a Banach space continuously imbedded in H, and HN is a finite

dimensional (closed) linear subspace of H with dimension independent of q.

Proof. We define ⇢ to be the metric induced by H’s inner product, i.e.

�⋅, ⋅�q = �⋅, ⋅�(L2(D))3 + �⋅, ⋅�L2(D).
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It immediately follows that H is complete, as any Cauchy sequence fk = (f1,k, f2,k)

in H must have the property that f1,k is Cauchy in L2(D), and by the Riesz-Fischer

Theorem [43], this is a complete space, and thus f1,k converges. A similar result

holds for f2,k, given that W is a closed subset of a complete space. Here, the closure

property is immediate from W being defined as the closure of the continuous test

functions with compact support. Thus, H is a Hilbert space.

As the continuous functions are dense in L2(D), it immediately follows that H̃

is a Banach space continuously embedded in H, as the product of the dense subspace

of factors is dense in the product space.

Finally, HN is finite-dimensional, as it has a finite basis. As well, HN is clearly

closed under vector addition and scalar multiplication, as the compactness of D guar-

antees the closure. Thus, HN is a closed linear space. The dimension depends only on

the number of partitions of ⌧ , which is not a parameter of q, and the claim holds.

Now, to present a classic theorem for compactness in L2 spaces. This theo-

rem is analogous to Arzela-Ascoli [44] for Lp spaces, and is necessary to characterize

compactness in Q.

Theorem 3.5.1 (Frechét-Kolmogorov Theorem). Let F be a subset of Lp(D) with

p ∈ [1,∞) and let ⌧hf denote the translation of f ∈ F by h, i.e., ⌧hf = f(x − h). Then

F is compact if and only if

i. F is closed,

ii. F is equicontinuous, i.e. lim�h�→0
��⌧hf − f ��Lp = 0 uniformly, and

iii. F is equitight, or lim
r→∞���x��>r �f �

p = 0 uniformly.

A proof can be found in [8]. We now apply this theorem to the first two subspaces

of Q̃.

Lemma 3.5.1. The space of uniformly bounded and uniformly Lipschitz continuous

functions, denoted F , is a compact subset of L2(D).
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Proof. We clearly would like to apply the Frechét-Kolmogorov theorem. Thus, we

show the three conditions stated in the theorem hold. Let ↵ denote the uniform

bound on F , and let � denote the uniform Lipschitz condition.

i. Closed. From the Lipschitz condition, it follows that fk must be di↵erentiable at

all but a countable number of points for each k. Now, as the union of countable

sets is again countable, assume that these points of non-di↵erentiability are the

same for each fk. Denote these points {xj} and consider any interval between

such points. At most, f ′k ≤ � on each.

Suppose that fk → f . It then follows that f has at most the same points of

non-di↵erentiability as {fk}. As well, by continuity of the derivative operator,

it follows that f ′k → f ′. Therefore f ′ ≤ � as each f ′k is, and thus f is Lipschitz

continuous with Lipschitz bound ≤ �.

Now, as continuous functions with bounded derivatives are compact by Arzela-

Ascoli [44], it immediately follows that on each interval of di↵erentiability,

��f ��L∞([xk,xk+1]) < ↵,

and by continuity of f , it must be that ��f ��M < ↵.

ii. Equicontinuous. Let f ∈ F . The uniformly Lipschitz condition implies that

�⌧hf − f(x)� ≤ ��h�.

Applying this yields

��⌧hf − f ��2L2(D) = �
D
�⌧hf − f � dV ≤ �

D
��h�→ 0,

and as f is arbitrary, F must be equicontinuous.

iii. Equitight. This follows immediately from D being compact and thus bounded.

Therefore the support of any f ∈ F is compact, and for any ball larger than the

radius of D, the integral of f outside of that ball is zero, and therefore F is

equitight.
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We now see that our realistic admissible parameter set is compact.

Proposition 3.5.2 (HQ1). The set Q̃ is a compact subset of the metric space (Q,⇢).

Proof. For simplicity, label each of the product spaces of Q̃ as Q̃i so that

Q̃ = Q̃1 × . . . × Q̃5.

Note that Q̃1 and Q̃2 are compact by Lemma 3.5.1. Also note that Q̃3, Q̃4, Q̃5 are

compact from Arzela-Ascoĺı [8]. As the product of compact spaces is compact, Q̃ is

compact in Q.

We now show that our approximations to the space pass convergent sequences

to convergent sequences.

Proposition 3.5.3 (HQC). For any arbitrary sequence qM → q0 in Q, we have

��UN(⋅; qM) −U(⋅; q0)��
H̃(q) → 0.

Proof. Consider the following.

��UN(⋅; qM) −U(⋅; q0)��H̃(q) = ��UN(⋅; qM) −U(⋅; qM) +U(⋅; qM) −U(⋅; q0)��H̃(q)
≤ ��UN(⋅; qM) −U(⋅; qM)��H̃(q) + ��U(⋅; qM) −U(⋅; q0)��H̃(q)

�����������������������������������������������������������������������������������������������������������������������������������������������������������
B

.

As it has been shown that the solution, U , depends continuously on the parameters

(Theorems 3.4.1 and 3.4.2), B must go to 0 as qM → q0. As well, consider that as

UN satisfies the weak-form, i.e (3.15), it must also satisfy the minimization (Ritz)

formulation, given by

��UN(; , qM) −U(; , qM)��H̃(q) ≤ ��V −U(; , qM)��H̃(q) ∀V ∈HN .
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In particular, this is satisfied for the interpolant of U in HN , denoted U
N(q), and

thus

��UN(; , qM) −U(; , qM)��H̃(qM ) ≤ ��UN(; , qM) −U(; , qM)��H̃(q).
Now, define hK = diam(K) as the longest edge of element K ∈ ⌧ and then define

h ∶=maxK∈⌧ hk. Then from [7], it follows that

≤ Ch3��U(; , qM)��H̃(q),

for some constant C that does not depend on the chosen grid. Recall that ⌧ is the

Delauney finite-element triangularization of D. Clearly, as N → ∞, h → 0 for a

Delauney finite-element mesh, and therefore the inequality holds.

We now need to show the existence of surjective maps from the admissible

parameter space to the finite-dimensional representation, and that as the order of the

FD representations goes to infinity, it converges to the admissible parameter space.

We do so for each of the two ‘types’ of domains we work with, L2 and L∞. We begin

with L2.

Lemma 3.5.2. Let F ∶= {f ∈ L2 ∶ ��f ��M ≤ ↵1, �f(x + h) − f(x)� ≤ h↵2 ∀x ∈ D}, for

some ↵1,↵2 > 0. Now, for the M parameter dimensions, K ∈ ⌧ , and n the polynomial

dimension for Q̃1, Q̃2, define

FM ∶= {f ∈ F ∶ f �K ∈ P
n(K) k = 1, . . . ,M}.

Then FM is compact in F , and there exists a surjective map V 1
M ∶ F → FM such that

⇢(V 1
Mqn, qn)→ 0 as M →∞

for any convergent sequence {qn} ⊂ F .

Proof. To see that FM is compact, we note that F has been shown to be compact

(Lemma 3.5.1), and FM is closed. As any closed subset of a compact set is compact,

FM must be compact.
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We now define the surjective operator. For simplicity, assume that the piecewise

polynomials are all of order 1, and that D ⊂ R. For higher-degree polynomials, the

arguments remain similar. For D ⊂ Rm, m > 1, the arguments presented below are

easily extended to each spatial dimension.

Let {xk} be the finite number of sample points. Assume that D is connected

(as one can extend to each disconnected subset of D), and for f ∈ F , define

V 1
M(f) =

f(xk) − f(xk−1)
xk − xk−1 (x − xk) + f(xk) for xk−1 ≤ x < xk, for k = 1, . . . ,M − 1.

Clearly, as V 1
M = Id for any f ∈ FM , and as FM ⊂ F , it follows that V 1

M is surjective.

Now, note that the Lipschitz condition implies V 1
M(f) < ↵2(x − xk) + f(xk) for any

f ∈ F and all xk−1 < x < xk. It then follows that

��V 1
M(f) − f ��M ≤ ↵2(xk − xk−1).

Let {qn} ⊂ F be any convergent sequence. Then clearly, as M →∞, (xk − xk−1) → 0,

and thus the desired inequality holds.

We now show a similar result for L∞.

Lemma 3.5.3. Let G ∶= {g ∈ L∞ ∶ ��g��L∞ ≤ �,}. Let GM ∶= {g ∈ G ∶ g�Dk
∈ P0(Dk) k =

1, . . . ,M}. Then GM is compact in G, and there is a surjective map V 2
M ∶ G → GM

such that

⇢(V 2
Mqn, qn)→ 0 as M,n→∞

for any convergent sequence {qn} ⊂ G.

Proof. As with Lemma 3.5.2, it has already been shown that G is compact, and it

immediately follows that GM is closed, and thus compact as a subset of G. Now,

define the surjective map similar to Lemma 3.5.2. For any g ∈ G,

V 2
M(g) ∶= g(xk) − g(xk−1) for xk−1 < x < xk, for k = 1, . . .M − 1.
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Then V 2
M = Id on GM , and as a subset of G, it is surjective. The inequality follows as

��V 2
M(g) − g��M ≤ �max

K∈⌧ hK ,

with hk defined as in the proof for Lemma 3.5.2. By the definition of Dealuney

triangulation, we have M →∞, hK → 0 ∀K ∈ ⌧ and thus the inequality holds.

Finally, we combine the ideas of the two above lemmas, applying them to the

appropriate subspaces of Q̃.

Proposition 3.5.4 (HQ4). There exists a sequence of finite dimensional compact

sets Q̃M ⊆ Q̃ and surjective maps VM ∶ Q̃→ Q̃M such that for any convergent (possible

trivially convergent) sequence {qn} in Q̃ we have ⇢(V Mqn, qn)→ 0 as n,M →∞.

Proof. For simplicity, define

Q̃M = Q̃M
1 × . . . × Q̃M

5 .

Then from Lemma 3.5.2 Q̃1 and Q̃2 are compact. Similarly, from Lemma 3.5.3,

Q̃3, Q̃4, Q̃5 are compact. Thus, as the product of compact spaces is compact, Q̃ is

compact.

Define VM to be the product of the projective mappings guaranteed by the two

lemmas for each of the spaces. Then it is immediate from these lemmas that the

mappings are surjective, and then finally, VM must satisfy the desired convergence as

n,M go to ∞.

Now, with all of these propositions established, we turn to showing that the set

is FSPEC.

3.5.4 Inverse Theorem

Following the work of Banks [4], we now define a set based on the above propo-

sitions that is FSPEC, showing that the inverse problem is well-posed. We do so by

showing that the set satisfies each of piece of the definition, FSPEC.i - FSPEC.v.
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Theorem 3.5.2. The set {HN , UN(q), C, Q̃M} is FSPEC.

Proof. From Theorems 3.4.1 and 3.4.2, it is immediate that U depends continuously

on q, and thus so does JN
M(q). Compactness of Q̃M , as shown in HQ4, under the

continuous map of U implies the existence of solutions to IDN
M , as the image is compact

and thus contains a minimum. Denote this solution qNM . By definition of minimum,

we have JN
M(qNM) ≤ JN(qM) for all qM ∈ Q̃M . Of course, this implies that

JN
M(qNM) ≤ JN

M(VM(q)) for all q ∈ Q̃. (3.26)

As VM is surjective by HQ4, choose q̃NM ∈ Q̃ such that VM q̃NM = qNM . As Q̃ is compact

(see HQ1), as N,M → ∞, there exists some convergent subsequence of the above

solutions, i.e. {q̃Nk
Mk
} ⊂ Q̃ such that q̃Nk

Mk
→ q∗ for some q∗ ∈ Q̃. Utilizing HQ4 again,

along with triangle inequality, it follows that

⇢(qNk
Mk

, q∗) ≤ ⇢(qNk
Mk

, q̃Nk
Mk
) + ⇢(q̃Nk

Mk
, q∗)

= ⇢(VMk(q̃
Nk
Mk
), q̃Nk

Mk
) + ⇢(q̃Nk

Mk
, q∗)→ 0.

implying that qNk
Mk
→ q∗ in Q. This implies that both FSPEC.i and FSPEC.ii are

satisfied.

For notational purposes, let qk = qNk
Mk

, and similarly for J . Then

��Jk(qk) − J(q∗)��L2 ≤ ���C(qk)UNk(⋅; qk) − d� − �C(q∗)U(⋅; q∗) − d���
L2

= ��C(qk)UNk(⋅; qk) − C(q∗)U(⋅; q∗)��
L2 .

This implies the FSPEC.iii holds. Now, from HQC and the lack of dependence of q

on C, it immediately follows that ��Jk(qk) − J(q∗)��L2 → 0 by the above. This implies

that

Jk(qk)→ J(q∗). (3.27)

and thus FSPEC.iv holds. FSPEC.v holds by all of the above. The existence of one

such subsequence is guaranteed by applying Theorem 2 onto the subspaces Vh,Wh,

with an appropriately defined parameter sequence.
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We have now established the well-posedness of the deterministic parameter es-

timation problem. By demonstrating that the finite-dimensional approximation to

ID converges as the dimensions approach infinity, we have shown that the scheme is

method-stable.
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3.6 Notation

3.6.1 Forward Problem

Term Definition Notes

D Spatial domain Subset of R3.

@D Boundary of D

u Fluid-flow Mostly in x-direction

B Applied Magnetic Field Entirely in z-direction, im-

plies induced magnetic field is

negligible.

� Plasma Conductivity

µe Electron mobility

µi Ion mobiility

�e Hall parameter This accounts for the di↵erent

velocity field of the electrons

relative to the plasma.

�i Ion-slip parameter

n Vector outwards-normal

to domain D.

This accounts for the di↵erent

velocity field of the ions rela-

tive to the plasma.

V Electric Potential It’s gradient is the electric

field, by Stoke’s theorem and

boundary conditions.
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Term Definition Notes

Ji �∇V Represents the induced

current-density

� ��I + �e[B]× + �i[B]2×�
−1

Conductivity Tensor

W (D) �f ∈H1(D) ∶ T (f) = 0� T (f) is the trace of f on D.

This is the solution space for

V

V (D) �f ∈ (L2(D))3 ∶ f ⋅ n =

−��(u ×B)� ⋅ n on @D�

This is the solution space for

Ji

A(F)(○) ∫D(�
−1
F) ⋅ ○ Maps from V × V to R.

B(G)(○) − ∫DG ⋅ ∇○ Maps from V ×W → R.

g(!) ∫D ��u ×B� ⋅ ∇!.
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3.6.2 Inverse Problem

Term Definition Notes

U [Ji,V]T Vector of solutions to the for-

ward problem

H V ×W Solution space for U

q (u,B,�,�e,�i) Parameter set for MHD sys-

tem

L∞+ (D) {f ∈ L∞(D) ∶ f > 0 on D}

Q �L2(D)�3 × �L2(D)�3 ×

L∞+ (D)×L∞+ (D)×L∞+ (D)
Admissible parameter space

Q̃ Realistic parameter space It is both compact and contin-

uous.

Q̃M Finite-dimensional ap-

proximation to Q̃

HN Finite-dimensional ap-

proximation to H
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4 An Introduction of Uncertainty

In the following, we establish well-posedness of the random kinematic MHD

equations. We do so by developing the theory presented in the previous chapter to

allow for the inclusion of dependence upon a random domain. We do the same with

the inverse problem from the previous chapter. To this end, we make use of the

Prokhorov metric, introduced in Section 2.4.1. We then define a finite-dimensional

approximation to the uncertain identification problem, which is shown to be method

stable. The following work makes great use of the sources [2, 4, 3, 46].

4.1 Uncertain Forward Problem

4.1.1 Introduction

In this section, we introduce and develop theory for the stochastic kinematic

MHD equations. These equations are the stochastic equivalent to (3.11), with the

major di↵erence being that the parameters and solutions are viewed as random pro-

cesses. These processes have associated distributions, and we investigate how the

‘randomness’ of the parameters a↵ects the ‘randomness’ of the solutions, i.e. how the

randomness propagates through the system to the solutions. To do so, we must first

establish that the system is well-posed, extending Theorem 3.3.2 to include random-

parameters.

4.1.2 Well-Posedness

Let the spatial domain for our system be as before, D ⊂ R3, open with compact

closure and we refer to the boundary as @D. We refer to the stochastic probability

space (⌦,H, p), where ⌦ is the set of outcomes, H is a given sigma algebra of events,

and p is some continuous probability measure.

As with the deterministic model presented in the previous chapter, we work
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with the kinematic MHD system, where the fluid-flow, u, is given, the induced mag-

netic field is negligible compared to the applied magnetic field [6]. As well, all other

system parameters, namely the conductivity, �, applied magnetic field, B, electron-

mobility, µe, and ion-mobility, µi. Recall that µe, µi > 0 on their domains. However,

unlike the deterministic model, these parameters are not functions, but rather ran-

dom processes, as first introduced in Section 2.4. These random processes, also viewed

as function-valued random variables, are some functions in the admissible parameter

space associated with each. Using the notation from Section 3.5, we have that u,B

are random processes on L2(D), while �, µe, µi act upon L∞+ (D).
Extending the Hall parameter and ion-slip parameter, we have for x ∈D, ! ∈ ⌦

�e(x,!) = µe(x,!)��B(x)��l2 , and �i(x,!) = µe(x,!)µi(x,!)��B(x)��2l2 .

We also utilize the conductivity tensor given in Section 3.2, but adjusted to include

the stochastic domain. This is given by

�(x,!) = �(x,!)�I − �e(x,!)
��B��l2

[B]× − �i(x,!)��B��2
l2
[B]2×�

−1
,

where I denotes the identity matrix in R3×3 and [B]× is the matrix form of the cross-

product. Invertibility of this matrix follows from the physical restriction µe, µi > 0.

Under these definitions, the random MHD kinematic system is given by: find the

induced current density, Ji ∶ D × � → R3, and electric potential, V ∶ D × ⌦ → R that

satisfy

�−1Ji(x,!) −∇V(x,!) = 0 ∀x ∈D, p.a.e. ! ∈ ⌦, (4.1a)

−∇ ⋅ Ji(x,!) = ∇ ⋅ ��(x,�)(u(x,�) ×B(x))� ∀x ∈D, p.a.e. ! ∈ ⌦, (4.1b)

with boundary conditions

Ji ⋅ n = −��(u ×B)� ⋅ n and tr(V) = 0 on @D, p.a.e. ! ∈ ⌦,

where n is a unit-vector normal to the boundary of D. Here, (4.1a) is the transformed

Generalized Ohm’s law, using the tensor conductivity � and an application of Stoke’s
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theorem to the Maxwell-Faraday equation. (4.1b) is the equivalent for the divergence

condition for J. It is obvious that we are not starting the uncertain problem in the

same place as the deterministic equivalent. This is because we still would like to

use (and have presented already) a mixed-Poisson system of equations. The algebra

and other logic that converted the deterministic MHD system into its mixed-Poisson

counterpart follows immediately when the parameters are viewed as random processes,

and is thus not restated here.

We refer to the system (4.1) as the random strong form of the kinematic MHD

governing equations. We establish well-posedness by following a similar approach to

what was seen in the deterministic equivalent, converting (4.1) into a weak form,

then subsequently an operator form, and finally applying the BBK theorem [14] for

existence and uniqueness of solutions. Continuous dependence on the parameters

follows immediately from continuity of integration, the dependence shown in Section

3.3, and the continuity of the composition of two continuous functions.

We now define a random function space. We only seek solutions that are square-

integrable with respect to the random domain. Notationally, this space is given by

L2,p(⌦) ∶= �f ∶ ⌦→ R � �
⌦
f2(!)p(!) d! <∞�,

with norm

��f ��L2,p = E[f] =
�
��⌦

�f �2(!)p(!) d!
�
�

1�2
.

Recall the deterministic solution spaces for Ji and V defined in Section 3.3.2. Taking

the tensor product between these two, we define the random solution space for Ji as

V ∶= V (D) ×L2,p(⌦) = {f ∶D ×⌦→ R3 � f(⋅, y) ∈ �L2,p(⌦)�
3
, f(x, ⋅) ∈ V }.

Similarly, define W ∶=W (D)×L2,p(⌦) as the random solution space for V. We define

the norm on V as the averaging norm, i.e.

��F��V = �E���F��
2
V ��

1�2
.
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and similarly define the norm on W to be the averaging norm using �� ⋅ ��W . Given

that V,W are both Hilbert spaces, as shown in 3.3, it follows that V ,W are also

Hilbert spaces. Multiplying (4.1) by appropriate test functions and integrating, the

spatially-weak form of the system is given by: find Ji ∈ V ,V ∈W that satisfy

E
������
�
D
�−1J ⋅ �

������
−E
������
�
D
∇V ⋅ �

������
= 0, ∀� ∈ Ṽ , (4.2a)

−E
������
�
D
Ji ⋅ ∇ 

������
= E
������
�
D
��(u ×B)� ⋅ ∇ 

������
, ∀ ∈�W. (4.2b)

We refer to (4.2) as the random weak form. We define the bilinear operator A ∶ V ×V →

R as

A(F)(G) = E
������
�
D
�−1F ⋅G

������
.

Similarly, we define B ∶ V ×W → R as

B(F)(g) = −E
������
�
D
F ⋅ ∇g

������
.

Finally, define

G( ) = E
������
�
D
��(u ×B)� ⋅ ∇ 

������
.

Using these, the random operator form is given: find Ji ∈ V ,V ∈W such that

A(Ji) +B
′(V) = 0 ∈ V ′, (4.3a)

B(Ji) = G ∈W
′
. (4.3b)

With this operator form defined, we now present a theorem stating that the

system (4.3) is well-posed.

Theorem 4.1.1. Given u,B ∈ L2,p(⌦)× (L2(D))3, bounded, and �,�e,�i ∈ L2,p(⌦)×

L∞+ (D), i.e. for each ! ∈ ⌦, assume �,�e, and �i are positive and bounded. Then

there exist unique solutions, Ji,V, to

A(Ji) +B
′(V) = F1 ∈ V

′
, (4.4a)
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B(Ji) = F2 ∈W
′
, (4.4b)

which, for some b ∈ R+, independent of the choice of parameters, obey the following a

priori estimates:

��Ji��V ≤ ��F1��V ′ +
1

b
���A��L(V ,V

′) + 1���F2��W ′ , (4.5)

��V ��W ≤
1

b
���F1��V ′ + ��A��L(V ,V

′)��F2��V ′�, (4.6)

The proof of this theorem follows immediately from Theorem 3.3.2, where b is

the bounding constant for B, with appropriate extensions to the arguments regarding

the coercivity and bounding constants of the operators, and the fact that, as V,W

are Hilbert spaces 3.3, V ,W must be as well. Note now that letting F1 = 0, F2 = G

implies well-posedness of our system. The bounds on the solutions will prove vital in

the error analysis of our numerical method.

4.2 Inverse Problem

We now introduce the concept of uncertainty to the parameter estimation prob-

lem, first presented in Section 3.5, and investigate the well-posedness of the inverse

problem. To do this, we combine the uncertain kinematic MHD model developed

above, (4.3), with the probability theory presented in Section 2.4 and the parameter

estimation problem presented in Section 3.5. We demonstrate that an approximation

to the full uncertain parameter estimation problem is method-stable, and that we can

expect our results to converge to the true parameter distributions under ideal condi-

tions. This provides a numerically implementable algorithm, whose implementation

can be seen in Section 6.2. This section builds upon the work in [3].
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4.2.1 Identification Problem

We turn the focus on to the inverse problem for the above system, parameter

estimation. In Section 4.2, we assigned both the random and deterministic param-

eters, {u,�,�e,�i} and {B} respectively. We only attempt to recover the random

parameters, as we have already demonstrated in Section 5.2 that the deterministic B

can be recovered. As well, the Hall and ion-slip parameters, �e,�i respectively, are

both assigned from the norm of B and their respective mobilities, µe, µi. Thus, when

attempting the parameter recovery, it is su�cient to recover µe and µi. Therefore, our

random parameter set, q, is given by the vector of random processes, q = {u,�, µe, µi}.

To update the parameter estimation problem to include uncertainty, three dis-

tinct components must be stochastic in nature: the norm which defines the identifi-

cation problem, the data and what it is understood to represent, and the space over

which we search. The norm changes as the solution space changes. To simplify the

notation, we use the operator notation as defined in the previous section, but updated

to include the dependence on the random domain. With these, define

U(x; q(!)) = �Ji(x; q(!))
V(x; q(!))� , A(q(!)) = �

A(q(!)) B′(q(!))
B(q(!)) 0

� , F (q(!)) = � 0
G(q(!))� .

It follows that the (4.2), can be written as

AU = F. (4.7)

It also follows that U ∈ V ×W from Theorem 4.1.1. Thus, as with the deterministic

parameter estimation problem, let H = V ×W , with norm �� ⋅ ��2
H
= �� ⋅ ��2

V
+ �� ⋅ ��2

W
. Given

that H is simply the tensor product of H from Section 3.5 and L2(⌦), it follows that

H is a Hilbert space, and that we can use the norm or an approximation of it for the

uncertain parameter estimation scheme.

Similarly, the definition of ‘data,’ must change. To include uncertainty, first

assume we are given some data U corresponding to U on D, as with the deterministic

problem. However, we view the data as a realization of the expectation of the system,
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and thus there will be no dependence on !. Thus, the way we fabricate data will not

change between this and the deterministic problem, only how we view it.

Finally, the definition of the identification problem itself must change to reflect

that we search for a distribution rather than a parameter set. However, recall that

in the deterministic theory, it was vital that we searched over a compact parameter

space. To address these concerns in the more complex space of distributions, we

utilize the Prokhorov metric. For the definition of this metric, we refer the reader

to Section 2.4. Using this metric, we adapt the probability distribution space to

reflect the compactness of the underlying parameter spaces. We also use this metric

to demonstrate the convergence of the approximations to the true distributions.

Theorem 4.1.1 defines the admissible parameter space for our parameter set

q. However, unlike the deterministic case, rather than u simply being a function in

L2(D), u is a random process which acts on (L2(D))3, i.e. u(!) ∈ L2(D) ∀! ∈ ⌦.

For a formal definition of random process, see Section 2.4. Similarly, we have that

�, µe, µi are random processes which all act upon the space of bounded functions

on D, L∞(D). Thus, we have the uncertain admissible parameter space given by

Q ∶= L2(D) ×L∞(D) ×L∞(D) ×L∞(D). We now go into more depth on how the we

convert the identification problem into one in which we recover distributions.

In this problem, we seek to identify a distribution on the parameter space Q,

rather than a specific element q ∈ Q. Thus, we must review the concept of a probability

distribution on Q. Recall the probability space of events, ⌦, the Borel sigma-algebra

of outcomes, B(⌦), and the continuous measure P , from the previous section. As

well, recall that we stated a random process Y is a random variable for fixed x ∈ D,

and a function for fixed ! ∈ ⌦. We now restate a definition from the introduction, the

definition of a probability distribution for a random process. For convenience, let Y

denote any of the random parameters, acting on QY , the associated function space.

We define the probability distribution of Y on QY as a measure P Y ∶ QY → R, which
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for y ∈ Y (⌦) is given by

P Y (y) ∶= pY P (Y −1(y)).
Note that we must also include a normalization factor, pY , to ensure that P (Y (⌦)) =

1, and thus satisfy the definition of a probability measure. If Y is onto, then this

normalization factor is 1.

With this new measure, we have actually generated a new probability space,

(Y (⌦),B(Y (⌦)), P Y ), where B(Y (⌦)) denotes the Borel sigma-algebra of events, as

with the original probability space. With this, we can now treat every realization of

each parameter simply as an element in the event space. We extend this same idea to

the entirety of the parameter space by taking the convolution of these distributions,

which gives the probability distribution on Q. If these are discrete distributions, as

they will be for the numerical case, we have for ! ∈ ⌦

P (q(!)) ∶= Pu(u(!)) ⋅ P �(�(!)) ⋅ Pµe(µe(!)) ⋅ Pµi(µi(!)). (4.8)

This definition easily extends to also include subsets rather than elements of Q. Note

that here, the dependence on ! ∈ ⌦ is made explicit, but only to show that the inputs

to each probability distribution are elements of their respective functional fields, e.g.

L2(D). This distribution is equivalent to viewing: for q ∈ Q,

P (q) = Pu(u) ⋅ P �(�) ⋅ Pµe(µe) ⋅ Pµi(µi).

where we view the probability distributions as under the new probability spaces, i.e.

(if u is onto) (L2(D),B(L2(D)), Pu). This of course leads to the final equivalent

probability space, (Q,B(Q), P ), under the assumption that the random variables are

all onto. Thus, for the remainder of this section, the dependence of the parameters

of q on ! is dropped, for simplicity of notation, and we view the random parameters

each as elements of their respective probability spaces.

We would also like to define an expected value on the probability space of Q.

To this end, we let P(Q) be the set of all probability distributions on Q. Then for
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f ∈ Q′, the expected value of f under some distribution P ∗ ∈ P(Q) is given by:

E[f �P ∗] = �
Q
f(q) dP ∗(q)

Using this notation, the uncertain identification problem is: find the probability dis-

tribution P ∗ in P(Q) that minimizes

(UID) J(P ) ∶= ��E�U(q)�P �−U ��
2

H
.

Note that here, the data U represents the expected value of the solution U and thus,

(UID) is analogous to finding the distribution which minimizes the di↵erence between

the data and the expected value of the solution. However, to guarantee the stability of

(UID), further discussion of the continuity of the recovered distributions on the data

must be done.

Similar to the deterministic parameter estimation in Section 3.5, well-posedness

of the uncertain identification problem (UID) is equivalent to showing that some

finite-dimensional approximation is method-stable, i.e. that the distributions of the

parameters depend continuously on the data U . We make several approximations to

(UID) to generate implementable algorithms for the uncertain parameter estimation,

namely reducing the dimension. To guarantee the convergence of the minimization

problem, we must only search over some finite-dimensional and compact approxima-

tion of this function space. To this end, we use the compact metric space defined in

Section 3.5, Q̃. For the deterministic parameter estimation scheme, this is a su�cient

space to search for minimizers to (ID). We now go into detail into the dimension

reduction of (UID).

4.2.2 Dimension Reduced Uncertain Identification Problem

There are three components that are infinite-dimensional in (UID): the compact

parameter search space, Q̃, the distribution space, P(Q̃), and the spatial domain, D.

Each dimension reduction is done separately, and then combined to form a complete

FD approximation to the uncertain identification problem.
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First, we note that every sample q ∈ Q̃, is a vector of continuous functions, and

that the polynomials are dense in continuous functions [43]. For N ∈ N, let the space

of polynomials up to degree N on D be denoted PN . Then for any index a, let

Q̃N
a ∶= Q̃a ∩ PN .

Similarly, define

Q̇N
a ∶= Q̇a ∩ PN .

Note that this N is arbitrary, and may di↵er on each subspace. However, for the sake

of notation, we assume this N is uniform across all subspaces of Q̃. Then we define

our finite-dimensional approximation to Q̃ as

Q̃N ∶= Q̃N
u × Q̇N

� × Q̇N
µe
× Q̇N

µi

Note that we now have a countable dense subset of Q̃, given by

Q̃d = �
N∈N Q̃N .

Q̃d being dense follows from the polynomials being dense in the continuous functions.

Analogously, we define a FD approximation to the distributions.

We first do so in general. Let (O,⇢) be any complete metric space with dimen-

sion M1, and let P(O) be the space of distributions for the random processes acting

upon O. For M ∈ N, M1 ≤ M , let {oj}Mj=1 be any basis for O. Then we define the

M−pole approximation of P(O) as

PM(O) ∶= {P ∈ P(O) ∶ P (o) =
M

�
j=1pj�oj(o), pj ∈ R for j = 1, . . . ,m,and

M

�
j=1pj = 1},

with oj defined as above. Now, one could consider this an M -dimensional approxima-

tion to the space P(O), with uniqueness determined by the choice of basis {oj}Mj=1.
We now extend the approximation space to a dense subspace of distributions.

We define a countable dense subset of P(Q̃N) by

Pd(Q̃) = �
M≥N PM(Q̃N).
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The density of Pd(Q̃N) follows from Theorem 3.1 in [3]. With these now defined, note

that for P ∈ PM(QN), M ≥ N , the expected value of a random process f ∶ Q̃N → H

is given by

E[f �P ] = �
Q̃
f(q) dP (q) =

M

�
j=1 f(q

N
j )pj

with {qNj }Mj=1 a basis for Q̃N . Here, we must make clear that E[f �P ] is a function in

H, much like the discussion in Section 4.1.2, in that the expected value of a random

process is a function on D.

This leads to an intermediate approximation of (UID), denoted (IUID): for given

data U and fixed integers M,N ∈ N, M ≤ N , find P ∗ ∈ PM(QN) that satisfies

(IUID) min
P ∈PM (QN )JM,N(P ) = ��

M

�
j=1U(q

N
j )pj−U ��

H
.

Here, U represents data in the expected-value of the deterministic solution, i.e. for

(IUID), U ∈ H. Computationally, we cannot expect to obtain a function in H, but

rather data at some collection of sample points. To this end, for K ∈ N, let {xj}Kj=1 be

a collection sample points of the spatial domain D such that {xj}Kj=1 →D as K →∞.

Now, define UK = [UK
1 , . . . ,UK

K ]T , where UK
j corresponds to the data at the point xj .

Clearly, as K →∞, UK → U on every point of the domain, D, which is su�cient.

To relate the solutions U with this new interpretation of the data, we must

project U onto the densely embedded subset of H, H ∩C(D), i.e. solutions which are

continuous on D. This is to ensure the evaluation of U(xj ,!) exists for every ! ∈ ⌦.

For any vector of functions F ∈H, let F c be the projection of F onto H∩�C(D)�4, i.e.

the space of continuous function on D mapping to R4. We then denote the projection

mapping CK ∶H → RK as

CK(U) = [U c(xj)]Kj=1
Using this projection, the norm on H can be approximated by a grid-norm, i.e.

��f ��H ≈
1

K

K

�
j=1 ��f

c(xj)��l2 .
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With this final approximation, the dimension-reduced uncertain identification problem

is given by: for fixed K,M,N ∈ N, M ≤ N and data {Uk}Kk=1, find P ∗ ∈ PM(QN) that

satisfies:

(DRUID) min
P ∈PM (QN )J

K
M,N(P ) =

1

K

K

�
k=1
�
M

�
j=1U(xk, q

N
j )pj−Uk�.

Note that here, the interpretation of the data is the expected value of the solutions

at a given point xk ∈ D. Where the data is given, {xk}Kk=1, represents the points at

which we approximate our H-norm. We now present a major theorem regarding the

stability of the method.

Theorem 4.2.1. Let Q̃, Q̃N , Q̃d,P(Q̃),PM(Q̃N) be as above. We consider the reduced-

dimension identification problem, (DRUID), and compare it to the original distri-

bution identification problem (UID). Let P ∗M,N(UK) be the set of minimizers for

(DRUID), for some given data UK . Let P ∗(U) be the set of minimizers for (UID),

corresponding to data U , where UK → U as K → ∞. These minimizers satisfy

dist�∗PM,N(UK), P ∗(U)� as K,M,N → ∞. Thus, the distributions depend contin-

uously on the data, and the approximate problem is method stable.

The proof of this theorem follows from applying Theorem 4.1 from [3]. With

this theorem, we have shown that our uncertain parameter estimation problem is

well-posed in an inverse-problem sense.
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4.3 Notation

4.3.1 Stochastic Forward Problem

Term Definition Notes

D Spatial domain

(⌦,H, p) Original probability space

u Fluid-flow

B Applied magnetic field

� Conductivity

µe Electron Mobility

µi Ion Mobility

� Conductivity Tensor

[B]× Cross-product matrix op-

erator on B

[B]×Ji = Ji ×B

n unit normal vector to sur-

face. V (D)�W (D)

Spatial solution space for

Ji/V

V (D)�W (D) Random solution spaces V �W ×L2
⇢(�), norm is the

averaging norm

A Bilinear operator Maps V × V → R

B Bilinear operator Maps V ×W → R

G RHS of operator form Used for bounds only.

Not to be confused with

g.
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4.3.2 Stochastic Inverse Problem

Term Definition Notes

b Bounding constant for B

U [Ji V]T

AU = F Overall PDE

H V ×W Total (Stochastic + Deter-

ministic) solution space for

U

Q̃ Compact realistic parameter space This is one of many things

we are trying to approxi-

mate.

Q̃N FD approximation of Q̃ Q̃ ∩ PN

(O,⇢) Some general complete metric

space

P(O) Set of all probability distributions

on (O,⇢)

PM(O) Set of all M−pole distributions on

(O,⇢)

{xj} Sample points of D Goes from j = 1 to K

U Represents data for the problem Meaning changes through-

out

UK Data evaluated at all {xj}, a long

vector
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Term Definition Notes

CK Projection! Turns a function into

a vector of length K, evaluated at

each xj

ID Deterministic identification prob-

lem

UID Uncertain identification problem

IUID FD in the parameter/random

sense, but still too broad

DRUID FD ID in both stochastic and de-

terministic sense

{qNj }Mj=1 M-component basis for Q̃N M ≥ N obviously

M Number of samples of Q̃, corre-

lates to number of poles for dis-

crete probability space.

Really the resolution of the

probability space

N Polynomial degree for approxima-

tion of Q̃

Can be thought of as the res-

olution of Q̃

K Number of samples of D Can be thought of as the res-

olution of D
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5 Deterministic Numerical Demonstrations and Model Verification

With well-posedness of both the forward and inverse problem established, we

now turn to the numerical implementation of the governing equations, specifically in

relation to an MHD generator. The past two chapters, although theoretical, establish

the framework for which we approach the investigation of the feasibility of real-time

optimization for an MHD generator. We now take the finite-dimensional approx-

imations and implement them numerically, utilizing a finite-element multi-physics

software, COMSOL [32], along with the cross-platform compatibility of LiveLink for

Matlab [28]. Using these and with both the continuous and segmented Faraday geome-

try, we validate the deterministic numerical model using a set of ideal ‘0-D’ equations,

testing the sensitivity of the power within the channel to the expected power, in

turn numerically confirming the existence of a solution to the deterministic kinematic

MHD model. Following this, we will provide a numerical demonstration of the realis-

tic parameter estimation problem, finding the state of an MHD generator from some

fabricated data of external measurements.

5.1 Numerical Forward Problem

5.1.1 Introduction

There are many di↵erent electrode configurations for an MHD channel [42, 50,

25] . However, for our purposes, we focus on two di↵erent configurations of a Faraday

generator. Faraday generators have electrodes configured to allow current to flow in

the direction of the Lorenz-force [13]. To see a more robust description of the physics

and definition of individual components to the MHD generator, we refer the reader to

the Section 2.1.

As mentioned previously, for the deterministic forward problem, we make use

of an finite-element multi-physics software, COMSOL [32]. This software has appli-
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cations in a variety of fields, and comes equipped with a multitude of solver-packages

and meshing techniques, while also allowing for complex spatial domains. With the

reworked system of equations and prescription of fluid-flow, among other parame-

ters, the deterministic model is easily adapted from the AC/DC electrostatics module

within COMSOL [34]. In order to use this numerical model to infer the state of

an MHD generator, we must first validate the numerical implementation and COM-

SOL software. In lieu of true solutions to this model, we use theoretical ideal-power

equations, derived from [42], to validate the numerical implementation. We will then

explore some of the qualitative e↵ects of the various parameters on the system.

5.1.2 COMSOL

5.1.2.1 Governing Equations

We first delve deeper into the software we use for the deterministic forward

problem, COMSOL [32]. As noted in the introduction, COMSOL is known for cou-

pling complex multi-physics on complex geometries. For our purposes, the application

is straight-forward. The AC/DC module utilizes a mixed-Poisson form of the electro-

static equations. As we have rewritten our system in such a form, i.e. (3.11), we can

adapt the COMSOL governing equations to match the kinematic MHD model with

the addition of the Lorenz force, and an alteration to the conductivity tensor based on

the assumed material properties. Recall that each component in an MHD generator4

is governed by some form of the kinematic MHD equations, with varied values for the

parameters. With the model equations established, we can now discuss how exactly

the material properties of the di↵erent components alter the governing equations, and

are then implemented in COMSOl.

We begin with the channel. It should be obvious that the plasma is governed

by the full kinematic MHD system. With the walls assumed to be infinitely-thin,

for implementation simplicity, we assume the entirety of the channel has no physics-

4
See Section 2.1
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based reductions to the governing equations. This is not the case for the other two

components, the electrodes and resistor (which represents the load on the channel).

There is no plasma in the electrodes or load, and thus there is no Lorenz force in

either. Similarly, as they are composed of a solid material, there is no electron or ion

mobility. This simplifies the governing equations to just Maxwell’s equations and a

reduced Ohm’s law, given by

J = �E (5.1a)

∇×E = 0 (5.1b)

∇ ⋅ J = 0 (5.1c)

Coincidentally, this system is the set of governing equations implemented in the

AC/DC module. Thus, to set-up the governing equations within these components,

we simply assign the material parameter of conductivity to accurately represent the

materials we wish to model. For the electrodes, we assume a conductivity of 58MS�m,

due to the assumed copper material they are composed of. As the resistors represent a

load being placed on the channel, these values are swept across, to validate the model.

The range of appropriate values we test are on a large interval, anywhere from 10−7
to 104. We discuss how we measure the load placed on the channel through the use

of a load-factor in the numerical validation of the model.

Finally, to implement the governing equations within the channel, we still use the

AC/DC COMSOL module, with some slight modifications. First, within the channel,

we no longer use the material conductivity, but rather a user-defined conductivity

tensor, i.e. � as defined in Section 3.2.1 Secondly, we introduce an artificial current,

which is the e↵ect of the Lorenz force on the plasma. Within COMSOL, this is given

by

Je = �(u ×B),
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which is just a vector in R3. With these two slight adjustments to the governing

physics, the full kinematic MHD is in place, with appropriately defined parameters,

whose function spaces can be seen in Section 3.5, with the scalar values described in

Table 5.1.

We also apply the periodic boundary conditions described in 2.1, namely that

the electrodes and resistors are connected with periodic boundary conditions, and the

perfectly-electrically-insulating conditions are in place elsewhere, except the channel

inlet and outlet. For model verification purposes, we assume that the channel is

infinitely long. We replicate this numerically by setting a periodic boundary condition

at the channel inlet and outlet. However, note that we assume the perfectly electrically

insulating at the channel inlet and outlet for the other numerical examples we run.

5.1.2.2 Meshing Techniques

With these governing equations established, we now discuss the meshing tech-

niques used in our numerical model. We choose to use the native Delauney meshing

technique, of the two that COMSOL provides. A mesh, sometimes also referred to as

a triangulation, is a discretization of a domain into nodes, and then joining specific

nodes to form elements. In the 3-D case, every element has a triangular side. How-

ever, withing the Delauney meshing algorithm, the elements are chosen to maximize

the minimum angle of all the angles within the triangulation. This helps prevent

‘sliver’ elements within the mesh, aiding in reducing numerical error [11]. Formally,

a Delauney mesh is any mesh such that no nodes within the mesh lie within the cir-

cumference of a circle generated by three other connected nodes. As example of two

meshes, one Delauney and one not, is presented in Figure 5.1.

The generation of such a mesh does take some thought. COMSOL uses a variety

of techniques, such as a flipping algorithm, to generate this mesh. A flipping algorithm

is a technique in which if a set of four nodes is connected in a non-Delauney way, then

simply flip the interior edge. An example of this is also presented in Figure 5.1.
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FIGURE 5.1: Two sample triangulations of four nodes. (left) Non-Delauney trian-
gulation. (Right) Deulauney triangulation. Demonstrates the flipping algorithm that
transforms a non-Delauney triangulation into a Delauney triangulation.

Finally, the coarseness of the nodes across the domain is important question. As

always, a finer mesh will require greater computational requirements. COMSOL allows

for a choice of user-defined grids, or the selection of a ‘coarseness level,’ from ‘very

coarse’ to ‘extremely fine.’ Although these is no analytic function for the di↵erence

in nodes between these levels, Figure 5.2(a) and Figure 5.2(b) shows the qualitative

di↵erence between a ‘normal’ mesh and a ‘fine’ mesh for a segmented Faraday MHD

generator. The final method COMSOL allows to generate a mesh is a hybrid method,

in which one can select a coarseness level on each subsection of the domain, and

choose to further refine specific edges or boundaries. This is in fact the method we

choose, refining the measure where previous iterations of our numerical model show

steep gradients for the solutions. We allow for a coarsening where this gradient is

small. The result for a segmented Faraday MHD generator can be seen in Figure

5.2(c), with a refinement of the mesh near the channel-electrode boundary, and the

electrode-resistor boundaries. It is on this mesh we solve for our solutions.

5.1.2.3 Solver

Numerically, COMSOL is a finite element based solver. Recall from Section

2.3 the general finite element method. It is easy to adapt (3.15) to fit the general
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(a)

(b)

(c)
FIGURE 5.2: Three di↵erent example COMSOL generated meshes. (a): physics-
based, normal distribution, ∼ 40,000 nodes, (b): physics-based, fine distribution, ∼
4,000 nodes, (c): user-defined, ∼ 28,000 nodes.
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di↵erential equation, by using a matrix and vector representation of the operators and

solutions respectively. Thus, discretization of the PDE follows immediately. COMSOL

utilizes linear polynomials as the approximation of the continuous solutions, as well

as the standard finite element basis of piece-wise polynomials with a single element

of support, as well as a unique node taking a value of 1. Thus, solving the system

is equivalent to finding the weights of these basis functions [1]. In order to find the

weights for our approximate solution, COMSOL uses an iterative solver to converge

to the solution of the resulting linear system of equations. The algorithm utilized for

this purpose is functional generalized residual method, or FGMRES. This is a pre-

conditioned method of the generalized minimal residual method (GMRES), which

searches through the Krylov subspace with the Arnoldi iteration algorithm. A further

discussion of this algorithm can be seen in [31].

5.1.3 Model Validation

We now demonstrate that the numerical approximations made within COMSOL

produce results with satisfactorily small relative error. Typically, in lieu of an analytic

function, this would occur by demonstrating that the approximation to the solution

converges to some fine-grid solution, or the solution generated by another numerical

method. However, we validate our models alternatively, by comparing the power-

density within the channel to some set of ideal equations. The following work builds

upon the foundations established in [42].

The electrical power contained within any generator can be determined by the

dot product of the current density with the electric field. Thus, the power within any

MHD channel is given by

P = −J ⋅E.

Under varying geometries and ideal conditions, this simplifies. We first explore the

ideal conditions, which are synonymous across all Faraday geometries.

In order to compare the numerical power within the model to some ‘idealized
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power,’ we consider all of the parameters to be constant on D. This is in order to

neglect the size of the generator, e.g. we would like to compare the average power

within the channel, as opposed to the total power within the channel. As well, given

that the magnetic field neglects the induced component, we assume that B is uni-

directional, i.e., B = (0,0,Bz). Under ideal conditions, we also assume that the fluid

flow is uni-directional, i.e. u = (ux,0,0). Of course, this implies that the Lorenz force,

u ×B, lies only in the y-direction. Using the definition of Ji, we have that

�E = −�(u ×B).

It follows from the definition of the conductivity tensor that this implies Ez = 0, and

thus that Jz has no e↵ect on the power within the channel. We will see that other

geometries imply further simplifications to the electric field and current density.

Conventionally, one also defines a load-factor, representing the ratio of the av-

erage load placed on the channel over the maximum load allowed, as

K =
Ey

uxBz
.

Moving forward, we now the generation of ideal power equations based on the

given geometry of the generator. For the simpler continuous Faraday geometry as

well as the more complex segmented Faraday geometry, we explore the implications

the geometries have on the solutions and thus the ideal-power equations, followed by

sweeping across a variety of parameter values and comparison of COMSOL’s measured

average power to the ideal power.

5.1.3.1 Conductivity Tensor: An Explicit Examination

To do so, we must first give a brief examination into the conductivity tensor.

Recall from Section 3.2.1 that this was defined as

� ∶= �
�
�
I − �e
��B��L2

[B]× − �i
��B2��L2

[B]2×��
−1
,
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where the inverse of the matrix on the right-hand side of the equation is guaranteed

by the physical restriction µe, µi > 0 on D. Under the assumptions for the numerical

problem, namely that B = (0,0,Bz), it immediately follows that

I − �e
��B��
[B]×− �i

��B��2
[B]2×

=

���������

(B2
y +B2

z)
�i��B��2 + 1 −Bz

�e��B�� −BxBy
�i��B��2 By

�e��B�� −BxBz
�i��B��2

Bz
�e��B�� −BxBy

�i��B��2 (B2
x +B2

z)
�i��B��2 + 1 −Bx

�e��B�� −ByBz
�i��B��2

−By
�e��B�� −BxBz

�i��B��2 Bx
�e��B�� −ByBz

�i��B��2 (B2
x +B2

y)
�i��B��2 + 1

���������
nothing

=

��������

1 + �i −�e 0

�e 1 + �i 0

0 0 1

��������

Computing the inverse yields:

� = �

1 + 2�i + �2i + �2e

��������

1 + �i �e 0

−�e 1 + �i 0

0 0 1 + 2�i + �2i + �2e

��������

For simplicity in the code and notation, we let � = 1 + 2�i + �2i + �2e . Thus, the

conductivity tensor implemented is:

� = �
�

��������

(1 + �i) (�e) 0

−(�e) (1 + �i) 0

0 0 �

��������

(5.2)

5.1.3.2 Continuous Faraday: Ideal Power Equation

Under the continuous Faraday geometry, the electrodes connect the upstream

and downstream portions of the channel. This implies that Ex ≈ 0 [42]. Using a

manipulation of the explicit generalized Ohm’s law derived in Section 3.2.1, i.e. J =

�E+�(u×B), and then applying the matrix-form of the conductivity tensor as defined

above, it follows that

Jy =
�(1 + �i)
(1 + �i)2 + �2e

�Ey − uxBz�.
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Of course, if Ex,Ez ≈ 0, the power within the ideal continuous Faraday generator

must be given by the scalar product of Ey and Jy. Using the traditional load factor

as defined above, the ideal continuous Faraday power equation is given by

Pcf = −J ⋅E ≈ −JyEy = −
�(1 + �i)
(1 + �i)2 + �2e

K(1 −K)u2
xB

2
z. (5.3)

This ideal-power equation shows the detrimental e↵ect that the hall parameter can

have on the power output of a continuous Faraday MHD generator. It also shows

that a neglect in the ion-slip parameter would also result in unexplained power losses,

although, the magnitude would be less than if the hall parameter was neglected. This

is not the case for the segmented geometry.

5.1.3.3 Segmented Faraday: Ideal Power Equation

Unlike the continuous Faraday geometry, the segmented Faraday geometry no

longer guarantees that Ex ≈ 0. However, the segmented electrodes short-circuit the

electric current in the x-direction, implying that Jx ≈ 0! Thus, to generate the ideal

power equation for the segmented Faraday, we make use of the explicit form of the

Generalized Ohms law, i.e. (3.9a) Solving this for Ex and using the traditional load

factor K, yields that the ideal segmented Faraday power equation, is given by

Psf =
�

(1 + �i)
K(1 −K)u2

xB
2
z. (5.4)

Immediately, this equation showcases some important di↵erences between the seg-

mented and continuous geometries. First and foremost, there is no dependence on

the hall parameter. This is to be expected, as the segmenting of the electrodes is

meant to short-circuit the naturally arising Hall current, i.e. Jx. However, there is a

much simpler scaling factor in front of the segmented ideal power equation. Thus, by

neglecting ion-slip, MHD generators could have power-losses on the order of 1�(1+�i),

which is significant for non-negligible �i.
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TABLE 5.1: Distributions and fixed values for parameters

used in the model validation.

Parameter Lower-bound Upper-bound Fixed value

Bz 0 20 6

� 10 100 60

K∗ 0 1 N/A

u 0 2800 1600

µe 0 10/6 0

µi 0 1 0

∗: The load-factor is altered by changing the resistance of

the resistors. The appropriate distributions for the resistance

are: [1E-7,1E4] for bounds, 7E-1 for fixed-value.

5.1.3.4 Validation

Using these ideal power equations, we now validate the numerical model, using a

distribution of parameter values. We fix all but one parameter, and then sweep across

the given distribution, computing an ensemble of solutions. We then use a numerical

approximation to

�
channel

−J ⋅E dV,

and compare this to the ideal power equations of the associated geometry. We choose

an appropriate distribution of parameter values to represent a variety of operating con-

ditions for the generator. When fixed, the values can be seen in Table 5.1. Also, note

that the load factor is varied by changing the resistivity of the resistor, as discussed

in the components section.

For the continuous geometry, Figures 5.3 and 5.4 compare the ideal and mea-

sured power in the top figure, with the lower figure giving the relative di↵erence

between the two. Clearly, for all parameters varied, good agreement is seen, with

di↵erence less than 1%.
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The di↵erences between the (5.4) and the measured COMSOL power within

the segmented Faraday model are seen in Figures 5.5 and 5.6. Again, as with the

continuous Faraday, good agreement between the ideal power equation and measured

power is noted. However, poorer agreement than the continuous Faraday geometry

can be attributed to geometrical errors from the more complex geometry, as well as

numerical di�culties from this complex geometry for higher electron mobilities.

5.1.4 Deterministic Solutions

With the numerical model validated, we now provide some examples of the

solutions to (3.1). These showcase the complexity of the solutions, and the robustness

of the implementation within COMSOL. Furthermore, these will demonstrate the

qualitative e↵ects of some system parameters.

We examine the qualitative e↵ects of non-negligible Hall and ion-slip parameter.

To do so, we recall the matrix-form of the conductivity tensor as presented in Section

5.1.3.1. We restate it here for posterity,

� = �
�

��������

(1 + �i) (�e) 0

−(�e) (1 + �i) 0

0 0 �

��������

,

where � = (1 + �i)2 + �2e . As a representation of the generalized Ohm’s law, this con-

ductivity tensor reflects the material response due to the magnetic field and resulting

Lorenz force. To view this idea simply, consider (3.3). With some slight algebra, this

becomes

J = �E + �(u ×B).

Now, consider the Hall parameter and it’s e↵ect on the Lorenz force, (u×B) . Clearly,

if u × B is dominated in the y direction, as guaranteed by the ideal assumptions,

the Hall parameter, being in the o↵ diagonal, will tilt the electric field and current

density. The ion-slip parameter, being on the diagonals, will result in a dampening.

Quantitatively, these e↵ects are noted in the ideal power equations; however, the

qualitative e↵ects are more apparent, and can be seen in Figure 5.7.
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(a) (b)

(c) (d)

FIGURE 5.3: Continuous Faraday geometry numerical validation. For all paired plots
(top) displays the ideal power output (dashed) for the given system compared to the
COMSOL measured power (solid) of the channel, (bottom) displays the relative error.
Run for B,�,K,u.
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FIGURE 5.4: Continuous Faraday geometry numerical validation for varied µi, µe =
1�6,5�6,10�6. (Top) displays (dashed) ideal power and (solid) comsol measured power
within channel under the given conditions. (Bottom) displays the relative error.

5.2 Numerical Implementation of Parameter Estimation

With the numerical model validated, we now turn to a numerical demonstration

of the parameter estimation scheme presented above, using the segmented Faraday

geometry. We choose to use only the segmented Faraday geometry as it is su�ciently

complex to investigate the reliability of the estimation scheme. Similarly, for simplic-

ity, we only attempt to recover two parameters, �e,�i, by recovering their respective

mobilities, µe and µi. To perform the parameter estimation, we utilize the livelink

cross software compatibility between Matlab and Comsol [28] for the scheme, using

the optimization solver lsqnonlin [29, 20] to recover the parameters.

As is standard when other data is unavailable, we synthesize the data, using our

model with a fine-mesh. We then perturb the data to represent instrument noise,. We

investigate the reliability of the recovery of the parameters under additive Gaussian

noise. Under the previous notation from Section 3.5, let U(⋅; q) represent the solution
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(a) (b)

(c) (d)

FIGURE 5.5: Segmented Faraday geometry numerical validation. For all paired plots
(top) displays the ideal power output (dashed) for the given system compared to the
COMSOL measured power (solid) of the channel, (bottom) displays the relative error.
Run for B,�,K,u.
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FIGURE 5.6: Segmented Faraday geometry numerical validation for varied µi, µe =
1�6,5�6,10�6. (Top) displays (dashed) ideal power and (solid) comsol measured power
within channel under the given conditions. (Bottom) displays the relative error.

to (3.11) for some q. Then define

DA(nL) ∶= U(⋅; q) +N ⋅ nL,

as the additive-noise data. Here, nL represents the noise-level and N ∼ �N (0, ��U ��)�m,

i.e. it is a random-vector of dimension equal to U , with standard deviation given by

the norm of U . After adding the noise as described above, we compare the recovered

parameter to the true parameter as a function of noise-level, within the framework of

the segmented Faraday geometry.

Of particular interest is the shape of the residual function. It is important to

investigate whether the estimation scheme could recover the true parameter, despite

noise, but the initial guess of the parameter values play a crucial role in determining the

success of the numerical parameter estimation scheme. This is due to the fact that we

implement a local minimization scheme only, rather then searching through the entire

parameter space described in 5.1. Therefore, we run the parameter estimation scheme
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FIGURE 5.7: Examples of electric potential (V, colored) and currenty density (Ji,
streamlines) for (top) �e = 0, �i = 0, (center) �e = 10, �i = 0, (botton) �e = 10, �i =
0.1�6. Note the tilt from the hall parameter, and the dampening e↵ect of the ion-slip
parameter.
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FIGURE 5.8: Mean relative error (solid) with asymmetrical error bars for recovery of
µe (left) and µi (right). Asymmetrical error bars were generated by determining the
standard deviation of errors for over-estimates and under-estimates separately.

multiple (3) times for every given noise-level, and randomly assign 3 di↵erent initial

guesses to give to our optimization solver. This will allow a better understanding on if

the minimization scheme has a tendency to under or over estimate the true parameter

values, aiding in the ultimate goal of real-time optimization of an MHD generator.

Under this framework, we choose our initial guesses for the true parameters

with an initial error of between 9 and 11%. We then average the recovered parameter

values to better understand how the estimation scheme can be expected to recover at

a given noise-level. To qualitatively investigate the tendency of the scheme to over or

under estimate the true parameters, asymmetrical error bars are added to the relative

error plot, which represent the standard deviation of the errors for the ‘over-valued’

recovered parameters and ‘under-valued’ recovered parameters, respectively. These

results are seen in Figure 5.8 for the electron and ion mobilities scalar recoveries.

Comparing these two figures, we see that µe is more easily and accurately recov-

ered that µi. For instance, at a noise level of 0.04, we have that the average relative

error over 10 runs for µe is roughly 0.02, while the average relative error over 10 runs

for µi is greater than 0.1. The variance on the estimates of µi also grows much more

quickly with respect to the noise level. However, neither is reliably recovered. Note

here the lack of monotinicty and large variances for di↵erent noise levels. As well,
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note the asymmetric error bars on both µe, µi, implying the need for distributional

recovery to better describe the likely recovered parameter.
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6 Stochastic Collocation and Uncertain Parameter Estimation

In the introduction, two major challenges were presented that hinder the fea-

sibility of the real-time optimization of an MHD generator. The first was model

accuracy, or how the numerical model could better reflect the world. The first ap-

proach in dealing with this was theoretical in nature; including oft-neglected terms

within the governing equations. The next approach for improving model accuracy is

the introduction of uncertainty to the MHD numerical framework.

Uncertainty must be included in the parameter estimation scheme in order to

optimize for the expected power out, rather than a single realization of the power out.

This leads to a more realistic and less sensitive expected power, over the deterministic

equivalent [?], as we are optimizing with a distribution of parameters. Inclusion

of uncertainty in the parameter estimation scheme starts with the propagation of

uncertainty within the forward problem. To include uncertainty within the system,

we view the parameters as random processes (See Section 2.4), which implies that

the solutions are random processes as well. Thus, the parameter space has some

associated distribution, as do the solutions. In Chapter 4, it was shown that the

solutions’ distributions depend upon the parameters’ distributions. In the follow work,

we demonstrate this dependence in several ways. To do so, we implement stochastic

collocation, a numerical method used to approximate solutions to random di↵erential

equations. We then investigate an error analysis of the method, and conclude with

several numerical demonstrations. These include a demonstration of convergence in

the random-sense, a comparison between the mean of the uncertain solutions, and a

deterministic set of solutions corresponding to the mean of the distributions, as well

as an investigation of the sensitivity of the shape of the solutions’ distributions to the

shape of the parameters’ distributions.

Following the numerical work for the uncertain forward problem, we turn to the

equivalent for the uncertain inverse problem. Analogous to the work in the determin-
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istic parameter estimation problem, we verify the theoretical framework presented in

Chapter 4, and examine the e↵ect of noise on the recovery. We demonstrate how to

apply a Karhouneun-Loève expansion in the inverse problem framework, and, under

a stochastic collocation forward problem, generate an implementable algorithm to re-

cover the distribution of the parameters within the system. We then investigate the

sensitivity of the distributional recovery to the number and location of spatial nodes,

restricting the fabricated data to solely within the resistors.

6.1 Stochastic Collocation

Many di↵erent uncertainty quantification techniques exist, and are used in a

variety of applications. One simple approach is the Monte Carlo (MC) method [48].

This involves sampling the distribution, and averaging the deterministic solutions

to give an expected value and standard deviation [46]. Although robust, with a

convergence rate on the order of N−1�2, where N is the number of samples, it is quite

slow [35]. For an example of using an MC approach to uncertainty within MHD, see

[37].

The method we implement to quantify the uncertainty propagation dramati-

cally increases the convergence rate through the choice of stochastic-grid, as well as

the method of computing the expected solutions. In the following, we implement an

approximation method called stochastic collocation (SC) [55]. Utilizing a sparse grid,

we show that the ‘curse of dimensionality’ which often a✏cits uncertainty quantifica-

tion, can be reduced while maintaining a high degree of accuracy [9, 53]. This will

allow for the model to be used in both the parameter estimation and optimization

problems under uncertainty.

As a method, stochastic collocation is similar to MC. Both are non-intrusive

and involve sampling the random space. Each uses these sampled values of random

parameters to solve the deterministic form of (4.2), i.e. (3.11), and approximate the
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desired moments by averaging the sampled solutions appropriately [46]. However,

the choice of sampling of the random inputs is not done arbitrarily, as with MC.

Rather, we specifically choose to sample at the extremas of orthogonal polynomials

of the random-space, and thus greatly reduce the number of samples for the same

accuracy comparatively to Monte Carlo [19]. As well, stochastic collocation uses

a weighted average over a numerical average, with weights corresponding from the

choice of approximation to the random space, and subsequently the basis chosen to

represent it. Under appropriate assumptions on the regularity of the system, SC

will result in sub-exponential convergence in the random direction, as can be seen in

the error analysis of the method. With this in mind, we now describe in detail the

collocation method, but first make a necessary assumption to apply the method.

6.1.1 Finite-Dimensional Noise

To use the stochastic collocation method, one must assume that there are a

finite number of random variables describing the noise [2]. One such way to satisfy

this is to truncate a KL expansion of each random parameter. Thus, in the framework

of uncertain kinematic MHD, we assume that the only random processes in the system

are real-valued random parameters describing the electron mobility, µe, ion-mobility,

µi, conductivity, �, and fluid-flow, u, and furthermore, that each are described by

a finite number of independent random variables. For notational simplicity, let the

set of random variables be denoted {mk, k = 1, . . . ,M} for some M ∈ N. Finally, for

simplicity of exposition, we make the final assumption that ∀k, mk ∼ U(0,1), but

other distributions may be used as well.

Now, let �k ∶=mk(⌦), or the image of the events under the real-valued random

variable, and define � ∶= ⇧M
k=1�k, the tensor product of each �k. Let ⇢ be the joint

independent probability distribution for the random variables [m1, . . . ,mM ], ⇢ ∶ � →

R+, ⇢ ∈ L∞(�). Thus, by the Doob-Dynkin’s Lemma, [35], we have that the solutions
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Ji,V can be described by a finite number of random variables as well, e.g.

Ji(x,!) = Ji(x,m1(!), . . . ,mM(!)),

and similarly for V. Applying this idea to the above problem, we attempt to find

Ji ∈ V ×L2,⇢(�), V ∈W ×L2,⇢(�) such that for ⇢.a.e. y ∈ �,

�
D
�−1Ji(x, y) ⋅ �(x, y) dx −�

D
∇V(x, y) ⋅ �(x, y) dx = 0 ∀� ∈ V, (6.1a)

−�
D
Ji(x, y) ⋅ ∇ (x, y) dx = �

D
�(x, y)�u(x, y) ×B(x)� ⋅ ∇ (x, y) dx ∀ ∈W.

(6.1b)

For notational convenience, we now define Ṽ ∶= V × L2,⇢(�) and �W ∶= W × L2,⇢(�)

as the new random solution spaces for which we seek a numerical approximation.

Note now that this is equivalent to (4.2), only with the alternative probability space

(�,H,⇢).

We can now define the finite-dimensional (FD) random solution subspaces in

which we search for our approximate solutions. We begin with the spatial dimension.

Define Vh ⊂ V to be the standard finite element approximation to V , with quadratic

polynomials, on some Delauney triangular prism mesh th with max side length h.

Similarly define Wh ⊂ W on the same mesh th. The meshes used for this problem

have been described extensively in Section 5.1.2.2, and thus are not discussed further

here. We now turn to the FD approximation to the random function space, L2
⇢(�). We

do so iteratively, for each subspace �k. For k = 1, . . . ,M , define PNk(�k) ⊂ L2,⇢(�k)

as the span of all polynomials on �k of degree up to Nk, for Nk ∈ N. In each direction

�k, we choose a basis of orthogonal Chebyshev polynomials {rjk}
Nk−1
j=0 [46] that satisfy

�
�
rjkr

l
k⇢(y) dy = �jl,

where �jl is the Dirac delta function. Note that Chebyshev polynomials have well-

documented extremas and allows for the nesting of nodes at subsequent levels of the
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Clenshaw-Curtis or Fejér grid, as defined in [9], and with plotted examples of the mesh

seen in Figure 6.1 Define N = [N1, . . . ,NM ], as a set of orders for each dimension of

�. Then we approximate our random L2(�) space with a tensor product of these

polynomial spaces, i.e.

PN(�) =
M

�
k=1

PNk(�k).

Note that the dimension of PN is
M
∏
k=1Nk <∞. The FD approximation to the random

solution spaces are thus given by:

Ṽh,N ∶= Vh ⊗ PN(�) and �Wh,N ∶=Wh ⊗ PN(�).

With these spaces defined, we can apply the stochastic collocation method. It is

worth noting that the FD noise assumption is a crucial step in turning the stochastic

system of equations into a set of deterministic equations, and subsequently allowing

the use of finite-element techniques in approximating the solutions [2]. It follows that

this system is well-posed, by the continuity of the measure ⇢, and the well-posedness

of the equivalent form, as seen in Section 4.2.

6.1.2 Method

The SC method solves the deterministic system numerous times, whose solutions

are then used to build an interpolate approximation to the solutions of (6.1). The

deterministic system is given by: for fixed y′ ∈ �, find J
h
i ∈ Vh,Vh ∈Wh such that

�
D
�−1(x, y′)Jh

i (x, y′) ⋅�(x, y∗) dx−�
D
∇Vh(x, y′) ⋅�(x, y′) dx = 0, ∀� ∈ Vh, (6.2a)

−�
D
J
h
i (x, y′) ⋅∇ (x, y′) dx = �

D
�(x, y′)�u(x, y′)×B(x)� ⋅∇ (x, y′) dx, ∀ ∈Wh.

(6.2b)

We now perform the collocation, i.e. the collecting of solutions sampled at the

zeros {ymk,l}, l = 1, . . . ,m of each polynomial rmk in each direction �k and building a
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polynomial chaos interpolant. By using the Chebyshev polynomials, we are able to use

the Clenshaw-Curtis (CC) or Fejér method of numerical quadrature, which guarantees

nesting of the nodes in each random direction [46]. Furthermore, we reduce the

number of points for multi-dimensional quadrature by constructing a Smolyak sparse

grid [9]. Although there is not a closed-form method of giving the number of nodes

required in each domain [19], we let Ñk denote the total number of points in the �k

direction. A more detailed discussion of the construction of such grids can be seen

in [9] or [19]. A representation of the di↵erence between full and sparse CC or Fejér

grids can be seen in Figure 6.1.

With this in mind, we let ymk
k for mk = 1, . . . , Ñk, k = 1, . . . ,M be the mth

unique zero in the direction �k. To ease the notation, define m = [m1, . . . ,mM ] as

an array of indices, and define ym = [ym1
1 , . . . , ymM

M ] as a collection of zeroes in each

random direction. Lastly, define the product of the polynomials of a given order in

each direction as

rm(y) =
M

�
j=1 r

mj

j (yj).

Thus, the polynomial chaos expansion of Ji is given by

J
h,N
i (x, y) =

Ñ1

�
m1=1

. . .
ÑM

�
mM=1

Ji(x, ym)rm(y), (6.3)

and for V,

Vh,N(x, y) =
Ñ1

�
m1=1

. . .
ÑM

�
mM=1

V(x, ym)rm(y). (6.4)

Let C0(�) denote the set of continuous functions on � and we can define an inter-

polation operator, INV ∶ C0(�) × V (D) → PN(�) × V (D) as, for f ∈ C0(�) × V (D)

INV (f) ∶=
Ñ1

�
m1=1

. . .
ÑM

�
mM=1

f(x, ym)rm(y). (6.5)

This implies immediately that J
h,N
i = INV (Ji), under appropriate assumptions. We

similarly define
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(a)

(b)

(c)
FIGURE 6.1: Quadrature grids with level = 5. (a) CC Full: 289 nodes, CC, (b) Sparse:
65 nodes, (c) Fejér Sparse: 55 nodes. Constructed using J. Burkhardt’s repository
[10].
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INW (g) ∶ C0(�) ×W (D)→ PN(�) ×W (D) as, for g ∈ C0(�) ×W (D)

INW (g) ∶=
Ñ1

�
m1=1

. . .
ÑM

�
mM=1

g(x, ym)rm(y). (6.6)

and we have that Vh,N = INW (V), under appropriate assumptions. For both Ji and

V, these assumptions are discussed in the Section 6.1.3. Using the interpolation, we

arrive at a deterministic form of estimating the expected values of the true solutions.

Using Gaussian quadrature, the approximate integral is given by

E �Jh,N
i � =

Ñ1

�
m1=1

. . .
ÑM

�
mM=1

wmJi(x, ym), and E �Vh,N � =
Ñ1

�
m1=1

. . .
ÑM

�
mM=1

wmV(x, ym),

where wm ∶=
M
∏
j=1w

mj

j and w
mj

j ∶= ∫�j
�rmj

j (yj)�
2
⇢(ymj

j ) dyj , e.g. the weights of the

polynomial in each direction.

6.1.3 Regularity Assumptions

Before going through the error analysis of the stochastic collocation method,

we must first establish some regularity properties of the solutions. We do so through

assumptions about the random parameters, and then show the implications on Ji,V.

These results will prove necessary to guarantee convergence of the collocation method.

For simplicity of discussing these assumptions, we define

g(x, y) ∶= �(x, y)�u(x, y) ×B(x)�.

We begin with a lemma that will be used to show that the continuity of the ran-

dom parameters with respect to y can be directly transferred to Ji,V, under suitable

conditions.

Lemma 6.1.1. Under the assumption that g ∈ C0(�) × W , Ji ∈ C0(�) × V and

V ∈ C0(�) ×W .

The proof of this lemma follows immediately from the bounds given in Theorem

4.1.1. We thus turn to the more complex task of bounding the derivatives of Ji,V in
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each random direction. For notational simplicity, let

@kn ∶=
@k

@ykn

We now make another major assumption regarding the implementation of the SC

method. We require that for the remainder of this paper, �k is bounded for each

k = 1, . . . ,M . For the power-generation application, this assumption is rooted in the

physical limitations of what the expected parameters values can take, and how regular

their distributions are.

To bound the derivatives of the solutions, we will make use of the bounds in

Theorem 4.1.1, and begin by taking the derivative of (6.2) with respect to one of the

random directions. We also consider the deterministic form of (4.2), i.e. for fixed

y, and let A,B represent the deterministic equivalent operators of Ã, B̃ respectively.

Through an iterative application of the product rule and solving for the desired oper-

ators on the left-hand side of the system, the di↵erentiated solutions to (6.1) satisfy

A(@knJi) +B′(@knV) = F k ∈ V ′, (6.7a)

B(@knJi) = Gk ∈W ′. (6.7b)

Here,

F k(�) ∶= −�
D
�
k−1
�
j=0 �

k
j
�@k−jn (�−1) @jn(Ji)� ⋅ �, and Gk( ) ∶= �

D
@kng ⋅ ∇ . (6.8)

Note that it is obvious by their definition that F k ∈ V ′ and Gk ∈W ′ for all k ∈ N, by
construction. Through an application of Theorem 4.1.1, we have that the solutions

@knJi,@
k
nV exist, are unique, and obey the following bounds:

��@knJi��V ≤ ��F k��V ′ +C ��Gk��W ′ , (6.9)

��@knV ��W ≤
1

b
���F k��V ′ + ��A��L(V,V ′)��Gk��V ′�, (6.10)
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where C = 1
ab���A��L(V,V ′) +a�. Using this system, we now place bounds on the deriva-

tives of Ji,V in the random direction that will guarantee the convergence of the SC

method. We will need restrictive assumptions regarding the decay of the derivatives

of �−1,g. These restrictions may di↵er in each random direction by the values of the

constants only. Thus, for the purposes of the rest of this section, fix n ∈ {1, . . . ,M},

and thus fix our direction �n. Dependence of a parameter on the direction is denoted

through the subscript n. We now state the following regularity assumptions and the

resulting regularity properties of Ji,V.

Lemma 6.1.2. Assume that

��@kn�−1��V ′ ≤ ↵1,k
k!

�kn
, ��@kng��W ≤ ↵2,k

k!

�kn
∀k ∈ N.

where �n > 0, and the other constants satisfy the inequality

↵2,k

��g��W
+ �↵1,k +

k−1
�
j=1 ↵1,k−j� ≤ 1.

Then

��@knJi��V ≤ C1,k
k!

�kn
, and ��@knV ��V ≤ C2,k

k!

�kn
,

where

C1,k ≤ C ��g��W ∶= C0, C2,k ≤
1

b
��g��W ∀k ∈ N.

Proof. (By induction for Ji) First, let k = 1. Then by (6.9), we have

��@Ji��V ≤ ��F 1��V ′ +C ��G1��V ′ .

By definition of F 1,G1, we have

��@nJi��V ≤ ��@n�−1��V ′ ��Ji��V +C ��@ng��V .

By the bounds given in Theorem 4.1.1, we have

��@nJi��V ≤ ��@n�−1��V ′C ��g��W +C ��@ng��V
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≤ ↵1,1C ��g��W +C↵2,1.

Letting C1,k = ↵1,1C ��g��W + C↵2,1 yields the first desired inequality. To see that

C1,k ≤ C0, consider that as j = 1, the sum in (6.9) is 0. Then we have

1 ≥ ↵1,1 +
↵2,1

��g��W
by assumption.

Multiplying each side by C0 gives

C0 = C ��g��W ≥ C↵1,1��g��W +C↵2,1 = C1,k,

and the second desired inequality, the bounding constant inequality, is satisfied.

Now, let k ∈ N, and assume that

��@jJi��V ≤ C1,j
j!

↵j

holds for some C1,j ≤ C0, j = 1, . . . , k − 1. Again, by (6.9), we have

��@knJi��V ≤ C ��Gk��W ′ + ��F k��V ′

≤ C ��@kng��W +
k−1
�
j=0 �

k
j
� ��@k−jn �−1��V ′ ��@jJi��V

By the induction assumption, we have

��@knJi��V ≤ C↵2,k
k!

�kn
+
�
�
↵1,k

k!

�kn
C0 +

k−1
�
j=1 �

k
j
�↵1,k−j (k − j)!

�k−jn

C1,j
j!

�jn

�
�
.

Here, we separated the j = 0 case from the rest, as these bounds stem from the

deterministic inequality, and not the lemma assumptions. As well, note that �a
b
� =

a!
b!(a−b)! . Thus, we have

��@knJi��V ≤ C↵2,k
k!

�kn
+
�
�
↵1,k

k!

�kn
C0 +

k−1
�
j=1

k!

j!(k − j)!
↵1,k−j (k − j)!

�k−jn

C1,j
j!

�jn

�
�

= k!

�kn

�
�
C↵2,k +

�
�
↵1,kC0 +

k−1
�
j=0 ↵1,k−jCj

�
�
�
�

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
C1,k

.
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which yields the first inequality. To see that C1,k < C0, consider that by assumption

1 ≥
↵2,k

��g��W
+ �↵1,k +

k−1
�
j=1 ↵1,k−j�.

Multiplying each side by C0 yields

C0 ≥ C↵2,k + �C0↵1,k +
k−1
�
j=1C0↵1,k−j�.

Using the induction assumption that C1,j ≤ C0 yields

C0 ≥ C↵2,k +
�
�
↵1,kC0 +

k−1
�
j=0 ↵1,k−jC1,j

�
�
= C1,k.

and the second inequality follows. A similar proof will achieve the same result for V

and the constants C2,k.

Note that the constants ↵1,k and ↵2,k may also depend on n, but that depen-

dence is neglected for notational sake. With these regularity assumptions, we can

define an appropriate analytic extension to each function of Ji and V.

Lemma 6.1.3. Under the assumptions of Lemma 6.1.2, Ji and V admit analytic

extensions in the region of the complex plane ⌃(�n,�n) ∶= {z = yn+iy2 ∈ �n×C ∶ yn ∈ �n
and �y2� ≤ a}.

Proof. We show this for V only, as a similar approach will show the same in any spatial

direction xj for Ji,xj .
5 Here, we define y∗n = {yk}k≠n as a set of values in �k for k ≠ N .

Define the extension of V on ⌃(�n,�n) with an analytic power-series,

V(z, y∗n, x) =
∞
�
k=0
(z − yn)k

k!
��@knV�yn, y∗n,x���W . (6.11)

We now seek to show that this series converges. To this end, consider

V(z, y∗n, x) =
∞
�
k=0
(z − yn)k

k!
��@knV�yn, y∗n,x���W

5
Recall here that Ji = (Ji,x1 ,Ji,x2 ,Ji,x3)
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≤
∞
�
k=0
(z − yn)k

k!
C2,k

k!

�kn
by Lemma 6.1.2,

≤ 1

b
��g��W

∞
�
k=0
(z − yn)k

�kn
as C2,k <

1

b
��g��W ∀k.

This converges by a geometric series argument for (z − yn) < �n, implying that the

region of convergence for our series is given by the subspace ⌃(�n,�n), yielding the

desired result.

Note that this implies for both Ji,V, the domain in which there exists an analytic

extension is directly related to the decay of the derivatives of g,�−1 in the direction

�n, as this domain is given by, for each �n, ⌃(�n,�n). A faster decay of the derivatives

results in a larger area in which the analytic extension exists. We now move onto the

error analysis section.

6.1.4 Error Analysis

Prior to proving the convergence of the SC method, we present two crucial

lemmas necessary for bounding the random approximation error. These are as given

in Babuska [2], and pertain to bounding 1-D random polynomial interpolation. They

will be then adapted to bound the interpolation error on the entire random-space �.

To this end, similar to the notation seen in Section 6.1.3, fix n ∈ {1, . . . ,M}, which in

turn fixes our direction, �n, and all other constants dependent upon the direction �n,

such as the �n interpolation order, Nn. Then we have a general interpolation lemma

on a 1-D random space.

Lemma 6.1.4. For any Banach function space, H, define the tensor product norm

of H with L2
⇢(�n) as

��f ��L2
⇢(�n)×H ∶= �

�n

��f ��2H ⇢n(yn) dyn.

Then the 1-D random interpolation INn
H ∶ C0(�n) × H → L2

⇢(�n) × H, defined for
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f ∈ C0(�n) ×H,

INn
H (f) ∶=

Ñn

�
mn=1

f(yn,x) rmk
n (yn),

is continuous under this norm. We define the tensor product norm of H with C0(�n),

as

��f ��C0(�n)×H ∶= max
yn∈�n

��f(yn,x)��H .

Then the interpolation error satisfies

��f − INn
H (f)��L2

⇢(�n)×H ≤KH inf
w∈PNn(�n)×H ��f(yn) −w(yk)��C0(�n)×H , (6.12)

with constant KH independent of the choice of Nn.

We also wish to bound the best-approximation error. Thus, we consider this

next lemma.

Lemma 6.1.5. For some Banach function space, H, let v ∈ C0(�n) ×H. Assume

v also admits an analytic extension in the region of the complex plane ⌃(�n; ⌧) for

some ⌧ > 0. Then it holds:

min
w∈PNn(�n)×H ��v(yn) −w(yn)��C0(�)×H ≤ 2

 n − 1
exp � −Nn log( n)� max

z∈⌃(�n;⌧) ��v(z)��H ,

where 1 <  n = 2⌧��n� +
�

1 + 4⌧2��n�2 .
As stated previously, proofs of both Lemma 6.1.4 and Lemma 6.1.5 can be found

in [2]. With these established, we now turn to bounding our complete � interpolation

error. We do so iteratively. We first break apart our function space, separating as

L2
⇢(�) × V ≡ L2

⇢(�k) × �L2
⇢(�k∗) × V �.

where �k∗ are all random directions except �k. Similarly define the product of the

values of any parameter in every direction but the kth as ○k∗ ∶= ∏j≠k ○j , with this

being a real product, tensor product, or set of values where appropriate. We define

the norm on the latter space as the averaging norm, i.e. for f ∈ L2
⇢(�k∗) × V ,

��f ��L2
⇢(�k∗)×V ∶= ��k∗

��f(yk∗ ,x)��2V ⇢k∗(yk∗) dyk∗ ,
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which corresponds to the Hilbert tensor product construction. Of course, this also

implies that it is a Banach space, and thus Lemmas 6.1.4 and 6.1.5 both apply. Denote

the product space of the analytic extension region as

⌃(�,�) ∶=
M

�
j=1⌃(�j ,�j),

where �j is as defined in Lemma 6.1.3. Then we have the following interpolation

bounds for our specific operators.

Lemma 6.1.6. The interpolation operators, INV ,INW are continuous, and obey the

following interpolation bounds. For f ∈ C0(�) × V and g ∈ C0(�) ×W , with analytic

extensions in the region ⌃(�,�), we have

��f − INV (f)��L2
⇢(�)×V ≤K1 max

z∈⌃(�,⌧) ��f(z)��V
M

�
j=1

2

 j − 1
exp � −Nj log( j)�, (6.13a)

��g − INW (g)��L2
⇢(�)×W ≤K2 max

z∈⌃(�,⌧) ��g(z)��W
M

�
j=1

2

 j − 1
exp � −Nj log( j)�, (6.13b)

where  j ∶= 2�j��j � +
�

1 + 4�2j��j �2 > 1, and K1,K2 are two constants independence of the

choice of N .

Proof. We begin with continuity, and must prove this iteratively. As it will follow

with similar logic, we show these properties for the interpolation operator INV only.

For notational convenience, define

Vk∗ ∶= L2
⇢(�k∗) × V.

We define the kth interpolation operator INk
VK∗ ∶ C

0(�k) × Vk∗ → L2
⇢(�k) × Vk∗ as

INk
Vk∗ (f) ∶=

Ñk

�
mk=1

f(ymk
k ,x) rmk

k (yk). (6.14)

It follows that the interpolation operator satisfies

INV = IN1
V1∗ ○ . . . ○ I

NM
VM∗ .
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Note now that Vk∗ is a Hilbert space for all k = 1, . . . ,M , as it is the finite tensor

product of Hilbert spaces. Therefore, Lemma 6.1.4 applies, and as the composure of

continuous functions are continuous, continuity holds. To see that the bounds hold,

consider that

��f − INV (f)��L2
⇢(�)×V ≤ ��f − �IN1

V1∗ ○ . . . ○ I
NM
VM∗�(f)��L2

⇢(�)×V
≤ ���f − IN1

V1∗ f� + �I
N1
V1∗ f − I

N1
V1∗ ○ I

N2
V2∗ f� + . . .��L2

⇢(�)×V
≤ ��f − IN1

V1∗ f��L2
⇢(�)×V + ��I

N1
V1∗ f − I

N1
V1∗ ○ I

N2
V2∗ f��L2

⇢(�)×V + . . . .

We now note that L2
⇢(�) × V = L2

⇢(�k) × Vk∗ , and thus �� ⋅ ��L2
⇢(�)×V = �� ⋅ ��L2

⇢(�k)×Vk∗ . It
is also immediate that f ∈ C0(�) implies that INk

Vk
(f) ∈ C0(�k). Finally, for notational

convenience in the purposes of this proof, we define Pk ∶= PNk(�k) × Vk∗ WIth this in

mind, we apply the bounds from Lemma 6.1.4, and have

��f − INV (f)��L2
⇢(�)×V ≤KV1∗ inf

w1∈P1

��f −w1��C0(�1)×V1∗

+KV2∗ inf
w2∈P2

��IN1
V1∗ (f) −w2��C0(�2)×V2∗ + . . . .

Choosing K1 ∶= max
j∈{1,...,M}KVj∗ yields

��f − INV (f)��L2
⇢(�)×V ≤K1� inf

w1∈P1

��f −w1��C0(�k)×V1∗

+ inf
w2∈P2

��IN1
V1∗ (f) −w2��C0(�2)×V2∗ + . . . �.

Now, given that all of Vk∗ are Hilbert spaces, it follows that they are Banach spaces,

and we can apply Lemma 6.1.5, which yields

��f − INV (f)��L2
⇢(�)×V ≤K1 max

z∈⌃(�,⌧) ��f(z)��V
M

�
j=1

2

 j − 1
exp � −Nj log( j)�,

with  j defined as in Lemma 6.1.5. The independence of K1 on N follows from the

independence of each constant KVj∗ on N . This is the exact approximation bound we

claimed. With similar logic, the continuity and approximation error bounds for INW
also follow.
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We have now established that the random polynomial chaos interpolation has

error bounded by the max value of the true solutions. However, we used the complete

deterministic solution space, V and W , only out of notational convenience. Both V

and its finite-dimensional approximation, Vh, and subsequently W,Wh, are assumed

to have the same random-space regularity, and thus Lemma 6.1.6 also applies when

considering the stochastic interpolation operators acting on Vh,Wh. Combining this

lemma with the regularity assumptions in Section 6.1.3 and the finite-dimensionality

of � (see Section 6.1.1), we now bound the approximation error in the SC method.

Theorem 6.1.1. Under the assumptions of Lemma 6.1.1, Lemma 6.1.2, the finite-

dimensional noise assumption, and that the � is bounded, we have the following error

bounds on the approximate solutions resulting from the SC method. They satisfy

��Ji−Jh,N
i ��Ṽ ≤ C ��g−g

h���W +K1 max
z∈⌃(�,⌧) ��Ji(z)��V

M

�
j=1

2

 j − 1
exp �−Nj log( j)�. (6.15a)

��V−Vh,N ���W ≤
1

b
��g−gh���W +K2 max

z∈⌃(�,⌧) ��V(z)��W
M

�
j=1

2

 j − 1
exp �−Nj log( j)�. (6.15b)

with  j < 1 defined as in Lemma 6.1.5, and g
h is the polynomial interpolation of g

on th, of the same degree as Jh
i and Vh.

Proof. We will show that the bounds hold for Ji only, as similar logic will follow for

V. We first expand the approximations into the spatial discretization and random

polynomial interpolations, e.g.

��Ji − Jh,N
i ��Ṽ ≤ ��Ji − Jh

i ��Ṽ + ��J
h
i − J

h,N
i ��Ṽ .

The first of the two terms stem from standard finite-element theory and polynomial

interpolation of Ji, and corresponds to the first term in the bound above. It is clear

that the spatial approximation of Jh
i satisfies the system

Ã(Jh
i ) + B̃′(Vh) = 0 ∈ Ṽ ′,
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B̃(Jh
i ) = Gh ∈�W ′.

where Gh( ) ∶= E �∫D g
h ⋅ ∇ �, and g

h is as stated in the theorem. Subtracting this

system from (4.2) and applying the bounds from Theorem 4.1.1, we have

��Ji − Jh
i ��Ṽ ≤ C ��g − g

h���W .

We now turn to the second of the two terms, which stems from the random space

polynomial chaos expansion and subsequent approximation. It is clear from Lemma

6.1.6 that the interpolation operator corresponding to V , when applied to J
h
i satisfies

��Jh
i − INV (Jh

i )��L2
⇢(�)×V ≤K1 max

z∈⌃(�,⌧) ��J
h
i (z)��V

M

�
j=1

2

 j − 1
exp � −Nj log( j)�, (6.17)

with the previously defined  j , and K1. This yields the desired result for ��Ji−Jh,N
i ��Ṽ

and a similar argument argument holds for the bounds on the error of approximating

V.

Note now that it is su�cient to bound the spatial approximation error by ��g −

g
h���W , as this converges as h → ∞ by standard polynomial interpolation arguments

[14], and is thus not discussed further here. We also can see that the random error,

as desired, achieves the sub-exponential convergence, as  j > 1. Thus, the SC method

will converge, as desired. We now move onto numerical demonstrations of the forward

problem.

6.1.5 Numerical Experiments

We now turn to the numerical investigation into the propagation of uncertainty

within the kinematic MHD framework. There are three distinct demonstrations that

are showcased below. First, we perform a numerical demonstration of the convergence

of the method. In lieu of analytic solutions to (6.1), we show a convergence to a higher-

order approximation to (6.2). We also demonstrate that the uncertain problem obtains

useful information that the deterministic equivalent does not provide. This is shown
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by comparing the expected value of the solutions to the deterministic solutions of the

system coupled with the expected value of the parameters. Finally, we investigate the

impact the shape of the parameters’ distributions has on the solutions’ distributions,

by comparing two distributions with equivalent expected values and variances, but

di↵erent shapes.

6.1.5.1 Convergence Demonstration

Within the error analysis and Theorem 6.1.1, we showed that the approximation

and the true solution di↵er by the sum of two terms, one which stems from standard

finite-element theory and polynomial interpolation, the latter stemming from the poly-

nomial chaos expansion and subsequent approximations. For demonstration purposes,

we neglect showcasing the finite-element convergence, as this has been done extensively

before, [1, 7, 30]. Thus, we focus on showing convergence of the approximations solely

in the random sense. As mentioned previously, we showcase the convergence to a

‘high-order’ approximation.

To aid the computational complexity, we make several assumptions regarding

the randomness of the system. First and foremost, we assume that the electron

mobility, µe, is the only random parameter within our model. Furthermore, we assume

that µe is spatially-constant, implying that it is described by a real-valued random

variable, with

E[µe] = 10�6, and var(µe) = 0.5.

This random variable is assumed to have a beta distribution, with shape parameters

of a = 4, b = 4. Recall that we make use of the Fejér Smolyak sparse-grid, which can be

seen in Figure 6.1. To make the ‘high-order’ approximation, we set an arbitrary level

of 6, and then compare the results to the samples corresponding to the lower levels.

The error between the lower-order approximations and the level 5 node assignment

can be seen in the Table 6.1.
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TABLE 6.1: Demonstration of convergence of solutions for di↵erent levels of the Fejér
grid, compared to the SC solutions for level 6 grid. Note that the use of the l2

grid-norm is an approximation to the L2 average norm.

Level l2 Grid-norm Di↵erence

2 2.18

3 1.38

4 0.24

5 0.02

6.1.5.2 Uncertain versus Deterministic Solutions

We now investigate how the uncertain forward problem and the determinis-

tic forward problem di↵er. We investigate the di↵erences between the two functions

E�U(q)� and U�E[q]�, qualitatively and numerically. For the sake of succinctness, we

will refer to the former as the expected solution, and the latter as the deterministic

solution, although these don’t quite describe the functions in their entirety. To ex-

amine the qualitative di↵erences between the solutions, we examine a single plane of

solutions. For these results, we run the stochastic collocation method for a constant

electron mobility, with a distribution as described in Table 6.2. We also compute

the deterministic solution for the solution fixed at the mean of µe, 10�6. All other

parameters are considered deterministic, and are fixed as described in Section 5.1. For

demonstration, we examine only the electric potential, V, within the channel, across a

plane for z = 0.05 [m], i.e. half the channel height. We then compare their di↵erence

across this same plane, with results seen in Figure 6.2.

Although perhaps not immediately obvious, there is clearly a quantitative dif-

ference between the deterministic and expected solutions. Numerically, we see that

the approximate di↵erence between these two values is on the order of 10, when using

the grid-norm approximation to the H norm. Qualitatively, however, the di↵erence

plot within Figure 6.2 demonstrates this result. Interestingly, the di↵erence between
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the two remains positive throughout the domain. Regardless, it is obvious that

E[�U(q)� ≠ U�E[q]�.

We now compare the e↵ects of di↵erent distributional shapes on the distribution of

the solutions.

6.1.5.3 Comparing Distributional Shapes

To extend the demonstration of robustness for the model, we include the fluid-

flow to be a random parameter for which we investigate the propagation of uncertainty.

However, we further simply the electron mobility to be spatially constant, to diminish

the computational complexity. Furthermore, the fluid flow is assumed to be in one

direction, u = (ux,0,0), described by a single random variable and is spatially con-

stant. For demonstration purposes, we assume both random variables are described

by either a uniform or beta distribution, with a given mean and variance. The dis-

tributional choices are described in Table 6.2. To directly compare the di↵erence of

the solutions’ distributions for varying parameter distributions, we make use of the

Kullback Leibler (KL) divergence, also known as relative entropy [12, 23]. This is a

statistical di↵erence, in the sense that it gives a quantitative value of the di↵erence

between two distributions. Formally, given two discrete distributions P1, P2 that act

on the event and outcome spaces ⌦,B(⌦)6 respectively, the KL divergence between

them is defined as

DKL(P1��P2) ∶= �
!∈⌦P1(!) log�

P1(!)
P2(!)

� .

If they are assumed to be continuous, then the analogous definition of the KL diver-

gence is given by

DKL(P1��P2) ∶= �
⌦

p(!) log�p1(!)
p2(!)

� ,

where p1, p2 are the probability density functions of P1, P2 respectively.

6
See Section 2.4
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TABLE 6.2: Distribution parameters for the random parameters. Beta distribution
shape parameters recovered from mean and standard deviation, and then translation
maps from [0,1] to the bounded space. Uniform distribution determines the bounds
from the given mean and standard deviation.

Parameter Distribution Lower Bound Upper Bound Mean Stdev.

µe beta 8/6 12/6 10/6 0.5/6

ux beta 1200 1800 1700 100

µe uniform 9.13/6 10.86/6 10/6 0.5/6

ux uniform 1527 1873 1700 100

The results from these numerical experiments can be seen in Figure 6.3. In

these, we examine a 1-D center line of the full 3-D model, running from channel inlet

to outlet, of the electric potential V. The random-grid and weights are implemented

using Burkhardt’s repository [10], while the deterministic solutions are computed with

the COMSOL [32] model described in Section 5.1. In Figure 6.3, we see a spatial

dependence for the variation of the solution, with higher variances seen at the inlet

of the channel. However, despite having the same mean and variance, the shape of

the parameter’s distribution clearly also had an impact on the distribution shape of

the solutions, as seen in the di↵erences plot of Figure 6.3. This is further verified

by plotting the distribution of the random process V for fixed x ∈ D, i.e. generating

a random variable. Assuming that the ‘shape’ of the solutions is the same shape

as the parameters, i.e. a uniform parameter distribution implies a uniform solution

distribution, we also calculate the relative entropy between the uniform and beta

distributed V. The random variable’s distributions can be see in Figure 6.4, while the

KL divergence of the distribution at each point are seen in Table 6.3.

Thus, the shape and variance of the random variables have a significant e↵ect

on the variance of the solutions, and inclusion of uncertain parameters within the

model is necessary for reliable simulations.
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TABLE 6.3: Relative entropies of solutions distributions, at fixed x ∈D, for assumed
parameter distribuions of beta or uniform. Distributions themselves can be seen in
Figure 6.4

x DKL(beta��uniform) DKL(uniform��beta)
(0.011,0.5,0.05) 0.0053 0.0152

(0.035,0.5,0.05) 0.148 0.7229

(0.055,0.5,0.05) 0.0042 0.019

6.2 Uncertain Parameter Estimation

In Section 4.2.2, we stated that the dimension-reduced uncertain parameter

estimation problem (DRUID) was a method-stable FD approximation to (UID), the

distribution parameter estimation problem. Rather than recovering the complete

probability distribution for each random process Y , PY ∶ Q̃Y → R, where QY is the

subspace of Q̃ associated with Y , (DRUID) attempts to recover an M-pole approxi-

mation to PY . To do so, we reduced the dimension of the parameter function space,

by approximating the continuous functions with polynomials.

We desire to apply the stochastic collocation (SC) method described in the

previous section as the uncertain forward solver. To this end, we must satisfy the

requirements, namely the finite-dimensional noise assumption. This assumption states

that to utilize the SC method, the problem must be described by a finite-number of

random variables. By reducing the dimension of (UID), the approximate distribution

used in (DRUID) satisfies this requirement. The exact implementation of (DRUID),

however, remains unclear.

There are two main obstacles to overcome in this problem: how to choose the

sampling {qj}Mj=1 qj ∈ Q̃N , and how to determine the appropriate weights pj , j =

1, . . . ,M associated with each. The choice of pj can be done in many ways, using

general optimization schemes, such as a local-optimization gradient based search, or

a more robust global optimization scheme. Thus, we focus on how to choose the
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sampling of Q̃N , by focusing again on a single random process, and then expanding

to include every random parameter. This will guide us in how to choose the weights

{pj}Mj=1.

6.2.1 Karhunen-Loève Expansion

In the deterministic parameter estimation setting, the sampling of Q̃ was done

naturally, by using an orthogonal basis of the approximation space, Q̃N . For the

UPE, we again use polynomials to represent the spatial component of the random

parameters. However, as these random parameters are viewed as realizations of a

random process, we also use a series of independent random variables with mean zero,

via a Karhunen-Loève expansion (KLE) [46].

Let Y represent any of the random parameters, mapping from D × ⌦ → R

or R3, and let QY denote the function space on which Y acts upon, i.e. for fixed

! ∈ ⌦, Y (!) ∈ QY . Recall that QN
Y represents the approximation of the random

parameter function space, with N ∈ N being the dimension of the approximation. We

use the definition of the probability distribution of a random process first introduced

in Section 2.4. We now layout some necessary arguments for the KLE of any random

parameter. As before, let x ∈D, ! ∈ ⌦.

First, recall that by definition of random-process, the expected value will be

some function in QY . We let YM(x) represent the mean of the random parameter Y .

Furthermore, any random process inherently has some associated covariance function.

The covariance function is a measure of how two random variables change together.

In the case of random processes, we view the covariance as a measure of how the

random processes change between two di↵erent spatial sample points, as for fixed

x ∈ D, Y (x) is a random variable. Let C denote the covariance function for the

random parameter, i.e. C ∶D ×D → R, C(t, s) = Cov�Y (t,!), Y (s,!)�. Although not

necessarily directly observable, the structure of the covariance function for an MHD

generator can be estimated, using an ensemble of observations [15]. By structure of
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the covariance function, we mean that the eigenfunctions, {�j}∞j=1, which satisfy the

Frendholm integral equation of the second kind,

�n�n(s) = �
D
C(x, s)�n(x) dx, (6.18)

are known. Simply put, assuming that C is of a known structure is equivalent to

assuming that the eigenfunctions are known. Note that unlike with YM, �j may not

be in the deterministic function space for Y . We also define { j}∞j=1 to be a set of

random variables on ⌦ with mean zero and unit-variance, that are uncorrelated with

respect to C, i.e. C( j , k) = �j,k, where �(j, k) denotes the Kronecker-delta function.

With these functions defined for the random process Y , the KLE is expressed by [55]

Y (x,!) = YM(x) +
∞
�
j=1
�
�j�j(x) j(!). (6.19)

To satisfy the finite-dimensional noise assumption, we truncate the KLE to a finite

number of terms. In fact, we truncate the KLE to exactly match the dimension of the

approximation space of Q̃Y , i.e. N , as defined in Section 4.2.2. The truncated KLE

for Y is given by

Y (x,!) ≈ YM(x) +
N

�
j=1
�
�j�j(x) j(!) (6.20)

Given that we are approximating our parameters with polynomials in the deterministic

setting, the mean can also be expressed as a linear combination of polynomial basis

functions. Letting {rk}Nk=1 be an orthogonal basis for PN(D), we have that

YM(x) ≈
N

�
k=1

akrk(x),

for some set {ak ∶ for k = 1, . . . ,N, ak ∈ R}. Thus, we define the FD approximation

to Y as

Y N(x,!) ∶=
N

�
k=1

akrk(x) +
N

�
j=1
�
�j�j(x) j(!). (6.21)

It follows from Theorem 3.1 of Banks [3] that Y N → Y as N → ∞ in the Prokhorov
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metric7, in the sense that the associated probability distributions converge, i.e. that

PY N → PY as N →∞.

Thus, we have defined a series of random processes which approximates the true

random process. Now, let Y N
k be the sequence whose sum is the series Y N . As the

sum of random variables equates to the convolution of their probabilities, we let

PY N =
N

�
k=1

PY N
k

denote their convolution. Note that in the discrete case, this equates to a product.

Furthermore, if each covariance structure is further assumed to generate symmetric

distributions, the convolution of discrete distributions simplifies to simply the product

of the discrete probability distributions, evaluated at the same !. For convenience, we

will assume symmetry of these independent random variables. Now, further consider

the sequence which makes up the series Y N , i.e.

Y N
k (x,!) = akrk(x) +

�
�k�k(x) k(!).

Despite this in-depth analysis of the KLE, we have yet to provide direction in choosing

the sampling, nor the weights associated. However, the KLE aids is us in separating

these two questions, and gives the probability association through the independent

random variables  k. Thus the probability associated with Y N
k is uniquely determined

by the random variable  k. As well, it is clear (as  k is mean zero, unit-variance),

that the mean of Y N
k is akrk(x). Similarly, it follows that the variance, in the sense of

the random-process being a (QY ,⌘Y )-valued random-variable (where ⌘Y is the metric

on QY ), is given by �k(�k(x))2. We now use these to build the associated probability

distribution for Y N .

Which allows us to take the product of the distributions in each direction to

obtain the distribution of Y , much the same as we did for the probability on Q̃ as

7
See Section 2.4.1
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the product of the individual random processes. We let PY N
k

denote the M−pole

distribution for Y N
k for k = 1, . . . ,N . This is of course simply a shifted and scaled

version of the random-variable’s distribution P k
. As this distribution is known,

under the assumption of some covariance structure, then so is PY N
k
.

This is an important characteristic of the KLE, and thus we summarize and

reiterate for clarity’s sake. The KLE separates the deterministic and stochastic do-

mains of any random process. We truncate the KLE to exactly match the order of the

approximation to the function space. By doing so, we generate N random processes,

whose sum approximates the random process itself, all with known distributions, un-

der the assumption of a known covariance structure. This assumption itself is valid

as one can estimate the covariance of the system with an ensemble of samples. Fur-

thermore, as we work with some basis for the approximate function space, we can

uniquely determine the sample Y N
j for any given sample !j . In conclusion, finding a

solution to (DRUID) is equivalent to determining the coe↵ecients of the mean in QN ,

i.e. {ak}Nk=0 and the eigenvalues of the covariance matrix, i.e. {�k}Nk=0. Now, noting

that these distributions are assumed to be discrete and symmetric, it of course follows

that

PY N =
N

�
k=1

PY N
k
.

Extending this to the every random parameter in the system, we have

pj =�
Y ∈qPY N ,

where of course q = {u,�, µe, µi}. For a more robust discussion on the KLE, we refer

the reader to [55].

In summary, as the KLE has separated the stochastic and spatial dependence

of the random-process, the weight pj can be uniquely determined from the real-valued

random variable  j . Thus, to generate each weight pj , we simply use the sample

point !j , be it in [−1,1] or in R, to determine the probability associated with Y N
k ,

and then take the scalar product to build the probability of the associated with the
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function
N
∑
k=1akrk(x) +

√
�k�k(x). Taking the product as above, we have generated

an implementable algorithm, concurrent with stochastic collocation, to perform the

uncertain parameter estimation. We now go into detail in how this is implemented

numerically.

6.2.2 Data Fabrication

In lieu of experimental data, we must simulate some data for the parameter

estimation scheme. To do so, we assign a true q value, and simulate data using the

COMSOL deterministic model previously mentioned. To avoid an inverse crime, as

we are using the same model for the data and forward solver, we solve for the true

solution values on a di↵erent mesh for D. Furthermore, to simulate measurement

error, we corrupt the data with random Gaussian noise of some given level. Thus, for

true fabricated data U ′ ∈ RK , where K ∈ N is the number of sample points in D, as

above, we have

U = U ′ + ⌘L��U ′��l2M
where M is a random-Gaussian vector of the same length as U , with mean zero

and variance 1, and ⌘L is the assigned noise-level of the random noise. Using this, we

employ the lsqnonlin MATLAB function to search for a minimum, over the {ak,�k}Mk=1,
to (DRUID). Recall from Section 4.2 that we also do not expect to have samples

corresponding to every point in the domain. Thus, for the numerical sections below,

we distinguish between the impractical case of knowing the full domain as ‘full’, while

the ‘partial’ data is assumed to be a single line through the resistors. For an exact

location of this line, we fix y = −0.1, z = 0.05, which happens to be in the center of

the resistors, as can be seen in Section 2.1. To see some examples of simulated data,

corresponding to the ‘partial data’, and under varying noise levels, see Figure 6.5.
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6.2.3 Numerical Scheme

In order to implement the uncertain parameter estimation scheme, we will need

several tools. First and foremost, their must be some deterministic forward solver,

that gives the solution to (4.2) for some given set of parameter values. For this, we

use the numerical model described in Section 5.1, which is implemented in COMSOL

[32]. We also must be able to store and average the solutions to some capacity. For

the algorithm choice of averaging, we use the stochastic collocation method outlines

in Section 6.1.2. To store the solutions, we use the livelink compatability with Mat-

lab [28]. Finally, for the choice of minimization, we use the native Matlab software

lsqnonlin [29]. We now outline the actual numerical scheme, including defining our

approximation spaces.

Up to this point, we have kept the approximation space general. We now discuss

a numerical implementation of this method, and it’s results. To begin, we make

several further simplifications to the unknown model, as this serves as a numerical

demonstration of the feasibility of the method, and we will not attempt to investigate

the computational requirements.

First and foremost, we reduce the amount of uncertain parameters, to only µe.

Secondly, to simplify the model further, we assume that the ion-slip parameter is

negligible, i.e. µi ≈ 0. Third, we assume that mean of µe is symmetric across the

channel in the y-direction, and uniform in all others. We also assume an exponential

covariance structure with a correlation length of 10. This gives that the eigenfunctions

of the covariance are given by

�k(y) ∶=

�����������

sin(wi(y − 1�2))�
�

1�2 − sin(wi)
2wi

for i even

cos(vi(y − 1�2))�
�

1�2 − sin(vi)
2vi

for i odd

where wi, vi are solutions to the transcendental equations

�����������

10wi + tan(wi�2) = 0 for i even

1 − 10vi tan(vi�2) = 0 for i odd
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Based on the exponential decay of exponential covariance functions, as can be seen in

Dongbin [55] Figure 4.2, we choose to use only quadratic polynomials to approximation

Qµe . Thus, we use the polynomial basis of {1, (y +w�2), (y +w�2)2}, where w is the

width of the channel in the y-direction. We choose the basis (y + w�2) so that the

function operates on a domain of [−w�2,w�2], as required to apply the exponential

covariance structure. Note now that we shift the parameter index to correspond with

the traditional polynomial order index, namely k = k − 1.

Under these assumptions, we have for x ∈ D, ! ∈ ⌦, the electron mobility

satisfies

µe = a2(y+w�2)2+
�
�2�2(x) 2(!)+a1(y+w�2)+

�
�1�1(x) 1(!)+a0+

�
�0�0(x) 0(!).

Examples of the covariance functions described by �k above, the individual random

processes, µ2
e,k, k = 0,1,2, and a sample electron mobility function, see Figure 6.6.

To see examples of the collocation sample points used, i.e. examples of the functions

µe, under the Fejér random grid and quadratic and beta distributions, see Figure 6.7.

Finally, for an example of the deterministic solution for one of the collocation points,

see Figure 6.8

Following the ideas from Section 6.2.1, we attempt to recover the optimal

a0,�0, a1, �1, a2,�2 that describes some ‘true’ set of deterministic coe�cients and

stochastic eigenvalues. We must also choose how we sample the random domain. To

do this, we follow the work described in [9], using a Fejér grid of level = 3. Note that

the Fejèr grid is chosen to have no support on the boundaries, as the support of the

beta distribution is centered around the mean, typically with little variance. Although

there is no function to return the number of collocation points, we let MY,k denote

the number of sample points for µe in the kth direction. Thus, the number of samples

taken in the random direction, M , is given by

M = �
Y ∈{�,µe}

N

�
k=1

MY,k.
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TABLE 6.4: Designated ‘true’ deterministic coe↵ecients and eigenvalues, for use in
the numerical implementation of (DRUID)

a0 �0 a1 �1 a2 �2

10/6 0.5 0 0.02 0.5 0.016

TABLE 6.5: Shape parameters for the random variables with an assumed beta distri-
bution function.

Y0 Y1 Y2

(2,2) (3,1) (4,2)

To calculate the expected value of the solution, we use the stochastic collocation

averaging technique laid out in the previous section. To generate the artificial data,

we set the ‘true’ deterministic coe↵ecients and eigenvalues to be as described in Table

6.4. The eigenfunctions can be seen in Figure 6.6. This figure also displays the terms

of the KLE corresponding to each random process in the sum, as well as a single

realization, the mean, of the quadratic µe.

Figure 6.7 demonstrates every sample µe, under the Fejér grid of level 3, i.e. it is

a plot of every sample µe, under the values described in Table 6.4, used in computing

the SC average of the solutions. Finally, Figure 6.8 is the deterministic solution for the

mean of the KLE for the quadratic µe. Compare this directly with the deterministic

examples in Figure 6.2 as well as those in Section 5.1.4.

We now outline the steps for the numerical solver. To begin, we generate ‘true

data,’ by solving (4.2) using a spatially-fine grid using the numerical model. Exam-

ples of the spatial mesh can be seen in Figure 5.2. Also, note that we use the flexible

generalized minimum residual method, integrated within COMSOL, to solve the nu-

merical equivalent of the kinematic MHD equations. Furthermore, we make use of the

SC method described in the previous section to include the distribution of each µ2
e,k

in our data. The collocation method returns the expected value and variance of our
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solutions. Examples of some solutions distributions are seen above.

Thus, we have generated a ‘true distribution’ of data. However, it is unrealistic

to expect that data gathered from an operational MHD system to be completely

accurate, as all measurement instruments are subject to noise. Therefore, we corrupt

the ‘true data with noise, adding a vector of samples from a Gaussian distribution of

mean-zero, variance given by a scalar factor of the norms of the solutions. We denote

this scalar value the noise-level, and vary it to demonstrate the uncertain parameter

recovery’s sensitivity to noise. Furthermore, it is also unrealistic to expect to gather

data from every point in the domain.8 Thus, we examine the di↵erence between the

distribution recovery across the whole domain, versus a more realistic subset located

solely within a single resistor. 9 However, in all cases, we refer to the corrupted data

as U .

With this fabricated data available, we then can implement any optimization

scheme, under the guise of (DRUID), i.e. minimizing the di↵erence between the ex-

pected value of the solutions, given some µe, and the fabricated data. As mentioned

prevoiusly, we use the native Matlab software lsqnonlin, specifically the bounded

form of trust-region-reflective algorithm, as outlined in [29]. This is a local minimiza-

tion method, and thus requires an initial guess to the distributions of the random

variables. To demonstrate the robustness of the scheme, we give an initial error some-

where between 9% and 11% from the true values for both the mean and standard

deviation. We now examine the results from this numerical implementation.

6.2.4 Numerical Experiments

We begin with the ideal investigation, the the full-domain problem. In Figure

6.9, we demonstrate the results for the uncertain parameter estimations scheme for

varying noise levels. Note that we are under the assumption that the shape of the

8
Recall the operator CK

from the method-stability analysis of (DRUID).

9
See Section 2.1.1.
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covariance function has corresponding random variables with beta distributions, i.e.

that  ∈ �(a, b), for some a, b shape parameters, and hence the shape of the recovered

distributions. These di↵erent plots correspond to the random variable of the recovered

distribution of each term {Yk}2k=0, at the center of the channel. The corresponding

shape parameters can be seen in Table 6.5. The results are better than expected.

Under the assumption of knowing the entire domain, the recovery of the distributions

under noise was remarkable. The error between the recovered distribution and true

distribution is negligible. Noting this, we move onto a numerical demonstration of a

more realistic example, when the solutions are known in only part of the domain.

It could be expected to know the electric current density and electric potential

within the resistor, as this is external to the MHD channel itself! Thus, this numerical

example is much more telling of the e↵ectiveness of the parameter estimation scheme

we have implemented thus far. We now present analogous plots to the full domain

problem, with the results seen in Figure 6.10. We inspect the distribution of the

random variables for each summand of the random process, {Yk}2k=0. The results

again are better than expected. The error for the constant term is again negligible,

showing little sensitivity to the noise level. Interestingly, the insensitivity of the

parameter recovery scheme applies to the quadratic term as well, although the recovery

of the distributions is not as precise. This should be expected, as the ‘impact’ on the

solutions of the quadratic term is less than that of the constant term, as seen in Figure

6.6.

Finally, we inspect the results for the uniform partial domain uncertain param-

eter estimation scheme. These results are noted in Figure 6.11. It is immediately

apparent that the recovery in the uniform case does not perform as well. In both

the constant and quadratic terms, recovery of the mean (noted with an ×) is mildly

sensitive to noise when compared to the recovery of the standard deviation with noise.

Clearly, the estimation scheme here recovers more narrow distributions than the true

case, which is also seen in the quadratic terms of the partial beta recoveries. However,
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TABLE 6.6: Relative entropy for the average recovered beta distributions and the
true distributions for the random parameters Y0, Y2 in the KLE for the UPE. The
distributions for Y0, Y2, which were used to calculate these values can be seen in
Figure 6.10.

Noise Level DKL(rec.��true), Y0 DKL(true��rec.), Y2

0.00 0.0009 6.63

0.05 0.0195 5.37

0.25 0.0563 6.64

this e↵ect is noted in the uniform case for both the constant and quadratic terms.

This is perhaps best explained when examining the results from the forward problem.

Figure 6.4 displays the distribution of the solution values of the electric potential

for both the beta distribution and uniform distribution at three select points in the

domain. It follows that the distribution of the electric potential is less sensitive to

the variance of the uniform distribution, as compared to the beta distribution, as the

solution’s distribution is narrower and with less variance, despite the two parameters’

distributions having the same variance. Thus, the higher error between the true and

recovered distributions are not surprising.

To measure these di↵erences quantitatively, we again employ the KL divergence,

i.e. relative entropy, to give some statistical distance between the two distributions.

These results are displayed in Table 6.6 for the partial-domain beta-distribution re-

covery, and Table 6.7 for the partial-domain uniform-distribution recovery. These

values confirm the qualitative results from inspecting the distributions, that the beta

distribution recovery outperformed that of the uniform, and that, in general, the Y0

recovery outperformed that of Y2. The most notable exception to the last remark is

the uniform, noise-level 0.25 result. Further testing is required to validate these initial

results.

Overall, the introduction of uncertainty to the deterministic problems was a

success. In the forward problem, we demonstrated not only that the expected solutions
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TABLE 6.7: Relative entropy for the average recovered uniform distributions and
the true distributions for the random parameters Y0, Y2 in the KLE for the UPE. The
distributions for Y0, Y2, which were used to calculate these values can be seen in Figure
6.10.

Noise Level DKL(rec.��true), Y0 DKL(true��rec.), Y2

0.00 9.81 21.4

0.05 6.79 20.67

0.25 23.18 26.45

di↵ered significantly from deterministic solutions, we also demonstrated that the shape

of the distribution is a factor in the shape of the solutions’ distributions. This further

confirms the need of accurate modeling and inclusion of uncertainty in any MHD

model. The same can be said for the inverse problem. Comparing these results under

noise to those of the deterministic equivalent, we can see that the expected recovery

contains much more usable information. Finally, the shape of the distributions also

played a critical role in the e↵ectiveness of the recovery scheme.
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6.3 Notation

6.3.1 Stochastic Collocation

Term Definition Usage or Notes

Random

Parameters

�, µe, µi,u

{mk} Collection of all random vari-

ables in the system

Assume all uniform on

[0,1]

M Number of random directions

�k mk(⌦)

� ∏mk(⌦) Product of images of

events under random

variables

⇢ Joint probability density for

Prob. Space (�,H,⇢)

Ṽ ��W Random solution spaces for

new probability space

Vh,Wh Spatial-FD representations of

V �W

The h dependence comes

from the mesh.

th Spatial mesh used in Spatial-

FD reps

PNk Span of polynomials in direc-

tion �k up to order Nk

Approximation to the

random function space

L2
⇢(�k)

rjk Chebyshev polynomial of or-

der j, acting on �k
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Term Definition Usage or Notes

N [N1, . . . ,NM ] Index for order of FD rep

of each direction or �k

PN ∏PNk(�k) Representation of L2(�)

Ṽh,N��Wh,N Vh × PN(�) Complete FD representa-

tion of solution spaces

J
h
i (x, y)/

Vh(x, y)

Solutions to the deter-

ministic system for fixed

yk

maps from � to V �W

ymk
k mth

k zero in direction �k

Ñk Number of grid points un-

der CC or Fejér sparse

grid in direction �k

m [m1, . . . ,mM ] Array of indices for zeros

in j direction

ym A collection of zeros in

each random direction

rm(y) Product of Chebyshev

polynomials of a given or-

der (mj , see m and rjk)

J
h,N
i (x, y)/

Vh,N(x, y)

∑f(x, yk)rk(y) Random polynomial in-

terpolate of solutions

C0(�) Continuous functions on

�.
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Term Definition Usage or Notes

IV,N�IW,N Interpolation operators,

map from continuous

functions on �× the app.

subspace. (V or W )

w
mj

j Weights of polynomial of

order mj on �j g(x, y)

�(x, y)�u(x, y) ×B(x)�

@kn
@k

@ykn
Notational convenience

only

A�B Deterministic equivalent

to Ã, B̃

Gk( ) ∫D @
k
yng ⋅ ∇ 

C 1
ab���A��L(V,V ′) + a�

↵1,k/

↵2,k/

�n

Constants used in Lemma

6.1.6 to ensure conver-

gence

k corresponds to the kth

derivative of g,�−1, n de-

pendence is on the direc-

tion �n

C1,k�C2,k Constants used for

bounding derivatives of

Ji,V

C0 C ��g��W Just for better notation

really

⌃(�k,�k) z = y1 + iy2 ∈

⌃(�k,�k) ⇐⇒ y1 ∈

�k, �y2� ≤ �k

Region of the complex

plane, extending from the

subset of the R, �k
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Term Definition Usage or Notes

y∗n Set of values for y in all

directions but yn

Ji(z, y∗n,x)/
V(z, y∗n,x)

Analytic extensions of

Ji,V in the complex

region ⌃(�n,�n)

H Any general Banach func-

tion space

INn
H Polynomial interpolation

of order Nn, using sparse

grid, of a function con-

tinuous on �n and in the

function space H.

�k∗ Tensor product space of

all directions except �k

Consistent with Babuska

notation

○k∗ General format for every-

thing but the kth direc-

tion.

� [�1, . . . ,�M ] Collection of the decay

constants from regularity

section

⌃(�,�) ∏M
j=1⌃(�j ,�j) This is the tensor product

of all the areas of the an-

alytic extensions.
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6.3.2 Uncertain Parameter Estimation

Term Definition Usage or Notes

KVk∗ Constants from Lemma

6.1.5

used in Lemma 6.1.6

K1 max(Kj)

Y Any random process

QY Function space which Y

acts upon

C(t, s) Cov(Y (t,!), Y (s,!) Covariance function of

the random process

{�j ,�j}∞j=1 Eigenvalues/Eigenfunctions

(eigenpairs) of C

{ j}∞j=1 Uncorrelated, mean-zero,

unit-variance R-valued

random varibales

Y N(x,!) Finite-dimensional ap-

proximation to the

random process.

Y N
k (x,!) Random process whose

sum from k = 1, . . . ,N is

Y N

PY N Probability distribution

of Y N .

U Corrupted data

U ′ ‘True’ (simulated) data
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(a)

(b)

(c)
FIGURE 6.2: (a) is the deterministic solution of the means, (b) is the expected
solution computed using stochastic collocation, while (c) is the di↵erence between the
first two plots. All are samples corresponding to the middle (in z) of a segmented
Faraday channel, under the distributions described in Section 6.1.5.2.
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FIGURE 6.3: Results from numerical experiments. (Left) beta distributions. Exp. V
is the expected value of V, solved for using the SC method at a level of 5. Det. V is
the deterministic V, solved for with the means of each random parameter. (Inset plot)
Relative error defined as the normalized di↵erence between the Exp. V and Det. V.
(Right) Di↵erence between Exp. V and Det. V, with variances included. Solid line
indicates uniform distribution results, dashed line indicates beta distribution results.
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FIGURE 6.4: Distributions of the random variable V(x∗,!) for x
∗ as in Table 6.3,

labelled accordingly. .

FIGURE 6.5: Fabricated Data examples for the UPE. Each noise level is marked by
di↵ering colors.
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FIGURE 6.6: (Left) Eigenfunctions for exponential covariance, i.e. �k, for k = 0,1,2.
(Right) Individual random processes and quadratic µe.

FIGURE 6.7: Collocation sample points of the µe under the KLE, with an Fejér grid
of level= 3.
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FIGURE 6.8: Determinsitic solutions, (colored) V, (streamlines) J, for the expected
value of µe, under the quadratic KLE, with distributions as defined in Table 6.4.
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FIGURE 6.9: Demonstrations of Distributional recovery, at x = (0.05,0.5,0.05), for
quadratic µe, with an assumed beta distribution covariance structure, and with the
full domain available for data. Noise-levels of corrupted data, from left to right, are
0,0.05,0.25
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FIGURE 6.10: Demonstrations of Distributional recovery, at x = (0.05,0.5,0.05), for
quadratic µe, with an assumed beta distribution covariance structure, and with the
partial domain available for data. Here Y = µe, (left) is the constant term, and (right)
is the quadratic term.
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FIGURE 6.11: Demonstrations of Distributional recovery, at x = (0.05,0.5,0.05), for
quadratic µe, with an assumed uniform distribution covariance structure, and with
the partial domain available for data. Here Y = µe, (left) is the constant term, and
(right) is the quadratic term.
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7 Two Stage Optimization

We now reintroduce the goal of this dissertation, an investigation into the feasi-

bility of real-time optimization for an MHD generator. Other papers have considered

optimization of design of the generator [18, 41, 56, 51]. The wide breadth of these

optimization investigations are due to the fact that the optimal operating conditions

of this generator depend upon many variables. There are many di↵erent optimization

parameters one could consider under this situation. For instance, there are geometrical

considerations, such as the angle of the walls, as investigated in [41], or some opti-

mization of pressure and temperature based on the geometry of the nozzle accelerator

[56]. There is also the choice of fluid to consider, as can be seen in [51]. Another, to

be considered in future work, is the angle between paired electrodes within a diagonal

Faraday geometry. For the purposes of this manuscript, wefocus on one optimization

parameters, which greatly a↵ects the e�ciency of an MHD generator: the load on

the channel. We choose this with the understanding that the inclusion of other opti-

mization parameters would be developed further in the real-time optimization of an

MHD generator. We now discuss how exactly the sensitivity of the power out to this

optimization parameter, and further how the sensitive the optimization parameter is

to the given state.

7.1 Optimal load

The idea of an optimal load is not new. Consider, for instance, any of the ideal

pwoer equations presented in Section 5.1.3. Both took the form

P = f(geom)K(1 −K),

where f is the appropriately defined function for the given geometry geom. Note that

this f is somewhat simplistic, but can be found in the Section 5.1.3, and is also a

function of the random parameters. Examining this, it is easily seen that the power
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is a quadratic function of the load factor, with a maximum at K = 0.5.

However, this load factor is inherently a theoretical number, as it is not feasible

to know a-priori the ‘true’ max load of a generator, for a given set of operating

conditions. Thus, choosing the optimal load value is not simple. Recall here that we

replicate the load on the channel with a resistor of some given resistance and periodic

boundary conditions. Thus, choosing the optimal load on the channel is equivalent to

choosing the resistance of the resistor. For demonstration purposes, it is su�cient to

include a resistance range of 10−2⌦ to 102⌦, based on the model validation of Section

5.1.3.

It must be made known, however, that there is an obvious coupling between the

optimization parameters and state parameters for the system, not just in one direction.

As the velocity, and subsequently the other state parameters, are a↵ected by a change

in the operating conditions, there would be feedback within the system from a shift

in the optimization parameters. This would result in a ‘new,’ system, implying a new

optimal load and geometry. However, for the sake of computational complexity, we

have thus far neglected this further coupling of the system by prescribing the fluid

flow. We continue to do so in this optimization section, under the pretense that this

is only one iteration in the optimization of power out from a Faraday MHD generator.

7.2 Sensitivity Experiments

We now move onto a numerical demonstration of the sensitivity of the power-

out to these two optimization variables. First, we clarify the goal of the optimization

scheme. As mentioned in the model validation section of Chapter 5, the electric power

within the channel is defined as the dot-product of the current density, J, and electric

field, E. The same holds true for the resistor. As this is representative of the load, the

more power that remains within the resistor is the same power that the load would
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receive. To this end, we define the ‘power-out’ of the MHD generator to be

�
Resistors

−J ⋅E dx, (7.1)

where Resistors refers to the section of the geometry corresponding to the resistors

in the segmented Faraday geometry, Figure 2.3. We approximate this integral using

standard numerical integration techniques [24]. To approximate the expected power

out, we simply apply the same stochastic collocation procedure as with the uncertain

forward problem of Chapter 6. For the entirety of this section, we assume a Fejér grid

of level 3.

It follows from the numerical demonstrations of the previous two chapters that

the power out of the generator is sensitive to the state of the system, in both a

deterministic and distributional sense. However, we have not yet shown that the

optimal resistance is sensitive to the state of the system, in either sense! To verify this

sensitivity, we use the simplified random model presented in the uncertain parameter

estimation scheme, Section 6.2. Namely, this implies that the only random parameter

within the system is the electron mobility, which we have estimated with a quadratic

KL expansion. Thus, we use the beta distribution from the uncertain parameter

estimation problem, as described in Table 6.4, acting as if these were the recovered

distributions. For the random mesh, we again use a Fejèr grid with a given level of

3, which for 3 random directions, results in 251 nodes.10 Under these conditions, a

colormap of the power as a function of the order of the resistance and the electron

mobility is shown in Figure 7.1. Note that here, the horizontal axis corresponds to

the mean value of µe on D, while the vertical axis is the order of the resistance, i.e.

if we denote this axis y,

Resistance = 5 ⋅ 10y.

With this coarse of a mesh however, it is di�cult to see a great sensitivity of the

optimal resistance to the electron mobility. Thus, we inspect a second figure, the

10
To see an example of a 2 dimensional Fejèr grid, see Figure 5.1.
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FIGURE 7.1: Expected power for system with beta distribution of constant µe.

FIGURE 7.2: Expected load factor for system with beta distribution of constant µe.

sensitivity of the load factor, K, on the optimal resistance order. The optimal power

out corresponds directly to the load factor of 0.5. A colormap of the load factor is

shown in Figure 7.2, with identical axes to Figure 7.1. It is immediately ascertained

from this figure that the load factor becomes much less sensitive to resistance as the

electron mobility increases. As well, the optimal load factor values clearly change as a

function of the hall parameter, and thus we continue to use this as the representative

random parameter in the optimization scheme.
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TABLE 7.1: Results from the two stage optimization problem for a variety of levels,
under the assumption that the random processes are beta distributions, and that the
UPE was peformed on the partial grid. Results from the UPE that correlate to this
run are seen in Figure 6.10.

Noise Level Optimal Resistance

of Resistor [⌦]

Expected Average

Resistor Power [W ]
0 12.37 9.85E6

0.05 12.31 9.86E6

0.25 12.34 9.85E6

7.3 Optimization Method

We now move onto the demonstration of feasibility of optimization. We do so by

focusing on the second of the ‘two stage optimization cycle,’ i.e. finding the optimal

resistance of the resistor for some given fabricated data, in order to diminish the

computational complexity. Thus, using the results from the partial domain parameter

estimation problem for both distributions and all noise levels, we attempt to maximize

the expected power out. To calculate the expected power out, we using the stochastic

collocation method described in Section 6.1, as well as numerical integration within

COMSOL to calculate the power within the resistors, as described in (7.1) for each

deterministic run. To search through the optimal parameter space, we again make

use of the trust-region algorithm of lsqnonlin [29], as done for the UPE. The results

of this search for recovered beta distributions at each noise level are summarized in

Table 7.1, while the analogous for the uniform distributions are in Table 7.2.

The results are as expected. As the uncertain parameter estimation scheme

proved very e↵ective at all three noise levels, the optimal resistance is similar among

them, for both distributions. As well, it is notable that the optimal resistance seems

less sensitive to the shape of the distributions than the kinematic MHD equations

were, as can be seen in Figure 6.3. To test the sensitivity of the optimization scheme

with respect to the variance of the function, the eigenvalues were all multiplied by
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TABLE 7.2: Results from the two stage optimization problem for a variety of levels,
under the assumption that the random processes are uniform distributions, and that
the UPE was peformed on the partial grid. Results from the UPE that correlate to
this run are seen in Figure 6.11.

Noise Level Optimal Resistance

of Resistor [⌦]

Expected Average

Resistor Power [W ]
0 12.28 9.85E6

0.05 12.14 9.87E6

0.25 12.17 1.02E7

10, which corresponds to a new covariance function. Using this new distribution,

the optimization scheme was run again. However, we did not recover the random

parameters, but used the true values, i.e. only performing the second step of the opti-

mization scheme. Doing so for a uniform distribution results in an optimal resistance

of 12.34[⌦], only a 0.73% change from the uniform optimal resistance for the original

distribution. Performing the same steps for a beta distributions resulted in an opti-

mal resistance of 12.50[⌦], which is roughly a 1% change. Thus, as an optimization

variable, the load placed on the channel seems insensitive to uncertainty within the

electron mobility. This is expected, given that it is insensitive to the electron mobility

as a scalar term, as seen in Figure 7.1.
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8 Conclusion

8.1 Conclusions

In this work, we developed several tools and techniques to apply to the real-time

optimization of an MHD generator. While theoretical in nature, we focused our e↵orts

on addressing two major concerns; model accuracy and the feasibility. These both are

crucial in the determination of optimal operating conditions, and thus optimal power.

To address the model accuracy, several steps were taken. Firstly, we introduced

how to include the ion-slip parameter, a term which characterizes the sub-optimal

material interactions between the fluid and electromagnetic fields, within the kine-

matic MHD model. It was shown that the procedure for including this still results in

a well-posed system. More notably was that the generalized Ohm’s law resulted in an

invertible matrix when non-negligible ion slip was assumed, and thus the previously

established BBK theorem could be applied. We then turned to developing a deter-

ministic parameter estimation scheme, investigating the approximations required to

generate a numerically implementable algorithm. We showed that these approxima-

tions resulted in a function space parameter estimation convergent scheme, implying

that we could recover not just a scalar parameter from the system, but a more realistic

functional parameter set.

We also discussed the inclusion of uncertainty within the theoretical MHD

framework. This uncertainty was introduced through the parameters, changing their

definition to include dependence on some random domain. In turn, we viewed them

not as functions, but as random variables with functional observations, i.e. random

processes. We extended the well-posedness arguments of the deterministic equiva-

lent to the now stochastic system, demonstrating again that we the forward problem

was well-posed, and that the finite-dimensional approximation to the inverse problem

method stable. We then turned to numerical implementations to further verify the

newly developed theory.
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For the numerical implementation, we made use of two di↵erent software, COM-

SOL as the deterministic solver, and Matlab as the ‘controlling’ software, handling any

optimization and averaging required. COMSOL initially was alluring, due to the au-

tomated coupling of complex multi-physics systems. We also developed our numerical

theory under the pretense of a mixed-Poisson system of electromagnetics, which the

AC/DC module of COMSOL was set-up to use. Thus, implementation was straight

forward. We then verified the numerical implementation under the assumption of two

di↵erent Faraday geometries, the continuous and the segmented. We developed new

ideal power equations for this model verification, again introducing the concept of the

ion-slip parameter into previous theory regarding MHD generators. We further veri-

fied these new equations, using our numerical model. Under the deterministic scheme,

we also implemented a numerical method for recovering parameters from simulated

‘true’ data. Furthermore, the results from these numerical tests again confirmed the

need for uncertainty to be included, as recovery was not only sensitive to noise, but

also asymmetric with respect to expected error.

To include the uncertainty of the parameters within the numerical method for

the forward problem, we introduced stochastic collocation. As shown, this numerical

method is an e�cient way of computing the the discrete distributions of the solutions.

However, in order to apply this method, the forcing function, i.e. the Lorenz force and

random parameters, must satisfy some regularity properties. We then showed that

this numerical method will converge to the true distributions as the approximations

approach infinity, with an error analysis of the method. The numerical demonstra-

tions confirmed the e↵ectiveness of the method, showing convergence to a high-order

approximation. We also explored the impacts of including uncertainty within the

system, comparing the expected value of the solutions to some deterministic equiva-

lent. Furthermore, we explored the impact of the shape of the distributions discretely,

comparing the solutions’ distributions both qualitatively and quantitatively, utilizing

the Kulback-Leibler divergence, i.e. relative entropy, to measure the statistical di↵er-
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ence between these. We then moved onto a numerical demonstration of the uncertain

parameter estimation scheme, the first step in the two stage optimization method.

To validate the uncertain inverse problem theory developed in Chapter 4, we first

developed further approximation theory to implement the problem numerically. This

was done mainly in the way of the Karhunen-Loève expansion. Through this, and some

assumptions regarding the covariance structure, we demonstrated that recovering the

discrete distribution was analogous to recovering the coe�cients of the mean and

eigenvalues of the eigenfunctions of the covariance. Thus, we implemented a numerical

scheme to recover these scalar values, in lieu of recovering the distribution values

themselves. We then again qualitatively and quantitatively compared the recovered

solution distributions, using again the relative entropy for the quantitative di↵erence,

and plots of the recovered distributions at a fixed x ∈ D. In this, it is clear that

the recovery of the distributions under noise can be expected to perform well, but

better with the beta distributions over the uniform. This of course demonstrates some

sensitivity of the two stage optimization problem to the shape of the distributions.

We concluded this discussion with an investigation into the two stage optimiza-

tion problem. Although there are many di↵erent optimization variables to choose

from, we focused solely on the load being placed on the channel. We demonstrate

that the power out was clearly sensitive to this, as to be concluded from the ideal

power equations as well. Finally, we performed the full two stage optimization scheme,

demonstrating that from data, it is feasible to obtain an optimal load to place on the

generator.

8.2 Future Work

There are multiple next steps available in regards to the demonstration of feasi-

bility of the optimization of an MHD generator. Completing the optimization loop is

notably one, i.e. introducing some feedback from the optimization parameters to the
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uncertain parameters. As well, exploring the sensitivity of the optimization parame-

ters to the shape of the distributions, outside of a fixed beta and uniform distribution,

would allow for a deeper understanding of the relationship between the two. As men-

tioned previously, other optimization parameters have also been investigated, both

geometrical or not. One such geometrical parameter is the angle between electrodes,

which results in a new geometry, the diagonal MHD geometry.

8.2.1 A full Optimization Loop

In order to complete the coupling of the system, we must consider some way to

introduce feedback from the state of the MHD system to the uncertain parameters,

i.e. u,�, µe, µi. This can be done in many ways, such as with the inclusion of the fluid

dynamics. This would allow for feedback from the optimization problem and allow for

the two stage optimization problem to be run cyclically, as u will respond to changes

in the electromagnetic fields. COMSOL does have a computational fluid dynamics

module, similar to AC/DC module, that runs a variety of two equation modules [33].

Another approach to completing this loop would be to model the chemistry

behind the system. By computing species interactions, with some initial conductivity,

electron mobility, and ion mobility, one could model the impacts of the electromagnetic

field on these random parameters. Doing this, one could recover a much more realistic

drop in the conductivity as well as the Hall and ion-slip parameters along the channel,

given the load being extracted from the channel. With either form of coupling, a more

robust model of an MHD generator would be generated, and allow for the feedback

from the optimization step to a↵ect the uncertain parameters.

8.2.2 Sensitivity of Optimal Operating Conditions

Another open question regarding the optimization of an MHD generator is the

sensitivity of other the optimal operating conditions to the shape of the parameters.

It immediately follows from the ideal equations and previous work in the deterministic

framework that the optimal power is sensitive to the mean of the solutions. As well,
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we investigated this sensitivity in Chapter 7 and Chapter 6, in the sense of compar-

ing two di↵erent parameter distributional shapes, i.e. comparing the distribution of

the solutions and optimal resistance to parameters with beta and uniform distribu-

tions. Although di↵erences were noted, these are inherently only two data points in

the infinite-dimensional space of probability distributions. As well, even the variance

investigated yielded minimal results, as it was seen that the resistance of the resistor

was not sensitive to the electron mobility. Thus, it shouldn’t be expected that it would

be sensitive to the distribution of the electron mobility. However, other parameters

cannot be expected to behave the same way, due to the complex coupling within an

MHD system. Thus, understanding how the optimal solutions change with this shape

is important. One example approach for this would be hyper di↵erential sensitivity

analysis [49]. This is a local sensitivity analysis, investigating how much the optimal

solution will change relative to some other given parameters; in our case, the shape

of the distributions. Investigating the sensitivity of optimization parameters to dif-

ferent uncertain parameters will give a better understanding on when an inclusion of

uncertainty will result in a dramatically more reliable power out.

8.2.3 Diagonal Geometry

Comparable to the segmented Faraday generator, the diagonal Faraday geome-

try has segmented electrodes placed along the channel walls, allowing current to flow

parallel to the Lorenz force. However, it di↵ers from the segmented Faraday geometry

in two distinct ways. The first is that the load placed on the channel is no longer

run in parallel along each pair of electrodes. Instead there are two resistors, upstream

of one set of electrodes and connected downstream from the other. This allows for

a more e�cient transfer of current for the diagonal geometry. Next, stemming from

the name, is that the paired electrodes are shifted downstream/upstream from one

another. An example of the diagonal Faraday geometry is given in Figure 8.1.

The components match those within the segmented and continuous Faraday
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FIGURE 8.1: Simple schematic of a Diagonal Faraday generator. Periodic boundary
conditions are again noted with matching dashed colored lines.

generator geometries, as described in Section 2.1. As before, the geometry is completed

with a system of periodic boundary conditions. Matching the schematic in Rosa, we

have that the electrode pairs are connected with periodic boundary conditions, as

are the resistors with a ‘point of connection,’ downstream. These are again color-

coded, with matched colors representing matched boundary conditions. All other

boundaries obey the perfectly-electrically-insulating condition presented in Section

3.2. Theoretically, this electrode placement allows for the current density to flow in

the tilted direction of the Lorenz force, and under ideal conditions, results in no Hall

current (See [42]-Section 4.3). It follows that the ideal angle, for some given load

factor and hall parameter, is given by

✓ = arctan� K

�e(1 −K)
� .

An obvious question arises from this however; how could one change the angle

between paired electrodes in an operational MHD generator? Continuously, without

physically moving the electrodes along the channel, this would prove di�cult. How-

ever, if one connects each electrode to a switchboard, it could be realistically estimated

that the angle between electrodes can be shifted by some discrete fixed degree amount.

With this new geometry, model verification must be done. This implies a need for

new ideal power equations. Most notably, the calculation of the load factor under

this geometry is di�cult. As well, this geometry is not verified, as we did with the
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segmented and continuous in Section 5.1.3. In order to do so, accurate measurements

of K must be extrapolated from the system, which is not as simple as the approach

for previous model verification. Additionally, a new ideal equation must be generated

that incorporates the theory of this new geometry.
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