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Wood is a complex structural material, consisting essentially
of fibers of cellulose cemented together by lignins It is the shape,
size, and arrangement of these fibers, together with their chemical and
physical composition, that governs the strength of wood, and accounts
for the large difference in properties along and across the grain.

The fibers are essentially long hollow tubes tapering towards
the ends, which are closed. They are about one—eighth of an inch long
in softwoods and one twenty-fourth of an inch long in hardwoods, with a
central diameter about cme=hundredth of the lengthe Besides these ver—
tical fibers, which are oriented with their longer dimension lengthwise
of the tree and comprise the principal part of what we call wood, all
species, except palms and yuccas, contain horizontal strips of cells
known as rays, which are oriented radially and are an important part
of the tree's food transfer and storage system., Among different species
the rays differ widely in their size and prevalence.

From the strength standpoint, this arrangement of fibers re-
sults in an anisotropic structure with three principal axes of symmetry
(longitudinal, radial, and tangential), which account for three Young's
moduli varying as much as 150 to 1, three shear moduli varying 20 to 1,
six Poissons' ratios varying 40 to 1, and other properties varying with
grain direction. WNot all of these wood properties have yet been thor-
oughly evaluated.

The engineer must depend, in his strength calculations, on
various formulas, many of which are of long standing. The derivation of
these formulas, is, of course, based on certain assumptions, and the
reasonableness of these assumptions in a wide range of application is
attested to by their satisfactory uses On the other hand, it is essential
that the assumptions upon which the formulas are based, and their limi-
tations, be kept constantly in mind, to avoid serious errors

lPaper presented at the Conferences on Timber and Concrete held at
lMassachusetts Institute of Technology, Cambridge, Mass., July 7-8,
1938,
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Let us in this connection examine the usual flexure theory

I
M= 8% (1)

where W is the bending moment;
S is the unit stress in extreme fiber;
I is the moment of inertia; and
¢ is the distance from neutral axis to outermost fiber.

In this theory it is assumed, among other things, that a plane
section remains a plane section, that the stress does not exceed the
proportional limit, and that the maximum stress for a material is a con-
stante In estimating the bending strength of wood, any errors in per—
formance are frequently attributed to errors in the first two of these
agsumptionss On the contrary, it has been found that the ordinary as—
sumption as to distribution of stress holds quite well up to the propor-
tional 1limit, and that it is the maximum and proportional limit stress
that varies, being dependent on the size and form of the beams As long
as the results of tests in static bending are applied to members of the
same kind, form, size, and condition of loading the same proportional
1imit and maximum stress obtains and but little error results even when
the stresses exceed the proportional limit. When applied to radically
different sections, however, the same proportional limit and maximu@
stress does not obtain and large errors may result. These errors, in
most instances, are away from the side of safetye

Standard strength tests of different species of wood are com-—
monly made on specimens 2 by 2 inches in cross sections Since, as has
been mentioned, test results are, for many properties, intimately related
to method, some of these data are consequently strictly applicable only
to specimens of the size employeds In the usual flexure formula the
factor by which the proportional limit and maximum stress, S, based on

the results of standard tests, must be multiplied in calculating the

strength of any section, is known as the form factor of that sectione. The
bending formula is thus simply expressed:

M = TSl (2)
C
where F_represents the form factor.

Form factors for wood have been investigated and established
from theoretical and empirical considerations at the Forest Products
Laboratory, and are applicable to both proportional limit and ultimate
stress calculations.

To obtain a better picture of the principles of tae form fac—
tor theory, a few specific examples will be of interests Consider, for
instance, a prism, 2 by 2 by & inches loaded centrically parallel to the
grain until the maximum load, P, is obtained. Assuming tne stress is
uniformly distributed over the area A, the maximum unit crushing strength,
C, is P/A. Now let this same specimen be loaded eccentrically tarough
knife edges, so that the compressive stress is zero on one side, and a
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maximum on the other. It may be shown that this occurs when the eccen—~
tricity is %, where t is the width of the specimen. If the maximum unit
crushing strength of the piece is C, it follows that the maximum
eccentric load Py should be 5 « In actual tests, however, it was found
that the eccentrically loaded specimen carried, not one-half, but over
two~thirds the load sustained by the centrically loaded specimen. For
some reason the fiber stress had gone far beyond what might be expected
on the basis of the usual assumptionss

Azain, although there is every reason to believe that the
ordinary assumption as to distribution of stress in bending holds well to
the proportional limit, a wood I-beam of a certain size and form, for
example, may have an elastic limit stress 30 percent less than a solid
rectangular beam made of the same materials Such an I-beam would have a
proportional limit form factor, Fps of 0e70s

Consider as a further example, a beam of square section with
the diagonal verticale In the ordinary beam formula, (1) it is seen that
the bending moment sustained by such a beam, other things being equal, is
directly proportional to I, the moment of inertia, and inversely propor-
tional to c, the distance from the neutral axis to the extreme fiber in
compressione It happens that the moment of inertia of a square about a
neutral axis perpendicular to its sides is the same as the moment of
inertia about a diagonale The distance c, from the neutral axis to the
extreme fiber in compression for a beam with the diagonal vertical, how-
ever, is \ﬂ?'times as great as that for the beam with the sides vertical.
If we assume the fibers fail at the same stress S in the two beams of the
same material, we would expect the maxfimum load for the beam with sides
vertical to be l.41U4 times that of a beam with the diagonal vertical.
Tests have shown, however, that the sustained loads are practically egual.
A factor of 1414 then must be applied to the usual formula in calcu~-
lating the strength of a beam with the diagonal vertical wvhen using
stress values S determined by standard tests of square specimens. Hence
such a beam of square section with the diagonal vertical has a form fac-
tor P equal to l.414 and the formula becomes

1= Tound (3)

It is thus seen that form factors may be greater or less than
unity, depending on the type of sections. Ignoring the form factor may
result in errors of calculation of as much as 50 percent. In some cases
the calculations may be over—-conservative, in others over-optimistic.

How can such factors influencing strength be accounted fory
Obviously, the fiber stress at proportional limit and the modulus of
rupture are not a constant for a given piece of wood, but vary with the
form anc shape of the piece.

In analyzing the form factor effect it is necessary to consider
the structure and characteristics of timber. The strength of wood in
tension and compression parallel to the grain is very different, the
tensile strength ranging from two to four times the compressive strengtis.
Then a wood beam of normal wood fails it gives way first at the surface

R118H o




on the compression side and these fibers lose some of their ability to
sustain load. The adjacent fibers receive a greater stress and with this
redistribution of stress the neutral axis moves toward the tension side
and shortens the arm of the internal resisting couple, giving an increas-—
ing stress in tensione This process continues until tension failure
occurse

It is well established by test that the compressive stress in
the outer fibers of a wooden beam both at proportional limit and ultimate
are definitely higher than the compressive stresses in a piece subjected
to longitudinal compression uniformly distributed over the cross section.
Actually, survey of the data firom tests in both the green and dry condi-
tions on some 160 woods, including hardwood and coniferous species, shows
that in every instance the computed stress at proportional limit in bend-
ing exceeds the ultimate in longitudinal compression.

Many theories have been advanced to account for this phenomenones
The most prominent explanation is that the fiber stresses and strains
are not proportional to the distances from the neutral axis, but this is
not verified by the special studies at the Forest Products Laboratorye
These studies, rather, have not oanly indicated that the stresses within
the proportional limit are very nearly proportional to the distances from
the neutral axis, but also have shown that a greater fiber stress parallel
to the grain is actually developed in a beam than in a compression speci-
mene

Newlin and Trayer account for this ability of wood to take
greater compressive stress in a beam by the assumption that the minute
wood fibers, say one-eighth of an inch long and one eight-hundredth of
an inch wide, act as miniature Euler columns more oI less bound togethers
These fibers, when all uniformly stressed in commression offer little
support to one another, but when the stress is nonuniformly distributed
as in a bent beam the fibers near the neutral axis, being less stressed,
will not buckle, and will therefore lend lateral support to the extreme
fibers causing them to take a higher load. The study of form factors
thus becomes one of evaluating the supporting action under different
conditions.

In considering this explanation of the supporting action of
wood fibers it would appear that it is not the individual fibers, as
such, that are free to act as miniature Euler columns, since these are
cemented together by lignin. The action, rather, relates to the buckling
of the cell walls, and the twisting of the column representing the common
Junction of several fibers.

Whatever the exact nature of the supporting action, it apnears
reasonable in all instances that the least stressed fibers are free to
lend the greatest supporting action, and that from the standpoint of
position, the ability of fibers to lend supporting action decreases as
their distance from the most highly stressed compression fibers is
increased.
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Form Factor (Height Factor) of Rectangular Beam

Then the height of a beam of rectangular cross section is in-
creased, the modulus of rupture is decreased. Such a beam has a form
factor, ¥, less than unitys For rectangular beams, the form factor may
be expressed by the following formulas

F=1- 0.07(\/5- Jout; b (4).

where d is the depth of the beams For specimens 2 inches deep, as used
in standard tests, it may be noted that this formula gives a form factor
of unity« For a beam & inches thick, the form factor F becomes Oa93; and
for a beam 1 inch thick, the form factor is l.02.

This variation of unit strength with depth of beam is in harmony
with the supporting action theory, since the deeper the beam the less
rapidly does the stress decrease from the outer side toward the neutral
surface and consequently the less able is the material adjacent to the
outer surface to support that at this surface.

Form Factor of a Circular Section

For a circular section the form factor, ¥, has been found by a
series of tests to be le18. In comparing a beam of c¢circular section with
one of square section, it is found that for the same area, the section
modulus, I/c, of the square is approximately 118 percent of that for the
circles The modulus of rupture of the beams of circular section, as
calculated by the usual formla, was found to be about 115 percent of that
of the matched beams of 2-inch square section. This shows that a beam of
circular section and one with a square section of equal area will sustain
practically equal loads.

These facts suggest a simplified procedure for calculating the
strength of timbers or posts ¢f circular sections The streng?h value in
bending of round timbers of any species may be considered as identical
with that of square timbers of the same grade and cross—sectional areas
Tapered timbers should be assumed as of uniform diameter, the point of
nmeasurement being one-third the span from the small end, but in no case
should the diameter at this point be assumed to be more than one and
one-half times the small end diameter.

Likewise, the strength of round columns may be assumed to be equal
to that of square columns of equal cross-sectional area. For long,
tapered columns, the cross section of the equivalent square column should
be taken as equal to the cross-sectional area of the round timber measured
at a point one—third of its length from the small end. The stress at the
small end must not exceed the allowable stress for short columns.
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I-Beams and Box Beams

Beams and gircders of I and box section are of little importance
in general wood construction, and are mainly of value for specialized
uses such as airplane design. Such shapes place a large proportion of
the material at a distance from the neutral axis, thereby increasing the
moment of inertia, which theoretically should materially increase the re-
sisting moment. While this makes for efficient practice with metal, the
net gain in bending strength with wood 1s small because of the reduction
in extreme fiber stress, or in other words, because of a fractional form
factors Although with wood the increase in bending strength for a given
cross-sectional area is tius not very important, other advantages, such
as increase in overall width by using I and box sectlons, are realized,
materially increasing the resistance of the beam to lateral buckling.

In an I-beam, only the fibers in a width equal to the width of
the web get the complete supporting action that obtains in a s0lid beam.
The supporting action for the fibers outside the web is limited to the
depth of the compression flange. ZIven a casual inspection of such sec-
tions on the basis of the supporting action theory would lead one to
expect fractional form factors.

1t is difficult to evaluate the exact amount of the supporting

action given the extrcme fibers in compression in developing a means of
determining the form factore A4n empirical curve was eventually worked
out to appraise the amount of supporting action for I and box sections,
taking into account the ability of fibers to lend support by virtue of
their (a) condition of stress and (b) distance from the extreme com-
pressive fibers. The method established checked actual test results
with exceptional accuracye.

The form factor for fiber stress at proportional limit, Fg,
may be determined by substituting in the following formulas L

//K(tg - t1) tl‘\
R.“***EETP——'+ EE.) (5)

in which F, represents the form factor within the proportional limit;
K, a coefficient depending on the ratio of flange depth to total depth
of beam; %7, the thicituess of the web of an I-beam, or the combined
thickness of the two webs of a box beam; and to, the overall width of
beams

FE = 0058 I8 O.L"Z

lAn algebraic expression for determining the form factor
for stress at proportional limit, Fg, has been derived by Te Re Co
Tilsone. This expression, which gives values nearly identical to thase
found with the method described above (formula 5) is as follows:

S TN L
Fp = 0.60 + O,UC irc(6 — Br + jra) SR t£J

where r is the ratio of the thirkness of the neupression flange to the

total depth of Team,
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Values of K in the form factor formula are as follows:

Ratio of depth of Values of Ratio of depth of Values of

compression flange K compression flange K

to depth of beam to depth of beam

0410 04085 0460 04875

15 «155 65 « 920
«20 +230 +70 + 950
25 315 o715 « 970
30 «100 80 « 985
o35 U490 »85 « 995
o140 575 « 50 «998
15 «660 95 14000
50 74O 1.00 1,000
‘55 «810

The form factor for modulus of rupture, F,, may be obtained by
substituting in the following formulas

E, = 0450 + o.5o’\5£3~2-53é'—31)- " % (6)

in which the values of X are as given in the preceding table, and the
legend is the same as for the formula for determining the proportipnal
Limiiy form £actar (B) «

Horizontal Shear in Beams

The calculations of horizontal shear in beams is another im—
portant problem where the use of the usual formula, without correction,
may give misleading results with timber. While the error is on the side
of safety, the result is often such as to make economical design diffi-
cult, or to provide larzer sizes than necessarys In certain uses, for
example, such as floov beams of hiphway bridges and railway ties, usual
design methods predict stresses that are two or three times the ultimate
shearing strength of the material, yet these members are able to carry
their loads without failure.

~ The reason for these discrepancies is that, because of the
shear distortion in the vicinity of the base of checks or fissures that
are present in practically all large beams, the upper and lower portions
of a beam act partly as two independent beams. The result is that part
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of the end reaction or vertical shear is resisted internally by each half
of the beam independently, and consequently is not associated with the
shearing stress at the neutral plane, and part of the end reaction is
talken by the beam as a whole in accordance with the usual assumption.

An extensive series of tests, supplemented by theoretica}
consideration and analysis, was made to develop methods of evaluat%ng the
extent of the two-beam action, and to work out design methods. This
study led to the following recommendations for designs

1, Use the ordinary shear formula and the working stresses
recommended for timber.

2. 1In calculating the reactions for use in the ordinary
shear formula, (a) neglect all loads within the height of the beam from
both supports; (b) place the heavy concentrated moving load at three
times the height of the beam from the support; and (¢) then treat all
loads in the usual manner.

3o If a timber does not qualify under the foregoing recom—
mendations, which under certain conditions may be over-conservative, tye
reactions for the concentrated loads should be checked with the following
more precise equation:

_1op (L - x) (%)2
oz + B

in which R' is the reaction to be used as due to tbe load P; L the span
in inches; x the distance in inches from the reaction to the load P; and
L, the height of the beam in inches. i

R! (7)

If the load is a rolling or moving one the'value of x for use
in formula (7) may be found from the following equations?

73 4 67 = Wi (8)

where Z = x/h and £ = I/he 2 can be most conveniently evaluated from
(8) by successive trials, knowing that if £ is between 12 and 21, Z
will be between 3 and U.

The above formula (7) for determining the reactions to be
used in the ordinary shear formula for rectangular beams in conjunction
with previously published shear stresses includes a 10/9 factor to
compensate for the fact that there was approximately 10 percent of
two—beam action in the test beams from which the safe shear stresses
were derived.

As an example of the significance of the modificatiog of the
method of calculating shear, the following example will be of interest.
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Consider a 5 by 1l6-inch timber with a 16~foot span, and of a gradc hav-—
ing a unit shear stress of 100 pounds per square inchs TLet us investi-
gate the maximum single moving load this timber would accommodate by
means of the various formulass

le By the regular shear formula, ignoring double-beam action,
and placing the load adjacent to the support for maxirmm shear, the
maximum load P is found to be 5,330 poundse.

2. By the recommended procedure of locating the concentrated
load three times the depth of the beam from the support, the maximum
load Py is found to be 7,110 pounds.

3. By using the more exact method involved in formula (7) the
maximum load Pp is found to be 7,820 poundse

It may thus be seen that the newer methods available for cal-

culating strength are of great importance in the proper design and use
of timber.
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Figure 1

The curves evaluate the amount of supporting action
contributed by the less stressed compressive fibers
of a beam to the higher stressed fibers. The support
that can be rendered is dependent on the (1) amount
of stress already carried by the supporting fibers
and (2) the distance of the supporting fibers from
the higher stressed fiberss
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Tigure 2

Diagram showing the relative proportion of the end
reaction of a simple wooden beam (1) associated with
shear in the neutral plane and (2) associated with
double-beam action, in which the upper and lower
parts act independentlys The double~beam action in
checked beams in effect relieves the stress along
the neutral plane, and safely permits the use of
higher loading without danger of shear failure than
is indicated by the usual shear formula.
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