

A Simple Leapfrog Integration Scheme to Find Optimal Interplanetary Trajectories

Scott M. Kelley

Thesis Advisor: Dr. Tom Giebultowicz

Oregon State University Department of Physics

March 8, 2018

 2

Table of Contents

1 Introduction .. 6

1.1 N-Body Simulations in Computational Astronomy .. 6

1.2 Leapfrog Integration .. 6

1.3 Cubic Interpolation .. 9

1.4 Initial Conditions .. 12

1.4.1 Planetary Sphere of Influence ... 13

1.4.2 Hohmann Transfer – Initial Velocity of Craft .. 14

1.4.3 Hohmann Transfer – Determining the Ideal Launch Date .. 17

1.5 Iterative Root Finding .. 19

2 Methods .. 22

2.1 Programing Cubic Interpolation Scheme ... 24

2.2 Programming Leapfrog Integration Scheme. ... 26

2.3 Calculating Initial Launch Date ... 28

2.4 Estimating Initial Craft Velocity .. 30

2.5 Programming Newton’s Method ... 32

3 Results ... 37

3.1 Timestep Sensitivity ... 40

3.2 Comparison to ExoMars Spacecraft ... 41

4 Analysis and Discussion ... 43

4.1 Further Work.. 44

5 Conclusion ... 45

6 Acknowledgments ... 46

7 Bibliography .. 47

8 Appendix A: SLIIT Input File .. 48

 3

Table of Figures

Figure 1.1: Estimation of an arbitrary function’s derivative. .. 7

Figure 1.2: Leapfrog integration with half-steps. .. 8

Figure 1.3: Cubic Interpolation using the method of Legrange Polynomials 11

Figure 1.4: Hohmann Transfer from Earth to Mars. .. 13

Figure 1.5: Generalized change in velocity for an arbitrary trajectory. .. 15

Figure 1.6: Relative angle between Earth and Mars at launch. .. 18

Figure 1.7: Newton's method for iteratively finding the root of a function. 20

Figure 2.1: Description of SLIIT, the program written for this project. ... 23

Figure 2.2: Sample Ephimeris for Earth from the JPL Horizons website. 25

Figure 2.3: Phase angle between Mars and Earth as a function of date. 29

Figure 2.4: Selection of a launch date. .. 30

Figure 3.1: Trajectory from Earth to Mars using Hohmann transfer initial conditions. 37

Figure 3.2: Successful planetary trajectory found after 6 iterations. ... 39

Figure 3.3: An enhanced view of the fourth quadrant of Figure 3.2 which shows the final portion

of the trajectory for the six iterations leading to a successful transfer from Earth to Mars. 40

Figure 3.4: EXOMARS GTO trajectory compared to the trajectory predicted by SLIIT 42

Figure 4.1: Final distance and approach angle for each iteration of a successful transfer from

Earth to Mars on a semi-logarithmic scale. .. 43

 4

Table of Tables

Table 1: Variables used in SLIIT’s CubicInterpolate() function .. 26

Table 2: Variables used in SLIIT’s CraftAccelerations() function ... 26

Table 3: Variables used in SLIIT’s UpdateCrafts() function ... 27

Table 4: Variables used in SLIIT’s InitCraftsOnBodies() function .. 31

Table 5: Variable used in SLIIT’s Dist2Dest() function ... 33

Table 6: Variables used in SLIIT’s ValuesMatrix() function .. 34

Table 7: Variables used in SLIIT’s Jacobian() function ... 35

Table 8: Variables used in SLIIT’s CalcNextVel() function .. 36

Table 9: Initial velocities used for each iteration .. 38

Table 10: Final distance from the craft to Mars for each iteration ... 38

Table 11: Final distance from the craft to Mars using a smaller timestep 41

Table 12: Final distance from the craft to Mars for each iteration from the ExoMars launch-date

... 41

 5

Abstract

The calculation of interplanetary trajectories is a numeric problem which requires a high degree

of precision for the results to be accurate. A computer program was written for this project which

uses leapfrog integration combined with Newton’s method of iterative root finding to find ideal

interplanetary trajectories. Reasonable initial conditions are found by assuming a Hohmann

transfer between two orbits. The program accounts for the gravitational influence of all planets

in the solar system and seeks a solution which favors the least amount of energy for the transfer.

Newton’s method of iterative root finding converges exponentially, and leapfrog integration

allows for large timesteps which causes the program to find solutions quickly and efficiently.

The program can be used to calculate the ideal trajectory between any two planets in the solar

system (including our moon). Additionally, a user can input the absolute initial position and

velocity of a craft to model more complicated orbits or trajectories which do not originate on a

planet.

 6

1 Introduction

1.1 N-Body Simulations in Computational Astronomy

Several technical challenges which must be overcome for space flight to be possible, including

accurate prediction of the trajectory of a spacecraft. On an interplanetary trajectory, a

spacecraft spends the majority of its journey mainly under the gravitational influence of the

Sun. This can be modeled as a two-body problem which is solvable analytically, but only as a

first-order approximation of the craft’s true trajectory. Better predictions necessitate the use of

numeric integration techniques which consider perturbations caused by gravitational attraction

to other celestial bodies.

For this project, a computer program was written which uses a low-error leapfrog integration

scheme that is simple to understand and runs very quickly. The program is named SLIIT (Simple

Leapfrog Integration for Interplanetary Trajectories). This project uses SLIIT to model an Earth

to Mars transfer, but the methods described can be used to calculate the trajectory between

any two planets or the free motion of an object anywhere in our solar system.

1.2 Leapfrog Integration

SLIIT uses leapfrog integration to calculate the trajectory of a spacecraft. This method is chosen

because it allows larger timesteps, thus shortening computation time without loss of accuracy.

To demonstrate, first consider the estimation of the derivative of an arbitrary function at a given

point. The traditional approach, derived directly from the limit definition of the derivative, uses

the current value and a future value of the function to calculate the slope of a tangent line.

 7

 𝑓′(𝑡) ≈
𝑓(𝑡 + 𝛥𝑡) − 𝑓(𝑡)

𝛥𝑡
 (1)

In contrast, the leapfrog method estimates the derivative using values of the function at half-

steps in either direction of the point of interest,

 𝑓′(𝑡) ≈
𝑓(𝑡 + 𝛥𝑡

2) − 𝑓(𝑡 −
𝛥𝑡
2)

𝛥𝑡
 (2)

Both methods use the same size timestep, require the same number of computations, and

approach the true derivative as Δ𝑡 → 0; but the leapfrog method more accurately estimates the

function’s derivative for larger timesteps, as shown in Figure 1.1.

Figure 1.1: Estimation of an arbitrary function’s derivative. The red line shows the function’s true
derivative at time 𝑡. The first figure shows the traditional method of estimating its derivative, while
the second figure shows the leapfrog method. Both require the same number of computations and

both approach the true derivative as 𝛥𝑡 → 0.

 8

Leapfrog integration similarly uses an integrand’s current value to calculate the value of the

integral spaced with half-steps around it. Figure 1.2 shows how this is applied to the prediction

of the trajectory of a spacecraft. The future position is calculated using the position from the

current timestep and the velocity from the future half-timestep. The calculation of the velocity

at half-steps allows the simulation to use larger timesteps and leads to better predictions of the

craft’s trajectory. Additionally, the use of half-steps forces the craft’s velocity to be tangential to

its orbit, conserving angular momentum and allowing for the simulation be run for longer

without compiling error.

Figure 1.2: Leapfrog integration with half-steps. The future position is calculated using the position
of the current timestep and the velocity from the future half-timestep.

The basic equations of motion of the leapfrog integration scheme are

𝒓𝒊+𝟏 = 𝒓𝒊 + 𝒗𝒊+𝟏

𝟐

 𝛥𝑡

𝒗
𝑖+
1
2
= 𝒗

𝑖−
1
2
+ 𝒂𝑖 𝛥𝑡

(3)

 9

where the acceleration is the sum of the external forces on the body divided by its mass.

 𝒂𝒊 =
𝟏

𝒎𝒊
∑𝑭𝒋

𝒆𝒙𝒕 (4)

This system of equations can be rewritten without the explicit use of half-steps by first

expressing the velocity term for a full step in two distinct half-steps

𝒗
𝒊+
𝟏
𝟐

= 𝒗𝒊 +
𝒂𝑖
2
 𝛥𝑡

𝒗𝑖+1 = 𝒗𝑖+1
2
+
𝒂𝑖+1
2

 𝛥𝑡
(5)

Combining Equation (3) with Equation (5) allows the equations of motion to be written strictly

in terms of integer timesteps

𝒗𝑖+1 = 𝒗𝑖 +
(𝒂𝑖 + 𝒂𝑖+1)

2
 𝛥𝑡

𝒓𝑖+1 = 𝒓𝑖 + 𝒗𝑖 𝛥𝑡 +
𝒂𝑖
2
 𝛥𝑡2

(6)

This formation makes programming easier without any loss of functionality [1]. Section 2.1

describes how Equation (6) is programed in SLIIT.

1.3 Cubic Interpolation

While it is necessary to consider the gravitational influences of all the planets in the solar

system on a spacecraft’s trajectory, it is unnecessary to calculate the position of each planet

 10

every time SLIIT is run1. Therefore, the planets’ positions are tabulated and referenced at

runtime. To get better fidelity than the values used in the reference tables, each planet’s

position is interpolated at each timestep. For instance, the reference tables used for this project

list the positions of the planets every 60 minutes, but it may be necessary to inquire their

positions several times a second and therefore interpolation of the tables is required. The path

of each body is well-behaved enough that a small section of the orbit is estimated as a cubic

polynomial of the form

 𝑃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 (7)

where 𝑃(𝑡) is the interpolated position and 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are unknown coefficients of the

polynomial.

A property of polynomials is that for 𝑁 ordered pairs of positions and times (𝑟, 𝑡), a unique

polynomial of order 𝑁 − 1 exists which exactly passes through each of the points. The method

of Lagrange polynomials is used to solve for this unique polynomial and is defined as

 𝑃(𝑡) = ∑ 𝑟𝑖

𝑁−1

𝑖=0

 ∏
𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

𝑁−1

𝑗=0,𝑗≠𝑖

. (8)

where 𝑟𝑖, … , 𝑟𝑗 and 𝑡𝑖, … , 𝑡𝑗 are known positions and times and 𝑡 is the time for which the

interpolated position is desired [2]. Section 2.1 describes how Equation (8) is programed in

SLIIT.

1 The addition of a spacecraft in the solar system has negligible impact on the planets’ orbits. If SLIIT is
used to model the trajectory of a planetary-sized object, then this assumption may not hold.

 11

Lagrange polynomials find the proper function by summing unique polynomials which each

evaluate to one of the known positions at a known time and evaluate to zero at all other known

times; when 𝑡 is a known value then 𝑃(𝑡𝑖) = 𝑟𝑖. For all other times, 𝑃(𝑡) returns a linear

combination with contributions from each of the ordered pairs. Figure 1.3 shows an arbitrary

data set which represents a slightly-curved line. The solid line in the figure is a single polynomial

which passes through all four known points and can reasonably be used to interpolate the

data2.

Figure 1.3: Cubic Interpolation using the method of Legrange Polynomials to find a curve through
the arbitrary points (1.0, 1.0), (2.0, 2.5), (3.0, 3.5) and (4.0, 4.0). The dotted curves are polynomials
which each pass through a single known point and evaluate to zero at the other three known points.
The solid curve is the sum of the dotted curves; a single polynomial which passes through all known

points.

2 Care must be taken when using a single polynomial to interpolate a data set. While a polynomial can
always be found which passes through every known point, if the data are not well-behaved then the
fitting polynomial will be highly oscillatory and not valid for interpolation. This project uses a single
polynomial to interpolate a table where the known positions of each planet are provided in one-hour
intervals, making for a very slightly curved line.

-2

-1

0

1

2

3

4

5

1 2 3 4

y-
co

o
rd

in
at

e

x-coordinate

 12

1.4 Initial Conditions

An iterative root finding algorithm was used to calculate the ideal trajectory from Earth to Mars.

There are several trajectories a craft could take and therefore we must have a method for

finding a good initial guess for the position and velocity of the spacecraft. The ideal trajectory is

the one which needs the least amount of energy to transfer from Earth’s orbit to that of Mars.

To find an approximation of the ideal trajectory a few simplifying assumptions are made; the

orbits of Earth and Mars are assumed to be coplanar circles, the craft is assumed to follow an

elliptical path about the Sun where attraction to all other planets is neglected, and the craft is

assumed to be put into orbit with an instantaneous impulse. With these assumptions, the

trajectory can be modeled as a Hohmann transfer.

The Hohmann transfer [3] models the trajectory as an elliptical orbit which has its perigee at

Earth’s orbit and apogee at Mars’ orbit (as can be seen in Figure 1.4). There is no expectation

for the Hohmann trajectory to be correct, but it gives reasonable initial conditions which can be

iterated to find a more precise solution.

 13

Figure 1.4: Hohmann Transfer from Earth to Mars. The orbits of the planets are modelled as co-
planar, circular orbits at each planet’s mean distance from the sun. The spacecraft follows an

elliptical trajectory which has its perigee at Earth’s orbit and apogee at Mars’ orbit.

1.4.1 Planetary Sphere of Influence

As mentioned before, most of the time a craft spends in interplanetary flight is under the sole

influence of the sun. For this project, instantaneous impulse to start the craft on its trajectory

was assumed. In reality, the change of velocity into the elliptical orbit would take some time,

but an instantaneous impulse is a reasonable assumption given that the burn time of the craft

 14

to leave Earth’s sphere of influence is much smaller than the period of the elliptical orbit of the

transfer.

The Earth’s sphere of influence is defined as the distance from Earth where the gravitational

pull of the Sun is greater than that of Earth. This distance is calculated by equating the potential

energy between a craft and Earth with the potential energy between the craft and the Sun.

 𝐸 = −𝐺
𝑚𝑐𝑟𝑎𝑓𝑡𝑀𝑆𝑢𝑛

𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛
= −𝐺

𝑚𝑐𝑟𝑎𝑓𝑡𝑀𝐸𝑎𝑟𝑡ℎ

𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ
 (9)

 𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ =
𝑀𝐸𝑎𝑟𝑡ℎ
𝑀𝑆𝑢𝑛

𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛 (10)

In the case of a craft leaving earth’s orbit, 𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛 is about the same as Earth’s orbital radius

and 𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ is the Earth’s sphere of influence, 𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ. The Earth’s orbital radius is 1 AU,

so when working in astronomical units 𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ reduces to the ratio of Earth’s and the Sun’s

masses.

𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ =

𝑀𝐸𝑎𝑟𝑡ℎ
𝑀𝑆𝑢𝑛

 (𝐴𝑈)

≈ 3.0035 ∗ 10−6 (𝐴𝑈)
(11)

1.4.2 Hohmann Transfer – Initial Velocity of Craft

By closer examination of Figure 1.4 we see that the initial velocity and final velocity of the craft

are co-linear. This is needed in order to minimize the energy of the transfer. For proof of this,

consider the magnitudes of the initial velocity, final velocity, and the change in velocity vectors

for a craft with an arbitrary trajectory (Figure 1.5).

 15

Figure 1.5: Generalized change in velocity for an arbitrary trajectory.

By the law of cosines, the final velocity is expressed as

 𝑣𝑓𝑖𝑛𝑎𝑙
2 = 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2 + 𝛥𝑣2 + 2𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝛥𝑣 𝑐𝑜𝑠 𝜃 (12)

and the energy change associated with this velocity change is

 𝛥𝐸 =
1

2
𝛥𝑣2 + 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝛥𝑣 𝑐𝑜𝑠 𝜃. (13)

For a transfer from two circular orbits we know Δ𝑣 regardless of the path since the craft must

start at the velocity of the initial orbit and end at the velocity of the final orbit. Equation (13)

shows that for any given Δ𝑣 the change in energy will be largest when 𝜃 = 0. In short, we get

the most “bang for our buck” from an energy gained-per-impulse-required perspective when

 16

the initial and final velocities of the craft are co-linear. In the case of an elliptical trajectory this

is where the inner and outer orbits are at the perigee and apogee of the orbit, respectively.

By conservation of energy the velocity at the perigee of the transfer orbit from Earth to Mars,

𝑣𝜋, is

 𝑣𝜋
2 = 2𝐺𝑀𝑆𝑢𝑛 (

1

𝑅𝐸𝑎𝑟𝑡ℎ
−

1

𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠
) (14)

To calculate the impulse needed to move the craft from Earth’s orbit into the elliptical trajectory

we subtract the velocity of the circular orbit, 𝑣𝐸𝑎𝑟𝑡ℎ, from 𝑣𝜋. Again, by conservation of energy

we calculate that

 𝑣𝐸𝑎𝑟𝑡ℎ = √
𝐺𝑀𝑆𝑢𝑛
𝑅𝐸𝑎𝑟𝑡ℎ

 (15)

and therefore, the change in velocity is

 𝛥𝑣𝜋 = 𝑣𝜋 − 𝑣𝐸𝑎𝑟𝑡ℎ = √
𝐺𝑀𝑆𝑢𝑛
𝑅𝐸𝑎𝑟𝑡ℎ

(√
2𝑅𝑀𝑎𝑟𝑠

𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠
− 1). (16)

The same method can be used to calculate the velocities at Mars’ orbit, but for this project the

focus is on the initial conditions necessary to start the proper elliptical trajectory. The

maneuvers necessary after the craft is within Mars’ sphere of influence are neglected.

 17

1.4.3 Hohmann Transfer – Determining the Ideal Launch Date

We have found the elliptical path the craft must take, but now must consider the phase angle

between Earth and Mars at the time of launch to ensure that the spacecraft reaches Mars’ orbit

at the same time the planet does. The craft is traveling half the period of an ellipse; by Kepler’s

third law the period of an ellipse of a planet orbiting the Sun is

 𝑇 = 2𝜋√
𝑎3

𝐺𝑀𝑆𝑢𝑛
 (17)

where 𝑎 is the length of the semi-major axis. By taking another look at Figure 1.4 we see that

the transfer orbit has a semi-major axis of

 𝑎 =
𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠

2
. (18)

By equations (17) and (18) the time of flight of the craft is calculated to be

 𝑇𝑓𝑙𝑖𝑔ℎ𝑡 = 𝜋√
(𝑅𝐸𝑎𝑟𝑡ℎ+𝑅𝑀𝑎𝑟𝑠)

3

8𝐺𝑀𝑆𝑢𝑛
. (19)

To find the desired phase angle between Earth and Mars at launch, we first calculate the angular

distance that Mars travels in 𝑇𝑓𝑙𝑖𝑔ℎ𝑡, as shown in Figure 1.6.

 18

Figure 1.6: Relative angle between Earth and Mars at launch. The spacecraft must arrive at Mars’
orbit at the same time and location as the planet itself. The period of the craft’s trajectory is known,
and Mars’ angular velocity is known which allows for the calculation of ideal angle between Earth

and Mars at the time of launch (𝛽).

The angular displacement, 𝜃𝑀𝑎𝑟𝑠, is found by multiplying its angular velocity, 𝜔𝑀𝑎𝑟𝑠, by 𝑇𝑓𝑙𝑖𝑔ℎ𝑡,

where

 𝜔𝑀𝑎𝑟𝑠 = √
𝐺𝑀𝑆𝑢𝑛

𝑅𝑀𝑎𝑟𝑠
3 (20)

and

 𝜃𝑀𝑎𝑟𝑠 = 𝜔𝑀𝑎𝑟𝑠𝑇𝑓𝑙𝑖𝑔ℎ𝑡 =
𝜋

2√2
√(

𝑅𝐸𝑎𝑟𝑡ℎ

𝑅𝑀𝑎𝑟𝑠
+ 1)

3
. (21)

 19

As discussed in Section 1.4.2, the initial and final velocity vectors of the craft are co-linear.

Therefore, the craft’s trajectory covers 𝜋 radians and the ideal phase angle between Earth and

Mars at launch is

𝛽𝑖𝑑𝑒𝑎𝑙 = 𝜋 − 𝜃𝑀𝑎𝑟𝑠

= 𝜋(1 −
1

2√2
√(
𝑅𝐸𝑎𝑟𝑡ℎ
𝑅𝑀𝑎𝑟𝑠

+ 1)
3

)

≈ 0.245 𝜋 .

(22)

1.5 Iterative Root Finding

After using the assumptions discussed above to give a reasonable guess of the initial velocity of

the craft, it is necessary to fine-tune the velocity to find a solution which considers

perturbations due to the actual path of the destination planet and the gravitational forces from

other planets in the solar system. Newton’s Method iteratively finds a root by calculating the

value of a function, 𝑓(𝑥), and its derivative, 𝑓′(𝑥), at an approximation to a zero of 𝑓(𝑥𝑛). Then

the function is replaced by its tangent line approximation at 𝑥𝑛, which is then solved for the x-

intercept, as seen in equation (23). This value is taken as the next approximation, 𝑥𝑛+1, as can

be seen in Figure 1.7.

 0 = 𝑓(𝑥𝑛) + 𝑓
′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) (23)

 20

Figure 1.7: Newton's method for iteratively finding the root of a function. At an approximate root,
the function’s derivative is linearized and evaluated at its x-intercept to provide a better

approximation of the function’s root. The process is repeated until the root is found to the desired
precision.

The explicit expression for 𝑥𝑛+1 is

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. (24)

Newton’s method is generalized to solve a multivariable system of N-equations and M-

unknowns

 {

𝑓1(𝑥1,⋯ , 𝑥𝑀) = 𝑓1(𝒙) = 0

𝑓2(𝑥1,⋯ , 𝑥𝑀) = 𝑓2(𝒙) = 0
⋮

𝑓𝑁(𝑥1,⋯ , 𝑥𝑀) = 𝑓𝑁(𝒙) = 0

 (25)

 21

where 𝒙 is defined as a vector of independent variables

 𝒙 = [

𝑥1
⋮
𝑥𝑀
]. (26)

The system is further simplified as a vector function

 𝒇(𝒙) = [
𝑓1(𝒙)
⋮

𝑓𝑁(𝒙)
] (27)

and the system in equation (25) is expressed as

 𝒇(𝒙) = 𝟎. (28)

Like in the 1-D case, when given an approximation of a root 𝒙𝑛 the system is linearized to find

the next approximation 𝒙𝑛+1

 𝒙𝑛+1 = 𝒙𝑛 − 𝑱𝑛
−1𝒇(𝒙𝑛) (29)

where 𝑱𝑛 is the Jacobian matrix, defined as

 𝑱(𝒙) =
𝑑

𝑑𝒙
𝒇(𝒙) =

[

𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑀

⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑥1
⋯

𝜕𝑓𝑁

𝜕𝑥𝑀]

. (30)

When there are as many equations as unknowns (N=M) the Jacobian is square and the inverse

𝑱𝑛
−1 is calculated according to the usual linear algebra rules. However, in the case of an over

constrained system (N > M) the Jacobian is not square and 𝑱−1 is calculated as the pseudo-

inverse

 𝑱−𝟏 = (𝑱𝑻𝑱)
−𝟏
𝑱𝑻 (31)

 22

2 Methods

With this being a computational experiment, the majority of the methods used are

programming adaptations of the techniques discussed in the Introduction section above.

Figure 2.1 shows an overview of how the SLIIT program operates. Most of the code deals with

data management and visualization and is not reproduced here. This section will go into greater

detail of the numeric methods used to implement Lagrange polynomials, leapfrog integration,

and Newton’s method of iterative root finding. The specifics of the choice of a launch window

and craft initial velocity are also discussed.

 23

Figure 2.1: Description of SLIIT, the program written for this project. SLIIT requires a specifically
formatted input file and an ephemeris file for each planet, and outputs a summarizing output file
and a data file formatted for easy plotting with GNUplot.

 24

2.1 Programing Cubic Interpolation Scheme

NASA graciously provides a tool online which allows access to JPL’s HORIZONS system and can

be used to generate ephemerides for several bodies in our solar system [4]. With this tool we

are able to download very precise tables with the positions of planets with respect to the solar

system’s barycenter. Figure 2.2 shows a sample of the ephemeris file holding data for Earth.

 25

Figure 2.2: Sample Ephimeris for Earth from the JPL Horizons website. The position of the planet is
given at one-hour intervals in cartesian coordinates using the ecliptic and mean equinox of

reference epoch system with the origin at the solar system barycenter.

Functions were written to navigate the files and interpolate for positions that fall between the
values listed. Below is the pseudocode of the interpolation function, which follows Equation
(8).

CubicInterpolate()
//Use Lagrange polynomial to interpolate a value given 4 known points.
//returns interpolated position at desired time

 26

 rr = 0.0;
 for (i = 0; i < 4; i++)
 L = 1.0;
 for (j = 0; j < 4; j++)
 if (i != j) L *= (tt - t[j]) / (t[i] - t[j]);
 rr += r[i] * L;

Table 1 describes the variables used in CubicInterpolate().

Table 1: Variables used in SLIIT’s CubicInterpolate() function

Variable Description

r Vector of 4 known positions

t Vector of 4 known times associated with the positions in r

tt Time of desired interpolated position

rr Interpolated position at time tt is returned

2.2 Programming Leapfrog Integration Scheme.

The following pseudocode shows the functions used to implement the leapfrog integration

scheme. The first function, CraftAccelerations(), follows Equation (4) to calculate the

instantaneous acceleration of the spacecraft.

CraftAccelerations()
 //calculates the acceleration of the spacecraft
 for (k = 0; k < 3; k++) craft.A[k] = 0.0; // reset accelerations
 for (j = 0; j < num_bdys; j++) //for each body...
 for (k = 0; k < 3; k++) //calculate difference between position vectors
 r[k] = craft.R[k] - body.R[k];

 //Calculate r2neg3
 r2neg3 = VectorMag(r);
 r2neg3 = pow(r2neg3, -3);

 //Sum the accelerations in each dimension
 for (k = 0; k < 3; k++)
 craft.A[k] += (-1.0)*G*body[j].mass*r2neg3*r[k];

Table 2 describes the variables used in CraftAccelerations().

Table 2: Variables used in SLIIT’s CraftAccelerations() function

 27

Variable Description

G Newton gravitational constant

r 3-dimensional position vector to hold the difference between the craft and a
planet

k Counter to track 3 spatial dimensions

j Counter to track each planet

num_bdys Total number of planets considered

craft.R Craft position

body.R Body position

r2neg3 inverse of r-cubed

VectorMag A function to calculate the scalar magnitude of a vector

body.mass Mass of body

craft.A Craft acceleration vector

The following pseudocode shows the function used to update the position of a spacecraft in

motion. It is assumed that the craft’s acceleration and velocity vectors are populated from the

previous timestep. This function follows Equation (6).

UpdateCrafts()
 for (k = 0; k < 3; k++) // for each dimension...

//update position
craft.R[k] += craft.V[k]*dt + craft.A[k]*(dt*dt)/2;
//update velocity for current timestep
craft.V[k] += craft.A[k]*dt/2;

//Call CraftAccelerations() to calculate accelerations for next timestep
CraftAccelerations();
// complete velocity equation in preparation for next iteration
for (k = 0; k < 3; k++)

craft.V[k] += craft.A[k]*dt/2;

 Table 3 describes the variable used in UpdateCrafts().

Table 3: Variables used in SLIIT’s UpdateCrafts() function

Variable Description

k Counter to track 3 spatial dimensions

craft.R craft position

craft.V craft velocity

craft.A craft acceleration

dt timestep

 28

2.3 Calculating Initial Launch Date

To choose an initial launch date it was assumed that the craft would perform a Hohmann

transfer which needs a specific phase angle between the initial planet and the destination

planet at the time of launch. The ephemeris data for Earth and Mars is used to calculate the

phase angle between the two planets. The phase angle is calculated by subtracting Earth’s

position vector from Mars’ position vector and taking the arctangent of the resulting vector.

 𝛽 = 𝑡𝑎𝑛−1 (
𝑦𝑀𝑎𝑟𝑠 − 𝑦𝐸𝑎𝑟𝑡ℎ
𝑥𝑀𝑎𝑟𝑠 − 𝑥𝐸𝑎𝑟𝑡ℎ

) (32)

Figure 2.3 shows a plot of the phase angle between Earth and Mars as a function of the date.

For this project we looked at the planets positions from the years 2016 through 2025. We see

that every angle is covered 5 times in the 10-year period. The discontinuities in the plot are

where Earth and Mars are in line and the angle “jumps” from 2π to 0.

 29

Figure 2.3: Phase angle between Mars and Earth as a function of date. We see that every angle is
covered 5 times in the 10-year period shown. The discontinuities in the plot are where Earth and

Mars are in line and the angle “jumps” from 2π to 0.

For this project it was chosen to focus on the launch date in the 2017-2018 range. By equation

(22) the ideal phase angle at launch is where 𝛽𝑖𝑑𝑒𝑎𝑙 ≈ 0.25 𝜋. Figure 2.4 shows the same plot

as Figure 2.3 with a closer look those dates and includes a horizontal line at 𝛽𝑖𝑑𝑒𝑎𝑙. The

intersection between the phase angle curve and the ideal angle curve is on December 31, 2017;

that is, therefore, the launch date chosen.

0

0.5

1

1.5

2

Jan-2016 Jan-2017 Jan-2018 Jan-2019 Jan-2020 Jan-2021 Jan-2022 Jan-2023 Jan-2024 Jan-2025 Jan-2026

P
h

as
e

A
n

gl
e

(π
ra

d
ia

n
s)

Date

 30

Figure 2.4: Selection of a launch date. The blue curve represents the phase angle between Earth
and Mars The orange curve represents the ideal phase angle at launch (0.25π radians). The

intersection between the phase angle curve and the ideal angle curve is on December 31, 2017.

2.4 Estimating Initial Craft Velocity

The position of Earth was referenced in the ephemeras files for the launch date and Equation

(16) was used to calculate the magnitude of the initial velocity of the craft. To perform a

Hohmann transfer the launch trajectory is tangential to the Earth’s orbit. For the initial guess, it

was assumed that Earth and Mars are coplanar and therefore the z-component of the vector is

zero. The other two components of the unit velocity vector are calculated as

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1/2017 3/2017 5/2017 6/2017 8/2017 10/2017 12/2017 2/2018 4/2018 6/2018 8/2018 10/2018 12/2018

A
n

gl
e

(π
ra

d
ia

n
s)

Date

Phase Angle Ideal Angle

 31

𝑣𝑥,0 =
−𝑟𝑦,0

√𝑟𝑥,0
2 + 𝑟𝑦,0

2

𝑣𝑦,0 =
𝑟𝑥,0

√𝑟𝑥,0
2 + 𝑟𝑦,0

2

.
(33)

With these considerations, the initial velocity of the craft on December 31, 2017 is

 𝒗0 = [
−1.86 ∗ 10−2

 −3.15 ∗ 10−3

0.00

]
𝐴𝑈

𝑑𝑎𝑦
. (34)

To place the craft outside of Earth’s sphere of influence at launch the initial position of the craft

was offset in the direction of the initial velocity by the radius of the sphere of influence (see

Equation (11)). The pseudocode below shows the function written for that purpose.

InitCraftsOnBodies()
 //calculate crafts unit velocity vector
 dirV = VectorDir(craft.V);

 //calculate the crafts initial position
 for (k=0; k<3; k++)
 offset = body.SOI*dirV[k];
 craft.R[k] = body.R[k]+offset;

Table 4 describes the variables used in InitCraftsOnBodies().

Table 4: Variables used in SLIIT’s InitCraftsOnBodies() function

Variable Description

VectorDir A function which calculates the unit vector of a 3-D inputted vector

k Counter to track 3 spatial dimensions

offset A dummy variable to hold the offset direction from the planet’s center in the
current dimension

body.SOI The radius of the planet’s sphere of influence

craft.R Craft position

body.R Planet position

 32

2.5 Programming Newton’s Method

When the craft is launched from Earth on a specific date there are three independent variables

which can be controlled (velocity in each spatial dimension). When the spacecraft arrives at

Mars there are three distance functions which must equal zero (the distance to Mars in each

spatial dimension). In addition, the ideal trajectory will have the spacecraft arriving at Mars such

that the craft and Mars have co-linear velocity vectors. Therefore, the system of equations to be

solved is

{

𝑋𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝑌𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝑍𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝛩𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

 (35)

where 𝑋𝑓𝑖𝑛𝑎𝑙, 𝑌𝑓𝑖𝑛𝑎𝑙, and 𝑍𝑓𝑖𝑛𝑎𝑙 are the distance between the spacecraft and Mars in each

spatial dimension. Θ𝑓𝑖𝑛𝑎𝑙 is the approach angle, defined as the angle between the velocity

vectors at the point where they are closest in their given trajectories. The approach angle is

calculated by solving the geometric definition of the dot product for 𝛩.

𝒗𝒄𝒓𝒂𝒇𝒕 ⋅ 𝒗𝒑𝒍𝒂𝒏𝒆𝒕 = |𝒗𝒄𝒓𝒂𝒇𝒕||𝒗𝒑𝒍𝒂𝒏𝒆𝒕| 𝑐𝑜𝑠 𝛩

𝛩 = 𝑐𝑜𝑠−1 (
𝒗𝒄𝒓𝒂𝒇𝒕 ⋅ 𝒗𝒑𝒍𝒂𝒏𝒆𝒕

|𝒗𝒄𝒓𝒂𝒇𝒕||𝒗𝒑𝒍𝒂𝒏𝒆𝒕|
)

(36)

The following pseudocode shows how these parameters are evaluated at each timestep. If the

craft is closer to its destination planet than it has been previously then the parameters are

saved.

Dist2Dest()
 veldot=0;

for (k=0; k<3; k++)
 vect[k]=craft.R[k]-body.R[k];

 33

 veldot += craft.V[k]*body.V[k];

 dist=VectorMag(vect);
 veldot = veldot / (VectorMag(craft.V) * VectorMag(body.V));
 angle = acos(veldot);

 if (dist < craft.dist2dest)
 craft.dist2dest=dist;
 craft.vect2dest[k]=vect[k];
 craft.velangle=angle;

Table 5: Variable used in SLIIT’s Dist2Dest() function

Variable Description

k Counter to track 3 spatial dimensions

dist A dummy variable to hold the distance between the craft and the destination
planet at the current timestep

vect A dummy vector to hold the vector between the craft and the destination
planet at the current timestep

angle A dummy variable to hold the angle between the craft and the destination
planet’s velocity vectors at the current timestep

veldot A dummy variable to hold the dot product of the velocities of the craft and
the destination planet at the current timestep

craft.R Craft position

craft.V Craft velocity

body.R Destination planet position

body.V Destination planet velocity

craft.vect2dest The vector between the craft and the destination planet at their closest

craft.dist2dest The magnitude of craft.vect2dest

craft.velangle The approach angle between the craft and planet at their closest

The iterative root finding technique requires a stopping criterion to be established. For this

project it was decided that the magnitude of the vector between the spacecraft and the

destination planet must be less than the planet’s sphere of influence and that Θ𝑓𝑖𝑛𝑎𝑙 must be

less than 0.1 radians. Mars’ sphere of influence was calculated in the same way as Earth’s (see

Equation (11)).

To use Newton’s method to iteratively solve for the roots of a function it is necessary to

calculate the Jacobian of the craft’s trajectory. To approximate the derivatives of the system in

 34

equation (30), three fictitious crafts are created when SLIIT is executed, each with slightly

different initial velocities in each dimension. The original craft and its three “derivative” crafts

are run in parallel for the duration of the trial. A matrix is built from the final values of each

crafts’ “vect2dest” and “velangle” parameters. Again, these parameters represent the relative

position of the craft to its destination planet at the point in its trajectory when they are closest.

ValuesMatrix()

//first column is original value, following columns are derivatives
 // first 3 functions are distance from destination planet in each dimension
 for (i=0; i<3; i++)
 values[i][0] = craft_0.vect2dest[i];
 values[i][1] = craft_dx.vect2dest[i];
 values[i][2] = craft_dy.vect2dest[i];
 values[i][3] = craft_dz.vect2dest[i];

 // fourth function is the approach angle between the velocities (weighted)
 values[3][0]=craft_0.velangle*gamma;
 values[3][1]=craft_dx.velangle*gamma;
 values[3][2]=craft_dy.velangle*gamma;
 values[3][3]=craft_dz.velangle*gamma;

Table 6: Variables used in SLIIT’s ValuesMatrix() function

Variable Description

craft_0 Original craft

craft_dx “Fictitious” craft with starting velocity offset by dx in the x-direction

craft_dy “Fictitious” craft with starting velocity offset by dy in the y-direction

craft_dz “Fictitious” craft with starting velocity offset by dz in the z-direction

.vect2dest[i] The ith component of the vector between the associated craft and the
destination planet at their closest

.velangle The approach angle between the associated craft and planet’s velocity vectors
at their closest

gamma A weighting function (described below)

The ValuesMatrix() function above includes a weighting factor, γ, on Θ𝑓𝑖𝑛𝑎𝑙. This is necessary

because no solution was found that solved the over-constrained system in Equation (35). In

addition, the stopping criteria of distance to the planet in AU is about 5 orders of magnitude

smaller than that of the approach angle in radians which causes each iteration to preferentially

 35

search for a result which favors a small approach angle over a small distance. This was remedied

by introducing γ which is defined as

 𝛾 = {
1 𝛩𝑓𝑖𝑛𝑎𝑙 ≥ 𝜖

𝐷 𝛩𝑓𝑖𝑛𝑎𝑙 < 𝜖
 (37)

where 𝜖 is the acceptance criteria for the approach angle and 𝐷 is the logarithmic difference

between the orders of magnitude. For example, if the distance to the planet is 𝑎 × 10−5 AU and

the approach angle is 𝑏 × 10−2 radians then 𝛾 = 10−3 and the Θ𝑓𝑖𝑛𝑎𝑙 dependent term in the

values matrix is 𝑏 × 10−5. This forces the dependence on Θ𝑓𝑖𝑛𝑎𝑙 to be on the same order as the

distance terms if the approach angle is within the acceptable range but allows the approach

angle to dominate otherwise. The pseudocode below shows the calculation of 𝛾.

CalcGamma()
 gamma=1;

if(craft.velangle < epsilon)
 gamma=craft.dist2dest/craft.velangle;
 gamma=floor(log10(gamma));
 gamma=pow(10,gamma);

After building the matrix of values the Jacobian is calculated as shown below.

Jacobian()
 for (i=0; i<nrows; i++)
 for (j=0; j<(mcols-1); j++)
 jacobian[i][j]=(values[i][j+1]-values[i][0])/d[j];

Table 7: Variables used in SLIIT’s Jacobian() function

Variable Description

jacobian The Jacobian matrix

values Matrix of values built in the ValuesMatrix() function (described above)

nrows Number of rows in “values” matrix

mcols Number of columns in “values” matrix

d A vector of differential elements, defined as [dx, dy, dz]

 36

After the Jacobian is calculated, Equation (29) is followed to calculate the next-iteration initial

velocity of the craft. This calculation needs several standard linear algebra operations to be

programmed which are not discussed here for brevities sake. The pseudocode below shows

how the next-iteration initial velocity is calculated.

CalcNextVel()
 jacob=Jacobian(); //jacobian is nxm
 invjacob=MatPseudoInvert(jacob); //invjacob is mxn
 nextguess=MatMultiply(invjacob,values1);

 for (i=0; i<m; i++)
 nextguess[i]=initvel[i]-nextguess[i];

Table 8: Variables used in SLIIT’s CalcNextVel() function

Variable Description

jacob The Jacobian matrix

invjacob The inverse of the Jacobian

values1 First column of the “values” matrix

n Number of equations

m Number of unknowns

MatPseudoInvert A function which calculates the pseudoinverse of a matrix

MatMultiply A function which multiplies two matrices

initvel The initial-velocity vector for the current iteration

nextguess The next-iteration initial-velocity vector

 37

3 Results

The boundary conditions discussed in the earlier sections were written to a text-based input file

and SLIIT was run. Figure 3.1 shows the resulting path of Earth, Mars, and the spacecraft using

the initial conditions predicted as if the craft were to follow a Hohmann transfer. Although they

are not shown in the plot, the gravitational influences of all of the planets in the solar system

are considered. The initial guess led to a trajectory in which the spacecraft tailed significantly

behind Mars. At the closest point in the trajectory, the spacecraft was 0.95 AU from Mars and

had an approach angle of 0.91 radians. This point was 167 days after launch.

Figure 3.1: Trajectory from Earth to Mars using Hohmann transfer initial conditions.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

D
is

ta
n

ce
 f

ro
m

 s
o

la
r

sy
st

em
 b

ar
yc

en
te

r
(y

-c
o

m
p

o
n

an
t)

 (
A

U
)

Distance from solar system barycenter (x-componant) (AU)

Sun

Earth

Mars

Hohmann

 38

More iterations were performed, with each trial using the results from the previous trial to

guess at better initial conditions. Table 9 shows the initial velocity vector used for each trial.

Table 9: Initial velocities used for each iteration

Trial x-component (AU/day) y-component (AU/day) z-component (AU/day)

Hohmann -1.86 × 10-2 -3.15 × 10-3 0.00
Iteration 1 -1.74 × 10-2 -6.04 × 10-3 -7.90 × 10-4
Iteration 2 -1.74 × 10-2 -6.65 × 10-3 -1.85 × 10-4
Iteration 3 -1.75 × 10-2 -6.37 × 10-3 8.07 × 10-4
Iteration 4 -1.74 × 10-2 -6.26 × 10-3 6.40 × 10-4
Iteration 5 -1.74 × 10-2 -6.31 × 10-3 6.08 × 10-4
Iteration 6 -1.74 × 10-2 -6.35 × 10-3 7.27 × 10-4

Table 10 shows the results of each iteration. The sphere of influence of Mars is 3.8 × 10−3 AU,

and we see that the correct trajectory to put the spacecraft within Mars’ SOI was found after six

iterations.

Table 10: Final distance from the craft to Mars for each iteration

Trial Time of Flight (Days) Closest Distance (AU) Smallest Approach Angle (radians)

Hohmann 167 0.950 0.910
Iteration 1 263 0.092 0.016
Iteration 2 252 0.061 0.073
Iteration 3 221 0.041 0.200
Iteration 4 264 0.015 0.033
Iteration 5 264 0.009 0.035
Iteration 6 264 8.13 × 10-5 0.062

Figure 3.2 shows the trajectory of the craft for each iteration.

 39

Figure 3.2: Successful planetary trajectory found after 6 iterations.

Figure 3.3 gives a closer look at the quadrant where the spacecraft arrives at Mars. We see

significant improvement as early as the first iteration. The approach angle after the end of the

first trial was larger than the acceptance criteria, so the Jacobian calculated was weighted to

predict initial velocities which favored a smaller angle over shorter distances. The results after

the first iteration had the distance reduced by an order of magnitude and the approach angle

reduced by nearly two orders. Additional iterations all showed improvement in the distance, but

the approach angle continued to vary since it is negatively weighted when less than the

acceptance criteria.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

D
is

ta
n

ce
 f

ro
m

 s
o

la
r

sy
st

em
 b

ar
yc

en
te

r
(y

-c
o

m
p

o
n

an
t)

 (
A

U
)

Distance from solar system barycenter (x-componant) (AU)

Sun

Earth

Mars

Hohmann

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

 40

Figure 3.3: An enhanced view of the fourth quadrant of Figure 3.2 which shows the final portion of
the trajectory for the six iterations leading to a successful transfer from Earth to Mars.

3.1 Timestep Sensitivity

As mentioned in the introduction, the advantage of using leapfrog integration over other is that

it allows larger timesteps to be used. In the results shown above, the timestep was 0.01 days. To

show the method’s insensitivity to step size the trial was run again using the initial conditions

from the successful transfer and a timestep of 0.001 days. The craft did not arrive at Mars on

the first launch, but one of the derivative crafts did arrive allowing for a more ideal initial

velocity to be calculated after only a single iteration. Table 11 shows the results from iteration 6

above and the results using a smaller timestep. Note that the smaller timestep led to final-

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50

D
is

ta
n

ce
 f

ro
m

 s
o

la
r

sy
st

em
 b

ar
yc

en
te

r
(y

-c
o

m
p

o
n

an
at

)
(A

U
)

Distance from solar system barycenter (x-componant) (AU)

Sun

Earth

Mars

Hohmann

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

 41

distance vector that is larger than the previous iteration. This is due to SLIIT being programmed

to stop as soon as the craft is within Mar’s SOI, and a larger timestep allows for the craft to get

closer to Mars before the trial is terminated. These results support the results of others who

have worked on this project [5].

Table 11: Final distance from the craft to Mars using a smaller timestep

Trial Time of Flight (Days) Closest Distance (AU) Smallest Approach Angle (radians)

Iteration 6 264 8.13 × 10-5 0.062
Small Step 264 8.58 × 10-5 0.043

3.2 Comparison to ExoMars Spacecraft

The ExoMars spacecraft was launched from Earth on March 16, 2016. The methods described

above are used to predict the flight path of that spacecraft in its trajectory to Mars. On that date

the initial velocity for a Hohmann transfer is

 𝒗0 = [
−1.88 ∗ 10−3

 −1.88 ∗ 10−2

0.00

]
AU

day
. (38)

A trajectory which successfully arrived at Mars was again found after six iterations, as can be

seen in Table 12.

Table 12: Final distance from the craft to Mars for each iteration from the ExoMars launch-date

Trial Closest Distance (AU) Smallest Approach Angle (radians)

Hohmann 0.300 0.031
Iteration 1 0.295 0.004
Iteration 2 0.169 0.157
Iteration 3 0.009 0.089
Iteration 4 0.0005 0.099
Iteration 5 0.007 0.090
Iteration 6 7.96 × 10-5 0.131

 42

Figure 3.4 shows the initial Hohman transfer trajectory, the sixth iteration which arrived at

Mars, and the trajectory of the EXOMARS GTO spacecraft. We see that the trajectory calculated

follows the MARS GTO spacecraft very closely initially then diverges slightly before reaching

Mars. This divergence is due to a maneuver the GTO spacecraft performed during the course of

its transfer which is not duplicated in the simulated trajectory.

Figure 3.4: EXOMARS GTO trajectory compared to the trajectory predicted by SLIIT, the program
written for this project. The sixth iteration (which successfully arrived at Mars) followed the path of

the EXOMARS GTO craft very well for the first part of the trajectory. However, the EXOMARS GTO
craft had a burn partway through the trajectory which lead to the divergence of the paths seen.

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

-1.5 -1 -0.5 0 0.5 1 1.5

Sun

Earth

Mars

Hohmann

ITT6

EXOMARS GTO

 43

4 Analysis and Discussion

Figure 4.1 plots the results displayed in Table 10 on a semi-logarithmic scale. The initial trial,

which chose initial conditions assuming a Hohmann transfer, missed the target planet by nearly

1 AU. This shows that while the Hohmann transfer got the craft going in the correct direction, it

does not give realistic results. Each iteration improved the distance vector and the approach

angle was maintained below the programmed minimum after the third iteration. The “closest

distance” curve converges exponentially (linearly on the semi-logarithmic scale with an R2 value

of 0.84).

Figure 4.1: Final distance and approach angle for each iteration of a successful transfer from Earth
to Mars on a semi-logarithmic scale. The orange and grey solid lines represent the distance and

approach angle of the spacecraft at its closest distance to Mars. The dashed lines show the
acceptance criteria; Mars’ sphere of influence for distance and 0.1 radians for approach angle. The
orange dotted line shows an exponential (linear on the semi-log plot) line of best fit for the closest

distance.

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

Hohman ITT01 ITT02 ITT03 ITT04 ITT05 ITT06

Final Distance and Approach Angle for Each
Iteration

Smallest Approach Angle (radians) Closest Distance (AU)

Mars SOI (AU) Maximum Approach Angle (radians)

Expon. (Closest Distance (AU))

 44

The timestep sensitivity discussed in Section 3.1 shows that if the timestep is decreased by an

order of magnitude, only a single additional iteration is required. This shows that the timestep

used while iterating toward a solution was sufficiently small that the method used is insensitive

to the size of timestep chosen; a ten-times-smaller timestep led to a relative error in the final

position of the craft of 1.78 × 10-5.

4.1 Further Work

A limitation of the SLIIT program is that it uses a launch date determined by assuming a

Hohmann transfer. In the future the launch date could be a variable which is iterated on just as

initial velocities are now. One advantage of this could be that it would make the Jacobian a

square matrix and the system of equations would not be over-constrained, which could allow

for a more precise solution.

Additionally, as SLIIT is currently written each iteration requires the input deck to be edited and

for the user to launch the program manually. This method was chosen because one of the

purposes of the project is to develop a learning tool it is valuable for the user to be forced to be

involved in the process used to find solutions. However, solutions could be found much faster if

the iterative process was automated, especially if the user is seeking a more complicated

trajectory which may require many more than six iterations.

 45

5 Conclusion

It has been shown that the leapfrog integration method combined with Newton’s method of

iterative root finding and reasonable initial conditions can be used to find the ideal trajectory of

a spacecraft on an interplanetary trajectory. This trajectory considers the gravitational influence

of all planets in the solar system using tabulated data of the planets’ positions and seeks a

solution which favors the least amount of energy. Newton’s method of iterative root finding

converges exponentially, and leapfrog integration allows for large timesteps which causes the

program to find solutions quickly.

While this study only explored two Earth to Mars trajectories, the methods described can be

used to calculate the ideal trajectory between any two planets in the solar system (including

Earth’s moon). Additionally, the program is written such that a user could input the absolute

initial position and velocity of a craft, allowing them to model more complicated orbits or

trajectories which do not originate on a planet.

 46

6 Acknowledgments

This work is a continuation of Sam McLain’s 2015 senior thesis under the advisement of Dr.

Geibultowicz titled “Leapfrog Integration as an Accurate and Uncomplicated Alternative for N-

Body Simulations in Computational Astronomy” [5]. This paper showed that the leapfrog

integration scheme is a valid alternative for creating N-body simulations by demonstrating that

this scheme is capable of providing position data of similar accuracy to higher-order methods.

 47

7 Bibliography

[1] Aarseth, S. J. et al. (Eds.), The Cambridge N-Body Lectures (Lecture notes in physics, 760, p.

51), London: Springer-Verlag Berlin Heidelberg, 2008.

[2] Berrut, J. & Trefethen, L., "Barycentric Lagrange Interpolation," Society for Industrial and

Applied Mathematics, vol. 46(3), pp. 501-517, 2004.

[3] Bettinger, R. A. & Black, Jonathan T., "Mathematical relation between the Hohmann transfer

and continuous-low thrust Maneuvers," Acta Astronautica, vol. Vol.96, pp. pp.42-44,

March-April 2014.

[4] NASA, "HORIZONS Web-Interface," Site Manager: R. S. Park, [Online]. Available:

https://ssd.jpl.nasa.gov/horizons.cgi. [Accessed 18 April 2016].

[5] "Leapfrog Integration as an Accurate and Uncomplicated Alternative for N-Body Simulations

in Computational Astronomy", S. McLain, Undergraduate senior thesis, Oregon State

University Department of Physics, 2015.

 48

8 Appendix A: SLIIT Input File

The SLIIT program reads the simulation parameters from a specifically formatted text file

labeled ‘trialname’.inp. SLIIT is run from a command terminal with the only inline argument

being the name of the input file with no extension. As it runs the input parameters and status of

the trial are printed in the terminal and to an output file. When the trial concludes the next-

iteration initial velocity is provided and a plot file is generated.

A sample input deck is displayed below.

*SLIIT input file
*The order of the input DOES matter
Comments start with an asterix () as the first non-whitespace character.
*
*****************Simulation parameters*******************
*InitialTime (JDCT)
 2458119. *noon on Dec 31, 2017
*TrialDuration (days)
 300
*Timestep (days)
 1.0E-2
*PrintFrequency (days)
 5 *days
*
****************Craft Properties***************************
**Initial position can be either the name of a body listed below or explicit cartesian
**coordinates wrt solar system barycenter.
**Enter 0 for unused values
*num_crafts
 3
*Name Mass(kg)
 Hohman 1.0
*InitialPlanet DestinationPlanet
 Earth Mars
*InitPos.x InitPos.y InitPos.z (initial position in AU)
 0.0 0.0 0.0
*InitVel.x InitVel.y InitVel.z (initial velocity in AU/day)
 -1.86e-02 -3.15e-03 0.0
*InitAccel.x InitAccel.y InitAccel.z (initial acceleration in AU/day/day)
*NOTE: Initial acceleration is not currently being used
 0.0 0.0 0.0
*
*Name Mass(kg)
 ITT01 1.0
*InitialPlanet DestinationPlanet
 Earth Mars
*InitPos.x InitPos.y InitPos.z (initial position in AU)
 0.0 0.0 0.0
*InitVel.x InitVel.y InitVel.z (initial velocity in AU/day)
 -1.742173e-02 -6.043623e-03 -7.901637e-04

 49

*InitAccel.x InitAccel.y InitAccel.z (initial acceleration in AU/day/day)
*NOTE: Initial acceleration is not currently being used
 0.0 0.0 0.0
*
*Name Mass(kg)
 ITT02 1.0
*InitialPlanet DestinationPlanet
 Earth Mars
*InitPos.x InitPos.y InitPos.z (initial position in AU)
 0.0 0.0 0.0
*InitVel.x InitVel.y InitVel.z (initial velocity in AU/day)
 -1.742204e-02 -6.645807e-03 -1.850269e-04
*InitAccel.x InitAccel.y InitAccel.z (initial acceleration in AU/day/day)
*NOTE: Initial acceleration is not currently being used
 0.0 0.0 0.0
*
****************Bodies with known position files*******************
*num_bodies
 9
*Name plt Mass(kg) SOI(km) PositionDataFile
Sun 1 1.988544E30 0.0 sun_bary_vectors.txt
Mercury 0 3.302E23 0.112E6 mercury_bary_vectors.txt
Venus 0 48.685E23 0.616E6 venus_bary_vectors.txt
Earth 1 5.97219E24 0.924E6 earth_bary_vectors.txt
Mars 1 6.4185E23 0.576E6 mars_bary_vectors.txt
Jupiter 0 1898.13E24 48.2E6 jupiter_bary_vectors.txt
Saturn 0 5.68319E26 54.6E6 saturn_bary_vectors.txt
Uranus 0 86.8103E24 51.8E6 uranus_bary_vectors.txt
Neptune 0 102.41E24 86.8E6 neptune_bary_vectors.txt
*

