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Abstract 

The calculation of interplanetary trajectories is a numeric problem which requires a high degree 

of precision for the results to be accurate. A computer program was written for this project which 

uses leapfrog integration combined with Newton’s method of iterative root finding to find ideal 

interplanetary trajectories. Reasonable initial conditions are found by assuming a Hohmann 

transfer between two orbits. The program accounts for the gravitational influence of all planets 

in the solar system and seeks a solution which favors the least amount of energy for the transfer. 

Newton’s method of iterative root finding converges exponentially, and leapfrog integration 

allows for large timesteps which causes the program to find solutions quickly and efficiently.  

The program can be used to calculate the ideal trajectory between any two planets in the solar 

system (including our moon). Additionally, a user can input the absolute initial position and 

velocity of a craft to model more complicated orbits or trajectories which do not originate on a 

planet.  
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1 Introduction 

1.1 N-Body Simulations in Computational Astronomy 

Several technical challenges which must be overcome for space flight to be possible, including 

accurate prediction of the trajectory of a spacecraft. On an interplanetary trajectory, a 

spacecraft spends the majority of its journey mainly under the gravitational influence of the 

Sun. This can be modeled as a two-body problem which is solvable analytically, but only as a 

first-order approximation of the craft’s true trajectory. Better predictions necessitate the use of 

numeric integration techniques which consider perturbations caused by gravitational attraction 

to other celestial bodies.  

For this project, a computer program was written which uses a low-error leapfrog integration 

scheme that is simple to understand and runs very quickly. The program is named SLIIT (Simple 

Leapfrog Integration for Interplanetary Trajectories). This project uses SLIIT to model an Earth 

to Mars transfer, but the methods described can be used to calculate the trajectory between 

any two planets or the free motion of an object anywhere in our solar system. 

 

1.2 Leapfrog Integration 

SLIIT uses leapfrog integration to calculate the trajectory of a spacecraft. This method is chosen 

because it allows larger timesteps, thus shortening computation time without loss of accuracy. 

To demonstrate, first consider the estimation of the derivative of an arbitrary function at a given 

point. The traditional approach, derived directly from the limit definition of the derivative, uses 

the current value and a future value of the function to calculate the slope of a tangent line.  
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 𝑓′(𝑡) ≈
𝑓(𝑡 + 𝛥𝑡) − 𝑓(𝑡)

𝛥𝑡
 (1) 

 

In contrast, the leapfrog method estimates the derivative using values of the function at half-

steps in either direction of the point of interest,  

 𝑓′(𝑡) ≈
𝑓(𝑡 + 𝛥𝑡

2 ) − 𝑓(𝑡 −
𝛥𝑡
2 )

𝛥𝑡
 (2) 

 

Both methods use the same size timestep, require the same number of computations, and 

approach the true derivative as Δ𝑡 → 0; but the leapfrog method more accurately estimates the 

function’s derivative for larger timesteps, as shown in Figure 1.1.  

 

 

Figure 1.1: Estimation of an arbitrary function’s derivative. The red line shows the function’s true 
derivative at time 𝑡. The first figure shows the traditional method of estimating its derivative, while 
the second figure shows the leapfrog method. Both require the same number of computations and 

both approach the true derivative as 𝛥𝑡 → 0.  
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Leapfrog integration similarly uses an integrand’s current value to calculate the value of the 

integral spaced with half-steps around it. Figure 1.2 shows how this is applied to the prediction 

of the trajectory of a spacecraft. The future position is calculated using the position from the 

current timestep and the velocity from the future half-timestep. The calculation of the velocity 

at half-steps allows the simulation to use larger timesteps and leads to better predictions of the 

craft’s trajectory. Additionally, the use of half-steps forces the craft’s velocity to be tangential to 

its orbit, conserving angular momentum and allowing for the simulation be run for longer 

without compiling error.  

  

Figure 1.2: Leapfrog integration with half-steps. The future position is calculated using the position 
of the current timestep and the velocity from the future half-timestep. 

 

The basic equations of motion of the leapfrog integration scheme are 

 
𝒓𝒊+𝟏 = 𝒓𝒊 + 𝒗𝒊+𝟏

𝟐

 𝛥𝑡 

𝒗
𝑖+
1
2
= 𝒗

𝑖−
1
2
+ 𝒂𝑖  𝛥𝑡 

(3) 
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where the acceleration is the sum of the external forces on the body divided by its mass.  

 𝒂𝒊 =
𝟏

𝒎𝒊
∑𝑭𝒋

𝒆𝒙𝒕 (4) 

 

This system of equations can be rewritten without the explicit use of half-steps by first 

expressing the velocity term for a full step in two distinct half-steps 

𝒗
𝒊+
𝟏
𝟐

= 𝒗𝒊 +
𝒂𝑖
2
 𝛥𝑡 

𝒗𝑖+1 = 𝒗𝑖+1
2
+
𝒂𝑖+1
2

 𝛥𝑡 
(5) 

 

Combining Equation (3) with Equation (5) allows the equations of motion to be written strictly 

in terms of integer timesteps 

 

𝒗𝑖+1 = 𝒗𝑖 +
(𝒂𝑖 + 𝒂𝑖+1)

2
 𝛥𝑡 

𝒓𝑖+1 = 𝒓𝑖 + 𝒗𝑖  𝛥𝑡 +
𝒂𝑖
2
 𝛥𝑡2 

(6) 

 

This formation makes programming easier without any loss of functionality [1]. Section 2.1 

describes how Equation (6) is programed in SLIIT. 

 

1.3 Cubic Interpolation 

While it is necessary to consider the gravitational influences of all the planets in the solar 

system on a spacecraft’s trajectory, it is unnecessary to calculate the position of each planet 
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every time SLIIT is run1. Therefore, the planets’ positions are tabulated and referenced at 

runtime. To get better fidelity than the values used in the reference tables, each planet’s 

position is interpolated at each timestep. For instance, the reference tables used for this project 

list the positions of the planets every 60 minutes, but it may be necessary to inquire their 

positions several times a second and therefore interpolation of the tables is required. The path 

of each body is well-behaved enough that a small section of the orbit is estimated as a cubic 

polynomial of the form 

 𝑃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 (7) 

 

where 𝑃(𝑡) is the interpolated position and 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are unknown coefficients of the 

polynomial.  

A property of polynomials is that for  𝑁  ordered pairs of positions and times (𝑟, 𝑡), a unique 

polynomial of order 𝑁 − 1 exists which exactly passes through each of the points. The method 

of Lagrange polynomials is used to solve for this unique polynomial and is defined as 

 𝑃(𝑡) = ∑ 𝑟𝑖

𝑁−1

𝑖=0

 ∏
𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

𝑁−1

𝑗=0,𝑗≠𝑖

. (8) 

 

where 𝑟𝑖, … , 𝑟𝑗 and 𝑡𝑖, … , 𝑡𝑗  are known positions and times and 𝑡 is the time for which the 

interpolated position is desired [2].  Section 2.1 describes how Equation (8) is programed in 

SLIIT. 

                                                      
 

1 The addition of a spacecraft in the solar system has negligible impact on the planets’ orbits. If SLIIT is 
used to model the trajectory of a planetary-sized object, then this assumption may not hold. 
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Lagrange polynomials find the proper function by summing unique polynomials which each 

evaluate to one of the known positions at a known time and evaluate to zero at all other known 

times; when 𝑡 is a known value then 𝑃(𝑡𝑖) = 𝑟𝑖. For all other times, 𝑃(𝑡) returns a linear 

combination with contributions from each of the ordered pairs. Figure 1.3 shows an arbitrary 

data set which represents a slightly-curved line. The solid line in the figure is a single polynomial 

which passes through all four known points and can reasonably be used to interpolate the 

data2.      

    

Figure 1.3: Cubic Interpolation using the method of Legrange Polynomials to find a curve through 
the arbitrary points (1.0, 1.0), (2.0, 2.5), (3.0, 3.5) and (4.0, 4.0). The dotted curves are polynomials 
which each pass through a single known point and evaluate to zero at the other three known points. 
The solid curve is the sum of the dotted curves; a single polynomial which passes through all known 

points.  

 

                                                      
 

2 Care must be taken when using a single polynomial to interpolate a data set. While a polynomial can 
always be found which passes through every known point, if the data are not well-behaved then the 
fitting polynomial will be highly oscillatory and not valid for interpolation. This project uses a single 
polynomial to interpolate a table where the known positions of each planet are provided in one-hour 
intervals, making for a very slightly curved line.  
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1.4 Initial Conditions 

An iterative root finding algorithm was used to calculate the ideal trajectory from Earth to Mars. 

There are several trajectories a craft could take and therefore we must have a method for 

finding a good initial guess for the position and velocity of the spacecraft. The ideal trajectory is 

the one which needs the least amount of energy to transfer from Earth’s orbit to that of Mars. 

To find an approximation of the ideal trajectory a few simplifying assumptions are made; the 

orbits of Earth and Mars are assumed to be coplanar circles, the craft is assumed to follow an 

elliptical path about the Sun where attraction to all other planets is neglected, and the craft is 

assumed to be put into orbit with an instantaneous impulse. With these assumptions, the 

trajectory can be modeled as a Hohmann transfer.  

The Hohmann transfer [3] models the trajectory as an elliptical orbit which has its perigee at 

Earth’s orbit and apogee at Mars’ orbit (as can be seen in Figure 1.4). There is no expectation 

for the Hohmann trajectory to be correct, but it gives reasonable initial conditions which can be 

iterated to find a more precise solution.  
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Figure 1.4: Hohmann Transfer from Earth to Mars. The orbits of the planets are modelled as co-
planar, circular orbits at each planet’s mean distance from the sun. The spacecraft follows an 

elliptical trajectory which has its perigee at Earth’s orbit and apogee at Mars’ orbit.  

 

1.4.1 Planetary Sphere of Influence 

As mentioned before, most of the time a craft spends in interplanetary flight is under the sole 

influence of the sun. For this project, instantaneous impulse to start the craft on its trajectory 

was assumed. In reality, the change of velocity into the elliptical orbit would take some time, 

but an instantaneous impulse is a reasonable assumption given that the burn time of the craft 
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to leave Earth’s sphere of influence is much smaller than the period of the elliptical orbit of the 

transfer.  

The Earth’s sphere of influence is defined as the distance from Earth where the gravitational 

pull of the Sun is greater than that of Earth. This distance is calculated by equating the potential 

energy between a craft and Earth with the potential energy between the craft and the Sun.  

 𝐸 = −𝐺
𝑚𝑐𝑟𝑎𝑓𝑡𝑀𝑆𝑢𝑛

𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛
= −𝐺

𝑚𝑐𝑟𝑎𝑓𝑡𝑀𝐸𝑎𝑟𝑡ℎ

𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ
 (9) 

 

 𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ =
𝑀𝐸𝑎𝑟𝑡ℎ
𝑀𝑆𝑢𝑛

𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛 (10) 

 

In the case of a craft leaving earth’s orbit, 𝑟𝑐𝑟𝑎𝑓𝑡→𝑆𝑢𝑛 is about the same as Earth’s orbital radius 

and 𝑟𝑐𝑟𝑎𝑓𝑡→𝐸𝑎𝑟𝑡ℎ is the Earth’s sphere of influence, 𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ. The Earth’s orbital radius is 1 AU, 

so when working in astronomical units 𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ reduces to the ratio of Earth’s and the Sun’s 

masses. 

 
𝑆𝑂𝐼𝐸𝑎𝑟𝑡ℎ =

𝑀𝐸𝑎𝑟𝑡ℎ
𝑀𝑆𝑢𝑛

 (𝐴𝑈) 

≈ 3.0035 ∗ 10−6 (𝐴𝑈) 
(11) 

 

1.4.2 Hohmann Transfer – Initial Velocity of Craft 

By closer examination of Figure 1.4 we see that the initial velocity and final velocity of the craft 

are co-linear. This is needed in order to minimize the energy of the transfer. For proof of this, 

consider the magnitudes of the initial velocity, final velocity, and the change in velocity vectors 

for a craft with an arbitrary trajectory (Figure 1.5).  
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Figure 1.5: Generalized change in velocity for an arbitrary trajectory.   

 

By the law of cosines, the final velocity is expressed as 

 𝑣𝑓𝑖𝑛𝑎𝑙
2 = 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2 + 𝛥𝑣2 + 2𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝛥𝑣 𝑐𝑜𝑠 𝜃 (12) 

 

and the energy change associated with this velocity change is  

 𝛥𝐸 =
1

2
𝛥𝑣2 + 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝛥𝑣 𝑐𝑜𝑠 𝜃. (13) 

 

For a transfer from two circular orbits we know Δ𝑣 regardless of the path since the craft must 

start at the velocity of the initial orbit and end at the velocity of the final orbit. Equation (13) 

shows that for any given Δ𝑣 the change in energy will be largest when 𝜃 = 0. In short, we get 

the most “bang for our buck” from an energy gained-per-impulse-required perspective when 
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the initial and final velocities of the craft are co-linear. In the case of an elliptical trajectory this 

is where the inner and outer orbits are at the perigee and apogee of the orbit, respectively.  

By conservation of energy the velocity at the perigee of the transfer orbit from Earth to Mars, 

𝑣𝜋, is 

 𝑣𝜋
2 = 2𝐺𝑀𝑆𝑢𝑛 (

1

𝑅𝐸𝑎𝑟𝑡ℎ
−

1

𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠
) (14) 

 

To calculate the impulse needed to move the craft from Earth’s orbit into the elliptical trajectory 

we subtract the velocity of the circular orbit, 𝑣𝐸𝑎𝑟𝑡ℎ, from 𝑣𝜋. Again, by conservation of energy 

we calculate that  

 𝑣𝐸𝑎𝑟𝑡ℎ = √
𝐺𝑀𝑆𝑢𝑛
𝑅𝐸𝑎𝑟𝑡ℎ

 (15) 

 

and therefore, the change in velocity is 

 𝛥𝑣𝜋 = 𝑣𝜋 − 𝑣𝐸𝑎𝑟𝑡ℎ = √
𝐺𝑀𝑆𝑢𝑛
𝑅𝐸𝑎𝑟𝑡ℎ

(√
2𝑅𝑀𝑎𝑟𝑠

𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠
− 1). (16) 

 

The same method can be used to calculate the velocities at Mars’ orbit, but for this project the 

focus is on the initial conditions necessary to start the proper elliptical trajectory.  The 

maneuvers necessary after the craft is within Mars’ sphere of influence are neglected.  
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1.4.3 Hohmann Transfer – Determining the Ideal Launch Date 

We have found the elliptical path the craft must take, but now must consider the phase angle 

between Earth and Mars at the time of launch to ensure that the spacecraft reaches Mars’ orbit 

at the same time the planet does. The craft is traveling half the period of an ellipse; by Kepler’s 

third law the period of an ellipse of a planet orbiting the Sun is   

 𝑇 = 2𝜋√
𝑎3

𝐺𝑀𝑆𝑢𝑛
 (17) 

where 𝑎 is the length of the semi-major axis. By taking another look at Figure 1.4 we see that 

the transfer orbit has a semi-major axis of 

 𝑎 =
𝑅𝐸𝑎𝑟𝑡ℎ + 𝑅𝑀𝑎𝑟𝑠

2
. (18) 

 

By equations (17) and (18) the time of flight of the craft is calculated to be 

 𝑇𝑓𝑙𝑖𝑔ℎ𝑡 = 𝜋√
(𝑅𝐸𝑎𝑟𝑡ℎ+𝑅𝑀𝑎𝑟𝑠)

3

8𝐺𝑀𝑆𝑢𝑛
. (19) 

 

To find the desired phase angle between Earth and Mars at launch, we first calculate the angular 

distance that Mars travels in 𝑇𝑓𝑙𝑖𝑔ℎ𝑡, as shown in Figure 1.6.  
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Figure 1.6: Relative angle between Earth and Mars at launch. The spacecraft must arrive at Mars’ 
orbit at the same time and location as the planet itself. The period of the craft’s trajectory is known, 
and Mars’ angular velocity is known which allows for the calculation of ideal angle between Earth 

and Mars at the time of launch (𝛽). 

 

The angular displacement, 𝜃𝑀𝑎𝑟𝑠, is found by multiplying its angular velocity, 𝜔𝑀𝑎𝑟𝑠, by 𝑇𝑓𝑙𝑖𝑔ℎ𝑡, 

where 

 𝜔𝑀𝑎𝑟𝑠 = √
𝐺𝑀𝑆𝑢𝑛

𝑅𝑀𝑎𝑟𝑠
3  (20) 

and 

 𝜃𝑀𝑎𝑟𝑠 = 𝜔𝑀𝑎𝑟𝑠𝑇𝑓𝑙𝑖𝑔ℎ𝑡 =
𝜋

2√2
√(

𝑅𝐸𝑎𝑟𝑡ℎ

𝑅𝑀𝑎𝑟𝑠
+ 1)

3
. (21) 
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As discussed in Section 1.4.2, the initial and final velocity vectors of the craft are co-linear.  

Therefore, the craft’s trajectory covers 𝜋 radians and the ideal phase angle between Earth and 

Mars at launch is 

 

𝛽𝑖𝑑𝑒𝑎𝑙 = 𝜋 − 𝜃𝑀𝑎𝑟𝑠 

= 𝜋(1 −
1

2√2
√(
𝑅𝐸𝑎𝑟𝑡ℎ
𝑅𝑀𝑎𝑟𝑠

+ 1)
3

) 

 
≈ 0.245 𝜋 . 

(22) 

 

1.5 Iterative Root Finding 

After using the assumptions discussed above to give a reasonable guess of the initial velocity of 

the craft, it is necessary to fine-tune the velocity to find a solution which considers 

perturbations due to the actual path of the destination planet and the gravitational forces from 

other planets in the solar system. Newton’s Method iteratively finds a root by calculating the 

value of a function, 𝑓(𝑥), and its derivative, 𝑓′(𝑥), at an approximation to a zero of 𝑓(𝑥𝑛). Then 

the function is replaced by its tangent line approximation at 𝑥𝑛, which is then solved for the x-

intercept, as seen in equation (23). This value is taken as the next approximation, 𝑥𝑛+1, as can 

be seen in Figure 1.7.  

 0 = 𝑓(𝑥𝑛) + 𝑓
′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛)  (23) 
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Figure 1.7: Newton's method for iteratively finding the root of a function. At an approximate root, 
the function’s derivative is linearized and evaluated at its x-intercept to provide a better 

approximation of the function’s root. The process is repeated until the root is found to the desired 
precision. 

 

The explicit expression for 𝑥𝑛+1 is 

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. (24) 

 

Newton’s method is generalized to solve a multivariable system of N-equations and M-

unknowns 

 {

𝑓1(𝑥1,⋯ , 𝑥𝑀) = 𝑓1(𝒙) = 0

𝑓2(𝑥1,⋯ , 𝑥𝑀) = 𝑓2(𝒙) = 0
⋮

𝑓𝑁(𝑥1,⋯ , 𝑥𝑀) = 𝑓𝑁(𝒙) = 0

 (25) 
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where 𝒙 is defined as a vector of independent variables 

 𝒙 = [

𝑥1
⋮
𝑥𝑀
]. (26) 

The system is further simplified as a vector function 

 𝒇(𝒙) = [
𝑓1(𝒙)
⋮

𝑓𝑁(𝒙)
] (27) 

and the system in equation (25) is expressed as  

 𝒇(𝒙) = 𝟎. (28) 

 

Like in the 1-D case, when given an approximation of a root 𝒙𝑛 the system is linearized to find 

the next approximation 𝒙𝑛+1 

 𝒙𝑛+1 = 𝒙𝑛 − 𝑱𝑛
−1𝒇(𝒙𝑛) (29) 

where 𝑱𝑛  is the Jacobian matrix, defined as 

 𝑱(𝒙) =
𝑑

𝑑𝒙
𝒇(𝒙) =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑀

⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑥1
⋯

𝜕𝑓𝑁

𝜕𝑥𝑀]
 
 
 

. (30) 

 

When there are as many equations as unknowns (N=M) the Jacobian is square and the inverse 

𝑱𝑛
−1 is calculated according to the usual linear algebra rules. However, in the case of an over 

constrained system (N > M) the Jacobian is not square and  𝑱−1  is calculated as the pseudo-

inverse 

 𝑱−𝟏 = (𝑱𝑻𝑱)
−𝟏
𝑱𝑻 (31) 
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2 Methods 

With this being a computational experiment, the majority of the methods used are 

programming adaptations of the techniques discussed in the Introduction section above.  

Figure 2.1 shows an overview of how the SLIIT program operates. Most of the code deals with 

data management and visualization and is not reproduced here. This section will go into greater 

detail of the numeric methods used to implement Lagrange polynomials, leapfrog integration, 

and Newton’s method of iterative root finding. The specifics of the choice of a launch window 

and craft initial velocity are also discussed. 
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Figure 2.1: Description of SLIIT, the program written for this project. SLIIT requires a specifically 
formatted input file and an ephemeris file for each planet, and outputs a summarizing output file 
and a data file formatted for easy plotting with GNUplot. 
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2.1 Programing Cubic Interpolation Scheme 

NASA graciously provides a tool online which allows access to JPL’s HORIZONS system and can 

be used to generate ephemerides for several bodies in our solar system [4]. With this tool we 

are able to download very precise tables with the positions of planets with respect to the solar 

system’s barycenter. Figure 2.2 shows a sample of the ephemeris file holding data for Earth.  

 



  25 

 

Figure 2.2: Sample Ephimeris for Earth from the JPL Horizons website.  The position of the planet is 
given at one-hour intervals in cartesian coordinates using the ecliptic and mean equinox of 

reference epoch system with the origin at the solar system barycenter.  

 
Functions were written to navigate the files and interpolate for positions that fall between the 
values listed. Below is the pseudocode of the interpolation function, which follows Equation 
(8). 
 
CubicInterpolate()   
//Use Lagrange polynomial to interpolate a value given 4 known points.  
//returns interpolated position at desired time 
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    rr = 0.0;     
    for (i = 0; i < 4; i++)    
        L = 1.0;   
        for (j = 0; j < 4; j++)    
            if (i != j) L *= (tt - t[j]) / (t[i] - t[j]);     
        rr += r[i] * L;   
    

 

Table 1 describes the variables used in CubicInterpolate().  

Table 1: Variables used in SLIIT’s CubicInterpolate() function 

Variable Description 

r Vector of 4 known positions 

t Vector of 4 known times associated with the positions in r 

tt Time of desired interpolated position  

rr Interpolated position at time tt is returned 

 

  

2.2 Programming Leapfrog Integration Scheme. 

The following pseudocode shows the functions used to implement the leapfrog integration 

scheme. The first function, CraftAccelerations(), follows Equation (4) to calculate the 

instantaneous acceleration of the spacecraft.  

CraftAccelerations()    
     //calculates the acceleration of the spacecraft    
        for (k = 0; k < 3; k++) craft.A[k] = 0.0; // reset accelerations   
        for (j = 0; j < num_bdys; j++)  //for each body...  
            for (k = 0; k < 3; k++) //calculate difference between position vectors   
                r[k] = craft.R[k] - body.R[k];   
   
            //Calculate r2neg3   
            r2neg3 = VectorMag(r);   
            r2neg3 = pow(r2neg3, -3);   
   
            //Sum the accelerations in each dimension   
            for (k = 0; k < 3; k++)    
                craft.A[k] += (-1.0)*G*body[j].mass*r2neg3*r[k];  

 

Table 2 describes the variables used in CraftAccelerations().  

Table 2: Variables used in SLIIT’s CraftAccelerations() function 
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Variable Description 

G Newton gravitational constant 

r 3-dimensional position vector to hold the difference between the craft and a 
planet 

k Counter to track 3 spatial dimensions 

j Counter to track each planet 

num_bdys Total number of planets considered 

craft.R Craft position 

body.R Body position 

r2neg3 inverse of r-cubed 

VectorMag A function to calculate the scalar magnitude of a vector 

body.mass Mass of body   

craft.A Craft acceleration vector 

 

The following pseudocode shows the function used to update the position of a spacecraft in 

motion. It is assumed that the craft’s acceleration and velocity vectors are populated from the 

previous timestep. This function follows Equation (6).  

UpdateCrafts()    
        for (k = 0; k < 3; k++) // for each dimension...  

//update position   
craft.R[k] += craft.V[k]*dt + craft.A[k]*(dt*dt)/2; 
//update velocity for current timestep   
craft.V[k] += craft.A[k]*dt/2;   

           
//Call CraftAccelerations() to calculate accelerations for next timestep 
CraftAccelerations(); 
// complete velocity equation in preparation for next iteration 
for (k = 0; k < 3; k++)   

craft.V[k] += craft.A[k]*dt/2; 
    

 

 Table 3 describes the variable used in UpdateCrafts(). 

Table 3: Variables used in SLIIT’s UpdateCrafts() function 

Variable Description 

k Counter to track 3 spatial dimensions 

craft.R craft position 

craft.V craft velocity 

craft.A craft acceleration 

dt timestep 
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2.3 Calculating Initial Launch Date 

To choose an initial launch date it was assumed that the craft would perform a Hohmann 

transfer which needs a specific phase angle between the initial planet and the destination 

planet at the time of launch. The ephemeris data for Earth and Mars is used to calculate the 

phase angle between the two planets. The phase angle is calculated by subtracting Earth’s 

position vector from Mars’ position vector and taking the arctangent of the resulting vector.  

 𝛽 = 𝑡𝑎𝑛−1 (
𝑦𝑀𝑎𝑟𝑠 − 𝑦𝐸𝑎𝑟𝑡ℎ
𝑥𝑀𝑎𝑟𝑠 − 𝑥𝐸𝑎𝑟𝑡ℎ

) (32) 

 

Figure 2.3 shows a plot of the phase angle between Earth and Mars as a function of the date. 

For this project we looked at the planets positions from the years 2016 through 2025. We see 

that every angle is covered 5 times in the 10-year period. The discontinuities in the plot are 

where Earth and Mars are in line and the angle “jumps” from 2π to 0.  
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Figure 2.3: Phase angle between Mars and Earth as a function of date. We see that every angle is 
covered 5 times in the 10-year period shown. The discontinuities in the plot are where Earth and 

Mars are in line and the angle “jumps” from 2π to 0. 

 

For this project it was chosen to focus on the launch date in the 2017-2018 range. By equation 

(22) the ideal phase angle at launch is where  𝛽𝑖𝑑𝑒𝑎𝑙 ≈ 0.25 𝜋.  Figure 2.4 shows the same plot 

as Figure 2.3 with a closer look those dates and includes a horizontal line at 𝛽𝑖𝑑𝑒𝑎𝑙. The 

intersection between the phase angle curve and the ideal angle curve is on December 31, 2017; 

that is, therefore, the launch date chosen.  

 

0

0.5

1

1.5

2

Jan-2016 Jan-2017 Jan-2018 Jan-2019 Jan-2020 Jan-2021 Jan-2022 Jan-2023 Jan-2024 Jan-2025 Jan-2026

P
h

as
e 

A
n

gl
e 

(π
ra

d
ia

n
s)

Date



  30 

 

Figure 2.4: Selection of a launch date.  The blue curve represents the phase angle between Earth 
and Mars The orange curve represents the ideal phase angle at launch (0.25π radians). The 

intersection between the phase angle curve and the ideal angle curve is on December 31, 2017. 

 

2.4 Estimating Initial Craft Velocity 

The position of Earth was referenced in the ephemeras files for the launch date and Equation  

(16) was used to calculate the magnitude of the initial velocity of the craft. To perform a 

Hohmann transfer the launch trajectory is tangential to the Earth’s orbit. For the initial guess, it 

was assumed that Earth and Mars are coplanar and therefore the z-component of the vector is 

zero. The other two components of the unit velocity vector are calculated as  
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𝑣𝑥,0 =
−𝑟𝑦,0

√𝑟𝑥,0
2 + 𝑟𝑦,0

2

 

𝑣𝑦,0 =
𝑟𝑥,0

√𝑟𝑥,0
2 + 𝑟𝑦,0

2

. 
(33) 

 

With these considerations, the initial velocity of the craft on December 31, 2017 is 

 𝒗0 = [
−1.86 ∗ 10−2

 −3.15 ∗ 10−3

0.00

]
𝐴𝑈

𝑑𝑎𝑦
. (34) 

 

To place the craft outside of Earth’s sphere of influence at launch the initial position of the craft 

was offset in the direction of the initial velocity by the radius of the sphere of influence (see 

Equation (11)). The pseudocode below shows the function written for that purpose. 

InitCraftsOnBodies()   
 //calculate crafts unit velocity vector 
 dirV = VectorDir(craft.V); 
       
 //calculate the crafts initial position 
 for (k=0; k<3; k++)    
  offset = body.SOI*dirV[k];        
  craft.R[k] = body.R[k]+offset; 
        
 

Table 4 describes the variables used in InitCraftsOnBodies(). 

Table 4: Variables used in SLIIT’s InitCraftsOnBodies() function 

Variable Description 

VectorDir A function which calculates the unit vector of a 3-D inputted vector 

k Counter to track 3 spatial dimensions 

offset A dummy variable to hold the offset direction from the planet’s center in the 
current dimension 

body.SOI The radius of the planet’s sphere of influence 

craft.R Craft position 

body.R Planet position 
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2.5 Programming Newton’s Method 

When the craft is launched from Earth on a specific date there are three independent variables 

which can be controlled (velocity in each spatial dimension). When the spacecraft arrives at 

Mars there are three distance functions which must equal zero (the distance to Mars in each 

spatial dimension). In addition, the ideal trajectory will have the spacecraft arriving at Mars such 

that the craft and Mars have co-linear velocity vectors. Therefore, the system of equations to be 

solved is 

 

{
 
 

 
 
𝑋𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝑌𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝑍𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

𝛩𝑓𝑖𝑛𝑎𝑙(𝑣𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑣𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0

 (35) 

where 𝑋𝑓𝑖𝑛𝑎𝑙, 𝑌𝑓𝑖𝑛𝑎𝑙, and 𝑍𝑓𝑖𝑛𝑎𝑙 are the distance between the spacecraft and Mars in each 

spatial dimension. Θ𝑓𝑖𝑛𝑎𝑙  is the approach angle, defined as the angle between the velocity 

vectors at the point where they are closest in their given trajectories. The approach angle is 

calculated by solving the geometric definition of the dot product for 𝛩.  

 

𝒗𝒄𝒓𝒂𝒇𝒕 ⋅ 𝒗𝒑𝒍𝒂𝒏𝒆𝒕 = |𝒗𝒄𝒓𝒂𝒇𝒕||𝒗𝒑𝒍𝒂𝒏𝒆𝒕| 𝑐𝑜𝑠 𝛩 
 

𝛩 =  𝑐𝑜𝑠−1 (
𝒗𝒄𝒓𝒂𝒇𝒕 ⋅ 𝒗𝒑𝒍𝒂𝒏𝒆𝒕

|𝒗𝒄𝒓𝒂𝒇𝒕||𝒗𝒑𝒍𝒂𝒏𝒆𝒕|
) 

(36) 

 

The following pseudocode shows how these parameters are evaluated at each timestep. If the 

craft is closer to its destination planet than it has been previously then the parameters are 

saved.  

Dist2Dest()  
 veldot=0;  

for (k=0; k<3; k++) 
  vect[k]=craft.R[k]-body.R[k]; 
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  veldot += craft.V[k]*body.V[k]; 
  
 dist=VectorMag(vect); 
 veldot = veldot / ( VectorMag(craft.V) * VectorMag(body.V) ); 
 angle = acos(veldot); 
 
 if (dist < craft.dist2dest)  
  craft.dist2dest=dist; 
  craft.vect2dest[k]=vect[k]; 
  craft.velangle=angle; 
  
 

Table 5: Variable used in SLIIT’s Dist2Dest() function 

Variable Description 

k Counter to track 3 spatial dimensions 

dist A dummy variable to hold the distance between the craft and the destination 
planet at the current timestep 

vect A dummy vector to hold the vector between the craft and the destination 
planet at the current timestep 

angle A dummy variable to hold the angle between the craft and the destination 
planet’s velocity vectors at the current timestep 

veldot A dummy variable to hold the dot product of the velocities of the craft and 
the destination planet at the current timestep 

craft.R Craft position 

craft.V Craft velocity 

body.R Destination planet position 

body.V Destination planet velocity 

craft.vect2dest The vector between the craft and the destination planet at their closest 

craft.dist2dest The magnitude of craft.vect2dest 

craft.velangle The approach angle between the craft and planet at their closest 

 

The iterative root finding technique requires a stopping criterion to be established. For this 

project it was decided that the magnitude of the vector between the spacecraft and the 

destination planet must be less than the planet’s sphere of influence and that Θ𝑓𝑖𝑛𝑎𝑙  must be 

less than 0.1 radians.   Mars’ sphere of influence was calculated in the same way as Earth’s (see 

Equation (11)).  

To use Newton’s method to iteratively solve for the roots of a function it is necessary to 

calculate the Jacobian of the craft’s trajectory. To approximate the derivatives of the system in 
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equation (30), three fictitious crafts are created when SLIIT is executed, each with slightly 

different initial velocities in each dimension. The original craft and its three “derivative” crafts 

are run in parallel for the duration of the trial. A matrix is built from the final values of each 

crafts’ “vect2dest” and “velangle” parameters. Again, these parameters represent the relative 

position of the craft to its destination planet at the point in its trajectory when they are closest.  

 
ValuesMatrix()  

//first column is original value, following columns are derivatives 
 // first 3 functions are distance from destination planet in each dimension 
 for (i=0; i<3; i++) 
  values[i][0] = craft_0.vect2dest[i]; 
  values[i][1] = craft_dx.vect2dest[i]; 
  values[i][2] = craft_dy.vect2dest[i]; 
  values[i][3] = craft_dz.vect2dest[i]; 
  
 // fourth function is the approach angle between the velocities (weighted) 
 values[3][0]=craft_0.velangle*gamma; 
 values[3][1]=craft_dx.velangle*gamma; 
 values[3][2]=craft_dy.velangle*gamma; 
 values[3][3]=craft_dz.velangle*gamma; 
 
 

Table 6: Variables used in SLIIT’s ValuesMatrix() function 

Variable Description 

craft_0 Original craft 

craft_dx “Fictitious” craft with starting velocity offset by dx in the x-direction 

craft_dy “Fictitious” craft with starting velocity offset by dy in the y-direction 

craft_dz “Fictitious” craft with starting velocity offset by dz in the z-direction 

.vect2dest[i] The ith component of the vector between the associated craft and the 
destination planet at their closest 

.velangle The approach angle between the associated craft and planet’s velocity vectors 
at their closest 

gamma A weighting function (described below) 
  

 

The ValuesMatrix() function above includes a weighting factor, γ, on Θ𝑓𝑖𝑛𝑎𝑙. This is necessary 

because no solution was found that solved the over-constrained system in Equation (35). In 

addition, the stopping criteria of distance to the planet in AU is about 5 orders of magnitude 

smaller than that of the approach angle in radians which causes each iteration to preferentially 
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search for a result which favors a small approach angle over a small distance. This was remedied 

by introducing γ which is defined as   

 𝛾 = {
1  𝛩𝑓𝑖𝑛𝑎𝑙 ≥ 𝜖

𝐷 𝛩𝑓𝑖𝑛𝑎𝑙 < 𝜖
 (37) 

where 𝜖 is the acceptance criteria for the approach angle and 𝐷 is the logarithmic difference 

between the orders of magnitude. For example, if the distance to the planet is 𝑎 × 10−5 AU and 

the approach angle is 𝑏 × 10−2 radians then 𝛾 = 10−3 and the  Θ𝑓𝑖𝑛𝑎𝑙  dependent term in the 

values matrix is 𝑏 × 10−5. This forces the dependence on Θ𝑓𝑖𝑛𝑎𝑙   to be on the same order as the 

distance terms if the approach angle is within the acceptable range but allows the approach 

angle to dominate otherwise. The pseudocode below shows the calculation of 𝛾.  

CalcGamma() 
 gamma=1; 

if(craft.velangle < epsilon)  
  gamma=craft.dist2dest/craft.velangle; 
  gamma=floor( log10(gamma) ); 
  gamma=pow(10,gamma); 
  
 

After building the matrix of values the Jacobian is calculated as shown below. 

Jacobian()   
 for (i=0; i<nrows; i++) 
  for (j=0; j<(mcols-1); j++) 
   jacobian[i][j]=(values[i][j+1]-values[i][0])/d[j]; 
   
 
 

Table 7: Variables used in SLIIT’s Jacobian() function 

Variable Description 

jacobian The Jacobian matrix 

values Matrix of values built in the ValuesMatrix() function (described above) 

nrows Number of rows in “values” matrix 

mcols Number of columns in “values” matrix 

d A vector of differential elements, defined as [dx, dy, dz] 
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After the Jacobian is calculated, Equation (29) is followed to calculate the next-iteration initial 

velocity of the craft. This calculation needs several standard linear algebra operations to be 

programmed which are not discussed here for brevities sake. The pseudocode below shows 

how the next-iteration initial velocity is calculated. 

CalcNextVel() 
 jacob=Jacobian();     //jacobian is nxm 
 invjacob=MatPseudoInvert(jacob);   //invjacob is mxn  
 nextguess=MatMultiply(invjacob,values1); 
  
 for (i=0; i<m; i++) 
  nextguess[i]=initvel[i]-nextguess[i]; 
 
 

Table 8: Variables used in SLIIT’s CalcNextVel() function 

Variable Description 

jacob The Jacobian matrix 

invjacob The inverse of the Jacobian 

values1 First column of the “values” matrix 

n Number of equations 

m Number of unknowns 

MatPseudoInvert A function which calculates the pseudoinverse of a matrix 

MatMultiply A function which multiplies two matrices 

initvel The initial-velocity vector for the current iteration  

nextguess The next-iteration initial-velocity vector 
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3 Results 

The boundary conditions discussed in the earlier sections were written to a text-based input file 

and SLIIT was run. Figure 3.1 shows the resulting path of Earth, Mars, and the spacecraft using 

the initial conditions predicted as if the craft were to follow a Hohmann transfer. Although they 

are not shown in the plot, the gravitational influences of all of the planets in the solar system 

are considered. The initial guess led to a trajectory in which the spacecraft tailed significantly 

behind Mars. At the closest point in the trajectory, the spacecraft was 0.95 AU from Mars and 

had an approach angle of 0.91 radians. This point was 167 days after launch.  

 

 

Figure 3.1: Trajectory from Earth to Mars using Hohmann transfer initial conditions.  
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More iterations were performed, with each trial using the results from the previous trial to 

guess at better initial conditions. Table 9 shows the initial velocity vector used for each trial.  

 

Table 9: Initial velocities used for each iteration 

Trial x-component (AU/day) y-component (AU/day) z-component (AU/day) 

Hohmann -1.86 × 10-2 -3.15 × 10-3 0.00 
Iteration 1 -1.74 × 10-2 -6.04 × 10-3 -7.90 × 10-4 
Iteration 2 -1.74 × 10-2 -6.65 × 10-3 -1.85 × 10-4 
Iteration 3 -1.75 × 10-2 -6.37 × 10-3 8.07 × 10-4 
Iteration 4 -1.74 × 10-2 -6.26 × 10-3 6.40 × 10-4 
Iteration 5 -1.74 × 10-2 -6.31 × 10-3 6.08 × 10-4 
Iteration 6 -1.74 × 10-2 -6.35 × 10-3 7.27 × 10-4 

 

Table 10 shows the results of each iteration. The sphere of influence of Mars is 3.8 × 10−3 AU, 

and we see that the correct trajectory to put the spacecraft within Mars’ SOI was found after six 

iterations. 

 

Table 10: Final distance from the craft to Mars for each iteration 

Trial Time of Flight (Days) Closest Distance (AU) Smallest Approach Angle (radians) 

Hohmann 167 0.950 0.910 
Iteration 1 263 0.092 0.016 
Iteration 2 252 0.061 0.073 
Iteration 3 221 0.041 0.200 
Iteration 4 264 0.015 0.033 
Iteration 5 264 0.009 0.035 
Iteration 6 264 8.13 × 10-5 0.062 

 

Figure 3.2 shows the trajectory of the craft for each iteration.  



  39 

 

Figure 3.2: Successful planetary trajectory found after 6 iterations.   

 

Figure 3.3 gives a closer look at the quadrant where the spacecraft arrives at Mars. We see 

significant improvement as early as the first iteration. The approach angle after the end of the 

first trial was larger than the acceptance criteria, so the Jacobian calculated was weighted to 

predict initial velocities which favored a smaller angle over shorter distances. The results after 

the first iteration had the distance reduced by an order of magnitude and the approach angle 

reduced by nearly two orders. Additional iterations all showed improvement in the distance, but 

the approach angle continued to vary since it is negatively weighted when less than the 

acceptance criteria.  
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Figure 3.3: An enhanced view of the fourth quadrant of Figure 3.2 which shows the final portion of 
the trajectory for the six iterations leading to a successful transfer from Earth to Mars.   
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velocity to be calculated after only a single iteration. Table 11 shows the results from iteration 6 

above and the results using a smaller timestep. Note that the smaller timestep led to final-
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distance vector that is larger than the previous iteration. This is due to SLIIT being programmed 

to stop as soon as the craft is within Mar’s SOI, and a larger timestep allows for the craft to get 

closer to Mars before the trial is terminated. These results support the results of others who 

have worked on this project [5]. 

Table 11: Final distance from the craft to Mars using a smaller timestep 

Trial Time of Flight (Days) Closest Distance (AU) Smallest Approach Angle (radians) 

Iteration 6 264 8.13 × 10-5 0.062 
Small Step 264 8.58 × 10-5 0.043 

 

3.2 Comparison to ExoMars Spacecraft 

The ExoMars spacecraft was launched from Earth on March 16, 2016. The methods described 

above are used to predict the flight path of that spacecraft in its trajectory to Mars. On that date 

the initial velocity for a Hohmann transfer is 

 𝒗0 = [
−1.88 ∗ 10−3

 −1.88 ∗ 10−2

0.00

]
AU

day
. (38) 

A trajectory which successfully arrived at Mars was again found after six iterations, as can be 

seen in Table 12.  

Table 12: Final distance from the craft to Mars for each iteration from the ExoMars launch-date 

Trial Closest Distance (AU) Smallest Approach Angle (radians) 

Hohmann 0.300 0.031 
Iteration 1 0.295 0.004 
Iteration 2 0.169 0.157 
Iteration 3 0.009 0.089 
Iteration 4 0.0005 0.099 
Iteration 5 0.007 0.090 
Iteration 6 7.96 × 10-5 0.131 
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Figure 3.4 shows the initial Hohman transfer trajectory, the sixth iteration which arrived at 

Mars, and the trajectory of the EXOMARS GTO spacecraft.  We see that the trajectory calculated 

follows the MARS GTO spacecraft very closely initially then diverges slightly before reaching 

Mars. This divergence is due to a maneuver the GTO spacecraft performed during the course of 

its transfer which is not duplicated in the simulated trajectory.    

 

Figure 3.4: EXOMARS GTO trajectory compared to the trajectory predicted by SLIIT, the program 
written for this project. The sixth iteration (which successfully arrived at Mars) followed the path of 

the EXOMARS GTO craft very well for the first part of the trajectory. However, the EXOMARS GTO 
craft had a burn partway through the trajectory which lead to the divergence of the paths seen. 
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4 Analysis and Discussion 

Figure 4.1 plots the results displayed in Table 10 on a semi-logarithmic scale. The initial trial, 

which chose initial conditions assuming a Hohmann transfer, missed the target planet by nearly 

1 AU. This shows that while the Hohmann transfer got the craft going in the correct direction, it 

does not give realistic results. Each iteration improved the distance vector and the approach 

angle was maintained below the programmed minimum after the third iteration. The “closest 

distance” curve converges exponentially (linearly on the semi-logarithmic scale with an R2 value 

of 0.84). 

 

 

Figure 4.1: Final distance and approach angle for each iteration of a successful transfer from Earth 
to Mars on a semi-logarithmic scale.  The orange and grey solid lines represent the distance and 

approach angle of the spacecraft at its closest distance to Mars.  The dashed lines show the 
acceptance criteria; Mars’ sphere of influence for distance and 0.1 radians for approach angle. The 
orange dotted line shows an exponential (linear on the semi-log plot) line of best fit for the closest 

distance. 
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The timestep sensitivity discussed in Section 3.1 shows that if the timestep is decreased by an 

order of magnitude, only a single additional iteration is required. This shows that the timestep 

used while iterating toward a solution was sufficiently small that the method used is insensitive 

to the size of timestep chosen; a ten-times-smaller timestep led to a relative error in the final 

position of the craft of 1.78 × 10-5.  

 

4.1 Further Work 

A limitation of the SLIIT program is that it uses a launch date determined by assuming a 

Hohmann transfer. In the future the launch date could be a variable which is iterated on just as 

initial velocities are now. One advantage of this could be that it would make the Jacobian a 

square matrix and the system of equations would not be over-constrained, which could allow 

for a more precise solution.  

 

Additionally, as SLIIT is currently written each iteration requires the input deck to be edited and 

for the user to launch the program manually. This method was chosen because one of the 

purposes of the project is to develop a learning tool it is valuable for the user to be forced to be 

involved in the process used to find solutions. However, solutions could be found much faster if 

the iterative process was automated, especially if the user is seeking a more complicated 

trajectory which may require many more than six iterations.  
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5 Conclusion 

It has been shown that the leapfrog integration method combined with Newton’s method of 

iterative root finding and reasonable initial conditions can be used to find the ideal trajectory of 

a spacecraft on an interplanetary trajectory. This trajectory considers the gravitational influence 

of all planets in the solar system using tabulated data of the planets’ positions and seeks a 

solution which favors the least amount of energy. Newton’s method of iterative root finding 

converges exponentially, and leapfrog integration allows for large timesteps which causes the 

program to find solutions quickly.  

While this study only explored two Earth to Mars trajectories, the methods described can be 

used to calculate the ideal trajectory between any two planets in the solar system (including 

Earth’s moon). Additionally, the program is written such that a user could input the absolute 

initial position and velocity of a craft, allowing them to model more complicated orbits or 

trajectories which do not originate on a planet.  
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8 Appendix A: SLIIT Input File 

The SLIIT program reads the simulation parameters from a specifically formatted text file 

labeled ‘trialname’.inp. SLIIT is run from a command terminal with the only inline argument 

being the name of the input file with no extension. As it runs the input parameters and status of 

the trial are printed in the terminal and to an output file. When the trial concludes the next-

iteration initial velocity is provided and a plot file is generated.  

A sample input deck is displayed below. 

*SLIIT input file 
*The order of the input DOES matter 
*Comments start with an asterix (*) as the first non-whitespace character. 
* 
*****************Simulation parameters******************* 
*InitialTime (JDCT) 
 2458119. *noon on Dec 31, 2017 
*TrialDuration (days) 
 300  
*Timestep (days) 
 1.0E-2 
*PrintFrequency (days) 
 5 *days 
* 
****************Craft Properties*************************** 
**Initial position can be either the name of a body listed below or explicit cartesian 
**coordinates wrt solar system barycenter.  
**Enter 0 for unused values 
*num_crafts 
 3 
*Name           Mass(kg)          
 Hohman         1.0              
*InitialPlanet  DestinationPlanet 
 Earth          Mars 
*InitPos.x      InitPos.y       InitPos.z    (initial position in AU)  
 0.0            0.0             0.0 
*InitVel.x      InitVel.y       InitVel.z    (initial velocity in AU/day) 
 -1.86e-02 -3.15e-03 0.0  
*InitAccel.x    InitAccel.y     InitAccel.z  (initial acceleration in AU/day/day)  
*NOTE: Initial acceleration is not currently being used 
 0.0            0.0             0.0 
* 
*Name           Mass(kg)          
 ITT01          1.0              
*InitialPlanet  DestinationPlanet 
 Earth          Mars 
*InitPos.x      InitPos.y       InitPos.z    (initial position in AU)  
 0.0            0.0             0.0 
*InitVel.x      InitVel.y       InitVel.z    (initial velocity in AU/day) 
 -1.742173e-02 -6.043623e-03 -7.901637e-04  
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*InitAccel.x    InitAccel.y     InitAccel.z  (initial acceleration in AU/day/day)  
*NOTE: Initial acceleration is not currently being used 
 0.0            0.0             0.0 
* 
*Name           Mass(kg)          
 ITT02          1.0              
*InitialPlanet  DestinationPlanet 
 Earth          Mars 
*InitPos.x      InitPos.y       InitPos.z    (initial position in AU)  
 0.0            0.0             0.0 
*InitVel.x      InitVel.y       InitVel.z    (initial velocity in AU/day) 
 -1.742204e-02 -6.645807e-03 -1.850269e-04  
*InitAccel.x    InitAccel.y     InitAccel.z  (initial acceleration in AU/day/day)  
*NOTE: Initial acceleration is not currently being used 
 0.0            0.0             0.0 
* 
****************Bodies with known position files******************* 
*num_bodies 
 9 
*Name      plt    Mass(kg)        SOI(km)   PositionDataFile   
Sun        1      1.988544E30     0.0       sun_bary_vectors.txt   
Mercury    0      3.302E23        0.112E6   mercury_bary_vectors.txt 
Venus      0      48.685E23       0.616E6   venus_bary_vectors.txt 
Earth      1      5.97219E24      0.924E6   earth_bary_vectors.txt     
Mars       1      6.4185E23       0.576E6   mars_bary_vectors.txt      
Jupiter    0      1898.13E24      48.2E6    jupiter_bary_vectors.txt 
Saturn     0      5.68319E26      54.6E6    saturn_bary_vectors.txt 
Uranus     0      86.8103E24      51.8E6    uranus_bary_vectors.txt   
Neptune    0      102.41E24       86.8E6    neptune_bary_vectors.txt 
* 


