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1 Introduction

Encryption is a battlefield. The cryptographic protocols that we use today have

evolved since the introduction of DES thirty-five years ago both to accomodate the

dramatic increase in public need and to balk the attacks of those who would like to ren-

der the private communications of bank transfers and e-mail conversations insecure.

Despite all the changes and developments that the field has seen the basic principles

remain the same — secure public-key encryption requires a one-way function, de-

scribed in Diffie and Hellman’s seminal paper, “New Directions in Cryptography” [3]

as a function with a property that “for any argument x in the domain of f , it is easy

to compute the corresponding value f(x), yet, for almost all y in the range of f , it is

computationally infeasible to solve the equation y = f(x) for any suitable argument

x” ([3], 650).

In the same paper, Diffie and Hellman introduce a technique that “makes use of

the apparent difficulty of computing logarithms over a finite field GF (p) with a prime

number p of elements” ([3], 649). A logarithm over a finite field, also called a discrete

logarithm, is the inverse of the discrete exponentiation function described by

f(x) = γx mod p, for 1 ≤ x ≤ p− 1,

where γ is usually a primitive element of GF (p) and x is referred to as the logarithm

of y to the base γ, mod p. The corresponding inverse equation reads

x = logγ y mod p, for 1 ≤ y ≤ p− 1.

In choosing the discrete logarithm, Diffie and Hellman refer to the classical under-

standing of its difficulty, but let its status as a hard problem suffice as justification

for its use as the secure backbone to their cryptographic algorithm. To this day, the



discrete logarithm is used in some of the most important cryptographic algorithms.

In “A Method of Obtaining Digital Signatures and Public-Key Cryptosystems” [5]

Rivest, Shamir, and Adleman introduce the RSA encryption protocol, which relies on

a version of the discrete logarithm. We will demonstrate this with a quick example

in Section 2. In [5], the authors make several attempts at justifying their system,

stating that “since no techniques exist to prove that an encryption scheme is secure,

the only test available is to see whether anyone can think of a way to break it” ([5],

125). They then show that “all the obvious approaches for breaking our system are at

least as difficult as factoring n,” ([5], 125), another problem known for its difficulty.

They then consider ways to determine the private key from knowledge of the public

key.

Since the discrete logarithm is widely used, and because its security remains un-

proven, we attempt a unique approach to its investigation. In this paper we compare

properties of functional graphs generated by the discrete logarithm to properties of

all functional graphs. A functional graph is a directed graph with an associated func-

tion, f(x). The nodes of the graph represent the elements of the function’s domain.

For each x, there is a directed edge (an arrow) from the node representing x to the

node representing f(x). The out-degree of a node a is the number of elements b such

that f(a) = b. Since we study only functional graphs, the out-degree of each node is

exactly 1. The in-degree of a node b is defined as the number of elements a such that

b = f(a).

Dan Cloutier [2] has compared the set of unary and binary discrete exponentiation

functional graphs (DEFGs) to the set of all unary and binary functional graphs. Thus

for nine primes p, we compared statistics of the set of ternary DEFGs over GF (p)

with statistics of the set of all ternary functional graphs. We obtained observed values

for the ternary DEFGs by running one of the C++ programs described in [2] and

obtained theoretical values for the functional graphs by using generating function
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methods on the ternary functional graphs. In a ternary functional graph each node

has in-degree equal to exactly 0 or 3.

We compare ternary DEFGs to the average behavior of ternary functional graphs

in order to ensure that the ternary DEFGs are secure. If the discrete logarithm has a

property that sets it apart from the set of all other functions, for example if its cycles

can be expected to be longer than the cycles of a function picked at random, then

this property might allow for a rapid computation of the inverse, and might allow an

attack on a cryptographic protocol.
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2 Motivation

In 2005, Daniel Cloutier worked on a similar project involving unary and binary

functional graphs [2]. For some m, all DEFGs are m-ary, meaning that each node in

a graph has in-degree equal to exactly m or 0. He wrote two C++ programs; each

constructed a set of DEFGs. One program cycled through each element γ in GF (p)

and generated the corresponding DEFG. The other constructed the subset of binary

DEFGs. He then used each program to measure the observed statistics of the DEFGs.

From the methods described in [4], he was able to construct theoretical data for the

set of all binary functional graphs and compare those with the observed data that he

generated from his programs.

We continue Cloutier’s work by comparing the observed data from the set of

ternary DEFGs (by applying one of his programs) with the theoretical data for the

set of ternary functional graphs (using the techniques in [1]). The generating func-

tion methods developed to generate the theoretical data are interesting and relate to

cryptography in ways that will be demonstrated here.

2.1 Application to Cryptography

In arguing for our project’s relevance to cryptography, we describe the use of ternary

functional graphs in cryptographic protocols like Diffie-Hellman Key Agreement and

RSA Encryption. For the reader without background in these protocols, we briefly

introduce some details. The (experienced) reader may move ahead to Section 2.1.3.

2.1.1 Diffie-Hellman Key Agreement

This cryptographic protocol is used to generate a private key. The private key can

be used by two parties to encrypt messages, send them to each other safely, and to

easily decrypt the received messages. In describing a protocol, the two parties are
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usually called Alice and Bob.

Alice comes up with some number α and Bob comes up with some number β

and they keep them private from everyone, including each other. They publish two

numbers publicly: γ and p. They then follow the processes below:

Alice Process Bob Public

α β p, γ

α → r ≡ γα mod p → β, r p, γ, r

α, s ← s ≡ γβ mod p ← β, r p, γ, r, s

Alice and Bob then compute sα mod p and rβ mod p respectively, yielding in both

cases γαβ mod p. This is their private key, which they may use to encrypt their data

via another cryptographic protocol.

As was mentioned in the introduction, Diffie-Hellman relies on the seemingly

difficult problem of computing discrete logarithms for its security, since it is hard to

find γαβ given the public information r, s, γ, p.

2.1.2 RSA Encryption

The RSA method is fully elaborated in [5]. To show the relation of the RSA method to

the computation of the discrete logarithm, we quote the encryption and decryptions

steps here. Once one’s message is prepared (see [5]), one can encrypt the message by

raising it to the eth power modulo n. The encryption and decryption algorithms E

and D are:

C ≡ E(M) ≡ Me mod n for a message M .

M ≡ D(C) ≡ Cd mod n for a ciphertext C.

Thus, solving for e given C, M , and n is analogous to solving for x in the discrete

logarithm given y, γ, and p.
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Figure 1: The DEFG corresponding to p = 7 and γ = 2.
It contains the subgroup G := {21 = 2, 22 = 4, 23 = 1}.

2.1.3 Connection to Ternary Functional Graphs

Diffie-Hellman Key Agreement is one of the most widely used, researched, and under-

stood cryptographic protocols. As first presented in [3] it allows two parties to agree

on an encryption key for use in private communication through completely public

channels. To accomplish this, Diffie-Hellman uses the discrete logarithm function.

However, instead of always using a primitive element, one sometimes makes use of

a Sophie Germain prime, q, to calculate a “safe prime” p = 2q + 1. The base, γ, is

then sometimes chosen to generate the subgroup of order (p− 1)/2. This necessarily

generates a binary DEFG.

Consider the simple example in Figure 1. Let p = 7 and γ = 2, so that f(x) = 2x

mod 7. The group generated by γ, G = {21 = 2, 22 = 4, 23 = 1} has order (p−1)/2 =

3, and consists of elements with in-degree not equal to 0, since 1, 2, and 3 map to

them. Since order(G) = 3, there exist three other elements which map to elements

of G. Since we have a functional graph, and every node maps to exactly one other

node, these elements have in-degree zero and thus the elements of G have in-degree

2. So we have a binary functional graph.

Depending on the available processor power, it can be a difficult problem to gen-

erate large primes and primitive roots of those primes. To overcome this, some cryp-

tographic protocols employ probabilistic pseudo-prime generation and probabilistic

base generation. This allows the possibility of using a ternary DEFG in a crypto-

graphic protocol like Diffie-Hellman Key Agreement. Since Diffie-Hellman does not
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encrypt data that must later be decrypted (it merely generates a key) there is no

problem with the existence of three pre-images to each image in a ternary graph. In

practical use, no one would use a ternary graph in RSA, since each message block

could be decrypted (correctly, even) in three different ways.

Much work has been done in the area of random combinatorial structures, but it

would seem that our results regarding the theoretical statistics on ternary functional

graphs are original.
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3 Background

We are interested in examining certain statistics of ternary DEFGs and ternary func-

tional graphs. The definitions of these statistics rely on graph theory concepts that

we will define with a fair amount of rigor. We recall from the introduction that a

function f(x) on a finite set naturally defines a graph called the functional graph.

The vertices are exactly the elements of the set and there exists a directed edge from

x to y if and only if y = f(x). A graph is a functional graph if and only if each vertex

has out-degree equal to exactly one.

3.1 Definitions

Definition 1. Let y be a node in a functional graph. It is considered to be an image

node if there exists at least one x such that y = f(x).

Definition 2. Let y be a node in a functional graph. If there exists no x such that

y = f(x), then it is a terminal node.

The following definitions come from [4]. For each of the next definitions, we

consider a function f(x) and a directed graph whose nodes are the elements [1 . . . n]

and whose edges are the ordered pairs 〈x, f(x)〉, for all x ∈ [1 . . . n]. If we start from

any x0 and keep iterating f , we consider the sequence x1 = f(x0), x2 = f(x1), . . ., we

will find, before n iterations, a value xj equal to one of x0, x1, . . ., xj−1. In graphical

terms, starting from any x0, the iteration structure of f is described by a path that

connects to a cycle.

Definition 3. The cycle length of x0 is equal to the length of the cycle.

Definition 4. The length of the path (measured by the number of edges) is called the

tail length of x0.

8



Figure 2: An example of a binary functional graph.
It contains two connected components. Nodes B, C, and E form a cycle of length 3
and nodes J and K form another cycle of length two. Nodes A, D, F , I, and L see

a tail of length 1 and nodes G and H see a tail of length 2.

Definition 5. A cyclic node is a node contained in a cycle. A tail node is a node

that is not contained in a cycle.

Definition 6. A component is a set of all connected cyclic nodes and tail nodes.

Definition 7. The total cycle length as seen from a node is calculated by adding up

the cycle length of each node. We consider each node to “see” a cycle and to record

that cycle’s length and then proceed to take the sum over all of the cycle lengths seen

by the nodes.

For example, consider a functional graph consisting of two components (as in

Figure 2) of size eight and four. Within the component of size eight there is a cycle

of length three and within the component of size four there is a cycle of length two,

so the cycle length as seen from a node is 8 · 3 + 4 · 2 = 30.

Definition 8. The total tail length as seen from a node is calculated by adding up

the tail length of each node.

For example, consider a functional graph consisting of two components (see Figure

2) of size eight and four. Nodes A, D, F , I and L see a tail of length 1 and nodes G

and H see a tail of length of 2, so the tail length as seen from a node is 5 ·1+3 ·2 = 11.

The other nodes see zero tail length.

9



3.2 Choosing our Primes

Consider Definition 6. Since we were using the program from [2] to obtain observed

statistics for ternary DEFGs, we wanted to ensure we were using primes for which

there existed bases γ that generated ternary DEFGs. We used the following theorem

to guarantee this:

Theorem 1 ([2], Theorem 1). Let m be any positive integer that divides p − 1.

Then there are φ
(

p−1
m

)

m-ary functional graphs (where φ is the Euler Phi Function)

produced by the map x → γx mod p for a given γ and p. Furthermore, if r is any

primitive root modulo p, and g ≡ rα mod p, then the values of g that produce an

m-ary graph are precisely those for which gcd(a, p− 1) = m.

The second part of Theorem 1 can be explained to say that if we have a primitive

root modulo p, denoted r, and we want an m-ary graph, then it suffices to find some

positive integer a ∈ [1, p− 1] such that gcd(a, p− 1) = m. Then, the theorem states,

ra mod p will generate an m-ary graph.

So we chose nine primes of form p = 3k + 1, since the theorem states that there

will exist φ
(

p−1
3

)

= φ(k) ternary DEFGs, guaranteeing a nonzero number of ternary

DEFGs.
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4 Ternary Functional Graphs

4.1 Exponential Generating Functions

A generating function is a clothesline on which we hang up a sequence of

numbers for display. [Herbert S. Wilf, Generatingfunctionology, [8]]

In our research, we use exponential generating functions to count certain features

of ternary functional graphs. Before we give the precise definition, it is useful to

impart an imprecise notion of what these things are used for. Exponential generating

functions, or EGFs, are formal Taylor series derived so that the coefficient of the nth

degree term is equal to the number of things we have set up the EGF to count, up to

a factor of n!. If we want our EGF to count the number of components in a ternary

functional graph, then the number of components in all the ternary functional graphs

of n nodes is given in the coefficient of the nth term. The methods that we use to

derive these EGFs are fun and beautiful; some basic examples will be given in this

section, and some more complicated applications will be given in the next.

Definition 9. Let f(x) be an exponential generating function. Then f(x) may be

expressed as

f(x) =

∞
∑

n=0

fn

xn

n!

where the fn are the elements of some sequence.

4.2 Building Ternary Functional Graphs

We would like to use these EGFs to give an expression for the number of ternary func-

tional graphs with n nodes. To do this, we will build up to functional graphs by first

considering ternary trees, then cycles, then connected components, and finally func-

tional graphs. We begin with the penultimate example from [1], which demonstrates

the ways in which two generating functions can be composed.
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Theorem 2 ([1], Theorem 3.20). Let fn be the number of ways to carry out a task

on {1, . . . , n} and gn be the number of ways to carry out another task on the same

sequence. Let F (x) =
∑

∞

i=0 fi
xi

i!
and G(x) =

∑

∞

i=0 gi
xi

i!
. Let hn be the number of ways

to:

- split {1, . . . , n} into the disjoint union of S and T ,

- carry out Task 1 on S,

- carry out Task 2 on S.

Let H(x) =
∑

∞

i=0 hi
xi

i!
. Then H(x) = F (x)G(x).

Proof. Considering F (x)G(x), as defined in the theorem,

F (x)G(x) =

(

f0 + f1x +
f2x

2

2!
+ · · ·

)(

g0 + g1x +
g2x

2

2!
+ · · ·

)

=

∞
∑

i=0

(

i
∑

k=0

fk

k!

gi−k

(i− k)!

)

xi

=
∞
∑

i=0

(

i
∑

k=0

(

i

k

)

fkgi−k

)

xi

i!

Therefore, the coefficient of the ith term is the product of the different ways to choose

k (
∑i

k=0), the number of ways to choose k objects from i for Task 1
(

i

k

)

, the number

of ways to perform Task 1 (fk) and the number of ways to perform Task 2 (gi−k),

=
∞
∑

i=0

hi

xi

i!
= H(x).

Therefore the EGF for H(x) is the product of the EGFs for the first and second tasks,

respectively F (x) and G(x).
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4.2.1 Making a Ternary Tree

We will use Theorem 2 to demonstrate how to use EGFs to make a ternary tree on

{1, . . . , n}.

First, we split {1, . . . , n} into the disjoint union of two sets, S and T . T will be

the root and S will be everything else. The real meat comes when we split up the

elements of S into three trees (since we are making a ternary tree) and then, within

each tree, repeat the process until we run out of elements. We split this up into Task

1 and Task 2.

Task 1 is the task of making T into a root. Since there is only one element in T

the EGF is simple: x. After all, the only value we want hung on this clothesline is 1.

Task 2 is the task of breaking S into three pieces, S1, S2 and S3. We consider this

to be three subtasks. Task 2a is the task of assigning S1 to the left ternary tree with

EGF denoted t(x) (the t is for ternary). Task 2b is the task of assigning S2 to the

middle ternary tree, with EGF t(x). Naturally, Task 2c is the task of assigning S3 to

the right ternary tree, with EGF t(x).

Therefore, we want the number of ways to make a ternary tree, t(x). Note that,

since we do not care which subtree is the left, middle, or right, we must divide the

number of ways to perform Task 2 by the number of ways to permute 3 things: 3!.

By Theorem 2,

t(x) =
xt(x)t(x)t(x)

3!
+ x. (1)

The addition sign may be read as an “or” symbol. Either we have at least one node,

in which case we will have a root and three subtrees, as described by the xt(x)t(x)t(x)
3!

term, or we will have one node, the root, denoted by x.

The function t(x) is implicitly defined. Rearranging,

xt(x)3 − 6t(x) + 6x = 0, (2)

13



we observe that we have a cubic polynomial in terms of t(x) with one real and two

complex roots. For our purposes, it suffices to keep t(x) defined as in (1).

4.2.2 Making Cycles

We begin with the following theorem, basic to an understanding of how we use EGFs

to describe cycles.

Theorem 3 ([1], Theorem 3.27). Let A(x) be the EGF for some task:

A(x) =

∞
∑

i=0

ai

xi

i!

with a0 = 0.

Let H(x) =
∑

∞

i=0 hi
xi

i!
be the EGF for the number of ways to partition {1, . . . , n}

into subsets and carry out Task 1 on each subset. Set h0 = 1. Then,

H(x) = eA(x).

Proof. I omit the proof, which may be found in [1].

We want to count the number of ways to make the sequence {1, . . . , n} into cycles.

The EGF for this is:

- the number of ways to partition {1, . . . , n} into subsets, and

- the number of ways to make each subset into a cycle.

Let c(x) be the EGF for the number of ways to make the sequence {1, . . . , n} into

a cycle,

c(x) =

∞
∑

n=1

an

xn

n!

an = number of ways to make n things into a cycle

14



which is the number of ways to place n things into n slots (n!), without any concept

of starting points (so we divide by n, since in a cycle of n elements each element is a

possible starting point). Therefore,

an =
n!

n
= (n− 1)!

c(x) =

∞
∑

n=1

xn

n
= log

(

1

1− x

)

= − log(1− x). (3)

Consider the EGF for the number of ways to make a sequence into cycles to be

Task 1 from Theorem 3 and, letting H(x) be the desired EGF for the number of ways

to partition {1, . . . , n} into cycles, we obtain:

H(x) = elog( 1
1−x

) =
1

1− x
= 1 + x + x2 + · · ·

= 1 + x + 2!
x2

2!
+ 3!

x3

3!
+ · · · ,

which implies that there are n! ways to partition {1, . . . , n} into cycles, which is

equivalent to the number of ways to permute n things, which is of course equal to

(n!).

4.2.3 Ternary Functional Graphs

We recall the EGF for the number of ternary trees,

t(x) = x + x
t(x)3

3!
(4)

and, since two trees hang off of each cyclic node, we apply equation (3) to t(x) as

follows:

c(x) = log

(

1

1− 1
2
xt(x)2

)

. (5)

15



Now we apply Theorem 3, which partitions the functional graph into connected com-

ponents of cycles and their attached trees, yielding

f(x) = ec(x) (6)

which we could simplify by writing the EGF out for c(x), but it is important to see

the relationship between the functional graph and its connected components.

In the next section we will use equations (4), (5), and (6) at length to count

mapping statistics and derive our theoretical data.
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5 Counting Mapping Statistics

Methods in [1] can be used to “mark” nodes of interest in EGFs for, in our case,

ternary functional graphs. These markings allow us to calculate total mapping statis-

tics for ternary functional graphs with n nodes. As far as we know, the EGFs we

derive here for the number of components, number of cyclic nodes, component size,

cycle length, and tail length are original to our research.

5.1 Direct Mapping Statistics

Theorem 4. The exponential generating functions for the total number of components

and total number of cyclic nodes in a ternary functional graph of size n are

Number of components =

[

d

du
euc(x)

]

u=1

(7)

=
1

2
x3 +

13

24
x6 +

83

144
x9 +

355

576
x12 + O(x15)

Number of cyclic nodes =

[

d

du
e
ln 1

1− 1
2 ux t(x)2

]

u=1

(8)

=
1

2
x3 +

2

3
x6 +

29

36
x9 +

17

18
x12 + O(x15)

Proof. (7) The exponential generating function in Equation (6) counts the number of

ways to partition the nodes in a ternary functional graph into components. Inserting

a u marks each component in all of the graphs. The marked generating function

results in a Taylor series:

1 +
1

2
ux3 +

(

7

24
u +

1

8
u2

)

x6 +

(

2

9
u +

7

48
u2 +

1

48
u3

)

x9 + O(x12).

The coefficients of u and u2 in the term corresponding to n = 6 tells us that 7
24
· 6!
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possible ternary functional graphs with 6 nodes have 1 component and 1
8
· 6! have

2 components. Differentiating with respect to u and evaluating at u = 1 yields the

exponential generating function for the total number of components in all ternary

functional graphs of size n.

(8) Within each component, Equation (5) is an exponential generating function

for the number of ways to make a cycle out of ternary trees. Inserting the u marks

the root of each tree in the cycle, therefore counting the number of cyclic nodes.

Exponentiating this function accounts for the number of possible components. The

marked generating function results in a Taylor series:

1 +
1

2
ux3 +

(

1

6
u +

1

4
u2

)

x6 + O(x9).

Again, the coefficients of u and u2 in the term corresponding to n = 6 tells us 1
6
· 6!

possible ternary functional graphs with 6 nodes have 1 cyclic node and 1
4
· 6! have

2 cyclic nodes. Differentiating with respect to u and evaluating at u = 1 yields the

exponential generating function for the total number of cyclic nodes in all ternary

functional graphs of size n.

In order to calculate the average mapping statistics from the total mapping statis-

tics we need to use the exponential generating function for the number of graphs. The

following formulas refer to the statistics for a number of nodes n, not the exponential

generating functions themselves.

avg. number of components =
total number of components

total number of graphs

avg. number of cyclic nodes =
total number of cyclic nodes

total number of graphs
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Figure 3: All of the possible ternary functional graphs with 6 nodes.
In “as seen from a node” mapping statistics, the count is weighted by the number of
nodes that can “see.” For example, in (a), all 6 nodes “see” a cycle length of 2. In
(b), 3 nodes “see” a cycle length of 1 and another 3 nodes “see” a cycle of length 1.

In (c), all 6 nodes “see” a cycle length of 1. The 6th term in the Taylor series for
(10) reflects this.

Now, the theoretical values for average number of components and average number

of cyclic nodes can be computed. They can then be compared with the observed values

generated from DEFGs (see Section 6).

5.2 “As Seen From a Node” Mapping Statistics

The double marking process is used to count mapping statistics “as seen from a node.”

The two markings, u and w mark the statistic of interest and the number of nodes

that “see” the object respectively.

Theorem 5. The exponential generating functions for the total component size and
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total cycle length as seen from a node in a random ternary functional graph are

Component size =

[

d2

du dw
ec(x) ln

1

1− 1
2
uwx t(uwx)2

]

u=1,w=1

=
9

2
x3 +

51

4
x6 +

201

8
x9 +

339

8
x12 + O(x15) (9)

Cycle length =

[

d2

du dw
ec(x) ln

1

1− 1
2
uwx t(wx)2

]

u=1,w=1

=
3

2
x3 +

13

4
x6 +

43

8
x9 +

191

24
x12 + O(x15)

(10)

Proof. (9) The EGF ec(x) counts the number of ways to partition the nodes in a

ternary functional graph into components. Equation (9) is the product of the EGF

for this task and the task of marking components of connected ternary trees:

ln
1

1− 1
2
uwxt(uwx)2

.

Within the component, u acts as a counter for the size of the component by

marking all of the nodes in the tree for each tree. Then w acts as a counter for

the number of nodes total in the component that “see” the component size. The

combined marked generating functions result in a Taylor series:

1

2
u3w3x3 +

(

7

24
u6w6 +

1

4
u3w3

)

x6 + O(x9).

The coefficient of the term corresponding to n = 3 tells us that there are 1
2
·3! possible

ternary functional graphs with 3 nodes, and in all of them the three nodes “see” a

component size of three. In the case of n = 6, the coefficients mean that 7
24
·6! possible

ternary functional graphs with 6 nodes have 6 nodes that “see” a component size of

6 ( (a) and (c) in Figure 3), and 1
4
· 6! have 3 nodes that see a component size of 3
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( (b) in Figure 3). Differentiating with respect to u and w and evaluating at u = 1

and w = 1 yields the exponential generating function for the component size as seen

from a node in all ternary functional graphs of size n.

(10) The double marking process is similar to the process to construct (9). For

all of the unmarked components, ec(x), there is a marked component of connected

ternary trees:

ln
1

1− 1
2
uwx t(wx)2

.

Within the component, u acts as a counter for the size of the cycle by marking the

number of trees rooted on the cycle. Then, w acts as a counter for the number of

nodes total in the component that “see” the cycle length. The marked generating

function results in the Taylor series:

1

2
uw3x3 +

(

1

6
uw6 +

1

8
u2w6 +

1

4
uw3

)

x6 + O(x9).

The coefficient of the term corresponding to n = 3 tells us that there are 1
2
· 3!

possible ternary functional graphs with 3 nodes, and in all of them the three nodes

“see” a cycle of length 1. In the case of n = 6, the coefficients mean that 1
6
·6! possible

ternary functional graphs with 6 nodes have 6 nodes that “see” a cycle of length 1

( (c) in Figure 3), 1
8
· 6! have 6 nodes that see a cycle of length 2 ( (a) in Figure 3),

and 1
4
· 6! have 3 nodes that see a cycle of length 1 ( (b) in Figure 3). Differentiating

with respect to u and w and evaluating at u = 1 and w = 1 yields the exponential

generating function for the cycle length as seen from a node in all ternary functional

graphs of size n.

Theorem 6. The exponential generating function for the total length of all paths to

a cycle, henceforth known as the total tail length as seen from a node, is

Tail length =

[

d

du

zut(z)
(

1− 1
2
zt(z)2

)2 (
1− 1

2
uz t(z)2

)

]

u=1

(11)
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Proof. We begin to build up the EGF for total tail length as seen from a node by

deriving two functions to count two different types of trees: unmarked and marked.

The unmarked trees are the same as in Equation (4),

t(z) =
zt(z)3

3!
+ z

We want the EGF for the number of marked trees (so marked because the tree contains

the length that we are counting) to be read as follows:

• c(z) =

– one unmarked node,

or

– a marked node attached to a tree, one branch of which is marked,

or

– an unmarked node attached to a tree, no branches of which are marked,

which is translated as

t(z, u) = z +
1

2
uzt(z)2t(z, u) +

1

6
zt(z)3.

Solving for t(z, u),

t(z, u)

(

1−
1

2
uzt(z)2

)

= t(z)

t(z, u) =
t(z)

1− 1
2
uzt(z)2

. (12)

Now, we know from Theorem 2 that the EGF that counts the total tail length as

seen from a node in a functional graph is the product of two EGFs, one that counts

the total tail length as seen from a node in each component, and another that counts
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the number of corresponding unmarked components, so

f(z, u) = f(z) · c(z, u)

where f(z) is the same as in Equation (6). To construct c(z, u), we need to derive

two surrogate functions T (z, u) and T (z) to express whether a cyclic node is part of a

tail length (and thus marked) or not. Since each component is made up of a certain

number of nodes and there is one tail length connecting to the cycle in each marked

component, we have

• c(z, u) =

– one marked cyclic node,

or

– one marked cyclic node and one unmarked cyclic node,

or

– one marked cyclic node and two unmarked cyclic nodes,

or . . .

which is translated as,

c(z, u) = T (z, u) + T (z, u)T (z) + T (z, u)T (z)2 + · · ·

Summing the geometric series,

c(z, u) =
T (z, u)

1− T (z)
.

A marked cyclic node sees two trees, one of which is marked, so its EGF is:

T (z, u) = zut(z, u)t(z) (13)
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and an unmarked cyclic node sees two trees, neither of which is marked, thus:

T (z) =
1

2
zt(z)2 (14)

Therefore, putting it all together,

f(z, u) = f(z)c(z, u) = f(z)
T (z, u)

1− T (z)
=

zut(z)
(

1− 1
2
zt(z)2

)2 (
1− 1

2
uzt(z)2

)

.

As in the previous section, in order to calculate average mapping statistics from

the total mapping statistics, we need to use a “normalizer.” Unlike the previous case,

in “as seen from a node” mapping statistics, the number of graphs and the number

of nodes need to be taken into account. The average component size, cycle length,

and tail length are:

avg. component size =
component size

total number of graphs · number of nodes

avg. cycle length =
cycle length

total number of graphs · number of nodes

avg. tail length =
total tail length as seen from a node

total number of graphs · number of nodes

Now, the theoretical values for average cycle length and average tail length can

be computed and compared with the observed values generated from the DEFGs (see

Section 6).
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6 Observed Results

Using a C++ program written by Dan Cloutier in [2], we collected data for the number

of ternary discrete exponentiation functional graphs, average number of components,

average cycle length, average cycle length as seen from a node, and average tail length

as seen from a node for nine primes of the form p = 3k + 1.

The functional graphs associated with each prime p contain p− 1 nodes (because

we do not include 0 mod p in the functional mapping). The theoretical values for the

mapping statistics associated with each prime p are the (p−1)th term in the EGFs for

the average number of components (described by Equation (7)), the number of cyclic

nodes (Equation 8), the cycle length (Equation (10)) and tail length (Equation (11)).

Since we are considering the set of ternary functional graphs which must have 3k

nodes (for some integer k) we use primes of the form 3k +1. Thus our EGF will have

a nonzero coefficient cn only when n is a multiple of 3. We also note that Cloutier’s

program does not calculate component size.

6.1 Theoretical Results via Maple and GFUN

Because of the complexity of the generating functions, we were not able to obtain a

closed form for the coefficients of the EGFs for the mapping statistics. To obtain the

theoretical values for the average mapping statistics, we used Maple to convert the

EGFs into procedures that could rapidly calculate the desired coefficients. We used

three procedures from the GFUN package. A brief explanation of each procedure

follows. These descriptions come from [6].

holexprtodiffeq This procedure converts the closed form expression for our EGF

into a differential equation. holexprtodiffeq stands for Holonomic Expression to Dif-

ferential Equation. A holonomic expression is defined in [6] as follows: “A function

of one variable is said to be holonomic when it satisfies an ordinary linear differen-
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tial equation with polynomial coefficients” ([6], 168). Many common functions are

holonomic: exp, ln, sin, cos, xa, etc. Also, the class of holonomic functions is closed

under finite addition, multiplication and even composition of algebraic functions [7].

Since our EGFs are made up of the building blocks of orthogonal polynomials, exp,

and ln through the operations over which the class of holonomic functions is closed,

our EGFs are holonomic.

Applying the procedure to the EGF for total number of cyclic nodes, we observe

that Maple can express this EGF as an ordinary linear differential equation with

polynomial coefficients. We input the EGF as follows, with “terntree” defined as in

Equation (2),

> numcycnodes := eval(diff (1/(1− u ∗ (1/2) ∗ x ∗ terntree ∧ 2), u), u = 1);

> DEQnumcycnodes := holexprtodiffeq(numcycnodes, y(x));

and the procedure outputs

DEQnumcycnodes :=
{

y(0) = 0, D(y)(0) = 0, (D(2))(y)(0) = 0,

(D(3))(y)(0) = 3, (D(4))(y)(0) = 0, (D(5))(y)(0) = 0,

(D(6))(y)(0) = 480, (D(7))(y)(0) = 0, (D(8))(y)(0) = 0,

(405x5 − 36x2)y(x) + (567x6 − 468x3 − 32)

(

d

dx
y(x)

)

+(81x7 − 144x4 + 64x)

(

d2

dx2
y(x)

)

− 144x2

}

.

which is a sequence of initial conditions and the left side of a differential equation

whose right side is zero. Our second-order differential equation defines a sequence

wherein every third term is nonzero, thus the procedure gives eight initial conditions

(the terms prior to the 9th) of which only two are nonzero.

26



diffeqtorec The procedure diffeqtorec translates a holonomic equation ck(z)y(k)(z)+

· · ·+c1(z)y′(z)+c0(z)y(z)+b(z) = 0 for the function y(z) into a holonomic recurrence

for the coefficients u(n) of the Taylor series for the unique solution to the differential

equation. The generating function (either ordinary or exponential) of a holonomic se-

quence is holonomic and reciprocally the sequence of Taylor coefficients of a holonomic

function is holonomic [7]. The procedure uses this correspondence. For example, we

have:

> RECnumcycnodes := diffeqtorec(DEQnumcycnodes, y(x), u(n));

RECnumcycnodes := {u(0) = 0, u(1) = 0, u(2) = 0, u(3) = 1/2, u(4) = 0,

u(5) = 0, u(6) = 2/3, u(7) = 0, u(8) = 0,

(486n + 405 + 81n2)u(n) + (−2304− 1188n− 144n2)u(n + 3)

+(672n + 1728 + 64n2)u(n + 6)
}

rectoproc Given a holonomic recurrence, the rectoproc procedure returns a Maple

procedure that computes the nth term of the sequence that satisfies the recursion.

The initial terms of the sequence, if provided, are stored in the remember table of the

procedure; the other terms are computed one by one, according to the recurrence,

and using the memo-mechanism provided by Maple [6].

The actual procedure is long and oblique, so we do not produce it here. However,

we demonstrate it for a small value of n,

> PROCnumcycnodes(12);

17

18
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which agrees with the coefficient of x12 in the series following Equation (8).

We derive the theoretical statistics by running the obtained Maple procedures for

each statistic for each prime and apply the normalizers discussed in Section 5. We

compare these values with the observed values from Cloutier’s program.

In the following tables the first column is the chosen prime, p, as used in the

equation y = γx mod p. Cloutier’s program then analyzes the functional graph cor-

responding to f(x) = γx mod p for each base, γ, but only if the resulting graph is

ternary. The second column, labelled “Number of DEFGs,” is the size of the set of

ternary discrete exponentiation functional graphs. It is derived by computing φ(p−1
3

)

as in Theorem 1. The third column is the output of Cloutier’s program for each

prime p (and all of the acceptable bases γ for each prime p). The fourth column

is the (p − 1)th coefficient of the EGF for each statistic, calculated using the Maple

procedures discussed above. The fifth column, the relative error, is calculated by

taking the difference of the theoretical value and the observed value for each prime p

and dividing by the theoretical value.

To understand the data, it is useful to look at the asymptotic estimates that

more generally describe the growth of these structures. Theorem 2 from [4] gives the

asymptotic estimates of a number of mapping statistics, and in particular the average

number of components and cyclic nodes in a random functional graph. Cloutier

performed a similar analysis on binary functional graphs, (Theorem 5, [2]) giving the

approximation in Equation (15), below, which seems to be a little higher than the

expected number of components in a ternary functional graph. This intuitively implies

that the average number of components decreases when each cyclic node requires two
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trees to hang off of it (see Figure 3).

Avg. Number of components =
log(2n) + γ

2
(15)

=
log(2 · 100297) + γ

2
= 6.39312

Cloutier gives
√

πn/2− 1 as an asymptotic estimate for the average number of cyclic

nodes (Theorem 5, (ii) [2]). We made an adjustment for the ternary case and obtained

Avg. Number of Cyclic Nodes =

√

πn

4
−

2

3
(16)

=

√

π100297

4
−

2

3
= 279.998

For the purpose of concision, we do not include the asymptotic estimates in the

following tables.
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Avg. Number of Components

Prime Number of Theoretical Observed Relative

Number Ternary γ’s Values Values Error

100297 9504 6.09055 6.03188 0.009632

100333 11136 6.09086 6.01419 0.012588

100549 9072 6.09273 6.03616 0.009286

100621 8064 6.09336 6.10379 0.001713

100693 11184 6.09398 6.01967 0.012194

100801 7680 6.09492 6.04922 0.007499

100981 7680 6.09650 6.04089 0.009122

101089 10368 6.09745 6.01987 0.012723

101161 8960 6.09808 6.06641 0.005194

Avg. Number of Cyclic Nodes

Prime Number of Theoretical Observed Relative

Number Ternary γ’s Values Values Error

100297 9504 279.998 281.555 0.005559

100333 11136 280.049 282.662 0.009332

100549 9072 280.351 280.018 0.001184

100621 8064 280.451 279.935 0.001839

100693 11184 280.552 280.444 0.000385

100801 7680 280.702 280.444 0.000922

100981 7680 280.954 280.373 0.002066

101089 10368 281.104 279.932 0.004168

101161 8960 281.204 281.447 0.000862
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Avg. Cycle Length (as seen from a node)

Prime Number of Theoretical Observed Relative

Number Ternary γ’s Values Values Error

100297 9504 140.498 139.191 0.009298

100333 11136 140.523 139.432 0.007763

100549 9072 140.674 141.117 0.003146

100621 8064 140.724 140.438 0.002033

100693 11184 140.774 140.215 0.003970

100801 7680 140.850 140.269 0.004122

100981 7680 140.975 141.540 0.004007

101089 10368 141.051 140.958 0.000657

101161 8960 141.101 140.716 0.002726

Avg. Tail Length (as seen from a node)

Prime Number of Theoretical Observed Relative

Number Ternary γ’s Values Values Error

100297 9504 140.001 141.673 0.011947

100333 11136 140.026 142.219 0.015664

100549 9072 140.177 140.499 0.002303

100621 8064 140.227 141.167 0.006708

100693 11184 140.277 139.944 0.002372

100801 7680 140.353 142.385 0.014486

100981 7680 140.478 140.610 0.000943

101089 10368 140.553 140.152 0.006349

101161 8960 140.604 139.711 0.000862
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Theorem 3 of [4] gives
√

πn/8 as the asymptotic estimate for both the average

cycle length and average tail length as seen from a node. We made a small adjustment

for the average cycle length and tail length in a ternary graph, and obtained

Avg. Cycle Length = Avg. Tail Length =

√

πn

16
−

2

3
(17)

=

√

π100297

16
−

2

3
= 140.333

The theoretical values appear to be very close to the observed values for the

DEFGs generated by the primes. The number of ternary DEFGs generated for each

prime ranged from 7680 to 11184 graphs. The results for average cycle length had all

of the relative errors less than 1%. For average number of components and average

number of cyclic nodes, all of the relative errors are less than 2%.

There does not appear to be a correlation between number of ternary DEFGs and

relative error in our results. In the data set for the cycle length, the highest error

of .9% occurred for a prime that generated 9504 graphs, however the second highest

error of .1% occured for a prime that generated 11136 graphs. In the same data set,

the least two errors of .06% and .2% occured for primes that generated 10368 and

8064 graphs respectively.

The results from the average number of components and average number of cyclic

nodes also show that the number of ternary DEFGs does not appear to be correlated

with relative error.
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7 Conclusions

Our observed results showed that ternary DEFGs, with respect to the four mapping

statistics (average number of cyclic nodes, average cycle length as seen from a node,

average number of components, and average tail length as seen from a node), be-

haved very similarly to the “average” ternary functional graph. So, we conclude that

the discrete log behaves like a “random” function. This means that, for these four

mapping statistics, the discrete logarithm does not appear to show any characteristic

behavior or pattern that could later be exploited.

Future research could include derivation of EGFs for more mapping statistics

such as tree size, maximum cycle length, and maximum tail length. These statistics

could then be included in the existing analysis of unary, binary and ternary DEFGs,

or in an extrapolation to the more general m-ary case, (possibly) through use of the

Lagrange Inversion Formula. In addition, higher moments of these statistics (variance,

skewness, etc.) could be analyzed to detect differences between the observed statistics

of DEFGs and the theoretical statistics of “average” functional graphs.
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