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Chapter 1 — Introduction

Building intelligent assistants that assist their users in their day-to-day chores has been
a long cherished dream of Al. There has been a growing interest in developing intelligent
assistant systems over the past decade. These systems aim at helping the user with a
specific task by reducing the user’s efforts in accomplishing that task. Also, they reduce
the need for the user to remember all the information that is relevant to performing
the task. An ideal assistant should have a knowledge of the set of tasks of the user,
comprehend the current task that the user is working on and help the user in achieving
the task. The goal of this research is not to replace a human user, but to aid him so as
to reduce his effort. It may be useful to think of this intelligent assistant as a personal
secretary. The secretary is not always told what to do. Similarly, the assistant will not
always be told what the user is working on. The assistant should infer the user’s tasks by
observing the actions of the user. Once it has a reasonable confidence about the current
task of the user, it could start helping the user. A perfect assistant should also be able
to remind the user when he forgets to do a task (for example, when he forgets to attach
a document to an email), or when there is an easier method by which the task could be
completed (for example, using the shortcuts on the desktop instead of going through the
file system). In this work, we take several steps towards designing an intelligent assistant.
Though this assistant cannot possibly achieve all the desired qualities, it is a general
model of assistance that can be applicable to several problems. Our assistant can handle
uncertainty with respect to the user’s goals, can generalize across several users of the

domain, can handle changes in the domain and can be effective in the real-world.



1.1 Assistantship Model

There has been substantial research in designing intelligent assistants ranging from helping
people with dementia[10] to travel planning[2] and rescheduling meetings[68]. However,
most of this work consists of well engineered solutions to the particular application do-
mains. There is not a general model of assistance that can be extended across several

domains. The goal of this thesis is to formulate a model of assistance that:

e applies to several different domains - For example, the model should be applied to

a desktop assistant or an assistant that helps elderly people with their daily chores.

e handles uncertainty - For example, the user’s actions might not give complete in-
formation about his or her current task. The assistant should still be able to offer

some help.

e handles varying user action/cost models - For example, when there is a short dead-
line, the user would want to complete the task quickly, while on a normal situation,
the user might want to explore more ideas. The assistant should be helpful in either

case. In other words, the model should not change as the user’s preferences change.

e generalizes across different users in the domain - For example, the assistant might
be trained by observing the development team and when actually deployed and used

by a real user, it should provide effective assistance.

e can handle hierarchical goal structure of the user - For example, an user might
decompose his higher level goal of planning a conference trip to booking hotels,
flights, registering for the conference etc. The assistant must be able to represent

and reason about this type of a rich goal structure.

e performs efficiently in real-time. In particular, inference must be performed in real

time for the assistant to be useful in real-world domains.



To this effect, we propose a model of assistance that is based on decision-theoretic
principles and applicable across several domains. In order for the model to be generalized
across different users and objects in the domain, we draw on our experiences with rela-
tional probabilistic models and task hierarchies to represent the prior knowledge about
the user. This specification of the prior knowledge also enables the assistant to learn
faster about the user preferences. For this richer model to perform efficiently, we have
to avoid grounding the relational prior knowledge in the system with all the objects in
the domain while tracking the user’s progress. We explore the use of Logical Hierarchical

HMDMs for this purpose.

(_ Task Hierarchies - } :
S~ e Decision-Theoretic Assistance

Relational Probabilistic
Model (FOCIL)

Relational Hierarchical
Decision-Theoretic Assistance
Logical Hierarchical
Hidden Markov Models

Figure 1.1: Evolution of the thesis. The solid ovals indicate our contributions.

The evolution of the thesis is pictured in Figure 1.1. Initially, we formulate the
decision-theoretic assistantship problem. We then incorporate ideas from relational and
hierarchical models to represent prior knowledge. The decision-theoretic assistant per-
forms assistance in two steps: first, it estimates the goal of the user and second, it deter-
mines the best assistive action. In the relational hierarchical model, the goal estimation is
performed using a hand-coded DBN. This led to research in the area of goal estimation (or
more generally activity recognition) and we have developed a Logical Hierarchical Hidden

Markov Model that extends standard HMMs to the relational domains with hierarchies.



1.2  Overview of the Thesis

Our proposed framework can be understood as trying to achieve the best of three worlds
of using hierarchies for plan recognition, using decision-theory for assistance and using
relational models for succinct representation. Incorporating relational hierarchies into the
decision-theoretic framework would enable us to realistically model the user and provide
better assistance. Our major contribution is to demonstrate the usefulness of the combina-
tion of hierarchies, relational models and decision-theory in the formulation of intelligent
assistants. There has been several attempts to combine hierarchies and decision-theoretic
models. For example see [19, 3, 60, 58]. Recently, relational reinforcement learning has
also been explored [66]. Our goal is to combine the power of all the three different areas
in designing a useful intelligent assistant.

It should be mentioned that our framework is not specific to the problem of assistance
and the individual components can be applied to other problems as well. For example, our
relational learning algorithms can be used for modeling several aspects of the domain. Our
relational hierarchies can be used to specify the prior knowledge irrespective of the model
of assistance. Our Logical Hierarchical HMMSs can be used for activity recognition in other
domains. In this chapter, we motivate the different models that have been presented in

this thesis.

1.2.1 Decision-Theoretic Model of Assistance

Our goal is to develop an assistant that would aid a goal-oriented user and one that can
be generalized across several domains. The assistant would observe the user performing
some actions, infer the user’s goals' from its observations and determine the action that

can best assist the user. The assistant can modify its actions depending upon the user’s

Tn this work, we use the words task and goal interchangeably.



response to its assistance. In real applications, this requires that the assistant be able to
handle uncertainty about the environment and agent, to reason about the action costs,
to handle unforeseen situations, to take actions that would aid the user, and to adapt to
the agent over time.

We formulate the assistantship problem as a Partially Observable Markov Decision
Process (POMDP) which naturally handles these features, providing a formal basis for
designing intelligent assistants.. We design myopic heuristics for solving the POMDP.
We evaluate this model in three different domains: two game-like environments and a
real-world folder predictor domain to establish the domain independent nature of the
problem and the solution. The results indicate that the model can be used across different
environments and that the myopic heuristics achieve comparable performance with more

sophisticated but costly solution techniques.

1.2.2 Relational Models

The decision-theoretic model is a first-step towards developing a useful assistant and has
several simplifying assumptions. One of the limitations of the model is that the repre-
sentation is inherently propositional. This model does not capture the relational aspects
of the world and ignores the relationships that exists between the objects in the world.
If the model can explicitly capture these relationships, it can be very powerful. There
has been extensive research in the combination of probabilistic and relational models that
aims to achieve generalization among the objects of the domain[29].

One of the main advantages of these relational models is that they share the parameters
i.e, different instances of objects of the same kind share the distributions. For example, a
model that is learned for an academic researcher can be used for another researcher thus
reducing the number of examples needed to learn the model. The other major advantage

is that they provide a way to accelerate learning by exploiting the relationships between



objects. They also make it possible to simplify the problem of inference as they avoid
considering all the objects in the domain. These models, when given a query and the
database describing the domain, would construct a smaller network that is needed for the
answering that query.

We have developed a language for representing prior relational knowledge about the
domain. The syntax consists of a set of rules that describe influence relationships between
objects in the domain. Since the model is relational, when instantiated with the values of
the domain, there could be multiple instantiations of the same object. For example, the
courses a student took or the documents that researcher worked on. The effects due to
the different instantiations are combined using either aggregators or combining rules. We
focus on the use of combining rules and develop learning algorithms based on Gradient
Descent and EM for learning the parameters of the relational models in the presence of
combining rules. We evaluate the algorithms on two domains: a folder predictor domain

and a synthetic domain to test the accuracy of the learned models.

1.2.3 Incorporating Relational Hierarchies

Given our experience with the more powerful models, our next goal is to design a richer
representation for the decision theoretic assistant framework. The assumption that the
user has a fixed set of flat goals is not particularly appropriate in real world. Consider
an example of a desktop assistant along the lines of CALO [13] that serves an academic
researcher. The researcher could have some high level goals like writing a proposal,
preparing for a meeting, writing a paper and preparing class notes etc. In turn each
of these goals would involve subgoals like editing a document, looking up references,
sending emails etc. The non-hierarchical model would reduce the task to a large number
of individual actions. This is not only unintuitive but also wasteful and is impractical for

larger problems. Instead, we explore the use of hierarchies which naturally capture the



user’s goal-subgoal structure and decomposes a higher level goal into a small number of
lower level goals.

But hierarchies alone do not suffice in many real-world applications. As we pointed out
earlier, the underlying model is relational in most real-world domains and this necessitates
the hierarchies to be relational as well. For instance, the task could be to write a paper to
a particular conference. If the hierarchies were propositional, we need a separate subtask
for writing papers to different conferences. In reality, writing conference papers follow a
similar pattern that includes running experiments, editing a particular document, sharing
it with co-authors and turning in the paper. The similarity between different papers can
be exploited if the task is relational, i.e., the task is parameterized with the parameter
being the properties of the paper that is being written. This would enable the model
learned from one conference to be used for helping the user in another conference. As
explained earlier, this concept of parameter tying makes it possible to share the parameters
and hence makes the learning process (and sometimes the inference as well) easier.

The relations between the objects can be used to constrain the number of objects that
need to be considered for a particular task. For instance, only a few related documents
would be referenced while working on a particular document. To exploit these ideas, the
hierarchy must be relational which in turn would make the inference problem simpler as
the constraints would restrict the set of objects that need to be considered. For details
see chapter 4. In this work, we propose to use a relational hierarchy to model the goal-
subgoal structure. Our hierarchies are a particular form of the goal-subgoal hierarchies
where goals at higher levels have parameters and make calls to the lower level goals
by passing appropriate parameters. We use Dynamic Bayesian Networks [53](DBNs) to
estimate the distribution of the goal-subgoal combination of the user and use myopic
heuristics to select the best assistive action. We present the results of the assistant model

in two toy domains: a grid world domain and a cooking domain.



1.2.4 Logical Hierarchical HMM

The DBN used in the Relational Hierarchical model cannot scale with the number of
objects in the domain. This is due to the fact, when we ground the objects of a domain,
it can lead to an exponential number of ground values based on the combinations of
the values of the objects and relations. This would mean that the inference can become
intractable. An alternative is to use sampling mechanisms for the DBNs, but the number
of ground states can grow drastically with the number of objects in the domain. For
example, the combinations of emails and the files that can be attached to those emails can
be very large for a typical user. It is impractical to enumerate all the possible combinations
in order to perform goal estimation.

The problem of huge state spaces led us to develop a relational model that can capture
this DBN succinctly. In particular, in this work, we have developed a Logical Hierarchi-
cal Hidden Markov Model(LoHiHMM) which can be used to track the user’s activity.
LoHiHMMSs can be understood as extending the HMMs to the relational (logical) and
hierarchical settings. The basic idea is that given a generalized model of the user’s activ-
ity in a particular domain, the problem of estimating the user’s goal corresponds to the
problem of performing inference given the observations(user actions). We propose the use
of LoHiHMMs to perform inference on the user’s goal-subgoal combinations. We outline
the syntax and define the semantics of the LoHiIHMM in this work. We also present an
inference algorithm based on particle filtering that avoids complete enumeration of the
state space. The activity recognition results are demonstrated using a real-world desktop

assistant and some synthetic domains.



1.2.5 Outline

The rest of the thesis is organized as follows: in the next chapter, we present the decision-
theoretic model of assistance and the experimental results. We provide a detailed overview
of the algorithms that we have developed for learning in relational models in the third
chapter and present empirical evidence for the performance of these algorithms. In the
fourth chapter, we present the relational hierarchical model for assistance and evaluate it
in two domains. In the penultimate chapter, we present our logical hierarchical hidden
markov model and use it for activity recognition. We conclude the thesis in the final

chapter by outlining some possible directions for future work.
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Chapter 2 — A Decision-Theoretic Model of Assistance

2.1 Overview

There is a growing interest in intelligent assistants for a variety of applications from
organizing tasks for knowledge workers to helping people with dementia. However, a
general framework that captures the notion of useful assistance is lacking. In this chapter,
we present and evaluate a decision-theoretic model of assistance. The objective is to
observe a goal-directed agent and to select assistive actions in order to minimize the overall
cost. We describe how to model this problem as an assistant POMDP where the hidden
state corresponds to the agent’s unobserved goals. This formulation naturally handles
uncertainty, varying action costs, and customization to specific agents via learning. Since
directly solving the assistant POMDP is often not a practical alternative, we consider an
approximate approach to action selection based on the computation of myopic heuristics
and bounded search. In addition, we introduce a novel approach to quickly learn the agent
policy, based on a rationality assumption, which is critical for the assistant to be useful
early in its lifetime. We evaluate our approach in two game-like computer environments
where human subjects perform tasks and a real-world domain of providing assistance
during folder navigation in a computer desktop environment. The results show that in all
three domains the framework results in an assistant that substantially reduces user effort

with only modest computation.
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2.2 Introduction

The development of intelligent computer assistants has tremendous impact potential in
many domains. A variety of Al techniques have been used for this purpose in domains
such as assistive technologies for the disabled [10] and desktop work management [54].
However, most of this work has been fine-tuned to the particular application domains.
In this chapter, we describe and evaluate a more comprehensive framework for designing
intelligent assistants.

We consider a model where the assistant observes a goal-oriented agent and must se-
lect assistive actions in order to best help the agent achieve its goals. To perform well
the assistant must be able to accurately and quickly infer the goals of the agent and
reason about the utility of various assistive actions toward achieving the goals. In real
applications, this requires that the assistant be able to handle uncertainty about the envi-
ronment and agent, to reason about varying action costs, to handle unforeseen situations,
and to adapt to the agent over time. Here we consider a decision-theoretic model, based
on partially observable Markov decision processes (POMDPs), which naturally handles
these features, providing a formal basis for designing intelligent assistants.

The first contribution of this work is to formulate the problem of selecting assistive
actions as an assistant POMDP, which jointly models the application environment along
with the agent’s policy and hidden goals. A key feature of this approach is that it explicitly
reasons about the environment and agent, which provides the potential flexibility for
assisting in ways unforeseen by the developer as new situations are encountered. Thus, the
developer need not design a hand-coded assistive policy for each of a set of preconceived
application scenarios. Instead, when using our framework, the burden on the developer is
to provide a model of the application domain and agent, or alternatively a mechanism for
learning one or both of these models from experience. Our framework then utilizes those

models in an attempt to compute, in any situation, whether assistance could be beneficial
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and if so what assistive action to select.

In principle, given an assistant POMDP, one could apply a POMDP solver in order
to arrive at an optimal assistant policy. Unfortunately, the relatively poor scalability of
POMDP solvers will often force us to utilize approximate/heuristic solutions. This is
particularly true when the assistant is continually learning updated models of the agent
and/or environment, which results in a sequence of more accurate assistant POMDPs,
each of which needs to be solved. A second contribution of our work is to describe a fast
online action selection mechanism that heuristically approximates the optimal policy of
the assistant POMDP. The approach is based on a combination of explicit goal estimation,
myopic heuristics, and bounded search. We argue that the approach is well-suited to
the assistant POMDP in many application domains even when restricted to small search
bounds. We propose two myopic heuristics, one based on solving a set of derived assistant
MDPs, and another based on the simulation technique of policy rollout.

In order for the above approach to be useful, the assistant POMDP must incorporate
a reasonably accurate model of the agent being assisted. A third contribution of our
work is to describe a novel model-based bootstrapping mechanism for quickly learning
the agent policy, which is important for the usability of an assistant early in its lifetime.
The main idea is to assume that that agent is “close to rational” in the decision-theoretic
sense, which motivates defining a prior on agent policies that places higher probability
on policies that are closer to optimal. This prior in combination with Bayesian updates
allows for the agent model to be learned quickly when the rationality assumption is
approximately satisfied, which we argue is often the case in many application.

A fourth contribution of our work is to evaluate our framework in three domains. First
we consider two game-like computer environments using 12 human subjects. The results
in these domains show that the assistants resulting from our framework substantially
reduce the amount of work performed by the human subjects. We also consider a more

realistic domain, the folder navigator [5] of the Task Tracer project. In the folder-navigator
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domain, the user navigates the directory structure searching for a particular location to
open or save a file, which is unknown to the assistant. The assistant has the ability
to take actions that provide “short cuts” by showing the user a set of three potential
destination folders. [5] formulated the problem in a supervised learning framework and
applied a cost-sensitive algorithm to predict the 3 most relevant folders at the beginning
of the navigation process. We model this problem in our framework, which allows for the
assistant to recommend folders at any point during navigation, not just at the beginning.
The results show that our generic assistant framework compares favorably to the hand-
coded solution of [5].

The remainder of this chapter is organized as follows. In the next section, we introduce
our formal problem setup, followed by a definition of the assistant POMDP. Next, we
present our approximate solution technique based on goal estimation and online action
selection. Finally we give an empirical evaluation of the approach in three domains and

conclude with a discussion of related and future work.

2.3 Problem Setup

Throughout the thesis we will refer to the entity that we are attempting to assist as the
agent (and sometimes as the user) and the assisting entity as the assistant. We assume
that the environment of the agent and assistant is a Markov decision process (MDP)
described by the tuple (W, A, A", T,C,I), where W is a finite set of world states, A is
a finite set of agent actions, A’ is a finite set of assistant actions, and T'(w,a,w’) is a
transition distribution that represents the probability of transitioning to state w’ given
that action a € AU A’ is taken in state w. We will sometimes use T'(w,a) to denote
a random variable distributed as T'(w,a,-). We assume that the assistant action set
always contains the action noop which leaves the state unchanged. The component C'

is an action-cost function that maps W x (AU A’) to real-numbers, and [ is an initial
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state distribution over W. We will sometimes treat I as a random variable whose value
represents the initial state.

We consider an episodic problem setting where at the beginning of each episode the
agent begins in some state drawn from I and selects a goal from a finite set of possible goals
G according to some unknown distribution. The goal set, for example, might contain all
possible dishes that the agent might be interested in cooking, or all the possible destination
folders that the user may possibly navigate to. When an assistant is not available, the
episode proceeds with the agent executing actions from A until it arrives at a goal state
upon which the episode ends. When an assistant is present it is able to observe the
changing state and the agent’s actions, but is unable to observe the agent’s goal. At any
point along the agent’s state trajectory the assistant is allowed to execute a sequence of
one or more actions from A’ ending in noop, after which the agent may again perform an
action. The episode ends when either an agent or assistant action leads to a goal state.
The cost of an episode is equal to the sum of the costs of the actions executed by the
agent and assistant during the episode. Note that the available actions for the agent and
assistant need not be the same and may have varying costs. Also note that the cost of
the assistant’s actions should be viewed as the cost of those actions from the perspective
of the agent. The objective of the assistant is to minimize the expected total cost of an
episode.

More formally, we will model the agent as an unknown stochastic policy 7(a|w, ¢g) that
gives the probability of selecting action a € A given that the agent has goal g and is in
state w. The assistant is a history-dependent stochastic policy 7’(a|w,t) that gives the
probability of selecting action a € A" given world state w and the state-action trajectory
t observed starting from the beginning of the trajectory. It is critical that the assistant
policy depend on ¢, since the prior states and actions serve as a source of evidence about
the agent’s goal, which is important for selecting good assistive actions. Given an initial

state w, an agent policy 7, and assistant policy 7’ we let C'(w, g, w, 7’), denote the expected
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cost of episodes that begin at state w with goal ¢ and evolve according to the following
process: 1) execute assistant actions according to 7" until noop is selected, 2) execute an
agent action according to 7, 3) if g is achieved then terminate, else go to step 1.

Given the above interaction model, we define the assistant design problem as follows.
We are given descriptions of an environment MDP, an agent goal distribution Gy, and an
agent policy m. The goal is to select an assistant policy 7’ that minimizes the expected
cost E[C(I,Gy,m,7")], which is simply the expected cost of interaction episodes for initial
states and goals drawn according to [ and Gy respectively. Note that the agent policy 7
and goal distribution GG will not necessarily be known to the assistant early in its lifetime.
In such cases, the assistant will need to learn these by observing the agent. One of the
contributions of this work, described later, is to introduce an approach for bootstrapping
the learning of the agent’s policy so as to provide useful early assistance.

Before proceeding it is worth reviewing some of the assumptions of the above formula-
tion and the potential implications. For simplicity we have assumed that the environment
is modeled as an MDP, which implies full observability of the world state. This choice
is not fundamental to our framework and one can imagine relatively straightforward ex-
tensions of our techniques that model the environment as a partially observable MDP
(POMDP) where the world states are not fully observable. We have also assumed that
the agent is modeled as a memoryless/reactive policy that gives a distribution over ac-
tions conditioned on only the current world state and goal. This assumption is also not
fundamental to our framework and one can also extend it to include more complex models
of the user, for example, that include hierarchical goal structures. Such an extension has
recently been explored [56].

We have also assumed for simplicity an interaction model between the assistant and
agent that involves interleaved, sequential actions rather than parallel actions. This, for
example, precludes the assistant from taking actions in parallel with the agent. While

parallel assistive actions are useful in many cases, there are many domains where sequen-
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tial actions are the norm. We are especially motivated by domains such as “intelligent
desktop assistants” that help store and retrieve files more quickly, helps sort email, etc.,
and “smart homes” that open doors, switch on appliances and so on. Many opportunities
for assistance in these domains is of the sequential variety. Also note that in many cases,
tasks that appear to require parallel activity can often be formulated as a set of threads
where each thread is sequential and hence can be formulated as a separate assistant.
Extending our framework to handle general parallel assistance is an interesting future
direction.

Finally, note that our sequential interaction model assumes that the assistant is allowed
to take an arbitrary number of actions until selecting NOOP, upon which the agent is
allowed to select a single action. This at first may seem like an unreasonable formulation
since it leaves open the possibility that the assistant may “take control” indefinitely long,
forcing the agent to pause until the assistant has finished. Note, however, that a properly
designed assistant would never take control for a long period unless the overall cost to
the agent (including annoyance cost) was justified. Thus, in our framework, with an
appropriately designed cost function for assistive and agent actions, the assistant can
be discouraged from engaging in a long task without giving control to the user, so the
problem of having to wait for the assistant does not arise. Also note that assistant actions
will often be on a much smaller time scale than agent actions, allowing the assistant to
perform a potentially complex sequence of actions without delaying the user (e.g. carrying
out certain file management tasks). In addition, a developer could restrict the number of
actions selected by the assistant by defining an appropriate MDP, e.g. one that forces the

assistant to select NOOP after each non-NOOP action.
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2.4 The Assistant POMDP

POMDPs provide a decision-theoretic framework for decision making in partially observ-
able stochastic environments. A POMDP is defined by a tuple (S, A, T, C, I, O, i), where
the first five components describe an MDP with a finite set of states 9, finite set of actions
A, transition distribution T'(s, a, s"), action cost function C, and initial state distribution
I. The component O is a finite set of observations and p(ols, a, s’) is a distribution over
observations o € O generated upon taking action a in state s and transitioning to state
s'. The primary distinction between a POMDP and an MDP is that a controller acting in
a POMDP is not able to directly observe the states of the underlying MDP as it evolves.
Rather, a controller is only able to observe the observations that are stochastically gener-
ated by the underlying state-action sequence. Thus, control of POMDPs typically involves
dealing with both the problem of resolving uncertainty about the underlying MDP state
based on observations and selecting actions to help better identify the state and/or make
progress toward the goal.

A policy for a POMDP defines a distribution over actions given the sequence of pre-
ceding observations. It is important that the policy depends on the history of observations
rather than only the current observation since the entire history can potentially provide
evidence about the current state. It is often useful to view a POMDP as an MDP over
an infinite set of belief states, where a belief state is simply a distribution over S. In this
case, a POMDP policy can be viewed as a mapping from belief states to actions. Note,
however, that the belief-state MDP has an infinite state space (the uncountable space of
distributions over S) and hence cannot be directly solved by standard techniques such as
dynamic programming which are typically defined for finite state spaces.

We will use a POMDP to jointly model the agent and environment from the perspective
of the assistant. Our goal is to define this “assistant POMDP” such that its optimal policy

is an optimal solution to the assistant design problem defined in the previous section. The
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assistant POMDP will allow us to address the two main challenges in selecting assistive
actions. The first challenge is to infer the agent’s hidden goals, which is critical to provide
good assistance. The assistant POMDP will capture goal uncertainty by including the
agent’s goal as a hidden component of the POMDP state. In effect, the belief states of the
assistant POMDP will correspond exactly to a distribution over possible agent’s goals.
The second challenge is that even if we know the agent’s goals, we must jointly reason
about the possibly stochastic environment, agent policy, and action costs in order to select
the best course of action. Our POMDP will capture this information in the transition
function and cost model, providing a decision-theoretic basis for such reasoning.

More formally, given an environment MDP (W, A, A", T, C,I), a goal distribution G
over a finite set of possible goals G, and an agent policy m we now define the corresponding

components of the assistant POMDP (S’ A", T',C', I',O', i'):

e The state space S’ is W x G so that each state is a pair (w, g) of a world state
and agent goal. The world state component will be observable to the assistant,
while the goal component will be unobservable and must be inferred. Note that
according to this definition, a belief state (i.e. a distribution over S’) corresponds

to a distribution over the possible agent’s goals G.

e The action set A’ is just the set of assistant actions specified by the environment
MDP. This choice reflects the fact that the assistant POMDP is used exclusively for

selecting actions for the assistant.

e The transition function 7" assigns zero probability to any transition that changes
the goal component of the state. This reflects the fact that the assistant can-
not change the agent’s goal by taking actions. Thus the agent’s goal remains
fixed throughout any episode of the assistant POMDP. Otherwise, for any ac-
tion a except for noop, the state transition from (w,g) to (w’, g) has probability

T'((w,g),a, (w,g)) = T(w,a,w'). This reflects the fact that when the agent takes
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a non-noop action the world will transition according the transition function spec-
ified by the environment MDP. Otherwise, for the noop action, 7" simulates the
effect of executing an agent action selected according to m and then transitioning
according to the environment MDP dynamics. That is, T7"((w, g), noop, (v', g)) =

/

T(w,m(w,g)) =w'.

The cost model C’ reflects the costs of agent and assistant actions in the MDP. For
all actions a except for noop we have that C’'((w, g),a) = C(w,a). Otherwise we
have that C'((w, g), noop) = E[C(w,a)], where a is a random variable distributed
according to 7(-|w, g). That is, the cost of a noop action is the expected cost of

the ensuing agent action.

The initial state distribution I’ assigns the state (w, g) probability I(w)Go(g),
which models the process of independently selecting an initial state and goal for the

agent at the beginning of each episode.

The observation set O’ is equal to W x (AU A’), that is all pairs of world states

and agent /assistant actions.

The observation distribution ;' is deterministic and reflects the fact that the as-
sistant can only directly observe the world state and actions. For the noop action
in state (w, g) leading to state (w', g), the observation is (w', a) where a € A is the
action executed by the agent immediately after the noop. Note that the observa-
tions resulting from noop actions are informative for inferring the agent’s goal since
they show the choice of action selected by the the agent in a particular state, which
depends on the goal. For all other assistant actions the observation is equal to the W
component of the state and the assistant action, i.e. u'((w,g),a, (w',g)) = (v, a).
Note that the observations resulting from non-noop actions are not informative with

respect to inferring the agent’s goals.
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Note that according to the above definition, a policy 7’ for the assistant POMDP is a
mapping from state-action sequences (i.e. the observations are pairs of states and agent
actions) to assistant actions. We must now define an objective function that will be used
to evaluate the value of a particular policy. For this purpose, we will assume an episodic
setting, where each assistant POMDP episode begins by drawing an initial POMDP state
(w, g) from I". Actions are then selected according to the assistant policy 7’ and transitions
occur according to 7" until a state (w’, g) is reached where w’ satisfies the goal g. Note
that whenever the assistant policy selects noop, the transition dictated by 7" simulates a
single action selected by the agent’s policy, which corresponds to the sequential interaction
model introduced in the previous section. Our objective function for the assistant POMDP
is the expected cost of a trajectory under #’. Note that this objective function corresponds
exactly to our objective function for the assistant design problem E[C(I, Gy, m,7')] from
the previous section. Thus, solving for the optimal assistant POMDP policy yields an
optimal assistant.

There are two main obstacles to solving the assistant POMDP and in turn the assistant
design problem. First, in many scenarios, initially the assistant POMDP will not be
directly at our disposal since we will lack accurate information about the agent policy =
and/or the goal distribution Go. This is often due to the fact that the assistant will be
deployed for a variety of initially unknown agents. Rather, we will often only be given
a definition of the environment MDP and the possible set of goals. As described in the
next section, our approach to this difficulty is to utilize an approximate assistant POMDP
by estimating m and Gy. Furthermore, we will also describe a bootstrapping mechanism
for learning these approximations quickly. The second obstacle to solving the assistant
POMDP is the generally high computational complexity of finding policies for POMDPs.
To deal with this issue Section 2.6 considers various approximate techniques for efficiently

solving the assistant POMDP.
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2.5 Learning the Assistant POMDP

In this section, we will assume that we are provided with the environment MDP and
the set of possible agent goals and that the primary role for learning is to acquire the
agent’s policy and goal distribution. This assumption is natural in situations where the
assistant is being applied many times in the same environment, but for different agents.
For example, in a computer desktop environment, the environment MDP corresponds to
a description of the various desktop functionalities, which remains fixed across users. If
one is not provided with a description of the MDP then it is typically straightforward
to learn this model with the primary cost being a longer “warming up” period for the
assistant.

Relaxing the assumption that we are provided with the set of possible goals is more
problematic in our current framework. As we will see in Section 2.6, our solution methods
will all depend on knowing this set of goals and it is not clear how to learn these from
observations, since the goals, unlike states and actions, are not directly observable to the
assistant. Extending our framework so that the assistant can automatically infer the set
of possible user goals, or allow the user to define their own goals, is an interesting future
direction. We note, however, it is often possible for a designer to enumerate a set of user
goals before deployment that while perhaps not complete, allow for useful assistance to

be provided.

2.5.1 Maximum Likelihood Estimates

It is straightforward to estimate the goal distribution Gy and agent policy 7 by simply
observing the agent’s actions, possibly while being assisted, and to compute empirical
estimates of the relevant quantities. This can be done by storing the goal achieved at the

end of each episode along with the set of world state-action pairs observed for the agent
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during the episode. The estimate of Gy can then be based on observed frequency of each
goal (usually with Laplace correction). Likewise, the estimate of 7(a|w, g) is simply the
frequency for which action a was taken by the agent when in state w and having goal
g. While in the limit these maximum likelihood estimates will converge to the correct
values, yielding the true assistant POMDP, in practice convergence can be slow. This slow
convergence can lead to poor performance in the early stages of the assistant’s lifetime.
To alleviate this problem we propose an approach for bootstrapping the learning of the

agent policy 7.

2.5.2 Model-Based Bootstrapping

We will leverage our environment MDP model in order to bootstrap the learning of the
agent policy. In particular, we assume that the agent is reasonably close to being optimal.
That is, for a particular goal and world state, an agent is more likely to select actions that
are closer to optimal. We term this assumption as the rationality assumption. This is not
unrealistic in many application domains that might benefit from intelligent assistants. In
particular, there are many tasks, that are conceptually simple for humans, yet they are
quite tedious and require substantial effort to complete. For example, navigating through
the directory structure of a computer desktop.

Given the rationality assumption, we initialize the estimate of the agent’s policy to
a prior that is biased toward more optimal agent actions. To do this we will consider
the environment MDP with the assistant actions removed and solve for the Q-function
Q(a,w, g) using MDP planning techniques. The Q-function gives the expected cost of
executing agent action a in world state w and then acting optimally to achieve goal g
using only agent actions. In a world without an assistant, a rational agent would always
select actions that maximize the Q-function for any state and goal. Furthermore, a close-

to-rational agent would prefer actions that achieve higher Q-values to highly suboptimal
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actions. We first define the Boltzmann distribution, which will be used to define our prior,

eXp(K ’ Q(av w, g))

T(alw, g) = Z(w.g)

where Z(w, g) is a normalizing constant, and K is a temperature constant. Using larger
values of K skews the distribution more heavily toward optimal actions. Given this
definition, our prior distribution over 7 (-|w, g) is taken to be a Dirichlet with parameters
(a1,...,ap4)), where o = a7 (a;|w, g). Here a is a parameter that controls the strength
of the prior. Intuitively ag can be thought of as the number of pseudo-actions represented
by the prior, with each «; representing the number of those pseudo-actions that involved
agent action a;. Since the Dirichlet is conjugate to the multinomial distribution, which is
the form of 7(+|w, g), it is easy to update the posterior over 7 (-|w, g) after each observation.
One can then take the mode or mean of this posterior to be the point estimate of the
agent policy used to define the assistant POMDP.

In our experiments, we found that this prior provides a good initial proxy for the actual
agent policy, allowing for the assistant to be immediately useful. Further updating of the
posterior tunes the assistant better to the peculiarities of a given agent. For example,
in many cases there are multiple optimal actions and the posterior will come to reflect
any systematic bias for equally good actions that an agent has. Computationally the
main obstacle to this approach is computing the Q-function, which needs to be done
only once for a given application domain since the environment MDP is constant. Using
dynamic programming this can accomplished in polynomial time in the number of states
and goals. When this is not practical, a number of alternatives exist including the use
of factored MDP algorithms [11], approximate solution methods [11, 31], or developing
domain specific solutions.

Finally, in this work, we utilize an uninformative prior over the goal distribution. An

interesting future direction would be to bootstrap the goal distribution estimate based on
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observations from a population of agents.

2.6 Solving the Assistant POMDP

We now consider the problem of solving the assistant POMDP. Unfortunately, general
purpose POMDP solvers are generally quite inefficient and not practical to use in many
cases. This is particularly true in our framework where the assistant POMDP is continu-
ally being refined by learning more accurate estimates of the agent goal distribution and
agent policy, which requires re-solving the assistant POMDP when the model is updated.
For this reason, we adopt a Bayesian goal estimation followed by a heuristic action selec-
tion approach that we argue is natural for many assistant POMDPs and we show that
it works well in practice. Below, we first give an overview of our solution algorithm and

then describe each of the components in more detail.

2.6.1 Overview

Denote the assistant POMDP by M = (S", A", T',C'", I',O', i) and let O; = 04, ..., 0; be an
observation sequence observed by assistant from the beginning of the current trajectory
until time £. Note that each observation is a tuple of a world state and the previously
selected action (by either the assistant or agent). Given O; and M our goal is to compute
an assistant action whose value is close to optimal.

To motivate the approach, it is useful to consider some special characteristics of the
assistant POMDP. Most importantly, the belief state corresponds to a distribution over
the agent’s goal. Since the agent is assumed to be goal directed, the observed agent actions
provide substantial evidence about what the goal might and might not be. In fact, even
if the assistant does nothing, the agent’s goals will often be rapidly revealed by analyzing

the relevance of the agent’s initial actions to the possible goals. This suggests that the
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state/goal estimation problem for the assistant POMDP may be solved quite effectively
by just observing how the agent’s actions relate to the various possible goals, rather
than requiring the assistant to select actions explicitly for the purpose of information
gathering about the agent’s goals. In other words, we can expect that for many assistant
POMDPs, purely (or nearly) myopic action selection strategies, which avoid reasoning
about information gathering, will be effective. Reasoning about information gathering is
one of the key complexities involved in solving POMDPs compared to MDPs. Here we
leverage the intuitive properties of the assistant POMDP to gain tractability by limiting
or completely avoiding such reasoning.

We note that in some cases, the assistant will have pure information-gathering actions
at its disposal, e.g. asking the agent a question. While we do not consider such actions in
our experiments, we believe that such actions can be handled naturally in this framework

by incorporating only a small amount of look-ahead search.

P(G)

Goal Estimation Action Selection

‘( Assistant /

&\ 1 -
— Environment g

Figure 2.1: Depiction of the assistant architecture. The user/agent has a hidden goal
and selects actions U; that cause the environment to change world state W;, typically
moving closer to the goal. The assistant (upper rectangle) is able to observe the world
state along with the observations generated by the environment, which in our setting
contain the user/agent actions along with the world state. The assistant is divided into
two components. First, the goal estimation component computes a posterior over agent
goals P(G) given the observations. Second, the action selection component uses the goal
distribution to compute the best assistive action A; via a combination of bounded search
and myopic heuristic computation. The best action might be noop in cases where none
of the other assistive actions has higher utility for the user.
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With the above motivation, our assistant architecture, depicted in Figure 2.1, alter-

nates between goal estimation and action selection as follows:

1. After observing the agent’s next action, we update the goal distribution based on

the assistant POMDP model.

2. Based on the updated distribution we evaluate the effectiveness of assistant actions
(including noop by building a sparse-sampling look-ahead tree of bounded depth
(perhaps just depth one), where leaves are evaluated via a myopic heuristic. If the
best action is noop then control is given to the agent and we go to step 1, otherwise

we repeat step 2.

The key element of the architecture is the computation of the myopic heuristics. On top
of this heuristic, we can optionally obtain non-myopic behavior via search by building
a look-ahead sparse-sampling tree. Our experiments show that such search can improve
performance by a small margin at a significant computational cost. We note that the idea
of utilizing myopic heuristics to select actions in POMDPs is not new, see for example
[14, 26], and similar methods have been used previously with success in applications such
as computer bridge [30]. The main contribution here is to note that this approach seems
particularly well suited to the assistant POMDP and also in later sections to suggest some
efficiently computable heuristics that are specifically designed for the assistant POMDP
framework. Below we describe the goal estimation and action selection operations in more

detail.

2.6.2 Goal Estimation

Given an assistant POMDP with agent policy = and initial goal distribution Gy, our
objective is to maintain the posterior goal distribution P(g|O;), which gives the probability

of the agent having goal g conditioned on observation sequence O;. Note that since we have
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assumed that the assistant cannot affect the agent’s goal, only observations related to the
agent’s actions are relevant to the posterior. Given the agent policy 7, it is straightforward
to incrementally update the posterior P(g|O;) upon each of the agent’s actions by referring
to the Bayesian network of Figure 2.2. The node g refers to the current goal of the user
and is the only hidden variable that is distributed according to the current goal posterior,
A; denotes the agent’s action at time ¢, and W, refers to the world state at time-step t.
The agent action A; is distributed according to the agent’s policy .

At the beginning of each episode we initialize the goal distribution P(g|Oy) to Go.
On timestep t of the episode, if 0, does not involve an agent action, then we leave the
distribution unchanged. Otherwise, when the agent selects action a in state w, we update
the posterior according to P(g|O;) = (1/7)-P(g|O¢—1)-7(a|w, g), where Z is a normalizing
constant. That is, the distribution is adjusted to place more weight on goals that are more

likely to cause the agent to execute action a in w. The accuracy of goal estimation relies on

° P(Al g, wy
(o) .

Figure 2.2: The Bayes net used to compute the posterior distribution over the agent’s
goals. The node A; represents the agent action that is conditioned on the agent’s goal G
and current world state W;. In the simplest setting GG is the only hidden variable with
both the agent actions and states being observable. In other cases, the agent action may
also be hidden, with only the state transition being directly observable.

how well the policy 7 learned by the assistant reflects the true agent policy. As described
above, we use a model-based bootstrapping approach for estimating 7= and update this

estimate at the end of each episode. Provided that the agent is close to optimal, as in our
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experimental domains, this approach can lead to rapid goal estimation, even early in the

lifetime of the assistant.

We have assumed for simplicity that the actions of the agent are directly observable.
In some domains, it is more natural to assume that only the state of the world is observ-
able, rather than the actual action identities. In these cases, after observing the agent
transitioning from w to w’ we can use the MDP transition function 7" to marginalize over

possible agent actions yielding the update,

P(g|Oy) = (1/Z) - P(g|Or-1) - Y _ w(alw, 9)T(w, a,w').
acA

2.6.3 Action Selection

Given the assistant POMDP M and a distribution over goals P(g|O;), we now address
the problem of selecting an assistive action. Our mechanisms utilize a combination of
bounded look-ahead search and myopic heuristic computations. By increasing the amount
of look-ahead search the actions returned will be closer to optimal at the cost of more
computation. Fortunately, for many assistant POMDPs, useful assistant actions can be
computed with relatively little or no search. We first describe several myopic heuristics
that can be used either for greedy action selection or in combination with search. Next,

we describe how to utilize sparse sampling to obtain non-myopic action selection.

2.6.3.1 Myopic Heuristics

To explain the action selection procedure, we introduce the idea of an assistant MDP
relative to a goal g and M, which we will denote by M(g). The MDP M (g) is identical

to M except that we change the initial goal distribution such that P(Gy = g) = 1. That
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is, the goal is always fixed to g in each episode. Since the only hidden component of
M’s state space was the goal, fixing the goal in M(g) makes the state fully observable,
yielding an MDP. Each episode in M (g) evolves by drawing an initial world state and
then selecting assistant actions until a noop, upon which the agent executes an action
drawn from its policy for achieving goal g. An optimal policy for M(g) gives the optimal
assistive action assuming that the agent is acting to achieve goal g. We will denote the
Q-function of M(g) by Q4(w,a), which is the expected cost of executing action a and
then following the optimal policy. We assume that the MDP M(g) can be solved easily.
We call this assumption as the tractability assumption

Our first myopic heuristic is simply the expected Q-value of an action over assistant
MDPs. This heuristic has also been called the Qypr method in [14]. The heuristic value

for assistant action a in state w given observations Oy is
H(w,a,0;) = ZQg w,a) - P(g|0y).

Intuitively H(w,a,O;) measures the utility of taking an action under the assumption
that all goal ambiguity is resolved in one step. Thus, this heuristic will not value the
information-gathering utility of an action. Rather, the heuristic will favor assistant actions
that make progress toward goals with high posterior probability, while avoiding moving
away from goals with high probability. When the goal posterior is highly ambiguous this
will often lead the assistant to prefer noop, which at least does not hurt progress toward
the goal. Note that this heuristic, as well as the others below, can be used to evaluate
the utility of a state w, rather than a state-action pair, by maximizing over all actions
max, H(w',a,Oy).

The primary computational complexity of computing H is to solve the assistant MDPs
for each goal in order to obtain the Q-functions. Technically, since the transition functions

of the assistant MDPs depend on the approximate agent policy 7w, we must re-solve each
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MDP after updating the 7 estimate at the end of each episode. However, using incremental
dynamic programming methods such as prioritized sweeping [50] can alleviate much of
the computational cost. In particular, before deploying the assistant we can solve each
MDP offline based on the default agent policy given by the Boltzmann bootstrapping
distribution described earlier. After deployment, prioritized sweeping can be used to
incrementally update the Q-values based on the learned refinements we make to 7.
When it is not practical to exactly solve the assistant MDPs, we may resort to various
approximations. We consider two approximations in our experiments. One is to replace
the user’s policy to be used in computing the assistant MDP with a fixed default user
policy, eliminating the need to compute the assistant MDP at every step. We denote this
approximation by Hy. Another approximation uses the simulation technique of policy
rollout [7] to approximate ,(w,a) in the expression for H. This is done by first simu-
lating the effect of taking action a in state w and then using 7 to estimate the expected
cost for the agent to achieve ¢ from the resulting state. That is, we approximate Q4(w, a)
by assuming that the assistant will only select a single initial action followed by only
agent actions. More formally, let C, (7, w, g) be a function that simulates n trajectories
of m achieving the goal from state w and then averaging the trajectory costs. The heuris-
tic H, is identical to H(w,a,O;) except that we replace Q,(w,a) with the expectation
> wew L(w,a,w’) - C(m,w', g). We can also combine both of these heuristics, using a

fixed default user policy and policy rollouts, which we denote by H,,,.

2.6.3.2 Sparse Sampling

All of the above heuristics can be used to greedily select assistant actions, resulting in
purely myopic action-selection strategies. In cases where it is beneficial to include some
amount of non-myopic reasoning, one can combine these heuristics with shallow search in

the belief space of the assistant MDP. For this purpose we utilize depth d bounded sparse
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sampling trees [40] to compute an approximation to the Q-function for a given belief
state (wy, O;), denoted by Q%(wy, a, O;). Given a particular belief state, the assistant will
then select the action that maximizes @Q?. Note that for convenience we represent the
belief state as a pair of the current state w; and observation history O,. This is a lossless
representation of the belief state since the posterior goal distribution can be computed
exactly from O; and the goal is the only hidden portion of the POMDP state.

As the base case Q°(wy, a, O;) will be equal to one of our myopic heuristics described
above. Increasing the depth d will result in looking ahead d state transitions and then
evaluating one of our heuristics. By looking ahead it is possible to track the potential
changes to the belief state after taking certain actions and then determine whether those
changes in belief would be beneficial with respect to providing better assistance. Sparse

sampling, does such look-ahead by approximately computing:

Q'(w,a,0) = E[C'((w,g),a) + V(v O] (2.1)

Vi(w,0) = minQ%w,a,O) (2.2)

where ¢ is a random variable distributed according to the goal posterior P(g|O) and
(w',0") is a random variable that represents the belief state after taking action a in
belief state (w,O). In particular, w’ is that world state arrived at and O’ is simply
the observation sequence O extended with the observation obtained during the state
transition. The first term in the above expectation represents the immediate cost of the
assistant action a. According to the definition of the assistant POMDP, this is simply the
cost of the assistant action in the underlying MDP for non-noop actions. For the noop
action, the cost is equal to the expected cost of the agent action.

Sparse sampling approximates the above equations by averaging a set of b samples of
successor belief states to approximate the expectation. The sparse-sampling pseudo-code

is presented in Table 2.1.Given an input belief state (w, O), assistant action a, heuristic
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H, depth bound d, and sampling width b the algorithm returns (an approximation of)
Q% w,a,0). First, if the depth bound is equal to zero the heuristic value is returned.
Otherwise b samples of observations resulting from taking action a in belief state (w, O)
are generated. In the case that the action is not noop, the observation is created by
simulating the effect of the assistant action in the environment MDP and then forming
an observation from the pair of resulting state and action a (recall that observations are
pairs of states and previous actions). In the case that the assistant action is noop, the
observation is generated by sampling an agent goal and an action and then simulating the
environment MDP for the agent action. The observation is simply the pair of resulting
state and agent action. Each observation o; = (w;, a;) corresponds to a new belief state
(wy, [O; 0;]) where [O; 0] is simply the concatenation of 0; to O. The code then recursively
computes a value for each of these belief states by minimizing Q% over all actions and then
averages the results.

As b and d become large, sparse sampling will produce an arbitrarily close approxi-
mation to the true Q-function of the belief state MDP. The computational complexity of
sparse sampling is linear in b and exponential in d. Thus the depth must be kept small

for real-time operation.

2.7 Experimental Results

In this section, we present the results of conducting user studies and simulations in three
domains: two game-like environments and a folder predictor domain for an intelligent
desktop assistant. In the user studies in the two game-like domains, for each episode, the
user’s and the assistant’s actions were recorded. The ratio of the cost of achieving the
goal with the assistant’s help to the optimal cost without the assistant was calculated
and averaged over the multiple trials for each user. We present similar results for the

simulations as well. The third domain is a folder predictor domain, where we simulated



33

Table 2.1: Pseudo-code for Sparse Sampling in the Assistant POMDP

e Given: heuristic function H, belief state (w,O), action a, depth
bound d, sampling width b

e Return: an approximation Q%(w,a, Q) of the value of a in belief
state (w, O)

1. If d = 0 then return H(w,a,O)

2. Sample a set of b observations {o1,...,0p} resulting from taking
action a in belief state (w,O) as follows:
(a) If a # noop then a; = a, otherwise,
(b) If a = noop then
e Sample a goal g from P(g|O)

e Sample an agent action a; from the agent policy 7(-|w, g)

(¢) 0; = (wj,a;), where w; is sample from the environment MDP
transition function T'(w, a;,-)

3. For each o; = (w;, a;) compute V; = ming Q% (w;, d', [O; 0;])

4. Return Q%(w, a,0) = C(w, a;) + % > Vi

the user and used one of our heuristics to generate the top 3 recommended folders for the
user. We present the number of clicks required on an average for the user to reach his

desired folder.

2.7.1 Doorman Domain

In the doorman domain, there is an agent and a set of possible goals such as collect wood,
food and gold. Some of the grid cells are blocked. Each cell has four doors and the agent
has to open the door to move to the next cell (see Figure 2.3). The door closes after one
time-step so that at any time only one door is open. The goal of the assistant is to help

the user reach his goal faster by opening the correct doors.
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A state is a tuple (s, d), where s stands for the the agent’s cell and d is the door that
is open. The actions of the agent are to open door and to move in each of the 4 directions
or to pickup whatever is in the cell, for a total of 9 actions. The assistant can open the
doors or perform a noop (5 actions). Since the assistant is not allowed to push the agent
through the door, the agent’s and the assistant’s actions strictly alternate in this domain.
There is a cost of —1 if the user has to open the door and no cost to the assistant’s action.
The trial ends when the agent picks up the desired object.

In this experiment, we evaluated the two heuristics: one where we fixed the user policy
to the default policy in the assistant POMDP creation (H;) and the second where we use
the policy rollout to calculate the Q-values (H,). In each trial, the system chooses a goal
and one of the two heuristics at random. The user is shown the goal and he tries to
achieve it, always starting from the center square. After every user’s action, the assistant
opens a door or does nothing. The user may pass through the door or open a different
door. After the user achieves the goal, the trial ends, and a new one begins. The assistant

then uses the user’s trajectory to update the agent’s policy.

g =)

[

s 5
| |

Figure 2.3: Doorman Domain. The agent’s goal is to fetch a resource. The grid cells are
separated by doors that must be opened before passing through.

The results of the user studies for the doorman domain are presented in Figure 2.2.
The first two rows give cumulative results for the user study when actions are selected
greedily according to H, and H, respectively. The table presents the total optimal costs

(number of actions) for all trials across all users without the assistant N, and the costs
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with the assistant U, and the average of percentage cost savings (1-(U/N)) over all trials
and over all the users!.

As can be seen, both the methods reduce the cost to less than 50%. An omniscient
assistant who knows the user’s goal reduces the cost to 22%(i.e., the assistant performs
78% of the actions). This is not 0 because the first door is always opened by the user. In
our experiments, if we do not count the user’s first action, the cost reduces to 35%(the
assistant performs 65% of the actions). It can be observed that H, appears to have a slight
edge over H;. One possible reason for this is that while using Hy, we do not re-solve the
MDP after updating the user policy, while H, is always using the updated user policy.

Thus, rollout is reasoning with a more accurate model of the user.

Total User | Fractional Savings Time
Heuristic Actions | Actions 1—-(U/N) per
N U action (in secs

H, 750 339 0.55+ 0.055 0.0562

H, 882 435 0.51 £ 0.05 0.0021

H, 1550 751 0.543 £ 0.17 0.031
d=2,b=1]| 1337 570 0.588 £+ 0.17 0.097
d=2,b=2 1304 521 0.597 £ 0.17 0.35
d=3,b=1]| 1167 467 0.6 £ 0.15 0.384
d=3,b=2 1113 422 0.623 £+ 0.15 2.61

Table 2.2: Results of experiments in the Doorman Domain. The first two rows of the
table present the results of the user studies while the rest of the table presents the results
of the simulation.

Another interesting observation is that there are individual differences among the
users. Some users always prefer a fixed path to the goal regardless of the assistant’s
actions. Some users are more flexible. From the survey, we conducted at the end of the
experiment, we learned that one of the features that the users liked was that the system
was tolerant to their choice of suboptimal paths. The data reveals that the system was

able to reduce the costs by approximately 50% even when the users chose suboptimal

IThis gives a pessimistic estimate of the usefulness of the assistant assuming an optimal user and is a
measure of utility normalized by the optimal utility without the aid of the assistant.
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trajectories.

We also conducted experiments using sparse sampling with non-trivial depths. We
considered depths of d = 1 and d = 2 while using sampling widths of b =1 or b = 2. The
leaves of the sparse sampling tree are evaluated using H, which simply applies rollout
to the user policy. Hence sparse sampling of d = 0 and b = 1, would correspond to the
heuristic H,. For these experiments, we did not conduct user studies, due to the high cost
of such studies, but simulated the human users by choosing actions according to policies
learned from their observed actions. The results are presented in the last 5 rows of Table
2.2. We see that sparse sampling increased the average run time by an order of magnitude,
but is able to produce a reduction in average cost for the user. This result is not surprising
in hindsight, for in the simulated experiments, sparse sampling is able to sample from the
exact user policy (i.e. it is sampling from the learned policy, which is also being used
for simulations). These results suggest that a small amount of non-myopic reasoning can
have a positive benefit with a substantial computation cost. Note, however, that the bulk
of the benefit realized by the assistant can be obtained without such reasoning, showing

that the myopic heuristics are well-suited to this domain.

2.7.2 Kitchen Domain

In the kitchen domain, the goals of the agent are to cook various dishes. There are 2
shelves with 3 ingredients each. Each dish has a recipe, represented as a partially ordered
plan. The ingredients can be fetched in any order, but should be mixed before they are
heated. The shelves have doors that must be opened before fetching ingredients and only
one door can be open at a time.

There are 8 different recipes. The state consists of the location of each of the ingredient
(bowl/shelf/table), the mixing state and temperature state of the ingredient (if it is in the

bowl) and the door that is open. The state also includes the action history to preserve
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Figure 2.4: The kitchen domain. The user is to prepare the dishes described in the recipes
on the right. The assistant’s actions are shown in the bottom frame.

the ordering of the plans for the recipes. The user’s actions are: open the doors, fetch
the ingredients, pour them into the bowl, mix, heat and bake the contents of the bowl, or
replace an ingredient back to the shelf. The assistant can perform all user actions except
for pouring the ingredients or replacing an ingredient back to the shelf. The cost of all
non-pour actions is -1. Experiments were conducted on 12 human subjects. Unlike in the
doorman domain, here it is not necessary for the assistant to wait at every alternative time
step. The assistant continues to act until the noop becomes the best action according to
the heuristic.

This domain has a large state space and hence it is not possible to update the user
policy after every trajectory. The two heuristics that we compare both use the default
user policy. The second heuristic in addition uses policy rollout to compare the actions.
In other words, we compare Hy and H,,. The results of the user studies are shown in
top part of the Table 2.3. The total cost of user’s optimal policy, the total cost when the
assistant is present, and the average ratio of the two are presented. The number of user
actions was summed over 15 users and the cumulative results are presented. It can be
observed that H;, performs better than Hy. It was observed from the experiments that
the H,, technique was more aggressive in choosing non-noop actions than the Hy, which

would wait until the goal distribution is highly skewed toward a particular goal.
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Total User | Fractional Savings Time

Heuristic Actions | Actions 1—-(U/N) per
N U action (secs)

Hgy, 3188 1175 0.6361 £0.15 0.013

H, 3175 1458 0.5371+ 0.10 0.013

Hgy, 6498 2332 0.6379 £ 0.14 0.013

d=2,b=1 6532 2427 0.6277 £ 0.14 0.054

d=2,b= 6477 2293 0.646 £ 0.14 0.190

d=3,b=1 6536 2458 0.6263 £0.15 0.170

d=3,b= 6585 2408 0.645 £+ 0.14 0.995

Table 2.3: Results of experiments in the Kitchen Domain. The first two rows of the table
present the results of the user studies while the last 5 rows present the results of the
simulation.

We compared the use of sparse sampling and our heuristic on simulated user trajecto-
ries for this domain as well (see the last 5 rows of Table 2.3). It can be observed that the
total number of user actions is much higher for the simulations than the user studies due
to the fact that user studies are costly. The simulations had to consider a much larger
state-space than the one used in the user studies. Because of this, the policies learned on
simulations are significantly cheaper than in the user studies, although they took more
time to execute. There is no significant difference between the solution quality of rollouts
and sparse sampling on simulations, showing that our myopic heuristics are performing as
well as sparse sampling with much less computation. Sparse sampling with higher depths

requires an order of magnitude more computation time when compared to the rollout.

2.7.3 Folder Predictor

In this section, we present the evaluation of our framework on a real-world domain. As
a part of the Task Tracer project [22], researchers developed a file location system called
folder predictor [5]. The idea behind the folder predictor is that by learning about the
user’s file access patterns, the assistant can help the user with his file accesses by predicting

the folder in which the file has to be accessed or saved.
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In this setting, the goal of the folder predictor is to minimize the number of clicks of
the user. The predictor would choose the top three folders that would minimize the cost
and then append them to the Ul (shown in ovals in Figure 2.5). Also, the user is taken
to the first recommended folder. So if the user’s target folder is the first recommended
folder, the user would reach the folder in zero clicks and reach the second or the third
recommended folder in one click. The user can either choose one of the recommendations

or navigate through the windows folder hierarchy if the recommendations are not relevant.

Figure 2.5: Folder predictor [5].

Bao et al. considered the problem as a supervised learning problem and implemented
a cost-sensitive algorithm for the predictions with the cost being the number of clicks of
the user [5]. But, their algorithm does not take into account the response of the user to
their predictions. For instance, if the user chooses to ignore the recommended folders and
navigates the folder hierarchy, they do not make any re-predictions. This is due to the fact
that their model is a one-time prediction and does not consider the user responses. Also,
their algorithm considers a restricted set of previously accessed folders and their ancestors
as possible destinations. This precludes handling the possibility of user accessing a new
folder.

Our decision-theoretic model naturally handles the case of re-predictions by changing
the recommendations in response to the user actions. As a first step, we used the data
collected from their user interface and used our model to make predictions. We use

the user’s response to our predictions to make further predictions. Also, to handle the
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possibility of a new folder, we consider all the folders in the folder hierarchies for each
prediction. We used a mixture density to obtain the probability distribution over the

folders.

P(f) = polo(f) + (1 — po) Pi(f)

Here F, is the probability according to Bao et.al’s algorithm, P, is the uniform proba-
bility distribution over the set of folders and p is ratio of the number of times a previously
accessed folder has been accessed to the total number of folder accesses.

The idea behind using the above density function is that during early stages of a task,
the user will be accessing new folders while in later stages the user will access the folders
of a particular task hierarchy. Hence as the number of folder accesses increase the value
of g increases and would converge to 1 eventually and hence the resulting distribution
would converge to Fy. The data set consists of a collection of requests to open a file
(Open) and save a file (saveAs), ordered by time. Each request contains information such
as, the type of request (open or saveAs), the current task, the destination folder etc. The
data set consists of a total of 810 open/saveAs requests. The folder hierarchy consists of
226 folders.

The state space consists of 4 parts: the current folder that the user is accessing and

the three recommendations two of which are unordered. This would correspond to a state

224

space of size 226 x 225 X ( 5

). The action of the user is either to choose a recommended

folder or select a different folder. The action of the assistant corresponds to choosing the

224

5 ) The cost in our case was the

top 3 folders and the action space is of size 225 x (
number of user clicks to the correct folder. In this domain, the assistant and the user’s
actions strictly alternate as the assistant revises its predictions after every user action.

The prior distribution was initialized using the costs computed by the model developed

in [5].
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We applied the decision theoretic model to the data set. For each request, our assistant
would make the prediction using the Hg, heuristic (which uses the default user policy
and the rollout method) and then the user is simulated. The user would accept the
recommendation if it shortens his path to the goal else would act according to his optimal
policy. The user here is considered close to optimal, which is not unrealistic in the real
world. To compare our results, we also used the model developed by Bao et al. in the

data set and present the results in Table 2.4.

One-time Prediction | With Repredictions
Restricted folder set 1.3724 1.34
All Folders 1.319 1.2344

Table 2.4: Results of the experiments in the folder predictor domain. The entry in the top
left hand cell is the performance of the current Task Tracer, while the one in the bottom
right hand cell is the performance of the decision-theoretic assistant

The table shows the average cost of folder navigation for 4 different cases: Bao et.al’s
original algorithm, their algorithm modified to include mixture distributions and our
model with and without mixture distributions. It can be seen that our model with the
use of mixture distributions has the least user cost for navigation and hence is the most
effective. This improvement can be attributed to the two modifications mentioned earlier;
first, the use of re-predictions in our model which is natural to the decision-theoretic
framework while their model makes a one-time prediction and hence cannot make use of
the user’s response to the recommendations. Secondly, the fact that we consider all folders
in the hierarchy for prediction and thus considering the possibility of the user accessing
a new folder. It can be observed that either of the modifications yields a lower cost than

the original algorithm, but combining the two changes is significantly more effective.
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2.8 Discussion and Related Work

Our work is inspired by the growing interest and success in building useful software as-
sistants [54]. Some of this effort is focused on building desktop assistants that help with
tasks such as email filtering, on-line diagnostics, and travel planning. Each of these tasks
typically requires designing a software system around specialized technologies and algo-
rithms. For example, email filtering is typically posed as a supervised learning problem
[16], travel planning combines information gathering with search and constraint prop-
agation [2], and printer diagnostics is formulated as Bayesian network inference [65].
Unfortunately the plethora of systems and approaches lacks an overarching conceptual
framework, which makes it difficult to build on each others’” work. We argue that a
decision-theoretic approach provides such a common framework and allows the design
of systems that respond to novel situations in a flexible manner reducing the need for
pre-programmed behaviors. We formulate a general version of the assistantship problem
that involves inferring the user’s goals and taking actions to minimize the expected costs.

Earlier work on learning apprentice systems focused on learning from the users by
observation [48, 49]. This work is also closely related to learning from demonstration or
programming by demonstration [4, 17, 46]. The emphasis in these systems is to provide
an interface where the computer system can unobtrusively observe the human user doing
a task and learn to do it by itself. The human acts both as a user and as a teacher. The
performance of the system is measured by how quickly the system learns to imitate the
user, i.e., in the supervised learning setting. Note that imitation and assistance are two
different things in general. While we expect our secretaries to learn about us, they are
not typically expected to replace us. In our setting, the assistant’s goal is to reduce the
expected cost of user’s problem solving. If the user and the assistant are capable of exactly
the same set of actions, and if the assistant’s actions cost nothing compared to the user’s,

then it makes sense for the assistant to try to completely replace the human. Even in this
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case, the assistantship framework is different from learning from demonstration in that it
still requires the assistant to infer the user’s goal from his actions before trying to achieve
it. Moreover, the assistant might learn to solve the goal by itself by reasoning about its
action set rather than by being shown examples of how to do it by the user. In general,
however, the action set of the user and the assistant may be different, and supervised
learning is not appropriate. For example, this is the case in our Folder predictor. The
system needs to decide which set of folders to present to the user, and the user needs to
decide which of those to choose. It is awkward if not impossible to formulate this problem
as supervised learning or programming by demonstration.

Taking the decision-theoretic view helps us approach the assistantship problem in a
principled manner taking into account the uncertainty in the user’s goals and the costs
of taking different actions. The assistant chooses an action whose expected cost is the
lowest. The framework naturally prevents the assistant from taking actions (other than
noop) when there is no assistive action which is expected to reduce the overall cost for the
user. Rather than learning from the user how to behave, in our framework the assistant
learns the user’s policy. This is again similar to a secretary who learns the habits of his
boss, not so much to imitate her, but to help in the most effective way. In this work we
assumed that the user MDP is small enough that it can be solved exactly given the user’s
goals. This assumption may not always be valid, and it makes sense in those cases to learn
from the user how to behave. It is most natural to treat this as a case where the user’s
actions provide exploratory guidance to the system [15, 23]. This gives an opportunity
for the system to imitate the user when it knows nothing better and improve upon the
user’s policy when it can.

There have been other personal assistant systems that are based on POMDP models.
However, these systems are formulated as domain-specific POMDPs and solved offline.
For instance, the COACH system helped people suffering from Dementia by giving them

appropriate prompts as needed in their daily activities [10]. They use a plan graph to keep
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track of the user’s progress and then estimate the user’s responsiveness to determine the
best prompting strategy. A distinct difference from our approach is that there is only a
single fixed goal of washing hands, and the only hidden variable is the user responsiveness.
Rather, in our formulation the goal is a random variable that is hidden to the assistant. We
note, that a combination of these two frameworks would be useful, where the assistant
infers both the agent goals and other relevant hidden properties of the user, such as
responsiveness.

In FElectric Elves, the assistant takes on many of the mundane responsibilities of the
human agent including rescheduling meetings should it appear that the user is likely to
miss it. Again a domain-specific POMDP is formulated and solved offline using a variety
of techniques. In one such approach, since the system monitors users in short regular
intervals, radical changes in the belief states are usually not possible and are pruned from
the search space [68]. Neither exact nor approximate POMDP solvers are feasible in our
online setting, where the POMDP is changing as we learn about the user, and must be
repeatedly solved. They are either too costly to run [10], or too complex to implement as
a baseline, e.g., Electric Elves [68]. Our experiments demonstrate simple methods such
as one-step look-ahead followed by rollouts would work well in many domains where the
POMDPs are solved online. In a distinct but related work [21], the authors introduce
the setting of interactive POMDPs, where each agent models the other agent’s beliefs.
Clearly, this is more general and more complex than ordinary POMDPs. Our model is
simpler and assumes that the agent is oblivious to the presence and beliefs of the assistant.
While the simplified model suffices in many domains, relaxing this assumption without
sacrificing tractability would be interesting.

Reinforcement Learning has been explored before in specific interactive settings such
as in dialogue management in spoken dialogue systems [64, 69]. For example, the goal
of the NJFun system in [64] is to learn a policy for optimally interacting with the user

who is trying to query a database in spoken natural language. In particular the system
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decides when to take initiative in the dialogue, and whether to confirm its understanding
of the speaker’s utterance. The user’s speech is processed through an automatic speech
recognition (ASR) system which produces a noisy belief state which is compressed into a
set of derived features. A dialogue policy is then learned over this set of derived features.
The approach taken is to first learn a user’s model through an exploratory phase, and
then use offline value-iteration on the model to learn an optimal policy. This work can
be viewed as a specific instance of our assistantship framework to dialogue management
where the state/goal estimation is done by a separate ASR system and the action selection
is done by offline reinforcement learning.

Our work is also related to on-line plan recognition and can be naturally extended to
include hierarchies as in the hierarchical versions of HMMs [12] and PCFGs [61]. Blaylock
and Allen describe a statistical approach to goal recognition that uses maximum likelihood
estimates of goal schemas and parameters [9]. These approaches do not have the notion
of cost or reward. By incorporating plan recognition in the decision-theoretic context, we
obtain a natural notion of optimal assistance, namely maximizing the expected utility.

There has been substantial research in the area of user modeling. Horvitz et.al took
a Bayesian approach to model whether a user needs assistance based on user actions and
attributes and used it to provide assistance to user in a spreadsheet application [35]. Hui
and Boutilier used a similar idea for assistance with text editing [36]. They use DBNs
with handcoded parameters to infer the type of the user and compute the expected utility
of assisting the user. It would be interesting to explore these kind of user models in
our system to take into account the user’s intentions and attitudes while computing the

optimal policy for the assistant.
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2.9 Summary and Future Work

We introduced a decision-theoretic framework for assistant systems and described the as-
sistant POMDP as an appropriate model for selecting assistive actions. We also described
an approximate solution approach based on iteratively estimating the agent’s goal and
selecting actions using myopic heuristics. Our evaluation using human subjects in two
game-like domains show that the approach can significantly help the user. We also demon-
strated in a real world folder predictor that the decision-theoretic framework was more
effective than the state of the art techniques for folder prediction.

One future direction is to consider more complex domains where the assistant is able
to do a series of activities in parallel with the agent. Another possible direction is to
assume hierarchical goal structure for the user and do goal estimation in that context.
Recently, the assistantship model was extended to hierarchical and relational settings [56]
and presented in chapter 4 by including parameterized task hierarchies and conditional
relational influences as prior knowledge of the assistant. This prior knowledge would
relax the twin assumptions of rationality and tractability that correspond to the user
being rational in his action choices and that the MDP can be solved tractably. This
knowledge was compiled into an underlying Dynamic Bayesian network, and Bayesian
network inference algorithms were used to infer a distribution of user’s goals given a
sequence of her atomic actions. The parameters for the user’s policy were estimated by
observing the users’ actions.

Our framework can be naturally extended to the case where the environment is par-
tially observable to the agent and/or to the assistant. This requires recognizing actions
taken to gather information, e.g., opening the fridge to decide what to make based on
what is available. Incorporating more sophisticated user modeling that includes users
forgetting their goals, not paying attention to an important detail, and/or changing their

intentions would be extremely important for building practical systems. The assistive
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technology can also be very useful if the assistant can quickly learn new tasks from expert

users and transfer the knowledge to novice users during training.
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Chapter 3 — Learning First-Order Probabilistic Models with Combining

Rules

3.1 Overview

In this chapter, we develop an expressive language, that has a relational structure and a
probabilistic interpretation. In the later chapter, this language is used to express the bias
or prior knowledge of the decision-theoretic assistant. The language consists of statements
that describe probabilistic influences between attributes of objects. Each quantified state-
ment describes probabilistic influences that are independent of other influences. To keep
these models succinct, the influences due to different rules and their ground instances
on any attribute are combined using fixed “combining rules” such as Noisy-OR. This
chapter presents our earlier work on developing algorithms for learning in the presence of
such combining rules. Specifically, algorithms based on gradient descent and expectation
maximization for different combining rules are derived, implemented, and evaluated on
synthetic data and on a real-world task. The results demonstrate that the algorithms are
able to learn the parameters of both the individual parent-target distributions and those
of the combining rules. For the purposes of this chapter, we temporarily move away from

the problem of assistance and focus on modeling in relational domains.

3.2 Introduction

New challenging application problems that involve rich relational data and probabilis-
tic influences have led to the development of relational probabilistic models [29]. The

advantage of these models is that they can succinctly represent probabilistic dependen-
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cies between the attributes of different related objects, leading to more efficient learning.
Models are succinct because parameters are shared between different instantiations of the
same ‘rule” applied to different objects. In many cases, inference is accomplished by
“unrolling” the rules or grounding them with all possible parameter bindings yielding a
propositional Bayesian network. The nodes of the Bayesian network represent the values
of different attributes of objects or relationships between objects.

In many cases, a single parameterized rule can result in multiple instantiated sets of
parents that influence a single ground target variable. More over, the number of these
parent variables might change from one instance to the other. Consider, for example, the
problem of modeling the spread of a disease such as west nile virus. One might posit
that the spread depends on the mosquito population in a given location. The size of the
population of mosquitos in turn depends on the temperature and the rainfall of each day
since the last freeze. In one location, there might have been 19 days since the last freeze,

whereas in another location, there might have been only 3 days (see Figure 3.1(a)).

Figure 3.1: Three Bayesian networks describing the influence of daily temperature and
rainfall on the population of mosquitos. (a) a network with no aggregation or combination
rules leads to a very complex conditional probability distribution, (b) a network with
separate aggregation for temperature and rainfall, (¢) a network with separate prediction
of the mosquito population each day followed by a combining rule to predict the overall
population.
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There are two main approaches to deal with this “multiple-parent” problem: aggre-
gators and combining rules. An aggregator is a function that takes the wvalues of the
parent variables and combines them to produce a single aggregate value which then be-
comes the parent of the target variable. In the mosquito problem, we might define the
total temperature and the total rainfall as aggregate variables. These are well-defined for
any number of parents, and they can be computed deterministically (shown as dashed
lines in Figure 3.1(b)). The population node then has only two parents: TotalTemp and
TotalRain.

The second approach to the multiple-parent problem is to have a distribution P(Pop |
Temp, Rain) for population given a single temperature-rain pair and then combine the
distributions from all such related pairs via a combining rule such as Noisy-OR, Noisy-
AND, or Mean (see Figure 3.1(c)). The advantage of this method is that it can capture
interactions between the Temp and Rain variables that are lost when temperature and
rain are aggregated separately.

A special case of this second approach involves “decomposable combining rules,” where
the combining rule can be seen as summarizing the effects of several “micro-causes.” In
the above case, we can think of the different days producing different populations of
mosquitos, whose combined effect on the total population is modeled by a combining
rule. Thus, each parent or set of related parents produces a different child variable,
whose values are combined using a deterministic or stochastic function. In the above
example, the mosquito population of each day may be made a random function of a
single temperature-rain pair and the populations from each day may be combined into
a single value through a deterministic (e.g., sum, average) or a stochastic (e.g., random
choice) aggregating function (Figure 3.1(c)). Thus the final distribution is a parameterized
function of the distributions of the day-wise population variables.

There is, however, an additional complication. There can be multiple independent

causal influences on the same target variable which are captured by different rules. For
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example, spraying of pesticides and the direction of the wind at that time might also
influence the mosquito population at a given place and time. The net effect of this rule
and that of the previous rule will have to be combined to get a final probability of the
mosquito population. This can be achieved by having another combining rule which
combines the different distributions of the target variable given the parent variables in
each rule.

How can we learn in the presence of aggregators and combining rules? Most aggre-
gators are deterministic and have no adjustable parameters, so they pose no additional
problems for learning. However, some aggregators may have internal parameters. Sup-
pose, for example, that we aggregated the temperatures as “degree days above 50 degrees”:
DD(50) = >, max(0, Temp; — 50). The threshold of 50 might be learned from training
data.

Learning with combining rules is more difficult, because the individual predicted target
variables (e.g., Popl, Pop2, ...) are unobserved, so the probabilistic model becomes a
latent variable model. However, the latent variables are constrained to share the same
conditional probability distribution, so the total number of parameters remains small. In
previous work, Koller and Pfeffer developed an expectation maximization (EM) algorithm
for learning in the presence of combining rules and missing data in relational context [44].
Kersting and DeRaedt implemented a gradient descent algorithm for the same [43].

In this work, we generalize and extend the above work to multi-level combining rules.
The first level of combining rules combines the distributions of the target variable due
to different instantiations of the same parameterized rule. The second level of combining
rules operates on the results of the first level and combines the multiple distributions due
to different rules.

We present algorithms for learning the parameters of the distributions and the com-
bining rules based on both gradient descent and EM. The algorithms are tested on three

tasks: a folder prediction task for an intelligent desktop assistant and two synthetic tasks
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designed to evaluate the ability of the algorithms to recover the true conditional proba-
bilities.

The rest of the chapter is organized as follows. Section 2 introduces the necessary
background on probabilistic relational languages and the need for combining rules. Section
3 presents the two gradient descent and EM algorithms that we have designed for learning
the parameters in the presence of combining rules. Section 4 explains the experimental
results on a real-world dataset and on the synthetic datasets. Section 5 concludes the

chapter and points out a few directions for future research.

3.3 Probabilistic Relational Languages

In this section, we give a brief introduction to our first order conditional influence language
(FOCIL), which will serve as a concrete syntax for specifying and learning combining rules.
However, we note that our learning techniques are not tied to this particular language and
are applicable to other probabilistic modeling languages that share the same underlying
abstract syntax or model, e.g., Bayesian Logic Programs (BLPs). We give examples of
such languages and translation of their syntax to ours in the next section.

In the spirit of Probabilistic Relational Models (PRMs) [27], we model domains in
terms of objects of various types. Each type of object has associated attributes. The
attributes have values of different primitive types, e.g., integers, enumerated type, etc.
There are also predicates that describe properties of objects or relationships between ob-
jects of certain types. In this work, we assume that the domain of objects and relations
among the objects are known and that we are interested in modeling the probabilistic in-
fluences between the attributes of the objects. The methods are extensible to probabilistic

influences between relations in a straightforward way.
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3.3.1 Conditional Influence Statements

In this section, we summarize the syntax of our language, FOCIL. The core of FOCIL
consists of first-order conditional influence (FOCI) statements, which are used to specify
probabilistic influences between the attributes of objects in a given domain. Each FOCI
statement has the form:

If {(condition) then {(qualitative influence)

where condition is a set of literals, each literal being a predicate symbol applied to the
appropriate number of variables. A (qualitative influence) is of the form X3, ..., X Qinf Y,
where the X; and Y are of the form V.a, where V' is a variable in condition and a is an ob-
ject attribute. This statement simply expresses a directional dependence of the resultant
Y on the influents X;. Associated with each FOCI statement is a conditional probabil-
ity function that specifies a probability distribution of the resultant conditioned on the
influents, e.g. P(Y|Xy,...,X}) for the above statement. We will use P; to denote the
probability function of the ’th FOCI statement. As an example, consider the statement,

If {Person(p)} then p.diettype Qinf p.fitness,

which indicates that a person’s type of diet influences their fitness level. The con-
ditional probability distribution P(p.fitness | p.diettype) associated with this statement
(partially) captures the quantitative relationships between the attributes. As another
example, consider the statement

If {Takes(Offering,Student,Course)} then Student.iq, Course.diff Qinf Offering.grade,

which indicates that a student’s IQ and a course’s difficulty influence the grade of
the student in the course. Note that since Takes is a many-to-many relation, we have
introduced an argument 0ffering to represent the instance of the student taking a course.
It can be interpreted as representing a student-course pair.

Given a fixed domain of objects and a database of facts about those objects, FOCI

statements define Bayesian network fragments over the object attributes. In particular,
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for the above statement, the unrolled Bayesian network includes a variable for the grade of
each student-course object, the IQ of each student, and the difficulty of each course. The
parents of each grade variable are the IQ and difficulty attributes corresponding to the ap-
propriate student and course. Each grade variable has an identical conditional probability
table P(Of fering.grade|Student.iq, Course.diff )—that is, the table associated with the
above rule.

In addition, our language supports qualitative constraints such as monotonicity (e.g.,
a person’s consumption monotonically increases with income) and synergies (e.g., the
lifestyle of a family synergistically depends on the family members’ incomes). Although
in this work we do not learn with these constraints, we have well-defined semantics of the
constraints in FOCIL and learning algorithms for propositional models with monotonicity

constraints [1].

3.3.2 Combining Rules

The following example illustrates the multiple-parent problem described in the introduc-
tion. Consider an intelligent desktop assistant that must predict the folder of a document
to be saved. Assume that there are several tasks that a user can work on, such as pro-
posals, courses, budgets, etc. The following FOCI statement says that a task and the role

the document plays in that task influence its folder.
If {role(Doc,Role,Task)} then Task.id,Role.id Qinf Doc.folder.

Typically a document plays several roles in several tasks. For example, it may be
the main document of one task but only a reference in some other task. Thus there are
multiple task-role pairs (T'ask;, Roley), ..., (Task,y,, Roley,), each yielding a distinct folder
distribution P(Doc.folder | Task;.id, Role;.id). We need to combine these distributions

into a single distribution for the folder variable. We could apply some kind of aggregator
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(e.g., the most frequently-occurring task-role pair) as in PRMs [27]. However, it is easy to
imagine cases in which a document is accessed with low frequency across many different
tasks, but these individual accesses, when summed together, predict that the document is
stored in a convenient top-level folder rather than in the folder of the most frequent single
task-role pair. This kind of summing of evidence can be implemented by a combining

rule.

DO @©@ .
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Figure 3.2: Use of Combining rules to combine the influences of task and role on the one
hand and the source folder on the other on the folder of the current document.

In the above example, a combining rule is applied to combine the distributions due
to different influent instances of a single FOCI statement. In addition, combining rules
can be employed to combine distributions arising from multiple FOCI statements with
the same resultant. The following example captures such a case (see Figure 3.2 for the
unrolled network):

WeightedMean{
If {role(Doc,Role,Task)} then Task.id, Role.id Qinf (Mean) Doc.folder.
If {source(Src,Doc)} then Src.folder Qinf (Mean) Doc.folder.
}

Figure 3.3: Example of specifying combining rules in FOCIL.

The expression in Figure 3.3 includes two FOCI statements. One statement is the
task-role influence statement discussed above. The other says that the folder of the source

document of Doc influences Doc’s folder. The source of a document is a document that was
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edited to create the current document. There can be multiple sources for a document. The
distributions corresponding to different instances of the influents in the same statement
are combined via the “Mean” combining rule. The two resulting distributions are then
combined with the “Weighted-Mean” combining rule. The precise meanings of these rules
are described in the section 3.3.4.

Formally, the language consists of a set of influence statements. Each influent state-
ment has a resultant, a set of influents, a logical condition and a combining rule to combine
the influences due to the different influents. The set of influent statements that have the
same resultant are grouped together and another combining rule is used to combine the
distributions arising due to these statements.

The influents and the resultant are attributes of objects in the domain. These can be
understood similar to the variables in a PRM. The objects refer to the relations of the
PRM and the attributes in our model are similar to the attributes of the relations in the
PRM. The logical conditions consist of predicates and relations over the objects in the
domain. The predicates serve to bind the values of the objects while the relations are
used to tie the values of the different objects in the influence statements. For instance, in
the example presented in Figure 3.3,the relation role serves to obtain the bindings of the

relationship variable Role.

3.3.3 Relationship to Other Languages

We describe our learning algorithms using the FOCIL notation. However, our learning
algorithms and results are not specific to its concrete syntax. They can be applied to any
language that shares its abstract syntax and uses combining rules to combine the results
of multiple instantiated rules.

In this section, we represent several first order probabilistic models in the FOCIL

syntax, hence establishing the equivalence between these languages and showing that our
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learning algorithms extend to several first-order models.

Kersting and De Raedt introduced Bayesian Logic Programs [42]. BLPs combine
Bayesian Networks with definite clause logic. BLPs view the atoms as random variables.
Bayesian Logic Programs consist of two components: a qualitative component that is
the logical component which captures the structure of the domain (similar to that of the
Bayesian Network structure) and a quantitative component. An example of a BLP clause

is as follows:

bt (X) | father(F,X) , bt(F), mother(M,X) , bt (M)

There is a CPT corresponding to this clause. In this case, the predicates mother (M, X)
and father(F, X) would have boolean values. One could then specify the ground facts
like father(John,Tom) etc. The function bt(F') represents the blood type of F. The
above statement says that a person’s blood type is a function of his father’s and mother’s

blood types. The FOCI statement corresponding to the above BLP clause is:

If { mother(M,P) , father(F,P)} then M.bt, F.bt Qinf P.Dbt

BLPs also use combining rules for combining the distributions due to multiple instanti-
ations of the parent predicates. The main difference between BLPs and FOCI statements
is that in the latter, the conditions are separated out from the clause. BLPs do not make
a clear syntactic distinction between the conditions and the influents in the statement
itself, although they are distinguished elsewhere in the model.

Another representation that is closely related to both FOCIL and BLPs is Logi-
cal Bayesian Networks. They consist of conditional dependency clauses of the form

XYy, ....Ye «— Zy,..., Zp. This can be interpreted as the Y7, ..., Y} influence X when
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(Z1,...7}) are true, where Y7, ..., Y} and X are random variables and (71, ..., Z,,) are log-

ical literals. The above example of the bloodtype can be represented in LBNs as,

bt(X) | bt(M), bt(F) «— Mother(M,X),Father(F,X)

More recently Getoor and Grant proposed the formalism of Probabilistic Relational Lan-
guage (PRL) [28]. The main motivation behind this work is to represent the original work
on probabilistic relational models (PRMs) [27] in logical notation. While PRMs used ag-
gregators to combine the influences of multiple parents, both aggregators and combining
rules can be used in the PRL framework. The entities and the relationships that are repre-
sented as predicates form the logical structure of the domain. The probabilistic structure
is composed of non-key attributes that form the random variables in the domain. The gen-
eral structure of the influence statement is: DependsOn(X («),Yi(a),...Y,(a)) «— Z(«)
and can be interpreted as (Yi(«)....Y,(«) influence X () when Z(«) is true. Consider,

our bloodtype example. In PRL, we can represent it as follows:

DependsOn (bt (X) ,bt (M), bt(F)) «— Mother(M,X), Father(F,X)

The main difference between the PRLs and LBNs lies in the fact that the PRLs al-
low for aggregate functions explicitly. Also, in [28] the authors show how to represent
several kinds of uncertainties like Structure uncertainty, reference uncertainty, existence
uncertainty etc in PRL.

Heckerman et.al introduced directed acyclic probabilistic entity-relationship (DAPER)
models [34]. DAPER models are to entity-relationship models what PRMs are to rela-
tional schema. The arcs in the DAPER models are between the attributes of the entities
and relationships. The main difference with the PRMs is that the DAPER models attach

arbitrary first-order conditions to the Bayes net arcs. These conditions serve to restrict
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the set of possible instantiations of the variables. For instance, to represent the blood-
type example, there would be arcs to the bloodtype of a person from the person’s father
and mother’s bloodtypes with the condition on the arcs being IM, Mother(M, X) and
3F, Father(F, X). Essentially, these conditions along with the arc represent the fact that
there exists persons M and F' who are the mother and father of the person X and whose
bloodtype influences X’s bloodtype.

One problem with the DAPER models, however, is that they do not allow sharing
of variables between the incoming arcs at the same node, and thus prohibit interaction
between the influents. For instance, it is impossible to express the following rule in
DAPER because the condition role(Doc, Role, Task) involves both the Bayes net parents

Task and Doc.
If {role(Doc,Role,Task)} then Task.id,Role.id Qinf Doc.folder.

This problem can be solved by attaching the conditions jointly to all parents of a node.
DAPER models allows us to specify how the distributions are combined if there are more
than one possible instantiation of the free variables that satisfy the conditions.
Although, the different models differ from each other in syntactic details, they all share
the same underlying semantics, and express equivalent pieces of knowledge. All of them
also suffer from the multiple-parent problem, which can be addressed through combining
rules. Thus, the algorithms discussed in this chapter are relevant and applicable to all
these formalisms and a few others such as Relational Bayesian Networks (RBNs) [38].
However, there are some statistical relational models for which our algorithms do not
apply. For example, PRISM [62] uses distributional semantics which is quite different from
the possible worlds semantics used by these other models. Both PRISM and Stochastic
Logic Programs (SLPs), place distributions on possible proofs rather than on possible
worlds [51]. Markov Logic Networks [20] and related Conditional Random Fields [45]

are based on undirected graphical models and significantly differ from models based on
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directed graphs. Markov Logic Networks, for example, are more flexible in allowing
knowledge to be expressed as weighted first-order formulas, and have a correspondingly

harder inference problem.

3.3.4 Unrolling FOCI Statements

In this section, we formally define the semantics of the FOCI statements by showing the

procedure to unroll them into a Bayesian network. Consider a generic influence statement

SZ‘I

if (condition) then Xi,..., X} Qinf Y.

We assume without loss of generality that each influence statement S; (‘rule i’ for
short) has k influents, X} through X; (which we jointly denote as X*), that influence
the target variable. When this rule is instantiated or “unrolled” on a specific database,
it generates multiple, say m;, sets of influent instances, which we denote as X¢ .. Xfm
This is shown in Figure 3.4. In the figure, the instantiations of a particular statement are
combined with the mean combining rule. The distributions resulting from the different

FOCI statements are combined via the Weighted-Mean combining rule.

Weighted-Mean

Figure 3.4: Unrolling of FOCI statements

The role of the combining rule is to express the probability P;(Y[X{...X} ) as a
function of the probabilities P;(Y'|X?), one for each j, where P; is the CPT associated

with S;. Since these instance tuples are unordered and can be arbitrary in number, our
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combining rule should be symmetric, i.e., its value should not depend on the order of the

arguments. For example, with the mean combining rule, we obtain:
i i RS i
p(y‘Xl"'Xmi) = Ezpl(y‘xj) (3.1)
7 j:1

If there are r such rules, we need to estimate the conditional probability P(Y|X7 ;... X )
Since each rule is distinctly labeled and its instances can be identified, the combining
rule need not be symmetric, e.g., Weighted-Mean. If w; represents the weight of the i
combining rule, the “Weighted-Mean” is defined as:

i wilP(Y[X) .. X))

D im1 Wi (3:2)

P(Y|X1{1... ——

my,k

We write xém e ,x;k = xé- to denote the values of X; and y to denote the value of Y.
We write 0,5 to denote P;(y[x’). Note that in this case we omit the subscript j because
the parameters 0 are shared across the different instantiations of the same rule.

Note that the graph presented in Figure 3.4 is not a Bayesian Network, but is a
tree representation of the expression for the conditional probability of the target variable
given the inputs. The nodes labeled “Mean” compute the mean of the parent distributions
represented by Pl, ..., P[", etc., and the node labeled “Weighted-Mean” computes the
weighted mean of its parent distributions.

Consider the equivalent Bayesian Network presented in Figure 3.5. This network is
very similar to Figure 3.4. However, the nodes here represent random variables whose
values are from the domain of the target variable. The values of the random variables
YL.Y™ etc. are sampled from the distributions P}, ..., P/" etc. The value of the
variables Y; and Y5 may be inherited from one of the parents which is chosen uniformly
randomly. This ensures that the distribution of Y; given the root variables is the mean of

the distributions of Y;'..Y;™ as specified in Figure 3.4. Similarly the value of the variable
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Y may be inherited from Y; or Y, with probabilities w; and ws respectively to ensure that
the final conditional distribution of Y is the weighted mean of the distributions of Y; and
Y5. Similarly, the Noisy-OR combining rule can be implemented by setting the value of Y
to be a deterministic function of Y; and Y5, in particular to Y; OR Y5. Here the “noise”
enters through the distributions of Y; and Y, given their parents.

The key idea behind these “decomposable” combining rules is that they can be im-
plemented using deterministic and stochastic functions on the corresponding values of
random variables. Given such a value-based implementation of the combining rules, it is
possible to use the standard Bayesian learning and inference methods on them to learn
their parameters. Our implementation of the EM algorithm, described in Section 3.4.6,
can be understood as doing exactly that in the case of the Weighted-Mean combining

rule.

Figure 3.5: Value based Bayesian Network for the FOCI statements. The mean combin-
ing rule is replaced by a node that chooses a value using an uniform distribution. The
Weighted-Mean rule is replaced by a node that chooses one of its parent values randomly
using a biased distribution.

3.4 Learning Model Parameters

In this section, we present algorithms for learning the parameters of the combining rules
and the conditional probability tables (CPTs). As mentioned earlier, we are using 2-
levels of combining rules, the first to combine the multiple instances of the same rule and

the second to combine the distributions due to the different rules. In this work, we use
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the Mean combining rule at the first level (i.e., to combine the influence due to multiple
instances of the same rule) while using Weighted-Mean and Noisy-OR at the second level
(i.e., to combine the distributions due to the different rules). We present the algorithms

for learning in presence of both the Weighted-Mean and Noisy-OR combining rules.

3.4.1 Gradient Descent Learning

Two of our learning algorithms are based on gradient descent. The idea of gradient
descent training is to gradually change the parameters of the probability distributions in
the direction of improved performance. We consider two measures of performance. The
mean squared error measures the square of the difference between the true probability of
a label of the example and the probability of that label predicted by the current model.
Naturally, we would like to minimize the squared error. In trying to predict probabilities,
it is more common to measure the performance by the loglikelihood, which is the logarithm
of the likelihood of the examples under the current model. We would like to maximize
the loglikelihood to improve the performance of the learner.

The generic gradient descent pseudocode for learning the parameters of the FOCI
statements in the presence of combining rules is given in Figure 3.1. When using the
Noisy-OR combining rule, the weight gradient and the update steps are ignored. When
the weighted mean combining rule is used, we use different step-size parameters (o and
) for the parameters and the weights respectively. It is important to have much smaller
learning rates for the combining rule weights compared to those of the CPT parameters,
ie., f << a. This is because each iteration of each example only changes a few of
the large number of CPT parameters, whereas it changes many of the small number of
weights. Hence, the rule weights are updated much more frequently than the conditional

probabilities and hence should be updated by smaller amount in each iteration.
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Table 3.1: Gradient Descent Algorithm for parameter learning

1. Initialize the parameters 6 and weights w; randomly

2. ParameterGradient Step: for each value of y and for all parent

configurations of each rule x’ and for each instantiation of each

rule, compute the gradient 8;%1, where F is the error function

ylxt

that is either the Noisy-OR or the Mean squared Error function

3. WeightGradient Step: Compute the gradient of the weights
% for each of the rule

4. ParameterUpdate Step: Update each parameter 6,,: by 6

ylxt =
ey\xi — 2B

50,0 for each value of y

5. GradientUpdate Step: Update each weight w; by w; = w; —
16 %. Normalize the weights so that the sum is preserved

6. Continue steps 2 through 5 until convergence.

Table 3.2: Gradient descent applied to learning parameters of FOCI statements

3.4.2 Gradient Derivation for the Mean-squared Error for Weighted-Mean

In this section, we derive the gradient equation for the mean-squared error function for
the prediction of the target variable, when multiple FOCI-statements are present and are
combined by the Weighted-Mean combining rule.

Let the [*" training example e; be denoted by (<xl17171, . ’x;lmz,rl,k%yl)’ where x}lyj’p is

lth

the p™ input value of the j** instance of the i"* rule on the I"* example. The predicted

probability of class y on ¢; is given by

my

1 " w; -
P _ E d E P, Ly, 3.3
(y|€[) ZZ w; i my - (y|xl,]) ( )

In the above equation, r; is the number of rules the example satisfies, i is an index of
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the applicable rule, and m;; is the number of instances of rule i on the " example. The

squared error is given by

n

Z (y1,y) — P(yler))*. (3.4)

=

Here y is a class label, and y; is the true label of [** example. I(y;,y) is an indicator
variable that is 1 if y; = y and 0 otherwise. Taking the derivative of negative squared

error with respect to P(y[x") = 0,xi, we get

e S50~ Pl (a;iP(y\e»)]

= iE (I(y) = Plylen) [ = (x| |- (3.5)
> Wi my
=1 y 2! 7 ,

The value of P(y|e;) is given in equation 3.3. Here #(x'|e;) represents the number

of occurrences of the tuple x' in the x-instances of the i’ rule of example ¢;. Gradient

descent increments each parameter 6, by - « 9E_ in each iteration. After each iteration,

80y‘x1

the parameters are normalized so that the distributions are well-defined.

The gradients with respect to rule weights are computed as follows:

;?UZE _ ZZ (I(y,y) — P(yle))) (a_uiP(y!ez))]
= D > |Uwy) = Plyle); (Z wzgfl ZZP |Xl]>]

— ZZ (I(yl,y)—P(y\el))<<a 5 wz)z w; ZP ‘le

¢ e (a3 )
— Z lé(el,z’) — T—ZZ(S(el,T)] ) (3.6)
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where d(e;, ) is given by

(1) = Plyle)s———— 3" PGyl (3.7

; D Wi My

We include the ril term in the equation to properly normalize the weights. When we
adjust the weights of the rules using examples, we preserve the sum of the weights of the
matching rules in each example by normalizing the weights, so that the overall sum of all
weights is preserved, and the dependencies between the weights are properly taken into

account when we take the derivatives.

3.4.3 Gradient Derivation for the Mean Squared Error for Noisy-OR

We now derive the gradient equations for the mean-squared error function for the predic-
tion of the target variable, when multiple FOCI-statements are combined by the Noisy-OR
combining rule. Let the [** training example e; be denoted by ((xll’m, o ’x;lmz,rl &) Y1)
where xij,p is the p™ input value of the j** instance of the i rule on the [ example.

The predicted probability of class y on e; is given by

myq

Py =1le;) _1_Hml ZP y—O]le (3.8)

Here r; is the number of rules the example satisfies, ¢ is an index of the applicable
rule, and my; is the number of instances of rule i on the I* example. The squared error

is given by
ZZ (v, ) — P(yler))?

n

— IS [y = 0) — Ply=0le)* + Iy = 1) — Ply=1le))?]  (39)

[\]
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1 n

=52 [Uy=0)=Py=0e)* + L,y =1) = (1= Ply=0e))*]  (3.10)
1=1

Here y is a class label, and y; is the true label of I example. I(y;,y) is an indicator

variable that is 1 if y; = y and 0 otherwise. Taking the derivative of negative squared

error with respect to P(y[x") = 0,xi, we get

—0F =
a0 Z

y' o

I+ Uy =1)—I(y,y=1)) = 2Py = 0!61))5(61)] (3.11)

where d(e;) is given by

ste) = [FE1 D py = o |

my;

3.4.4 Gradient Derivation for Loglikelihood for Weighted-Mean

As commented earlier, in the context of probabilistic modeling, it is more common to
maximize the loglikelihood of the data given the hypothesis [8]. We now turn to gradient
derivation for the loglikelihood in the presence of the Weighted-Mean combining rule.

From the definition of P(y|e;), we can see that this is
L= log P(yle). (3.12)
I

Taking the derivative of L with respect to P(y|x") = 0,xi, gives

Tl

1 o
Zpyl\el T Z;Z#(x\el). (3.13)

80

ylx?
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As before, the partial derivative of L with respect to the weights is given by

oL u L1
awi:; 5(6171)_7,_125(6177ﬂ) . (314)
But now,
ert) = 5 3 Pi(uil) (315)
e,r) =  (yi|x7 ). .
: P (yiler) >, wi myr - i

3.4.5 Gradient Derivation for LogLikelihood for Noisy-OR

We now give the derivation of the gradient for loglikelihood with Noisy-OR as the com-

bining rule. The loglikelihood L is given by,

L= Zlog P(ylle). (3.16)
I
where P(y, = 1|e;) is given by,
] 1 my ‘
Ply=1l) =1-T[ -3 Py =0l (3.17)
i g

Taking the derivative of the likelihood wrt P(y|x’) = 0,5 we get,

oL _ 1 OP(yle)
aeylxi P(yl‘EI) 39y|xi
1 #(Xi\el) , :|
) Wi Py = Fla 3.18
Zl: P(yile) l my #P(y |21 ;) (3.18)

3.4.6 Expectation-Maximization

Expectation-Maximization (EM) is a popular method to compute maximum likelihood

estimates given incomplete data [18]. EM iteratively performs two steps: the Expectation
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step, where the algorithm computes the expected values of the missing data based on the
current parameters, and the Maximization step, where the maximum likelihood of the
parameters is computed based on the current expected values of the data. Expectation-
Maximization avoids the slow update step of the gradient-based methods by directly
maximizing the likelihood in each iteration. In our experiments, the Gradient descent

algorithms take about twice as much time as the EM algorithm for convergence. We

Table 3.3: EM Algorithm for parameter learning in FOCIL

1. Take initial guesses for parameters # and weights w;

2. E Step: Vi and for each instantiation of each rule, compute the
responsibilities
(wi)ﬁey‘x%"j

Vlz,j(y) = El,i’,j(wi’)#e

my .y | il
Lt VI

3. M Step: Compute the new parameters:

X W)
L 2
L S )

and, if instantiations of at least two rules are present in [,

compute Vi ow; = (Zl,j 7;,j> /2

where ns is the number of examples with two or more rules
instantiated.

Vi, x' 6

4. Continue E and M steps until convergence.

first explain the EM algorithm for the case where we use the Weighted-Mean rule to
combine the distributions due to different rules. We use the terminology of [32]. Consider
n rules with the same resultant. Accordingly, there will be n distributions that need to be
combined via the Weighted-Mean. Let w; be the weight for rule 4, such that > . w; = 1.
The EM algorithm for parameter learning in FOCIL is presented in Table 3.3. In the

expectation step, it computes the responsibility of each instantiation of each rule. The
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responsibilities reflect the relative contribution of each rule instance to the conditional
probability of the target variable. The numerator of the equation in Step 2 is the contri-
bution of a particular instance of a particular rule to the conditional probability of the
target. The denominator is the contribution of all instances of all applicable rules. Note
that we consider the weight of the current rule and the number of instantiations of the
current rule while computing the responsibilities.

In the maximization step, we use these responsibilities to update the CPTs treating
them as fractional counts of examples that satisfy the influents. The numerator of Step
2 is the total responsibility of all instances of the i rule for a given value of the target
variable. The denominator is the normalizing factor, which sums over all values of the
target variable. The fraction approximates the parameter of the FOCI statement that
represents the conditional probability of the target having the value y, given particular
influent values in rule .

Finally, the new weights of the combining rules are computed by the fraction of the
responsibility assigned to each rule out of the sum of the responsibilities assigned to all
rules over all a subset of examples in which at least 2 rules are instantiated. We only
consider such examples because if an example matches only one rule, the distribution
predicted by the single rule is going to be the final distribution. Hence, the weight does
not impact the distribution and hence the example should not influence the weight.

The responsibilities can be thought of as conditional probabilities of the hidden node
values given the target variable and the inputs in the corresponding value-based Bayesian
network. Note that in our problem formulation, there are two levels of combining rules. As
we discussed earlier, we can think of the Mean combining rule as resulting from randomly
inheriting a value of the parent node as its own value. The responsibility of a particular
influent instance can be thought of as the probability of choosing that instance to transmit
its value to the final target node. Similarly, the weight of each rule can be thought of as

representing the probability of choosing its target value as the final value.
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The EM algorithm for the Noisy-OR is very similar to the one presented in Table 3.3.
Since this combining rule is asymmetric with respect to the two binary values, in the
E-step, there is a need for using seperate equations for the cases when the target variable

takes a value 0 or 1. The responsibilities when y = 1 are computed using,

1

i . my g yle,j
Vl,j(y) - 1 — Z 1 0 ,
lvilvj ml,i/ yzolx;,]
and when y = 0,
1 | )
i my; X
Y5 W)

- 19
25 77 Oy=oix,

Notice that 7{7]- (y) gives the the contribution of each rule instance as a fraction of the
total contribution to the value of the target variable. As before, once the responsibilities
are computed, we can use them as fractional counts to compute the parameters of the

influence statements.

3.5 Experiments and Results

In this section, we describe results on the data sets that we employed to test the learning
algorithms. The first is based on the folder prediction task, where we applied two rules to
predict the folder of a document. The second data set is a synthetic one that permits us
to test how well the learned distribution matches the true distribution. We present the
results for the experiments and compare them with the propositional classifiers. We do
not evaluate the Noisy-OR algorithms in the folder data set as the target variable is not
binary. Instead, we evaluate the Noisy-OR algorithms on a synthetic data set and present
the results for the same. In this section, we first present the results on the synthetic data

set for Noisy-OR and then follow it up with our experiments with the Weighted-Mean
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combining rule.

3.5.1 Synthetic Data set for Noisy-OR

To estimate the accuracy of the learned model using Noisy-OR, we constructed a syn-
thetic data set. The data are generated using a synthetic target as defined by two FOCI
statements, each of which has two influents and the same target attribute. The different
instances of the same rule are combined using mean and the different rules are combined
using the Noisy-OR combining rule. The two influents in each rule have a range of 10 and
2 values respectively. The target attribute can take 2 values. The probability values in
the distribution of the synthetic target are randomly generated to be either between 0.9
and 1.0 or between 0.0 and 0.1. This is to make sure that the probabilistic predictions
on examples are hard to predict and not too close to the default probability of % each.
Each example matches a rule with probability 0.5, and when it does match, it generates
a number of instances randomly chosen between 3 and 10. This makes it imperative that
the learning algorithm does a good job of inferring the hidden distributions both at the
instance level and the rule level.

The goal is to evaluate the different versions of the Noisy-OR learning algorithms
on this dataset to determine the accuracy of the learned distributions. We trained the
learning algorithms on 15 sets of 2000 training examples and tested them on a set of 1000
test examples. The average absolute difference between corresponding entries in the true
distribution and the predicted distribution was averaged over all the test examples. We
flattened the data set by using the counts of the instances of the parents as features and
used Weka to run Naive Bayes on this modified data set. We obtained the distribution
over the target variable and present the results here.

The results are presented in Figure 3.6. The x-axis has the number of examples and

y-axis has the average absolute error for the examples. As can be seen, all the algorithms
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Figure 3.6: Learning curves for algorithms that use Noisy-OR on the synthetic data.
EM: Expectation Maximization; GDMS: Gradient descent for Mean Square error; GDLL:

Gradient descent for log likelihood

eventually converge to almost the same error rate (there is no statistically significant

difference in error rates). Initially, EM seems to perform worse, but with more training

data achieves comparable performance to the gradient descent methods. We also ran

experiments using the Naive Bayes algorithm in weka. The Naive Bayes algorithm had a

very poor performance and a very high error rate of close to 0.42 even with about 2000

training examples. Since the performance is very poor, we omit the propositional classifier

from the learning curves.

3.5.2 Folder prediction

We employed the two rules that were presented earlier.

WeightedMean{

If {role(Doc,Role,Task)} then Task.id, Role.id Qinf (Mean) Doc.folder.

If {source(Src,Doc)} then Src.folder Qinf (Mean) Doc.folder.

3



74

As part of the Task Tracer project [22], we collected data for 500 documents and 6
tasks. The documents were stored in 11 different folders. Each document was manually
assigned to a role with respect to each task with which it was associated. A document was
assigned the main role if it was modified as part of the task. Otherwise, the document
was assigned the reference role, since it was opened but not edited. A document is a
source document if it was opened, edited, and then saved to create a new document or
if large parts of it were copied and pasted into the new document. Since the documents
could play several roles in several tasks, the number of (Task, Role) pairs vary'.

We applied Gradient Descent and EM algorithms to learn both the parameters of the
CPTs and the weights of the Weighted-Mean combining rule. We employed 10-fold cross-
validation to evaluate the results. Within each fold, the learned network was applied to
rank the folders of the current document and the position of the correct folder in this
ranking was computed (counting from 1). The results are shown in Table 3.4, where
the counts report the total number of times (out of 500) that the correct folder was
ranked 1%, 2"¢ etc. The final row of the table reports the mean reciprocal rank of the
correct folder (the average of the reciprocals of the ranks). Mean reciprocal rank is a
standard performance metric used in information retrieval literature and it is the higher
the better. It is 1 if the true folder is always ranked as the top choice. If the true folder is
always ranked second, the mean reciprocal rank falls to 1/2. If it is always ranked n, the
mean reciprocal rank is 1/n. Thus the score decreases monotonically with the amount of
misranking, but suffers more at the top of the list than at the bottom of the list.

It is clear from the table that all the three relational algorithms performed very well:
almost 90% of the documents had their correct folders ranked as 1 or 2 by all three

algorithms?.

1On average, each document participated in 2 (Task, Role) pairs, although a few documents partici-
pated in 5 to 6 (Task, Role) pairs.
2If the algorithm were to rank the folders at random, the score would be around 0.2745.



75

To compare these results with propositional learners, we flattened the data using as
features the numbers of times each task-role pair and each source folder appears in each
example. We then used Weka to run J48 and Naive Bayes algorithms on this new dataset
to predict the class probabilities. J48 on the flattened data also performs as well as the
relational classifiers while Naive Bayes does a little worse on the same data set. All the

relational algorithms attributed high weights to the second rule compared to the first (see

Table 3.5).

Rank | EM | GD-MS | GD-LL | J48 NB
1 349 354 346 351 326
2 107 98 113 100 110
3 22 26 18 28 34
4 15 12 15 6 19
d 6 4 4 6 4
6 0 0 3 0 0
7 1 4 1 2 0
8 0 2 0 0 1
9 0 0 0 6 1
10 0 0 0 0 0
11 0 0 0 0 )

Score | 0.8299 | 0.8325 | 0.8274 | 0.8279 | 0.797

Table 3.4: Results of the learning algorithms on the folder prediction task. GD-MS:
Gradient descent for Mean Square error; GD-LL: Gradient descent for log-likelihood; J48:
Decision Tree; NB: Naive Bayes for loglikelihood.

To test the importance of learning the weights in the case with the Weighted-Mean,
we altered the data set so that the folder names of all the sources were randomly chosen.
As can be seen in Table 3.5, with this change, the source document rule is assigned
low weight by the learning algorithms with a small loss in the score. In particular, the
learning algorithms for the Weighted-Mean combining rule assigned a weight of 0.1 to
the source rule and a weight of 0.9 to the task-role rule. The mean reciprocal rank was
0.832, so this shows that the learning algorithms were able to recover from the irrelevant

inputs. We then repeated the learning process on this data set, but we held the weights
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on the two rules fixed at 0.5. The results were much worse, because the algorithms were
forced to combine the useless source probability distribution with the informative task-role

distribution. The mean reciprocal rank was 0.546.

EM GD-MS | GD-LL
Original | Weights | (.15,.85) | (.22,.78) | (.05,.95)
data set | Score .8299 8325 8274
Modified | Weights | (.9,.1) | (.84,.16) | (1,0)
data set | Score 71934 .8021 7939

Table 3.5: Results of learning the weights in the original data set and the modified data
set.

3.5.3 Synthetic data set experiment for weighted mean
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Figure 3.7: Learning curves for the synthetic data. EM: Expectation Maximization;
GDMS: Gradient descent for Mean Square error; GDLL: Gradient descent for log likeli-
hood; J48: Decision tree; NB: Naive Bayes.

The folder prediction experiment demonstrates good performance on an interesting
real-world task, but it does not tell us how close the predicted probability distribution
is to the true distribution on the test set. To realistically model a complex real-world

domain, it is not enough to have a good classification accuracy on a single task. To use
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these predictions in complex inferences, it is important to accurately model the probability
distributions. To estimate the accuracy of the learned model, we constructed a synthetic
data set very similar to the one that was presented earlier. The data are generated using
a synthetic target as defined by two FOCI statements, each of which has two influents and
the same target attribute. The different instances of the same rule are combined using
mean and the different rules are combined using the Weighted-Mean combining rule. The
two influents in each rule have a range of 10 and 3 values respectively. The target attribute
can take 3 values. The probability values in the distribution of the synthetic target are
randomly generated to be either between 0.9 and 1.0 or between 0.0 and 0.1. As with
previous experiment, this is to make sure that the probabilistic predictions on examples
are hard to predict and not too close to the default probability of % each. The rule weights
are fixed to be 0.1 and 0.9 to make them far from the default, 0.5. Each example matches
a rule with probability 0.5, and when it does match, it generates a number of instances
randomly chosen between 3 and 10. This makes it imperative that the learning algorithm
does a good job of inferring the hidden distributions both at the instance level and the

rule level.
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Figure 3.8: Learning curves for mean squared gradient descent on the synthetic data.
GDMS: learning the weights; GDMS-True: gradient descent with true weights; GDMS-
Fixed: gradient descent with weights fixed as (0.5, 0.5).
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We trained the learning algorithms on 30 sets of 2000 training examples and tested
them on a set of 1000 test examples. The average absolute difference between correspond-
ing entries in the true distribution and the predicted distribution was averaged over all
the test examples. Like the folder data set, we flattened the data set by using the counts
of the instances of the parents as features and used Weka to run J48 and Naive Bayes on
this modified data set. We obtained the distribution over the target variable from weka
for these two algorithms.

The results are presented in Figure 3.7. All three relational algorithms that use the
correct model have a very low average absolute error between the true and the predicted
distribution. The overlapping of the error bars suggests that there is no statistically sig-
nificant difference between the algorithms’ performances. On the other hand, the propo-
sitional classifiers perform poorly on this measure compared to the relational algorithms.
The performance of the relational algorithms is significantly better than the propositional
classifiers. This demonstrates that though the propositional algorithms can perform rea-
sonably well on a classification task, it is harder for them to learn the true distribution in

a relational setting.
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Figure 3.9: Learning curves for log-likelihood gradient descent on the synthetic data.
GDLL: learning the weights; GDLL-True: gradient descent with true weights; GDLL-
Fixed: gradient descent with weights fixed as (0.5, 0.5).
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As with the folder data set, we wanted to understand the importance of learning the
weights. Hence, for each learning algorithm, we compared three settings. The first setting
is the normal situation in which the algorithm learns the weights. In the second setting,
the weights were fixed at (0.5,0.5). In the third setting, the weights were fixed to be their
true values.

The results are presented in Figures 3.8, 3.9, and 3.10. There are three curves in each
figure corresponding to the three settings. In all three algorithms, the first setting (weights
are learned) gave significantly better error rates than the second setting (weights fixed at
(0.5,0.5)) (Figures 3.8,3.9,3.10). This clearly demonstrates the importance of learning the
weights. There was no significant difference between learning the weights and knowing
the true weights. This shows that our algorithms effectively learn the weights of the

combining rules with no additional cost.
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Figure 3.10: Learning curves for EM on the synthetic data. EM: learning the weights;
EM-True: EM with true weights; EM-Fixed: EM with weights fixed as (0.5,0.5).

3.6  Discussion

Learning the parameters of the first-order clauses have been explored by previous re-

searchers. In [44], Koller and Pfeffer investigated the use of EM algorithm to learn
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the parameters of the first-order clauses in the presence of combining rules. They use
Knowledge-Based Model Construction (KBMC) to construct a ground network for each
data case and employ the EM algorithm to learn the parameters of the rules. The com-
bining rules are also well-explored in other relational probabilistic settings such as prob-
abilistic horn abduction [59] and Bayesian logic programs [42]. Indeed, the ability to
tractably compose different influence statements or rules is necessary to build compact
models. What is different in our work is that we learn the parameters in the presence of
multiple influence statements each of which may have multiple instantiations. We show
that both gradient descent and EM can not only learn the CPTs of the rules but also
their parameters.

More recently Jaeger considers a weighted combination or a nested combination of
the combining rules and uses a gradient ascent algorithm for optimizing the objective
function [39]. This technique has been applied to his formalism of Relational Bayesian
Networks(RBNs)[38]. The RBN is compiled into a likelihood graph that is then used for
the various computations that are needed for the gradient ascent equation. The use of
the likelihood graph greatly reduces the number of computations needed for the gradient

computation.

3.7 Conclusion and Future Work

Combining rules help exploit causal independence in Bayesian networks and make rep-
resentation and inference more tractable in the propositional case [33]. In first order
languages, they allow succinct representation and learning of the parameters of networks
where the number of parents of a variable varies from one instantiation to another. They
make it possible to express pairwise interactions between influences and provide a natural
representation for many models of influence.

We showed that we can employ classic algorithm schemes such as gradient descent and
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EM to learn the parameters of the conditional influence statements as well as the weights
of the combining rules. The performances of the three algorithms with the Weighted-
Mean combining rule were quite similar on the folder data set. In the folder data set, the
propositional classifiers performed as well as the relational ones. This is partly because
the examples in this dataset often have only one or two task-role pairs, which makes it
an easier problem. In the synthetic domain, all examples have at least 3 task-role pairs,
and the propositional algorithms performed poorly. The experiments also show that
learning the probability model is much more difficult than learning to classify. It would
be interesting to extend this work to search over a set of combining rules to determine
the one that best fits the data.

One of our goals is to extend this work to more general classes of combining rules
and aggregators including tree-structured CPTs and noisy versions of other symmetric
functions. The relationship between the aggregators and combining rules must be better
understood and formalized. Efficient inference algorithms must be developed that take
advantage of the decomposability of the combining rules as well as the flexibility of the
first-order notation. Finally, we would like to develop more compelling applications in
knowledge-rich and structured domains that can benefit from the richness of the first-order
probabilistic languages. Extending the SRL languages to dynamic domains with actions
and utility makes them much more appropriate for compelling real-world applications.

Some work has already begun in this direction [56] and presented in the next chapter.
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Chapter 4 — A Relational Hierarchical Model for Decision-Theoretic

Assistance

4.1 Overview

In Chapter 2, a domain-independent decision-theoretic model of assistance was proposed,
where the task is to infer the user’s goal and take actions that minimize the expected cost
of the user’s policy. In this chapter, we extend this work to domains where the user’s
policies have rich relational and hierarchical structure. To this effect, we draw upon our
experience in relational modeling which we presented in the previous chapter. Our results
indicate that relational hierarchies allow succinct encoding of prior knowledge for the
assistant, which in turn enables the assistant to start helping the user after a relatively

small amount of experience.

4.2 Introduction

There has been a growing interest in developing intelligent assistant systems that help
users in a variety of tasks ranging from washing hands to travel planning [10, 67, 2].
The emphasis in these systems has been to provide a well-engineered domain-specific
solution to the problem of reducing the users’ cognitive load in their daily tasks. A
decision-theoretic model was proposed in Chapter 2 to formalize the general problem
of assistantship as a partially observable Markov decision process (POMDP). In this
framework, the assistant and the user interact in the environment to change its state.
The goal of the assistant is to take actions that minimize the expected cost of completing

the user’s task [24]. In most situations, however, the user’s task or goalis not directly
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observable to the assistant, which makes the problem of quickly inferring the user’s goals
from observed actions critically important. One approach to goal inference [24] is to learn
a probabilistic model of the user’s policy for achieving various goals and then to compute
a posterior distribution over goals given the current observation history. However, for this
approach to be useful in practice, it is important that the policy be learned as early in
the lifetime of the assistant as possible. We call this the problem of “early assistance”,
which is the main motivation behind this work.

One solution to the early assistance problem, advocated in [24] and presented in Chap-
ter 2, is to assume that (a) the user’s policy is optimal with respect to their goals and
actions, the so called “rationality assumption,” and that (b) the optimal policy can be
computed quickly by knowing the goals, the “tractability assumption.” Under these as-
sumptions, the user’s policy for each goal can be approximated by an optimal policy,
which may be quickly computed. Unfortunately in many real world domains, neither of
these assumptions is realistic. Real world domains are too complex to allow tractable
optimal solutions. The limited computational power of the user renders the policies to be
locally optimal at best.

In this chapter, we propose a different solution to the early assistance problem, namely
constraining the user’s policies using prior domain knowledge in the form of hierarchical
and relational constraints. Consider an example of a desktop assistant similar to CALO
[13] that helps an academic researcher. The researcher could have some high level tasks
like writing a proposal, which may be divided into several subtasks such as preparing
the cover page, writing the project description, preparing the budget, completing the
biography, etc. with some ordering relationships between them. We expect that an
assistant that knows about this high level structure would better help the user. For
example, if the budget cannot be prepared before the cover page is done, the assistant
would not consider that possibility and can determine the user’s task faster. In addition

to the hierarchical structure, the tasks, subtasks, and states have a class and relational
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structure. For example, the urgency of a proposal depends on the closeness of the deadline.
The deadline of the proposal is typically mentioned on the web page of the agency to which
the proposal is addressed. The collaboration potential of an individual on a proposal
depends on their expertise in the areas related to the topic of the proposal. Knowing
these relationships and how they influence each other could make the assistant more
effective.

This work extends the assistantship model to hierarchical and relational settings, build-
ing on the work in hierarchical reinforcement learning[19] and statistical relational learning
(SRL).We extend the assistantship framework presented in Chapter 2 by including para-
meterized task hierarchies and conditional relational influences as prior knowledge of the
assistant. We compile this knowledge into an underlying Dynamic Bayesian network and
use Bayesian network inference algorithms to infer the distribution of user’s goals given
a sequence of their atomic actions. We estimate the parameters for the user’s policy and
influence relationships by observing the users’ actions. Once the user’s goal distribution
is inferred, we determine an approximately optimal action by estimating the Q-values of
different actions using rollouts and picking the action that has the least expected cost.
The current work can be understood as augumenting the model presented in Chapter 2
with prior knowledge of the form presented in Chapter 3.

We evaluate our relational hierarchical assistantship model in two different toy domains
and compare it to a propositional flat model, propositional hierarchical model, and a
relational flat model. Through simulations, we show that when the prior knowledge of the
assistant matches the true behavior of the user, the relational hierarchical model provides
superior assistance in terms of performing useful actions. The relational flat model and
the propositional hierarchical model provide better assistance than the propositional flat
model, but fall short of the performance of the relational hierarchical approach.

The rest of the chapter is organized as follows: Section 2 summarizes the basic decision-

theoretic assistance framework, which is followed by the relational hierarchical extension
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in Section 3. Section 4 presents the experiments and results, Section 5 outlines some

related work and Section 6 concludes the chapter.

4.3 Decision-Theoretic Assistance

In this section, we briefly recall the decision-theoretic model of assistance presented in
Chapter 2 which forms the basis the work in this chapter. In this setting, there is a user
acting in the environment and an assistant that observes the user and attempts to assist
him. The environment is modeled as an MDP described by the tuple (W, A, A", T, C, I),
where W is a finite set of world states, A is a finite set of user actions, A’ is a finite set of
assistant actions, and T'(w, a,w’) is a transition function that represents the probability
of transitioning to state w’ given that action a € AU A’ is taken in state w. C' is an
action-cost function that maps W x (AU A’) to real numbers, and [ is an initial state
distribution over W. An episodic setting is assumed, where the user chooses a goal and
tries to achieve it. The assistant observes the user’s actions and the world states but not
the goal. After every user’s action, the assistant gets a chance to take one or more actions
ending with a noop action, after which the user gets a turn. The objective is to minimize
the sum of the costs of user and assistant actions.

The user is modeled as a stochastic policy 7(a|w,g) that gives the probability of
selecting action a € A given that the user has goal g and is in state w. The objective is to
select an assistant policy 7’ that minimizes the expected cost given the observed history
of the user. The environment is only partially observable to the assistant since it cannot
observe the user’s goal. It can be modeled as a POMDP, where the user is treated as part
of the environment.

The assistant POMDP is solved approximately, by first estimating the goal of the user
given the history of his actions, and then selecting the best assistive action given the

posterior goal distribution. One of the key problems in effective assistantship is to learn
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the task quickly enough to start helping the user as early as possible. As pointed out
in Chapter 2, this problem is solved by assuming that the user is rational, i.e., he takes
actions to minimize the expected cost. Further, the user MDP is assumed to be tractably
solvable for each goal. Hence, the earlier system solves the user MDP for each goal and
uses it to initialize the user’s policy.

Unfortunately the dual assumptions of tractability MDP and rationality make this
approach too restrictive to be useful in real-world domains that are too complicated for
any user to approach perfect rationality. We propose a knowledge-based approach to the
effective assistantship problem that bypasses the above two assumptions. We provide
the assistant with partial knowledge of the user’s policy, in the form of a task hierarchy
with relational constraints on the subtasks and their parameters. Given this strong prior
knowledge, the assistant is able to learn the user’s policy quickly by observing his actions
and updating the policy parameters. We appropriately adopt the goal estimation and
action selection steps of the previous model to the new structured policy of the user and

show that it performs significantly better than the unstructured approach.

4.4 A Relational Hierarchical Model of Assistance

In this section, we propose a relational hierarchical representation of the user’s policy and

show its use for goal estimation and action selection.

4.4.1 Relational Hierarchical Policies

Typically, users solve difficult problems by decomposing them into a set of smaller ones
with some ordering constraints between them. For example, proposal writing might in-
volve writing the project description, preparing the budget, and then getting signatures

from proper authorities. Also, the tasks have a natural class-subclass hierarchy, e.g., sub-
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mitting a paper to ICML and IJCAI might involve similar parameterized subtasks. In
the real world, the tasks are chosen based on some attributes of the environment or the
user. For instance, the paper the user works on next is influenced by the closeness of the
deadline. It is these kinds of relationships that we want to express as prior knowledge so
that the assistant can quickly learn the relevant parameters of the policy. We model the
user as a stochastic policy m(a|w, T, O) that gives the probability of selecting action a € A
given that the user has goal stack 7" and is in state w. O is the history of the observed
states and actions. Learning a flat, propositional representation of the user policy is not
practical in many domains. Rather, in this work, we represent the user policy as a rela-
tional task hierarchy and speed up the learning of the hierarchy parameters via the use of
conditional influence statements that constrain the space of probabilistic dependencies.

Relational Task Hierarchies. A relational task hierarchy is specified over a set
of variables, domain constants, and predicate symbols. There are predicate symbols for
representing properties of world states and specifying task names. The task predicates
are divided into primitive and abstract tasks. Primitive task predicates will be used to
specify ground actions in the MDP that can be directly executed by the user. Abstract
task predicates will be used to specify non-primitive procedures (that involve calling
subtasks) for achieving high-level goals. Below we will use the term task stack to mean a
sequence of ground task names (i.e. task predicates applied to constants).

A relational task hierarchy will be composed of relational task schemas which we now

define.

Definition 1 (Relational Task Schema). A relational task schema is either: 1) A primi-
tive task predicate applied to the appropriate number of variables, or 2) A tuple (N, S, R, G, P),
where the task name N is an abstract task predicate applied to a set of variables V', S is
a set of child relational task schemas (i.e. the subtasks), R is a set of logical rules over

state, task, and background predicates that are used to derive a candidate set of ground
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child tasks in a given situation, G is a set of rules that define the goal conditions for the
task, and P(s|T,w,O) is a probability distribution that gives the probability of a ground

child task s conditioned on a task stack T, a world state w, and an observation history O.

Each way of instantiating the variables of a task schema with domain constants yields
a ground task. The semantics of a relational task schema specify what it means for the
user to “execute to completion” a particular ground task as follows. As the base case, a
primitive ground task is executed-to-completion by simply executing the corresponding
primitive MDP action until it terminates, resulting in an updated world state.

An abstract ground task, can intuitively be viewed as specifying a stochastic policy
over its child subtasks which is executed until its goal condition is satisfied. More precisely,
an abstract ground task ¢ is executed-to-completion by repeatedly selecting ground child
tasks that are executed-to-completion until the goal condition G is satisfied. At each
step given the current state w, observation history O, task stack 7', and set of variable
bindings B (that include the bindings for ¢) a child task is selected as follows: 1) Subject
to the variable bindings, the rules R are used to derive a set of candidate ground child
tasks. 2) From this set we draw a ground task s according to P, properly normalized to
only take into account the set of available subtasks. 3) The drawn ground task is then
executed-to-completion in the context of variables bindings B’ that include the bindings
in B along with those in s and a task stack corresponding to pushing ¢ onto 7.

Based on the above description, the set of rules R can be viewed as specifying hard
constraints on the legal subtasks with P selecting among those tasks that satisfy the
constraints. The hard constraints imposed by R can be used restrict the argument of the
child task to be of a certain type or may place mutual constraints on variables of the child
tasks. For example, we could specify rules that say that the document to be attached in
an email should belong to the project that the user is working on. Also, the rules can

specify the ordering constraint between the child tasks. For instance, it would be possible



89

to say that to submit a paper the task of writing the paper must be completed first.

We can now define a relational task hierarchy.

Definition 2 (Relational Task Hierarchy). A relational task hierarchy is rooted acyclic
graph whose nodes are relational task schemas that satisfy the following constraints: 1)
The root is a special subtask called ROOT. 2) The leaves of the graph are primitive task
schemas. 3) There is an arc from node ny to node ny if and only if the task schema of ny

15 a child of task schema ny.

We will use relational task hierarchies to specify the policy of a user. Specifically, the
user’s actions are assumed to be generated by executing the ROOT task of the hierarchy
with an initially empty goal stack and set of variable bindings.

An example of a Relational Task Hierarchy is presented in the Figure 4.1 for a game
involving resource gathering and tactical battles. For each task schema we depict some
of the variable binding constraints enforced by the R as a logical expression. For clarity
we do not depict the ordering constraints imposed by R. From the ROOT task the
user has two distinct choices to either gathering a resource, Gather(R) or attacking an
enemy, Attack(E). Each of these tasks can be achieved by executing either a primitive
action (represented with ovals in the figure) or another subtask. For example, to gather
a resource, the user needs to collect the resource (denoted by Collect(R)) and deposit
the resource at the storage (denoted by Deposit(R,S), which indicates that R is to be
deposited in S). Resources are stored in the storages of the same type (for example, gold
in a bank, food in a granary etc.), which is expressed as the constraint R.type = S.type
in the figure. Once the user chooses to gather a resource (say goldl), the value of R in all
the nodes that are lower than the node Gather(R) is set to the value goldl. R is freed
after Gather is completed.

Conditional Influences: Often it is relatively easy to hand-code the rule sets R

that encode hard-constraints on child tasks. It is more difficult to precisely specify the
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ROOT
——

— T
R Fype = S.Type E Fype = D.-Xype

‘ Collect(R) ‘ ‘ Deposit(R,S) ‘ ‘KiIIDragon(D) ‘ ‘DestroyCamp(E)‘

Figure 4.1: Example of a task hierarchy of the user. The inner nodes indicate subtasks
while the leaves are the primitive actions. The tasks are parameterized and the tasks at
the higher level will call the tasks at the lower level

probability distributions for each task schema. In this work, we take the approach of
hand-coding a set of conditional influence statements that are used to constrain and
hence speedup the learning of these probability distributions. The conditional influences
describe the objects and their attributes that influence a subtask choice based on some
condition, i.e., these statements serve to capture a distribution over the subtasks given
some attributes of the environment (P(subtask | worldstate)). For example, since there
could be multiple storage locations for a resource, the choice of a storage may be influenced
by its distance to the resource. While this knowledge can be easily expressed in most SRL
formalisms such as Probabilistic Relational Language [28] and Bayesian Logic Programs
[42], we give an example in First-Order Conditional Influence Language (FOCIL) [55]
presented in the previous chapter.

If {Goal(Gather(R)),Completed(Collect(R)),Equal(Type(R),Type(S))} then

Distance(Loc(R), Loc(S))) Qinf subgoal(Deposit(R,S))

Recall that a FOCIL statement of the form I f{Z ()} then Yi(a),...,Yi(a) Qinf
means that Yi(«), ..., Yi(«) influence X (o) when Z(«) is true, where « is a set of logical
variables. The above statement captures the knowledge that if R is a resource that has

been collected, and S is a storage where R can be stored, the choice of the value of S is in-
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fluenced by the distance between R and S. The semantics and learning algorithms for such
relational statements were discussed in the previous chapter. The influence statements
also serve the role of “abstraction” in the MAX(Q approach to hierarchical reinforcement
learning [19]. The probability of choosing a subtask in a given state is determined solely
by the attribute values of the objects mentioned in the conditional influence statement,
which puts a strong constraint on the user’s policy and makes it easier to learn.

The high level algorithm is presented in table 4.1. The parameters are updated at
the end of the episode using MLE estimates. When an episode is completed, the set
of completed tasks and the action trajectories are used to update the parameters of the

nodes at different levels.

Table 4.1: Highlevel algorithm for assistance

e litialize DBNs as in Figure 4.2 incorporating all hard constraints
into the CPTs

e For each episode

— For each time step

x Observe any task completed

x Update the posterior distribution of goal stack based on
the observation, the hard constraints, and FOCI state-
ments

* Observe the next action

x Update the posterior distribution over the tasks in the
task stack

x Compute the best assistive action

— Update the DBN parameters
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4.4.2 Goal Estimation

In this section, we describe our goal estimation method, given the kind of prior knowledge
described in the previous section, and the observations, which consist of the user’s prim-
itive actions. Note that the probability of the user’s action choice depends in general on
not only the pending subgoals, but also on some of the completed subgoals including their
variable bindings. Hence, in general, the assistant POMDP must maintain a belief state
distribution over the pending and completed subgoals. which we call the “goal structure.”

We now define the assistant POMDP. The state space is W x T where W is the
set of world states and T is the user’s goal structure. Correspondingly, the transition
probabilities are functions between (w,t) and (w’,t). Similarly, the cost is a function
of (state, action) pairs. The observation space now includes the user’s actions and their
parameters (for example, the resource that is collected, the enemy type that is killed etc).

In this work, we make a simplifying assumption that there is no uncertainty about the
completed subtasks. This assumption is justified in our domains, where the completion of
each subtask is accompanied with an observation that identifies the subtask that has just
completed. This would simplify the inference process as we do not need to maintain a
distribution over the (possibly) completed subtasks. For estimating the user’s goal stack,
we use a DBN similar to the one used in [52] and present it in Figure 4.2. T; refers to the
task at time-step j and level 7 in the DAG. O° refers to the completed subtask at level
1. F J’ is an indicator variable that represents whether TJZ has been completed and acts
as a multiplexer node. If the lower level task is completed and the current task is not
completed, the transition function for the current task would reflect choosing an action
for the current subtask. If the lower level task is not completed, the current task stays
at its current state. If the current task is completed, the value is chosen using a prior
distribution over the current task given the higher level tasks.

In the experiments reported in the next section, we compiled the FOCIL statements
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into a DBN structure by hand. The number of levels of the tasks in the DBN corresponds
to the depth of the directed graph in the relational task hierarchy. The values of the
different task level nodes will be the instantiated tasks in the hierarchy. For instance,
the variable le takes values corresponding to all possible instantiations of the second-
level tasks. Once the set of possible values for each current task variable in the task is
determined, the constraints are used to construct the CPT. For example, the constraint
R.Type = S.Type in the Figure 4.1 implies that a resource of one type can be stored in
the storage of the same type. Assume that the user is gathering gold. Then in the CPT
corresponding to P(T7 = Store(S, gold) | T} = Gather(gold), all the entries except the
ones that correspond to a bank are set to 0. The rules R of the task schema determine
the non-zero entries of the CPTs, while the FOCIL statements constrain the distributions
further. Note that, in general, the subtasks completed at a particular level influence the
distribution over the current subtasks at the same level through the hard constraints,
which include ordering relationships. In our experiments, however, we have chosen to
not explicitly store the completed subtasks at any stage since the ordering of subtasks
has a special structure. The subtasks are partitioned into small unordered groups, where
the groups are totally ordered. This allows us to maintain a small memory of only the

completed subtasks in the current group.

Figure 4.2: Dynamic Bayesian network that is used to infer the user’s goal.
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To illustrate the construction of the DBN given the hierarchy and influence state-
ments better, let us consider the example presented in Figure 4.1. Assume that the user
chooses to gather g1 (i.e., gold from location 1). Once the episode begins, the variables
in the DBN are instantiated to the corresponding values. The task at the highest level
T}, would take values from the set ( Gather(g1), Gather(g2), Gather(wl),Gather(w2),
Destroy(el),Destroy(e2) ), assuming that there are 2 gold and wood locations and 2
enemies. Similarly, the tasks at level n of the DBN would assume values corresponding to
the instantiation of the nodes at the n'* level of the hierarchy. The conditional influence
statements are used to obtain a prior distribution over the goal stack only after every
subtask is finished or to minimize uncertainty and retain tractability. Once the prior is
obtained, the posterior over the goal stack is updated after every user action. For example,
once the user finishes the subtask of collect(gl), the relational structure would restrict
the set of subgoals to depositing the resource and the conditional influence statements
would provide a prior over the storage locations. Once the highest level task of Gather is
completed, the DBN parameters are updated using the complete set of observations. Our
hypothesis that we verify empirically is that, the relational structure and the conditional
influence statements together provide a strong prior over the task stack which enables
fast learning.

Given this DBN, we need to infer the value of P(T}* | T}, F}*%, a;, O"?), where d is
the depth of the DAG i.e, infer the posterior distribution over the user’s goal stack given
the observations (the user actions in our case) and the completed goal stack. As we have
mentioned, we are not considering the completed subgoals due to the fact that most of our
constraints are total order and there is no necessity of maintaining them. Since we always
estimate the current goal stack given the current action and state, we can approximate
the DBN inference as a BN inference for the current time-step. The other issue is the
learning of parameters of the DBN. At the end of every episode, the assistant updates

the parameters of the DBN based on the observations in that episode using maximum
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likelihood estimates with Laplace correction. Since the model is inherently relational, we
can exploit parameter tying between similar objects and hence accelerate the learning of
parameters. The parameter learning in the case of relational models is significantly faster
as demonstrated by our experiments.

It should be noted that in the earlier model, we solved the user MDP and used the
values to initialize the priors for the user’s action models. Though it seems justifiable, it
is not always possible to solve the user MDP. We show in our experiments that even if
we begin with an uniform prior for the action models, the relations and the hierarchical

structure would enable the assistant to be useful even in the early episodes.

4.4.3 Action Selection

Given the assistant POMDP M and the distribution over the user’s goal stack P(T%¢ |
O;), where O; are the observations, we can compute the value of assistive actions. Fol-
lowing the approach presented in Chapter 2, we approximate the assistant POMDP with
a series of MDPs M (%), for each possible goal stack t'“¢. Thus, the heuristic value of an
action a in a world state w given the observations O; at time-step j would now correspond
to,

H(w,a,0;) = Z Qpa(w,a) - P(t1:d|0j)

tl:d

where Q,1.4(w, a) is the value of performing the action a in state w in the MDP M (¢14)
and P(t?|0;) is the posterior probability of the goal stack given the observations. Instead
of sampling over the goals, we sample over the possible goal stack values. The relations
between the different goals would restrict the number of goal-subgoal combinations. If the
hierarchy is designed so that the subgoals are not shared between higher level goals, we
can greatly reduce the number of possible combinations and hence making the sampling

process practically feasible. We verify this empirically in our experiments. To compute
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the value of Qu.a(w,a), we use the policy rollout technique [7] where the assumption is
that the assistant would perform only one action and assumes that the agent takes over
from there and estimates the value by rolling out the user policy. Since the assistant has
access to the hierarchy, it chooses the actions subjected to the constraints specified by

the hierarchy.

4.5 Experiments and Results

In this section, we briefly explain the results of simulation of a user in two domains!: a
gridworld doorman domain where the assistant has to open the right doors to the user’s
destination and a kitchen domain where the assistant helps the user in preparing food. We
simulate a user in these domains and compare different versions of the decision theoretic
model and present the results of the comparison. The different models that we compare
are: the relational hierarchical model that we presented, a hierarchical model where the
goal structure is hierarchical, a relational model where there are objects and relations
but there is a flat goal structure and a flat model which is a very naive model with a
flat goal structure and no notion of objects are relationships. Our hypothesis is that the
relational models would benefit from parameter tying and hence can learn the parameters
faster and would offer better assistance than their propositional counterparts at earlier
episodes. Similarly, the hierarchical model would make it possible to decompose the goal
structure thus making it possible to learn faster. We demonstrate through experiments
that the combination of relational and hierarchical models would enable the assistant to

be more effective than the assistant that uses either of these models.

IThese are modification to the domains presented in Chapter 2
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4.5.1 Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the user has
to open to navigate to the adjacent cell (see Figure 4.3. The hierarchy presented in Figure
4.1.a was used as the user’s goal structure. The goals of the user are to Gather a resource
or to Attack an enemy. To gather a resource, the user has to collect the resource and
deposit it at the corresponding location. Similarly, to destroy an enemy, the user has to
kill the dragon and destroy the castle. There are different kinds of resources, namely food
and gold. Each resource can be stored only in a storage of its own type (i.e, food is stored
in granary and gold is stored in bank). There are 2 locations for each of the resources
and its storage. Similarly there are 2 kinds of enemy red and blue. The user has to kill
the dragon of a particular kind and destroy the castle of the same kind. The episode ends
when the user achieves the highest level goal. The actions that the user can perform are
to move in 4 directions, open the 4 doors, pick up, put down and attack. The assistant
can only open the doors or perform a noop. The door closes after one time-step so that
at any time only one door is open. The goal of the assistant is to minimize the number
of doors that the user needs to open. The user and assistant take actions alternately in

this domain.

£ Grid World Simulation

N
amggcn

Figure 4.3: Doorman Domain. Each cell has 4 doors that the user has to open to navigate
to the adjacent cell. The goal of the assistant is to minimize the number of doors that
the user has to open.
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Figure 4.4: Learning curves for the 4 algorithms in the doorman domain. The y-axis
presents the average savings for the user due to the assistant.

We employed four versions of the assistant that models the user’s goal structure: one
that models the structure as a relational hierarchical model, second which assumes a
hierarchical goal structure but no relational structure (i.e., the model does not know that
the 2 gold locations are of the same type etc and thus cannot exploit parameter tying),
third which assumes a relational structure of user’s goal but assumes flat goals and hence
does not know the relationship between collect and deposit of subtasks, and the fourth
that assumes a flat goal structure. A state is a tuple (s, d), where s stands for the the
agent’s cell and d is the door that is open. For the two flat cases, there is a necessity
include variables such as carry that can take 5 possible values and kill that take 3 values
to capture the state of the user having collected a resource or killed the dragon before
reaching the eventual destination. Hence the state space of the 2 flat models is 15 times
more than that of the hierarchical one.

To compare the 4 algorithms, we solved the underlying hierarchical MDP and then
used the Q-values to simulate the user. For each episode, the higher level goals are chosen
at random and the user attempts to achieve the goal. We calculate usefulness of the
assistant as the ratio of the correct doors that it opens to the total number of doors that

are needed to be opened for the user to reach his goal which is a worst-case measure of the
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cost savings of the user. We average the usefulness every 10 episodes. The user’s policy is
hidden from the assistant in all the algorithms and the assistant learns the user policy as
and when the user performs his actions. The relational model captures the relationship
between the resources and storage and between the dragon’s type and the castle’s type.
The hierarchical model captures the relationship between the different goals and subgoals,
for instance, that the user has to collect some resource in order to deposit it, etc. The
hierarchical relational model has access to both the kinds of knowledge and also to the
knowledge that the distance to the storage location influences the choice of the storage
location.

The results are presented in Figure 4.4. The graph presents the average usefulness
of the assistant after every 10 episodes. As can be seen from the figure, the relational
hierarchical assistant is more useful than the other models. In particular, it can exploit
the prior knowledge effectively as demonstrated by the rapid increase in the usefulness in
earlier episodes. The hierarchical and relational models also exploit the prior knowledge
and hence have a quicker learning rate than the flat model (as can be seen from the first
few episodes of the figure). The hierarchical relational model outperforms the hierarchical
model as it can share parameters and hence has to learn a smaller number of parameters.
It outperforms the relational model as it can exploit the knowledge of the user’s goal
structure effectively and can learn quickly at the early stages of an episode.required for
computing the best action of the assistant for all the four algorithms. This clearly demon-
strates that the hierarchical relational model can be more effective without increasing the

computational cost.

4.5.2 Kitchen Domain

The other experimental domain is a kitchen domain where the user has to cook some

dishes. In this domain, the user has 2 kinds of higher-level goals: one in which he could
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prepare a recipe which contains a main dish and a side dish and the second in which,
he could use some instant food to prepare a main dish and a side dish. There are 2
kinds of main dishes and 2 kinds of side dishes that he could prepare from the recipe.
Similarly, there are 2 kinds of main dishes and 2 kinds of side dishes that he could prepare
from instant food. The hierarchy is presented in Figure 4.5. The symbol € is used to
capture the information that the object is part of the plan. For instance, the expression
I € M.Ing means that the parameter to be passed is the ingredient that is used to cook
the main dish. The plans are partially ordered. There are 2 shelves with 3 ingredients
each. The shelves have doors that must be opened before fetching ingredients and only
one door can be open at a time.

The state consists of the contents of the bowl, the ingredient on the table, the mixing
state and temperature state of the ingredient (if it is in the bowl) and the door that is open.
The user’s actions are: open the doors, fetch the ingredients, pour them into the bowl,
mix, heat and bake the contents of the bowl, or replace an ingredient back to the shelf. The
assistant can perform all user actions except for pouring the ingredients or replacing an
ingredient back to the shelf. The cost of all non-pour actions is -1. Unlike in the doorman
domain, here it is not necessary for the assistant to wait at every alternative time step.
The assistant continues to act until the noop becomes the best action according to the
heuristic. The episode begins with all the ingredients in the shelf and the doors closed.
The episode ends when the user achieves the goal of preparing a main dish and a side dish
either with the recipe or using instant food. The savings is the ratio of the correct non-
pour actions that the assistant has performed to the number of actions required for the
goal. Similar to the other domain, we compared 4 different types of models of assistance.
The first is the hierarchical relational model that has the knowledge of the goal-subgoal
hierarchy and also has the relationship between the subgoals themselves. It knows that
the type of the main dish influences the choice of the side dish. The second model is the

hierarchical model, that has the notions of the goals and subgoals but no knowledge of
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Figure 4.5: The kitchen domain hierarchy

the relationship between the main dishes and the side dishes and thus has more number
of parameters to learn. The relational model assumes that there are two kinds of food
namely the one prepared from recipe and one from instant food and does not possess any
knowledge about the hierarchical goal structure. The flat model considers the preparation
of each of the 8 dishes as a separate goal and assists the user. Both the flat model and the
relational model assume that the user is always going to prepare the dishes in pairs but
do not have the notion of main dish and side dishes or the ordering constraints between
them.

The results are presented in Figure 4.6. As can be seen, the hierarchical models greatly
dominate the flat ones. Among the models, the relational models have a faster learning
rate than their propositional counterparts. They perform better in the earlier few episodes
which clearly demonstrates that relational background knowledge accelerates learning. In
this domain, the hierarchical knowledge seems to dominate the relational knowledge. This
is due to the fact that all the subgoals are similar (i.e, each of them is preparing some
kind of food) and the hierarchical knowledge clearly states the ordering of these subgoals.
The relational hierarchical model has a better savings rate in the first few episodes as it
has a fewer parameters to learn. Both the flat model and the relational model eventually

converged on the same savings after 700 episodes. These results demonstrate that though
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all the models can eventually converge to the same value, the relational hierarchical model

converges in early episodes.
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Figure 4.6: Learning curves of the different algorithms.

4.6 Related Work

Most of the decision-theoretic assistants have been formulated as POMDPs that are ap-
proximately solved offline. For instance, the COACH system helped people suffering from
Dementia by giving them appropriate prompts as needed in their daily activities [10]. In
this system, there is a single fixed goal of washing hands for the user. In Electric Elves,
the assistant is used to reschedule a meeting should it appear that the user is likely to
miss it [67]. These systems do not have a hierarchical goal structure for the user while in
our system, the assistant infers the user’s goal combinations and renders assistance.
Several plan recognition algorithms use a hierarchical structure for the user’s plan.
These systems would typically use a hierarchical HMM [25] or an abstract HMM [12] to
track the user’s plan. They unroll the HMMs to a DBN and perform inference to infer the
user’s plan. We follow a similar approach, but the key difference is that in our system, the
user’s goals are relational. Also, we allow for richer models and do not restrict the user’s

goal structure to be modeled by a HMM. We use the qualitative influence statements to
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model the prior over the user’s goal stack. We observe that this could be considered as
a method to incorporate richer user models inside the plan recognition systems. There
has been substantial research in the area of user modeling. Systems that have been used
for assistance in spreadsheets [35] and text editing [37] have used handcoded DBNs to
infer about the user. Our system provides a natural way to incorporate user models into
a decision-theoretic assistant framework.

In recent years, there have been several first-order probabilistic languages developed
such as PRMs [27], BLPs [42], RBNs [38], MLNs [20] and many others. One of the
main features of these languages is that they allow the domain expert to specify the prior
knowledge in a succinct manner. These systems exploit the concept of parameter tying
through the use of objects and relations. In this chapter, we showed that these systems can
be exploited in decision-theoretic setting. We combined the hierarchical models typically
used in reinforcement learning with the kinds of influence knowledge typically encoded in

relational models to provide a strong bias on the user policies and accelerate learning.

4.7 Conclusions and Future Work

In this chapter, we proposed the incorporation of parameterized task hierarchies to capture
the goal structure of a user in a decision-theoretic model of assistance. We used the
relational models to specify the prior knowledge as relational hierarchies and as a means
to provide informative priors. We evaluated our model against the non-hierarchical and
non-relational versions of the model and established that combining both the hierarchies
and relational models makes the assistant more useful.

The incorporation of hierarchies would enable the assistant to address several other
problems in future. The most important one is the concept of parallel actions. Our current
model assumes that the user and the assistant have interleaved actions and cannot act

in parallel. Allowing parallel actions can be leveraged if the goal structure is hierarchical



104

as the user can achieve a subgoal while the assistant can try to achieve another one.
Yet another problem that could be handled due to the incorporation of hierarchies is
the possibility of the user changing his goals midway during an episode. Finally, we can
also imagine providing assistance to the user in the cases where he forgets to achieve a

particular subgoal.
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Chapter 5 — Logical Hierarchical Hidden Markov Models

5.1 Introduction

Activity recognition is a problem that has long been the focus of researchers and has a
wide range of applications from surverillance to intelligent interfaces to assist the elderly.
Accordingly, several kinds of solutions ranging from domain-specific hand-coded solutions
to the more general Hidden Markov Models(HMM) have been proposed for this problem.
Among these solutions, Hidden Markov Models and their several extensions are among
the most popular methods for activity recognition.

The main advantage of HMMSs and their extensions lies in the fact that they define a
clear Bayesian semantics for the problem. Also, efficient algorithms that perform infer-
ence in linear time have been proposed for HMMs making them very attractive for this
problem. The different extensions of HMM like the Hierarchical HMM (HHMM) [25] and
abstract HMMs (AHMM) [12] are being widely used in activity recognition for a variety
of applications.

The main drawback of HMMs is that they do not take into account the structure of
the problem. The objects in the domain may be related by specific relationships and these
relationships govern the action that the user performs in the current state. For example,
the user is more likely to send a paper that he is writing to his co-authors and not to any
random contact in his address book. Also, since the HMMs are inherently propositional,
they do not allow for generalization among the objects of the domain. For instance, the
models cannot be shared among multiple users of the desktop as a seperate HMM needs
to be constructed for every user in a propositional setting. It would be prudent to think

that most researchers follow the same pattern while submitting a proposal or most papers
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are being written by a similar methodology of running experiments, writing the paper,
the abstract, send it to one’s co-authors etc.

The goal of this work is to extend the HMM and its hierarchical version with a logical
model that allows for generalization of the objects in the domain. The use of logical models
will allow us to specify the models at an abstract level that can later be instantiated with
specific instances and to perform inference on them. Also, the use of logical models will
allow parameter sharing between the objects of the same type thus requiring smaller
number of examples for learning.

In many real-world applications, the user chooses his action based on some conditions
in the environment. For example, a user who goes for shopping might prefer the nearest
store to shop from. If the product that he wants to buy is not available in that store, he
might go to another one. If it was available, he might buy the product and return home.
The fact that the product is available or not can be observed by looking at the inventory
while the distance to the shop can be observed as well. But, it is not possible to observe
what the user is thinking or what he wants to do. Hence, some parts of the state space
are completely observed while some others are not. In our model, we consider the current
state as having two components: an observable component (called the world state) and
an unobservable component (called the user state). One of our critical assumptions is
that the world state is completely observable and this would make it possible to perform
tractable inference (as we show later in the chapter) in large domains.

In this chapter, we provide the syntax and semantics of the Logical HMMs and the
Logical Hierarchical HMMs. We show that a ground HMM (correspondingly a ground
HHMM) always exists given a Logical HMM (or a Logical Hierarchical HMM) and a set of
values of the objects in the domain. We present the algorithm for grounding the Logical
and the Logical Hierarchical HMM. We also present experimental results in a real-world
intelligent desktop assistant and in a few synthetic domains.

One of the main motivations for this work is the goal estimation component of the
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Relational Hierarchical Decision-Theoretic model of assistance presented in the previous
chapter. As we had explained, the goal estimation is performed in the model using hand-
coded DBNs. But as the number of objects in the domain increases, the inference problem
will be intractable. We propose the use of Logical Hierarchical HMMs to perform the goal
estimation in the assistance model. We have not yet integrated the LoHiIHMMSs with the
assistance model. Hence in this chapter, we discuss LoHiIHMMSs as a seperate model in
itself to perform activity (goal) recognition.

The rest of the chapter is organized as follows: the next section introduces the HMM,
the hierarchical version of the HMM and previous work on logical HMMs. Section 3
presents the Logical HMM, its syntax and semantics and provides an algorithm for con-
structing a ground version of the Logical HMM. Section 4 repeats the same for the Logical
Hierarchical HMM. Section 5 presents the experimental results on using the Logical HMM.

The final section concludes the chapter by outlining some areas of future research.

5.2 Background

In this section, we briefly review the background work required for the chapter namely,
the Hidden Markov Models, the Hierarchical HMMs, Particle Filtering and the previous
work on Logical HMMs.

5.2.1 Hidden Markov Models

Hidden Markov models (HMMs) are used to model systems that follow a Markov process
which is essentially a process with no memory. Specifically, in a markov process, the next
state of the system is independent of the past states given its current state. HMMs are
used to model stochastic markov processes. In HMMs, there are 2 kinds of variables: a

state variable that follows a Markov chain and an observation variable whose value is
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generated by the current state. As the name implies, in a HMM the states are assumed
to be unobserved(hidden). Hence, one of the important tasks is to infer the values of the
current state conditioned on the values of the observations.

Formally, an HMM is defined using the 5-tuple (S, II, O, ), I), where S is a set of states,
I1(s'|s) is the next-state distribution, O is a set of observations,2(o|s) is the probability
of observing o when in state s and [ is the initial state distribution.

The HMM starts in one of the states s chosen according to I(s), makes transitions to
next states according to II at every step, and emits observation o with probability ©(o|s).
It is clear that while considering the problem of activity recognition, the goal is to infer
the distribution over the states given the current set of observations p(s|o). Hence the
activity recognition problem is posed as performing inference in an HMM.

HMM inference problems can be divided into four categories [53]:

e Filtering: Estimate the variables at current time-step given the observation history

P(S¢ | Ove)

e Prediction: Estimate the variables in future (after ¢ time-steps given the observation

hiStOI‘y P(St+c ’ Ol:t)

e Smoothing: Obtain a better estimate of the state in the past given the observation

history P(S;_. | O1.)

e Most Likely Explanation: Obtain the most likely state sequence that generated the

sequence of observations Argmazg,,P(S1.4|O1.)

In online settings, activity recognition is posed as the filtering problem which is to
estimate the current state given the observation history. In this work, by inference we

mean the filtering problem.
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5.2.2 Hierarchical Hidden Markov Models

Although HMM seems to be a very good choice for activity recognition, there are some
applications where it becomes difficult if not impossible to use HMMs. For example,
a student researcher might email his/her advisor the current draft of the paper often
during the paper submission. In this case, the same set of states of composing an email,
attaching the document and sending it to the advisor is often visited in the trajectory. If
we are to model this using a HMM, the number of states can be arbitrarily large as the
states would have to capture the current subgoal, the higher level goals and the history
of the completed subgoals. It is also difficult to model situations where some states take
more than one time-step to be executed. For instance, editing a particular document
might take several time-steps and it is not possible to fix the number of time-steps at the
beginning of the task. Also, there are tasks that are performed recursively by the user. In
addition, the user’s taskes have a well-defined hierarhical structure that can be exploited
if captured explicitly by the model. Though these situations can be captured by a HMM,
the structure in the problem cannot be exploited efficiently.

Hierarchical HMMs[25] were developed for modeling such situations and they extend
HMNMs to include a hierarchical structure for the states. Each state in a HHMM is a self
contained probabilistic model. One way to understand a Hierarchical HMM is to think
of each state of the HHMM being an HHMM in itself. So when the HHMM transitions
to the current state, the sub-HHMM is activated which in turn activates a HHMM at
the lower level. This would mean that at each state, the HHMM will emit a sequence of
observation symbols than a single symbol. The key difference to a normal HMM is the
notion of end states. Each sub-HMM has a set of end states that can terminate the HMM
at the current level and the control returns to the calling state of the parent HMM.

Any HHMM can be converted to a HMM[52]. The state of the HMMs correspond to
the state stack of the HHMMs(S*?), where D is the number of levels of the HHMM. If
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Figure 5.1: An example of a Hierarchical Hidden Markov Model.

the HHMM structure is a tree, it would imply that there are no repititive substructures.
The HMM then contains one state for every combination of the parent and child states. If
the HHMM has repeated substructures, they have to be duplicated in the HMM resulting
in a large model. We refer to [52] and [25] for more details on converting a HHMM to a
HMM.

An example of a HHMM is presented in Figure 5.1. The end states are presented
by dashed ovals. As can be seen, to achieve the task of reviewing a proposal, the user
has to download it, review it and submit the review. Once the review is submitted the
control returns to the parent state. Similarly, to complete the task of downloading, the
user needs to open the URL and save the proposal. Each level of the HHMM is a HHMM
in itself with the property that each state of this HHMM can take more than one time-
step to complete. There have been several extensions to the HHMM and it has been
used extensively in activity recognition [57, 47]. We do not present these in detail in this

chapter but point out the use of such models for activity recognition.

5.2.3 Particle Filtering

As we mentioned earlier, activity recognition has been formulated as the problem of

filtering in the HMM (or the hierarchical HMM). Since in large HMMs, performing exact
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inference might be impractical, sampling methods became popular. The key innovation
in these methods is to focus the set of samples on high probability regions of the state
space i.e., generate more samples in high posterior regions. The main advantages of these

approaches are:

e They are very easy to implement when compared to the exact methods. The data
structures required are minimal when compared to exact algorithms like junction

tree.

e These methods work on almost any distributions (including mixtures of distribu-

tions) while exact inference is almost impossible for continuous distributions

e They can handle variable-sized models and can easily adapt to the changes in the

model structure

e No explicit unrolling is needed and in the presence of infinite samples these methods

can give an exact distribution (asymptotic property)

e These methods make it possible to do a constant time update per time step

Though extremely popular, these methods are not without disadvantages. Some of

the key disadvantages are:

e The sampling methods are slower than their other approximate counterparts (the

deterministic methods)

e If there are not enough samples, these methods can have high variance

Among the sampling methods, particle filtering methods are very popular. The main
idea in particle filtering is to represent the distribution as a set of samples of the state

space. The general approach to particle filtering works as follows: Samples are generated
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according to the prior distribution and propagated according to the transition distribution.
The samples are then re-weighed according to the observed evidence probabilities and new

samples are generated.

Table 5.1: Particle filtering algorithm

function PF returns {zi}Y, = PF({zi_} Y, »)
1. For each sample i

e Draw the sample z} using the distribution xf ~ P(z¢|x!_;,y:)

e Compute the weight of the current sample, w® o< Pr(y:|zi_;)
2. Resampling
e Resample the current state using, xi ~ Ew—;ﬂ

e Set the weights of the current sample, w’ = 1

The particle filtering algorithm is presented in Table 5.1. The state at time ¢ is
denoted by x; and the observation at time step t is denoted by y;. The main difference
from the general approach mentioned earlier is that, the samples are drawn considering
both the transition distribution and the observation distribution and the weights are
the probability of the observation given the samples at the previous time-step. The

distribution P(z¢|z!_,,y;) is given by,

Py ) P(xe]wi1)
thp(yt\:z:t) (ze|z-1)

(xt‘xt LY =
while,

P(yi|7;_4) ZP Y| o) Pae]we-1)

The key thing to note is that the evidence (y;) is being used while sampling for

the new state. Recall that the most general approach uses the transition distribution
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for generating the samples and the observation distribution for generating the weights.
This would mean that the observation (y;) is not being considered during the sampling
process leading to the requirement of more samples for converging on the true distribution.
Using the observations for sampling would ensure that the number of samples required
is small. Given the set of samples at any time-step, it is easy to obtain the distribution
by counting. The main disadvantage of the particle filtering algorithm is that it performs
poorly in high dimension spaces. This is due to the fact that the number of samples
required to approximate the state distribution grows very rapidly with dimensionality.
Hence, if the number of samples is not very large, this method could lead to high variance

in the estimates.

5.2.4 Logical HMMs

Kersting et al. introduced Logical HMMs [41] as a method of combining ideas from
ILP and dynamic models. In their framework, the states of the HMM are logical atoms
(abstract states) rather than propositional states. A logical atom consists of a predicate
name and a set of parameters that can be instantiated with constant ground values. The
transition distribution in the logical HMM now consists of two kinds of distributions: an
abstract transition distribution that specifies the probability of the next predicate given
the current predicate and a selection distribution that specifies the probability of the
instantiation of the parameters for the current state. In their work, the observations
correspond to proof steps, e.g., the document that is currently being edited or the [s
command issued at the command prompt. The selection distribution is specified using a

Naive Bayes function. We contrast our formalism to theirs as we introduce our model.
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5.3 Logical Hidden Markov Models

In this section, we present a logical extension to the Hidden Markov Model and outline
the syntax and semantics of this model. The goal of this work is to formulate a hidden
markov model that can be generalized across several objects in the domain.

In general, different users follow a similar pattern in achieving the same task. For
instance, if the task is to review a proposal, the user would first open the document, print
it, write the review and turn the review in. These tasks have to be performed irrespective
of who the user is. Our goal is to parameterize the HMMs so that they can be generalized
to several objects in the domain.

Consider the HMM presented in Figure 5.2. In this example, a user receives a doc-
ument to edit through an email, edits the document and sends it back to the sender.
The numbers on the arcs indicate the probability of the transition. Note the presence of
logical conditions on the arcs. The semantics is that when the conditions are satisfied the
HMM transitions to the next state with the given probability. For example, consider the
node Fdit(D), which corresponds to the user editing a document D. If the user has not
finished editing the document, he continues to edit it and is represented by the self-arc in
the node. Once the user completes editing the document, he replies to the email in which
he received the document.In this section, we first define the states and transitions of this
HMM and then formally define the logical HMM.

The state in the model consists of two components, the state of the user and the state
of the environment. The state of the user is assumed to be a single ground predicate that
indicates the activity of the user. The user is restricted to be in only one state at any
given instant of time. The state of the environment could be a conjunction of several

predicates.

Definition 3 (State). The state consists of two components: A user state which is a

predicate that represents the current activity of the user and the environment state which
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Figure 5.2: A Logical Hidden Markov Model for editing a document and sending it back
to the sender. The logical conditions on the arcs indicate the conditions under which the
transitions take place. The numbers on the arcs indicate the probability of the transition.

is a set of predicates of the environment.

An example of user state is Edit(D), where Edit is the logical predicate and D is
the parameter (variable) associated with this state. The environment state could include
information about the current time, the deadlines, the set of projects that the user is
involved with and so on. Recall that the user state is a single predicate while the envi-
ronment state is the conjunction of several predicates.

Given that we have defined the notion of state in our model, we need to define the
transitions between the states. Our goal is to capture transitions between user states
conditioned on some states of the environment. This will enable us to model the user’s
activity conditioned on the context of the execution. For example, if the document that
the user is currently editing is a long document, the user might prefer to print the docu-
ment, while if it is a short one, the user might just read it off the monitor. Though there
are several ways of modeling the conditions in the transitions between the states, we use
a model that is similar to decision lists or the case statements in programming languages.

The transitions in our model are called logical transitions and are of the form presented
in Table 5.2. The transitions in our model define a transition between the current state

of the user (called as source user state) and the next state of the user (called as target
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Table 5.2: Structure of an Logical transition in our model. The current user state is
A(X,Y) and it transitions to one of the successor states based on the condition and
logical transition probability.

( 1

- BNX.,Z

if C1(X,Y) A CY(Y, Z)... then i BiX.2)

by - B2(Y7Z)

AX)Y) — 2. mx. 7

Y ehse it C2X,Y) A GBX, Y, 2)... then n é( Z)
 else

user state) conditioned on some of the predicates of the environment. As shown in the
figure, there could be several logical test predicates that can be conjunctions of several
predicates (called hereafter as conditional predicates and shown as C' in the figure) based
on which the transition could take place.

The most important constraint is that exactly one branch of the transition will be
always taken for the given states. Once a particular branch say k evaluates to true and
the corresponding branch is taken, the target atom is chosen according to the transition
distribution (called as logical transition distribution) p7‘C for the current branch k. p_iC is
a well defined distribution i.e, >, pf =1, where S is the set of target abstract states
for the given logical transition. In the statement presented in table 5.2 for instance,
pi+ph=1.

An example transition is presented in Table 5.3. In this example, the user downloads
a document P and if it is a long paper, the user prints the document with a probability
0.9 or reads it off the webpage with a probability 0.1. If the paper is not a long one, he
reads of the webpage.

The branches can be understood similar to the decision lists in the programming lan-
guages. Given the instantiations of the current user state, the branch that first evaluates
to true is taken. Once a branch is chosen, the logical transition distribution is used to

choose the next user state predicate. In our model, the last branch has the key word else
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Table 5.3: Example of an Logical transition. The user prints the document if it is a long
document or reads it off the webpage if the URL is

(

9: Print(P

if LongPaper(P) AN URL(Z, P) then 09 rint(P)
0.1: Read(P,Z)
Download(P) = § 1o ¢ URL(Z, P) 1.0: Read(P,Z)
else 1.0: DoNothing

\

and has no conditions. It is a default one that will be taken if the other branch conditions
fail to evaluate to true (for example see Table 5.3). This is to ensure that the conditions
in atleast one branch would evaluate to true and hence one branch will always be taken

for the given user state.

Logical Transition A logical transition consists of the current user state S as the source
and a set of logical predicates of the environment. Corresponding to each predicate is a
set of target user states and a corresponding set of probability distributions called the
logical transition distributions. For each of the target user state, there is an associated
instantiation distribution (f) that specifies the probability of the values of the variables

associated with the target state. We discuss the instantiation distribution later.

Definition 4 (Logical HMM). A Logical HMM consists of set of states S, a set of logical

transitions A. The set of transitions define a markov chain at the logical level.

Note that in the above definition, we ignore the observations which are predicates as
well. In a later section, we discuss the observations. The above definition of the logical
HMM is too general. If we assume that the logical predicates are unobserved along with
the user states, the problem of user activity recognition would include performing inference
over the environment states as well which is essentially a very complex problem.

Hence, we consider a restricted model in which we assume that the environment com-

ponent of the state space is completely observed and the user state is assumed to be
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unobserved. This assumption is not unreasonable in many domains such as a desktop
domain, video survillance etc where the effect of the user’s actions in the environment is

completely observable while the user’s mental states are not known.
Definition 5 (Restricted Logical HMM). A Restricted Logical HMM consists of

o Set of states S which has two components: the user state S, that is a single predicate
and is unobserved and the environment state S, that can possibly consist of many

predicates and is completely observed

e a set of logical transitions A.

Note that the assumption of the state being composed of the observable environment
states and the unobserved user state predicate makes the inference process easier. This
will enable us to ignore the changes to the environment predicates and just focus on the
changes to the user state. The key thing to note here is that these logical conditions are
the observable part of the state space. Hence given a current user state, it would be easy

to evaluate the different logical predicates conditioned on the current user state.

Instantiation Distribution Once a user state is chosen as the target state for a tran-
sition, the instantiation of the user state must now be chosen. To this effect, the model
of Kersting et.al specifies a distribution /i (called as instantiation distribution henceforth)
over the possible instantiations of each predicate. In our work, instead of directly specify-
ing the distribution, we can specify some constraints. These constraints essentially serve
to define the non-zero entries in the instantiation distribution and are part of the branch
conditions. For example, the predicate URL(Z, P) in the example, specifies the exact
value of Z to be the URL of the document P. Yet another example of a hard constraint
could be to specify that a paper can be sent only to the co-authors.

Though we use a uniform distribution for the instantiation distribution in our ex-

periments, we do not make any assumptions regarding the nature of the distribution.
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It is possible that the instantiation distribution can be specified as a function of some
attributes of the environment. Consider an example from a resource gathering domain.
Assume that the user has collected a particular resource say R. The user then has to store
the resource in a storage say S. For instance, let R be gold while S be a bank. Since there
could be many banks in the domain, the user could choose a bank based on the distance
to the gold location. The instantiation distribution of S in this case is a function of the

location of the bank.

Definition 6 (User Transition Disribution). User Transition Distribution defines the
distribution of the next user state given the current state, i.e., P(ug|u;—1,w;) where wy is
the description of the current world state, u;_1 is the previous user state and u; s the

current user state.

Given the logical transitions of the form shown in Table 5.2, let BP;(X,Y’) be the first
branch predicate which evaluates to true in state (u,w). Let the current user state u be
A(z,y) and CP?(z,y, ) be true. Then P(u' = B! (z, 2)|A(z,y),w) = pl * il (w, x,y, ). In
other words, since the i branch predicate is true, the corresponding branch is taken, and
with probability pf , Bg (x,Z) is chosen and is initialized with a probability ,ug (w,z,y, 2).

We can define the World Transition Distribution (P(w; | us—1,w;—1) analogously for
each predicate in the environment state. However, since we do not address planning in

our work, we do not need these definitions and do not define them formally.

Global Variables There could be some variables in the LoHMM whose value should
not change as the HMM evolves. For instance, consider the example in Figure 5.2. The
user, after editing the document, has to reply to the email in which he received the request
to edit. This means that the value of the variable E once set to the value of the email that
has the request should not be changed. In our model, some of the variables are declared

as global and their values do not change once set.
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Substitution Substitution in LoHMMs is defined exactly as in first-order logic. A
substitution # is defined as assignment of values to all the variables in the LoHMM. The
set of variables is the union of all the variables in all the predicates of all the user states

and the environment states. We denote the substitution of a set of predicates P as P(6).

Ground HMM A ground HMM is a HMM constructed by substituting the values for
all the variables of a Logical HMM. We refer the user state that has been substituded
for its variablse as an instantiated user state. The state-space of this ground HMM
consists of two components: the instantiated user states and the global list. The transition
distribution specifies a distribution over the next ground user states and the values of the

global variables.

Theorem 1 (Existence of a ground HMM). A ground HMM can be constructed for every
Logical HMM M and a substitution 6.

Proof. Let u; = Uy(0) denote the instantiated (ground) user state at current timestep
t. Given uy, it is clear that a single branch will be chosen in the logical transition corre-
sponding to U;. Once the logical conditions in a branch are satisified, the corresponding
user transition distribution would define a coherent distribution over the possible next
ground states. The probability of the next ground state u;;; given that the branch 7 is
true, is given by,

P(usi1) = pf * Mg

where j is the next user state predicate. Since for every current ground user state, there
is always a next user state due to the fact that atleast one branch always evaluates to
true. Hence, for any given ground user state, there is a well-defined distribution over the
possible next ground user states. Thus there exists a ground HMM for the logical HMM
M and the substitution 6.

The motivation behind proving the existence of a HMM is that, since HMM defines a
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unique distribution over the trajectories, it follows that the LoHMM also defines a unique
distribution over the trajectories. This would ensure that there is a well-defined model-
theoretic semantics for the LoHMM. In a similar spirit, in the next section, we show that

a ground Hierarchical HMM exists given a Logical Hierarchical HMM.

5.3.1 Summary

To summarize, in Logical HMMs,

The state consists of the user state and the environment states

The user state atoms do not have any functional symbols

The transitions take place based on certain predicates of the environment

The next user state predicate is chosen using the logical transition distribution

The instantiation distribution is specified as hard constraints

There is a global list of variables whose values once set do not change

We discuss about the observations later in the chapter. The Logical HMM defines a
markov chain over the ground atoms when the variables are instantiated. In fact, HMMs
are a special case of the Logical HMMs with: the states having an arity of zero, no
conditional branches and no instantiation probability. Hence Logical HMMs generalize
HMMs.

Let us consider the LoHMMs of Kersting et.al [41] and try to understand the relation-
ship between the two models. In their model, there was an abstract transition distribution
p, which chooses the target predicate to transition to. In our model, first the logical con-

ditions are evaluated, the corresponding branch is taken and then the target predicate is
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chosen according to the distribution p7“. Since the logical conditions are mutually exclu-
sive, only one branch can be chosen for any particular transition. Hence the two models

behave similarly once the logical conditions are evaluated for the current instantiation.

Specific Instances One potential issue is that there could exist several transitions that
can be matched with the current instance. For example, ignoring the conditions there

could be 2 different abstract transitions defined as follows:

A(X,Y) — B(X, Z)

Alz,Y) — C(Y, 2)

The second transition is more specific when compared to the first transition. If we use
a substitution {# = X/x,Y/y}, we could match the two rules and there is a question of
which transition to choose. Kersting et.al, handle this by saying that the more specific
transition is always preferred. In our work, we require that these 2 rules are ordered and

combined to a single decision list as follows

A If (X=2) L0:C(Y,2)

else 1.0: B(X,Z2)

The idea is to encode the more specific instances as well in the transition. This is
natural in our formalism as we always assume that only one branch can be true for any
ground instantiation. This means that no two different logical transitions can exist with

the same predicate name as its source.
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5.4 LoHiHMMs

In many real-world situations, users solve difficult problems by decomposing them into
a set of smaller ones. For example, proposal writing might involve writing the project
description, preparing the budget, and then getting signatures from proper authorities.
Thus the tasks to be completed by the user have a natural hierarchical structure. To
capture this kind of knowledge using LoHMMs, we could make the state predicate include
the states at all the levels of the hierarchy. This is not a very good option mainly due
to a couple of reasons: first, this is not very elegant and hence it would be difficult for
the domain expert to specify this kind of LoHMM; and second the inference process can
be very difficult due to the explosive state space. A representation that could capture
such a hierarchical structure cleanly can be used to perform efficient inference. The special
structure can make the inference process easier. In this section, we incorporate hierarchies
into LoHMMs. We term the user states as tasks for the purposes of the LoHiHMMs.

Recall that in a LoHMM, there are logical (horizontal) transitions between user states
while in the Logical Hierarchical HMM (LoHiHMM) in addition to the horizontal transi-
tions, there are vertical (task-subtask) transitions between parent and child tasks ! and
hence there is a necessity for an additional distribution that we call as the selection dis-
tribution to capture this transition. It should be mentioned that LoHiIHMMs impose the
hierarchical structure on the user’s states and not on the environment states since our
goal is to capture the user’s task structure using hierarchies.

Thus, in the LoHiHMM, there are three kinds of distributions: in addition to the tran-
sition and the instantiation distributions of Logical HMMs there is a selection distribution
which chooses the child user state of the parent user state. The execution semantics of
the LoHiHMM is as follows: When control reaches the current user state, it chooses a

child state to transition to based on the selection distribution. Once all the lower level

I'We refer to the states of the LoHiIHMM as tasks and subtasks in this section
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HHMM terminates, the control reaches back to the current state and it chooses a hori-
zontal transition as with the case of Logical HMMs. The main intuition is that at each
level we have a LoHiHMM and the selection distribution chooses the LoHiHMM to exe-
cute. Each vertical transition (selection of a child) also has logical conditions that need
to be evaluated to choose the child. LoHiHMMs are to LoHMMs what HHMMs are to
HMMs. They can be viewed as either incorporating hierarchies to LoHMMs or adding

logical models to Hierarchical HMMs.

5.4.1 Instantiation Probability and Global Variables

The Instantiation Distribution p is similar to the LoHMMSs in that they are constrained
by the hard constraints in the transitions. But, in a hierarchical setting, there is another
important issue: wariable binding. The variable instantiation of the parent state should
stay the same in all transitions made by its child states, i.e., the variables of the parent
state should be “global”. Their values cannot change once instantiated until that state
finishes its execution. Hence we require that during instantiation, if the variable is in the

global list, the instantiation distribution would retain its value.

5.4.2 Selection Probability

The selection probability specifies the probability distribution over the child tasks given
the parent tasks. We call the transition between a parent task and a child task as a
selection transition and the syntax is presented in Table 5.4. The syntax is similar to
the LoHMM syntax except that we now use special keywords namely, parent and child to
identify the special kind of rule. The rule that is presented in table 5.4 is interpreted as:
“If the current user task is A(X,Y), then it chooses one of the possible next child tasks

by evaluating the branch predicates (shown as Cij in the rule) and then chooses the child
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Table 5.4: The syntax of the selection transition statements. The keywords parent and
child denote the parent and child task respectively. The other parts of the statements are
similar to LoHMM

spt i child . B(X,Z)

fcl X’Y /\CY1 X’Y’Z th
1 1( ) 2( ) en {sp%:childi C(Y,Z)

parent : A(X,Y) —

else

user task based on the selection distribution”. This rule is similar to the transition rule
in LoHMMSs except that in this case, it defines a task-subtask transition of a HMM. The
branch predicates are handle in a manner similar to a decision list such that the first
satisfied branch is always taken. It is important to mention that the selection probability
is well defined, i.e., the sum of the probabilities of the different child abstract tasks for a
given branch is 1 (37, sp/ = 1). Note the presence of a default branch that is chosen if all

the other branch conditions fail to evaluate to true.

5.4.3 'Transition Probability

Horizontal transition is more complicated in LoHiHMMSs than in LoHMMSs, due to issues
with variable binding not present in the latter. Since we have used global lists and modified
the instantiation distribution to accomodate for the global variables, we now proceed to
define the horizontal transitions and the associated probabilities. The transitions are
similar to the LoHMMs with one difference: the transitions must include the task of the
parent. Hence, the horizontal transition is conditioned on the instantiated value of the
parent tasks.

The syntax of the horizontal transition is presented in Table 5.5. The statement is

similar to the ones presented for the LoHMMs except that these statements include the
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Table 5.5: The syntax of the horizontal transition statements. The keywords pa, ch and
nch denote the parent the current child and the next child abstract tasks respectively.
The other parts of the statements are similar to LoHMM

L C(X,Y, Z
if C1(X,Y,Z) ACY(X,Y, Z)... then {pi . ”CZ | g(X’ > ‘V“Q
pa: A(X,Y);ch: B(X,Z) — py:nch: D(X,Y,Z, W)

else

parent tasks (shown explicitly using the keyword pa). These statements can be interpreted
as follows: “If the current parent task is A(X,Y) and the current child task is B(X,Z),
then it chooses one of the possible logical transitions by evaluating the branch predicates
(shown as C’ij in the rule) and chooses the abstract child task based on the transition dis-
tribution”. For instance, the next child could be of the form C(x,y, z, w) with probability
pi.p(w), where pl is the abstract transition probability for C(X,Y,Z, W) and u(w) is
the instantiation probability for w. Note that the variables in the parent (X,Y’) will be
“global”, since its binding will stay the same until the current parent terminates.

As with the selection transition of LoHiHMM, the set of branch predicates for a par-
ticular parent-child combination transition rule is part of a decision-list so that the first
branch that evaluates to true is taken. We could imagine adding hard constraints on the

instantiation distribution in the conditions of the branches. Similar to the LoHMMs, the

transition distribution is well defined i.e., ). pg =1.

5.4.4 Ending Probability

If the LoHMM at a lower level terminates at some tasks, the control would return to the
parent task. For example, it is possible that the user might decide to take a break from

running the experiments and might instead decide to work on the abstract while at other
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times, he might want to complete running the experiments. It is also possible that the
current task might terminate in more than one task.

Hence there is a necessity to define a distribution over the possible end tasks at a
particular level. We specify the ending probability is a function 3 from the set of ground

tasks (at any given level) to [0, 1].

Theorem 2 (Existence of a ground HHMM). A ground HHMM can be constructed for
every LoHiHMM M and a substitution 6 for the predicates of M.

Proof Sketch. The proof follows from Theorem 1. Here, we provide a high-level
intuition for the proof. Recall that when the LoHiHMM execution reaches the current
state, the state chooses a child state to transition to. Once the control returns to the
current state, it chooses to make a horizontal transition. Since at every time-step, there
is only one transition (either horizontal or vertical) is chosen due to the substitution
there exists always a single next state distribution. If the next state is chosen using a
horizontal transition, the probability of the next state is the product of the transition and

instantiation distributions. This is to say that

(1) = pg * ,Ug

where w11 is the user state at the next time-step, ¢ is the current branch chosen in the
horizontal transition and j is the predicate that is being chosen. If the next state is chosen
using a vertical transition, the probability is the product of the selection and instantiation
distributions, i.e.,

P(uer) = sp] + 1]

where u;,1 is the user state at the next time-step, ¢ is the current branch chosen in the
vertical transition and 7 is the predicate that is being chosen. Also, the HHMM at the

current level can choose to terminate based on the ending probability. This shows that
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there exists an unique HHMM for every LoHiHMM whose states consists of the state task

and the global value list.

5.5 Inference

In this section, we outline a particle filtering algorithm for performing inference in a
LoHMM. We then show how to extend this algorithm to the case with hierarchies. It is
not practical to perform exact inference over this model due to the fact the ground HMM
generated from this model can have potentially a very large number of states and hence
the transition and the observation CPTs can be very large.

There are a few ways by which we can perform efficient inference: the first two methods
are based on the observation that the transition and observation matrices are very sparse
and that some of the states are not possible (for example, a state in which a global variable
takes a value different from that of the global list). The third method is to avoid explicit
unrolling and try to use particle filtering method using an oracle that can generate a
sampled next state given the current state and then use the instantiation distribution
over the possible values of the variables. We first briefly present the two methods that
build a ground HMM but exploit the sparsity and then explain the particle filter with
logical querying in detail.

In the first method, while performing inference, we can maintain a distribution over
all the next states whose probability is greater than some €. Let us call this set S’ and
the entire state space as S. The idea is to treat all the other elements of the state space
(i.e., the elements of the set (S — S’)) as having zero probability of transition. So in
this case, we need to keep only a small number of states for the transition. This would
render it possible for us to perform exact inference on the model. Note that this is slightly
different from keeping track of the non-zero probability elements alone as some non-zero

probability elements that are less than € are ignored. Siddiqui and Moore [63] use a similar
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approach. But, they keep track of top k£ elements of the transition distribution and treat
the rest as having constant transition probability.

The second method is the use of the well-known decision-tree representation of the
CPTs. More specifically, it is well-known that a tree-structured CPT can represent the
context-specific independence between the causes of a particular target variable. It is
possible that we could use a tree-structured representation for the CPTs where at each
internal node a logical condition is evaluated. Such a representation would be able to
handle very large structured HMMs as the tree stores only the non-zero elements. If
needed, we could approximate the CPTs by storing only the entries of the CPT whose
values are greater than e. This would further reduce the size of CPTs making inference

on the ground HMMs practical.

5.5.1 Particle Filter with Logical querying

Particle filter algorithm was introduced earlier. To recall, the particle filter samples
the next state based on the evidence and computes the weight of the samples. Then
it resamples the states based on the weights of the samples. We now show that this
algorithm could be used for the LoHMMs as well. The main bottleneck is computing the

summation over all the next states (x;) in the equation,

i P(yt]xt)P(xt]xt,l)
P(x|x, 1, y) =
(elir90) = S~ B ) Pl

In a logical model, this is a critical issue as the number of possible ground states can be
very large. Hence the number of particles needed can be very large. Also, it might not even
be possible to enumerate all the states for the summation to be computed. For instance,
in a desktop there could be a very large number of files and emails. It is impractical to

enumerate all possible combinations of files that can be attached to an email.
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However there are only a small number of documents that are possible candidates at
any time and hence we probably need to consider only a few of those files. This would
correspond to only a few non-zero entries in the transition matrix of the ground HMM.
As pointed out earlier, a good representation of the sparse matrices might help the cause.
But even for a sparse matrix representation, we need to construct a ground HMM which
might not be possible in several situations.

Hence in this work, we propose to use a method that avoids enumeration of the
complete state space. In our model, given the value of the previous sample and the values
of the elements in the global list, a selection procedure would return the set of possible
next states. The hypothesis is that the conditions and the constraints in the abstract
transitions would greatly reduce the set of possible next states. We verify this hypothesis
empirically.

Given, a particular ground state and the values of the global list, the selection proce-
dure would first determine the set of logical transitions that have the current user state
predicate as the head and obtain the set of the possible next user state predicates based
on the logical conditions. For each of the next predicates, possible instantiations are con-
sidered using the instantiation distribution. The probability of the next ground state is
the product of the selection probability and the instantiation probability. In some cases,
if we are only interested in the current user state predicate (for instance, whether the user
is composing an email or editing a document), we ignore the instantiation distribution
and sample only from the selection distribution.

For example, consider the example presented in Figure 5.2. Let as assume that the
user just completed editing the document say d1. So when the particle filter queries for
possible next states, the condition Edited(d1l) would be satisfied. Since the email E is
in the global list, the selection procedure would just return the next state as replying to
email . This would greatly reduce the computation that is otherwise needed to sum

over all the states.
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Our inference procedure can be understood as a lazy evaluation procedure where
the HMM is constructed on the fly based on the values that have been assigned to the
variables and the conditions that are satisfied. The main goal of this procedure is to
avoid the explicit construction of a ground HMM. This is because as we have pointed
out earlier, the number of objects in the real-world is very large which in turn leads to
huge transition and observation matrices. But considering the objects lazily based on the
current state and the values of the variables, we are able to perform effective inference in

real time. We demonstrate this using experiments.

Infinite variables: In many relational domains, there exist variables whose set of pos-
sible values cannot be specified in advance. For example, it is not possible to predict
the fileName that the user is going to use to save the current document as the number
of file names can be very large. It is clear that in these cases the summation over the
possible next states cannot be performed. There are several possible ways of handling
this situation. One simple and naive solution is to only consider the predicates and ignore
the variables. A second method would be to use an idea similar to that of Hierarchical
Dirichlet process mixtures [6] for infinite HMMs. In this case, we can maintain the set of
values that have been encountered explicitly and use a prior distribution over to model
the possibility of the next state being from this set or a new state. This distribution can
slowly decay the probability of choosing a new value. This would mean that initially there
is a high probability of seeing a new value and this probability decreases with time.

In our work, we explore a simpler solution for this problem. Our assumption is that
at some point in the trajectory, the observation would exactly specify the value of the
infinite variable. Till such observation, we treat the infinite variable as unknown and
sample only the predicates and the finite variables. This assumption is not unreasonable
in many domains. For instance, in an intelligent desktop assistant, at some point of

execution, we can directly observe the filename that the user uses to save the current
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document. Similarly, we can observe the subject of an email once the user has composed
the email. The intuition is that the uncertainty over the infinite variables need not be
modeled as they would be removed by the user himself fairly early in the trajectory. It is

an interesting future direction to use the dirichlet process idea in the particle filter.

5.5.2  Observations

So far in the discussion, we have not explained clearly how the observations are handled
in the inference. It should be mentioned that the observations can be easily handled
in the LoHMM framework. Associated with each state predicate we can define a set
of observation predicates and an associated observation distribution. The observations
in our model are similar to the state predicates. The observation consists of a predicate
name and a set of variables. The observation may or may not consist of the same variables
that are present in the state predicate. While performing inference, the algorithm would
check for the observation variables in the state predicate. If the observation variable is
present in the state predicate the oracle would set the value of the corresponding variable
in the sample to the same value. If not, it considers the possible set of values for the
state predicate and returns them. While computing the next samples and the weights,
the observation distribution is used. This is to say that P(y;|x;) = 1, when the arguments
of the observation and the predicates match and is 0, when they do not. Hence when
sampling, the values of the state predicates are chosen so that they take the same value

as that of the observation and the other samples are rejected.

5.6 Experiments

In this section we present some experiments using the Logical HMMs. Experiments were

conducted in two domains: an intelligent desktop domain, where the goal is to track the
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user’s progress in receiving a document, editing it and sending it back to the sender and
a synthetic domain that would allow for testing several scenarios. It has to be mentioned
that in our experiments, we use uniform distribution for instantiation and do not update

the parameters after a trajectory. All the experiments are performed in an offline mode.

5.6.1 CALO Domain Experiment

Covene® D open®) D CSavers) >
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Figure 5.3: The HMM for the CALO scenario. The user receives a document, saves it as
a file, edits it and sends it back to the sender

One of the goals of the Logical HMM is to use it in real-time desktop assistants
(ex.CALO [13]) to track the user’s progress towards his goal. As a first step, we considered
a scenario where the user receives a request to edit a document from a person say P, saves
the document as another file, edits it and sends it back to P. The Logical HMM for this
is presented in Figure 5.3. We present the example graphically.

The goal of this experiment is to track the user’s state as he performs the task in
the scenario. In Figure 5.3, the dashed ovals indicate the observations for CALO. The
problem then is to infer the abstract state of the user and the value of the parameters
given the observations. We use the particle filter with selection procedure for this purpose.

Currently, the experiment is performed in a batch mode (offline). So the trajectories are
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Figure 5.4: Results of the inference in the CALO domain.

Time step =1
Current Predicate OpenEmail probability = 1.0
values = 2 Probability = 1.0

Time step = 2
Current Predicate Open probability = 1.0
values = 0 Probability = 1.0

Time step = 3
Current Predicate SaveAs probability
values = 1 Probability = 1.0

1.0

Time step = 4
Current Predicate Save probability = 1.0
values = 1 Probability = 1.0

Time step = 5

Current Predicate Close probability = 1.0
values = 1 Probability = 1.0

Time step = 6

Current Predicate SendE probability = 1.0

values = 1 Probability = 1.0

collected as the user performs a task and the corresponding events are extracted and
given as input to the inference engine. The results are presented in Figure 5.6.1. As
can been seen, the predictions include the distribution over the user state predicates at
the current time-step and the distribution over the instantiations at the current time-
step. The output is a distribution over the predicate names at the current state and a
distribution over the values of the variables conditioned on the predicate names. Only
the non-zero probabilities are displayed.

In the above scenario, the user dutifully follows the workflow and performs the task
without any interruptions. But in real-world, the user rarely works without interruptions.

In particular, while working with a desktop, there are several sources of interruptions
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including but not restricted to emails, phone calls, breaks etc. Our LoHMM in the purest
form cannot handle the interruptions. In order to consider them, we introduce the notion
of background state. Basically, we explicitly model the fact that the user’s current task
might be in the background when the user is working on a task that is different from
the current task (for example attending a phone call). We assume that there is a small
probability that the background state is possible at every time-step and if the observations
are not consistent with the current model, the distribution skews towards the background
state. An example output is given in Figure 5.6.1. In this example, the user is performing
some other tasks in timesteps 2 and 5. The LoHMM inference engine retains the samples
of the states from the previous time step (1 and 4) and uses them to predict the states at
time steps 3 and 6.

In this scenario, there is a need for global list to retain the value of the person from
whom the email was received (P). Also, the name of the file that user saves the current
document can possibly take infinitely many values and hence we do not make predictions
about the name of the file until it is actually observed. It is not clear how to represent this
scenario as a ground HMM due to the fact that the file name can take infinitely possible
values. Currently, this inference engine is being integrated with CALO to perform activity

recognition and tested on more sophisticated workflow models.

5.6.2  Synthetic experiment

The real world dataset showed that the LoHMM inference engine was able to perform
well in the realworld domains in the presence of large data. Although the problem is
interesting, the observation model exactly provided information about the states and
hence the probability of the true state was always 1. Hence we constructed a few synthetic
experiments where the probability of the true state of the user cannot be determined easily.

Also, the use of synthetic data can make it possible for us to change the settings in order
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to rigorously test our algorithms. Yet another reason for the synthetic data is the fact
that the correct state of the user can be easily obtained as against a real world domain
where it is harder to exactly determine whether the prediction is correct or not. In this
section, we present the synthetic experiments and their results.

In the first experiment, there were 4 predicates and probabilistic transitions between
them. For instance, there were transitions of the form, A(X,Y) to C(Y,Z) and D(Z)
with probabilities 0.4 and 0.6 respectively. In addition both C' and D generate the same
observation. The goal of this experiment is thus to evaluate the LoHMM in presence of
stochastic transitions and shared observations between predicates. There were 2 kinds
of scenarios created in this experiment. One in which the user completes the trajectory
without any interruptions and the second in which the user has a few interruptions while
executing the task.

The results are presented in Figure 5.6 as Expl and Ezp2. Expl does not have any
interruptions while Exp2 has a few interruptions. On the y — axis, we have presented
the mean reciprocal rank(MRR) of the “true”’ state of the user. MRR was defined earlier
in chapter 3. To obtain the MRR, we rank the states by their probabilities and obtain
the inverse of the rank of the true state. This is then averaged over a few runs. In our
experiments, we used about 30 runs for each scenario. It is easy to see that higher the
MRR (closer to 1) better is the performance.

It can be observed from the graph that in both cases, eventually the algorithm con-
verges on the true state (MRR = 1). In the second case with many background states,
the algorithm takes a few more time steps to converge to the true state. If we are to
model this as a ground HMM and obtain a similar performance, we would need about
540 states (as we need about 45 states and the global list can take about 12 values). This
would mean that the ground transition matrix can take 540% entries and this requires the
use of the techniques that we discussed earlier.

The second domain is a synthetic grid world domain. Here, the goal of the user is to
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pick up a resource (gold,wood or food) and deposit in the corresponding storage location.
The key thing to note in this domain is that the resource that is picked up is not directly
observed. The resource must be in inferred by the path that is taken to the storage
and by the type of storage location. For instance, when the user goes to the bank it is
highly probable that he has collected gold. The goal of this experiment is to test whether
the particle filter can track the user’s state correctly under the circumstances when the
observations do not directly provide information about the state.

The results of this experiment without and with the background states are presented
as Fxp3 and Fxp4d respectively in Figure 5.7. Similar to the earlier experiment, the results
are averaged over 30 runs. As can be seen from the figure, in this setup, the LoHMM
takes longer to converge on the true state of the user as the uncertainty persists for longer
time in this domain. Ultimately the LoHMM is able to infer the true state of the user.
Similar to the earlier experiment, if we need to represent this domain using a ground
HMM, the ground HMM will have around 600 states making the process of performing

inference extremely tedious.

5.7 Discussion and Conclusion

Zettlemoyer et al. [70] consider the problem of filtering in relational HMMs and propose
the idea of logical particle filter for this case. Recall that in propositional PF, each particle
is a sample of the current state. In their method, each particle is a logical formula that
specifies a set of states. In their model, the states are conjunction of propositions and/or
functions. The observations and the actions are propositions (i.e., unparameterized).
The basic idea is to construct a set of partitions (hypotheses) where each of the partitions
represents a set of states such that every state in a hypothesis has the same transition
probability. The hypotheses at the current time step are split into a set of mutually

exclusive ones, the transition probability is then applied and the observations are used to



138

specialize the hypothesis. The expectation over states and hypothesis is decomposed to
Ehyp|Estate(f)]- The inner expectation is computed exactly while the outer expectation is
sampled. Since all the states in the hypothesis are considered to have the same transition
probability, the inner expecation can be computed easily. The main bottleneck lies in
the construction of these hypothesis. It is not clear how to construct these mutually
exclusive hypothesis in the presence of function symbols for the state space. We sacrifice
expressiveness for efficiency in our work and consider only predicate symbols for the state
space, hence making the particle filter simpler.

In this chapter, we motivated the need for the logical representations of HMMs for
performing activity recognition. The models that are used and learned by these LoHMMs
can be generalized across several users. The models allow for conditional branching where
the branching between states takes place based on certain conditions of the attributes of
the environment. We then extended this model to the case where the user’s tasks have
a hierarchical structure. We also presented a particle filter algorithm to perform efficient
inference on these models. We presented the need for handling variables that can take
infinite values and outlined a simple lazy technique for handling this case. We evaluated
the LoHMM on two environments and showed that this model can track the user’s goal
effectively. It is clear that using a propositional HMM will not be feasible in domains with
a large number of objects. The current LoHMM model has been integrated into CALO
and several tests are being conducted currently. The LoHMM model is proposed to be
used for activity recognition in CALO replacing the HMM model that is currently being
employed.

One of the possible future directions is to integrate the LoHiHMMs with Relational
Hierarchical Decision-Theoretic model of assistance for the goal estimation. The idea is
to use LoHMMs in the goal recogniser component of the model. There is also a need
to evaluate the LoHiIHMM model in real world applications such as CALO. Yet another

possible direction could be to construct a model that given a workflow of the user can
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convert it into a LoHIHMM and can perform inference given observations. There is also
the need for investigating techniques for inference in the LoHiHMM that can exploit both
the logical and hierarchical structure of the HMM. Another open problem is to research
better solutions to handling variables that can take infinite values. This can possibly be
done by the use of hierarchical dirichlet processes but the approach and the solution need

to be well formalized.
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Figure 5.5: Results of the inference in the CALO domain with interruptions. The user is
interrupted in time-steps 2 and 5 and is performing some other task.
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Figure 5.6: Results of the LoHMM inference on synthetic experiments. Experiment 1
does not have any interruptions, while experiment 2 has interruptions.
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Figure 5.7: Results of the LoHMM inference on second synthetic experiment. Experiment
3 does not have any interruptions, while experiment 4 has interruptions.
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Chapter 6 — Conclusions and Future Work

6.1 Contributions of thesis

In this work, we initially introduced a decision-theoretic model of assistance that could
be used in several assistant systems. We modeled the assistant as a POMDP to select the
assistive actions. We presented an approximate solution to the POMDP and outlined two
myopic heuristics to solve the POMDP. We evaluated the model on three domains: two
game-like environments and a real world folder predictor domain. Our evaluation using
human subjects in two game-like domains show that the approach can significantly help
the user. We also demonstrated in a real world folder predictor that the decision-theoretic
framework was more effective than the state of the art techniques for folder prediction.
It should be mentioned that this framework can be naturally extended to the case where
the environment is partially observable to the agent and/or to the assistant. This requires
recognizing actions taken to gather information, e.g., opening the fridge to decide what
to make based on what is available. Also, our method can handle cases where there are
varying cost functions for the user and the assistant.

We also presented algorithms based on classic algorithm schemes such as gradient de-
scent and EM to learn the parameters of the relational influence statements.We presented
a language for representing the relational influence statements and represented several
formalisms using this language, thus establishing that the learning methods are applica-
ble to several formalisms that employ the use of combining rules. In our work, we used
two levels of combining rules with mean as the combining rule at one level and one of
Noisy-OR or weighted mean as the combining rule at the second level. Our experiments

indicate that the algorithms based on the relational models perform much better than the
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propositional algorithms. It would be interesting to extend this work to search over a set
of combining rules to determine the one that best fits the data.

We then presented the relational hierarchical model of assistance which in essence
was the incorporation of parameterized task hierarchies to capture the goal structure of a
user in a decision-theoretic model of assistance. In this work, the relational hierarchical
models served as prior knowledge about the user’s goal structure and placed hard con-
straints on the user’s policy. The relational models were also used as informative priors
for the user’s goal distribution. The models were evaluated against several versions of
the decision-theoretic model in 2 domains. The results indicate that the use of relational
hierarchical model made the assistance very effective in the first few episodes where the
other models had to learn the user’s policy. These results reinforce the fact that the
relational hierarchies serve as a strong bias on the user policy that enables the assistant
to quickly adapt to the user.

This model combines the strengths of three different approaches: hierarchies for plan
recognition, decision-theory for assistance and relational models for succinct representa-
tion of knowledge. This model is very general (due to the use of POMDPs) and can be
used in several domains. Also POMDPs allow us to handle uncertainty and varying costs
in the domain. The use of relational models enables this model to be generalized across
several users and objects in the domain. Hierarchies allow us to realistically model the
goal structure of the user and perform efficient inference of the user’s goals.

Finally, we presented a model for performing efficient goal estimation/activity recog-
nition. This model can be understood as extending the standard Hidden Markov Models
to logical and hierarchical settings. We presented the syntax and semantics of the logical
HMMs and the hierarchical extension (LoHiHMM). We also presented an inference algo-
rithm based on particle filtering that would avoid the complete enumeration of the state
space. The major advantage of this model is that being a relational model, it can exploit

parameter tying that would enable easier learning of parameters. We evaluated the model
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in a real-time assistant (CALO) and presented the results for the same. We also tested
the model on a few synthetic domains and the results indicate that the model is able to
track the user’s progress towards his goals effectively. This model is currently integrated

with the CALO desktop assistant and further tests are being performed on this model.

6.2 Future work

Currently, the user policy is being tracked in the relational hierarchical model of assistance
using a hand-coded DBN. It is easy to imagine that in large domains, the number of
variables would render the inference in DBN intractable. In such cases, the CPTs tend to
be very large and sparse and cannot be handled efficiently. One of the future directions
is to use the LoHiIHMMs to perform inference over the user’s goal stack. This would
avoid the explicit unrolling of the DBN and handcoding of the parameters. Also, it would
be an interesting research direction to extend the LoHiHMMs to handle variables with
infinitely many values. For example, the set of file names cannot be possibly restricted.
But the assistant should still be able to render effective assistance if it can make some
reasonable assumptions about the file names such as considering that the file name could
contain the project name and/or the version number. One possible future direction lies in
exploring the use of relational models for activity recognition in personal assistant systems.
The LoHiHMMSs would be a way of specifying the abstractions in the decision-theoretic
model. Also, currently the parameters of the LoHiIHMM are not learned from data. The
real power of the relational models can be exploited while learning the parameters. Hence,
yet another research direction would be to develop algorithms for parameter learning of
the LoHiHMMs.

User modeling has been explored extensively and Bayesian user models have been
recently used in several domains such as medical, intelligent desktop etc. Statistical rela-

tional learning provides a natural way of generalizing across objects in the domain. One of
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the research problems is to explore the use of statistical relational learning in developing
sophisticated user models that can be generalized. For instance, given a workflow of an
user, an intelligent desktop assistant could build a user model that can be generalized
across all the users who use the desktop.

Another possible direction would be in making the assistant useful even in abnormal
situations such as user forgetting to achieve a subgoal (for example, forgetting to attach a
document to an email), or change his goal mid-way (for example, when a more urgent task
comes at hand) or terminating a task abruptly. To achieve this, we need to exploit the
research in other areas to incorporate a more sophisticated model of the user to perform
effective assistance. For instance, there has been extensive research on why humans forget
in the cognitive science literature and several reasons have been provided. It is interesting
to model these reasons explicitly to predict when the user forgets the goal. The use of
statistical relational models for user modeling will help us generalize the models across
different users.

Yet another possible direction for future research includes formalizing the relationship
between the aggregators and combining rules. Also, it is important to extend our learning
algorithms to more general classes of combining rules and aggregators including tree-
structured CPTs and noisy versions of other symmetric functions. Finally, we would like
to develop more compelling applications in knowledge-rich and structured domains that

can benefit from the richness of the first-order probabilistic languages.
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