
AN ABSTRACT OF THE THESIS OF

Julian Brent ly Sessions for the degree of Master of Science in Electrical and

Computer Engineering presented on November 23, 1998. Title: Fast Software

Implementations of Block Ciphers.

Abstract approved:

cetin K. Koc

Three block ciphers are considered to determine how well they can be

implemented on existing superscalar architectures such as the Intel Pentium.

An examination of the Pentium architecture suggests that substantial

performance increases can be achieved if particular rules are followed.

Software libraries are written in high-level C language and low-level assembly

language to produce a package of routines which achieve a near optimal

performance level on a current processor architecture. The structure of each

algorithm is studied to determine if it is possible to alternatively implement the

algorithm such that certain steps are reordered or reduced. Using the Intel

MMX architectural advances, it is observed that one algorithm benefits

dramatically from a new implementation that takes advantage of MMX

strengths.

Redacted for Privacy



© Copyright by Julian B. Sessions
November 23, 1998
All Rights Reserved



Fast Software Implementations of Block Ciphers

by

Julian Brent ly Sessions

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented November 23, 1998
Commencement June 1999



Master of Science thesis of Julian B. Sessions presented on November 23, 1998.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of Departmen of ical and Computer Engineering

of Graduat SchoolDean ol

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Julian B. Sessions, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENT

I am very pleased to present this thesis to Oregon State University to

become part of the permanent collection of the library. In submitting the thesis,

I complete a chapter of my life, one in which I had the fortune to interact with

several great people who endowed me with faith, insight, and perseverance.

First, I thank my parents who encouraged me to continue beyond my

undergraduate studies, to my father who proceeded before me and to my

mother who encouraged me along the way.

To all my friends, especially Roberto Valverde, for sharing wonderful

moments, advice, and for making me feel at home.

I give special thanks to Dr. Koc, my major professor, who recognized my

potential, sparked my interest in this particular topic, and provided generous

sponsorship along the way. I thank Dr. Lu, for introducing me to the ECE

department and for serving as a committee member. I also thank Dr. Lee and

Dr. Carson for dedicating their time to participate in my graduate committee.

I give special recognition to my wife Soraya, for her endless support and

dedication to me though the best and worst of times, for her kindness and

gentleness, so necessary and so precious. I thank Papa Dios for his guidance

and particularly for placing me in the path to renewed spiritual strength in

September 1994.



TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Background 1

1.2 Motivation 2

1.3 Block Ciphers 3

1.4 Objective of this Work 4

1.5 Thesis Organization 5

2. CRYPTOGRAPHY AND BLOCK CIPHERS 7

2.1 A Cipher to Protect the Message 8

211 Stream Ciphers versus Block Ciphers 9
2.1.2 The Unbreakable Vernam Cipher 10

2.2 Conventional Cryptography 12

2.3 Block Ciphers 13

2.3.1 Versus Public-Key Cryptography 13
2.3.2 Confusion and Diffusion 14
2.3.3 Product Ciphers 15
2.3.4 Feistel Cipher 17

2.4 Padding Methods 17

2.4.1 Zero Padding 18
2.4.2 PKCS #5 Padding 19
2.4.3 Ciphertext Stealing Padding 19

2.5 Modes of Operation 20

2.5.1 Electronic Codebook (ECB) 20
2.5.2 Cipher Block Chaining (CBC) 22
2.5.3 Cipher Feedback(CFB) and Output Feedback(OFB) 25



TABLE OF CONTENTS (continued)

Page

3. COMPUTER ARCHITECTURE 27

3.1 The Intel Processor Family 27

3.1.1 Pentium & Pentium MMX 28
3.1.2 Pentium Pro & Pentium II 29

3.2 Pipelining 30

3.2.1 Pentium & Pentium MMX 31
3.2.2 Pentium Pro & Pentium II 34

3.3 Superscalar 37

3.3.1 Pentium & Pentium MMX 37
3.3.2 Pentium Pro & Pentium II 40

3.4 Branch Prediction 41

3.4.1 Static Prediction 41
3.4.2 Dynamic Prediction 41

3.5 Memory Cache 42

3.5.1 Pentium & Pentium MMX 43
3.5.2 Pentium Pro & Pentium II 44

3.6 Optimization Techniques 44

3.6.1 Instruction Selection and Register Use 45
3.6.2 MMX Instructions 45
3.6.3 Intel's Vtune 48

4. DATA ENCRYPTION STANDARD 49

4.1 Background 49
4.1.1 Government Standardization 50
4.1.2 Lifetime Concern of the Cipher 50



TABLE OF CONTENTS (continued)

Page

4.1.3 Re-certification 51

4.2 DES Implementation 52

4.2.1 A Hardware Algorithm 52
4.2.2 Permutations 53
4.2.3 Key Scheduling 55
4.2.4 The Round Function 56

4.3 Modifications for a 12 bit S-Box 60

4.4 Triple DES 62

4.5 Biham's Bit-Parallel DES 63

5. THE RC5 ALGORITHM 65

5.1 RC5 Algorithm Description 65

5.1.1 Expandability 65
5.1.2 Data Dependent Rotations 66
5.1.3 Round Function 66
5.1.4 Adjustable Parameters 68

5.2 Cryptanalysis 68

5.3 Performance Issues 68

5.3.1 Rotation Bottleneck 69
5.3.2 Little Endian versus Big Endian 69
5.3.3 Suitability for Future Architectures 69
5.3.4 MMX implementation 70

5.4 Optimization techniques 70

6. THE INTERNATIONAL DATA ENCRYPTION ALGORITHM 72

6.1 Algorithm Description 72



TABLE OF CONTENTS (continued)

Page

6.1.1 Round Operations 74
6.1.2 MA Block 74
6.1.3 Feistel Cipher 74

6.2 Cryptanalysis 75

6.3 Performance Issues 75

6.3.1 Multiplication Bottleneck 75
6.3.2 Register Half Full 76

6.4 IDEA Performance 76

6.5 MMX Implementation 78

6.5.1 Example IDEA Software Improvement 79
6.5.2 Example IDEA MXX Improvement 80

7. CONCLUSIONS 83

7.1 Summary 83

7.2 Ciphering Rates 83

7.3 Concluding Remarks 85

7.4 Future Work 86

BIBLIOGRAPHY 87



LIST OF FIGURES

Figure Page

1.1 Example of a Block Sample Transformation 4

2.1 Feistel Cipher Structure 16

2.2 Encryption with ECB Mode 21

2.3 Decryption with ECB Mode 21

2.4 Encryption with CBC Mode 23

2.5 Decryption with CBC Mode 24

3.1 Sequence in Pentium Integer Pipeline 31

3.2 Example of Pentium Pipeline AGI Penalty 33

3.3 Sequence in Pentium MMX Integer Pipeline 34

3.4 Pentium Pro/Pentium 11 Pipeline 35

3.5 Sequence in Pentium Superscalar Integer Pipeline 38

3.6 Pentium Superscalar Integer Pipeline Flowchart 39

3.7 MMX Registers Accessed In four Different Ways 46

3.8 MMX Multiply-and-Add 47

3.9 MMX Parallel Comparisons 47

4.1 Simple Permutation 53

4.2 Calculation of Round Function: F(R,,KL) 56

4.3 A Single DES Round 58

4.4 Optimized Round Function: F(R,K) 60

5.1 Two Rounds of the RC5 Algorithm 67

6.1 One Round of IDEA 73



LIST OF FIGURES (continued)

Figure Page

6.2 IDEA with Parallel Sections Identified 77

6.3 Traditional 16-bit Multiplication Using 8-bit Operands 81



LIST OF TABLES

Table Page

2.1 Security Comparison: Postcard versus Letter 8

2.2 Comparison of Block and Stream Ciphers 9

2.3 Comparison of Three Prominent Block Ciphers 13

2.4 Zero Padding Obscures the Length of the Original Plaintext 18

2.5 Block Cipher Operational Modes 26

3.1 Intel Architecture Processor Comparison 28

3.2 Pentium Integer Pipeline Stages 32

3.3 Pentium Pro Integer Blocks 35

3.4 Example of Pentium Superscalar Dependencies 38

3.5 Pentium Pro/11 Superscalar Building Blocks 40

4.1 Typical Permutation Sequence 55

5.1 RC5 CBC Encryption Rates 69

7.1 Encryption Rates for C Language 69

7.2 Encryption Rates for Assembly Language 69



DEDICATION

To Soraya



Fast Software Implementations of Block Ciphers

1. INTRODUCTION

The investigation of this thesis is focused the development of efficient

implementations of widely recognized block ciphers. The algorithms are

implemented in software using Intel Corporation's computer architecture.

This chapter contains some background regarding cryptography, a

motivation for the thesis, and an explanation of block ciphers. The objectives

are presented along with a note on the thesis organization.

1.1 Background

Cryptography is not a new field. It is however, a field that is gaining

importance based on an increased reliance upon computers and automation.

Perhaps the most recognized form of cryptography is its use encipher and

decipher information, thus keeping its contents guarded against unauthorized

disclosure. This is but one of many services that cryptography can achieve. If

confidentiality is the prime concern, one wonders why not just keep the very

existence of sensitive information a secret? Encipherment prevents accidental

disclosure and more importantly, it provides a means for access control. If the

existence of all private information had to be kept secret, it would be very

difficult to standardize the representation and transmission of information.
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To illustrate that cryptography is not a recent development, consider that

Julius Caesar used one of the first ciphers, the Caesar Cipher over two thousand

years ago. This simple cipher offered a moderate protection of secret messages

against the curious eyes of enemies. Caesar's Cipher was a simple substitution

cipher; it replaced each character by different character displaced by a certain

offset. There were a total of 25 different key values trivial by today's

standards and modern computer processing abilities. The advent of computers

has given enormous power to the fields of cryptography and cryptanalysis

alike. Application of modern cryptography is routinely accomplished solely by

computers using specially designed computer algorithms having more

desirable properties than the Caesar Cipher. In addition to providing

confidentiality, modern cryptography makes available other useful services

such as authentication, data integrity, and nonrepudiation [BASS88].

1.2 Motivation

Networking of computing resources has made vast advances in amount

and sensitivity of data exchange. Invariably the need for encryption arises for

the protection of private information. The need to deliver the maximum

encryption speed from the algorithm is a product of the times. As sustained

network and storage speeds of 100 megabits per second are now very common,

the goal is to find the fastest implementation of accepted cipher standards such

that these standards can be applied while having a minimal impact on
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communication speed. In this research, the Intel instruction set is studied. It is

current and an industry standard for both personal and corporate computers.

The Intel MMX architectural enhancements, introduced in 1996, are also

evaluated to determine if they can be utilized to produce more efficient cipher

implementations. The cipher algorithms under consideration are DES, RC5,

and IDEA. These are three block ciphers which are in use as of 1998 in various

capacities. The implementation merits of each cipher will be discussed.

1.3 Block Ciphers

Simply put, a cipher is a well-defined transformation for encoding

information. An inverse transformation, if applied correctly, will return the

data to its original state. Two names are given to the different forms of the

information. The original content is known as plaintext and the encoded

version is referred to as ciphertext. In terms of a computer equivalent, the

plaintext is the original message of consisting of N bits. The ciphertext is a

message of at least N bits which is created by the mapping algorithm.

Two different types of ciphers are defined. A stream cipher processes

data one bit at a time whereas a block cipher is one that processes a multiple

number of bits in each application of the cipher. Block ciphers are the emphasis

of this research. Figure 1.1 illustrates the concept of a block cipher. The

original message is broken into 5 pieces, each of which is called a block. It is

typical that length of a block is a multiple of the number of bits in a typical
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machine register. It is an intrinsic property of the ciphering algorithm. All

three of the ciphers studied in this thesis process blocks of length 64 bits. This is

also the same as a block of 8 bytes (or 8 characters).

4 n bits

1011010 0110101010 0 0101010 010101111010 010 01\ 1 /
4 n bits

This is an examp le of a secret message.

i i i i

15!30s{; 3g"d$%Sa 4$b7a!0- 4Fspqzd) *-32c[aw

Figure 1.1
Example of a Block Cipher Transformation

The ciphertext is the same size as the plain-text except in cases where the

input is not a multiple of 64 bits. In those cases, a padding method is used to

bring the input to a multiple of 64 bits. The ciphertext is always a multiple of 64

bits.

1.4 Objective of this Work

This thesis focuses on developing high speed implementations of three

popular block ciphers algorithms. The focus of speed brings into consideration

both the structure of the algorithm and its assembly language implementation
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will be carefully applied to Intel's Pentium architecture. Performance

bottlenecks of each algorithm will be identified. To the extent that is possible,

each algorithm will be implemented to take advantage of the CPU architectural

advances such as superscalar pipelines. The thesis will discuss the means to

achieving a high performance as well as identifying those algorithmic

simplifications which can increase the performance of the implementation

under certain assumptions.

1.5 Thesis Organization

Chapter two presents a background in cryptography. This provides a

framework for understanding the usefulness of block cipher algorithms.

Chapter three describes the target architecture of Intel processor line including

the Pentium, the Pentium II, and the MMX architectures. It also describes some

useful techniques to optimize algorithms when coding in assembly language.

Chapter four, five, and six discuss three popular block cipher algorithms: DES,

RC5, and IDEA. The structure of each algorithm and its implementation are

considered. Recommendations are given with regard to efficiency. If the

recommendations are followed, they will yield better than average performance

for each algorithm. Chapter seven serves as a conclusion chapter with regard

to which ciphers had the most to gain from an assembly language

implementation; it summarizes the findings of the thesis and concludes with

some words regarding future work.
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When it is stated in this thesis that a transformation is applied to the

input in order to generate the output, this applies equally to (1) plaintext

generating ciphertext and (2) ciphertext generating plaintext. It may be clearer

for the reader to envision the one-way transformation of plaintext into

ciphertext.
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2. CRYPTOGRAPHY AND BLOCK CIPHERS

The field of cryptography encompasses the art, design, and

implementation of ciphers. Cryptography itself is quite rich with creativity and

variation. While there are many types of ciphers, the underlying reasons for

their existence are few. It is the art and science of cryptography which provides

the tools to implement security services. Confidentiality, authentication,

integrity, and nonrepudiation are valuable security services which are

necessary in the digital age. When these services are correctly implemented,

one can protect the message content and the identity of the sender. The block

cipher, which is the emphasis of this research, provides the basis for the service

of confidentiality.

While all these services seem vital for digital communication, it is useful

to realize that these services were available prior to the adoption of digital

technology. Consider, for example, the common example of the action of

sending a vacation postcard compared to the mailing of a letter to a friend. It is

very optimistic to expect privacy in both instances. Indeed, upon closer

observation, privacy is actually a choice not a right. The postcard is exposed

while the letter is enclosed. Surely a simple case and one in which most people

are familiar. It is thought that by enclosing the message in an envelope it will

be protected until it reaches its destination.
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Table 2.1 compares the two methods with regard to their privacy merits

upon delivery.

Postcard Letter within envelope
Delivered (assumed compromised) Delivered untampered (not compromised)
Not arrived (assume compromised) Delivered tampered (assume compromised)

Not delivered (assume compromised)

Table 2.1
Security Comparison: Postcard versus Letter

Using the envelope introduces a new variable. It allows an easy method

of determining whether or not the letter had been intercepted. If the letter was

intercepted, the state of the envelope will allow the receiver have this piece of

information. A clever opponent may enclose an intercepted letter within a new

envelope. The would deprive the receiver of knowing whether the letter had

been compromised. Compromised indicates that the content and meaning of

the message have been exposed to an entity apart from the intended recipient.

This attack on confidentiality can be solved by using cryptography to disguise

the contents of the message.

2.1 A Cipher to Protect the Message

There are many methods to disguise the data. These methods generally

fall into two categories. There is the stream cipher and the block cipher. While

each has appropriate uses, there are techniques in which a block cipher may be
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converted into a stream cipher; this would indicate that a block cipher is more

flexible than a stream cipher. A stream cipher, cannot be converted into a block

cipher. The following section will illustrate the difference between the two

types of ciphers.

2.1.1 Stream Ciphers versus Block Ciphers

Stream ciphers process data one symbol at a time while the basic mode

of block ciphers operate on large symbols (or chunks) at a time. The symbol

size for a stream cipher can vary, but it is typically a bit or a byte. The size of

the symbol in the block cipher is minimum 32 bits, very often 64 bits, and

sometimes even 128 bits. The main difference comes from the type of

transformation used to encode the message, see table 2.2. Using the block

cipher in its basic mode, the same key combined with the same block will

produce the same output at any time. The stream cipher, however, uses a

potentially time-varying transformation. When the message is combined with

the key, the stream cipher will produce, in general, different output at different

time periods.

Cipher; type Transformation Typical symbol size
Block fixed 64 bits
Stream time varying 8 bits or 1 bit

Table 2.2
Comparison of Block and Stream Ciphers
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A simple method known as the Caesar cipher would combine the

message with a constant vector to produce a new message differing by a fixed

offset in each character location. This is a weak cipher, a hybrid of block and

stream ciphers which uses a fixed transformation on a small symbol size.

[STAL95].

2.1.2 The Unbreakable Vernam Cipher

The Caesar cipher is weak since there are only 26 possibilities for

character offsets. Another method could scramble the bits order, and there

would be 8! (e.g. 8 factorial) ways of doing this. One must take into account the

available computing power of the opponent. An opponent outfitted with a

typical personal computer can easily perform over 1,000,000 encryption

operations per second, and therefore could check 26, 256, 8!, or more different

transformations with ease. This illustrates that some simple attempts to

disguise the message will not protect it from a determined opponent with

ingenuity or formidable processing power. The goal of encryption is to

provide a very easy method to the user to protect information and to make it

very difficult for even the most determined opponent to unlock the

information. It is assumed that the opponent has access to the algorithm or

machine used to compute the cipher, the only unknown then becomes the key

used for encryption
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There is only one provable secure system. It depends upon having once

exchanged a secret stream of data with at least the same length as the message

to send. [VERN26]. Upon transmission, it uses a combination of the original

secret stream with the message. Upon receipt of this stream, receiver reverses

the transformation. In fact the combination does not need to be difficult at all,

on the contrary, it just has to be reversible and affect all the bits uniformly the

XOR function works quite well. The disadvantage of this completely secure

method is that it requires twice the size of the message, and the secret stream

must be sent in advance of the message through a secure channel. It is also

necessary to keep the two secret streams properly synchronized. Complicating

matters, if the message were to be sent to multiple sources, each message might

need a separate secret stream. Clearly the message sender could be easily

overwhelmed by the shear amount of secret streams to maintain.

The goal of efficient encryption is to provide near-prefect confidentiality

with a minimum of overhead. Overhead comes in two flavors. (1) the

privileged information which must be exchanged prior to communication (the

key), and (2) the operation which must combine the key with the data for

encryption or decryption. In the case of the Vernam cipher, the key is

extremely long yet the transformation algorithm is extremely simple. An

efficient cipher will seek a compromise between the two to achieve a result

which yields a comfortable security level while being more practical for

implementation. A typical stream cipher uses a secret key as a seed in order to
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generate a pseudo-random bit sequence. This sequence can replace long secret

Vernam key. The block cipher, on the other hand, generates a reversible,

complex transformation of the key and the data. Both modern methods strive

to reduce the key overhead while trying to maintain the level of security

afforded by the unbreakable Vernam cipher.

2.2 Conventional Cryptography

The Federal Government endorsed a cipher that became known as the

Data Encryption Standard (DES) in 1977 [FIPS46]. This cipher was intended to

provide security for sensitive, non-classified documents. Since that time it has

become available worldwide as a de facto standard. The federal government

has reviewed and renewed the standard every five years and, as of this writing,

is still in effect. It does not attain perfect security, however its requirements are

much less demanding. It simply requires a key of length 56 bits to encrypt

virtually any size data file. The operation to combine the message with the key

is more computationally intensive, resulting in over 100 operations per 32 bit

word.

The objective of this thesis is to explore algorithm implementations

which will take advantage of the architecture of a popular processor, the Intel

Pentium microprocessor, to provide the best possible performance. This will

have the effect of making encryption more available to the average user.
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2.3 Block Ciphers

The block ciphers to be implemented in this thesis are: DES, IDEA and ,

RC5. A brief summary of their characteristics are listed in table 2.3. This section

describes the features of block ciphers such as block length, confusion/

diffusion methods, and number of rounds.

Cipher Year
Block
length

Key
len

Confusion method Diffusion
method Rounds

DES 1977 64 bits 56 bits Sboxes (substitution
boxes)

permutations 16

IDEA 1992 64 bits 128 bits Mixing incompatible
operations

Multiplication
&Addition , the

(MA Unit)

8

RC5 1995 32, 64,
128 bits

8n bits,
n=0..255

data dependent
rotations

data dependent
rotations

n,
n=0..255

Table 2.3
Comparison of Three Prominent Block Ciphers

2.3.1 Versus Public-Key Cryptography

The communications channel is assumed to be insecure. One needs a

secret key agreed in advance before communications begin. A solution to this

can be using a public key algorithm to negotiate a key exchange between users,

then a secret key, block cipher algorithm to perform the primary information

exchange. The reason to use secret key, block cipher cryptosystems for the bulk
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information transfer is that they are orders of magnitude faster than

conventional public key algorithms [RSAFAQ3].

2.3.2 Confusion and Diffusion

Successful block cipher designs often integrate the concepts of confusion

and diffusion. These ideas were introduced by Shannon [SHAN48]. Confusion

is a measure of the statistical properties of the input with relation to the output.

Essentially, looking at the output should give little or no information about the

input; in short the transformation should complicate the input such that the

output bears little statistical relationship with the input. Diffusion, on the other

hand, attempts to ex tend the influence of the input symbols over a wide range

of output symbols in order to disguise the tendencies of the input. It must be

noted that is not mandatory for both characteristics to be utilized to achieve

secrecy. Indeed, the Vernam stream cipher achieves perfect secrecy with

confusion alone. Since each plaintext symbol is combined with completely

random data there is no need to mix adjacent symbols of plaintext to achieve

additional randomness. Unlike stream ciphers, block cipher design depends

heavily on both principles of confusion and diffusion.

Since the symbol length of a typical block cipher (64 bits) is often longer

than the corresponding symbol in a stream cipher (8 or 32 bits), there are more

possible bits positions, which necessitates and assists diffusion. A successful

diffusion is one in which each plaintext bit and each key bit affects each and



15

every ciphertext bit (in the case of encryption). This diffusion can be applied

using a permutation which exchanges individual bit locations or sequential

algebraic functions which combine and spread the influence of the inputs. A

well diffused cipher will satisfy the strict avalanche criteria [WEBST85]

whereby if a single bit changes in the input, then half of the output bits will

change in a random manner.

The block cipher is convenient for modern microprocessors because

multiple bits are processed at a time. Block cipher algorithms which use the

register size will take most advantage of this feature. Since the Pentium is a 32

bit processor, a block cipher interface defined in terms of 32 bit blocks and

internally consisting of 32 bit operations can be mapped with great efficiency.

2.3.3 Product Ciphers

Product ciphers combine the aspects of confusion and diffusion to

produce a stronger block cipher.

confuse or diffuse the plaintext.

instructions, a shorter, non secure

Often, many operations are required

Instead of creating a long sequence

to

of

sequence is chosen, and is called a weak

function. Interestingly, this weak function can be turned into a strong function

if it is configured in a feedback loop where the output is routed back to the

input a fixed number of times. Each cycle introduces more confusion and

diffusion which in turn frustrates cryptanalysis. This feedback is denoted in

block cipher design as the number of rounds that a cipher contains. The number
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of rounds are convenient design feature since they can be configured for a

symmetric design known as a Feistel cipher [FEIST73].

2n bits

Input Block

n /n

L.

k2

f

k3

2n bits

Figure 2.1
Feistel Cipher Structure
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2.3.4 Feistel Cipher

A Feistel block cipher is an iterated cipher mapping 2n-bit plaintext (Lo,

Ro), for n-bit blocks Lo and Ro, to a ciphertext (R Lr) through r-round process

where r > 1. [MENEZ97], as shown in figure 2.1. Thus a Feistel cipher consists

on a specified number of iterations of a fixed function f. The structure of the

Feistel cipher deserves additional mention, particularly the interchange

between the left (L) and right (R) sides. In addition to assisting with diffusion,

they necessarily permit the cipher to be reversible, even if the underlying

function/is non-linear [SCHN96].

The input block is initially divided into two pieces denoted L0 and Ro.

During each round i, the right side is combined with a string of key bits using

function f(k,r). The result is XOR combined with the left and the becomes the

right side for the round i+1. For each round i:

Li =
R,= e f(k Ki).

Note that this equation can be expanded to eliminate L altogether. This

can be of use to minimize register use in a software implementation.

R, = 0 f(R,_ Kt)

2.4 Padding Methods

Consider a block cipher with a block size of B bits. It is often the case

that the length of the natural input will not be of multiple of B bits. This is not a
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consideration in the design of a block cipher, which always assumes a length of

B bits, but rather a practical detail that arises in the implementation. Two

options are possible: (1) the user should detect the partial block and handle it

accordingly, or (2) the implementation should accept partial blocks and use a

strategy to map it to a full block before the ciphering translation. Should the

implementation handle the partial blocks, three viable methods are discussed:

zero padding, PKCS padding, and ciphertext stealing.

2.4.1 Zero Padding

When plaintext of less than B bits is sent to a cipher operation, the zero

padding model inserts bits of value zero to complete the block. These bits

occupy the least significant bit positions that were unused in a partial block.

The block is then sent to the encryption function. The output of the encryption

will always be of block size B bits. Thus it is necessary to separately track the

size of the input file. A decryption of the file will reproduce the zeros in the

input block, however, on their own there is nothing to indicate that they were

not part of the input data from the beginning.

Original partial plaintext 11011110 01001000 01111101 101
Zero padded plaintext 11011110 01001000 01111101 10100000
Encrypted plaintext 01101011 11011010 11011111 1101G111
Plaintext after decryption 11011110 01001000 01111101 10100000

Table 2.4
Zero Padding Obscures the Length of the Original Plaintext
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The user will have to manually strip off the padding bits after calling the

decryption function on the end of a input stream. The actual length of the

plaintext will have to be separately stored. An example is shown in table 2.4.

2.4.2 PKCS #5 Padding

PKCS padding is a form of padding introduced in the Public Key

Cryptographic Standards document #5 [PKCS5]. The advantage of PKCS

padding is that the padding will be automatically added to the plaintext prior

to encryption and then is automatically subtracted from the resulting plaintext

after decryption. To achieve this, PKCS appends a count of the number of bits

to remove from the plaintext, at the end of the plaintext. This count is used by

the decryption block to remove the bits before the plaintext is returned to the

user. In most cases this count can be incorporated into space available due to

the partial block. The only situation where an extra block is encrypted is when

the data was already a multiple of the block size B. When this occurs, an extra

block is attached holding a similar padding count, which will invariably have to

remove the entire extra block which is appended prior to encryption.

2.4.3 Ciphertext Stealing Padding

This mode produces exactly the same number of bits of output as input.

[SCHN96] The advantage is that no padding or extra bytes must be used in the
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algorithm, the disadvantage is that the interface must be in terms of bits instead

of the more convenient unit of the processor register.

2.5 Modes of Operation

A block cipher is defined as a fixed transformation of the input based

upon the input and a secret key. Given this fundamental building block,

standard modes of operation have been defined for the block cipher to have

applicability in differing situations. The typical modes of operation are

Electronic Codebook, Cipher Block Chaining, Cipher Feedback, and Output

Feedback. Table 2.5, at the end of this section, summaries these operational

modes.

2.5.1 Electronic Codebook (ECB)

The basic mode of any block cipher is the Electronic Codebook. In this

mode, the plaintext is divided into n-bit blocks and each block is encrypted

with the same key as seen in figure 2.2. The encryption transformation uses the

secret key to select a one-to-one mapping of n-bit input blocks to n-bit output

blocks. It is called Electronic Codebook, because once given a key, one could

imagine a huge substitution table, or codebook, filled with entries for every

input with a corresponding output.
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Plaintext: N- I PN

K-0 K 0 KBlock
encryption

Block
encryption

Block
encryption

ol Block
encryption

Ciphertext: N-1 N

Figure 2.2
Encryption with ECB Mode

The decryption proceeds as the inverse of the encryption, with a

symmetric key cipher, the same key is used for encryption and decryption.

Figure 2.3 illustrates the decryption process. This mode is used to encrypt

small amount of data, typically only one block. This would be a suitable mode

for secret key transmission.

Ciphertext:

Plaintext:

N-

K 0 Block
decryption K Block

decryption
Block Block

decryption decryption

Figure 2.3
Decryption with ECB Mode

N-1

In practice, however, the ECB mode is virtually never used, since it is

very susceptible to frequency analysis. This is due to the fact that the
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encryption is not time dependant, thus identical plaintext blocks are

transformed into ciphertext blocks which are exactly alike. This information

can be used to make educated decisions regarding the structure and/or content

of the plaintext.

A method to remedy the possibility of regular output patterns in ECB

mode output is to include random bits in the plaintext. The block cipher

avalanche property will guarantee the propagation of the random bits into a

vastly different output block [SCHN96]. While this fixes the repetition

problem, it reduces the number of data bits available; an alternative is the

Cipher Block Chaining mode, discussed next.

2.5.2 Cipher Block Chaining (CBC)

The Cipher Block Chaining (CBC) mode provides a solution to the

repetition problem of Electronic Codebook mode without requiring random

changes to the data stream. Since each ECB output block is a pseudo-random

bit pattern, the CBC mode combines this output block with the plaintext of the

next block using the XOR operation as shown in figure 2.4. Every plaintext

block is then obscured with a seemingly random block; this includes the first

block which is combined with a user supplied, preferably random, initialization

vector, known as an TV.
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K-' Block
encryption K-' Block

encryption
Block

encryption
Block

encryption

N-I

Figure 2.4
Encryption with CBC Mode

The result of this mixing operation is that the output blocks will not

expose any regularity, even if the input blocks are identical. The

transformation now depends on the key and two blocks of data. The cost of the

XOR operation is negligible in the implementation, since the encryption

operation is usually quite lengthy, consisting of several low level operations. A

disadvantage of CBC mode, however, is that the encryption process can not

proceed in parallel. The output from the previous block must be computed

prior to the XOR with the plaintext of the next block. This may be contrasted,

however, with the decryption process which can proceed in parallel. As figure

2.5 illustrates, the plaintext is the combination of the prior ciphertext and the

decryption transformation of the ciphertext.
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c, C3 ... CN_1

K-0

IV

Block
decryption

Block
decryption

Block
decryption

Block I

decryption I

Plaintext: I Pi P3 PN-1 PN

Figure 2.5
Decryption with CBC Mode

Due to the non repetitive properties, CBC mode is useful as a bulk data

encryption technique. In addition, CBC can be used to computer

cryptographic checksums. The cryptographic checksum of a CBC transmission

would the simply the last block enciphered. Assuming each input block

contains n bits, if any bit is changed anywhere in the plaintext, the probability

that the checksum will remain the same is quite low, an astonishing 1/2n. This

checksum could be viewed as a fingerprint of the file. Using a checksum is an

appropriate technique to detect both accidental or deliberate modifications to

the encrypted message. Block lengths of 64 bits are quite common, resulting in

a checksum of length 64 bits as well. While the CBC mode can be for

authentication purposes [FIPS113], the length of 64 bits, is generally regarded as

too short for a message digest. Specialized algorithms, known as hash

functions, typically generate message digests of 128 bits or longer. Since they

typically execute much faster than a repeated application of the block cipher
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and generate a much longer message digest, they are more suitable for

producing message fingerprints.

2.5.3 Cipher Feedback (CFB) and Output Feedback (OFB)

A block cipher is normally defined for a fixed block size, this block

length is typically 64 bits. It is possible, however, to convert any block cipher in

a stream cipher by using either of Cipher Feedback or Output Feedback modes.

Using these modes, one can choose a reduced block length of r bits. There

could be two main advantages for doing so. One advantage is the need not to

pad the data if it is not an integral number of bits of the block length. Another

advantage is a savings in transmission costs if a smaller block is more

appropriate data packet, such as encrypting keyboard strokes, or a real-time

data link. Both the Cipher Feedback and the Output Feedback modes use a

shift register as the input to the encryption function. [JANS89] list equations for

the four modes discussed here:

ECB: C.E,(P,,) P=130,1C,,)
CBC: C=E,1P+ C,,) P.D,,(C) + C_,
CFB: C=P + Ek(C_,) P=C + Ek(C_,)
OFB: C,,=P + R P,,=C + R

R.E,(R_,)

The output of the encryption function is XOR combined with the

plaintext to produce the ciphertext. In CFB, this ciphertext is then shifted into

the input register for the next block; in OFB, output of the encryption prior to
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the XOR operation is the moved into the input register. Both of these modes

are of interest in stream cipher applications.

Modification of the block cipher to perform as a stream cipher incurs as

performance tradeoff [SCHN96]. For smaller block sizes, the encryption

throughput is reduced by a factor of n/r. Each application of the encryption

function only produces r bits of ciphertext, whereas ECB and CBC modes both

produce n bits of ciphertext. Table 2.5 summaries the operational modes.

Mode Encryption Description Typical Uses
Electronic
Codebook
(ECB)

ciphertext; < encrypt(key,plaintext,) Transmission of a
secret key or non
repeating data

Cipher Block
Chaining
(CBC)

chain <--- plaintext, 8 ciphertext,
ciphertext, < encrypt(key,chain)

Transmission of
repetitive structures,
cryptographic
checksums

Cipher
Feedback
(CFB)

shiftreg <--- shiftreg << ciphertext,
output <. encrypt(key,shiftreg)
ciphertext, < plaintext,e output

Transmission of
stream data, where
symbol size is less
than block size

Full Output
Feedback
(OFB)

output f- encrypt(key,output)
ciphertext, <--- plaintext, 9 output

Transmission of
stream data, where
symbol size is less
than block size

Table 2.5
Block Cipher Operational Modes
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3. COMPUTER ARCHITECTURE

The ability for any algorithm to be efficiently implemented in software

heavily depends upon the underlying computer architecture. An

understanding of the architecture will present optimization opportunities

which would not otherwise be available. This thesis addresses the Intel

architecture with regard to the Pentium, Pentium MMX, Pentium Pro, and

Pentium II. The lowest programming level interface to the underlying computer

architecture is machine code, represented in a human readable form by

assembly language.. Code examples are written in assembly in order to

completely specify the implementation of an algorithm and also to take

advantage of features otherwise impossible to access.

The chapter is divided into six sections, the first of which is an

introduction to the processor family. The remaining sections deal with key

architectural features which are largely responsible for the performance of each

processor. Finally there are some hints for performance enhancements.

3.1 The Intel Processor Family

The Intel Processor family is a rich collection of software compatible

microprocessors in which each new generation extends computational

performance through architectural enhancements and manufacturing

technology. Table 3.1 lists the similarities and differences between the four
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processors considered in this chapter: Pentium, Pentium MMX, Pentium Pro,

and Pentium II.

Feature Pentium Pentium
MMX

Pentium
Pro

Pentium
II

L1 data cache 8kb 16kb 8kb 16kb
L1 instr cache 8kb 16kb 8kb 16kb
Superscalar yes yes yes yes
Pipeline depth 5 stages 6 stages 10 stages

512 entry
BTB

12 stages
512 entry
BTB

Branch Prediction 256 entry
BTB

512 entry
BTB

Speculative Exec no no yes yes
Out-of-Order
Completion

no no yes yes

Register Renaming no
no

no _yes
no yes

no

yes
_yes

yes
Data Forwarding
MMX instructions no yes
Socket type socket 7 socket 7 socket 8 slot 1
MHz range 60-200 166-266 150-200 233-400

Table 3.1
Intel Architecture Processor Comparison

3.1.1 Pentium & Pentium MMX

The Pentium and Pentium MMX processors were the first Intel

processors to include a superscalar core. This core could extend the

performance of the previous generation by a factor of two. The Intel 486, which

was the immediate predecessor to the Pentium family, included a five stage

pipeline which, at its peak, could achieve a throughput of one instruction per

clock cycle. The Pentium and Pentium MMX can achieve a maximum
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throughput of two instructions per cycle. The MMX enhancements introduced

with a new version of the Pentium increased the Pentium's cache size, and

improved upon its branch prediction algorithm, and most importantly, for the

first time allowed a limited form of Single Instruction Multiple Data (SIMD)

parallelism. For applications which could benefit from regular and repetitive

data operations, the SIMD instructions allowed further speedup by using Very

Long Instruction Words (VLIW) to process more data per given clock cycle.

3.1.2 Pentium Pro & Pentium II

The Pentium and Pentium MMX processors require careful attention to

the formation of the instruction stream to permit the execution of two

instructions simultaneously. The instruction stream must adhere to strict rules.

The implementation of these rules are left to the compiler and/or systems level

programmer. Instructions must be suitably scheduled to achieve a peak of two

instructions per cycle. The Pentium Pro and Pentium II eased these

requirements by introducing Dynamic Execution which allows many

instructions to be collected in a pool. Instructions in the pool are broken down

into simpler instructions (micro instructions). These available micro

instructions may execute in a potentially out-of-order fashion so long as the

origianl data flow is strictly maintained. A novel feature of the Pentium Pro

was the inclusion of the Level 2 cache in the same package as the processor.
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The Level 2 cache runs at the same speed as the processor instead of the

external bus speed as in the Pentium and Pentium MMX.

The Pentium II is essentially a Pentium Pro core with MMX technology.

Both processors use a dual independent bus to communicate with either the

main memory or the L2 cache. The Pentium Pro has an on-chip L2 cache, the

Pentium II package includes the CPU and the L2 cache as two distinct

components on a dedicated board. The Pentium II Level 1 and Level 2 caches

were doubled in size, however the Level 2 cache speed was reduced by half

when it was removed from the casing of the microprocessor.

3.2 Pipelining

Pipelining is a architectural technique for increasing the throughput of

complex, multiple cycle instructions. Each pipelinable instruction is reduced to

a series of smaller stages each which can be completed within a single clock

cycle. During each clock cycle, an instruction advances one stage forward until

it emerges from the end of the pipeline. Simple instructions might only need to

processing in a few of the stages, however they must also pass through the

unused stages as well. A pipeline is advantageous for multiple cycle

instructions only. Single clock instructions pass through the pipeline as others

do, and incur the minimum latency based on the size of the pipeline.
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3.2.1 Pentium & Pentium MMX

The Pentium integer pipeline contains five stages. The latency for an

instruction to complete starting at stage one until it reaches stage five is then

five clock cycles. This would happen if the pipeline was empty, once the

pipeline is full, instructions are completed each clock cycle. The five stages of

the Pentium pipeline are Prefetch (PF), Decode 1 (D1), Decode 2 (D2), Execute

(E), and Writeback (WB). A sequence of instructions is shown is Figure 3.1,

and table 3.2 has a description for each state of the pipeline.

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

Prefetch Decode 1 Decode 2 Execute Writeback

Prefetch Decode 1 Decode 2 Execute Writeback

Prefetch Decode 1 Decode 2 Execute Writeback

Prefetch Decode 1 Decode 2 Execute

Prefetch Decode 1 Decode 2

Prefetch Decode 1

Prefetch

Figure 3.1
Sequence in Pentium Integer Pipeline
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Stage Name Description
1 Prefetch The instruction is fetched from the internal L1 cache

and placed in a buffer
2 Decode 1 The instruction is decoded to determine its type.
3 Decode 2 Address calculation for indexing operations
4 Execute The ALU is accessed, also the cache is queried for a

memory operand. If it is not present then the request
is directed to main memory and the instruction stalls
otherwise it executes. Instructions requiring more
than one cycle execution times stall the pipeline in
this stage.

5 Writeback Target register or memory is updated with results

Table 3.2
Pentium Integer Pipeline Stages

A notable optimization for the Pentium pipeline is to avoid what is

known as the Address Generation Interlock (AGI) penalty. This one cycle

penalty condition is created when the calculation of an indexing register

immediately precedes its use. Consider the following code segment:

add edi,ebx ; edi = edi + ebx
mov eax,[edi] ; eax = memory word at address edi
add ebx,4 ; ebx = ebx + 4

The register edi must be available in the Decode 2 stage, however it is not

available until after the Execute stage of the prior instruction. A one cycle

penalty is assessed while the pipeline stalls waiting for the edi result to become

available. Figure 3.2 illustrates the AGI pipeline penalty.



Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

add edi,ebx

PF

D1

D2

AGI penalty,
one cycle stall

mov eax,[edi]

PP. I add ebx,4

D1

D2. Dl PF

Dl, PF

WB

E

WB

D2

E

WB

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

add edi,ebx

PF

add ebx,4

mov eax,[edi]

D1 PF

D2 D1 PF

WB

E

WB

Extra instruction here
prevents AGI penalty

Figure 3.2
Example of Pentium Pipeline AGI Penalty
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As shown in figure 3.2, one can avoid the AGI penalty by rearranging

the code to insert an additional instruction between the calculation and use of

the indexing register. The Pentium MMX integer pipeline is similar to the

Pentium pipeline. It adds an extra stage by breaking the Prefetch into two

stages, Prefetch and Fetch. Thus the pipeline is six stages deep. The U and V

pipelines have added one stage. This allows instructions to be more deeply

pipelined, yielding higher throughput. The MMX architecture also included

additional hardware linking U and V pipelines. The removes some pairing

restrictions between the pipelines. Instructions are less likely to stall while

waiting for a particular pipe to become available. This would not enhance
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Pentium Classic optimized code, but would create opportunities for further

optimization on the MMX.

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Pref etch Fetch Decode 1 Decode 2 Execute Writeback

Pref etch Fetch Decode 1 Decode 2 Execute Writeback

Pref etch Fetch Decode 1 Decode 2 Execute Writeback

Prof etch Fetch Decode 1 Decode 2 Execute

Pref etch Fetch Decode 1 Decode 2

Pref etch Fetch Decode 1

Pref etch Fetch

Pref etch

Figure 3.3
Sequence in Pentium MMX Integer Pipeline

The Pentium also contains a floating point pipeline, however this

pipeline is not of particular interest since the cryptographic functions discussed

in this thesis do not involve floating point calculations.

3.2.2 Pentium Pro & Pentium II

The Pentium Pro/Pentium II pipeline (figure 3.4) uses an in-order front

end, an out-of-order execution path, and an in-order back end. Code should be

structured so that the three decoders of the Pentium II can decode, or

preprocess, the instructions in parallel. This makes it possible for the dynamic
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execution unit to have as many options as possible to optimize the instruction

execution.

BTBO BTB1 IFUO IFU1 IFU2 IDO ID1 RAT O
Ord)

RS

Port 2 Port 3

[Port 0

Figure 3.4
Pentium Pro/Pentium II Pipeline

Port 4

_I

Port 1

ROB
(wb) RRF

BTBO Branch target buffer 0
Branch target buffer 1BTB1

IFUO Instruction Fetch
IFU1 Fetched Instruction packets are aligned on 16-byte

boundaries.
IFU2 Instruction Predecode
IDO Instruction Decode
ID1 Instruction Decode, at most 6 uops per cycle (4-1-1)
RAT Register Aliasing Translation
ROB (read) Re-order buffer (read), up to two register reads per cycle
RS Reservation station, uops wait for operands and

functional pipelines in Ports 0-4 to become available.
PORT 0 Functional unit
PORT 1 Functional unit
PORT 2 Functional unit
PORT 3 Functional unit
PORT 4 Functional unit
ROB (wb) Re-order buffer (writeback), up to three uops per cycle

retired
RRF Re-order Buffer Read, (up to 2 completed physical

register reads per cycle)

Table 3.3
Pentium Pro Integer Blocks



36

3.2.2.1 Instruction Decoding

In the in-order front end, the decoder consists of three parts, DO, D1, and

D2. DO is a full decoder which can decode any instruction, including complex

instructions which are longer than 7 bytes or breakdown into more than 4

micro-operations. D1 and D2 can only decode simple instructions

corresponding to 1 micro-operation. When complex instructions are decoded

in DO, both D1 and D2 are dormant This would indicate that one should not

make use of instructions containing both an immediate value and an offset,

which would make the instruction length greater than 7 bytes. Other complex

instructions such as CALL and RET, while less than 7 bytes correspond to more

than 4 micro-operations.

3.2.2.2 Simple Instructions Preferable

Some advice which can be given to optimize the decoding of the

Pentium Pro is to arrange code sequences so those instructions will decode

easily into DO, D1, D2 pattern of 4-1-1 micro operations. In addition, a general

approach which works well on the Pentium as well as the Pentium II is to keep

the instructions as simple as possible, only generating one micro operation per

instruction. Two instructions occurring together which generate more than one

micro operation will stall the Pentium Pro decoder. The pipeline will also stall

if the Reorder buffer is full.
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3.3 Superscalar

The Intel Pentium was the first superscalar processor in the 8086 series.

Superscalar means that the processor is capable of executing more than one

instruction at a time.

3.3.1 Pentium & Pentium MMX

At its peak performance, the Pentium / Pentium II can concurrently

execute two integer instructions. There are two integer pipelines, named U and

V, the U pipe can execute almost any instruction, while the V pipeline is more

limited. Figure 3.5 shows how the addition of a pipeline can help get more

work accomplished. This ability to execute in parallel has greatly increased its

power, however to be fully harnessed, the instructions must be ordered such

that they can logically be executed in parallel. For example, the contentions

shown in table 3.4 must be avoided. A single instruction pipeline would allow a

rate of one instruction per cycle, however the dual pipeline allows up to two

instructions if certain conditions are met, figure 3.6. The U pipeline is capable

of executing the complete instruction set. The V pipeline cannot handle the full

instruction set; in particular it does not have a barrel shifter. Careful

arrangement at the instruction level can prepare code to have maximum

effectiveness in the two pipelines.
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V

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

Fetch Decode 1 Decode 2 Execute Writeback

Fetch Decode 1 Decode 2 Execute Writeback

U

V

p Fetch Decode 1 Decode 2 Execute Writeback

Fetch Decode 1 Decode 2 Execute Writeback.
U

V

Fetch Decode 1 Decode 2 Execute Writeback

Fetch Decode 1 Decode 2 Execute Writeback

U

V

Fetch Decode 1 Decode 2 Execute--h Fetch Decode 1 Decode 2 Execute

U

V

Fetch Decode 1 Decode 2o Fetch Decode 1 Decode 2

U

V

Fetch Decode 1

Fetch Decode 1

U

V

Fetcho
Fetch

Figure 3.5
Sequence in Pentium Superscalar Integer Pipeline
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add
xor

esi ,eax
ecx, esi

Register write followed by read

sub
sub

esi, eax
esi, ebx

Register write followed by write

Table 3.4
Example of Pentium Superscalar Dependencies
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PF

"u" pipeline

1

D2

E

WB

"v" pipeline

D2

E

WB

Figure 3.6
Pentium Superscalar Integer Pipeline Flowchart

If an instruction stalls while in the pipeline then both pipelines stall, that

is, neither instruction moves forward until they are both ready. Thus

instructions whose execution time is longer than one cycle will stall an

instruction with a shorter execution time. To get maximum performance,

instructions with similar cycle times should be issued together.

With some restrictions, two MMX instructions can also be executed in

parallel. This allows a limited form of the MIMD model of parallel processing,

2 different SIMD instructions can be issued and completed each clock cycle.
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3.3.2 Pentium Pro & Pentium II

To increase opportunities for code optimization, the Pentium Pro and

Pentium II incorporate a concept known as dynamic execution to reduce the

constraints of purely sequential code execution. Dynamic execution is achieved

using building blocks in table 3.5.

Speculative execution Those instructions which follow a branch are
executed prior to branch evaluation based in the
predicted flow of the code.

Register renaming A larger set of internal registers is available to help
remove register dependencies. This could be
viewed as a sophisticated caching of register names
and values.

Out-of-order execution Instructions can be executed based on availability of
operands, not on the flow of execution. However,
all results are recorded in orderly manner to
preserve flow integrity.

Table 3.5
Pentium Pro/II Superscalar Building Blocks

Instruction ordering and placement is a significant issue with the

Pentium/Pentium MMX, but since the Pentium Pro/Pentium II processors

reorder the instructions based on data dependencies, instruction ordering is less

of an issue in Dynamic Execution, however as a general rule, 32 bit code written

well for the Pentium will execute well on the Pentium Pro/II [INTEL97].
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3.4 Branch Prediction

Branch prediction is an important means for the processor to save its

pipeline from becoming invalid after a jump. The effects of jumps can be

disastrous when the entire pipeline needs to be flushed because the processor

has not prefetched the correct instructions. The best policy is to remove as

many unnecessary jumps from the algorithm as possible.

3.4.1 Static Prediction

Static prediction is done as follows, this occurs when the branch is seen

for the first time:

1. Unconditional branch as taken
2. Backward conditional branch as taken (useful in loops)
3. Forward conditional branch as not taken

3.4.2 Dynamic Prediction

Prior branch history is used to determine which is the most likely branch

destination. This helps maintain the prefetch at capacity. If the branch has not

been seen before, it is predicted using a static algorithm. The Pentium MMX,

Pentium Pro & Pentium II use a 512 entry BTB while the Pentium uses a 256

entry BTB.

A history of up to four past branches (single branch on Pentium) is kept

for each conditional branch. Successfully organizing software to be
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knowledgeable regarding hardware branch prediction behavior is crucial to

achieving the best possible performance for a non deterministic software

algorithm.

Since the processors implement a branch target buffer, indirect branches

such as goto tables from switch() statements, or calls through pointers which

can easily change values while maintaining the same position in the object code

are discouraged. Since the dynamic branch prediction algorithm can predict

branches with a history of 2 bits, the last four decisions can be remembered. It

can be advantageous to convert jump tables into conditional branches which

can be more accurately predicted. In particular, the Intel Architectural

Optimization Manual states that for the deeply pipelined Pentium Pro /

Pentium II, attention to branch prediction is the most important optimization

available. Eliminating branches entirely can be accomplished by using the

SETCC instruction, or the conditional move instruction CMOV of the Pentium

Pro / Pentium II.

3.5 Memory Cache

Memory cache keeps the data closer to the processor, and requires fewer

clock cycles for each access.. Effective use of the cache is critical for

performance based applications. The processor will move memory in and out

of the cache based on its own algorithm; the programmer must adapt and learn

to take use temporal and spatial locality.
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3.5.1 Pentium & Pentium MMX

The Pentium has an internal instruction and data cache. Each cache is 8k

bytes in size and is separately controlled. They allow the processor take

advantage of temporal and spatial locality. This is useful for cryptographic

functions which rely on a number of loop of similar code to scramble data. In

addition, the functions rely on a key which is not likely to change as often as the

message, thus it will be accessed many times and will thus be available in the

cache. An important consideration is not to let the key exceed the size of the

data cache. This is possible when the key is preprocessed into several subkeys

which are then directly used within the algorithm. The key whether it is of

length 56, 64, or 128 bits, it is almost never used directly. Generally the idea is

to keep the code and data as small as possible, however if it is possible to

increase performance by using a different data arrangement, then this should

be considered as long as the final data still fits comfortably in the cache.

Data should be structured to make the most advantage of the L1 cache

capabilities of the processor. The line length is 32 bytes, thus the entire 32 bytes

is read or written each time that particular line is accessed. The instruction

cache is 4-way set associative and the data cache is 2-way set associative. By

arranging data close together (within the line length) there will be fewer cache

misses. The Pentium L1 instruction cache is 8 kb in length and is arranged in

rows of 32 bytes. The data cache is also 8kb in length and arranged in 32 byte
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lines. The cache is dual ported to allow simultaneous access to more than one

cache line at a time.

The MMX processor contains some advances in the cache design. The

cache size doubled, boosting data and instruction caches from 8 kbytes to 16

kbytes each. Now more main memory can be mirrored in the cache; this

improves context switching as well as assisting programs with low temporal

and spatial locality. Also the data cache expanded from 2-way set associative to

4-way set associative. This meant that the data cache can be searched more

efficiently. The cache will be hit more frequently.

3.5.2 Pentium Pro & Pentium II

The Pentium Pro L1 caches were the same as the Pentium, however the

L2 cache was completely contained within the processor packaging, an runs at

full processor speed. The Pentium II L2 cache runs at half the processor speed,

but like the Pentium MMX, it has 16kb data and 16kb instruction L1 cache.

3.6 Optimization Techniques

In order to create efficient code and apply the most suitable optimization

techniques for that code, Two areas are of particular interest:

1. Knowledge of key features within the processor which can increase
performance and the method for applying using those features to maximum
benefit.
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2. Identify situations which can impair the performance of the processor and
how to avoid then.

The goal here is to achieve maximum performance on the Intel

processors by constructing assembly code keeping architectural considerations

in mind.

3.6.1 Instruction Selection and Register Use

The goal here is to achieve maximum performance on the Intel

processors by constructing assembly code keeping architectural considerations

in mind. Use full register word when possible. Utilize all available registers,

included EBP in inner loops. Keep memory accesses to minimum Avoid use of

function calls involving CALL and RET in critical performance sections. The

overhead comes from storing the instruction pointer on the stack before calling

subroutine as well as restoring the instruction pointer once returning from the

routine. This cost is relatively high in inner loops.

3.6.2 MMX Instructions

The Pentium MMX has significant architectural advancements over the

Pentium Classic. Addition of 57 new instructions which enable single

instruction, multiple data (SIMD) parallel processing. Eight new 64 bit MMX

registers are aliased over existing floating point registers to create operand

space for the new instructions. This allows a program utilizing byte or word
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sized data in a regular and repetitive manner to achieve a speedup, see figure

3.7. This improvement can be up to 800% for specially formulated data and

algorithms. Due to the overhead in dealing with the MMX registers, the

speedup will normally be much less than 800%, more like 200%. This increase,

however, is still very appreciable.

MMX Register (MMO-MM7) 64 bits

1 Quadword

64 bits

2 Packed Double Words
32 bits

4 Packed Words

32 bits

16 bits 16 bits 16 bits 16 bits

8 Packed Bytes
8 hits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Figure 3.7
MMX Registers Accessed in Four Different Ways

One very useful instruction is the multiply-and-add instruction. These

can be used on 8 or 16 bit packed data and yields a result twice the input size

with neighboring results added together. MMO and MM1 are multiplied

together and the result is written back to MM1. Three clock cycles are used as

shown in figure 3.8.
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MMO a b d

0 0
MM1 e f h

MM 0 a e +bOf c ®g + d ®h

Figure 3.8
MMX Multiply-and-Add

Another useful instruction compares all packed words and returns the

result in terms of all bits set or reset. This allows decisions to be made using

masks instead of conditional jumps as in figure 3.9.

MMO

MM1

PCMPEQW MMO, MM1

0x48 Ox9A 0x34 OxAE

0x92 0x29 0x34 OxAE

MMO Ox00 Ox00 OxFF Ox00

Figure 3.9
MMX Parallel Comparisons

MMX instructions, however, can only access main memory, or integer

registers in the U pipe, so this can create a memory access bottleneck.
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3.6.3 Intel's Vtune

Vtune is an automated run-time profiling tool authored by Intel to help

developers pinpoint which critical selections of their code could be improved

by taking better advantage of processor architecture [ATKINS96]. Superscalar

pairing and register dependencies are shown in an easily to read manner to

assist the programmer in eliminating scheduling conflicts. The tool is most

appropriate for assembly language development. It was used heavily in this

project.
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4. DATA ENCRYPTION STANDARD

This chapter describes the design and implementation of the algorithm

known as the Data Encryption Standard, also known as DES. The algorithm, in

straightforward form is not software efficient, however certain optimizations

can be made to increase software performance; these modifications are

discussed. An extension of DES, known as "triple DES" is presented which has

the possibility to extend the usefulness of the core algorithm for many years

into the future.

4.1 Background

Modern block ciphers can point their origins to the Lucifer cipher,

designed and created at International Business Machines under the guidance of

H. Fiestel [FEIST73]. He introduced the concept of an iterated cipher. An

iterated cipher contains a relatively weak (easily invertible) non-linear function

and strengthened it through iteration.

These iterations are commonly known as rounds. Each round combines

the output of prior round with a key-dependent value known as a subkey.

Subkeys used in each round are potentially unique and create the only

difference between the rounds. Within each round, various operations are used

to create the output, including the XOR operation, S-Box lookup, and bit

permutations. The XOR operation is used to combine the subkey with the data
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as well as merging the results from each round. The S-Boxes are nonlinear

substitution tables which map an input bit sequence to an output bit sequence.

Bit permutations allow bits to exchange locations. S-Boxes aid dispersion

throughout the bit length of the cipher, especially once the cipher is iterated.

The iterations is accompanied by permutations at each round to distribute the

output bits.

4.1.1 Government Standardization

When the Federal Government realized in 1974 the need to protect vast

amounts of digital information being collected and transmitted, a standard was

sought. IBM submitted a revised algorithm, based on Lucifer. It was the only

algorithm to meet the approval of the Government, it and was standardized for

domestic use on sensitive, non-classified data, to be re-certified every 5 years.

The algorithm since was named the Data Encryption Standard or DES. It is

thought to be the most widely used and analyzed cryptographic function ever

known. A slightly modified version of DES became the standard CRYPT

function in UNIX for password protection and authentication [STALL95].

4.1.2 Lifetime Concern of the Cipher

There is a great deal of concern as to its expected lifetime. This primarily

due to the relatively small key size which aid exhaustive, brute-force, search.

The algorithm operates on 64 bit data blocks with a 56 bit key. Thus there are
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2% different keys. While the number of keys might seem large, ciphers designed

since DES have much larger key sizes to blunt the brute-force attack. In

addition, the key space can be searched in parallel. [WEIN93].

There has always been lingering doubt about the security of the cipher

due to the lack of details pertaining to the design criteria of the cipher.

Regardless, there has never been a short-cut reported in the open literature

which could reduce the complexity to less than 50% of exhaustive search

[BIHAM91].

4.1.3 Re-certification

Although many services can be provided using cryptography, all of

these services depend on the assumption that the underlying ciphering

operation is strong. This means that there is no known attack or shortcut which

could allow the cipher to be reversed by an opponent without trying every

possible key. An algorithm may be considered strong if it can withstand attack

within a practical time limit. The practical time limit is of course, application

dependent and depends integrally on the value of the stored information.

While some transactions need only moderate protection, others need to

withstand an eternity of assault, DES is a standard which gives a single (strong)

level of protection. The Government has certified that, as of 1993, DES is secure

enough for daily usage of sensitive non-classified material, (i.e. financial data,

trade secrets, etc.). This certification is to expire unless renewed in 1998.
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4.2 DES Implementation

The published standard for DES was [FIPS46]. It detailed DES from a

hardware standpoint. A much more through software treatment is given by

[MENEZ97]. Many software implementations took cue from the FIPS

document and emulated the suggested hardware diagrams, even though they

are not very efficient in software.

4.2.1 A Hardware Algorithm

While any algorithm can be coded in software, it is not nearly as efficient

as a hardware implementation. The DES algorithm was designed to be small

enough to fit on a single MSI chip when it was introduced in 1976 [COPP87]. A

recent hardware implementation can achieve 50 megabytes per second using a

40MHz clock [VLSI94]. Software implementations have traditionally not had

the same success. A straightforward software implementation is plagued with

a slew of bit level permutations which are trivial in a hardware implementation.

Much advantage can be realized if the CPU register is fully used [SHEP91]

instead of emulating individual bit flow throughout the cipher. Even so, the

rate of encryption in recent implementations have lagged 2 orders of

magnitude behind the hardware solution previously mentioned [BSAFE3]. A

slightly modified version of DES algorithm appeared in the UNIX password
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encryption system [STALL95]. This added to the list of slow software

implementations in wide circulation.

4.2.2 Permutations

First, there is the question of the initial and final permutation. A generic

permutation is a reordering of bits. For example, a simple permutation could be

to reverse the incoming bit order as seen in figure 4.1.

Word length

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

Figure 4.1
Simple Permutation

Permutations in DES are not as simple as this example, but are same in

principle. Since the DES initial and final permutations have no effect on the

cryptographic strength of the algorithm, the question remains, why where they

included. It is proposed that they were introduced in order to facilitate

loading/unloading the DES 64 bit register with 8 bit data. The permutations

within the round function, however, are cryptographically important because
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they help shuffle bits and help to produce the desirable avalanche property

common in block ciphers. This property requires a single bit change in the

input to affect all bits of the output after a sufficient number of rounds.

A random bit permutation has the potential to be very software

intensive. On the other hand, the same permutation presents a smaller

challenge in hardware. The hardware implementation can physically alter the

path of the signal using one of more levels of the circuit. Careful routing can

solve the hardware bit permutation problem. Also adding to the advantage,

almost no time is used passing between one state and the next is since there are

no gate delays. In software, there are four steps to shift a particular bit and

must be repeated for all affected bits.

For example, the original register is EAX and I would like to move bits 7

and 6 to their final positions in register EBX. Assume that the destination is

initially zeroed. The code in table 4.1 is necessary. In order to remove explicit

dependancies and thus prevent stalling, the two sections could be interleaved

using register renaming.

This four-step code is only necessary if the permutation has no

applicable patterns. For 'N' bits, 4N instructions are required on average. For a

64 bit permutation such as the DES initial permutation, that is 256 instructions.

If patterns do exist, then it might be possible for multiple bits to be moved into

place at once. This can reduce the permutation overhead considerably.
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Copy WORK, EAX Make a working copy of register
Bitwise
AND

WORK, 10000000b Isolate the bit in question (bit 7)

Shift right WORK, 7 Shift the bit to its final position
Bitwise OR EBX,WORK Merge with final result

Copy WORK, EAX Make a working copy of register
Bitwise
AND

WORK, 01000000b Isolate the bit in question (bit 6)

Shift right WORK, 6 Shift the bit to its final position
Bitwise OR EBX,WORK Merge with final result

Table 4.1
Typical Permutation Sequence

The DES initial and final permutations do have a geometric pattern that

results in a much shorter, thus more efficient, implementation. The

transformation is not entirely straightforward, however it reduces the 256

instructions down to about 35, about an order of magnitude [Dan Hoey and

Wei Dai]. In the triple DES implementation the inner initial and final

permutations can be dropped because they are inverses of each other.

4.2.3 Key Scheduling

Key scheduling refers a process whereby the original key is elongated

using a special set of rules. The key scheduling effectively produces a longer

key that can be directly used within the algorithm. In the DES, the secret key is

56 bits long; however the algorithm consists of 16 rounds, each of which uses a

separate subkey. In each round, a subkey of 48 bits is used, 16'148=768 bits in
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total. If multiple blocks will be encrypted, it makes sense to precompute the

subkeys prior to processing any blocks.

The key schedule of DES is quite straightforward, it consists of simple

rotations and permutations of the original key. No mathematical operations,

for example, addition or multiplication are utilized.

4.2.4 The Round Function

Right (32 bits)

Expanded (48 bits) Subkey (48 bits)

Figure 4.2
Calculation of Round Function: F(R,K)

The round function is a function of two variables: {Right, Subkey }. The

round function mixes an expanded version of the DES register (32 right-side
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bits) with 48 bits selected from the key. The result is separated into 8 sections of

6 bits each. Each of these sections are used for table lookup and yield 4 bit

sequences, each of which reduce the 32 bits held in the right side of the DES

register are mixed with a subkey. The result is then moved through eight

different S-box lookups. These S-boxes can be implemented by a table lookup

in software, and by a series of logic gates in hardware. They reduce each of

their six bit inputs into a 4 bit output. The eight S-box results are then

permutated into a final 32 bit register.

The structure of an entire DES iteration is shown in figure 4.3. Note that

since the key scheduling does not depend on the DES register, it can be done in

advance. This completes the description of the DES algorithm, except for the

initial and final permutations, which occur before and after the 16 consecutive

DES rounds. The key scheduling also has an initial permutation similar to the

DES register initial permutation, but it does not have a final permutation, since

the same key is generally used for the next blocks. The geometric spacing of the

initial permutation for the key scheduling is similar to that for the input block,

however it is not as critical since it is only used when the key is changed, which

is very infrequent compared to the number of blocks encrypted.
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DES register KEY register
64 bits 56 bits

4-32 bits 32 bits 40-28 bits-0-0-28 bits*

Left Righti

f(R ,K,)

X0r

Leftki Righti+i

Left keyi Right keys

(eft rotation) (eft rotation

(bit selection)

Subkey F (48 bits)

Left keyki Right keyki

Figure 4.3
A Single DES Round

The significant portion of time within the algorithm is spent calculating

the F(R,K) function. In particular, the S-Box table lookups. The function could

be implemented at the bit level, that is, bit-by-bit, but this makes very little use

of the register length. Instead, the full register length used be used whenever

possible, and loops should be avoided.

There are two observations that can be made in order to speed up

computation of the F(R,K) function. One involves the mixing of the subkey, the

another involves the combination S-Box and permutation step.
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4.2.4.1 Mixing the Subkey

At the beginning, a 32 bit value is expanded into a 48 bit value. This

result will no longer fit in one 32 bit register. Thus 2 registers are used. Since

the expansion operation is very regular, it suffices to simply make a copy of the

register and instead apply a modified expansion the precomputed key

schedule. In this manner a full 64 bits will be combined with the XOR operator.

Only 48 of those bits will be forwarded through the S-Boxes.

4.2.4.2 Combined S-Box and Permutation

The second optimization deals with the S-Boxes. Clearly, there must be

six different lookups, however each of these lookups is followed by a

permutation which moves the resulting four bits to a final position within 32

bits. It makes better sense to define a new S-Box with has a 6 bit input and a 32

bit output where the output bits are already permuted into their final locations.

Using the above steps, both of the time-consuming operations of

expansion and permutation can be avoided, see Figure 4.4. The remaining

dominate operation is the shift/mask step to isolate the S-Box input. As a

summary, the expansion is moved from the input to the subkey (which can be

computed in advance) and the S-Boxes are recoded as 32 bit outputs instead of

a 4 bit outputs.
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Right (32 bits)

Expanded (48 bits)

Right (32 bits) Right (32 bits)

Subkey (48 bits)
Reordered Reordered

Subkey,(32 bits) Subkey2(32 bits)

HI III III IIII III
SBOX 1 SBOX 2 SBOX 3 SBOX 4 SBOX 5

II III III
SBOX 6 SBOX 7 SBOX 8

Sbox outputs are 32 bits and already in
the correct permuted location

32 bits

Figure 4.4
Optimized Round Function: F(Ri,K;)

This implementation assumes that the subkey table will be computed in

advance. The only way this will make sense is if the same key is used to

encipher/decipher multiple blocks. The performance of the algorithms

developed in this thesis run best if at least 128 blocks (1024 bytes) are processed

before a key change.

4.3 Modifications for a 12 bit S-Box

If one considers how the majority of time in spent within the DES round

function, it is spent preparing and executing the eight S-Box substitutions
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which are implemented as eight table lookups. A different method is to merge

two 6x32 S-Boxs into a combined 12x32 S-Box [SCHN97]. The benefits and

costs of this approach must be carefully evaluated. The benefit would be to

reduce the number of memory accesses by one-half (from 8 to 4) per round. In

addition, there is bit manipulation to isolate the index for the lookup, this may

also be saved if adjacent S-Boxes are shifted and masked as a unit. On the other

hand, the single S-Box only needs 26 x 32 bits = 2048 bits = 256 bytes to store its

permuted lookup table.

The double wide S-Box requires 212 x 32 bits = 131072 bits = 16384 bytes.

There is a reduction in the number of S-Boxes from 8 to 4, however. In total, the

individual S-Boxes use 8 x 256 bytes = 2048 bytes, while the combined S-Boxes

require 4 x 16384 bytes = 65536 bytes of memory. One of the problems with this

approach is that in the implementation which avoids the expansion, the S-Box

bits are not together, but are instead separated by two bits. In order to bring

these two six bit inputs together and isolate them from the other bits in the

register, the following seven operations must be preformed: copy, shift, and,

copy, shift, and, or. One can see that there is no savings in the indexing

overhead of the two independent S-Box lookups, in fact there is an increase of

one operation, the OR, which brings the two inputs together.

One plan to reduce this overhead is to increase the size of the table to

encompass the two extra bits. This would quadruple the size of the combined

table from 16384 bytes to 65536 bytes. Four such tables would be necessary,
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bringing the total table size to one quarter of a megabyte. Such waste is not

acceptable to reduce the number of operations. A second approach keeps the

two bits and puts them to use. Since the two bits can select one of four different

possibilities, it is convenient to consider that there are exactly four combined

12- bit lookup tables. These extra two bits can be hardwired to select the

appropriate lookup table. Now the operation count is reduced to the following:

copy, shift, and, or, where the OR selects the correct table.

Unfortunately, the size of the new S-Boxes is prohibitively large. They

cannot fit completely in either primary or secondary memory cache. While this

approach of combining the S-Boxes would work on a non cached processor, it

makes the little sense on even the Pentium II with 512kb cache memory.

4.4 Triple DES

[COPP87] notes that sustained parallel attacks of the 56 bit key may be

feasible, however there is a simple way to improve the resistance to this

exhaustive attack. Choose three independent keys, and encrypt under each

one in succession, E(E(E(x))). This increases the search space to 21'. E(D(E(x)))

has the same search space but is compatible with single key installations, which

allows an easy upgrade path. Triple DES is much slower than traditional DES,

since each block must be processed three times. Fortunately the initial and final

permutations for the inner functions can be dropped due to the inverted nature

of the permutations. For those that need the security of an established
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algorithm and the extra protection against key space searches, Triple DES may

be worth the wait.

4.5 Biham's Bit-Parallel DES

[BIHAM97] suggested a novel DES implementation using very long

instruction words (VLIVV). He gives an example of DES using 64 bit registers.

It is outlined in Figure 4.5.

40964
bits64

bits

Input Input Input
Block 1 Block 2 Block 3

r Input
Block 64 64

bits

Bit 1 block

Bit 2 block

Bit 3 block

7 7-7 7 7
Bit 64 block

DES bit-parallel engine (64 blocks/4096 bits)

Bit 1 block

Output Output Output
Block 1 Block 2 Block 3

Bit 2 block

Bit 3 block

Output
Block 64

Figure 4.5
Biham's 64 bit DES Implementation

Bit 64 block
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He notes that a 64 bit architecture can make use of the entire instruction

word but using each individual bit to encode a separate bit in each of 64 parallel

DES implementations. In this way, the software mimics a hardware data path.

This implementation of DES would scale nicely to longer register lengths.

DES is practical for this approach since it uses simple XOR and

substitution tables instead of the more complicated addition and multiplication

used in the IDEA algorithm. The S-Boxes are implemented as logic equations

using AND, OR, NOT functions. An interesting observation is that this DES

implementation, since it is operating at the bit level, would not need any extra

code to deal with permutations. Each bit is referenced individually and the

input to each round function can explicitly state a bit location from the output

of the round. Additional code must be inserted to load and unload the registers

before and after the algorithm to remain compatible with existing

implementations of DES. Typical CBC encryption is not possible due to the

parallel nature of the algorithm.

This bit-parallel DES algorithm, unfortunately, can not be implemented

efficiently on the Intel MMX even though it has 64 bit registers. This is due to

the low number of 64 bit registers available. L1 cache would need to be used to

supplement the register set. Since the Pentium MMX architecture only allows

MMX register-memory accesses in the U pipeline, the dual pipelines of the

Pentium would be very underutilized. This algorithm, however, can be great

use on native 64 bit processors, such as the Alpha 21264.
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5. THE RC5 ALGORITHM

This chapter describes the RC5 algorithm designed and published by

cryptographer Ronald Rivest in 1995. A guiding principle for the design of RC5

is flexibility and a fast software implementation [RIVEST95].

5.1 RC5 Algorithm Description

The algorithm can effectively utilize machine register lengths of 16, 32,

and 64 bits. The block size is built upon two machine words, yielding 32, 64,

and 128 bit data blocks. RC5 is also the only block cipher in this study that

may be fully parameterized, the key length, number of rounds, and block size

may all be specified. Flexibility is not achieved at the expense of ciphering

speed. RC5 outperforms other ciphers with its intrinsic algorithmic simplicity.

It is currently one of the fastest block ciphers.

5.1.1 Expandability

The key design feature in RC5 is expandability. A method needed to be

found that would allow the algorithm to easily allow larger block sizes, key

sizes, and number of rounds. Whereas other block ciphers have fixed

parameters for block size, key size, and number of rounds, RC5, leaves these to

the choice of the user. The register size/block size combination must be

supported by the processor to be use performance-wise.
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5.1.2 Data Dependent Rotations

The key element in RC5 which provides confusion is register rotations.

In DES, it was the XOR/S-Box /Permutation. RC5 relies on non-linear register

rotations as its sole non-linear operator.

5.1.3 Round Function

The Feistel cipher [FEIST74] serves as a model for RC5, breaking the

block into two pieces and iterating a relatively weak non-linear function. RC5

has a similar structure, with the following equation for encryption:

L, =

R, = ( [L,_, «< ) + S,

L and R are the left and right registers which are swapped each round..

S reflects a subkey which is initialized at the start of the algorithm. The data

dependent rotations are of the form: c = a <<< b, where a, b, c are register length

variables. The rotation places a copy of a rotated left by b mod regsize (machine

register size). The following figure 5.1 illustrates the simplicity of each round.

The square is an addition and the circle is an XOR.
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Two Rounds of the RC5 Algorithm
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5.1.4 Adjustable Parameters

The algorithm can be customized to have up between 0 and 255 rounds

and an adjustable key size between 0 and 2040 bits. Perhaps the 2040 bit key

may be more than necessary, however it underscore the fact that RC5 was not

designed to become insecure with increasing computer resources. It has the

possibility to replace DES as the government endorsed encryption standard.

The algorithm operates on alternatively 32, 64, or 128 bit data blocks,

however the data block which is twice the size of the register length is the most

efficient given a particular architecture.

5.2 Cryptanalysis

Given that the RC5 algorithm is the newest of those studied, the

resistance to attack is not yet fully understood. It does appear that 8 rounds

with a 64 bit data block is a minimum to satisfy the security avalanche criteria.

5.3 Performance Issues

While the RC5 algorithm is amazingly simply, the runtime on the

Pentium does not seem to be as fast as it could be. This comes down to the fact

that rotations are slow on the Pentium.
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5.3.1 Rotation Bottleneck

While fast and simple, the rotations by variable amount require 4 clocks

each on the Pentium processor. Worse yet, they cannot be paired with other

instructions. This forms the bottleneck of the algorithm. On the Pentium

Pro/Pentium II, the rotation only takes 1 clock cycle, so the algorithm

performance is much improved.

It is possible to use one COPY, two SHIFT instructions and an OR to

simulate the rotation, but this would be slower than waiting for the rotation to

complete.

5.3.2 Little Endian versus Big Endian

RC5 was designed to be efficient on current microprocessors. In

particular it is written to use the Intel little-endian representation for byte

ordering in memory. Big endian architectures will have to swap bytes on load

and store of external memory.

5.3.3 Suitability for Future Architectures

Future architectures that use little endian ordering will be not incur

overhead in loading operands from memory, however if there is no native

rotate instruction, the algorithm could suffer a setback, as simulation of a

rotation is expensive.
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5.3.4 MMX Implementation

The MMX instruction set does not have the ability for variable rotations

for subsections of the MMX register. They would have to be selected via a

jump table, or synthesized using SHIFTS and ORs.. This would be

prohibitively expensive from a performance perspective. Therefore RC5 is not

a strong candidate for an improved MMX implementation.

5.4 Optimization Techniques

The most obvious optimization technique for RC5 is loop unrolling. By

unrolling loops, one can eliminate the swap between R and L as well as the loop

overhead. Since the RC5 reference document mentions various configurations

in which the number of rounds was a multiple of 4, the loop was unrolled a

total of 4 times. This seems a logical choice if most users follow the guidance of

the reference document. The loop could be extended to 8, but it was chosen to

leave it at four for simplicity and to avoid unnecessary duplication of code.

The reference code for subkey generation was not so important since it is

only executed once per key initialization, however, it contained two mod

operations which were replaced with simple counters.

The following ciphering rates were recorded for an assembly language

implementation in two processor configurations:
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RC5 with 64 bit data block, 64 bit key, 8 rounds:

Processor Encryption Rate (million b34esisec)
90MHz Pentium, NT 4.0 3.83

266 MHz Pentium II, NT 4.0 19.53

Table 5.1
RC5 CBC Encryption Rates
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6. THE INTERNATIONAL DATA ENCRYPTION ALGORITHM

This chapter describes the International Data Encryption Algorithm,

known as IDEA. The cipher was designed jointly by a Swiss team in 1990

[LAI91]. The algorithm operates on 64 bit data blocks with a 128 bit key.

It relies on combinations of mathematical operations to achieve

confusion and diffusion. It uses the fewer rounds than either DES or RC5 to

perform an encryption or decryption. The internal operations are, however,

more complex and time consuming.

6.1 Algorithm Description

The 128 bit key is generously long for a block cipher. It is preprocessed

into a series of 16-bit subkeys which are in turn used in each of the subsequent

rounds. The subkeys are different for encryption and decryption, while the

algorithm is exactly the same. The decryption subkeys are calculated from the

encryption subkeys. In order to gauge the performance of the algorithm, the

subkey generation is not the critical component, so it will not be further

discussed.

The IDEA critical component consists of 8 rounds of the function shown

below. In each round, a 64-bit input (X') is transformed into a 64-bit output

(X"1). 6 16-bit subkeys (Z) are combined with the data in each round. Each 64-

bit input/output is broken into 16-bit sections for the arithmetic operations.
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6.1.1 Round Operations

Within each round, the following operations are performed, with

notations from the figure:

Xor = bitwise XOR

Add = addition mod 216

Mul = multiplication mod 216 + 1 (0 interpreted as 216)

6.1.2 MA Block

The cornerstone of the design is the mixing of arithmetic operations from

three different algebraic groups of 2n elements. The groups are said to be

incompatible since no combination of different operations satisfy the

distributive or associative law. Confusion is generated by combining

expressions based on these groups. The MA (Multiple-and-Add) block is the

center of the round, and provides ample diffusion by effectively combining the

subkeys with the input data in a sequential, dependent method.

6.1.3 Feistel Cipher

IDEA differs from the traditional Feistel network [FEIST74] in that it

increases the complexity of the round function and reduces the number of

rounds. This is quite the opposite of RC5 [RIVEST95].
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6.2 Cryptanalysis

IDEA has resisted both differential and linear attacks to the 8 round

version, [MENEZ97] the only weak point discovered thus far is the relatively

large number of weak keys, which, if used for encryption/decryption, could

jeopardize the security of the algorithm. A class of 251 weak keys has been

discovered by Daemen [MENEZ97]. While number is huge compared to other

block ciphers, so is the effective key space, so the chance of randomly choosing

one is 2128/251 = 2-77.

6.3 Performance Issues

IDEA is one of the strongest algorithms available as of this writing. It

offers substantial protection over DES (128 bit key, versus 56 bit key) yet its

performance is on par with DES. It could have easily outperformed DES (since

it only has 8 rounds) had it not been for some time consuming operations in the

round function.

6.3.1 Multiplication Bottleneck

Within each round function, there are 4 modular multiplications, which

require at least an unsigned integer multiplication along with range checking to

enforce the modular nature of the multiplication. The Pentium requires 10

clock cycles per multiplication, which effectively makes the multiplication the
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bottleneck of the algorithm. A table could be built to hold the multiplication

results, however the size of the table would be too large to accommodate the

typical cache sizes. The Pentium II can perform an integer multiplication in 4

clock cycles, so it reduced the severity of the bottleneck quite substantially.

6.3.2 Register Half Full

IDEA was meant for suitable implementation in both hardware and

software. [LAI91]. That may explain why the 64-bit input is split into 4 16-bit

blocks. A 32-bit multiplier is quite expensive in hardware. There are no

operations utilizing register widths larger than 16 bits. This reliance on 16 bit

arithmetic keeps idle half of the 32 bit data path of the Pentium/Pentium II.

6.4 IDEA Performance

IDEA's performance is similar to DES, yet is considerably stronger. Only

triple DES comes close to the security offered by IDEA, and it even runs almost

three times slower. There is a notable improvement that MMX can make to

make IDEA much faster.

Intel's MMX permits a form of SIMD programming. Figure 6.2,

illustrates the parallel sections of IDEA. These sections which can proceed in

parallel will benefit from a MMX implementation.
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6.5 MMX Implementation

IDEA is a very good candidate for MMX optimization. While the

algorithm processes 64 bit blocks, most of the internal operations in the round

function are computed on 16 bit operands. The 16 bit operands fit comfortably

within the MMX register.

The original code is speed limited by multiplication.

On the Pentium, integer multiplication completes in 10 clock cycles and is
not pipelined.

On the Pentium II integer multiplication completes in 4 clock cycles and is
fully pipelined.

Using the MMX ALU, integer multiplication completes in 3 clock cycles and
is fully pipelined.

Advantages utilizing MMX instructions:

1. Reduce number of multiplication blocks from 4 to 3. (25% improvement)

2. Each multiplication block completes in fewer clock cycles than Pentium.

3. Completely remove conditional execution.

Disadvantages utilizing MMX instructions

1. Extra instructions necessary to position arguments within MMX register

2. Must compute both paths and join results to eliminate conditional execution

3. Lack of 16 bit unsigned multiplication instruction

4. Subkey information must be re ordered to facilitate 8 bit multiplication

5. Must increase size of IDEA state to create room for MMX immediate constants.
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The advantages outweigh the disadvantages on the Pentium MMX

processor. The speed of the IDEA code increases 40%. On the Pentium II, there

is negligible increase in speed. This results from the efficiency of the normal

multiplication unit compared to that of the Pentium's.

The startling improvement of the IDEA algorithm running on the

Pentium MMX creates an interesting development. MMX enhanced IDEA on

Pentium MMX 233 equals/exceeds the speed of the algorithm on a Pentium II

233 by up to 5%.

6.5.1 Example IDEA Software Improvement

This illustrates a software improvement to the mulmod function. There

is a reduction of one conditional jump by computing the product first.

" mulmod" returns a*b mod 65537, where 0 <= a, b <= 65535
using the LOW-HIGH algorithm

Reference modular multiplication:

uintl6 mulmod(uintl6 a, uintl6 b) {

long p,q;

if(a==0) p=65537-b;
else
if(b==0) p=65537-a;
else {

q=(unsigned long)a*(unsigned long)b;
p=(q & 65535) (q»16);
if(p<=0) p=p+65537;

}

return (unsigned)(p&65535);
}

1 16 bit multiply with 32 bit result
3 conditional jumps
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A better modular multiplication:

uintl6 mulmod(uintl6 a, uintl6 b) {

long p,q;

q=(unsigned long)a*(unsigned long)b;
if (q==0) p=65537-a-b;
else {

p=(q & 65535) (q>>16);
if (p<=0) p=p+65537;

return (unsigned)(p&65535);
}

1 16 bit multiply with 32 bit result
2 conditional jumps

6.5.2 Example IDEA MMX Improvement

The Pentium integer multiply instruction takes 10 cycles to complete, so

by using the MMX multiply which is pipelined and takes only 3 cycles to

complete, can yield a big improvement. However, the MMX architecture does

not have an unsigned 16 bit multiply instruction, so it needs to be emulated

with 8 bit arithmetic.

MMX modular multiplication:

4 8 bit multiplications (2 in parallel and both pipelined)
0 conditional jumps (however, must compute 65537-a-b)

Normal 16 bit multiplication using 8 bit operands uses 4 multiplies, 4

adds, and 2 shifts is shown in Figure 6.3. It can be accomplished faster using

MMX instructions.
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Each 8 bit operand is zero extended, insuring it will be an unsigned 16-

bit number. Then c*a and d*b can be done in parallel using. Similarly, d*a and

c*d can be done using the convenient MULTIPLY-ADD instruction. This is the

only result that must be shifted.

Instruction count (once operands are zero extended):

1 PMULLW
1 PMADDWD
1 PSLLD
1 PADDD

c*a and d*b
d*a and c*d
d*a + c*d (by 8 bits)

Multiplication
ab*cd

16 bits

a b

c

d*b

d*a

c*b

c*a

c*a + d*a + c*d + d*b

Figure 6.3
IDEA 16-bit Multiplication Using 8-bit Operands
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Not only does the MMX mulmod operation run faster than the Pentium

mulmod, it is also done in parallel. The faster mulmod helps the sequential MA

unit execute faster than it would have using strict Pentium code.
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7. CONCLUSIONS

Research for this thesis was undertaken with the goal of analyzing three

important block ciphers to determine what optimizations could be made to the

algorithm and implementation to produce more efficient software running on

the Intel architecture.

7.1 Summary

DES was the algorithm with by far the most opportunities for

improvement. The permutations, S-Box output and subkey combinations all

could be improved. The instructions were paired to achieve maximum

concurrent execution in the Pentium U and V pipelines. The result was the

fastest DES code I have ever seen for the Pentium platform.

RC5 and IDEA are relatively modern algorithms, from a software

prospective, so they afforded fewer opportunities for algorithmic improvement.

Some improvements could be made nevertheless. In particular, IDEA, did lend

itself well to a MMX implementation with a dramatic performance increase.

7.2 Ciphering Rates

Tables 7.1 and 7.2 list the various ciphering rates achieved by the C

language implementation and the assembly language implementation. The

assembly language implementation included the MMX enhancements for IDEA
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since no compilers were available to produce optimized code for the MMX

architecture.

C
Language

Implementation

Pentium
166

(Mb/sec)

Pentium
166 MMX
(Mb /sec)

Pentium
266 MMX
(Mb /sec)

Pentium II
266 MMX
(Mb /sec)

Triple DES 0.6 0.6 0.9 1.2
DES (6 bit S-Box) 1.5 1.5 2.3 3.1
DES (12 bit S-Box) n/a n/a n/a n/a
IDEA w/o MMX 1.4 1.4 2.3 3.1
IDEA w/MMX n/a n/a n/a n/a
RC5 32/12/8 3.1 3.2 5.1 8.1

Table 7.1
Encryption Rates for C Language

Referring to Table 7.1, DES and IDEA have approximately the same

performance, however IDEA offers a generous 128 bit key space, compared to

the 56 bit DES. Extra security can be found in triple DES, but it is

approximately 2.5 times slower than single DES (since it has 48 rounds,

however it avoids two IP/FP blocks) and offers a 112 bit key space using the

E(D(E(x))) method. RC5 is much faster than either DES or IDEA, due to

simplicity of its internal structure.

The assembly language results, seen in Table 7.2, show between 20% and

260% speed improvement over the C implementations. The DES 12 bit S-Box

lookup method performs much worse than the 6 bit S-Box lookup even though

there are fewer instructions in the inner loop. This is because the 12 bit lookup
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tables do not fit in the L1 cache. For IDEA, the MMX implementation speeds

the algorithm up by 40% on the Pentium. For RC5, the Pentium II shows a

significant advantage over the Pentium, with 2 clock cycles for ROTATE versus

4 clock cycles on the Pentium.

Assembly
Language

Implementation

Pentium
166

(Mb/sec)

Pentium
166 MMX
(Mb /sec)

Pentium
266 MMX
(Mb/sec)

Pentium II
266 MMX
(Mb/sec)

Triple DES 0.8 0.9 1.4 1.8
DES (6 bit S-Box) 2.3 2.4 3.7 4.9
DES (12 bit S-Box) 1.4 1.5 2.2 2.2
IDEA w/o MMX 1.7 1.8 2.9 3.9
IDEA w/MMX n/a 2.6 4.2 4.1
RC5 32/12/8 7.0 7.3 11.4 21.4

Table 7.2
Encryption Rates for Assembly Language

7.3 Concluding Remarks

Assembly language was used to effectively program the Pentium

architecture and to probe for hidden rewards in terms of pairing superscalar

pipelines. The library of routines is encased in a library callable by any

language. The modes chosen were ECB and CBC, so, if necessary a library user

can develop additional modes by using the ECB mode as a cryptographic

engine.
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Intel's Vtune was a pleasure to work with; it provided insight which

would be difficult to gain from just looking at the code. Vtune did seem to be

very particular though about which version of the program worked with

various Pentium architectures.

7.4 Future Work

To continue this work, I suggest looking at how the code could be

integrated into Intel's upcoming line of 64 bit processors. Biham's 64 bit

version of DES would be interesting to code. Also, some additional

optimizations may become apparent should one undertake the effort to code

the algorithms in hardware as an VLSI ASIC.
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