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Analysis and Design of

Oversampled Digital-to-Analog Converters

CHAPTER 1 INTRODUCTION

An analog-to-digital (A/D) data converter is a signal conversion

system that takes an analog signal (a physical quantity) as its input

and produces a digital signal (a mathematical quantity) as its
output. A digital-to-analog (D/A) data converter is a signal
conversion system that converts signals in a direction opposite to

that of an A/D converter.

A digital signal is represented by a discrete-time, discrete-

magnitude data sequence. An analog signal may be either
continuous time, continuous magnitude or discrete time,

continuous magnitude. The continuous magnitude of an analog

signal is measured by a physical quantity such as electrical voltage,

current, etc.

If we evaluate a D/A converter by its input versus output

relationship, then an ideal D/A converter has all its output points

on the line y =Gx, where G is the gain of the converter and its unit

is the same as the output physical quantity y, while x is the input

digital signal and y is the output analog signal. For a nonideal D/A

converter, some of the output points may lie off the line y=Gx. The

corresponding errors are classified as offset error, gain error,

differential and integral nonlinearities [1]. Among these errors, the
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most harmful ones are the nonlinearity errors since they cause
harmonic distortion to the signal.

If an analog signal has a limited bandwidth and its highest signal
frequency is fh, its Nyquist rate is defined as 2fh. To avoid signal

aliasing, the digital signal originally converted from the analog
signal usually has a clock frequency slightly above the Nyquist rate

of the corresponding analog signal. If a digital signal is to be
converted into its analog form, it is usually converted directly

without changing the clock rate of the digital signal. These
conventional converters are called Nyquist-rate D/A converters.

If a digital signal is converted to the corresponding analog signal

by first increasing the digital signal clock rate to a rate much
higher than its corresponding Nyquist rate, then converted into
the analog form, the method is called the oversampling method
and the converters are called oversampled D/A converters.

The main advantage of Nyquist-rate data converters is that these

converters can operate at a relatively low clock frequency for a
given sample conversion rate (samples/second). However, the
conversion accuracy of these Nyquist-rate data converters depends
on the use of high precision analog components. This requirement
is contrary to the development of the integrated circuit processing

technology, which is going along a direction that can provides
higher and higher operational speed but lower and lower
componant accuracy as a result of a consistent reduction in device

dimensions and on-chip supply voltage [21.
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The oversampling conversion method offers a good alternative

for high-precision data conversion. It takes full advantage of the

high operating speed offered by modern IC technology by trading

speed for high conversion accuracy. In addition, the harmful

nonlinearity errors associated with conventional data converters

are eliminated when a single-bit internal D/A converter is used in

oversampled data converters [3].

The research efforts in the field of oversampling data
conversion technology have mainly been focused on oversampled

A/D converters. The main argument for this is that once the

structure of an oversampled A/D converter is well defined, it can

be easily transformed into an oversampled D/A converter. This

argument is valid for the overall structure of the two types of

oversampled data converters [4]. However, there are some
fundamental differences between A/D and D/A data conversion in

oversampled data converters. First, in oversampled A/D

converters, the noise-shaping task is done mainly in the analog

domain and also partly in the digital domain. In oversampled D/A

converters, the noise-shaping task is done in the digital domain

only. This difference has many consequences in the design
process. Second, in oversampled A/D converters, both internal

A/D and D/A converters are required while in oversampled D/A

converters, only internal D/A converters are needed. Third, and

perhaps most important, the removal of the out-of-band noise is

done differently. In an oversampled A/D converter, the out-of-band

noise is filtered digitally but in an oversampled D/A converter, it is
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filtered in analog domain. This difference makes the design of

oversampled D/A converters in many aspects more difficult than

the design of oversampled A/D converters, which is the opposite

for Nyquist-rate data converters.

In this thesis, to simplify the discussion, all analog systems

discussed are assumed to be discrete-time systems. Specifically,

the analog functions are assumed to be implemented in switched-

capacitor circuits.
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CHAPTER 2 ANALYSIS OF OVERSAMPLED D/A CONVERTERS

2.1 Basic Structures

A basic structure of oversampled D/A converters is shown in

Figure 2.1 (41, where IF is a digital interpolation filter; NL is a

digital noise-shaping loop; DAC is a D/A converter and LPF is an

analog lowpass (smoothing) filter. The input signal x is a digital

signal represented by a sequence of N1-bit digital number at a
sampling frequency (clock rate) of fs. This frequency can be

assumed to be the Nyquist frequency of the corresponding analog

signal. The interpolation filter increases the sampling frequency to

fs*R, which is much higher than fs (R is the oversampling ratio,

R»1), and may reduce the number of bits used to represent the

signal from N1 to N2. The IF also removes all replicas of the signal

in the frequency domain except those centered around the integer

multiples of fs*R. It is preferable that the interpolation filter

removes the replicas as completely as possible, since this eases

the design of the following analog lowpass filter. Since the

interpolation filter is followed by a noise-shaping loop NL, which
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introduces significant out-of-band noise, the IF only needs to

attenuate the replicas to the point where they are lower than the

out-of-band noise introduced by the NL.

The NL is used to change the signal from N2 bits to one bit

while maintaining the information in the signal band. The single-

bit D/A converter following the noise-shaping loop converts the

one-bit digital signal into its analog form. The advantage of using a

single-bit D/A converter is that a single-bit D/A converter is

inherently linear. If the internal D/A converter is multibit, any

nonlinearity in the D/A converter will cause harmonic distortion in

the signal band in the final output of the converter [5]. However,

using a signal-bit internal D/A converter also has some major

disadvantages which will be discussed in the following sections.

The focus of this research is to combine the advantages of using a

single-bit and a multibit internal D/A converter for an oversampled

D/A converter.

Figure 2.2 shows two commonly used noise-shaping
architectures (the NL block shown in Figure 2.1) for shaping the

digital quantization error e(n). As the figure indicates, all signals

are digital. This makes the design of such a loop very flexible and

the circuit implementation easy. In addition, the operation of

digitally implemented circuit is perfectly accurate if there is no

overflow or truncation occurring in the loop.

In general, to achieve the same degree of noise shaping, the

error feedback scheme shown in Figure 2.2(b) usually leads to a
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simpler circuit implementation than the delta-sigma scheme

shown in Figure 2.2(a).

The relationship between the input and the output of the above

systems can be generally written as

Y. HSX+H NE (2.1)

where X and Y are the z-transforms of the input signal x(n) and the

output signal y(n) respectively; E is the z-transform of the error
e(n) due to the digital quantization; Hs is the signal transfer
function and HN is the noise transfer function of the loop. The

design of the noise-shaping loop should be such that the signal
transfer function H does not affect the signal in the signal band

and the noise transfer function HN suppresses the quantization

error in the signal band as much as possible.

The single-bit D/A converter following the noise-shaping loop

shown in Figure 2.1 converts the single-bit digital data stream into

the corresponding analog form in a linear manner. The converted

analog output signal from the 1-bit D/A converter contains the

same power spectrum as the digital input signal in the signal band.

However, it also includes the large quantization noise power which

was introduced and highpass shaped by the noise-shaping loop.

This out-of-band noise power is then removed by the following

analog lowpass filter. The final output analog signal should have the

same frequency domain characteristics as the input digital signal

in the frequency range 0- fs/2.



8

Because a frequency domain characteristic corresponds to a

unique time-domain signal, the output analog signal in the time-

domain also closely resembles the input digital signal, assuming

that the D/A conversion system does not distorte the signal phase.

2.2 Theoretical Analysis

Since the internal digital quantizer in a noise shaping loop is a

nonlinear element, an oversampled D/A converter is a nonlinear

dynamic system and it is difficult to theoretically analyze such a

system without some simplifying assumptions [6][7]. The essential

assumption here is that the digital quantization error is an additive

white noise, uncorrelated with the other signals. Even though this

assumption is not true, it helps us to obtain the initial design

parameters. Based on this assumption, linear models can be

obtained for oversampled D/A converters. The analysis of the

oversampled D/A converters in this section is based on these
linearized models.

2.2.1 Digital quantizer and its quantization error

A digital quantizer (sometimes called digital truncator) is a

digital system which takes a digital signal as its input, and outputs

a digital signal with shorter wordlength than the input signal

according to a given algorithm.



The error introduced by a digital quantizer is defined as the
difference between the output and the input signals. The
characteristics of this error are somewhat similar to those of the

quantization error in a conventional A/D converter especially if the

wordlength of the input signal to the digital quantizer is much

longer than that of its output.

Figures 2.3 and 2.4 shows schematically the outputs of 3-level

and M-bit (2m-level) digital quantizers, and their quantization

errors as functions of the input signal. The two curves are shown

here as continuous lines, but in fact consist of discrete points. If

we assume that the input digital wordlength is much longer than

the output signal wordlength, the continuous curves shown
represent a good approximation.

The error can be expressed as

e(n) = y(n)-xl(n) (2.2)

It is bounded by (-A /2, A /2) when the quantizer is not saturated,

where A is the level spacing between the output levels. For an M-

bit digital quantizer with maximum output levels of +2Iv

A =(2N+1) / (2M_ 1) (2.3)

If the error is uniformly distributed in (-A /2, A /2), then the

mean-square value of the quantization error e(n) is

erms2= A2/12 (2.4)

9
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The 3-level digital quantizer is an important element in
oversampled D/A converters. Corresponding to a 3-level digital

quantizer, the output digital signal of the noise-shaping loop will

have 3 levels as well. Thus, a 3-level D/A converter is needed

following the noise shaping loop. Such a 3-level D/A converter can

be easily implemented with high linearity in a switched-capacitor

circuit [81. To use a digital quantizer with more than 3 output
levels is not practical since it is very difficult to implement a D/A

converter with more than 3 output levels with high linearity.

The operation of the 3-level digital quantizer is quite different

from the commonly used single-bit (2-output-level) digital

quantizer. A single-bit digital quantizer is simply a digital truncator

which takes the most significant bit of its input as its output and

the quantization error (truncation error) is the negative of the

remaining bits of the input signal. For a 3-level digital quantizer,

its output needs to be determined by the two most significant bits

of its input and the error is no longer simply a truncation error but

needs to be determined by a subtractor or some simple logic
circuit.

As an example, consider the input-output relationship of a 3-

level quantizer shown in Figure 2.3(a). Suppose the three levels of

the output signal y(n) are chosen to be ±218 and 0 (N=18 in Figure

2.3.) Then, the range of the input digital signal to the quantizer
x (n) should be -3*2 81 (n) 34.2189 which corresponds to the

unsaturated mode operation of the quantizer. The signal x1(n) can

be represented by a 20-bit interger number.
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The quantizer can be implemented with a combinational digital
logic circuit. Assume that do is the most significant bit and d19 is

the least significant bit of the signal x1(n) and that x1(n) is

expressed in two's-complement notation. The 3-level digital
output signal y(n) can be expressed by the following two-bit code

Do D1 Quantizer
output

0 1
+218

0 0 0

1 0 _218

The logic equations for the output y(n) can be obtained from the

input-output relationship shown in Figure 2.3(a). They are

Do = do (d1 + d2) (2.5)

D1 = do (di + d2 ) (2.6)

A digital circuit implementation of this logic is shown in Figure

2.5. Since the circuit is very simple, the digital quantizer can be

considered to be delay-free.

2.2.2 First-order noise shaping

In equation (2.1), if the noise transfer function HN(z) is (1- z-1),

the noise is first-order high-pass shaped.

As we have discussed in the previous sections, in order to

implement the internal D/A converter following the noise-shaping

loop with a high linearity, the number of the output levels of the

digital quantizer in a noise-shaping loop is limited to 2 or 3 levels.

A 2-level digital quantizer is just a digital truncator, which does
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not require any digital logic for its output nor for the error. The

corresponding 2-level D/A converter is also very simple, and can

be easily implemented by using some switches and a reference

voltage. A 3-level digital quantizer requires some digital logic for

its output and a relatively short wordlength subtractor for the

error. The 3-level D/A converter needed is somewhat more
complex than the 2-level one. It requires some switches and

capacitors and an opamp [8]. The tradeoff between using a 2-level

or a 3-level internal D/A converter will be further discussed in the

next section

For first-order noise shaping, a 2-level digital quantizer (a

single-bit truncator) is a good choice since the system is then very

simple and has adequate stability [9]. A stability problem in a digital

feedback loop will cause signal overflow or signal amplitude

clipping in the loop, and will consequently introduce significant

noise power into the signal band [10]. In a practical circuit where

the wordlength of the registers in the loop is given, solving the

stability problem corresponds to preventing the overflow or

amplitude clipping from happening.

Figure 2.6(a) shows a noise-shaping loop, which is the first-

order realization of the system shown in Figure 2.2(b). The
difference equations for the loop can be written as

e(n) = y(n) x1(n) (2.7)

xi(n) = x(n) e(n-1) (2.8)
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y(n) = x(n) + e(n) e(n-1) (2.9)

If the digital quantizer has only 2 output levels y(n)=±q, the
error e(n) will be le(n)k q if and only if xi (n) 2q, which is the

condition for the quantizer to be operated in an unsaturated mode.

From equation (2.8), we can see that the single-bit digital
truncator will not be saturated as long as the input signal
amplitude is less than the maximum output value of the quantizer

q. Thus, no amplitude clipping occurs in such a loop when the

wordlength of the registers in the loop is greater than log2(2q)+1.

Next, we discuss the oversampling ratio needed for a given

system resolution in the first-order noise-shaping case.

Suppose that the input digital signal x(n), which is to be

converted into the corresponding analog signal, has a k bit
wordlength. This signal can be represented by an integer number

such that -2k-1< x(n) 5_ 2k-1. Since the upsampling operation

ideally does not affect the signals in the baseband, the inband

quantization noise power associated with the input signal x(n),

which is the signal after the upsampling operation, is the same as

the quantization noise power before upsampling. Assume that the

quantization noise associated with the digital signal before
upsampling is a white noise and is evenly distributed in the range

of [-1,1]. Then, the noise power inherently associated with the

signal x(n), when measured by its mean-square value, is

nk
2=e

krms2=1/12 (2.10)
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On the other hand, the truncation error introduced in the

noise-shaping loop is bounded by -2k-1< x(n) 5_ 2k-1, when a 2-level

digital quantizer is employed. The mean-square value of the error

e(n) is

erms2= (2k-1)2/12 (2.11)

Since the error e(n) is high-pass shaped by (1-z-1), the spectral

density of the shaped error e(n) is

N(f) =e *rms
i_e12n172Rfo _4

-
1

177Cfo

erms sin(n f/2Rf0) (2.12)

where R is the oversampling ratio and fo is the passband
frequency. Thus, the noise power in the signal band contributed by

the error e(n) is

n2=_. ffiN(f)12d(f) n2erms2/3R3

f=0
(2.13)

To ensure that the truncation noise power introduced in the

noise shaping loop is less than the input digital signal quantization

noise power in the signal band, we obtain

n2<1/12

This requires that the oversampling ratio R needs to satisfy

R3> 127E2 e S2 /3
1771

Then, from equation (2.11), we obtain

R3> n2 (2k -1)2/3

(2.14)

(2.15)
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For a 16-bit resolution D/A converter (k=16), the above equation

requires that the oversampling ratio should be at least 2418 s o

that the noise power introduced in the noise-shaping loop is about

the same as that inherently associated with the input signal.
Usually, n2 should be much smaller than nk2. If the converter is to

have an N-bit conversion resolution, we may require that k should

be at least equal to N+1 in equation (2.15). This simply means that

the theoretically calculated noise power contributed by error e(n)

in the signal band will be 6 dB less than the quantization noise

power of the input digital signal, without taking the nonlinear

effects and the nonidealities of the analog circuit realizing the

smoothing filter into account.

As we have shown above, oversampled data converters using

first-order noise-shaping loops require a large oversampling ratio

in order to achieve a 16-bit resolution. This is a major drawback of

first-order noise-shaping data converters. Another important

drawback of these data converters is that they often need a
dithering signal to reduce the nonlinear limit-cycle effect 1111.

This may significantly reduce the input signal's dynamic range, and

thus reduce the overall system dynamic range and resolution. To

overcome these difficulties, higher-order noise-shaping loops are

often used.

2.2.3 Second-order noise shaping

If the noise transfer function HN(z) in equation (2.1) is (1- z-1)2,

the digital quantization noise is second-order highpass shaped.
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The operation of second-order noise shaping loops is somewhat

more complex than that of first-order ones since there is a
possibility of amplitude clipping in second-order noise shaping

loops unless the digital quantizer in the loop has more than 4
output levels [4]. The internal operation of a second-order noise-

shaping loop will be examined in the following.

Suppose that the second-order noise shaping is accomplished

in a single-loop and single-bit noise-shaping loop as shown in

Figure 2.6(b) with M=2. The difference equations are

e(n) = y(n) x1(n) (2.16)

x1(n) = x(n) 2e(n-1) + e(n-2) (2.17)

y(n) = x(n) + e(n) 2e(n-1) + e(n-2) (2.18)

Since the quantizer again has 2 output levels y(n) = ±q, x1(n)

must be bounded by ±2q in order for the quantizer to not be
saturated, i.e., e(n) being bounded by ±q. From equation (2.17), it
is clear that x1(n) will not be bounded by ±2q even when the input

x(n)=0. So, the clipping of the signal amplitude or data overflow in

the loop is inevitable in a single-loop, single-bit second-order

digital noise-shaping loop.

To avoid such clipping, the truncator needs to have at least 4

output levels y(n) = ±q /3, ±q. In this case, the condition for the

digital quantizer to be operated in the unsaturated mode is that
x1(n) be bounded by ±4q/3, which results in the error e(n) being

bounded by ±q/3. A sufficient condition from equation (2.17) is
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that x(n)1 q /3. Then, no overflow or amplitude clipping will

occur in the loop.

The operation of the digital truncator with 4 output levels is

essentially the same as the one with 2 output levels except that the

quantizer output is now the most significant two bits of its input

signal.

However, as we have discussed in section 2.2.1, a noise-shaping

loop using a digital quantizer with 4 output levels requires a 4-level

D/A converter following the noise-shaping loop to convert the

signal into the analog form. Since it is difficult to make a 4-level

D/A converter with high linearity, the nonlinearity error of the 4-

level D/A converter will become a dominant noise source in the
final output.

A good compromise between using a 2-level and a 4-level digital

quantizer in a second-order noise-shaping loop is to use a 3-level

digital quantizer. A 3-level digital quantizer in the noise-shaping

loop requires the use of a 3-level D/A converter to convert the

signal into the analog form. This is practically feasible because a 3-

level D/A converter can be easily implemented in a switched-
capacitor circuit with high linearity [8]. The input-output
relationship and the implementation of the 3-level digital

quantizer were discussed in section 2.2.1.

The possibility of amplitude clipping is still present in a second-

order noise-shaping loop utilizing a 3-level digital quantizer. To

prevent the clipping, computer simulations are needed to find the
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maximum node values for all possible overflow nodes in the loop in

order to determine the number of bits required in the internal
registers.

As we have discussed in the previous section, the oversampling

ratio needed for oversampled D/A converters with first-order

noise-shaping characteristics is quite large. In the following, the

oversampling ratio needed for the oversampled D/A converters

with second-order noise shaping characteristics will be discussed.

Suppose a second-order noise-shaping loop has m output levels,

equivalent to M=log2(m) bits (Figure 2.6b). The wordlength of the

input digital signal to the loop x(n) is k bits, which can be
represented by integer numbers -2k-1<x(n)2k-1. The maximum

output value of the quantizer q is set to be equivalent to 21'1. If we

assume that the digital quantizer is operated in the unsaturated

mode, the mean-square value of the quantization error e(n)
introduced in the noise-shaping loop is

e 2 [(2k-1)/(M-1)] 2
(2.19)nns 12

Since the error e(n) is second-order highpass shaped by
(1-z 1)2, its spectral density is

N(f)= erms
1 _ej(27rj72Rfo) 2 16 e, icf

= Rfo *erms sinz,(2Rfo )

The mean-square value of the noise in the signal band is

(2.20)
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f=0
(2.21)
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In order for the noise power n2 to be less than the inherent

quantization noise power of the input digital signal x(n), from

equations (2.10) and (2.21), the oversampling ratio must satisfy

12n4e 2
R"> rms

5

From equation (2.19), we obtain

R5>>
7r4 R2k..1)/(m_1)i 2

5

(2.22)

(2.23)

Thus, for a 16-bit resolution oversampled D/A converter with a

3-level digital quantizer used in the noise shaping loop, R only

needs to be larger than 116 from the above equation. This is a

considerably smaller value than the ratio of 2418 required in the

first-order case.

2.3 Computer Simulations

2.3.1 Introduction

Characterization of conventional (Nyquist-rate) data converters

can be done by comparing the input samples to the corresponding

output samples. This is appropriate since there exists a one-to-one

correspondence between the input data samples and the output

data samples in Nyquist-rate data converters. Their performance is

usually measured by the peak error, and/or the differential and the

integral nonlinearities [1].
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The evaluation of oversampled data converters cannot be done

by using this conventional method because there is no one-to-one

correspondence between the input data samples and the output

data samples, or to say it more accurately, the sample-to-sample

error after digital decimation (or analog smoothing) is not just a

function of the characteristics of the data converter but also a

function of the input signal. The use of digital decimation filters in

oversampled A/D converters and digital interpolation filters in

oversampled D/A converters means that each input sample
contributes to a certain number or all of the output samples

depending on whether the filters are FIR or IIR. The objective in

this conversion is not to accurately convert samples one-to-one

from one signal form to the other, but rather to convert the signals

in such a way that the information in the signal band is accurately

preserved. Consequently, it is more appropriate to measure the

modulator performance in the frequency domain by measures such

as signal-to-noise ratio and dynamic range.

The dynamic range, peak signal-to-noise ratio and the signal-to-

noise ratio as a function of the input signal amplitude are the most

commonly used specifications for oversampled data converters

[12]. The input signal used to verify the above specifications is

usually a sinusoidal signal. When the performance of oversampled

data converters is to be compared with conventional Nyquist-rate

data converters, these specifications can be converted into an

equivalent number of bits. If the above specifications are expressed

in logarithmic scale (in dB), the formula for converting these
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specifications into the equivalent number of bits B in the case of

sinusoidal input signal can be approximately written as
B-(SNR in dB)/6.

For a given oversampled data conversion system, our goal in

doing computer simulations for the system is to determine its

performance and to help us understand these nonlinear systems.

Due to the difficulties in obtaining analytical expressions for such

nonlinear systems, most of the analytical results are based on the

linearized models which assume that the quantization or

truncation errors can be represented by white noise. The analytical

results are important in getting the initial design parameters, but

are inadequate for determining the SNR accurately and for
determining the bounds on signals in the time domain. As a result,

the design of oversampled data converters is heavily dependent on

computer simulations. Developing tools to enhance the simulations

is an important part of the research.

Since different methods and different programs used to do the

simulations can give slightly different results, it is necessary to

specify the methods used in order to correctly interpret the
results of these simulations. The programs used in this research

are all written in the FORTRAN programming language.

2.3.2 System simulation

In oversampled D/A converters, the noise-shaping loop is a

digital system as discussed in section 2.1. In order to include the
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finite wordlength operation of a digital circuit in a computer
simulation, integer arithmetic is used in the simulations.

An important error source associated with digital circuits is data

overflow (amplitude clipping).

In digital circuits, overflow error will occur only if the internal

registers are not long enough. Neither overflow nor amplitude

clipping permissible in a noise-shaping loop since either effect

will cause a significant noise power increase in the signal band. To

prevent any overflow in the noise-shaping loop, the maximum

value of all internal signals in the loop should be found as a
function of the input signal amplitude. This determines the

minimum wordlength needed for each internal register and shows

when the digital quantizer will be overloaded. Figure 2.7 shows
such a plot for the signal x1(n) of the system shown in Figure

2.6(b). After obtaining these plots, each internal register
wordlength can be chosen such that no overflow or amplitude
clipping will happen.

By using dynamic system simulation methods [13], the time

domain data of the system's response to the input signal can be
obtained.

2.3.3 Frequency response

The time-domain response of an oversampled D/A converter to a

input sine signal, which can be obtained from the system
simulation discussed above, can be used to calculate the spectrum
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by means of FFT algorithms. The data is first multiplied by a

properly chosen window, and then we use FFT algorithms to
estimate the power spectrum of the signal.

Windowing plays an important role in power spectrum
estimation [14]. Simulation results indicate that the Hanning
window is a good compromise between computational complexity

and accuracy for our purpose and it was used throughout this

research to ensure the consistency in comparison of different
modulator structures.

A typical output spectrum for an oversampled D/A converter

with sine wave input is shown in Figure 3.5.

2.3.4 Signal-to-noise ratio

As we have discussed in section 2.3.1, the signal-to-noise ratio

as a function of the input signal amplitude is one of the most

important characterizations of oversampled data converters. From

this calculation, we can determine the dynamic range and the
resolution of the system under investigation. In addition, since

nonlinear effects are functions of the input signal amplitude, many

nonlinear effects which are hard to analyze in the linearized model

can be detected from this calculation.

There are several methods for calculating the signal-to-noise

ratio [15] [16]. The most commonly used one is to use the
periodogram to estimate the spectral density and then calculate
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the signal power and the noise power from the calculated spectral

density.

If we assume that the modulator output signal y(n) is a stationary

signal and is ergodic, to estimate its power, it can be first
multiplied by a window w(n), which gives

yw(n)=y(n)w(n) (2.24)

where w(n) is a real sequence with finite length N+1. The Fourier
transform of the resulting sequence yw(n) is

00 N

Yw(eiw) = Iyw(n)ellwn = yw(n)e-iam (2.25)
n=-00 n=0

Then, the total power in the signal frequency band [0, f0] is [14]

(N+1)fo
1 yw(k)2

Y
k=0

where

yw(k)=Yw(eial
I ct2rck/(N+1)

(2.27)

which can be calculated by (N+1) point FFT algorithm, and fo=
27c

is the passband frequency normalized to fs, the sampling
frequency.

To remove the bias introduced by the window in this
estimation, proper scaling is needed. Since our purpose is to
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obtain the ratio of the signal power and the noise power, the bias

in estimating the noise power and the signal power will be
cancelled. Thus, the bias of the estimation method is not of

concern. But the consistency of the estimation method needs to be

taken into account in some cases. To improve the consistency of

the estimation, the average of the periodogram can be used instead

of the periodogram [14]. Then the power is estimated by

L-1

H
1

IPY(r) (2.28)

where L is the number of the periodograms used to do the
averaging.

The above method gives a general procedure for estimating the

power and the power density of a given data sequence. For an

oversampled data converter, the output signal sequence y(n)

contains both the input signal x(n) and the quantization noise e(n).
If we choose the input signal frequency to be cot =(27c)nt/(N+1),

where nt is an integer number, then the signal power can be

estimated by

1P,=
27c Yw(nd

2
(2.29)

To reduce the window effects in estimating the noise power,

the two adjacent power density points to the input signal
frequency need to be deleted in the calculation of the noise power.

To have sufficient estimation accuracy, N needs to be sufficiently
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large so that the deletion will not affect the estimation of the noise

power. The noise power is estimated by

nt-2
1 X-1

I ITPIN1=- w(k)1227c Lk=0

(N+ 1)f0
1 N-I 1 yw(k)12

27c L-ilk=nt+2
(2.30)

The signal-to-noise ratio (SNR) in dB is then estimated from

SNR = 10log1o(Ps/PN) (2.31)

Some typical plots of the signal-to-noise ratio as a function of

the input signal amplitude are shown in Figure 3.4.
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CHAPTER 3 DUAL QUANTIZATION OVERSAMPLED
D/A CONVERTERS

3.1 Introduction

An oversampled D/A converter using a single-bit D/A converter

can achieve high linearity because a single-bit D/A converter is

inherently linear. However, the output signal waveform from a

single-bit D/A converter is a square wave with a large amplitude as

well as steep slopes, and hence contains considerable noise power

outside the signal band. This power has to be removed by the

following analog smoothing filter. Since any analog circuit has

some nonlinearities and the effects of the nonlinearities are
dependent on the signal fed into the filter, the fast-slewing large

input signal from the single-bit D/A converter to the smoothing

filter makes the design of the smoothing filter with the required

linearity very difficult. The overall performance of oversampled

D/A converters is usually limited by the harmonic distortion

caused by nonlinear effects in the analog circuitry [17]. In addition,
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the noise power outside the signal band which needs to be
removed by the smoothing filter is large. This makes the
smoothing filter more complex and thus more likely to possess

nonlinear effects.

To ease the design of the analog filter and to increase the

resolution without increasing the oversampling ratio, a multibit

internal D/A converter can be used in an oversampled D/A
converter instead of a single-bit one. The added bits not only add

to the resolution and the dynamic range of the final system, but

also greatly reduce the out-of-band quantization noise and the

harmful limit-cycle effect [18]. The output signal waveform from a

multibit D/A converter is a signal with small increments from

sample to sample [191.

The above discussion assumed that the internal multibit D/A

converter is ideal. If the internal D/A converter is not an ideal one

and it is directly placed in the signal path, the nonlinearity error

of the multibit D/A converter will appear in the system output

directly without any shaping. This will introduce harmonic
distortion and extra noise into the signal band which greatly
degrade the system performance [19].

Several techniques have been developed to overcome this

difficulty. One technique is to implement the internal multibit D/A

converter by converting the digital number into a width-modulated

pulse train [17]. This technique requires a very fast clock signal

and associated fast circuitry, with a clock frequency 2/14Rfs, where
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M is the bit resolution of the internal multibit D/A converter and R

is the oversampling ratio. While this method can achieve high
linearity, the output of the internal D/A converter is still a fast
slewing pulse train. Another technique is to store the actual
nonideal output values of the multibit D/A converter in a RAM and

use these data to correct the nonlinearities of the multibit D/A

converter digitally in the noise-shaping loop [20][21]. This process

eases the design problems of the analog filter but it requires an

extra calibration time period in the noise-shaping loop as well as

added hardware for the necessary calibration process.

In this research, another technique is proposed to achieve

multibit internal D/A conversion without placing the multibit D/A

converter in the signal path. The system uses a 3-level and a

multibit (m-level) internal D/A converter. The 3-level D/A
converter is used in a path called the signal path and the multibit

D/A converter is used in a path called the correction path. This

technique overcomes some of the major disadvantages of the

techniques for achieving multibit internal D/A conversion
described above.

3.2 Dual-Quantization Oversampled D/A Converters

To help explain the basic ideas behind the proposed technique,

a general structure of the dual-quantization oversampled D/A

converter is shown in Figure 3.1.
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In this figure, the basic noise-shaping loop and the correction

path noise-shaping loop can be any structure with first, second or

higher-order noise-shaping characteristics.

The L-bit digital quantizer is usually a 2-level (single-bit) or 3-

level one. It requires a 2-level or 3-level D/A converter following

the noise-shaping loop, which can be easily implemented with
high linearity.

The path developing signal yi is the signal path. It contains the

L-bit D/A converter and is used to convert the input digital signal

in a linear manner to its analog form. The path developing signal y2

is the correction path. It contains the M-bit D/A converter and is

used to cancel the quantization error of the L-bit quantizer el, so

that only the much smaller highpass-filtered M-bit quantization

error em and the high-pass filtered M-bit D/A converter
nonlinearity error dm are present in the output y along with the

input signal x.

In the linearized model, the basic noise-shaping loop can be
characterized by the z-transforms of its two outputs, u and v. Let

the z-transforms of the signals be denoted by the capital letters,

we obtain

U= HSX +HNEL

V=Hx,C+HELEL

The correction path can be characterized by

(3.1)

(3.2)



W=H V+H EV EM M

= HVHX X+H VHELEL +HEMEM (3.3)

The final output is

Y=H
1
U+DL+H2H3W+H 3DM

= (H H +H H H H )X+(H H +H H3 H H )E1S 23VX 1N 23V EL EL

+H2 H3 HEMEM +H3DM+DL (3.4)
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The L-bit D/A converter in the signal path must be
implemented with high linearity such that comparing with the
other terms in the right hand side of the equation (3.4), DL is

negligible. Thus

DL -O (3.5)

Any arithmetic operation in H1 will increase the wordlength of

the digital signal, which will increase the number of bits needed

for the following L-bit D/A converter and thus makes the high

linearity requirement on this D/A converter difficult to fulfill,
Hence, H1 is chosen to be H1 =z -k, where k delays balance the

delays in the correction path.

If the error eL is to be completely cancelled in the final output y,

then we have

H 1HN+H 2H3HVHEL =0

The final output is

(3.6)



17--.(111Hs+H2H3HvHx)X+H2H3HEmEm +H3 DM
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(3.7)

The above equations are the two basic design equations for the

dual-quantization oversampled D/A converter.

The choice of the two noise-shaping loops, the functional blocks
H2 and H3, and of the number of bits in the D/A converters is

dependent on the applications as well as the available technology.

Nevertheless, some basic design principles can be stated.

1) The two noise-shaping loops, and H1 and H2 are digital

circuits. They are flexible and their complexity is not a major

concern.

2) The M-bit D/A converter can be implemented in a pipelined

structure since the D/A converter is not in any feedback loop. Its

latency can be balanced in the signal path by the delays in block
H1.

3) The structure of H2 should be simple since any arithmetic

operation in H2 may increase the wordlength and introduce

truncation errors.

4) H3 should be as simple as possible because it is implemented

by an analog circuit.

5) H3 should be able to attenuate the error dm such that the in-

band noise power contributed by this error is equal to or less than
that contributed by the error em, which is attenuated by H2H3HEm.

Otherwise, increasing the number of bits in the correction path
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will only reduce the out-of-band noise and the in-band noise will
be dominated by the error dm.

There are some other design considerations which will be

discussed further in the following design example.

3.3 A Design Example

In this section, a design example is presented to verify the

validity of the proposed technique and to illustrate some design

issues for dual-quantization oversampled D/A converters.

The basic objective in this example is to design a dual-
quantization oversampled D/A converter with a second-order, 5-bit

internal D/A conversion noise shaping characteristics. The
oversampling ratio is chosen to be 128. The resulting system will

be compared with the standard second-order oversampled D/A

converter with a single-bit as well as with an ideal 5-bit D/A
converter.

3.3.1 Signal path

From equation (3.7), to obtain a second-order noise shaping of
the error eL' the following equation must hold

H2H3 HEM--(1- 2-1)2 (3.8)

If we chose the input to the correction path to be just the
negative of the quantization error eL, V= EL, then



Hx= 0, HEL= -1 (3.9)
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Since H1(z) =z-k, where the value of k depends on the delay in

the M-bit D/A converter, we can let k=0 as an initial design

parameter, then

H1 =1 (3.10)

Thus, from equations (3.6), (3.8), (3.9) and (3.10), we obtain

HNHEM--(1- z-1)2 Hv (3.11)

If we chose H=1, which means that the correction path noise-

shaping loop will not affect the signal fed into it, we can see from

equation (3.11) that the noise-shaping task can be shared by the

basic noise-shaping loop and the correction path noise-shaping

loop. Because the cancellation of the L-bit quantization error relies

on the accuracy of the correction path which contains analog

circuitry, the error will not be completely cancelled due to the

analog circuit nonidealities. So, it is advantageous to have a second-

order noise shaping in the basic noise-shaping loop so that the
uncancelled L-bit quantization error eL in the final output y will not

become a dominant noise source.

Based on the above discussion, a second-order error feedback

noise-shaping loop shown in Figure 2.6(b) was chosen as the basic

noise-shaping loop. The z-transforms of its two outputs u and v (as

indicated in Figure 3.1) are as follows

U=X+(1- z-1)2 EL (3.12)



EL (3.13)
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Other structures that have second-order noise-shaping
characteristics may also be used.

3.3.2 Error correction path

The choice of the basic noise-shaping loop predetermined that

the correction path noise-shaping loop should have the transfer

functions

H 1 H 1v- EM- (3.14)

To ease the design of the analog block H3, we chose H3.(1-z-1).

This block can be easily implemented in a switched-capacitor

circuit and it will suppress the nonlinearity error of the M-bit D/A

converter. The circuit implementation and the limitations of this

choice will be discussed in the next section.

With the above choices for HEM and H3, H2 can be obtained

from equation (3.8)

H2 =(1- 2-1) (3.15)

This digital operation following the M-bit digital quantizer will

theoretically increase the wordlength from M bits to M+1 bits,

which increases the number of bits needed in the following

multibit D/A converter from M to M+1. This is equivalent to a loss

of 6 dB in the signal-to-noise ratio (and the dynamic range).
However, since the function H2.(1- z-1) does not in practice
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increase the wordlength by one bit and the maximum value of the
error el does not reach the full scale of the M-bit digital quantizer

(these values can be found from the simulations), a scaling by a

constant k <1 can be used to optimize the amplitude of the signal

feeding the M-bit digital quantizer so that the maximum output
value from the output of the block H2 =(1- z-1) is always in the

range of M bits. Another scalar 1/k is used following the M-bit DAC

to make the gain of the correction path the same as that of the

signal path.

The complete system is shown in Figure 3.2. The z-transform of

the analog output signal y is

Y=X+
1 1

(1- z-1)2Em+ (1- ii)Dm (3.16)

3.3.3. Analog differentiator

The successful design of the analog differentiator H3 shown in

Figure 3.1 is the key to the proposed dual-quantization D/A

converter. In the previous section we discussed the design of this
block, and chose H3=(1- z-1). In a real circuit implementation, the

analog circuit nonidealities will result in both gain and phase
errors in H3 [22], which gives a nonideal transfer function of H3

H3 = (1+5 )[1-(1+a) z-1]=(1+8 )(1- z-1)+a(1+8) z-1 (3.17)

where S corresponds to a gain error and a corresponds to a phase

error.
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We can see from equation (3.17) that the phase error a will
introduce first-order-shaped errors EL, EM and unshaped error DM

directly into the system output. Thus, this error has to be very

small in order to keep it from becoming the dominant error

source in the system. This requirement is fulfilled by using a single
capacitor to implement H3. In such an implementation, the

needed zero at z=1 is perfectly realized, thus a-0. One such circuit

is shown in Figure 3.3. In the figure, the capacitor C1 is the
capacitor used to implement the differentiator H3=(1-z 1). The

signals shown correspond to the signals shown in Figure 3.2.

The main nonideality effects of this circuit affecting the
cancellation of eL is the capacitor mismatch between the capacitor

C1 and the capacitors implementing the 3-level D/A converter.

The uncancelled terms in the output y which result from the

gain error is

8 (1- 2-1) [DM+ (1- 2-1)( -EL+ Em)]

Assume first that the errors contributed by dm and em are

negligible compared to that contributed by eL. Then, the
uncancelled error term contributed by eL is the second-order

highpass filtered noise, which can be expressed as

8 (1- 11)2EL

Using the same method as we used in section 2.3.3 for
calculating the in-band signal-to-noise ratio, we can obtain the in-

band noise power corresponding to the above error term
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82n 4e2 /5R5

where R is the oversampling ratio. On the other hand, from
equations (2.3) and (2.4), the in-band noise power contributed by
em is

Thus, as long as

4 2
7t em 5R5

S
eMrms
eLrms (3.18)

the error contribution due to capacitor mismatch will not be a

dominant noise source.

Since the two D/A converters must have the same gain in order
to cancel the error eL in the output y, the maximum input digital

numbers to the two D/A converters must correspond to the same

maximum output value of the two D/A converters, which is Vref.

Thus, the two digital quantizers must have the same maximum

output values. For a 33-level and a 3-level digital quantizer, the
above requirement gives that S <1/16 from equantion (3.18).

This corresponds to an approximately 6% allowable capacitor

mismatch (see Figure 3.7), which poses no practical problem.

Simulation results also confirmed that a 1% capacitor mismatch

has very little effect on the output SNR value. Finite opamp dc gain

A is even less of a problem since it does not affect the error
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cancellation but merely introduces a common gain error for both

paths.

A second important design parameter is the linearity
requirement of the M-bit D/A converter. Optimum design requires
that the noise power in the signal band contributed by dM, the M-

bit DAC nonlinearity, be equal to or less than that contributed by
em. Since dM is first-order noise-shaped, its power in the signal

band is

2 2IL dm / 3R3

In order for the D/A converter nonlinearity not to be a dominant

noise source, we must have

and hence

42m /5R5 n2d m2 /3R3rms _ > ans

q-0.6dMrms 7c

eMrms R (3.19)

Since the two D/A converters must have the same maximum

output values for a fixed reference voltage as we discussed above,

we obtain

dMrms 2m-1
< 2N-1eMrms

(3.20)

where N is the M-bit D/A converter linearity expressed in bits.

Hence, equation (3.20) leads to the condition



N > log2[ R (2A4-1)+1]
0.67c

(3.21)
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For an oversampling ratio of 128, the linearity of the M-bit D/A

converter needs to be higher than M+6 bits. When M=5, a D/A

converter with 11-bit linearity is needed. This is not easy to
achieve for a parallel D/A converter. However, since the M-bit DAC

can be implemented with a pipelined architecture, and such a

circuit can have high linearity (over 12 bit linearity was reported

in [23]), this implementation is feasible.

This design becomes more attractive in high speed applications

where the oversampling ratio is low. For example, when R=32, a 5-

bit D/A converter with 9-bit linearity is adequate for a 14-bit
overall resolution.

3.3.4 Simulation Results

The performance of the system shown in Figure 3.2 was

simulated extensively under the following conditions:

1) The output levels of the 3-level digital quantizer in the basic

noise-shaping loop were represented by integer numbers ±219 and

0. The characteristics of the 3-level digital quantizer are shown in

Figure 2.3, where now N=19. The subsequent D/A converter had

also three output levels: ±Vref and 0 volts.

2) The M-bit digital quantizer used in the correction path had

33 output levels. They were represented by integer numbers: 0,
+1.215, ±2.215, +3.215, ..., ±16.215. The characteristics of the 33-
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level quantizer are shown in Figure 2.4 with N=19. The M-bit D/A
converter following the block H2 =(1- 11) also had 33 output levels:

0, +1*2-4Vref, ±2*24Vref, ±16*2-4Vref,

3) The sampling frequency was assumed to be fs=16,384 Hz.

The sine signal discussed in section 2.4.2 was used as the input
signal. Its frequency was ft=13 Hz and its amplitude was Am=2 18,

which when refered to the maximum quantizaer 219, it was
201og10(2-19Am) (dB)=-6 dB.

4) The nonlinearity of the 33-level D/A converter was included

by generating random errors in the M-bit D/A converter output

levels. The RMS value of the errors was 1.5% of the level spacing,

corresponding to about 11-bit linearity;

5) The inaccuracies of the analog function H3 =(1- z -1 ) was also

considered by using an inaccurate function H3.(1-1-6 )(1-z-1), with

8=±0.01, corresponding to 1% capacitor mismatch.

The results of the simulations are given in Figures 3.4-3.6.

Figure 3.4 shows the output signal-to-noise ratio as a function of

the input sine-wave amplitude for the uncorrected system where

the M-bit correction path is eliminated, as well as for the
corrected system with ideal and nonideal M-bit D/A converters.

This figure shows the correction path adds about 20 dB to the SNR

and this improvement is tolerant of DAC nonlinearity. A peak SNR

of 115 dB (about 19 bits) is achieved with a 5-bit DAC possessing

11-bit linearity. Figure 3.5 shows the system output spectra for

both the corrected and uncorrected systems. These figures again
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show the 20 dB noise reduction which results from using the

correction scheme. The reduced out-of-band noise is an especially

important feature, as it lowers the attenuation requirements on

the analog filter. Figure 3.6 shows the output signal waveforms of

the system before and after correction. The sample-to-sample slew

rate is greatly reduced as a result of employing the correction

scheme (it is about 8 times smaller than that of the uncorrected

one.) This feature also makes the design of the analog filter with a

high linearity more feasible.
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CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH

Oversampled data converters take full advantage of the high

operating speed offered by modern integrated circuit technology

while being insensitive to component mismatching. The practical

importance of the oversampled data converter has been
demonstrated in many implementations.

In the development of these data converters, both simulation

tools and modulator structures play important roles. In this

research, some fundamental simulation and analytical methods

have been studied and used in developing novel oversampled D/A

converters.

A dual-quantization method was proposed for implementing

oversampled D/A converters with high linearity and high
resolution. It is an alternative (and in many cases preferable

technique) to existing oversampled D/A conversion techniques.
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The dual-quantization D/A converter may be applied with

various choices of noise-shaping functions, bit resolution of the

internal D/A converters and oversampling ratio. The best choices

are determined by the context of the application. For the purpose

of illustration, a second-order oversampled D/A converter
employing 3 and 33-level quantizers was examined with the

oversampling ratio set to 128. The simulated performance of this

converter achieved a peak SNR of 115 dB with 1% capacitor
mismatch and an 11-bit DAC linearity.

The requirement on the M-bit DAC linearity is rather strict

when the transfer function of the analog differentiator is H3 =(1- z-

1). The DAC linearity requirement can be reduced to near its bit

resolution if the transfer function of the analog differentiator is
H3 =(1- z-1) 2. Then, both M-bit digital quantization error em and

the DAC nonlinearity error dm are second-order highpass shaped.

Unfortunately, this calls for more complex analog circuitry
realizing H3. Investigation into implementation of the analog

second-order differentiator H3=(1- 1'1)2 will be left for future
research work.
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