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Over the last ten years, clinical, pre-clinical and animal studies have shown 

associations between the microbiota and neurological functions. Recent work by the 

scientific community on the gut-microbiome-brain axis have revealed that gut dysbiosis and 

specific microbial taxa are associated with a myriad of neurological conditions, such as 

autism spectrum disorder (ASD), anxiety and depression. Many neurological conditions are 

associated with symptoms of anxiety and stress or are associated with comorbid disorders to 

anxiety which also correlate with alterations in gut-microbiota composition. In order to study 

the gut microbiota of an individual, the scientific community widely uses 16S amplicon 

sequencing of stool samples and comparison of these sequences to a database for taxonomic 

classification. While 16S amplicon analysis can be limited as it only probes for a small 

portion of the genomes of microbiota (and subsequently taxonomic classification is usually 

limited to the genus level), 16S analysis is a widely used means of classifying taxa within the 

gut microbiota, and a large amount of this data has been made available in public databases.  

In this project, we leverage available data from multiple studies to determine a common set 

of 16S amplicons associated with anxiety. To perform this meta-analysis, we used new 

methods of 16S analysis that have been developed in recent years to extract exact amplicon 

variants, allowing better comparison of markers across studies. In addition, as many studies 

in the realm of the gut-brain axis suffer from extremely small samples size, we address these 



 

issues with a meta-analysis of 1266 samples containing individuals with anxiety, depression, 

autism, and ADHD from three studies conducted using a DADA2 pipeline with DESeq2, 

Metagenomeseq, and ANCOM as a means of differential analysis between individuals with 

anxiety-related conditions and the neurotypical. Eight different amplicon sequence variants 

(ASVs) were significant in Metagenomeseq and ANCOM across all datasets. 32 other 

variants were significant when random subsets of the data were analyzed using similar 

means. When these both of these ASV groups were used as predictors in a random forest 

model (using 10 fold cross validation), these ASVs allowed the model to perform better than 

random at 56% for the eight ASVs found across datasets and greater than 63% when using 

predictor ASVs found among the random subsets. This study reveals the potential 

significance of microbial biomarkers of anxiety identified across several studies,  identifies 

significant taxa with the benefits of meta-analyses, and demonstrates the effects these taxa 

have classification in random forest models.  

 
 
 
Key Words: Gut-microbiome, anxiety disorder, 16S, bioinformatics 
 
Corresponding e-mail address: martiaus@oregonstate.edu 

  



 

 

 

 

 

 

 

 

 

 

©Copyright by Austin Martin 
May 26, 2020 

  



 

Mining Public Microbiome Datasets to Identify Specific Microbial Taxa Associated with 
Anxiety-Related Disorders 

 
 
 

by 
Austin Martin 

 
 
 
 
 
 
 
 

A THESIS 
 
 

submitted to 
 

Oregon State University 
 

Honors College 
 
 
 
 
 
 

in partial fulfillment of 
the requirements for the  

degree of 
 
 

Honors Baccalaureate of Science in Microbiology 
(Honors Scholar) 

 
 
 
 
 

Presented May 26, 2020 
Commencement June 2020 

 



 

Honors Baccalaureate of Science in Microbiology project of Austin Martin presented on May 
26, 2020. 
 
 
 
 
 
APPROVED: 
 
 
 
_____________________________________________________________________ 
Maude David, Mentor, representing Microbiology 
 
 
_____________________________________________________________________ 
Lloyd Walter Ream, Committee Member, representing Microbiology 
 
 
_____________________________________________________________________ 
Megan MacDonald, Committee Member, representing Public Health and Human Sciences 
 
 
 
 
_____________________________________________________________________ 
Toni Doolen, Dean, Oregon State University Honors College 
 
 
 
 
 
 
 
 
I understand that my project will become part of the permanent collection of Oregon State 
University, Honors College.  My signature below authorizes release of my project to any 
reader upon request. 
 
 
_____________________________________________________________________ 

Austin Martin, Author 
 

  



 

INTRODUCTION 1 
Diagram 1 Amplicon Sequence Variants (ASVs) vs. Operational Taxonomic Units 
(OTUs) showing how sequences are inferred from noisy reads 5 

METHODS 7 
1. Sample Collection 7 

Table 1 Summary of Sample Data after Balancing for Phenotype 8 
2. DADA2, Dataset Balancing, and Differential Analysis 8 

Flow Chart 1 Meta-analysis Workflow for DADA2 and Differential Analysis 10 
3. Identifying Covariates Impacting Microbial Community 10 
4. Random Subsetting Analysis 11 

Flow Chart 2 Random Subset Analysis Workflow 12 
5. 10-cross Validation with Random Forest Models 13 
6. Phylogenetic tree 14 

RESULTS 14 
1. Identification of ASVs Significantly enriched in each cohort 14 

Table 2 Significant Taxa between the Anxious and Neurotypical Phenotypes 15 
2. Impact of covariates and study origin on microbial community structure 15 

Table 3 Resulting p-values from Permanova on DESeq-normalized phyloseq 16 
Table 4 Resulting p-values from Permanova on CSS-normalized phyloseq 16 
Figure 1  Constrained PCoAs of all 1226 Samples using DESeq2 Normalization 17 

3. Analysis of Random Subsets 18 
Table 5 Significantly Enriched Taxa in Anxious Individuals in at least Two Random 
Subsets 19 
Table 6 Significantly Enriched Taxa in the Neurotypical in at least Two Random 
Subsets 20 

4 Random Forest Model 21 
Figure 2 Random Forest Model Performance with all 1226 samples 22 
Figure 3 Random Forest Model Performance with American Gut Project samples 
(AGP) 23 
Figure 4 Random Forest Model Performance with Study by Hill et al. 24 
Figure 5 Random Forest Model Performance with Study by Kang et al. 25 
Table 7 Summary of AUC values of Random Forest 10-cross validation 26 

5. Phylogenetic analysis of biomarkers of interest 28 
Figure 6 Phylogenetic Tree Labeled by Significant ASVs and their Enrichment 28 
Figure 7 Power Analysis 29 

DISCUSSION 30 



 

1. ASVs taxonomy comparison 30 
2.Covariates impacting the microbial structure 31 
3. Comparing ASVs significantly enriched across all samples with ASVs enriched during 
sub-sampling 32 
4. Random Forest Model Performances 33 
5. Limitations and Future Research 36 

Supplementary Information: 39 
Table 8 Significant ASVs within the 1266-Sample Analysis 39 
Table 9  Significantly Enriched ASV in Anxious Individuals in at least Two Random 
Subsets 40 
Table 10 Significantly Enriched Taxa in the Neurotypical in at least Two Random 
Subsets 41 
Figure 8 Unconstrained PCoA of all 1226 Samples by Study using CSS 
Normalization 42 
Figure 9 Unconstrained PCoA of all 1226 Samples by Phenotype using CSS 
Normalization 43 
Figure 10 Boxplot of Sequence Depth of both Phenotypes 44 
Figure 11 Constrained PCoA of Antibiotics and Age 45 

Data Accession 46 

References 47 

ACKNOWLEDGEMENTS 52 
 



 

INTRODUCTION 

The gut-brain axis, defined as the bidirectional means of communication between the 

enteric and central nervous systems, is largely impacted by microbiota with the 

gut-microbiome (Mayer, Tillisch, and Gupta 2015). Multiple potential mechanisms have 

been proposed as to how this phenomenon occurs through neural, humoral, and immunal 

links (Carabottia et al. 2015). The immune system, tryptophan metabolism, the vagus nerve 

that connects the lumen of the gut to the brain, and metabolite-enteric system interactions 

have all been proposed as possible routes of communication for this phenomenon (Cryan et 

al. 2019). Some hypothesize that gut microbiota may affect signals sent through the vagus 

nerve that could impact regulation in the hypothalamic-pituitary-adrenal (HPA) axis 

responsible for regulating anxiety and stress responses in the body (Carabottia et al. 2015) 

Other potential mechanisms involve microbiota influencing intestinal permeability or causing 

mucosal immune activation, which can trigger inflammation as well as stress responses from 

the HPA axis (Carabottia et al. 2015). 

Intestinal microbiota also influence levels of neurotransmitters such as acetylcholine, 

serotonin, and GABA or levels of neurotransmitter precursors such as tryptophan (Liu and 

Zhu 2018). Tryptophan, being an essential amino acid, is mainly obtained through diet and is 

absorbed through the intestinal epithelium leaving it subject to influence from the 

gut-microbiome (Gao et al. 2019). It is also used to synthesize serotonin, a key 

neurotransmitter with anxiety and depression (Albert and Benkelfat 2013). The gut alone 

produces 90% of the serotonin within the body, and sporulating bacteria influence this 

production as well as the levels of tryptophan present (Yano et al. 2015). Overall, 
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neurotransmitters, their precursors, or other compounds such as short-chain fatty acids can 

affect the activity of cells in the gut such as enterochromaffin cells which can send signals to 

the brain via the vagus nerve (Martin et al. 2018).  

While the exact mechanisms of gut-microbiome and gut-brain axis interactions have 

not been fully defined, many animal studies have shown association with gut microbiota 

dysbiosis with anxiety disorders and conditions often comorbid with anxiety. Germ-free mice 

for example have reduced anxiety-like behavior and neurochemical changes when compared 

to mice with regular gut-microbiota (Neufeld et al. 2011). Certain probiotic treatments 

consisting of Bifidobacterium and Lactobacillus strains can alter levels of anxiety within 

mice (Martin et al. 2018). Similar findings are beginning to be discovered in humans as well 

across a variety of neurological conditions. Neurological disorders such as depression, 

anxiety, and  autism have been shown to be associated with gut-microbiome community 

changes or probiotic treatments in both human and animal models (Foster and McVey 

Neufeld 2013; Vuong and Hsiao 2017). 

Our meta-analysis involves individuals with anxiety, and comorbid disorders to 

anxiety such as depression, ADHD, and Autism Spectrum Disorder (ASD) from three 

different studies (Hill-Burns et al. 2017; McDonald et al. 2018; Kang et al. 2017). These 

conditions and disorders were grouped since they are all commonly comorbid with anxiety, 

and have shown association with gut microbiota dysbiosis. People with ASD have a higher 

prevalence of depressed or anxious symptoms than the general population (Strang et al. 

2012). ADHD is also associated with comorbid anxiety, and there is some overlap in the 

diagnostic criteria for the two conditions (Bilgiç et al. 2013). Depression and anxiety are also 
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commonly comorbid with one another with one study showing that 56.8% of people with 

Major Depressive Disorder had an anxiety disorder as well (Zhou et al. 2017). We grouped 

all individuals with these diagnoses under one group we referred to as individuals with 

anxiety-related conditions.  

One popular method of analyzing gut-microbiome communities is through the 

analysis of 16S gene amplicon within microbial genomes found in stool samples. 16S 

analysis is done in a variety of settings to characterize microbial communities because of its 

ubiquitous nature. It can be used as a reliable molecular clock even across distant prokaryotes 

since the ribosomal gene is evolutionarily conserved (Case et al. 2007).   The gene itself is 

divided into highly conserved regions and hypervariable regions. There are 9 total 

hypervariable regions referred to as V1 through V9. Some regions vary too much to be 

reliable for classification while others may vary too little to distinguish taxa from one 

another. The 16S hypervariable regions V3, V4 and V5 have been widely used in the 

literature as they are the most representative of the full-length 16S rRNA, and therefore the 

most reliable use for taxonomic classification across bacterial phyla (Yang, Wang, and Qian 

2016). Because of its wide usage, the scientific community has established multiple 

databases considering full length of the gene and/or variable regions, and 16S sequences can 

be traced against known databases in order to classify the sequence taxonomically.  

While these methods are widely used, studies on the gut-microbiome and 

neurological conditions are often limited in their findings due to small sample sizes or their 

means of 16S analysis. Technology within high-throughput sequencing has changed 

drastically in recent years, as well as the way in which we analyze and handle these data. The 
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original method of 16S analysis involves clustering, which groups sequences into sequences 

that are 97% similar to one another (also called Operational Taxonomic unit, or OTUs). 

Many pipelines such as Qiime or Mothur employ clustering strategies based on this level of 

percent similarity (97%) (Kuczynski et al. 2005; Schloss et al. 2009) The ultimate goal of 

this clustering of similar sequences is to create groups of sequences that are almost identical, 

likely due to actual taxonomic variation, but also allow approximate sequencing errors by 

grouping the majority of the sequences into a cluster and considering only the consensus 

sequences of this cluster. Instead of clustering, newer methods involve directly taking count 

of sequences on an individual basis without grouping by similarity and the sequences are 

organized into sequence amplicon variants (i.e. considering sequences 100% similar to each 

other).  These new methods employ denoising algorithms and models that correct for 

sequencing errors. Two newer methods of processing and denoising sequence data that use 

quality data to correct for sequencing errors are DADA2 and deblur (Benjamin J. Callahan et 

al. 2015; Amir et al. 2017). For this meta-analysis, we chose DADA2. DADA2 is different 

from clustering strategies in that it uses the quality data contained in fastq files to estimate 

particular error rates within each Illumina run (Benjamin J. Callahan et al. 2015). This allows 

the pipeline to identify and correct sequencing errors caused by the sequencing instrument. 

Therefore, DADA2 does not group sequences into clusters by 97% similarity, but instead 

allows each sequence to be counted individually as an ASV (Amplicon Sequence Variant) 

due to DADA2’s increased capability to determine if two closely similar sequences are 

different due to sequence error or are actually two distinct sequences. By being able to 

correct the sequences and determine these ASVs, reproducible variants can be found across 
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different studies, which can not be done with clusters since clustering can change between 

studies.  

 

 

 

 

 

 

 

 

 

 

Diagram 1 Amplicon Sequence Variants (ASVs) vs. Operational Taxonomic Units (OTUs) 
showing how sequences are inferred from noisy reads 

 
Figure made available by Susan Holmes at Stanford University, teaching website. As sequences from 
samples get sequences and organized into reads, errors in the sequence are generated due to 
sequence machinery. DADA2 attempts to correct for those errors to have sequence data closer to the 
true sample sequences. Making OTUs, or clustering, as seen above takes reads containing sequencing 
errors and groups them by similarity, so that slight errors are insignificant within the group 
 

Along with advances in denoising pipelines, multiple means of differential analysis 

have emerged to allow the identification of taxa that significantly differ in abundance 

between cohorts.  Common methods of multivariate analysis such as Principal Coordinates 

Analysis (PcoA) that create coordinates for plots based on abundance count differences as 

well as subsequent Permanova tests still remain standard tools for community 
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characterization as a whole (Anderson 2017). However, new methods have risen within the 

field that allow for analyses that help determine whether specific ASVs or OTUs are 

significantly different between cohorts. Metagenomeseq, for instance, is a method that 

addresses common issues of analysis of 16S data in human microbial communities, such as 

undersampling, and employs a normalization strategy that is more data-driven (Paulson et al. 

2013). Other strategies such as ANCOM, a method focused on reducing false positives 

within microbiome differential analysis, therefore producing robust results (Mandal et al. 

2015). Finally, DESEQ2, a method focused on providing a more quantitative analysis of 

ASV or OTU count differences, also exists as a useful tool to address differences between 

groups of samples (Love, Huber, and Anders 2014).  

The goal of this study was to overcome the issue of low sample sizes and 

reproducibility across studies by conducting a meta-analysis of multiple studies using 

DADA2 as a means of sequence processing in order to identify specific taxa (that will be 

designated as Amplicon Sequence Variant, or ASVs) that are associated with anxiety-related 

conditions within the gut-microbiome. We expected to find multiple ASVs would be 

significantly different in counts between the anxious and non-anxious phenotype, and that the 

gut-microbiome communities would be different in structure after metadata such as age and 

sex were accounted for. Each of these studies we drew samples from also used OTU 

clustering at 97%. In addition to the benefits of a larger sample size, our aim of this 

meta-analysis was to use a full DADA2 pipeline (which employs an exact sequence variant 

calling method) to identify novel gut-microbial taxa associated with the aforementioned 

anxiety-related conditions using the three methods of differential analysis listed above: 
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DESEQ2, ANCOM, and Metagenomeseq. We also hypothesized that we would find ASV 

biomarkers that would be effective in distinguishing between the two cohorts. With this in 

mind, we hypothesized that these associated taxa could be used to help classify individuals 

between the anxious and neurotypical by using a random forest machine learning algorithm. 

Random forest models in past studies have been trained on gut-microbiome data to more 

accurately classify individuals with conditions such as colorectal cancer and fibrosis in fatty 

liver disease (Ai et al. 2019; Loomba et al. 2017). We expected that taxa found significantly 

different between the anxious and neurotypical phenotypes could be used in a random forest 

model in a similar manner for classification of anxiety-related conditions. 

METHODS 

1. Sample Collection 

Sequence data from three different studies were downloaded through the NCBI online 

public database and QIITA. 1226 samples out of the 1586 samples downloaded were kept 

and used for analysis after filtering out samples with less than 5000 reads and after balancing 

the dataset so that there were an equal number of samples between the anxious cohort and the 

neurotypical. Data accession numbers for sequence information and samples can be found in 

the Data accession section. Information about whether the individuals had anxiety, 

depression, ADHD, or ASD and other diagnoses indicated by the paper were collected. Some 

studies had to be emailed to obtain their metadata.  Age, sex, and antibiotics usage within the 

last 6 months were also used as metadata since this information was available across the 

three studies. Information about Parkinson’s disease was collected from the study by Hill due 

to it’s high prevalence within that dataset and it’s potential association with the 
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gut-microbiome found by that study. All sequences were from the 16S V4 region and were 

sequenced with an Illumina Miseq machine. The following table, Table 1 shows a summary 

of the samples used in this meta-analysis. 

Table 1 Summary of Sample Data after Balancing for Phenotype 

“HC” stands for Healthy Controls. Age is given in years. All other numbers are 
representative of the amount of samples in each respective category. 
Study Sample Count Average Age Sex Distribution Diagnoses 

AGP 1022 45.27 Male: 460  
Female: 562  
 

Depression: 349 
ADHD: 105 
ASD: 57 
HC: 511 

Hill 166 67.96 Male: 92 
Female: 74 

Depression: 17 
Anxiety: 25 
Anx+Dep: 41 
HC: 83 

Kang 38 11.08 Male: 34 
Female: 4 

ASD: 18 
HC: 20 

 

2. DADA2, Dataset Balancing, and Differential Analysis 

Full code used in this meta-analysis can be found at Github at the following link: 

https://github.com/MaudeDavidLab/Meta_analysis. Samples were separated by each study 

for input into the DADA2 pipeline. Filtering and truncating were done using mostly default 

parameters, and reads with higher than two expected errors were discarded. However, 

sequences from the study by Kang were truncated by 1 bp in order to match the amplicon 

length of the other two studies (150bp). After using the DADA2 machine error learning 

algorithm to estimate error rates within each study, the sequences were dereplicated by 

grouping identical reads into unique sequences (Benjamin J. Callahan et al. 2015). The 
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number of reads of each unique sequence and their associated quality scores were retained. 

The sequence data and their corresponding quality scores were used by the DADA2 core 

algorithm in order to determine the ASVs present in each study and their respective counts. 

Chimeras within the ASVs were removed through a function within DADA2 that searches 

for any ASVs that can be exactly linked to a combination of other ASVs.. The ASVs were 

assigned a taxonomy by using the Silva 16S database (version 132). A link to the Silva 

database as well as the basic steps of processing with DADA2 can be found at 

https://benjjneb.github.io/dada2/tutorial_1_8.html.  

Taxonomic information, ASV counts, and metadata from the samples were all 

combined into a phyloseq object for each study. After proper formatting of metadata, the 

phyloseq objects created for each study were combined into one. Samples with less than 

5000 reads were omitted from the study due to low depth. Samples were then divided into 

two groups; individuals with anxiety-related conditions (e.g anxiety, depression, ADHD, or 

ASD) and the neurotypical.  

To create a balanced dataset for differential analysis, each individual in the anxious 

phenotype was paired with one control of similar age (within 3-4 years). Extra controls were 

omitted except from the Kang study which had a limited amount of samples and only two 

extra controls. This lowered the sample size from 1582 to 1226.  

The balanced dataset consisting of 1266 samples was analyzed with DESeq2, 

Metagenomeseq, and ANCOM to find ASVs that were significantly different in abundance 

counts between the anxious and neurotypical phenotypes. The following diagram on page 10 

summarizes the DADA2 pipeline and differential analysis process. In addition, a power 
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analysis using Dirichlet-multinomial distributions were performed. Resulting alpha values for 

various sample sizes were plotted for each study. 

Flow Chart 1 Meta-analysis Workflow for DADA2 and Differential Analysis 

 

3. Identifying Covariates Impacting Microbial Community 

DESeq2 normalization and Cumulative sum scaling (CSS) normalization was each 

done individually on the phyloseq object containing the entire dataset resulting in two 

different normalized versions of the data. DESeq2 normalization uses variance normalization 

to stabilize counts (Love, Huber, and Anders 2014). CSS normalization uses a zero-inflated 

gaussian model to account for under-sampling or abundance differences brought from 

sample-specific bias (Joseph et al. 2013). Hence, Permanova and the creation of PCOA plots 

were done twice: once with DESeq2 normalization and another time with CSS normalization. 
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The adonis and betadisper functions were used for all metadata variables in the Permanova 

analysis. 9999 permutations were used in the adonis function for the dataset. Variables 

identified as potentially confounding were investigated further using wilcoxon-ranked-sum 

tests to assess their impact on the results. Constricted PCOAs were constructed using 

Bray-Curtis distances and DESeq2 normalization since this normalization mitigated the 

differences between studies better than the CSS normalization as seen by the Permanova 

results. The R package, ggplot2, was used for PCOA plotting (Wickham 2016). 

4. Random Subsetting Analysis 

To account for the higher number of samples present in the American Gut Project 

(AGP) study and to allow for each different type of diagnosis (anxiety, depression, ASD, and 

ADHD) to match sample size within the dataset, 17 pairs of samples were randomly taken 

from each study for each different diagnosis present. This number was chosen because the 

Kang study only consisted of a total of 38 individuals.  Hence, three sets of 38 samples were 

taken from the AGP study: one set containing ASD samples, one set containing ADHD 

samples, and another set containing samples with depression. Three sets were also taken 

from the Hill study: one set of samples with anxiety, one set of samples with depression, and 

another set exhibiting both conditions comorbidly. The Kang study only contained ASD as a 

diagnosis; thus, one set of 38 samples was taken and used in the analysis. Each pair of 

samples consisted of one exhibiting the anxious phenotype and one being neurotypical, and 

these pairs were matched to have similar ages. A total of 238 samples were randomly 

selected using this process, and the same analytical analysis pipeline was used for the whole 
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dataset (DESeq2, ANCOM, and Metagenomeseq) were used to find ASVs that were 

significantly different in abundance between the anxious phenotype and the neurotypical.  

In addition, in order to get better representation of the studies that were subsetted, the 

randomization process of selecting samples described above was completed randomly 10 

times. In each instance, we performed the same analytical pipeline (DESeq2, ANCOM, and 

Metagenomeseq), and the ASVs that were significantly different between the anxiety-related 

conditions group and the neurotypical were identified. The amount of times the same ASV 

was detected was also tabulated. The following figure, Flow Chart 2, shows the overall 

sampling method for this meta-analysis. 
 

 

Flow Chart 2 Random Subset Analysis Workflow 

The Kang study only had ASD as a category of diagnosis. The different colors represent 
different studies 
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5. 10-cross Validation with Random Forest Models 

The ASV sequences found from analyzing the entire dataset and found throughout the 

10 different random sample sets were used to train random forest models for classifying the 

samples as anxious or neurotypical. A 10-cross validation was done on the entire dataset and 

also with each study individually using the ASV sequences as predictors in the model. The 

10-cross validation process consists of using 90% of the data to train the random forest 

model and using the remaining 10% as testing samples for classification. Using the caret 

package, the process of taking out 10% of the samples was done 10 times and in a way that 

allowed all samples to be in the testing subset at least once in order to ensure proper 

representation of all samples. The resulting correct and incorrect classifications were plotted 

on a Receiver Operating Characteristic (ROC)  curve and the resulting Area Under Curve 

(AUC) values were calculated.  

ROC curves were generated by using multiple different groupings of the ASVs found 

in the study (see Section 4 in the results). The first set of predictors consisted of the 

sequences found by analyzing across all dataset. The three subsequent sets of predictors were 

created based on the number of times they were detected in the 10 different random subsets: 

one set of predictors of all of the sequences detected, another with sequences detected twice 

or more, and another with sequences detected three times or more. In addition, a null 

predictor set was created by generating a mock table of fake ASV counts using a random 

uniform distribution. Lastly, the metadata of age, sex, and antibiotics use were used as 

13 



 

predictors, as well as the metadata combined with some of the ASV predictors in order to 

compare how the model behaves without microbial sequence biomarkers.  

6. Phylogenetic tree 

In order to analyze potential phylogenetic associations between the ASVs that were 

significantly different between the anxious and nonanxious, a phylogenetic tree was created 

with the tips as individual ASVs present in all samples. The Phyloseq tree was generated 

using a outlined workflow from the DADA2 authors at the following link:  

http://web.stanford.edu/class/bios221/MicrobiomeWorkflowII.html#construct_phylogenetic_

tree. (Ben J. Callahan et al. 2016). Packages used for this process included Phangorn, APE, 

and DECIPHER (Schliep 2012; Paradis, Claude, and Strimmer 2004; Wright, Erik, and 

Wright 2016). ASVs were colored according to their respective groupings within the 

predictor sets used in the random forest models. The tree was made from a subset of the taxa 

within the phyloseq object by removing any bacterial families that were not represented 

among the significant ASVs.The tree was rooted using the following archaea sequence from 

Halorhabdus rudnickae : 

"GATCGATTAGCATGCTAGTCGCACGGGTTTAGGCCCGTGGCGGAAGCTCAGTAACACGTGGCCAAACTACCCTGTGGACGA

GAATACCCTCGGGAAACTGAGGTCAATTCTCGATACGGCTCTCATGCTGGAGTGCAGCGAGCCGGAAATGTTCTGGCGCCAC

AGGATGTGGCTGCGGCCGATTAGGTAGACGGTGAGGTAACGGCTCACCGTGCCAATAATCGGTACGGGTCATGAGAG"  

RESULTS 

1. Identification of ASVs Significantly enriched in each cohort 

After using DESeq2, Metagenomeseq, and ANCOM on the 1226 samples within the 

phyloseq object, a total of eight ASVs were significantly different in abundance between the 

anxiety-related conditions and the neurotypical. Table 2 shows the taxonomic information for 
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each ASV and their associated information. Full ASV sequences can be found in the 

supplementary information in Table 8.  

Table 2 Significant Taxa between the Anxious and Neurotypical Phenotypes  

Taxa highlighted in red were significantly enriched in the gut-microbiome of individuals with 
anxiety-related conditions. Green were enriched in the neurotypical. *ANCOM does not 
estimate log-fold change, but it’s greater prevalence in the neurotypical phenotype was 
determined using abundance counts. Method refers to which R package determined the ASV 
to be significant. 
Family Genus Log-2-Fold q-values Method 

Akkermansiaceae Akkermansia 0.605896224 0.012013994 MetagenomeSeq 

Lachnospiraceae Roseburia 0.31406044 0.024243432 MetagenomeSeq 

Ruminococcaceae Butyricicoccus 0.28536855 0.026396466 MetagenomeSeq 

Ruminococcaceae Faecalibacterium -0.26531737 0.032092058 MetagenomeSeq 

Ruminococcaceae NA -0.28370918 0.009146485 MetagenomeSeq 

Bacteroidaceae Bacteroides -0.49029464 0.000130443 MetagenomeSeq 

Bacteroidaceae Bacteroides -0.5370154 0.00414062 MetagenomeSeq 

Marinifilaceae Odoribacter <0.00* <0.05 ANCOM 

 

2. Impact of covariates and study origin on microbial community structure 

In order to analyze for the effects of metadata variables on the gut-microbial 

communities, PCoA plots were generated and Permanova was run on the dataset. Table 3 and 

4 show the resulting p-values when the adonis and betadisper functions were performed on 

each normalization. 
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Table 3 Resulting p-values from Permanova on DESeq-normalized phyloseq 

Adonis is a function that determines if a group centroid is significantly different from the rest of the 
data. Betadisper is a function that determines if a group has a heterogeneous dispersion or not.Red 
rows highlight variables that have a homogenous group dispersion and  significant different centroid 
as seen by significance in adonis, but not betadisper.  
 
 

Variable Adonis p-value Betadisper p-value 

Sex 0.00015 0.21 

Age 0.00015 0.002 

Depth 0.00015 0.937 

Antibiotics within 6 months 0.00024 0.002 

Anxiety-Related Condition 0.055 0.937 

Study 0.00015 0.002 
 

 

Table 4 Resulting p-values from Permanova on CSS-normalized phyloseq 

Variable Adonis p-value Betadisper p-value 

Sex 0.00012 0.0984 

Age 0.00012 0.002 

Depth 0.00012 0.909 

Antibiotics within 6 months 0.00012 0.002 

Anxiety-Related Condition 0.0726 0.084 

Study 0.00012 0.002 

 

In the Permanova analysis, the adonis function found sex, age, antibiotics usage, 

study, and sequencing depth to be signficant using both CSS and DESeq2 normalizations. 
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The presence of an anxiety-related condition variable had a p-value of ~0.07 and ~0.06 for 

each of these nomalizations. However, only sex, depth, and the anxious phenotype had 

homogeneous dispersions after using the betadisper function on both normalizations. Figure 

1 displays two unconstrained PCoA plots; one with samples colored by study and another 

with samples colored by phenotype (anxious or neurotypical). Both of these were normalized 

using DESeq2. These PCoAs were also constructed using CSS normalizations. These plots 

can be found in the supplementary information in Figure 8 and Figure 9. 

 

 

Figure 1  Constrained PCoAs of all 1226 Samples using DESeq2 Normalization 

Samples were colored according to the study they came from. AGP stands for “American 
Gut Project”The label, “AR”, found in the legend stands for “Anxiety-Related” and refers to 
individuals with anxiety-related conditions.  

17 



 

3. Analysis of Random Subsets 

As mentioned in the Methods, an analysis for differentially abundant taxa was also 

performed on 10 random subsets containing 238 samples per subset. Each subset consisted of 

17 pairs for each different kind of anxiety-related condition present in each study in order to 

avoid the study with the highest number of samples from being over-represented, and each 

pair consisted of one with the anxiety-related condition and an age-matched control. Table 5 

and 6 on the next pages display the taxonomic classification of significant ASVs among the 

10 subsets and the amount of subsets in which were significant. A total of 33 different ASVs 

were significant in at least one of the subsets. 
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Table 5 Significantly Enriched Taxa in Anxious Individuals in at least Two Random 
Subsets 
Some ASVs were unable to be classified at the genus level, and thus were labeled as NA for 
the genus.Full sequences of ASVs can be found in the supplementary information. 
 

Family Genus Enrichment Times Detected in 10-fold Sampling 

Tannerellaceae Parabacteroides A 6 

Rikenellaceae Alistipes A 6 

Veillonellaceae Dialister A 6 

Marinifilaceae Odoribacter A 6 

Lachnospiraceae NA A 4 

Lachnospiraceae Coprococcus_3 A 4 

Ruminococcaceae Ruminococcaceae_UCG-003 A 4 

Rikenellaceae Alistipes A 3 

Erysipelotrichaceae Turicibacter A 3 

Akkermansiaceae Akkermansia A 3 

Ruminococcaceae Faecalibacterium A 2 

Ruminococcaceae Faecalibacterium A 2 

Desulfovibrionaceae Bilophila A 2 

Lachnospiraceae Tyzzerella A 2 

Lachnospiraceae Lachnospiraceae_UCG-010 A 2 

Lachnospiraceae Lachnoclostridium A 2 

Erysipelotrichaceae Erysipelatoclostridium A 2 

 
 

 

19 



 

Table 6 Significantly Enriched Taxa in the Neurotypical in at least Two Random Subsets 

Some ASVs were unable to be classified at the genus level, and thus were labeled as NA for 
the genus. Each row represents a different ASV despite similar “NA” genus labels in the 
Lachnospiraceae family. Full sequences of ASVs can be found in the supplementary 
information. 
 

Family Genus Enrichment Times 

Detected in 

10-fold Sampling 

Enterobacteriaceae Escherichia/Shigella N 6 

Lachnospiraceae NA N 4 

Ruminococcaceae Ruminococcaceae_UCG-005 N 3 

Bacteroidaceae Bacteroides N 3 

Barnesiellaceae Coprobacter N 2 

Rikenellaceae Alistipes N 2 

Bacteroidaceae Bacteroides N 2 

Lachnospiraceae Lachnospiraceae_NK4A136_group N 2 

Lachnospiraceae NA N 2 

Family_XIII Family_XIII_UCG-001 N 2 

Christensenellaceae Christensenellaceae_R-7_group N 2 

Ruminococcaceae Ruminococcaceae_UCG-002 N 2 

Ruminococcaceae NA N 2 

Lachnospiraceae Agathobacter N 2 

 

ASVs from the genera,  Escherichia/Shigella, Alistripes, Parabacteroides, 

Odoribacter, and Dialister were significant in six out of the ten random subsets and were the 

most commonly significant. 
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4 Random Forest Model  

Figure 2, Figure 3, Figure 4, and Figure 5 show the resulting ROC (Receiver 

Operating Characteristic) curves from using the ASVs found above as predictors in a variety 

of combinations. ROC curves are created by plotting the true positive rate over the false 

positive rate. The greater the area under the curve (AUC) is, the more often the classifier 

correctly identifies the phenotype. Metadata was also used for comparison. Figure 2 shows 

the random forest model on all 1266 samples while Figure 3, Figure 4, and Figure 5 show 

random forest model performance using samples exclusively from one study (AGP, Hill, and 

Kang respectively), using taxa identified as significant in one of the cohorts. 

As seen in Figure 2, all predictors performed above 0.60 AUC (Area Under Curve) 

except the 8 ASVs identified across all datasets and the null model. The random subset 

sequences seen two or more times (ASVs from Table 5 and 6) paired with metadata 

performed the highest out of them all with about 0.70 AUC. The 8 ASVs identified across all 

datasets (ASVs from Table 2) performed at ~0.56 AUC and the Null model performed at 

~0.50 .  
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Figure 2 Random Forest Model Performance with all 1226 samples 

AUC stands for “Area under the Curve”. Predictors are used by the Random Forest Models as 
variables to train on for their machine learning algorithm. The True Positive Rate on the y-axis and 
plots the proportion of positives that were correctly identified as positive (e.g. the proportion of 
people with anxiety classified as anxious, also known as the sensitivity). The False Positive Rate on 
the x-axis is the opposite and represents how often the classifier labels a sample is positive when it is 
not(e.g labeling a sample as anxious when they are neurotypical).  
 
The black line represents an AUC value of 0.50 and displays what a line would look like if the model 
was randomly classifying.“8 ASVs identified across all datasets” refers to the 8 ASVs found when 
Metagenomeseq, ANCOM, DESeq2 was used on the entire data set as seen in Table 2. “Random 
Subset Sequences >= 2” and “Random Subset Sequences >= 3” refer to the ASVs found among the 
random subsets greater than two times and greater than 3 times respectively as seen in Table 5 and 6. 
The Null model refers to a mock dataset created by generating a random uniform distribution of 
counts for fake ASV sequences. 
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Figure 3 Random Forest Model Performance with American Gut Project samples (AGP) 
 
Predictors are used by the Random Forest Models as variables to train on for their machine learning 
algorithm.“8 ASVs identified across all datasets” refers to the 8 ASVs found when Metagenomeseq, 
ANCOM, DESeq2 was used on the entire data set as seen in Table 2. “Random Subset Sequences >= 
2” and “Random Subset Sequences >= 3” refer to the ASVs found among the random subsets greater 
than two times and greater than 3 times respectively as seen in Table 5 and 6. The Null model refers 
to a mock dataset created by generating a random uniform distribution of counts for fake ASV 
sequences. 
 

For the American Gut Project samples, all predictors except the metadata alone and 

the null model performed had greater than 0.60 AUC. The metadata alone had an AUC of 

~0.57 and the null model had an AUC of ~0.45. 

 

23 



 

 

Figure 4 Random Forest Model Performance with Study by Hill et al. 
 

Predictors are used by the Random Forest Models as variables to train on for their machine learning 
algorithm. “8 ASVs identified across all datasets” refers to the 8 ASVs found when Metagenomeseq, 
ANCOM, DESeq2 was used on the entire data set as seen in Table 2. “Random Subset Sequences >= 
2” and “Random Subset Sequences >= 3” refer to the ASVs found among the random subsets greater 
than two times and greater than 3 times respectively as seen in Table 5 and 6. The Null model refers 
to a mock dataset created by generating a random uniform distribution of counts for fake ASV 
sequences. 
 
As seen in Figure 4 containing the Hill Study random forest ROC curves, all predictors 

except the Metadata alone had AUC values less than 0.60. Four of the predictors performed 
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with less than 0.50 AUC. Out of the sequence-based predictors, the “All Random Subset 

Sequences” performed the greatest with 0.53 AUC. 

 

 

Figure 5 Random Forest Model Performance with Study by Kang et al. 
 

Predictors are used by the Random Forest Models as variables to train on for their machine learning 
algorithm. “8 ASVs identified across all datasets” refers to the 8 ASVs found when Metagenomeseq, 
ANCOM, DESeq2 was used on the entire data set as seen in Table 2. “Random Subset Sequences >= 
2” and “Random Subset Sequences >= 3” refer to the ASVs found among the random subsets greater 
than two times and greater than 3 times respectively as seen in Table 5 and 6. The Null model refers 
to a mock dataset created by generating a random uniform distribution of counts for fake ASV 
sequences. 
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In the Kang study, the 8 ASVs identified across all datasets had the highest AUC at 

~0.64 and while the random subset sequences and metadata alone were all under 0.60 AUC.  

Excluding metadata predictors, the random subset sequence predictors had the highest AUC 

value within AGP, the Hill study, and when all 1226 samples were combined. However, 

random subset sequences predictors performed poorly for the Kang study with AUC values 

lower around 0.55 and lower.  All ASV predictors in the AGP study had AUC values greater 

than 0.62 and were almost comparable to the metadata alone. Table 7 summarizes all of the 

AUC values within the 10-cross validation process. 

Table 7 Summary of AUC values of Random Forest 10-cross validation 

“Green” indicates AUC values above 0.60. “Yellow indicates AUC values between 0.50 and 0.60. 
Red indicates AUC values below 0.50. 
 

Predictor Category All 1226 Samples AGP Hill Kang 

Null Model 0.5034 0.4529 0.4612 0.5444 

8 ASVs Identified across all datasets 0.5627 0.6244 0.51 0.6361 

All Random Subset Sequences 0.6162 0.6474 0.5314 0.5389 

Random Subset Sequences >= 2 0.6167 0.6437 0.4612 0.5347 

Random Subset Sequences >= 3 0.6008 0.621 0.4935 0.4111 

Metadata Alone 0.6809 0.5713 0.6375 0.4 

 8 ASVs Identified across all datasets w/ Metadata 0.6662 0.6406 0.5218 0.6361 

Random Subset Sequences >= 2 w/ Metadata 0.6976 0.6448 0.4156 0.4861 

 

Overall, the “All Random Subset Sequences”  predictor performed the best out of the 

categories without metadata. When the 8 ASVs identified across all datasets were combined 

with the metadata, it yielded more consistent results and higher AUCs than the other 
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categories. Among the different sets of random subset sequences, the higher thresholds of 

amount of times seen significant (greater than two and three) cause equal or even poorer 

classification performance.  

 

27 



 

5. Phylogenetic analysis of biomarkers of interest 

Figure 6 Phylogenetic Tree Labeled by Significant ASVs and their Enrichment  
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Figure 6  displays the phylogenetic tree generated from a subset of taxa families that 

were present among any of the ASVs that were significant and were used as a predictor. AR 

biomarkers refer to the anxious phenotype (Anxiety-related conditions). On the tree, there 

appears to be a small cluster of ASVs from the Faecalibacterium genus and the Bacteroides 

genus. The Bacteroides group boxed in red is also all enriched in the neurotypical and is on a 

branched section of its own. The enriched taxa in both the neurotypical and the anxious are 

relatively dispersed distributed throughout the tree.The following figure, Figure 7, shows the 

power analysis performed on the samples from each study.  

Figure 7 Power Analysis 

A: Kang power analysis 
 
B Hill power analysis 
 
C: AGP (American Gut Project) power 
analysis 
 
The blue line refers to the 0.90 alpha value for 
power 
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The power for the Kang study was above 0.90 at around 35 samples while the Hill 

crossed the 0.90 threshold at about 27 samples. AGP was above 0.90 at about 17 samples. All 

of these studies had more samples than these amounts and thus had greater power than 0.90 

DISCUSSION 

1. ASVs taxonomy comparison 

Several of the ASVs found relevant in this study have already been associated with 

neurological conditions in other studies. For instance, altered levels of Akkersmania, 

Bacteroides, Parabacteroides, Coprococcus, Odoribacter, and Faecalibacterium have been 

seen within the gut-microbiome of individuals with ASD (Xu et al. 2019; Kang et al. 2013; 

Zhang et al. 2018). Faecalibacterium and Odoribacter have been associated with mood 

disorders like bipolar disorder and major depressive disorder as well as other genera such as 

Alistripes and Roseburia. (Huang et al. 2019; Winter et al. 2018; Cheung et al. 2019). As 

seen in Table 2, 5, and 6, ASVs from all these genera mentioned were significantly different 

between individuals with anxiety-related conditions and the neurotypical within this 

meta-analysis which indicate our findings are generally consistent with the current literature. 

Our meta-analysis also found multiple members of the Ruminococcaceae family which have 

been associated with social avoidance behaviors in mice and major depressive disorders in 

humans (Schnorr and Bachner 2016; Cheung et al. 2019).  

This analysis of differentially abundant taxa within anxiety-related conditions 

however also adds specific ASV sequences of these associated genera to the scientific 

literature. Having this sequence information can help future researchers identify more 

specific bacteria and is another step closer to identifying specific species of gut-microbiota 
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that are associated with certain neurological conditions. However, whether or not these 

associations are causing symptoms of neurological conditions or if they are a product of the 

conditions themselves is still undetermined. Our increased sample size of 1266 that yielded 

eight specific ASVs also provide increased clarity and support regarding the significance of 

these taxa within our grouping of anxiety-related conditions.  The ASVs found to be 

significant within the random subsets also each possess a sample size of 238 which is more 

than many studies within the current literature. While we hypothesized that we would find 

more novel bacteria significantly different between the two cohorts through this particular 

means of meta-analysis than what was seen, finding these taxa to be significant despite 

grouping across a variety of four different anxiety-related conditions is unique to this 

meta-analysis. 

Mapping the relevant markers to a phylogenetic tree highlighted that while only a few 

families were relevant to this study, members from the same families can be enriched in one 

cohort or another. While this observation is difficult to interpret, it supports the relevance of 

using ASVs, rather than 97% clustered sequences in order to identify biomarkers of interest. 

2.Covariates impacting the microbial structure  

The only two variables that were significant in adonis and also had a homogenous 

distribution were sequencing depth and sex as seen in Table 3. This result was consistent 

across the two normalizations used.  These two factors have already been reported in the 

literature as potentially affecting beta-diversity(Zaheer et al. 2018; Dominianni et al. 2015). 

However, these two variables are not significantly different between the two cohorts. This is 

demonstrated for depth by the boxplot on Supplemental Figure 10 which did not show a 
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significant difference between the two cohorts when using a wilcoxon-ranked sum test , and 

therefore should not constitute as a confounding factor in our study.  The same observation 

was made for the sex of the indivuals involved in the study: a chi-squared test between sex 

and phenotype revealed the two to have no association with one another which also 

invalidates it as a confounding variable despite the anxious cohort presenting 10 more 

women and lacking 12 males over a total of 1266 samples. The fact that the sex ratio was 

almost 1:1 demonstrates that our sampling was biased towards the male cohort since studies 

have shown that women experience anxiety and depression at twice the rate as men (Hankin 

2009). This bias is seen in mental health counseling and research as well (Danzinger and 

Welfel 2000). In addition, the ASD cohort was predominantly male at approximately a 3:1 

ratio. This may have been why we did not see sex bias in our anxious cohort. Taking these 

findings and factors into account, it is unlikely that sex or depth had a significant impact on 

our results. 

Note that the adonis test performed when considering the phenotype (i.e. the presence 

of an anxiety-related condition) was showed close to having resulted in a significant p-value 

from the adonis function at ~0.06, and also had a homogenous group dispersion (as displayed 

in Table 3). While this may not classify as significant for this study, it may imply that future 

meta-analyses could see significant changes within the gut-microbial communities between 

anxious and neurotypical phenotypes.  
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3. Comparing ASVs significantly enriched across all samples with ASVs enriched during 

sub-sampling 

Out of all the ASVs identified as significantly different between the two cohorts, 

three ASVs were significant across the entire dataset and within the random subsets. These 

ASVs were from the genera Odoribacter, Akkersmania, and Bateroides. The Odoribacter 

ASV was significant in six of the ten random subsets. Akkersmania and Bacteroides were 

detected as significant in three of the 10 random subsets which was more than most of the 

random subset sequences. The fact that these three exact sequences were identified as 

significant in the entire subset and in many of the random subsets demonstrates that these 

particular ASVs may be especially consistent across datasets. Taxa at the order levels 

represented by these ASVs have already been characterized in studies mentioned previously 

in Discussion Section 1 .  

4. Random Forest Model Performances 

The second part of our hypothesis was that these ASVs could be used as predictors to 

increase the performance of a random forest model in classifying the two groupings in a 

10-cross validation. As shown in Figures 2, 3, 4, and 5, using the ASV sequences without 

metadata increased the AUC to above 0.60 in many cases. While AUC values of this 

magnitude are not sufficient for a proper classification model, it is much greater than random 

as well as the AUC values from the null predictors, which supports the notion that these taxa 

are associated with  anxiety and comorbid disorders.  

However, as seen in Figure 2, the random subset sequence predictors (ASVs from 

Table 5 and 6 with an AUC of ~0.61)  all outperformed the 8 sequences found across all 
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datasets (AUC of ~0.56) when the 10-cross validation was performed on all 1226 samples. 

We hypothesized that the 8 significant sequences found across all datasets would outperform 

ones found in the 10 random subsets when building a model with all 1226 samples, since the 

random subsets were more representative of the smaller studies and not the dataset as a 

whole. This may be due to the fact that the random subset predictors had more sequences to 

use as predictors (33 ASVs instead of 8 ASVs found across all datasets).  Having more 

sequences as predictors could have helped train the model more proficiently.  

In Figure 2, the metadata alone (consisting of age, sex, and antibiotics use within the 

past six months) had an AUC value of ~0.68. The fact that the best of the random subset 

sequence predictors had an AUC value of ~0.62, only 0.06 lower than the metadata, shows 

that these taxa are almost as meaningful to the classifier as variables such as age and sex 

which play a signficant role in gut-microbial communities (Dominianni et al. 2015; Jašarević, 

Morrison, and Bale 2016). Additional exploration into random forest models with both 

metadata and the ASV predictors for this study in particular could be done to better 

determine if the addition of 16S amplicon improves the classification, or, rather, adds more 

noise. 

Figures 3, 4 , and 5 show the performance of the random forest models on samples 

from individual studies.  Figure 3 displaying AGP’s classifier, shows that the classifier 

performed best on this dataset, with AUC values of 0.62 to 0.64. These values can be 

compared to the AUC value of the 8 sequences found across all datasets (AUC = ~0.57 as 

seen in Figure 3 ). Such a result was expected given that AGP has the most samples out of 

the three studies. This may be due to the greater number of ASV sequences present within 
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the random subset sequence predictors available for the model to train with. This explanation 

is also consistent with the fact that the random subset sequences detected three or more times 

had less sequences and also performed slightly worse. 

All classifiers performed very poorly with the Hill study (Figure 4),  and the best 

being the random subset sequences at ~0.53. While it was expected that the random subset 

sequences would perform the best on this study due to how the proportion of Hill samples 

were greater in the random subsets than in the entire dataset, a value of 0.53 is minimally 

above random and much less than the 0.63 AUC value of the metadata alone. One potential 

reasoning as to why performance of ASV predictors were so poor could be due to the 

prevalence of older individuals within this study. As mentioned in the Methods, the average 

age of individuals in this study was ~68 years old. While across all studies no significance in 

age was detected between the two cohorts,  age affects the gut-microbiome (as discussed 

earlier in this section), and could render identified predictors for anxiety-related conditions 

irrelevant for this specific dataset. Given the small sample size of this dataset and the number 

of samples required (around 27 samples as seen Figure 7 in Results Section 5), we did not 

aim to identify markers specific to this study. In addition, while individuals with Parkinson’s 

diseases included in this study were always matched in the control cohort with individuals 

possessing the opposite phenotype (i.e. not without anxiety) and Parkinson’s disease as well, 

this may have played a role in affecting model performance since Parkinson’s disease is more 

comorbid with anxiety than the general population and may have a unique effect on 

microbial structure on it’s own (Chen and Marsh 2014; Hill-Burns et al. 2017).  
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Finally, the 8 predictors significant across all studies performed better in the Kang 

datasets (Figure 5, AUC of 0.63) while all the random sequence predictor categories had 

AUC values below ~0.55. This was unexpected considering that the Kang samples were only 

a small portion of the total 1226 samples across all datasets, One reason for this may be due 

to the fact that the Kang study only consisted of individuals with ASD and their respective 

controls, which also constituted samples from the largest study here, AGP (the American Gut 

Project).   Note that such an explanation would imply that these ASVs could be of relevance 

for relevance to ASD specifically. Furthermore, within the Kang study 10-cross validation, 

the metadata performed the lowest even when compared with the other studies. This is likely 

due to the fact that all the individuals in this study were below the age of 17 and were mostly 

male as seen in Table 1, and hence training a machine learning classifier using these 

variables would be ineffective since differences between the phenotypes would be minimal. 

Figure 6 shows the degree to which the positively and negatively enriched ASVs are 

grouped phylogenetically. On this phylogenetic tree, there appears to be a small cluster of 

ASVs from the Faecalibacterium genus and the Bacteroides genus; however, there are many 

sequences that are dispersed across the entire tree. While these individual clusters may be 

worthy of analysis and further identification (especially since the Bacteroides ASVs were all 

enriched in the neurotypical), overall positioning of positively or negatively enriched ASVs 

in the anxious phenotype appear to be dispersed fairly evenly across the tree.  

5. Limitations and Future Research 

Within this meta-analysis, there are multiple issues within the dataset that must be 

addressed. One of which is the fact that most of the different diagnoses (ADHD, Depression, 
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Anxiety, etc.) were self-reported. This could cause false positives to be present in the dataset. 

In addition, by the nature of reporting true or false to these queries of neurological 

conditions, we are unable to assess the degree or severity of a given condition. If levels of 

potentially associated taxa are affected by condition severity, then certain taxa may not be 

found to be significant if a high number of mild or light cases were present. Another factor in 

this study lies in the differences between the different anxiety-related conditions. Different 

conditions may result in individual differences in the gut-microbiome despite their links to 

anxiety. The fact that significant taxa were found among these conditions when grouped 

despite their inherent differences highlight their potential underlying commonalities and the 

power of larger sample sizes brought about by this meta-analysis.  

Difference in samples between studies also may have been an obstacle to our 

analysis. The difference in average age of samples between these studies were stark, and 

inherent differences brought about by sequencing done by different labs may have played a 

role in the sequence data. While the Permanova analysis did not reveal significant differences 

in gut-microbial communities due to the study by which they came from, the PCoAs did a 

degree of separation between studies. Even if the magnitude of these differences were 

minimal as seen in the small percentages on the axis for the PCoA for study in Figure 1, it 

should be acknowledged that the three studies in this meta-analysis used different extraction 

methods that could have introduced unwanted variation in the sequence data. While study 

was not significant in Permanova within this meta-analysis, the methods of extraction and 

preparation should always be examined in any meta-analysis of this nature. 

37 



 

Data acquisition of sequence data and metadata for this study was also a difficulty in 

this study. Originally more studies were to be included in this meta-analysis; however, many 

studies had their sequence data uploaded, but not their meta-data. Emails to those responsible 

for these study data resulted in no response, or in one case, an admission that there were 

issues with the metadata that they would need to fix and re-release to the public. Hence, the 

process of this meta-analysis also reveals the need for greater clarity in uploaded sequence 

data so that meta-analyses can be performed properly and with greater ease in order to 

provide more contributions to the scientific community at large. 

One important contributing factor that was lacking in this meta-analysis is diet. Diet 

plays a key role in the gut microbial community, and future meta-analyses or studies should 

include this information if possible while still maintaining high sample sizes. For 

meta-analyses of neurological conditions in particular, using standardized scales of anxiety, 

stress, or depression would be important to include in order to determine if differences in 

severity affect the magnitude of gut-microbial community changes. In addition, multiple 

timepoints for each sample would also provide valuable information on the association of 

anxiety or anxiety-related conditions and the gut-microbiome. In conclusion, if a study could 

incorporate these changes while still maintaining a high sample size, it could provide a 

clearer picture on the relationship between anxious conditions, the gut-microbiome, and the 

gut-brain axis. 
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Supplementary Information: 

Table 8 Significant ASVs within the 1266-Sample Analysis 

Some ASVs were unable to be classified at the genus level, and thus were labeled as NA for 
the genus.  

Family Genus ASV Sequence 

Akkermansiaceae Akkermansia TACAGAGGTCTCAAGCGTTGTTCGGAATCACTGGGCGTAAAGCGTGCGTA

GGCTGTTTCGTAAGTCGTGTGTGAAAGGCGCGGGCTCAACCCGCGGACGG

CACATGATACTGCGAGACTAGAGTAATGGAGGGGGAACCGGAATTCTCGG 

Lachnospiraceae Roseburia TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGCA

GGCGGAAGGCTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGTACTG

CATTGGAAACTGGTCATCTAGAGTGTCGGAGGGGTAAGTGGAATTCCTAG 

Ruminococcaceae Butyricicoccus TACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGCGCA

GGCGGGCCGGTAAGTTGGAAGTGAAATCTATGGGCTTAACCCATAAACTG

CTTTCAAAACTGCTGGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCGTG 

Ruminococcaceae Faecalibacterium AACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCA

GGCGGGAGAACAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTG

CTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGG 

Ruminococcaceae NA TACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGT

AGGCGGGAAAGCAAGTTGGAAGTGAAATGCATGGGCTTAACCCATGAGC

TGCTTTCAAAACTGTTTTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTA

G 

Bacteroidaceae Bacteroides TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTA

GATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGC

AGTTGATACTGGATGTCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGG 

Bacteroidaceae Bacteroides TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTA

GGCGGACTATTAAGTCAGCTGTGAAAGTTTGCGGCTCAACCGTAAAATTGC

AGTTGATACTGGTCGTCTTGAGTGCAGTAGAGGTAGGCGGAATTCGTGG 

Marinifilaceae Odoribacter TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA

GGCGGTTTATTAAGTTAGTGGTTAAATATTTGAGCTAAACTCAATTGTGCC

ATTAATACTGGTAAACTGGAGTACAGACGAGGTAGGCGGAATAAGTTAA 

 
 
 
 
 
 

39 



 

Table 9  Significantly Enriched ASV in Anxious Individuals in at least Two Random Subsets 

Some ASVs were unable to be classified at the genus level, and were labeled as NA for the genus. 

ASV Sequence Family Genus 

TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGCCTTTTAAGTCAGCGGTGAAAGTCTG

TGGCTCAACCATAGAATTGCCGTTGAAACTGGGGGGCTTGAGTATGTTTGAGGCAGGCGGAATGCGTGG 
Tannerellaceae Parabacteroides 

TACGGAGGATTCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTTGATAAGTTAGAGGTGAAATTTCG

GGGCTCAACCCTGAACGTGCCTCTAATACTGTTGAGCTAGAGAGTAGTTGCGGTAGGCGGAATGTATGG 
Rikenellaceae Alistipes 

TACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCTTCCCAAGTCCCTCTTAAAAGTGCG

GGGCTTAACCCCGTGATGGGAAGGAAACTGGGAAGCTGGAGTATCGGAGAGGAAAGTGGAATTCCTAGT 
Veillonellaceae Dialister 

TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTTATTAAGTTAGTGGTTAAATATTT

GAGCTAAACTCAATTGTGCCATTAATACTGGTAAACTGGAGTACAGACGAGGTAGGCGGAATAAGTTAA 
Marinifilaceae Odoribacter 

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAATGGCAAGTCTGATGTGAAAGGC

CGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGGGGTAAGTGGAATTCCTAG 
Lachnospiraceae NA 

TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCTGTGTAAGTCTGAAGTGAAAGCCC

GGGGCTCAACCCCGGGACTGCTTTGGAAACTATGCAGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCCAG 
Lachnospiraceae Coprococcus_3 

TACGGAGGATCCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTTGATAAGTTAGAGGTGAAATACC

GGGGCTCAACTCCGGAACTGCCTCTAATACTGTTGAACTAGAGAGTAGTTGCGGTAGGCGGAATGTATGG 
Rikenellaceae Alistipes 

TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGGCATGCAAGTCAGATGTGAAATCTC

AGGGCTTAACCCTGAAACTGCATTTGAAACTGTATGTCTTGAGTGCCGGAGAGGTAATCGGAATTCCTTG 
Ruminococcaceae Ruminococcaceae 

(UCG-003) 

TACGTAGGTGGCGAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTGATTAAGTCTGATGTGAAAGCCC

ACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTCGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATG 
Erysipelotrichaceae Turicibacter 

AACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAGACAAGTTGGAAGTGAAATCT

ATGGGCTCAACCCATAAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGG 
Ruminococcaceae Faecalibacterium 

AACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGCGATCAAGTTGGAAGTGAAATCC

ATGGGCTCAACCCATGAACTGCTTTCAAAACTGGTCGTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGG 
Ruminococcaceae Faecalibacterium 

TACAGAGGTCTCAAGCGTTGTTCGGAATCACTGGGCGTAAAGCGTGCGTAGGCTGTTTCGTAAGTCGTGTGTGAAAGGCG

CGGGCTCAACCCGCGGACGGCACATGATACTGCGAGACTAGAGTAATGGAGGGGGAACCGGAATTCTCGG 
Akkermansiaceae Akkermansia 

TACGGAGGGTGCAAGCGTTAATCGGAATCACTGGGCGTAAAGCGCACGTAGGCGGCTTGGTAAGTCAGGGGTGAAATCCC

ACAGCCCAACTGTGGAACTGCCTTTGATACTGCCAGGCTTGAGTACCGGAGAGGGTGGCGGAATTCCAGG 
Desulfovibrionaceae Bilophila 

TACGTAGGGGGCAAGCGTTATCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGCATGGTAAGCCAGATGTGAAAGCC

TTGGGCTTAACCCGAGGATTGCATTTGGAACTATCAAGCTAGAGTACAGGAGAGGAAAGCGGAATTCCTAG 
Lachnospiraceae Tyzzerella 

TACGTAGGGGGCAAGCGTTATCCGGAATTACTGGGTGTAAAGGGTGAGTAGGCGGCATGGCAAGTAAGATGTGAAAGCC

CGAGGCTTAACCTCGGGATTGCATTTTAAACTGCTAAGCTAGAGTACAGGAGAGGAAAGCGGAATTCCTAG 
Lachnospiraceae Lachnospiraceae 

(UCG-010) 

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTAAAGCAAGTCTGAAGTGAAAGCCC

GGGGCTCAACCCCGGGACTGCTTTGGAAACTGTTTAACTAGAGTGCTGGAGAGGTAAGCGGAATTCCTAG 
Lachnospiraceae Lachnoclostridium 

TACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGGGAGCAGGCGGCAGCAAGGGTCTGTGGTGAAAGCC

TGAAGCTTAACTTCAGTAAGCCATAGAAACCAGGCAGCTAGAGTGCAGGAGAGGATCGTGGAATTCCATGT 
Erysipelotrichaceae Erysipelatoclostridium 
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Table 10 Significantly Enriched Taxa in the Neurotypical in at least Two Random Subsets 

Some ASVs were unable to be classified at the genus level, and thus were labeled as NA for 
the genus.  
 

ASV Sequence Family Genus 

TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCC

CGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGG 
Enterobacteriaceae Escherichia/Shigella 

TACGTATGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGGCGGCATGGCAAGTCAGAAGTGAAAGCCT

GGGGCTCAACCCCGGAATTGCTTTTGAAACTGTCAGGCTAGAGTGTCGGAGGGGTAAGCGGAATTCCTAG 
Lachnospiraceae NA 

TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGAGAAGCAAGTCAGAAGTGAAATCC

ATGGGCTTAACCCATGAACTGCTTTTGAAACTGTTTCCCTTGAGTATCGGAGAGGCAGGCGGAATTCCTAG 
Ruminococcaceae Ruminococcaceae 

(UCG-005) 

TACGGAAGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGAAGAATAAGTCAGCGGTGAAATGCT

TCAGCTCAACTGGAGAATTGCCGATGAAACTGTTTTTCTAGAGTATAAAAGAGGTATGCGGAATGCGTGG 
Barnesiellaceae Coprobacter 

TACGGAGGATCCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTTAGTAAGTCAGCGGTGAAATTTTG

GTGCTTAACACCAAACGTGCCGTTGATACTGCTGGGCTAGAGAGTAGTTGCGGTAGGCGGAATGTATGG 
Rikenellaceae Alistipes 

TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTG

CGGCTCAACCGTAAAATTGCAGTTGATACTGGATGTCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGG 
Bacteroidaceae Bacteroides 

TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTT

GCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGG 
Bacteroidaceae Bacteroides 

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTTTGCAAGTCTGAAGTGAAAGCCC

GGGGCTTAACCCCGGGACTGCTTTGGAAACTGTAGAACTAGAGTGCAGGAGAGGTAAGTGGAATTCCTAG 
Lachnospiraceae Lachnospiraceae 

(NK4A136_group) 

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGTGCGTAGGTGGCAAGGCAAGTCAGATGTGAAAGCC

CGGGGCTCAACCCCGGTACTGCATTTGAAACTGTCTAGCTAGAGTGCAGGAGAGGTAAGCGGAATTCCTAG 
Lachnospiraceae NA 

TACGTAGGGGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGTACGTAGGCGGTTTGCTAAGCGCAAGGTGAAAGGC

AGTGGCTTAACCATTGTAAGCCTTGCGAACTGACAGACTTGAGTGCAGGAGAGGAAAGCGGAATTCCTAGT 
Family_XIII Family_XIII_UCG-001 

TACGTAGGGGGCGAGCGTTGTCCGGAATGATTGGGCGTAAAGGGCGCGTAGGCGGCCTGCTAAGTCTGGAGTGAAAGTC

CTGCTTTCAAGGTGGGAATTGCTTTGGATACTGGTGGGCTGGAGTGCAGGAGAGGAAAGCGGAATTACCGG 
Christensenellaceae Christensenellaceae 

(R-7_group) 

TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGGTCTGCAAGTCAGATGTGAAATCCA

TGGGCTCAACCCATGAACTGCATTTGAAACTGTAGATCTTGAGTGTCGGAGGGGCAATCGGAATTCCTAG 
Ruminococcaceae Ruminococcaceae 

(UCG-002) 

TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGATTGCAAGTCAGGCGTGAAAACCA

GGGGCTCAACCTCTGGCCTGCGTTTGAAACTGTAGTTCTTGAGTACTGGAGAGGTTGACGGAATTCCTAG 
Ruminococcaceae NA 

TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGCAGGCGGTGCGGCAAGTCTGATGTGAAAGCCC

GGGGCTCAACCCCGGTACTGCATTGGAAACTGTCGTACTAGAGTGTCGGAGGGGTAAGTGGAATTCCTAG 
Lachnospiraceae Agathobacter 
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Figure 8 Unconstrained PCoA of all 1226 Samples by Study using CSS Normalization 

 

Samples were colored according to the study they came from. AGP stands for “American 
Gut Project”. 
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Figure 9 Unconstrained PCoA of all 1226 Samples by Phenotype using CSS 
Normalization  
 
The label, “AR”, found in the legend stands for “Anxiety-Related” and refers to individuals 
with anxiety-related conditions.  
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Figure 10 Boxplot of Sequence Depth of both Phenotypes  

As seen above, the p-value of the wilcoxon-ranked test was insignificant at 0.39.  
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Figure 11 Constrained PCoA of Antibiotics and Age 

“Antibiotics_last_6month” refers to whether or not antibiotics was taken within the last 6 
months.  
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Data Accession 

Kang Study: Available in the open-source microbiome database “Qiita” with the study ID 

number 10532 (https://qiita.microbio.me) 

Hill Study: Sequence and metadata are in EBI and NCBI under the  accession number 

ERP016332. 

American Gut Project: Sequence and metadata are in the NCBI under study accession 

number PRJEB11419. 
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