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With a view to bring simplicity and at the same time to retain

generality, to ensure the effectiveness of the present theory, gen-

eralized measures of deformation-rates have been suitably extended

before using them in the constitutive equations for isotropic incom-

pressible fluids. After the orders of the generalized measures have

been fixed, these new constitutive equations have been found to con-

tain only four terms in the deformation-rate tensors and four

rheological constants, but no unknown functions of the invariants,

This new constitutive theory based on generalized measures

has been applied in the solution of the following three types of prob-

lems:

rectilinear flows,

helical flows and

torsional flow.

The normal stress effects including swelling and thinning in

Poiseuille flow, and climbing in Couette flows, velocity profiles,

pressure variations, etc. have been studied in much greater detail

and added precision than has been done in the literature so far. The

phenomena of back flow between two parallel plates and helical flow

in a narrow annular gap have also been studied. The results have

been compared with the classical theory. To enhance the value of

this investigation and to make it more useful for practical purposes,

graphs of velocity profiles, pressure variations, etc. have also been



drawn. A special feature of this analysis is to bring out important

non-Newtonian effects in real fluids with an unparalleled precision

and simplicity. All this has been accomplished because of the use

of generalized measures.

Possible scope of future work, where the idea of generalized

measures may be profitably exploited, has also been discussed.
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Notation

We will be using the notation of tensor analysis extensively.

We therefore assume some knowledge of tensors. For our purposes,

Truesdell and Toupin (1960, appendix), Eringen (1962, appendix),

and Sokolnikoff (1964) have been found to be enough. We shall explain

the meaning of various symbols used, as and when they arise. The

following list of the frequently used symbols may, however, be

referred to, whenever needed:

Symbol

a.

a , a , ax y z

a , a , ar z

a

1B'
,M

B B B

NOTATION AND DIMENSIONS

Meaning

.ththe i vector component of acceleration

physical components of acceleration in rectangular

Cartesian coordinates along the x-, y- and z-axis

respectively.

physical components of acceleration in the cylin-

drical coordinates along the r-, 0-, and z-direc-

tions respectively.

dimension correcting constant

second deformation-rate matrix

first, second and third invariants of the second

deformation-rate matrix



ID' 11D' 111D

d..

dxi

Dt

5.

g..

n,

0, z

second deformation-rate tensor

second generalized deformation-rate matrix

second generalized deformation-rate tensor

dimension correcting constant

first deformation-rate matrix

first, second and third invariants of the first

deformation-rate matrix

first deformation-rate tensor

first generalized deformation-rate matrix

first generalized deformation-rate tensor

displacement gradient

material derivative

kronecker delta

metric tensor

dimension correcting constant

identity matrix

torque

Newtonian shear coefficient of viscosity

integers denoting orders of generalized measures

pressure of the fluid

volumetric flow rate

integers denoting orders of generalized measures

cylindrical coordinates



density of the fluid

stress matrix

t.. stress tensor
13

t ,t , etc. physical components of the stress tensor inXX xy

rectangular Cartesian coordinates

trr,tr0, etc. physical components of the stress tensor in

cylindrical coordinates

time variable

axial velocity component
.thv. 1 vector component of velocity

v ,V vx y z physical components of velocity in rectangular

Cartesian coordinates in the x-,y- and z-direc-

tions respectively

physical components of velocity in cylindrical co-

ordinates along the r-, 0- and z-directions respec-

tively

angular velocity ( 2)
spatial coordinates

x, y, z Cartesian coordinates



Dimensions

For convenience, we give below dimensions of certain

rheological constants used in our work. Here, the symbol [

stands for the "dimension of", M for mass, L for length and T for

time.

rai Ti

[p] = T ,

MT4
L



GENERALIZED MEASURES OF DEFORMATION-RATES
IN NON-NEWTONIAN HYDRODYNAMICS AND THEIR

APPLICATIONS TO SOME FLOW PROBLEMS

PART I. THEORY OF GENERALIZED MEASURES
IN CONTINUUM MECHANICS

CHAPTER 1

INTRODUCTION

1. 1. Preliminary Remarks

It is a matter of common experience that when toothpaste

emerges from the tube, it swells near the exit. But when water

comes out of a tap, we do not notice any such swelling of the fluid

stream just leaving the tap. Again, if a cylindrical cup containing

paint and having a rod fixed along its axis is rotated, the paint can

be seen to be climbing up the rod. If, however, we perform the

same experiment with skimmed milk, we notice, on the other hand,

a depression of the fluid surface near the axial rod. Similar

phenomena can be noticed in solids too. For example, if we twist a

rod of steel severely, it will lengthen in proportion to the square of

the twist. But in a similar torsion experiment performed with a rod

of lead, the length of the rod would be found to be shortened. There

are many such examples to show that material bodies with the same

mass and geometry when subjected to the same external forces in an

identical manner, respond differently. A natural question then arises;
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What is responsible for this difference in response? An obvious

answer is: Internal constitution of the materials is responsible for

these differences in behavior. To explain, therefore, the response of -a

material to the applied forces, we need to set up a relation, de-

pending on the internal constitution of the material, between the

loading to which the material is subjected and its deformation or

motion. This leads to the formulation of constitutive equation of the

material which is a relation between the stress tensor and the defor-

mation (strain) or motion (strain rate). In the classical theories of

elasticity and fluid mechanics, the constitutive equations relate the

stress tensor to the strain or strain rate tensors linearly. These

theories have enjoyed and are still enjoying a tremendous success in

Itexplaining" and controlling the structures and the mechanisms, the

winds and the tides, sailing and flying, etc.

But there remain simple mechanical phenomena, for example,

swelling and climbing in fluids, lengthening and shortening of twisted

bars, etc., which the classical theories of elasticity and fluid dynamics

have entirely failed to explain. Owing to the rapid progress in

science and technology, the number of materials which exhibit this

'anomalous' behavior is ever increasing. A few examples of such

materials which we come across in our everyday life are paints,

pastes, emulsions, condensed milk, concrete, glue, many oils,

lubricating greases,etc. It has, therefore, become important to stu
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the internal constitution of these materials and to construct adequate

but simple constitutive equations for these materials. Many attempts

have been made in this direction resulting in the birth of several

nonlinear theories based on experience and experiment. In all these

theories, the concept of stress is well defined. The dynamical equa-

tions of equilibrium, for example, the equations of motion and con-

tinuity are applicable to all materials alike. But the measure of

strain and the stress-strain relations (also called the constitutive

equations) are flexible. This is natural.

In the classical theory of elasticity, the displacements are

assumed to be so small that the squares and the products of displace-

ment gradients are neglected and the measure of strain thus becomes

linear. Such a linear measure cannot lead in many cases to a satis-

factory solution of problems in which the displacements are finite.

The present trend to explain experimental results involving finite

deformations is based on the use of a linear strain measure even

though we know from experiments that the strain is nonlinear in

character. Consequently, the constitutive equations have to be un-

necessarily complicated.

The present state of viscoelastic and rheological problems

also indicates that to explain non-Newtonian effects in real fluids,

the constitutive equations have been made more and more complex

in form by the introduction of many response coefficients and
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unknown functions of strain rate invariants. Here again, one source

of all this trouble is the use of classical measures of strain rate.

1.2. Object of the Present Study

In order to avoid any further complexity of the stress-strain

relations and at the same time to explain the phenomena arising out

of finite deformations in the case of solids and non-Newtonian be-

havior in the case of fluids, there is a need for constructing and

using generalized measures instead of classical measures.

Seth (1962, 1964, 1966) has already done a great deal of pioneering

work in this direction. He has generalized the classical measures

in elasticity and has shown how successfully the generalized mea-

sures explain the mechanical behavior of real materials. He (1966)

has also suggested the generalized measure of deformation-rate to

be used in fluid dynamics.

It is the object of the present investigation to extend Seth's

generalization of the measure of deformation-rate to viscoelastic

and rheological problems, to set up new constitutive equations

using the generalized measures and to apply them to some flow prob-

lems. It will be seen that this new approach will be of great help in

explaining viscoelastic and rheological phenomena in a manner more

precise than the previous theories. The following problems have

been selected for a detailed study with a view to demonstrate how



efficiently this new theory explains real physical phenomena:

rectilinear flows,

helical flows and

c, torsional flow .

1. 3. Basic As sumptions

The following assumptions will be made in the analysis of the

flow problems:

the flow is steady and laminar;

the fluid is homogenous, isotropic and incompres-

sible, and

the flow is isothermal.

1.4. Plan of the Present Investigation

We have divided our work into two parts. Part I is devoted to

the theory of generalized measures of deformation and rates of de-

formation to be used in nonlinear continuum mechanics. In Chapter

2 we show how the two important kinematic tensors d.. and

b.. arise. In Chapter 3 we state the limitations of the classical

theory and make a critical review of the nonlinear theories of con-

tinuum mechanics using o-dinary measures. In Chapter 4 we generalize

the ordinary measures of deformation and deformation-rate and set up

for incompressible, isotropic fluids constitutive equations involving

5
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generalized measures of deformation-rate,

In Part II we apply the concept of generalized measures to some

flow problems and show that this new powerful tool works in bringing

out the non-Newtonian effects in real fluids with remarkable ease

and clarity. The problems have been divided into three categories.

Rectilinear flows between a pair of parallel plates, which arise

either by a relative motion of the plates, or by the application of a

pressure gradient, or both, are discussed in Chapter 5, in Chapter

6 we discuss the non-Newtonian effects arising in helical flows,

Fbiseuille and Couette flows. In Chapter 7 torsional flow is investi-

gated. In the above problems, the influence of generalized measures

of rates of deformation on the pressure and velocity fields has been

determined and their graphs are drawn, Chapter 8 contains the sum-

mary, general discussion and scope of further work,



CHAPTER 2

BASIC CONCEPTS OF NONLINEAR CONTINUUM MECHANICS

2, 1. Preliminary Remarks

In Section 2 we explain what we mean by continuum approach.

In Section 3 we define the important concept of material derivative

and thereafter derive expressions for the first and the second defor-

mation-rate tensors. In Section 4 the two basic equations governing

continuous media viz, the equation of continuity and the equations

of motion are expressed in the Cartesian and the cylindrical coordi-

nates for use later in the flow problems. The material of this chap-

ter is fundamental to all our subsequent work.

2. 2, The Continuum Approach

Modern physics is based on the molecular structure of matter.

From the molecular point of view, solids, liquids, and gases differ

in their average molecular spacing. Whereas the solids are more

closely packed, liquids contain more empty spaces, called holes,

and in gases the average molecular spacing becomes much larger

than the corresponding average molecular diameter. Accordingly,

the physicist regards matter as a discrete conglomeration of

molecules.

7



For many practical purposes, however, we can conveniently

ignore the statistical viewpoint of matter as composed of classical

molecules and assume that matter is indefinitely divisible and hence

has no gaps and empty spaces. A material body viewed from this

angle is called a continuum or a continuous medium.

Although both the theories of matter, that is, molecular as well

as continuum have their merits and demerits, each helps the under-

standing of the other too. We will, however, follow here exclusively

the continuum approach, also called the macroscopic or phenomeno-

logical approach.

2. 3. Kinematics of Continuous Media

Material Derivative. The material derivative of a tensor

A : : : (x1, x2, x3, t) is defined by

DA::: a A ::: ax
+ A : : atDt at

(2. 3.1)

where the symbol denotes covariant differentiation with respect
;

to the spatial coordinate x. In (2.3. 1) at
local change and A : : : ax

;..e at

First Deformation-rate Tensor. The first material derivative

of the square of the line element is given by

2
D(ds )

= 2cL dxi dxj,.Dt

is called the

is called the convective change.

(2.3,2)

8



where

d.. = 1 (v. . + v.
13 2 1; j;3-

(2. 3. 3)

is called the first deformation-rate tensor. Here dxi and v.
1

.th .thare the displacement gradient and the vector component of

velocity respectively.

To prove (2. 3. 2),-we write

D(giidicidxj)D(ds2)
Dt Dt

i D(dxi)
= g dx - + g..dxi D(dxj)

. .

Dt Dt

= g..vi mjdxdx + g. .v dxmidx13 ;m 13 ;m

= (v. . + v. .) dxidxj1;3 3;1

= 2d.. dxidxj
13

Here g.. denotes the metric tensor. We may add here that

the first deformation-rate tensor d.. will be of special interest to

us in our subsequent work.

Second Deformation-rate Tensor. The second material deriva-

tive of the square of the line element is given by

D2(ds2)
= 2b..dxdxj,

Dt2
(2. 3. 4)

9



where

1b.. = . + a. + 2v .vna.
13 2 1; 3 3; m; ;j

is called the second deformation-rate tensor, Here

vector component of acceleration.

To prove (2. 3. 4), we write

D2(ds2) D D(ds2)

Dt2 Et Dt

D(d..dxidxj)
=2

Dt

D(d..)
j D(dxi) n(dxi)J 13

x+.d + d .dxi -"Dt
= 2[ dxidx Dt di3 Dt ij

a (d.. )
j

+=2[
dij; vmd .vm + d. v

m1 dx dxma t mj ; I ; j

8 v. 8 v.
= [

1 + (--J) + vrn(v. .

j+ v )at ;3 at ;i i; im ; 1 M

j+v (v +v ) + vm (v +v )J dx dx; i m; j j; m ; j i; m m;

m ij
= [a. + a. + 2v v

l dx dx
1;J J; 1 ; 1 ;j

= 2b..dx1dx3 .

The second deformation-rate tensor, like the first one, will

also be of significance to us in our subsequent work.

10

(2. 3. 5)

is the ith



2.4. Basic Equations of Continuous Media

The principles of conservation of mass and conservation of

linear momentum lead to the following two equations respectively:

Equation of continuity

at + (pv ); = 0, (2.4.

Equations of motion

p ai = ;j (24,2)

where p density of the material,

t 3 the stress tensor,

_ th
f = i component of body force per unit mass,

(2, 4, 3)

Since, in our flow problems we shall asume the fluid to be

incompressible, homogeneous and having fixed boundaries, we can

take the density p to be constant and also neglect the body force.

Consequently the equations of continuity and of motion reduce to the

following simpler forms:

k
vk 0 (2.4,4)

;

ijpa = t
;3

(2.4, 5)

11

We give below, for future reference, the equations of continuity



and of motion in the Cartesian as well as cylindrical coordinates.

Cartesian

Dv a v a vx + z 0,
a x a y z

p ax =

P aY

(t a (t ) a (t )yz z z
P a + +

z ax a y a z

Cylindrical Coordinates

8 (rvr) v v
, 1 0 z
-r" - = u

r:Dr r aa az

a (t ) a (t ) a (t )xx xy + zx
x 8 y a z

a (t ) a (t ) a (t )
xy yy yz

a x a y a z

D (rt) a(t...) a (tzr) t
00pa = +

Dr r DO a z

a (rt ) 8 (t ) a (tez) trO1 r 0 1 OA
, (2. 4. 9)r Dr r DO a z

1 8 (rtzr) 1
a(t0) a (t )zzpa =

z r Dr r DO a z

P a 0

(2. 4, 6)

(2.4, 7)

(2. 4. 8)

12



Here

v, v, v = physical components of velocity in rectangularx y z

Cartesian coordinates

vr ,
0

, v = physical components of velocity in the cylindricalz

coordinates

a ; a , a = physical components of acceleration in rectangularx y z

Cartesian coordinates (2,4.10)

a, a0 , a = physical components of acceleration in cylindricalr z

coordinates

t , t , etc. a: physical components of the stress tensor inxx xy
rectangular Cartesian coordinates

ttt, tr0, etc. = physical components of the stress tensor in cylin-

drical coordinates.

13



CHAPTER 3

PREVIOUS WORK ON THE THEORY OF CONSTITUTIVE
EQUATIONS OF VISCOELASTIC MATERIALS

3.1. Preliminary Remarks

In Section 2 we cite some of the limitations of the classical

theory of fluid dynamics; for example, its failure to explain the

normal stress effects, variable viscosity of fluids, stress relaxa-

tion, etc. Section 3 deals briefly with various nonlinear theories

that have emerged from time to time since 1945 in an attempt to

find suitable mathematical models which could explain the aforesaid

fluid behavior. In Section 4 we offer some comments on these

theories, drawing special attention to the complicated constitutive

equations which these theories propose and the occurrence of a num-

ber of unknown functions.

3.2. Limitations of the Classical Theory of Hydrodynamics

In classical hydrodynamics, the constitutive equation of inco 1-

pressible viscous fluids is

T = -p I + 2 D, (3.2.1)

with
ID

= 0,

14
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where T =lit.. II = strain matrix,

fluid pressure,

I
116lit' identity matrix, (3.2,2)

coefficient of viscosity,

D d.. = the first deformation-rate matrix and

ID = first invariant of D.

The special features of (3.2.1), are that it is linear in D and

that the viscosity is a function of temperature. Fluids whose be-

havior is governed by (3.2.1) are called incompressible Newtonian

fluids.

There are some fluids for example, water, alcohol, etc,

whose mechanical behavior could be described with a fair degree of

accuracy by (3.2, 1). But there are perhaps many more fluid-like,

incompressible materials whose properties are not described at all

by (3.2.1).

Merrington (1943), in the course of certain measurements of

the discharge of rubber solutions and of oils containing metallic

soaps, observed that the fluid column swelled on emerging from the

tube. This swelling phenomena is known as the Merrington effect.

Garner and Nissan (1946) made the observation that when a

rod is rotated in a hydrocarbon gel, the fluid climbs up the rod while

in an ordinary Newtonian fluid, there is a slight depression near
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the stirrer. Later, Weiss enberg (1947) demonstrated in a series

of experiments essentially the same phenomena, which is now known

as the Weissenberg effect.

Besides the Merrington and the Weissenberg effects which are

also known as the normal stress effects, many real as well as indus-

trial fluids, for example, blood, asphalts, marine glue, paint, pitch,

polymer solutions, protein solutions, colloidal suspensions, have

been found to exhibit predominantly one or more of the following

phenomena: varying flow rates and torques in the Poiseuille and

Couette flows respectively, variable viscosity, viscoelasticity,

viscoplasticity, pseudoplasticity, stress relaxation, time

effects etc. Furthermore, in classical theory of Newtonian fluidS recti-

linear flows are possible in a cylinder of any cross section. But

for non-Newtonian fluids, it was discovered by Ericksen (1956) and

Green and Rivlin (19 56) that such flows cannot be maintained in non-

circular tubes without an appropriate body-force distribution in addi-

tion to a uniform pressure gradient along the tube. In the absence

of such forces, there exists a superposed flow on the steady primary

flow. Such a superposed flow is well known as secondary flow.

Equation (3.2.1) of classical hydrodynamics cannot furnish any ex-

planation for any of these phenomena. Fluids characterized by

this 'anomalous behavior are called non-Newtonian fluids.



3, 3. Nonlinear Theories of Hydrodynamics

Since the number of non-Newtonian fluids is increasing rapidly

in modern industry and biological investigations, there is a definite

need for setting up adequate mathematical models for such fluids.

Motivated by this need, a lot of research has been done in recent

times leading to a number of nonlinear theories, which we are now

going to mention very briefly,

Reiner-Rivlin Theory. Stokes (1845, P. 287) made the following

hypothesis to describe the motion of a viscous fluid:

That the difference between the pressure on a plane in
a given direction passing through any point P of a fluid
in motion and the pressure which would exist in all direc-
tions about P if the fluid in its neighborhood were in a
state of relative equilibrium depends only on the relative
motion of the fluid immediately about P; and that the
relative motion due to any motion of rotation may be
eliminated without affecting the difference of the pressure
abovemention.ed.

This idea of Stokes led to the following form of constitutive

equation for incompressible, isotropic viscous fluids:

T = -p I + f(D),

f(0) = 0, (3. 3. 1)

where f(D) is an arbitrary function of the first deformation-rate

matrix D. If we assume that f(D) is a polynomial (or infinite

series) in D, then the use of Cayley-Hamilton theorem (that is,

every square matrix satisfies its characteristic equation) reduces

17
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18

(3.3.1) to

T = -pI+ aiD+ (121)2, (3.3.2)

where a1 and a2 are functions of the second and the third

invariants of D. The derivation of (3.3.2) is due to Reiner (1945)

and Rivlin (1948).

Rivlin-Ericks_en Theory. Rivlin and Ericksen (1955) assumed

that the stress at a point x at time t is a function of the gradi-

ents, in the spatial system, of velocity, acceleration, second accel-

eration and higher accelerations at the point x, measured at time

t. This assumption ultimately led to the formulation of the constitu-

tive equation

T = a0 I + ap (Trp + TT ) (3.3.3)
P=1

for incompressible, isotropic fluids, where a's are unknown

functions of the second and the third invariants of the kinematic
(1) (2)matrices D , D , D(n) and are also expressible as func-

tions of the traces of certain other matrix products

CrQ
(Q = 1,2, M) Tr are certain matrix products formed fromp

the kinematic matrices D(1), D(2), D(n), while is the
(r) ()transpose of -rrp. The kinematic matrix D 7=11 dr,. , is defined

13



and

(1) 1d.. = --(v. +v )ij 2 I; j j; i

(r-1)
8(d )(r) j m (r-1) (r-1) m (r-1) md(r) i

+ + dim v +d vat 1i; m ; ,j jrn ; i

(r > 2) (3. 3. 4)

thand is generated by taking the rmaterial derivative of the square

of the arclength.

Green-Rivlin Theory. Green and Rivlin (1957), not restricting

themselves to fluids, but considering viscoelastic materials more

generally, assumed that the stress t.. depends on the complete de-

formation history of the material and expressed this assumption by
ax P(taking t.. to be a functional of over the range -00<T<t, thus:
ax q

t.. =

where Xq denotes material coordinates.

They specialized this equation to the case when the material is a fluid,

by observing, that for a fluid the only reference configuration is that

at the instant of measurement of the stress. They therefore took

X = xq and obtained

t..{8x(T)
13 13 a x

T= -0o

Assuming further the stress as a continuous function of the gradients

of velocity and accelerations, they finally obtained the following consti-

tutive equation for viscoelastic fluids:
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5

T = 430(t)I+

N=1

yt (N) (N)
*

(t T gir +-rrdT dTP ' 1" N P P 1 N

P=0 (3, 3. 5)

(N)where Tr (P=1, 2, ,R) are certain matrix products formed

from the matrices G(T1), G(T2), G(TN), [ G(T) I I g (T) I

Pq

xi (T)x3 (T)5.,p ,q kill] and the kinematic matrices D(1), D(2), D(n),

(N)already defined in the Rivlin-Ericksen theory, and Tr is multi-

linear in the matrices G(T); is transpose of Tr ; CI) S
(N)

are continuous functions of t, T1, TN and polynomials in ex-
'

pressions of the form

st
44.4

st
(t T

TN
)tr Tr

dT1 (N=0, 1, , 6)P ' P-co -oo

where Tr (P=1 2 are certain matrix products formed fromp

the matrices G(T) and D(r), each of the matrix products Tr

being multinlin.ear in the matrices G(T)

Oldroyd's Theory. The theory of viscoelasticity was first

initiated by Maxwell (1867). He proposed the following constitutive

equation

a (e)) t(1. + X = 2 p. d..,1 at 13

where

(e)t., = -pg..
3.3 13 13

and (3.3.7)

=c1. 0 (for all p).

(3.3. 6)
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Here

where
(e) (e)

.St a t
4_ t(e) vm + t vm + t V.6t a t m raj ; i im ; j

t. = the stress tensor,

(e)
dt.= eviatoric part of the stress tensor,

a (e) a(1 + X t = 2p, (1 + ) d..1 a t ij 2 a t

where X
2

is another relaxation time constant.

Oldroyd (1950) chose (3.3.9) as the basis for generalization to

nonlinear theory of viscoelasticity. His first generalization was to

replace the time derivatives by convected derivatives so as to

ensure invariance, thus getting

6 (e)
(1+X ---)t = 4

2
.(1+X 5- ) d..1 6t '

(3.3.9)

21

(3.3.10)

(3.3.11)

p = fluid pressure, (3,3_ 8)

d.. = the deformation rate tensor,

p, = coefficient of viscosity,

1
= relaxation time constant.

Later, Frbhlich and Sack (1946) derived essentially the follow-

ing equation of state based on a structural model for a colloidal sus-

pension in which Hookean elastic spherical particles are supposed

distributed in a Newtonian viscous liquid:



and similarly for

(e)ij 6

(1+X 1 t = 41(1" 2-6t:d

22

Another generalization of (3, 3.9) which was also considered by

Oldroyd (1950) was the following:

(3.3.12)

Liquids with equations of state (3, 3.7) and (3. 3. 10) are called liquids

A, and those with equations of state (3, 3. 7) and (3. 3, 12) are called

liquids B. Although (3. 3, 10) and (3. 3. 12) might appear to be

trivially different generalizations of (3. 3.9), Oldroyd (1950) showed

that if
X1 the liquids A and B would exhibit very dif-

ferent bulk properties.

The foregoing generalizations predicted normal stress effects

but not the variable behavior of viscosity. To obtain the latter,

Oldroyd (1951) added to (3. 3. 10) an arbitrary linear

combinationof d. d, d t(e)m , and dimt(ie)m to obtain the furtherj

generalization: (e)5(1+X 1 ót ijt - 2k1 j jm i
(d t(e)m + d t(e)m) = 2p.(1+X2 ---)d,.St

Eilak imd j (3. 3. 13)

where k1 and
k2

are arbitrary scalar constants, A similar

modification was made in (3. 3. 12). More complicated equations

involving contracted triple, and higher products of the stress and



rate of strain tensors, give other distinct generalizations.

Oldroyd (1958) introduced another generalization of (3. 3.9)
c76-1by using Jaumann derivative instead of convected derivative

6
By definition, the Jaumann derivative of a tensor b.

is given by:

"Of b : : : D bct Dt

wm b:::m. ::

b...3... (3.3.14)

at

00

(e) (x,t) = 2 .51 Lp (t-t) d..(3t,t1)dt',

where is the material derivative andDt

and t.. Jr

23

) stands for

summation of similar terms, one for each covariant (contravariant)

index and w.. is the spin tensor

I,w.. = tv. . - v. .)
2 i; 3;

Walters' Analysis. Walters (1960) showed that the general

linearized equations of state of an isotropic incompressible elastico-

viscous liquid have the form:

(e)t.. = -pg. + t. ,
13 13 13

(3.3. 1



where (t-e)

TN(T) T
dT,

jO

and N(T) is called the relaxation spectrum. [N(T) is defined such

that N(T) dT represents the total viscosity of the Maxwell elements

with relaxation times between T and T + dT 3. Equation (3.3.15)2

is regarded as a convected integral following the moving particle,

the restrictions being small rates of shear in a stationary material

element. Later on, Walters (1962) generalized further (3.3.15)2

into the following forms:

(e) (x,t) =29 4,(t-t1
-00

t(e)ij x(x,t) = 2 ip(t-t1)
a

-00 a xi m

a xi

a x

a x

a x, r

d (310,0 ) demr

and (3.3.16)

rri r
d (x , )

24

where x'i = x (3t, t, 0) is the position at time t' of the element

which is instantaneously at the point xi at time t.

The restrictive conditions of small rates of shear no longer

apply to equations (3.3.16). The liquid with equations of state

(3.3.15)1 and (3.3.16), is called liquid A', and that with (3.3.15)1

and (3.3.16)2 is called liquid EV. The liquids designated A and

B by Oldroyd are the special cases of A' and B' respectively,

obtained by substituting



X2
X -X

1N(T) = 6(T) + p,( 2)45 ( T- 1 )

1
)1,

in equations (3.3.15)3 and (3,3,16), The Newtonian liquid is also

a special case obtained by writing

N(T) p.O(T)

where 6 denotes the Dirac delta function, defined in such a way

that

(x) = 0 for x 0

= oo for x = 0 (3.3.18)

oo co

6(x) dx = 6(x)dx 1
-oo

Further generalizations involving contracted double, triple, and

higher product terms in the stress and rate of strain tensors can

be obtained.

Noll's Theory, Noll (1958) assumed that the stress in an

incompressible fluid at time t depends, to within a hydrostatic

pressure, on the history of motion, (in particular, the past history

of the relative deformation gradient) up to time t. His constitutive

equation has thus the form

25

(3.3.17)

co

T = -pi + (G(s)), (3.3.19)
s=0
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where .Y is the constitutive functional and G( s) is the history of

the relative deformation gradient.

3.4. Present Status of the Nonlinear Theories

Although the nonlinear theories outlined in the preceding sec-

tion have answered many outstanding questions regarding the non-

Newtonian behavior of fluids and have also predicted the occurrence

of certain phenomena, for example, the secondary flows which were

experimentally confirmed later by Giesekus (1963) and Hopmann

and Barnett (1964), we would like to make the following comments:

(a) The Reiner-Rivlin theory appears to be mathematically

simpler than the other theories, but it has one obvious drawback,

that, the rheological coefficients which are functions of the invari-

ants of the first deformation-rate tensor are unknown and the

theory, by itself, has no way of specifying them explicitly.

Let and x be the spatial positions of the material point X,
at times T and t ...Jespectively (T < t ). Then, if we express
the dependence of on x, T and t by writing

= x( ,t)t)
the gradient of X respect to is called the deformation
gradient of the material point X at time T, relative to time
t and is denoted by Gt(T). The tensor defined by

G(s) = G (t-s) s > 0

is called the history of the relative deformation gradient.



27

Moreover, experiments conducted so far have shown that. the fluids

characterized by this theory, commonly called Stoke sian fluids, do

not exist in Nature or in industry. This theory always predicts the

existence of two equal normal stresses in certain steady viscometric

flows; but experiments with polyisobutylene solutions by Padden

and Dewitt (1954) seem to contradict such a prediction.when the

rate of shear becomes appreciably large. This experimental evi-

dence was perhaps the greatest reason for the rejection of the

Reiner-Rivlin equation (3.3.2) as an adequate basis for a physical

theory and also a strong motive for the search for constitutive

equations of greater generality.

(b) Rivlin and Ericksen, in their theory of viscoelastic fluids,

have been successful in obtaining normal stresses which need not

be equal but their constitutive equation has been made very compli-

cated by the introduction of several higher order kinematic

matrices and unknown functions of their invariants. Even in the

simplest case, when D(r) 0 for r > 3, the Rivlin-Ericksen

equation (3.3.3) takes the form



T = a0 1+a1 + a D(2) + a D(1)
2 3

2
+ a D(2) + a5 (D(1) D(2) + D(2) D(1))4

2

a6 D(1)2 D(2) + D(2) D(1)2)

+
a7 (D(1) D(2)2 + D(2)2 D(1))

2 2 2 2
+ a (D(1) D(2) + D(2) D(1) )

8
(3.4.1)

It contains as many as nine unknown functions of invariants. Be-

sides,the repeated occurrence of powers and products of the kine-

matic matrices D and D(2)(1) is bound to make the solutions of

the dynamical equations all the more difficult, especially in prob-

lems which by their physical nature are quite involved.

(c) Green and Rivlin's theory is a further generalization of

Rivlin and Ericksen s theory. Besides unknown functions

of invariants, it also contains the functions 4)'s of t, T1, ° " ,TN

etc. Therefore, the above remarks apply to this theory even more

strongly than to the Rivlin-Ericksen theory. Such complicated

equations as those of Green and Rivlin could become really unwieldy

except possibly in a few simple cases. Although these were derived

about a decade back, these do not seem to have been employed in

their general form to solve any physical problem so far.

28
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(d) The theories of Oldroyd and Walters also involve a number

of material constants and the nonlinearity has been introduced in a

very arbitrary fashion.

) Noll's Theory is somewhat similar in idea to the theory

of Green and Rivlin. The solution of any problem in this theory

depends on the experimental determination of the three material

functions, that is,the viscosity function and the two normal stress

functions.

The ever-increasing complexity of the constitutive equations

of continuous media and its ad hoc generalizations aimed at obtaining

simple results have also been criticized by Seth on more than one

occasion. He (1964, 1966) observed that the constitutive equations

have to be complicated so long as we use classical measures of

strain (or strain rate) in their formulation. Cauchy measure or the

linear measure of strain is being used even when strain produced in

a body is large. Any such restriction placed on the strain measure

results in complicating the constitutive relations. Hence strain

measure to be used should be nonlinear in character. To avoid

bringing unnecessary complications in the stress and strain relations

and at the same time to predict results fairly compatible with the

experimental investigations, he has strongly felt the need to con-

struct generalized measures of deformation which should reduce

to the known ones in special cases. The function of these measures



should be to condense the nonlinear effects of the deformation into

one or two terms.

It may be mentioned here that the importance of introducing

generalized measures in nonlinear continuum mechanics and of

referring the strains to the strained system rather than the un-

strained one has been stressed by Seth as early as in 1935 in his

celebrated paper on "Finite Strains in Elastic Problems". His

paper was followed by a series of papers by A. Signorini, F, D.

Murnaghan, C. Truesdell, M. Riener, W. M. Shephard, R. S.

Rivlin, K. H. Swainger, A. E. Green, R. Kappus , D. Panov, P.M.

Riz, N. V. Zovolinsky, V. V. Novozhilov, L. M. Milne-Thomson,

J. L. Ericksen, Z. Karni and others.

In the next chapter we extend the generalizations of the

measures of deformation made by Seth (1966) and then set up new

constitutive equations involving generalized measures.
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CHAPTER 4

PRESENT CONTRIBUTION TO THE CONSTITUTIVE THEORY
OF VISCOELASTIC MATERIALS BASED

ON GENERALIZED MEASURES

4. 1. Preliminary Remarks

We saw in the previous chapter that if we adhere to the use of

ordinary measures of strain or rates of strain to explain irreversible

phenomena involving finite deformations or flows, the constitutive

equations have to be made very complicated and unwieldy . This is

because of the introduction of nonlinear terms involving ordinary

measures and a number of unknown response functions. Since in

the existing nonlinear theories the order of the deformation or flow

is not fixed, one has no control over the nature of these response

functions. They could be in general infinite series expansions in

powers of the invariants of the deformation tensors. This, in turn,

complicates unnecessarily the work of the theorist insofar as the

solution of a practical problem employing such constitutive equations

is concerned. Besides,the experimentalist who must determine a

large number of unknown response functions also has to face similar

difficulties.

Since our ultimate object is to find a suitable explanation for

the nonlinear phenomena, it is natural to think of a generalized

31



(c) Hen.cky measure:

32

measure instead of an ordinary one for this purpose. As stated

earlier, the idea of generalized measure has already been intro-

duced in continuum mechanics by Seth. In this chapter we extend

this idea to viscoelastic and rheological problems in such a way that

it becomes an effective tool to predict nonlinear effects in these prob-

lems. Section 2 deals with generalized measures in elasticity

whereas Section 3 is devoted to the generalized measures to be used

in fluid dynamics. In Section 4 we set up suitable constitutive equa-

tions involving generalized measures of fluid dynamics. These new

constitutive equations contain at the most four constants which the

experimentalist would have to determine.

This new approach, which will be found to be very simple and

effective, is a major departure from the existing trends in nonlinear

continuum mechanics.

4.2. Generalized Measures in Elasticity

The various strain measures already in use in elasticity are

eC 0Cauchy measure:
0

0Swainger measure: e

eH = log
40

(4. 2. 1)



(d) Almansi measure:

A
e = 0)

di(7-
'e 3

0

G I0 -1 di
e = (7)

o

This suggests a further generalization of these measures to

n
0 0

n +1
di

e = [ - ( 7-) ] ,

A 1
e = -2- [ 1- I,

2

(e) Green measure: eG = 1 [ ( ) 1]
2

0

where i and I are the undeformed and deformed lengths
0

respectively.

These measures have the following integral representations

and are obtained by introducing weight functions of various orders:

where e may be called the nth order measure. The weight
n+ 1

0function in this case is . Putting n=-1, 1, 0, 2, -2, we can

33
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(4.2.3)



get the known measures.

If a,. (not summed on are the lengths of the principal
11

axes of the strain quadric and a.. their undeformed lengths,

then the generalized principal strain measure in Cartesian coordi-

nates can be expressed with the help of (4.2. 1) and (4. 2, 3) in terms

of any of the known principal measures. To illustrate this, let

C S A G
e.. , e.. , e,. , e., (not summed on i) be the principal Cauchy,

11 11 11 11

Swainger, Alman.si and Green measures respectively. Then the

generalized principal measure e,, (not summed on i) in

Cartesian coordinates may be written in the form:

e.
.51 eii C -n-1 C

. (1+e.. ) de..
11 0

11 11

(4. 2, 4)
1 r (eCll + 1)-11 -l}-n

11

Jo
S n- 1 S(1-e.. ) de..

11 11

1 S n[ 1 - (1-e .) ,

A n
eii

=
A 2 A

or e.. (1-2e.. ) de..
11 11 13.0

1 A 2[ 1-(1-2e.,)],

34

(4.2. 5)

(4. 2. 6)

or e..



e..
or e.. 9(i+2eG)2 deG

1 G
[(1+2e. )-n

We see at once that for n=- 1, 1, 2, and -2, we get from (4.2.4),

(4. 2. 5), (4. 2. 6) and (4. 2. 7) the Cauchy, Swainger, Almansi and

Green Measures respectively. For rendering the above generalized

forms suitable for further generalizations, these formulae are

written below in a more uniform way:

(4. 2. 7)

We next make the important observation that all the relations

(4. 2. 8) can be further generalized to the form

e..
- ,

=
1 [1-(1-2me..)2- Jii mn 11

35

(4.2.9)

where m should correspond to the appropriate type of the ordinary

*e..
13.

e..

e..

e..

=

=

2 C[(e. + 1) -1]
n

2 52
1-7.1 [ 1 -(1 -eii)

[ 1-(1-2eA)-2-

1 G[(1+2e. ) -1]
n ii

(4. 2. 8)



measure e summed on i) chosen. We note that for
11

1 1 land -1, (4. 2.9) reduces to (4,28).8). We also note that
2' 2

for n=2, the generalized measure e..
11

nary measure e... The generalized form of an ordinary measure
3.1

e.. is therefore

ei4i= =m1n [ 1-(1-2meii)2
]

n _1e.C ii 2
( 1 -2me., ) de.. .

Jo 11 11

4. 3. Generalized Measures in Fluid Dynamics

We are now ready to generalize the ordinary measures of

deformation-rates for use in viscoelasticity, viz,

and

1
d. = (v v. .) ,

13 2 1,3 3,1

inb.. = (a .+a. .+2v v
13 2 1,3 3,1 111,1 ,3

specializes to the ordi-
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(4.2.10)

(4.3, 1)

(4,3.2)

where ,i and ,j denote partial differentiation with respect to

xi and x3 respectively.

As in (4.2. 10) we have

d.. 2- 1

d.
* 3.1

( - 2md ) d(d..)
11 11

m =

1 -(l- 2md..),, (4.3.3)
inn i:i



and

where m and m would help to keep the dimensions correct.,

and

and

11

n'
1 2

= t [1-(1-2m1b..)m n

A still further generalization would be

12 q
d.. 1 -( 1 -2rnd.., J

mqn

2
b = [ 1 -( 1 -2m.'b..) Jii mfcfnicit

11

where k and kt are also dimension correcting constants,

If we expand (4, 3. 5) and (4.3. 6) in powers of d.. and b..

(no summation on i) respectively, we will, after expressing all
2 2

powers higher than the second in terms of d.., d., and b.., b..

by the Cayley-Hamilton theorem, get

2
d =. F + F d, + F d,ii 0 1 ii 2 ii

2
b. = F' + F b,, +

ii 0

= F+Fd +Fd.d.,0 i3 1 ij 2 iR /3
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(4. 3, 4)

(4,3. 5)

(4.3, 6)

where F's and F ' s contain only finite number of terms in the

respective deformation-rate invariants I, II, and

More generally, we have

(4. 3, 9)



and

and

tively.

-2- q
[ S.. - (6..-2md..)

mqn 13 13

k'
- -2m'b..) 2

mtcl nig 13

2

di.i
= N6.. + 2md.. - 5..

mqnq13 13 13

n'_
*

b
k'

. =
No

+2m,b
)25

lj
-

ij ij ijm'clinicli

qt

(4.3.14)
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and bij = F'05ij
+ F'lbij + F'2biib,ej (4.3,10)

Hence we have the generalized deformation-rate measures:

We may add here that the relations (4.3,11) and (4.3.12) are further

equivalent to

(4.3.13)

respectively. The former can be obtained from the latter (or vice

versa) by assigning the same values to m (or m') but with

opposite signs.

The measures d.. and b.. given by (4.3.11) and (zh 3,12)

or (4.3.13) and (4.3.14) are the generalized measures of deforma-

tion-rates. For n, n'=2, q, q1=1, and k, k' =1, these generalized

measures reduce to the ordinary measures d.. and b., respec-
13 13

(4.3.11)

(4.3.12)



4.4 Consitutive Equations Involving Generalized Measures

Having generalized the measures of deformation-rates, we

now proceed to use them to set up a suitable constitutive equation.

For this purpose we choose the Newtonian stress strain-velocity

relation (3.2. 1) which uses the linear measure 1)(= 11 d., 11) . Since

that relation, as remarked earlier, is unable to explain any non-

Newtonian phenomena, we expect it to predict non-Newtonian effects,

if we replace in it the classical measure D by the corresponding

generalized measure D ( = 11 d,. 11). Substitution of the

generalized measure D from (4, 3. 13) in the linear relation

(3.2. 1) then yields

T = -pI + 21,LD

= -pI + 2p, [ (I+ 2mD)2 -I
mgng

If we assign specific positive integral values to n and q, we

shall get from (4.4. 1) after using Cayley-Hamilton theorem, for

incompressible isotropic fluids, a constitutive relation of the

following form

T = -pI + a lID+ azDz , (4. 4. 2)
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(4.4. 1)

where a
1

and a
2

are known functions of the invariants of D

consisting of a finite number of terms only. This is definitely an
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improvement on the Reiner-Rivlin relation (3. 3. 1). But a close

examination has revealed that, like the Reiner-Rivlin relation, it

also predicts two equal normal stresses in certain steady viscomet-

riC flows. To overcome this situation we add to the right side of

(4. 4. 1) the second deformatibn-rate term, viz,4 B Equation

(4.4. 1) then generalizes to

T = -pI + 2+1,D + 4B, (4. 4. 3)

where B = H b.. H and is the dimension correcting constant.

Substituting the expressions for D and B from (4. 3.13) and

(4. 3. 14) into (4. 4. 3) we obtain, for incompressible isotropic fluids

T = -pI ÷ a iD + azD2 p 1B + 213 2, (4. 4. 4)

where, for specific values of n, q, n, ql the coefficients a
1'

a
2

are known functions of the invariants of D, and 1 P a are

known function of the invariants of B with finite number of terms

in each case.

Equation (4. 4. 4) is the matrix form of the constitutive equa-

tion for incompressible, isotropic fluids, which has arisen as the

result, of using generalized measures. It is obvious that whatever

the positive integral values of n, q, n', q , the deviatoric part of

the stress matrix in (4. 4. 4) can never contain more than four

terms. Besides other things, this has a clear advantage over the
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general Rivlin-Ericksen constitutive equation (3.3. 3) or even its

simplest form (3.4. 1). A glance through the other nonlinear

theories of fluid dynamics, summarized earlier in this chapter,

would at once show that in none of them has the order of the mea-

sures of deformation-ratesbeen fixed with the result that one does

not know in those theories how to choose the rheological coefficients,

since they are, in general, infinite series of the invariants of the

kinematic matrices. Further, to explain nonlinear effects adequately

with the help of classical measures, the constitutive equations in

those theories had to be made complicated by taking a number of non-

linear terms. On the other hand, by first generalizing the ordinary

measures and then fixing the orders of the generalized measures,

the nonlinear effects have been condensed, essentially into two

terms, viz,. 21D and 4riB and the rheological coefficients

a 1, a 2, a3 and a4 occurring in (4, 4,4) which is the final form

of our constitutive equation, are also known explicitly. A further

advantage of the generalized measures is that they help to avoid

the unnecessary introduction of a number of response constants,

which are now being so extensively used, thus indicating the direc-

tion in which the analytical treatment may be generalized.

To illustrate how the new constitutive equation (4.4.4) predicts

the non-Newtonian phenomena, we first fix the order of the

generalized measure as follows:



In the real situation, however, the order of the measure as well as

the constants k, m, k' and m' involved in (4,4.4) will have to be

determined for a particular fluid from the experimental data. Using

these values of n, q, and q' in (4.3.13) and (4.3.14) and sub-
*

stituting the resulting expression for D and B in (4.4.3),

we obtain

1-T = - pI+ 2p.k [(I+2mD)22 4ik'
+ [(I+2m'B)-I]32 2m4 m' 323

= pI + 2p.k (m2D4 + ZmD3 +D2) + 41-110B3.

Use of Caylay-Hamilton theorem now yields

T = -pI + 2p.k(2mIII + m21DIIID)I+2p,k(- 2mIID-m2IDIID+m2IIID)D

2
+2}1,k(-1+2mID+m2 ID-m2 IID)D2 +

+ 4rik'IBB2

Since we shall deal with incompressible fluids, we have

(4.4.6)

(4.4e7)

n

q

n'

=

=

=

4

2

2

3

(4.4.
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It will be seen from the solutions of the flow problems that in

order that our results be physically meaningful, the rheological

constants a and p must have the same sign. To be consistent

and definite, we will as sume a and p to be positive. We will,

however, let .1 to be either positive or negative.
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In all the specific flow problems considered here, owing to

the geometry of the problem, we shall see that

D
= 0,

II = 0, (4.4.8)

and

B
0,

and thus we are left with the invariants
1B

and
ID

only.

By virtue of (4. 4,7) and (4,4.8), equation (4,4.6) reduces to

T pI4mkIIDD + 2[11:( I -m2IID)D+47-Ik'IBB4. (1.4,9)

Using the tensor notation,(4.4,. 9) takes the form

-p6i-8a.13 II di+2a(1-4Pz )d- d +
B
bibj , (4.4. 10)

D j D j k

where k = a

m 213, (4.4.11)



PART IL APPLICATIONS OF THE NEW THEORY
OF CONSTITUTIVE EQUATIONS

TO SOME FLOW PROBLEMS

CHAPTER 5

RECTILINEAR FLOWS

5. 1. Preliminary Remarks

In Section 2 we discuss the rectilinear flow between two infinite

parallel plates, the flow being caused by the motion of one of the

plates parallel to itself and a nonvanishing pressure gradient. An

interesting phenomenon, narnely,back flow, is also studied in this

section. Section 3 deals with the case of rectilinear flow caused

by pressure gradient alone, whereas the flow investigated in Section

4 is made -possible by moving one of the plates parallel to itself with-

out creating any pressure gradient. Graphs of back flow, velocity

profiles and pressure difference are also drawn.

5.2. Generalized Rectilinear Flow

Formulation of the Problem

44

We consider a steady rectilinear flow between to infinite paral-

lel plates at a distance h apart (Figure 5. 1). We assume that

one of the plates is at rest and the other is moving parallel to itself



Figure 5.1. Generalized rectilinear flow.
Equations of Motion

With the velocity of field given by (5.2. 1) the first and the

45
with a constant velocity V. We further assume that the pressure

gradient Ai) in the direction of flow does not vanish. The axes of

coordinates are so chosen that the direction of flow is the positive

direction of the z-axis. The equation of the plate at rest is x=0

and that of the moving plate is x=h. The velocity field is given by

v =0x

v =0 ( 5. 2. 1)

vz
= v(x)

second deformation-rate tensors take the following

0 0 d3

forms:

0 0 0

d3 0 0
1 (5. 2. 2)

0 0
1 t

2

0 0



b.

where

xy

8v
8x

0 0 0

0 0 0

v12 0 0

-p +(1-Fp2Nil2)vi2zz 2

t = a pvzx

t = 0 ,yz

t =0.

Using (5.2. 2)1 and (5. 2. 3)1 in (4. 4. 10), we get as our constitutive

equation,

-p6i + 8a 13 di d3 d 2a (1+4p2d1d3)di d f2 + vb1bibl
3 1 j 311j '1/j°

(5. 2,3)
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(5. 2. 4)

Next, with the help of (5. 2. 2)2 and (5. 2. 3)2' we get the stress corn-

ponents:,

a 2 (2 t2
t = -p + 2(1+13 )v +v6,,
xx

(5. 2. 5)



The equations of motion (2. 4. 7) then become

ax

Solution of the Equations

Pressure Gradient. We first calculate the pressure gradient

Ap = 22 From (5. 2. 6)1 it follows that t does not depend on
az xx

x, so that we can write

t = (y, z) (5. 2. 8)
xx

or (txx+ p) - p = 4(y, z) (5. 2. 9)

Since from (5.2. 5)1 txx+p
is independent of y, we get, after

differentiating (5. 2. 9) with respect to y,

att )xx
= 0 ,

a(t )zx ap 0.
Ox az

Boundary Conditions

Assuming the no-slip condition on the plates we have

v(0) = 0,

v(h) = YO.

ap 3,1)(y, z)
by ay

47

0 (5.2.6)

(5.2.7)

(5.2.10)



By virtue of (5. 2. 6)2 we have from (5.2.10)

8(1)(Y' z) = 0
ay

and hence .4 . is independent of y. Equation (5.2.9) then becomes

(t +p) - p = 0)(z) (5.2.11)
xx

Since from (5. 2. 5) , (t +p) is independent of z also, we get
1 xx

after differentiating (5.2. 11) with respect to

ap&(z)
az - az

From (5.2. 6)3 and (5. 2. 12) we obtain

act )
zx a4)

ax az
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(5.2.12)

(5.2.13)

a(t )zxSince from (5. 2. 5)4 we can say that ax is independent of z,

ast. is independent of z from (5.2. 13). Consequently from (5.2.12),
az
ap is independent of z as well as of x and y. Thus '22 7 LT
az az

is a constant. This constant is nonzero by hypothesis. We note that

6p is negative.

Velocity Field. From (5. 2, 6)3 we now get

a(t )zx
8x

Ap (5.2.14)



Integrating (5. 2. 14) and then using (5. 2. 5)4 we obtain

3
a pvt (4p)x+k1 , (5.2.15)

or
4/3

v = P(x + ki) kz

where k2
is another constant of integration. Equation (5.2. 17)

gives the velocity field and the constants k
k2

occurring in this

equation have to be determined from the boundary conditions (5.2. 7).

Before we apply the boundary conditions, we would like to put (5.2.17)

in nondimensional form .

Dividing both sides of (5.2. 17) by V we get

27h4
1/3 kI 4/3 k2Ap

=
(6,4a

3
pV

) h hp
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(5.2. 18)

where k1
is the constant of integration.

From (5.2. 15) we get

vt
k

r LID 1
+

1/3
(5.2.16)L x J

a p a13

Integration of (5.2. 16) yields

k, 4/3
3a p

v = [ LID ] k2 (5.2.17)
4Ap aP aP



where

are

Vv=
V

4 1/3
P = (27h

Ap
)

64a pv3

x=

k1
1 hp

= 0

v(1) = 1

Using the boundary conditions (5. 2. 20) in (5. 2. 18) we have

= -P k
1

and

(iZ2
-1)3 = - P3(1c.'1 +1)4

50

(5.2.19)

(5.2.20)

(5.2.21)

k2
2 T

are the dimensionless quantities.

The nondimensional forms of the boundary conditions (5. 2. 7)



and

Case One

First let A p < 0', then from (5. 2. 19)2, we conclude that

P < 0

In particular, let P = -1 (say). Then (5, 2. 21) reduces to

^, 3 4
(12-1) =

(k1+1)

The solution of the above equations is readily found to be

= -1 and k2 = 1,

Then (5. 2. 18) becomes

--, 4/3
v = -(x-1) + 1

Again, let P = -2 (say). Then (5. 2.21) reduces to

k2 = 8k1
1

and

4-1)3 =
8(k1

+1) .

It is found that Tc.1 = -. 74 and -fc.'2 = 1. 34 is the approximate solution

of the equations (5.2. 24), Then equation (5. 2. 18) becomes
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(5.2.22)

(5.2.23)

(5.2.24)

v = -2(x-. 74)4/3+1. 34. (5.2.25)



Case Two

Next let Ap > 0 ; then from (5. 2. 19)2 we conclude that

p> 0 .

In particular let P = 1 (say). Then (5.2. 21) reduces to

k2 = -k1

and
(5. 2. Z6)

3 4
(k2-1) = -(k +1)

Obviously k1 = k2 = 0 is the solution of the equations (5. 2. 26).

Then equation (5. 2. 18) becomes
-,4/3v = x (5.2.27)

Again, let P = 2. Then (5.2. 21) reduces to

k = -8k
2 1

and (5. 2. 28)

3

(k2-1) -8 + 1)4

It is found that k1 = - . 26 and 1-Z2 = - . 34 is the approximate

solution of the equations (5.2. 28). Then equation (5.2. 18) becomes

^v-= = 2(7 - 26)413- . 34. (5.2.29)

As we shall see later, the special cases (5. 2.23), (5. 2. 25), (5.2. 27)
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and (5. 2. 29) of equation (5.2. 18) will reveal an interesting phenomenc,



Pressure Field and Stress Distribution, From (5. 2. 12) we

obtain after integration

c(z) -Apz + k3 , (5: 2. 30)

where is a constant of integration.

Substituting the value of cp(z) from (5.2. 11) in (5. 2. 30), we get

Using (5.2. 16) and (5. 2. 31) in (5.2. 5) we get
1

1/3
apz - k3 + HApx + ki)2/3 p4/3 (Lpx + k1)413]

213 a2/3

+ 22 (Lpx + k 2

a (3

or

P

p(x, z) = p(0, z
2f3

t -Lpz + k3xx

1/3
a 2/3 2/3+2/3 [(px + k

1

4/3 4/3 4/3
+ P 2 / 3 {(Apx + k1) - } j

a

2 2
21

[(Lpx + k1)2 k}
a (3
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(5.2. 31)

(5.2.32)

Equation (5. 2. 32) gives the pressure field. [We assume that p(0, z)

is already known. ]

Using (5.2. 16) and (5.2. 32) we obtain from (5.2. 5), the



following stress distribution:

a1/3 2/3 134/3 4/31
t = - p(x, z) + (6px + k1)213 2/3 (Lpx + k1)
xx 1zp2/3 a

( px k1)222
a 13

t = -p(x, z)
YY

zz

1/34/3
= -p(x,z)+ a2/3 [(Apx+ki)2

3

zp

t = px + kl,
zx

t = 0,
yz

t = 0,
xy

where p(x, z) is given by (5. 2. 32).

Discussion of the Results

2/3 (Zspx+k
4 3I,

54

(5.2,33)

We have worked out expressions for the dimensionless velocity

for four distinct values of the dimensionless pressure gradient P

defined by (5.2. 19)2 . From the graph (Figure 5. 2, p, 55 ) of the

velocity field for these four cases, we see that the shape of the

velocity profile is determined by P. When the nondimensional

pressure gradient P < 0, (and that happens whenever the fluid

pressure p decreases in the direction of motion of the moving

plate) the fluid always possesses a positive velocity throughout the
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Figure 5.2. Velocity profile in generalized rectilinear flow.
P< 0, pressure decrease in direction of plate motion;
p= 0, zero pressure gradient;
p> 0, pressure increase in direction of plate motion.



56

channel; that is, the entire flow is in the direction of z increasing.

But when P> 0, (and that happens when the pressure p increases

in the direction of motion of the moving plate) the fluid continues to

possess positive velocity throughout the channel but only up to a cer-

tain positive value of P. As the graph shows when P = 1, the

fluid velocity is positive throughout the channel. But when P = 2

or >2, the velocity is negative over a portion of the channel on the

side of the stationary plate whereas it is positive over the rest of

the channel which is on the side of the moving plate. Physically,

negative velocity means back flow. This situation arises because the

dragging action of the fluid layers sliding in the direction of the moving

plate is not enough to overcome the influence of the adverse pressure

gradient near the stationary plate.

We also note that when P > 0, the maximum positive velocity

of the fluid is that of the moving plate. But when P < 0, the maxi-

mum velocity may exceed the velocity of the moving plate.

The behavior of the non-Newtonian fluid in the present problem

is found to be similar to that of the classical fluid discussed by

Schlichting (1960).

This type of flow finds application in the lubrication theory of

fluids. The flow in the narrow space between the journal and the

bearing is very much comparable with the rectilinear shear flow

with a nonvanishing pressure gradient.



5. 3. Channel Flow

Formulation of the Problem

This is a steady rectilinear flow between two infinite parallel

plates at a distance 2d apart (Figure 5. 3). We assume,as before,

that the pressure gradient .6 p in the direction of flow does not

vanish, but both the plates are assumed to be at rest. The coordi-

nate axes are so chosen that the origin is midway between the two

plates; the positive direction of the z-axis is the direction of flow

and the x-axis is perpendicular to (both) the plates. The velocity

field is given by

X

x = d

x = -d

0

V = 0

V = 0

> V

Figure 5.3. Channel flow (E pt o)
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V = 0x

= 0 (5. 3. 1)

vz = v(x) .



Equations of Motion

The equations of motion in this case are exactly the same as in

the case of generalized rectilinear flow.

Boundary Conditions

Since the fluid adheres to the plates, we have

v( d) = 0 . (5. 3. 2)

Solution of the Equations

Pressure Gradient. As in the previous section, the pressure

gradient Ap 8z
is a constant which is non-zero by hypothesis.

Velocity Field . Again as before,

kl 4/3
v = 3aP [ " x + + k24Ap ap ap

Changing (5 3. 3) to the nondimensional form we obtain

v = P(Z+ic1)413 +1.'
2

where V =

max

1/3
P = (27d4Ap

64apv3max
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(5.3. 3)

(5. 3. 4)



kl
=

1 dtp

k2
k2 vmax

are the dimensionless quantities and vmax is the maximum velocity

in the channel.

The nondiMensiOnal forms of the boundary conditions (5. 3. 2)

are

which means that k1
must be zero. Consequently (5. 3. 4) reduces

-d4/3
v = Px +k2.

The use of boundary conditions once again gives

= - P (5.3.9)

Substituting the value of ic-42 from (5. 3. 9) in (5. 3. 8) we get

4/3V = P(x - 1).
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(5. 3. 5)

(5. 3. 8)

(5. 3. 10)

v(± 1) = 0 (5. 3. 6)

Using the boundary conditions (5. 3, 6) in (5. 3. 4) we have

1`1 " 1
(5. 3. 7)



Since P is n.egative, from (5. 3. 10) we have

vmax

In other words
vrnax = _p
vmax

which means -1. Hence (5, 3. 10) becomes

4/3v= 1-x

Equation (5 3. 13) gives the velocity field.

Putting P = -1 in (5. 3. 5)2 we get the maximum velocity

of the flow:max

-27d4,6p )1/3vmax = 64 ap
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(5.3. 11)

(5.3. 12)

(5.3. 13)

(5. 3. 14)

Pressure Field and Stress Distribution. Setting k0 in
1

(5. 2. 32) and (5. 2.33) we get

(34/3 4/3
p(x, z) = 13(0, z + a1/3 [(Lpx)213 + ( px) (Lpx)

a
2,2/3 2 2

2(3
2/3 a 13

a1/3 2/3 p4/3t = - p(x, z) + 2/3 [(Lpx) + 2/3 (Apx)
xx zp a

+ 2 2 (Lpx)2
a (3

t -p(x, z) , (5. 3. 15)
YY



a1/3 2/3 p4/3 4 31
tzz = -p(x, z)+ 2/3 [(AIDx) 2/3 (Apx

2f3 a /
t = ispx,zx

t = 0 ,yz

t = 0 ,xy

where p(x, z) is given by (5.3.15)/ .

Volumetric Flow Rate. The volumetric flow rate through a

cross section of the channel of width f, is given by

Q = IS v(x)dx
-d

Discussion of the Results

It is well known that for a steady channel flow of a Newtonian

fluid between two infinite parallel plates at a distance 2d apart

and with a nonvanishing pressure gradient Ap in the direction of

flow the velocity profile is given by

3/ LsE 1/3 d
, 4/3 _4/3

= ( ) (x -d )dx
4 a3 -d

-6/ 1/3 7/3
7 ( a3 ) d

(5.3.16)

V =-A2. (d2-x2),
211

61

(5.3.17)

where is the Newtonian viscosity. This is obviously parabolic.
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But for a non-Newtonian fluid we see from (5. 3. 13) that the velocity

profile need not be parabolic.

The velocity curves (Figure 5. 4, p. 63 ) of

-
where v =

-2v = -x

vmax

x =

(Newtonian)

- 4/3
= 1-x , (non-Newtonian)

(5.3.20)

show that the non-Newtonian character of the fluid results in damping

its velocity. This phenomena is due to the viscoelastic nature of the

fluid.

We see from (5. 3.
15)5

that to calculate the shearing stress at

a point in the flow region, we need to know only the pressure gradient

along the z-axis. In spite of the fact that the velocity field is given

by a nonlinear function of x, the shearing stress is linear in x.

Unlike the Newtonian case, the volumetric flow rate is no

longer proportional to the cube of the channel width, so that the

classical formula for the flow rate of Newtonian fluids does not hold

in the case of non-Newtonian fluids.



Figure 5.4. Velocity profiles in channel flow of the
Newtonian and the non-Newtonian fluids.
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To study the pressure difference across the channel width, we

write from (5.3.
15)1

where

and

-a2/3 ,-,4/ 3
p = x + nix +nx ,

P
p(x, z) - p(0, z)
a (cLs2)2/3
2 a p

2(
dAp 2/3-a p

(clAp )4/3
a a13

are the dimensionless quantities.

We have plotted the graph of the radial pressure variations for

various values of m and n to show the dependence of the normal

stress effects on the rheological constants a, p and -y .(Figure 5.5, p.

65). A close inspection of the graph reveals that owing to the pressure

variation across the width of the channel, there would result a flow

normal to the plates. But no such flow actually occurs, since the

plates are held in position by the application of external normal.

forces. Further examination of the graph shows some more

interesting features of the pressure variation which occurs in

the absence of external normal forces. For positive values of the

(5.3.21)

(5. 3. 22)
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Figure 5. 5 Pressure variation in channel
flow.
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-dimensionless parameters m and n , the pressure increases

gradually as we proceed outwards from the center of the channel.
-

The situation is, however, different when we take n negative.

For example, for in = 1 and n -1, we again have a gradual

pressure increase as before. But for m=1 and n= -2, the pres-

sure first increases for part of the channel width and then decreases

for the remaining part in such a way that it becomes the same on the
-channel walls as at the center of the channel. Again, for m=1 and

n= -3, the pressure first increases for part of the channel width

and then decreases as we proceed away from the center, so that it

becomes less on the walls than at the center of the channel. We thus

see that if we keep the dimensionless parameter m fixed and

assign different positive and negative values to the other parameter,

that is 11, we notice marked fluctuations in the behavior of pres-

sure across the channel width. This in turn shows how different

values of the 'theological constants affect the variation in pressure

in the channel flow. These phenomena are characteristic of non-

Newtonian fluids only and do not occur in the Newtonian case.

5. 4. Simple Shearing Flow

Formulation of the Problem

This is a steady rectilinear flow between two infinite parallel

66
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plates at a distance h apart, one of which is at rest and the other

is moving in a direction parallel to itself with a constant velocity

V (Figure 5. 6). We now assume that there is no pressure gradient

in the direction of flow. The axes of coordinates are so chosen that

the origin lies on the plate at rest; the positive direction of the z-

axis is the direction of flow, and the equation of the plate at rest

is x=0 , and that of the moving plate is x=h. The velocity field is

given by

V =0

vz
= v(x)

Figure 5.6. Simple shearing flow.

(5.4. 1)



Equations of Motion

The equations of motion in this case are the same as in the

two previous cases of flow.

Boundary Conditions

Assuming that the fluid adheres to the plates we have

v(0) = 0

v(h) = V / 0

Solution of the Equations

Velocity Field. From (5. 2. 16) we obtain after setting

Lp = 0

Integrating we get
kI 1/3v = () x k
a p 2,

k1 1

= (a p)

V
h x

3

where
k2

is a constant of integration.

Using the boundary conditions (5 2,) we get
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(5.4. 2)

(5.4. 3)

(5. 4. 4)

(5.4. 5)

Pressure Field and Stress Distribution, Since Ls p=0, we see
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from (5. 2. 32) that the pressure p is constant everywhere in the

flow.

From (5.4. 5)

V
vi = constant .

zz

=zx

t =0yz

t = 0.
xy

Discussion of the Results

Substituting the value of v° from (5. 4. 6) in (5. 2. 5) we obtain

a
xx

V2 V2 V6-pi-- (1+213 ----
h2 h2 + \I2

t = - p ,xy

2V2 2
V

= -13 + (1+ P)
(5.4. 7)

(5. 4. 6)

We already know that in simple shearing flows of both the

Newtonian and the non-Newtonian fluids, the velocity profiles are

linear. This is also confirmed by our investigation. A graph of

the velocity profile is plotted in Figure 5. 7, p. 70 . We further

note from (5. 4. 6) that the shear rate vt remains constant.



Figure 5. 7. Velocity profile in simple shearing flow.
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Equations (5. 4. 7) show that in order to maintain a shearing

flow between two infinite parallel plates, shearing forces zx

alone are not sufficient but we must, in addition, apply forces

normal to the plates. These remarks also apply to the two previous

cases of rectilinear flow. This normal stress phenomena does not

occur in the rectilinear flow of a Newtonian fluid.

We further note that the normal stresses in all the three cases

of rectilinear flow are even functions of the rate of shear, whereas

shearing stress is an odd function. This is quite natural because

reversing the rate of shear, that is, changing v to -v', would not

affect the normal stresses whereas it would reverse the direction

of flow and consequently also reverse the tangential force.

After having studied three types of rectilinear flows of a non-

Newtonian fluid, we would like to make another important and

interesting observation. We know from the classical theory

(Landau and Lifshitz, 1959; Schlichting, 1960) that the velocity

profiles in the rectilinear flows of a Newtonian fluid are given by

V bpv= x - (hx - x2), (for generalized rectilinear flow)

v = - 1-1) (hx - x2)
21-1,

Vand v x .

(for channel flow)

(for simple shearing flow)
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It is evident that in this case, the velocity profile for the generalized

rectilinear flow can be obtained by a mere superposition of the

velocity profiles for the channel flow and the simple shearing flow.

But, from the corresponding velocity profiles in rectilinear flows

of a non-Newtonian fluid, viz,

3 , Ap 1/3 k 4/3
1

J + k
4 a 13 LID

3 AID 1/3 h 4/3 h 4/3
= - 71(

-p)
[ (-2) - (x- 2)

and

V =

we see that the velocity profile for the generalized rectilinear flow

can no longer be obtained by an application of the superposition

principle. Such a situation is quite characteristic of nonlinear prob-

lems of continuous media.



CHAPTER 6

HELICAL FLOWS

6. 1. Preliminary Remarks

This chapter is devoted to the discussion of the generalized

helical flow and its two important special cases. Section 2 deals

with the Poiseuille-Couette flow. Since helical flow with narrow

annular gap is of some practical importance, such as in lubrication

theory, we study it in detail. In Sections 3 and 4 a detailed treat-

ment of Poiseuille and Couette flows respectively is presented.

Besides other non-Newtonian effects, the swelling and thinning in the

case of Poiseuille flow and climbing in Couette as also the

pressure variations are discussed at sufficient length. The velocity

profiles and pressure variations are also shown graphically.

6. 2. Poiseuille-Couette Flow

Formulation of the Problem

73

We now consider a steady combined axial and tangential flow

of a mass of fluid in the annular region between two infinite coaxial

cylinders (Figure 6. 1). We assume a nonvanishing pressure

gradient p along the axis of the cylinders and also that the

outer cylinder is rotating with constant angular velocity S.2 . The



velocity field in cylindrical coordinates (r, 0, z with z taken

along the axis of the cylinders) is given by

V =0r

v0
= rco (r)

v = u(r) ,

d0where (.,.)(r) is the angular velocity at a radial distancedt

from the axis of rotation.

U = 0

U = 0

p

R2
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(6. 2. 1)

Z

Figure 6.1, Poiseuille-Couette flow.

Equations of Motion

Using (6. 2. 1) we get the following expressions for the first

and the second deformation-rate tensors di, and b. respectively:



di.

0 d1
2

d2 0 0
1

d3 0 0
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1

(6. 2. 2)

0

2
r co

2 2

0 0

0 0

1

b1
0 0

bij 0 0 0

0 0 0

(6. 2. 3)

(ut 2+r2co' 2) 0

0 0 0

where U

0 0

au _ acoand c.)' =

0

ar

Substituting the values of IID and IB from (6. 2. 2)1 and (6. 2. 3)1



in the constitutive equation (4. 4. 10) we have

1 3 1 i= -p S. + 8a p (d d +d d )d +2a[ 1 + 4p2(d1d3+d1d2)] didk
3 1 2 1 j 3 1 2 1 I j

tee

i
bR

bi

Using (6. 2. 2)2 and (6. 2. 3)2 in (6. 2. 4) we obtain the stress cornpo-

nents:

3

t = -p + 1-1-(32(u,2+r2co,2)] ( + r (ul2+r2c4)a
rr 2

a 2 2 22 22
+ -2-, [ 1 + p (ut + r )] r

a [1
,2 2)j,2 UtZ-p + 1 + 13 + r

22

(u r22) rcot

t [1 + p2 (u'2 + r2 col 2) Iu tru.)02 2

,2 22t = ap (u + r c.A.) ) uzr

The equations of motion (2. 4.9 ) now become
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(6. 2. 4)

(6, 2. 5)



8(t trr -t
O0rr

=ar - p ro)

a(tr0) tr0
+ = 0 ,ar

a(tzr tzr
- aP o .ar r az

Boundary Conditions

are the radii of the inner and the outerIf
R1

and R2

cylinders respectively, then the no slip condition on the cylindrical

walls requires

u(R1) = u(R2) = 0 (6. 2. 7)

and oAR ) = 0

(6. 2. 8)

oAR2) = S2 / 0 .

Solution of the Equations

Pressure Gradient. Differentiating (6. 2.
6)1

with respect to z,

we get

(6. 2. 6)
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2

a P = 0 .azar (6.2.9)

apFrom equation (6. 2. 9) it follows that is not a function of r;az



apit may be a function of z. But (6. 2. 6)3 shows that is a8z

function of r and not of z. Since r and z are mutually

independent,-2-8 must be a constant. We denote this constantaz

by Ap.

Velocity Field. Integrating (6. Z. 6)3 we get

Ap At r +zr 2 r

where A is a constant of integration.

After integration (6. 2. 6)2 yields

a 13

where B is a constant of integration.

From (6. 2. 5)6 and (6. 2. 10) we obtain

,6pup (u12 + r2c412)u° = r + ,

Again from (6. Z. 5)4 and (6. Z. 11) we get

2 22+ r o.)1)rw' = '

From (6. 2. 12) and (6. 2. 13), after squaring and adding, we get

22 2 2 23 tpa p(u' +r cut )

2 2
A
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(6. 2. 10)

(6.2.11)

(6.2. 12)

(6. 2. 13)



whence

pp A
u12-Fr2Ca),2

2/31 2/3
[( 2r ) +(

a 13

Using (6. 2. 14) in (6. 2. 12) and (6 2. 13) we get

and

U =

and co =

U --

.6p A ,r +
2

1/3 1/3 Lp A 2 B 2 1/3
a p [(-2-r +)+ (-2-)

r3

1/3 1/3 Pp Ar + 2 B 211/3
a p --2-- +

1 3

1/3r,"Lp

+
,2+ B)

211/3

2 ('

Ap A
c r (

2 G

__M-7-37.7-13.r i Lp A ,2 , i B )211/3 d
L ,, iT)jR1 a

Application of the remaining boundary conditions gives
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2 1/3
) (6. 2. 14)

(6. 2. 15)

(6. 2, 16)

Integration of (6, 2.15) and (6, 2. 16) and application of the boundary

conditions (6. 2,
7)1

and (6, 2. 8) yields
1

(6. 2. 17)

3

d . (6, 2.18)



Ap A
)

0 =
a1/3 1/3

[(
Ap A 2 B 2 1/3 d '+-c) +(-7)

Equations (6. 2. 19) and (6. 2. 20) can be solved numerically for

A and B. One method would be by trial and error, We would

assume reasonable values of A and B and perform numerical

integration. We will have to repeat the trials until we obtain such

values of A and B as satisfy (6. 2. 19) and (6. 2. 20). We can

then use the values of A and B so obtained in (6. 2. 17) and

(6. Z. 18) and carry out numerical integration to find u and w

Since the number of trials may be quite large, the digital computer

will have to be used in any practical problem.

Pressure Field and Stress Distribution, Substituting (6. 2. 5

in (6. 2. 6)1 we get

2 2 :2,3ap_a
Ll

a ri+pz (u,z+rz2w, )1(u12+r2w12)] +11 .e.11 (11' +r war 2 ar

a
+ [ { 1+ p2(u:2+r2w12)} u

3

21- (u' 2+r2w' 2)3 + prw2+,

80

(6.2. 19)

d . (6. 2. 20)1/3 1/3 ,6p A)2 B 211/3
2

;fr

2
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Integrating the above equation between Ri and r, (RI.< r < R2) ,

we obtain

1)(r,z) = p(R z) +[2{(u' 2+r 2w
2 2 2 3 r=r

2 )+2(u'2+r2w' 2)2}-F-y (uc +r w' )
r=R,

{ {1-Fp2(u'2+
22 2

d

(6. 2. 21)

where ut and wl are given by (6. 2.1 5) and (6. Z. 16) respectively

and
P(Rr is assumed to be known.

Substitution of this value of p(r, z) into (6. 2. 5)

determines the normal stresses.

Torque. The torque M per unit height required to maintain

a steady rotation of the fluid inside the cylinder of radius r,

(R1 _< r R2), is given by

M =
2Trr

r ° tr
(6. 2, 22)

= 2-rrB

after using (6. 2. 11). Since M is independent of r, the torque

per unit height on the outer cylinder is given by (6. 2. 22). Inci-

dentally, the constant B is now assigned a physical meaning in



terms of torque.

Volumetric Flow Rate. The volumetric flow rate Q through

the annulus is given by

R

JR
1

J 0
u(r) rdOdr

(6. 2. 23)

sR2 u(r) r dr
R1

So far we have discussed the helical flow problem in a very general

way. We would now like to discuss a special case of some physical

interest.

Helical Flow with a Narrow Annular Gap

The case of helical flow when the gap between the two cylinders

is very small is of special interest in the theory of lubrication

because the flow pattern of a lubricant in the narrow clearance be-

tween the bearing and the journal is, for all practical purposes,

helical. To discuss this flow, our natural assumption would be,

where R1 and R2 are the radii of the inner and outer cylinders

respectively.
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R
2

-R

R1
<< 1 (6. 2. 24)



We first introduce the dimensionless variables r u,

defined by

u= (6. 2. 25)

CA) =

where U may be taken as the average axial velocity.

Then the dimensionless forms of (6. 2. 17), (6. 2. 18), (6. 2. 19) and

cl'.
2

]
1/3

)2]2, 1/3
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(6.2.27)

(6.2.28)

(6.2.29)

(6. 2. 20) are respectively

=
( +

1
- A 2[( t+ )

173

z

B
3

(,)

1
- 2[( -(3-

ii ( i -r ---:-)

0 t
- A 2 B[ ( t + ,-) + ()t -21

1

- 3

-
[(

A2
+(

2 1/3 d , (6.2.26)



where

-A =
2

R1
Lp

2B
B -

R3 ,6p
1

R4 Li)
1/3

=( 1

32a p U

R1 Ap 1/3
5 =(

2a 13 S23

Also

2A

R
2 > 1

R1

are the dimensionless quantities.

From (6. 2. 28) we see that A< 0, so that A = -s2 (say) .

[A 0, since in that case the integran.d would be positive through-
-

out the interval 1 < R . Also, A cannot be > 0, since in

this case the integrand would become positive again throughout the

same interval, and hence (6. 2 28) will not be s ati s fie d.1
- 2Again, - s2 has to be negative for part of the interval [ 1, T1]

and positive for the remaining part in order to satisfy (6 2. 28).

Hence

(6.2.30)

2 -21 < s <R

-2 -21< < R

84

(6.2.31)

(6. 2. 32)



Since by (6. 2. 24), R - 3.<< 1, that is, the interval [1, it] is very
'small we have I .;

2 -s2< < 1 and consequently

« 1 (6. 2. 33).

From (6. 2. 29) we see that

1 < R (R 1)15I IB1/ I (6.2.34)

Now R-1 << 1, by hypothesis. Further, in the flow of a lubricant

between the bearing and the journal, it is reasonable to assume

that the pressure gradient Lip is small whereas the angular

velocity Q is large. In view of the above situation and the inequal-

ity (6. 2.34), 5 can be chosen sufficiently small so that I I and-
Bconsequently ()2 becomes large enough as compared with-2

in the interval

By the foregoing reasoning, we can now ignore the second

order terms in 4- ), occurring in (6. 2. 26) to (6. 2. 29). Thus

we get from (6. 2. 28) and (6. 2. 29)

)2
)

0 *SI a 7/3
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(6. 2. 35)

-Integrating (6. 2.35) and (6. 2. 36) and solving for A and B we get

and 75 13 1/3 -513 dZ. (6. 2.36)
1



and

Integrating we get

-10/3 -4/3- 27 - -2(1 2/3) 2(R -10/31)[ r -1 r -1 ] (6. 2. 41)-R -U To. N 6 -10/3
R -1 R -1

and

-
U =

1

2(1 - k1O/3)
=

[1 P213]
W =

_it -213]

'5( 11.4/3-1)

Again in a similar way, we obtain from (6. 2. 26) and (6. 2. 27)

7/3 1/3)
2/3

1 B
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(6. 2. 37)

(6. 2. 38)

(6.2.39)

(6.2.40)

(6. 2. 42)

Equations (6. 2. 41) and (6. 2. 42) give the velocity profile for the flow.

Discussion of the Results

In the solution for the Poiseuille-Couette flow, we notice one

important fact that the axial and the angular velocities are not

independent of each other, so that the solution for this flow can not

and =
8

27(g)3[1-R-213j3
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be obtained from the solutions for the Poiseuille and Couette flows

separately. In the Newtonian case, however, the two velocities are

independent and the superposition principle is applicable. This obser-

vation is in conformity with a similar conclusion holding in the case of

other physical problems too.

The angular velocity as given by (6.2.42) for a helical flow of

a lubricant in the narrow gap between the journal and the bearing is

found to be the same as the velocity in the Couette flow. But the

axial velocity of the helical flow under similar conditions as given

by (6. 2.41) is found to be different from that of the Poiseuille flow

and thus is affected by its angular velocity.

6. 3. Poiseuille Flow

Formulation of the Problem

We consider a steady axial flow in an infinite circular cylinder

produced by the application of a nonvanishing pressure gradient

Ap along the axis of the cylinder Figure 6. 2). The velocity field

in cylindrical coordinates (r, 0, z) is given by

vr = 0,

v0
= 0,

vz
= u(r)

(6. 3. 1)



U =0
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Figure 6. Z. Poiseuille flow.
Equations of Motion

Since in this flow in addition to v, the tangential velocity

v8 also vanishes, the first and the second deformation-rate ten-

d i.sors and b respectively take the following forms:
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d.
3

0

0

0

0

0

0

0

0

0

0

1

d3

0

0

0

0

(6.3,2)



where

-13+21(1+
2

-

a-p + (1 + p2ut2 ut2
2

By using (6. 3.
2)1

and (6. 3. 3) in (4. 4. 10) we have the constitutive

equation in the form

2 1 3 i kt. -p O. + 8a d1 d3i + 2a [1+413 d3d11 di d .

3 1 3

i+N b1 b b..
1

With the help of (6.3. 2)2 and (6. 3. 3)2 we get from (6. 3. 4) the

expressions for the stresses:

rz 6+Nu
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(6. 3. 4)

(6, 3. 5)

1b
1

0 0

b I 0 0 0

0 0 0

(6. 3. 3)

u'Z 0 0

0 0 0

trr =

t =

tzz =



zr = a put3

tez =0

tr0 = 0.

The equations of motion ( 2. 4. 9 ) now take the form

a(t) t -trr rr 00 = 0 ,ar
(6. 3. 6)

act ) tzr zr ap 0.ar r az

Boundary Conditions

If R is the radius of the cylinder, then the no-slip condition

on the cylindrical wall requires

u(R ) = 0 . (6. 3.7)

Solution of the Equations

Pressure Gradient . By the same argument as given in the

case of generalized helical flow, we conclude that the axial pres-

sure gradient Ap is constant

Velocity Field. Integrating (6. 3. 6)2 we obtain

Ap , A
=zr 2

90

(6. 3. 8)



where A is a constant of integration.

Since the stresses are finite at r=0, we must have A=0

in (6. 3.8), so that after substituting the value of t from (6. 3.
5)4Zr

in (6.3. 8) we have

,3 .6papu =
2

Integrating and using the boundary condition we have

3 Ap 1/3 4/3 4/3u (r -R )4 Zap

Pressure Field and Stress Distribution. Substituting the values

of t and t from (6.3. 5) in (6. 3. 6) and then replacingrr 00 1,2

by its value from (6. 3.9) we get

ap a 8 [( )2/3 1.2/3+ R2( Ap )4/3r4/3]
Or 2 Or 2ap Zap

a bp 2/3 -1/3 2 Ap 4/3 1/31
+ {(2c7-0 r + (-2c7p-) r

a, Apr ,2 ) r2+ y tactp
Y 2ap

Integrating the above equation between 0 and r we obtain

a LID 2/3 2/3 7 2,Lp ,413r4/33p(r, z) = p(0, z) +11 [5(-2-(7--tp-) r + p (zap )
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(6.3.9)

(6.3. 10)

(6.3. 11)



Substituting for u' from (6, 3.9) into (6. 3. 5) we get the stress

components:

a r, Ap,2/3 2/3 2, Ap ,4/3 4/3-1, ,Ap )2 2t = -p(r,z)rr I. 1zap r k-zap r r ,

t89 -p(r, z)

a r AID 2/3 2/3 2 Ap 4/3 4/31
t = -p(r, z) 4' I. (Zap) r + p (

Zap
) r

zz

t = r ,zr 2

tOz
0,

tre 0,

where p(r, z) is given by (6, 3, 11).

Volumetric Flow Rate. The volumetric flow rate Q through

the pipe is given by

2n.

u(r)rd0 dr
0

3 (Ap )1/3R10/3
- 10 TT 2ap

Discussion of the Results

In the Poiseuille flow of a Newtonian fluid, the velocity profile

is given by

zqa
7 2)
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(6.3, 12)

(6.3.13)

(6.3. 14)
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where p. is the Newtonian viscosity; whereas for a non-Newtonian

fluid it is given by (6.3.10). The nondimensional forms of (6. 3.14)

and (6. 3. 10) are respectively

U 1 - r

- 4/3
u 1 - r

umax

(6. 3. 15)

(6.3.16)

(6.3.17)

These are exactly similar to the ones that we found in the case

of channel flow [cf (6. 3.18) and (6. 3. 19)] Therefore,the velocity

curves in the case of Poiseuille flow are similar to those of the

channel flow. Thus the Poiseuille flow, like the channel flow, also

exhibits a flattening of the velocity profile for the non-Newtonian

fluids which account s for the viseoelastic nature of these

fluids.

Again, like the channel flow, the shearing stress for the

Poiseuille flow is a linear function of r, in spite of the fact that

the velocity is nonlinear in r. Further, we need only to know the axial

pressure gradient Ap to determine the shearing stress at a point

in the flow region.

The Poiseuille formula

/a.

where U =

and =
R



- -2/3 4/3 - -2p = r mr + n r

where

p(r, z) - p(0,z)
P =

5a R AID 12/3
4 2a p

7p2 RAT) 2/3m - )10 za p

- 6 'y RAID 4/3n - 5 a (2a p )

=

are the dimensionless quantities.
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4-TI RAp
(6.3. 18)

for the volumetric flow rate holds good for every Newtonian fluid.

According to this formula, the volumetric flow rate is always

proportional to the fourth power of the radius of the pipe. But

experiments have shown that the flow of non-Newtonian fluids is not

governed by this formula. This is what our analysis also confirms.

In the case of the non-Newtonian fluid that we have considered here,

we see from (6. 3. 13) that the volumetric flow rate is proportional
1to R0/3 instead of R4 , R being the radius of the pipe.

To study the pressure variation in a Poiseuille flow, we first

write (6.3. 11) in the nondimensional form

(6.3.19)

(6.3.20)



We notice that (6.3. 19) is exactly similar to (5.3. 17) of

(rectilinear) channel flow. Therefore the graph in this case must be

similar to that of the pressure difference in channel flow. Consequent-

ly the behavior of radial pressure in Poiseuille flow is similar to

that of pressure across the width in the channel flow.

Swelling and Thinning in Poiseuille Flow

So far in our discussion of the Poiseuille flow, we have

assumed the pipe to be of infinite length, thus ignoring the end ef-

fects altogether. Actually, however, the pipes are finite in length.

Consequently, the results obtained in this section can be only approxi-

mations to what we observe in the experiments or other real situa-

tions. But even from these approximate results, we can derive

interesting conclusions. Let us for example, assume that the fluid

is emerging from an end of the pipe with a velocity given by (6. 3. 10).

We assume further that the stresses at this exit are given by

(6. 3. 12). If the exit section is assumed to be the plane z=0, then

according to (6.3.12)3

a. 3 Ap 2/3 2/3 3 2 Pp 4/3 4/3
- + rzz 2 2 Zap 4 Zap

v (-1-2)2r2 p(0, 0) .
z ' 2ap

Therefore the total normal stress at the exit section is
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(6.3. 21)



rR
2Tr t rdr =zz

0

After simplification we have

p(0, 0) =

3 Ap 2 2
- (Zap

y isp 2 3 2 2-r )
2 2043 2

9 .613 2/3R 8/3 9 2 Ap 4/3R 10/3]
Ira [y-6-(2c-7-4 +

3 Ap 2 42
Tr y ( ) R - TrR2p(0, 0) = -Tr PaR2a p

3- y ( )2R4 - TrR2p(0, 0). (6.3. 22)
4 2aP

If the atmospheric pressure at the exit section is Pa ' then the

total atmospheric pressure is given by Tr paR2 Balancing the

forces at the exit section, we get

r 9 Ap 2/3,2/3 9 2 Ap 4/3 4/31
aL162api p() R

40 Zap
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(6.3. 23)

(6.3.24)

Substituting the value of p(0, 0) from (6. 3. 24) into (6.3. 12)1 we get

the radial normal stress (at z=0)

2 3 9 2/3 3 2/3 2 Ap 4/3 9 4/3 3 4/3,1t = -p + /
(-8R

r )+ p (-) (-R
--4r

)rr a 2 Zap 2ap 20

(6.3. 25)

9 2 9
R/3

8/3
1-40

.p2 (--6
20.p

)4/3R
10/3]

[Tr a [--61 (21saP )



The value of the normal stress t at r=R is thenrr

t (R) = -p j-Eir Op )2/3 2/3 1
5 zap) R

2 Ap 4/3 4/31
i3rr a 4 4 2a3 -T-

+ (1-T- )2Ra4 2ap

Setting = pa t (R) we obtain from (6. 3. 26), at the exit section,rr

3a
71 .

1 Ap 2/3 2/3 1 2,_Ap 4/3R4/3] +/( )2R2
(2a13) R (Zap) 42a13

(6.3.27)

-

1/33a RAP 2 3 2/3 RAI) 4/3 y (RAP 2
i6p2" 2 20a 1/3 ( 2 )4a2p2 2 )

where

3a1/3
c -

142

2/3
3b =

20

11/

3

/RAP 2/3
2
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(6.3. 26)

(6.3.28)

(6.3.29)

22
4a13



Now if E < 0 , then -trr(R) > pa , which means that the

normal stress exerted by the fluid on the wall of the pipe exceeds

the atmospheric pressure. In other words, the fluid stream

emerging at the pipe exit swells (Figure 6.3, p. 99 ). Thus we

can expect swelling when

that is, when

that is

2ax 3 -b X c X < 0,

/ 2
b- Nib +4ca b+< x<2a 2a

Similarly if E > 0, then we will have thinning instead of swelling

at the exit (Figure 6. 3, p. 99 ). In other words, thinning will occur

when

2
a X3 -bx -cx> 0
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(6. 3. 30)

Relations (6.3.30) and (6. 3.31) can be expressed in terms of a, p,

y, bp and R by using (6.3. 29). This shows that swelling and

thinning of the fluid at the exit depends not only on the fluid proper-

ties a, p, y but also on the pressure gradient and radius of the

pipe.

or (6.3. 31)

b + 4ca
X > 2a

b- + 4caX < 2a



Swelling Thinning

Figure 6.3. Swelling and thinning in Poiseuille flow.
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We further note from (6. 3. 28) that but for the second

deformation-rate term a X3, there would only be swelling phenome-

na. The role of this term is thus very significant in controlling the

behavior of the fluid.

In the foregoing discussion we have assumed that the

rheological constant is positive. If, however, we allow the

possibility of ,/ being negative, then we s e e from (6. 1 27) that

E is always nega.tive. Consequently we can expect only
swelling.

In the case of a Newtonian fluid

E = 0

Hence, there is neither swelling nor thinning of a Newtonian fluid

at the exit of the pipe.

This swelling or thinning phenomenon occurring at the exit

of a pipe is due to the normal stress trr and is for this reason

called the normal stress effect. Since the swelling was first

noticed experimentally by Merrington (1943), it is named after him

as the Merrington effect.

6. 4. Couette Flow

Formulation of the Problem

We now consider a steady rotational flow between two infinite
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coaxial circular cylinders (Figure 6.4). The inner cylinder is

assumed to be at rest and the outer one to be moving with constant

angular velocity. The axial pressure gradient is assumed to vanish.

The velocity field in cylindrical coordinates (r, 0, z) is given by

vr =0

v0
= r w(r), (6.4. 1)

v =0
z

_ dOwhere w(r) = is the angular velocity of a cylindrical layer ofdt

fluid at a radial distance r from the axis of rotation.

Figure 6. 4. Couette flow
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Equations of Motion

By virtue of (6. 4. 1),the first and the second deformation-rate

tensors d. and b. respectively take the forms:

lk =

bi.

, acowhere =
a r

102

0

d2

1

d2

0

0

0
1

0 0 0

(6. 4. 2)
r2w'

0 0
2

05.1

2
0 0

0 0 0

1b 0 0
1

0 0 0

0 0 0

(6. 4. 3)

22r o..)' 0 0

0 0 0

0 0 0



Using (6. 4, 2)1 and (6. 4. 3)1 we reduce the constitutive equation

(4. 4. 10) to the following form:

1 2 i1t. = (5. + eap
d2d1dj

+ (1+4132d1d2)di d1+ N13 b b.
2 1 j 1 i

(6. 4. 4)

Using (6.2. 2)2 and (6. 4. 3)2 we obtain from (6. 4. 4) the following

stress components:

trr +-p (1+132r2co12)r2co,2 + y r663,6
2

at00 = -p + (1 + f32r22)r2(4,2,
2

zz

t = ,

The equations of motion (2. 4.9) then become

e(t) t -trr rr ee 2
= - p rc.4.)ar

8(t ) tre ÷ 2 re
8r
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(6. 4. 5)

(6.4. 6)



Boundary Conditions

If R and
R2 are the radii of the inner and the outer

1

cylinders respectively, then assuming that the fluid adheres to the

cylindrical walls, we have

(R1
) = 0

(6.4. 7)

ck) (R2) = /o.

Solution of the Equations

Velocity Field. Integrating (6. 4. 6)2 and substituting the value

of tr8 from (6.4. 5)4 we obtain

cot = (11 )1/3ap

where B is a constant of integration.

Integration of (6. 4. 8) gives

3 , B ,1/3 -2/3
co = - ) r C ,

2 a p

where C is a constant of integration.

Applying the boundary conditions (6. 4. 7) we have

3 B 1/3 -2/3
+0 = - -2- (a(3. ) R

1
C ,

3 B 1/3 -2/3= - ) R2 + C ,

(6.4.8)

(6. 4. 9)
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so that
2/3 2/30

R1 R23 B 1/3
2/3 2/3

R2 - R1

and (6.4.10)
2R2

-

1

R - R2/32/3
2 1

Substituting the values of the constants B and C from

(6. 4. 10) into (6. 4.9) we obtain the velocity profile

R, 2/3
r {1 - ( )

R1
2/3

)
2

Pressure Field and Stress Distribution. Substituting the

values of trr and
t00 from (6. 4. 5)1,2 into (6. 4. 6), we get

2 4 48 2 2ap a + (3 r w' ) + -y a (r6(0,6)ar -2- ar ar

+ r5w'6 + prw

Integrating the above equation from Ri to r we get
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(6. 4.11)



p(r) = p(R1) 1

R 2/3i2
1

R2

20,02 R1
4/3

9
{ ) -1}

p R2 02 2/3 3
1

{ (R ) - 1 }2
1

Substituting the value of w' from (6. 4.8) into (6. 4. 5) we get the

stress components:

2
rr -p(r) + 0

R1 2 3 2 a ( Tj.)
2 [ R 4/3

R2

8/3 4 R1 4
4 a p2

2
S2 (R1 ) 32-y 0 ( )r r+ +

R 2/3 2 R 2/3 4
9 {1- (-1) } 810-1) }- (R2 R2
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(6.4.12)

+
8a13204 R1

8/3
{ ( )r -1}

+

R 4
116 ,i 06{(r) -1 }

81 { 1
R 2/3

- (-1.- ) }

R2

2 R 2/3
1243 {1-(R )
2

4
}



22at = -p(r)
00 R 2/3 2

9 1 - (R1 )
2

tzz = -p(r)

3R 2
8 a pS2 (1 )

tre =

t = 0 ,
Az

t =0Zr

where p(r) is given by (6.4. 12) .

Torque. The torque M per unit height required to main-

tain a steady flow of the fluid inside a cylinder of radius

(R1 <r <R2 ) is given by

2 R1 8/3
4 13 S2 (---- )

27 [R
2/3-13

1-- (7E1 )
"2

R1
2/3 2

9 {1 - }

2

M 2ff r r
trO

216Trap 3 Ri

R 2/3 3
27 1 (-1)R2

R 4/3
( )
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(6.4.13)

(6.4. 14)



where

Discussion of the Results

For the Newtonian fluid,the velocity profile is given by

R 2

r [1°(-)
V =

or in the nondimensional form by

[1- (1)23

V =
R

1

are the nondimensional quantities,

From (6.4. 11) we get the nondimensional velocity for the

non-Newtonian case,
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(6.4.16)

tOf
V[1-(j)2/3]

V =
[ I -(1 )21

(6.4. 15)
;

V =
[i (1)2/3] (6.4. 17)



1M
R 2

1
1- (

R2
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The graphs of the velocities in the two cases (Figure 6. 5, p. 110)

reveal that there is damping of velocity in the non-Newtonian case

as compared to the Newtonian one. This phenomena may be

attributed to the viscoelastic nature of the non-Newtonian fluid.

We know that in the Newtonian case, there are no extra normal

stresses. But in the non-Newtonian case, it is interesting to note

that there exists a normal thrust trr per unit area on the cylindri-

cal layers of the rotating fluid as well as on the walls of the cylinders.

Besides, the fluid exerts an axial thrust t per unit area whichzz

as we shall show presently, is responsible for the climbing phenome-

na occurring at the surface of the inner cylinder.

For the Newtonian fluid,the torque M per unit height that

must be applied to the cylinders to maintain the flow is given by

(6.4.18)

M is thus always proportional to the angular velocity c2 whereas

(6. 4. 14) shows that for a non-Newtonian fluid it could be proportional

to the cube of the angular velocity.

To study the radial pressure difference across the annular

gap, we first write (6.4. 12) in the nondimensional form:
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Figure 6. 5. Velocity profiles of the Newtonian and the non-Newtonian fluids
in Couette flow (R = 4.6).



where

{ (1., 43_1}fol. )8/3_0 )4 }

p=

4
9 2

p R1

32

- 2
{ ( r)/3-1 13

R 2/3 2
1[p(r) - p(110] [1 - (IT
2

R
22
1

2

22ap,

R1
2/3 2

p R2 [ 1 - )
1

R2

R 2/34
p R2 [ 1 - (J)

1

1

are the dimensionless quantities.

We plot the graph of the pressure difference for various values

of the dimensionless parameters m and n (Figure 6.6, p.112).

For = = = 1, we see from the graph that the pressure drops

very rapidly near the inner cylinder until it reaches its lowest limit.

2
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(6.4.19)

(6.4.20)
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Figure 6.6.. Pressure variation in Couette flow,
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After this limit the pressure starts increasing until it becomes

equal to that at the inner cylinder. From this point on, there is a

sharp increase in pressure. We further notice that as the value of
-
n decreases the pressure drop also undergoes a corresponding

decrease. In other words, we can say from (6. 4.20)3 that the de-

crease in the value of the rheological constant y results in a

corresponding decrease in the pressure drop. We see, however,

from the figure that depending on the values of the dimensionless

parameters 7, i7n, and -1; and consequently the rheological con-

stants of a , p and y , there could even be no pressure drop

at all across the annular gap. Surely the non-Newtonian nature of

the fluid is responsible for this 'anomalous'variation in pressure in

a Couette flow.

In the case of a Newtonian fluid, only the last term in (6.4.19)

will survive. Consequently the pressure difference -ID is always

nonnegative, and the pressure is always increasing as we go from

the inner to the outer cylinder.

The preceding analysis brings out very clearly the visco-

elastic effect on the fluid pressure.

Climbing in Couette Flow

In the investigation of Couette flow carried out in this section,

we assumed the two cylinders to be infinitely long. Since the



negative term in the expression for

R 4
64 (TT-1) 1 2

R 2/3 4 - r
1243r { 1 - (--)R2

(6.4.22)

Assuming -y to be positive we observe from (6. 4. 22) that the only
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cylinders used in the laboratory or in some other real situation

are of finite length, the predictions of our theory can be expected

to tally with experimental results only approximately. If therefore,

we consider a Couette flow apparatus in which the revolving fluid

is in contact with an atmosphere of pressure pa , we may assume

that the normal thrust in the axial direction at the exposed end is

given by t .zz

Now let

- Pa + tzz (6. 4.21)

After differentiation with respect to r we get from (6.4. 21)

a TT

a r
is -p r co2 Close to the

ap

RI 4/3 2 2 RI 8/3
64a13 S2 (7-)

ar ar

2

(1-1-1 )2/312
R2

27r r R 2/3 2
1 ,243 r



Therefore

air
a r

is
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inner cylinder, which is at rest, r and co are small. Conse-

mquently the ter p r2 ico s also small. Whereas the positive
8 Trpart in the expression for --,--, which contains r in the denomi-dr

nator is large near the inner cylinder. We can therefore expect

that unless the density p is not too large is positive nearar
the inner cylinder. Physically,this means that near the inner cylin-

der the fluid surface slopes downwards from the inner cylinder to

the outer one (Figure 6.7, p. 116). In other words, the fluid will

show a tendency to climb up the inner cylinder. This is known as the

Weissenberg effect and has been noticed in experiments with non-

Newtonian fluids. From our analysis we can say something more

also. Since with the increase of r the positive part in

decreasing, whereas the negative part is increasing, it may happen

that vanishes at some point within the annular gap. Then,
a-rrafter that point would be negative. Physically, this means thata r

near the outer cylinder the fluid surface slopes upwards (Figure 6.7,

p. 116), It must, however, be emphasized that this latter phenomena

a Trwill occur provided vanishes at some point within the annulus.

For a Newtonian fluid we have from (6. 4. 5) 2 and (6. 4. 6),

ap 2
-= p r co

a r

a -rr 2
= -p r ,

a r (6.4. 2
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Non-Newtonian fluid Newtonian fluid

Figure 6. 7. Climbing in Couette flow.
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a TrEquation (6.4.23) shows that -5r- is always negative for a Newtonian

fluid. This means that the fluid surface always slopes upwards from

the inner cylinder to the outer one (Figure 6.7., p. 116). In other

words, there will be a depression near the inner cylinder.



CHAPTER 7

TORSIONAL FLOW

7. 1. Preliminary Remarks

In Section 2 we study the torsional flow of a cylindrical mass of

fluid. The graphs of the velocity field and pressure drop are also

drawn.

7.2. Parallel Plate Viscometer

118

Formulation of the Problem

We assume that the flow takes place in a right cylindrical

region (Figure 7.1). We use cylindrical coordinates (r, 0, z),

where z is measured along the axis of the cylindrical mass with

radius R. We suppose that, of the two rigid parallel discs which

bound this region, the one at z=0 is at rest and the other at z=h

has angular velocity ç2 . We assume axial symmetry in the problem

and accordingly the velocity and the pressure are independent of 0,

The velocity field is given by

v
=

0,r

v0
= v(r,z) r o. (z) , (7. 2. 1)

v =0.
z



where w(z) is the angular velocity of the concentric layer of the

cylindrical mass at a distance z from the disc at z=0 .

z = h

Z =0

Figure 7. 1. Parallel plate viscometer.

Equations of Motion

d.

With the velocity field given by (7.2. 1) we get for the first

and the second deformation-rate tensors:

0 0 0

2
0 0

d3
3

0
d2

0
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= -p Oi+8a13 d2d3di. +2a(1+4(32d2d3)di d + Nb3bibf2
j 3 2 3 3 2 ij ' 3 fj

120

(7. 2. 2)

0 0
1 ,

1 2 ,

0 c 0o

2

Now, with the help of (7. 2. 2)1and (7. 2. 3)1, the constitutive equation

(4. 4. 10) takes the following form:

(7. 2. 4)

Using (7. 2. 2)2 and (7. 2. 3)2 in (7. 2. 4), we get the following expres-

sions for the physical components of the stress tensor:

t = -p ,rr

= -p +20 p222r col )

00 2

atzz = -p + (1 + p2r2cot2) r2wt2 + r 60)16

where Ow
w1=

0

0

0

0

0

0

b3
3

0

r0.)?2

(7. 2. 3)

az



and

or

ar

act z)
az

act )zz
az

Boundary Conditions

0, (7. 2. 6)

= 0

Since the fluid is assumed to adhere to the plates we have

w(0) =

w(h) / 0.

Solutions of the Equations

Velocity Field. From (7.2.5)4 and (7. 2. 6)2, we have

3

a(w' ) = 0az

= constant = C(say). (7. 2. 8)
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tOz = ai3r3w13 (7.2. 5)

t = 0 ,
TZ

tre = 0.

From (2.4. 9 ) and (7.2. 5), we get the following equations of

motion:

8(t )rr trr-t002- prw

=

(7.2.7)



Therefore = cz + d

where d is an arbitrary constant.

Applying the boundary conditions (7. 2.7) we get

d = 0

and

=h
Hence the angular velocity becomes

0
=

Pressure Field and Stress Distribution. From (7. 2. 5)3

(7. 2. 6)3 and (7. 2. 8), we obtain

E0.
az

z2 21 a a02 02 2p + )

r 2h
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(7.2.9)

(7.2. 10)

(7.2. 11)

(7.2. 12)

Hence p depends on r alone.

Substituting the values of trr, t
00,

col and co from (7. 2. 5)1,

(7.2. 5)2, (7. 2. 8) and (7.2. 11) respectively into (7.2. 6)1, we get

(7. 2.

In (7. 2.13) the left side is a function of r only while the right side

is a function of z only. Therefore a solution of our problem

consistent with the boundary conditions is obtained by setting each

side of (7.2. 13) equal to a constant K (say). In particular K can
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be taken equal to zero which is justifiable on the basis of experiments.

Equation (7. 2. 13), then becomes

2 22
pcBP= -"2 (r+ r3)ar

2h2 h2

Integrating (7. Z. 14), between the limits o and r, we have

2 2
4p(r) = p(o) - aE22 [r2+ r

4h 2h2

Equation (7. 2. 15) gives the pressure field in the cylindrical mass of

fluid.

Substituting the value of co' from (7.2. 11) into (7.2. 5) we get

the following stress distribution:

trr = -p(r)

2 22tee, , a.0 , 13 2,r2
= k -r r 1 ,

2h2 h2

, aS22 13202 2, 2 ,t = 1 r Ir r ,zz 2
, ,

2h h2 h6

3
3tez = a p ---3- r

t = 0,rz

tre = ,

where p(r) is given by (7.2.15)

(7. 2. 14)

(7.2. 15)

(7, 2. 16)



The total normal force N that must be applied to hold the

revolving disc in place is given by

R pZlT
N = t rdOdrzz

0 0

24
3 5 p222 T6R8

= -TrR Tra S2R S2 R2p(o) + 2 ( + )+
ryS-2

4h 6h2 4h6

(7.2.17)
Torque. The torque M that must be applied to maintain the

angular velocity S-2 is given by

R 2Tr

M =
tOz

r2 dOdr
'co

Trapc23R6

3h3

Discussion of the Results

We see that in order to maintain in a cylindrical mass of a non-

Newtonian fluid, the motion described by (7. 2. 1) and (7.2. 7), we

have to apply to the plane ends of the fluid mass, normal stresses

of the magnitude t per unit area given by (7.2. 16)3 or equi-zz

valently a total normal force N given by (7. 2. 17) and azimuthal

surface tractions of magnitude
tO

per unit area given by (7, 2. 16z

or equivalently a couple of magnitude M given by (7. 2. 18), . In

(7.2.18)
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Its nonditnensional form is

0.60,

V z r ,

Z

are the nondimensional variables.
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the Newtonian case, the pressure p and consequently the normal

stresses -p would be constant throughout the fluid mass. In this

case we do not need any extra normal stress to maintain the motion.

We next observe that in the non-Newtonian case under con-

sideration, the shearing forces
tOz

are proportional to the cube

of the radial distance r whereas in the Newtonian case these are

always proportional to the radial distance only. This difference

may be attributed to the viscoelastic nature of the non-Newtonian

fluid.

It is interesting to note that the velocity profile in this particu-

lar case of the non-Newtonian fluid is the same as in the Newtonian

case. From (7.2. 11) we get the azimuthal velocity

zr, (7.2.19)

(7.2.20)

(7.2.21)

where

V -=
RS/



From (7.2. 20) we plot the graphs of the velocity profiles

(Figure 7.2a, p. 127 and Figure 7.2b, p. 128 )

To study the radial pressure drop we write from (7.2. 15)

where

are the -nondithensiOnal quantities.

We plot the graph of pressure drop given by (7. 2. 22) for

11m = , --2- and 1 (Figure 7.3, p. 129). We notice from the graph

that the pressure drop is very slow near the axis of the viscometer

whereas it is very rapid near its cylindrical surface. In the case of a

Newtonian fluid, the radial pressure is constant everywhere. Con-

sequently there is no radial pressure drop in the torsional flow of a

Newtonian fluid while such a drop is found to occur in the non-

Newtonian case.

We may note further that since the expression for radial pres-

sure gradient does not involve the second deformation-rate term,

the pressure drop in the torsional flow does not depend on the

A,4
p -r - (7.2.22)

=
p(r) - p(o)

P
aS22 R2

p 2S-22R2
=

2
2h

4h2
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(7.2.23)
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Figure 7.2b. Velocity profile in parallel plate viscometer
(1 -.= 1/2).
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rheological constant y. Also from Figure 7.3 it is found that the
-

rate of pressure drop decreases as the value of m and consequent-

ly that of the rheological constant 13 decreases. Similarly with

the increase of 13, the rate of the pressure drop also increases.
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CHAPTER 8

SUMMARY, DISCUSSION AND SCOPE OF FURTHER WORK

8. 1. Summar ancy_

It is now being recognized more and more that the response of

real materials to eXternal forces is, in general, nonlinear in charac-

ter. The classical theories which were designed to explain the

behavior of materials subjected to deforming forces do not, however,

take cognizance of this nonlinearity in Nature. For example, it is

the classical theory of elasticity, in which the displacement is pro-

portional to the applied load. Again, it is the classical theory of

fluid dynamics in which the rate of deformation is proportional to

the viscous forces. These theories which lead to linear expressions

relating the load to the response fail, as one should expect, to inter-

pret even remotely the physical phenomena which is essentially

nonlinear.

The failure of the classical theories to explain the nonlinear

response of materials has lately stimulated widespread interest in

the search for more general theories In our present work, we

have given a brief outline of the various theories governing the

behavior of real materials which have appeared since 1945. It is

seen from our description that the pioneering work in this field has
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been done by Reiner, Rivlin, Ericksen, Green, Oldroyd, Noll, Seth,

etc. We noticed that all these workers except Seth have used in

their theories, ordinary measures of deformation or deformation-rate.

The result is, as we have seen, that they have obtained very compli-

cated constitutive equations involving terms in powers and products

of ordinary measures and also a number of unknown response func-

tions. These theories are, no doubt, very general and do explain

much of the nonlinear phenomena but the investigation of such phe-

nomena with the help of these sophisticated theories is not an easy

matter either for the theorist or for the experimentalist. As we

have already pointed out, the main source of this difficulty is due to

the generalized measures not being used in the constitutive equations

of nonlinear materials,

We have seen how Seth has attempted to resolve this difficulty

by the introduction of generalized measures of deformation or

deformation-rate in continuum mechanics. We have extended the

generalized measures of Seth in such a way as to explain adequately

the rheological behavior of materials. The constitutive equations

that we have set up using the extended generalized measures, con-

tain essentially two terms and at the most four rheological constants.

Thus we have achieved the maximum possible simplicity without

losing any generality as to the prediction of nonlinear effects. Unlike

some previous theories, the constitutive equations of our theory do
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not contain any unknown functions of the invariants of kinematic

matrices etc This has been accomplished by fixing the order of the

generalized measure before writing the constitutive equation in its

explicit form. Because we can always fix the order of the generalized

measure and also adjust the values of the four rheological constants

(which reduce to three in number for many problems) appropriately,

our theory furnishes unlimited flexibility and generality.

To illustrate the simplicity and power of our theory, we have

solved rectilinear, helical and torsional flow problems, For this

purpose we arbitrarily fixed certain orders for the measures D

and B In actual practice, however, the choice of order of

measures will have to be determined by experiments. Besides the

freedom to choose the order of the measures, we have seen that the

rh.eological parameters entering the constitutive equation can also

be suitably varied so as to correlate the theory with experiments.

We have seen that the use of generalized measures of any given order

gives rise to response coefficients which are known functions of the

invariants of the kinematic matrices D and B, containing only a

finite number of terms. Consequently, we have been able to obtain

very precise expressions for velocity, pressure, stresses, volu-

metric flow rates, etc. On the other hand, a reference to the litera-

ture on the solution of similar problems employing the constitutive

equations of Reiner-Rivlin, Rivlin-Ericksen, Green-Rivlin, Noll,
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etc. would reveal that the corresponding expressions obtained for

the kinematic and dynamic variables involve a number of unknown

functions of the invariants. As a result, this would need a lot of

experimental work to be done before any information of practical

interest can be obtained from such solutions. Since the constitutive

equations using generalized measures are much simpler than their

counterparts in the existing theories, it has enabled us to discuss

with greater ease and more clarity the well-known normal stress

effects like the Merrington and the Weissenberg effects. Moreover,

we have carried out detailed discussions on the phenomena of

back flow, the helical flow of a lubricant in a narrow annular gap,

'anomalous' pressure variations, damping of velocity profiles, etc.

We must state that the above advantages which are claimed for our

theory are not merely of academic or theoretical nature, They are

of far-reaching practical importance. After the order of the gen-

eralized measure has been fixed, we need to know only the values

of the four rheological constants at the most, to obtain from our

analysis , concrete information on the behavior of any fluid. For

example, the stresses, the velocity profiles, the torques, the volu-

metric flow rates and the pressure variations are completely deter-

mined in any flow, once we have found suitable values for the

rheological constants characterizing a fluid, Moreover, we have

seen that our theory has explained swelling and thinning in Poiseuille
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flow and climbing in Couette flow, not only qualitatively but a glance

through the expressions controlling these phenomena would at once re-

veal that we can also compute the difference of atmospheric pressure

and the normal stresses. Also, it is evident from (6.422) that one

can determine the point in the Couette flow at which the fluid surface

at the free end of the annulus changes from sloping downwards to p-

wards as we move from the inner to the outer cylinder. Similarly our

theory has not merely given a qualitative picture of backflow, but it

also enables us to determine in a particular problem of rectilinear

flow, the actual point of separation where the back flow occurs. It is

this theory which provides in a definitive manner the qualitative as

well as the quantitative information on the behavior of fluids.

Before we close the discussion, we may recall that we arbitrari-

ly fixed the order of the generalized measures as follows:

n= 4
q = 2

B
2

= 3

From the expressions for the shear stresses that we consequently ob-

tained, we note that the apparent viscosity of the fluid characterized

by the above choice of the order of the measure, increases with the

rate of shear. [A fluid with such a behavior is known as a dilatantfluid.]

8.2 Scope of Further Work

From what has been said in Section 8.1, it is reasonable to
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believe that a nonlinear theory based on generalized measures has

a clear advantage over other nonlinear theories based on ordinary

measures. There is, therefore, a natural desire to exploit the idea

of generalized measures in the investigation of other nonlinear

phenomena as well. In the present work, we have restricted the

use of generalized measures to isotropic materials. The extension

of this idea to the anisotropic case would be very rewarding since

the occurrence of anisotropic materials is quite common in Nature.

We have explained a number of non-Newtonian phenomena with the

help of generalized measures but the time-dependent effects, stress-

relaxation phenomena, etc., still need to be investigated. More-

over, the construction of any further models for continuous media

based on generalized measures, must take into consideration the

effects of temperature, electromagnetic effects, phase and chemi-

cal transformations, and in'certain cases quantum effects at low

temperatures, etc. These are not the only possible avenues of

application of generalized measures. These measures, because of

their simplicity and effectiveness are bound to find still wider

applications.

Our work has thus opened a new but vast area of a very

rewarding research in nonlinear physical phenomena.
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