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Comparison of mixtures of 'Gala' odor-active compounds in water with whole 

`Gala' apples revealed that hexyl acetate, hexanal and butyl acetate were necessary to 

impart an apple odor. 2-Methylbutyl acetate and methyl 2-methylbutyrate also 

contributed to the least difference between mixture solutions and apples. 

DSA of 'Gala' apples stored in RA and CA confirmed the general decrease in 

fruity aroma following CA storage. A floral descriptor was also significantly affected by 

CA storage. A musty note appeared in CA stored fruit, which may have corresponded 

to a garlic odorant peak detected during Osme. 'Gala' apples stored 16 weeks in CA 

followed by 4 weeks in RA emitted more volatiles than fruit stored 20 weeks in CA. The 

difference in volatile production was perceived by Osme analysis, and differences in 

overall fruity aroma between 16 and 20 weeks CA stored fruit were perceived only for 

whole fruit. There was no difference between those two types of storage for fruit flavor. 
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INSTRUMENTAL AND SENSORY ANALYSIS OF 'GALA' APPLE (MALUS
 
DOMESTICA, BORKH) AROMA
 

CHAPTER 1
 

INTRODUCTION
 

Flavor is a combination of the basic tastes, mouth sensations such as astringency, 

and aromas (Meilgaard et al., 1991). A few compounds can stimulate the sense of taste, 

while aroma is due to many more known and unknown volatile molecules. Apple taste is 

mostly caused by the dominant acids and sugars, malic acid, fructose and glucose (Acree 

and McLellan, 1993; Visser et al., 1968). Astringency and bitterness are minor 

components of fresh apples; those attributes are generally due to polyphenols which are 

desirable in apple cultivars processed for cider (Williams et al., 1977a). Aroma is the 

perception of volatile compounds in the nose either directly, or retronasally when 

volatiles are released in the mouth during chewing. An excess of 300 volatile 

compounds have been identified in apples (Yahia, 1994). However, the odor-activities 

of only a few are known (Guadagni et al., 1966a; Flath et al., 1967; Williams et al., 

1977a; Cunningham et al., 1986). There is generally no direct relationship between 

compound concentration or volatility and odor-activity (Acree and McLellan, 1993), nor 

is the relationship between chemical molecular structure, shape, size and odor-activity 

straightforward (Von Ranson et al., 1992; Takeoka et al., 1995; 1996). Furthermore, 

odor-active molecules when smelled alone may cause a different response than when 

interacting with others in mixtures. 

Gas-chromatography (GC) is a powerful separation tool for volatile compound 

analysis. Volatile compounds can be identified using GC combined with mass 

spectrometry and chemical standards. Sniffing the GC effluent allows the presence of 

odor-activity during a chromatographic run to be identified. Techniques that evaluate 

aroma are distinguished by how data are recorded and processed. Techniques in which 

the sample is successively diluted until no odor is perceived from the GC effluent are 
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called Aroma Extract Dilution Analysis (AEDA, Grosch, 1993) and Charm Analysis 

(Acree et al., 1984). These techniques are based on the assumption that the odor 

response is linear to stimulus concentrations. Using Osme, from the Greek word "smell" 

(McDaniel et al., 1990), the odor of the sample extract is assessed by several panelists 

during multiple injections. Odor intensity and duration of perception are recorded on a 

16-point scale with a linear sliding bar connected to a personal computer. Osme is in 

agreement with Stevens' law of psychophysics which states that the response to a 

stimulus follows a power function (Stevens, 1957; Da Silva et al., 1994). By using 

Osme, the relative significance of an aroma extract can be established in a reproducible 

and reliable way (Da Silva et al., 1994). Comparisons between samples can be analyzed 

using statistical analysis (Da Silva et al., 1993). 

`Gala' apple (Malus domestica, Borkh) originated in New Zealand from a cross 

between 'Kidd's Orange' (`Cox's Orange Pippin' X 'Red Delicious') and 'Golden 

Delicious' (White, 1991). 'Gala' fruit is sweet and subacid, and has a distinct flavor 

appreciated by most of its consumers (Gordon, 1990). 'Gala' was given high preference 

ratings by consumer taste panels (Stebbins et al., 1994). 'Gala' is an early ripening 

cultivar and its eating quality is at its best after harvest. Hedonic ratings, which measure 

the degree of liking on a 9-point scale, decreased for 'Gala' apples stored in air for more 

than 60 days (Stebbins et al., 1994; Plotto et al., 1995). 

Controlled atmosphere storage (CA) is commercially used to prolong apple shelf-

life. While low 02 and high CO2 controlled atmospheres significantly reduces firmness 

and acidity losses (Smock, 1979), volatile production is negatively impacted (Patterson 

et al., 1974). Volatile production after CA storage depends on several factors including 

apple maturity at harvest (Dirinck et al., 1989; Girard and Lau, 1995), cultivar (Yahia et 

al., 1990), ratio of 02 and CO2 in the atmosphere (Streif and Bangerth, 1988; Fellman et 

al., 1993; Hansen et al., 1992) and storage duration (Willaert et al., 1983). By 

alternating high 02 to low 02/high CO2 atmospheres, Mattheis et al. (1998) reduced 

volatile loss in CA storage without altering firmness loss. However, the effect of the 

volatile production gain on fruit palatability is unknown. 
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The main objective of this research was to identify compounds contributing to 

`Gala' aroma and to characterize the changes in 'Gala' aroma during CA storage. 

Specific objectives were: 

1. To identify compounds contributing to 'Gala' aroma using GC and Osme 

techniques. Sampling of volatile constituents was optimized for the conditions used for 

Osme. 

2. To identify aroma active compounds most similar to 'Gala' aroma when 

combined in a mixture. Because GC and Osme provide information on individual 

compounds, mixtures of compounds found in 'Gala' were compared to 'Gala' apples and 

assessed for difference from whole 'Gala' fruit. 

3. To characterize changes in CA storage in 'Gala' aroma using GC and Osme. 

Observations were performed during two consecutive years, using fruit from the same 

orchard. Two of the three panelists participated in Osme data collection both years of 

the study. 

4. To characterize changes following CA storage in 'Gala' aroma and flavor 

using descriptive sensory analysis. Results were compared with Osme findings. 
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CHAPTER 2
 

LITERATURE REVIEW
 

HISTORY OF THE APPLE, AND ORIGIN OF 'GALA'
 

Since the beginning of agriculture, humankind has worked toward improving 

crops. Both cultural practices and species selection have been aimed at increasing yield, 

removing possible toxicity from wild species and increasing palatability. Extending 

storage life for fruit and vegetables has also always been a concern because of the 

perishable nature of those crops as opposed to dry commodities such as cereals and nuts. 

Apple (Malus X domestica) has been cultivated since ca. 3500 BC (Morgan and 

Richards, 1993). The center of origin of the apple species was Central Asia where the 

greatest diversity can be still found, mostly in Kazakhstan and surrounding countries 

(Janick et al., 1995). The development of irrigated agriculture, and the rise of great 

civilizations with long-distance trade contributed to the culture and spread of fruit crops. 

The Persian Empire (ca. 500 BC), from the Aegean coast of Turkey to the Indus valley, 

and from Egypt up to the Caucasus and Central Asia, corresponded to a peak of 

development of agriculture, trade, migration and technology exchanges. Orchards and 

vineyards flourished extensively, and apple fruit became part of Persian cooking (Morgan 

and Richards, 1993). In Europe, the cultivation of apples was certainly present from the 

time of the Romans and possibly much earlier. French fur traders and missionaries 

introduced apples to Canada during the 16th century, and Protestant settlers introduced 

apples to North-Eastern America during the 17th century. Apples were introduced in 

South Africa by the Dutchman Jan Van Riebeeck in 1654. The first apple trees were 

planted in Australia in 1788, and in New Zealand in 1814 (Morgan and Richards, 1993). 

Today, more than 10,000 apple cultivars are known but only a few dozen are grown 

commercially worldwide. Apple has a wide cultural range: it can be cultivated in Siberia 

where winter temperatures fall down to -40 °C, and in equatorial countries such as 

Colombia and Indonesia where two crops can be produced in a single year (Janick et al., 

1995). 
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Apple fruit is popular because of its storability, its tolerance of transport as 

opposed to soft fruit, and it can be consumed in many different ways. The leading apple 

producing countries are China (12 million tons) and the United States (5 million tons) 

(FAO, 1995). Europe produces 13.2 million tons with France and Italy each producing 

2.2 million tons (FAO, 1995). The volume produced by Australia and New Zealand is 

small compared to the former countries (0.3 and 0.5 million tons, respectively). Yet, 

those countries have diversified the available cultivars on the world market by 

introducing and promoting 'Granny Smith' (Australia), 'Braeburn' (New Zealand), 

`Gala' (New Zealand), and lately 'Pink Lady' (Australia) (Manhart, 1995). European 

and American markets were until recently dominated by 'Golden Delicious' and 

`Delicious'; those cultivars fulfilled the requirements of producing annually high yield of 

large size and uniform fruit of good storage potential. With the development of 

controlled atmosphere storage, 'Golden Delicious' and 'Delicious' could be stored foran 

entire year. Introduction of new cultivars requires that each cultivar's growing behavior 

and fruit metabolism after harvest be researched. Yet, the effort of diversifying the 

American apple market has been consistently rewarded; there is always a need to offer 

the consumers a product they like. Manhart (1995) attributed the low apple 

consumption of Americans to the market dominated by two or three cultivars only, in 

contrast with the European market with eight to 10 cultivars. From 1950 to 1980, 

American apple consumption per capita was one-third to one-half that of Western 

Europe (Manhart, 1995). When New Zealand marketers introduced 'Gala' and 

`Braeburn' in the US in 1981, those apples sold for high prices without promotion, 

showing a strong potential market for new varieties (Manhart, 1995). 

`Gala' apple was bred by J.H. Kidd, a New Zealand fruit grower. Kidd wanted 

an apple which combined the high yield, attractiveness and sweetness of the American 

cultivars 'Golden Delicious' and 'Delicious' and the high flavor of English apples such as 

'Cox's Orange Pippin' (White, 1991). Kidd first selected a cross from 'Cox's Orange 

Pippin' and 'Delicious', `Kidd's Orange' in 1930. He continued to make crosses, and 

`Gala' (`Kidd's D-8') was selected in 1962 from the progeny of `Kidd's Orange' by 

`Golden Delicious'. Commercial plantings in New Zealand began in 1965; first 
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commercial shipments of the fruit to the UK and the US were in the 1980s. 'Gala' is a 

small to medium round to oval apple, and bears bright orange-red stripes on a yellow 

creamy background (Gordon, 1990). The texture is crisp, with a tendency to become 

soft after storage. The fruit is sweet and subacid, with a distinct aromatic flavor 

(Gordon, 1990). 'Gala' is prone to color mutations, and since the first release of 'Kidd's 

D-8', several strains have been patented (White, 1991). 'Gala' strains are mostly 

differentiated by the intensity, brightness and percentage covering of the red color; there 

is no consensus in the literature about the distinction of 'Gala' strains based on taste 

attributes (Green and Autio, 1993; Kappel et al., 1992). 

The success of 'Gala' is mostly due to the work and intuition of its originator, 

J.H. Kidd. However, there has since been a world effort from horticulturists to improve 

it, to adapt strains to growing conditions and rootstocks, and to monitor proper 

harvesting and storage. Once a variety has met horticultural requirements, it has to pass 

consumer judgments. Sensory science provides tools to measure qualities of foods, in 

this case, apples. 

METHODOLOGY: SENSORY AND INSTRUMENTAL ANALYSES 

Sensory Analysis Methods 

The use of senses in judging food quality is part of our daily action of eating. 

The need for grading a product has increased with increased trading; professional tasters 

and consultants found niches in the rising food and beverage industries in the early 1900s 

(Meilgaard et al., 1991). Currently, sensory science offers several methods to describe 

and evaluate the quality, or changes in quality of a product. With increasing knowledge 

of psychology and psychophysics, more precise instrumentation and more powerful 

statistical techniques, the tests are increasingly sophisticated and useful. 

Consumer tests give information on the acceptance of a product. Because people 

have different perceptions and vary in their judgment of liking or disliking a product, 

usually large numbers of panelists are needed (Williams, 1981). Stebbins et al. (1991; 
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1994) evaluated the acceptance of new apple cultivars on a 9-point category hedonic 

scale using 60 to 150 panelists. Daillant-Spinnler et al. (1996) tested 12 apple cultivars 

using a 10 cm line scale with 120 British consumers. The 9-point hedonic scale was also 

used to evaluate differences in liking of 'Gala' apples stored in air or controlled 

atmosphere (Boylston et al., 1994), and to evaluate the acceptability of 'Gala', 

`Braeburn' and 'Fuji' apples at different maturity stages and storage times (Plotto et al., 

1995). The hedonic scale measures the absolute liking of the product presented to the 

panelists. Acceptance of product attributes can also be evaluated with the hedonic scale, 

provided attribute descriptors are clearly understood by all consumers. 'Cox's Orange 

Pippin' and 'Suntan' apples were assessed by 600 visitors on a "just right" scale for eight 

attributes (Williams and Langron, 1983). When subtle differences are to be tested 

between treatments, rating against a reference sample (Smith, 1984; Kappel et al., 1992), 

paired comparison tests (Smith and Stow, 1985) or ranking tests (Paleotti et al. 1993) 

may be more sensitive. 

Williams (1981) recommended use of a combination of descriptive sensory 

analysis and instrumental measurements with consumer data to understand consumer 

preferences. The variation of one or more attribute intensities due to a storage 

treatment, or a different cultivar may explain consumer acceptance or rejection of a 

product. Few descriptive studies are reported for fresh apples. Williams and Carter 

(1977) developed a lexicon with almost 200 descriptors for external and internal 

appearance, feel of apple in the hand, external and internal aroma, taste, texture and 

after-taste. Differences between stored 'Cox's Orange Pippin' apples were evaluated 

with this lexicon. Dhanaraj et al. (1980) limited the number of descriptors to four, and 

used a scale anchored with words taking into account degree of ripeness and adjectives 

specific to each scale; for example: firm, smooth, crisp, soft for texture and mouthfeel. 

Those researchers' objective was to develop a simple method for routine assessment of 

apple quality through ripening and storage. Watada et a/. (1980) described the 

characteristic of five apple cultivars using a sensory profile method. They related the 

aroma and flavor data to chemical measurements (Watada et al., 1981) and the texture 

attributes to physical firmness measurements (Watada and Abbott, 1985). 
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Different methods for descriptive analysis have been developed in the last 50 

years and the choice of one method over another depends on the research objectives. 

The first method, Flavor Profile, was developed by Arthur D. Little, Inc. in the 1940s 

(Meilgaard et al., 1991). Five to eight panelists develop the terminology to describe a 

product and rate "character notes" on a seven-point intensity scale. Panelists rate the 

products independently and then discuss the results with the panel leader to arrive at a 

"consensus" profile for each of the samples. Training and use of references are meant to 

maximize panelists reproducibility. However, the consensus method was criticized to be 

prone to bias if the panel leader or one panelist had a strong personality and imposed 

their views on the other panelists. The Texture Profile method (General Foods Corp.) is 

specific for description of textural characteristics of foods, and is based on food's 

rheological properties (Meilgaard et al., 1991). The Texture Profile method has evolved 

from being an adaptation of the Flavor Profile where the panel verdict may be derived 

from group consensus, to a more sophisticated technique where data recorded on a line, 

category or magnitude estimation scale are analyzed statistically. The Quantitative 

Descriptive Analysis (QDA ®) method was developed by the Tragon Corporation in 

collaboration with the Department of Food Science at the University of California at 

Davis (Meilgaard et al., 1991). This method relies heavily on statistical analysis to 

evaluate panelists' performances and to judge product differences. Similar to the other 

descriptive methods, panelists are trained with references, but the panel leader acts as a 

facilitator rather than as an instructor. Panelists evaluate the samples one at a time in 

separate booths and do not discuss their data after evaluation. According to Meilgaard 

et al. (1991), this method is the closest to the ideal of treating human subjects as 

calibrated instruments. The SpectrumTM method developed by Gail Civille (Meilgaard et 

al., 1991) combines the basic principles of descriptive analysis and the knowledge 

acquired in the field of sensory science to propose a practical approach adapted to the 

research objectives and to the products being tested (Meilgaard et al., 1991). Unlike the 

preceding methods where panelists are trained to all use the same terminology , Free 

Choice Profiling allows panelists to use their own vocabulary (Williams and Arnold, 

1984). The data are analyzed by General Procrustes analysis, a multivariate technique 
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which adjusts for panelists' use of different parts of the scale by normalizing and 

centering data. Procrustes analysis also finds the best combination of variables (product 

descriptors) that explain differences between products. 

Relating Instrumental to Sensory Measurements 

Instrumental analysis is usually faster, more reproducible and easier to implement 

than sensory analysis. Ideally, instrumental measurements would be used to estimate 

fruit sensory characteristics and palatability. However, because of the complexity of the 

human sensory apparatus, chemical, biochemical and physical interactions of the food 

constituents occurring in the mouth or nose, and psychological factors that affect rating, 

relationships between instrumental and sensory data are often imperfect. The Magness-

Taylor penetrometer usually correlates positively with sensory evaluation of firmness 

(Wills et al., 1980; Abbott et al., 1992; Plato et al., 1997). Crispness, hardness and 

toughness texture attributes were significantly correlated with firmness measurements of 

apples with the Instron Universal Testing Instrument (Watada and Abbott, 1985). Non­

destructive firmness measurements are also being tested to predict apple texture and 

firmness (Abbott et al., 1992; 1995). Aroma, taste and flavor attributes are usually 

explained by the interaction of chemical compounds with taste or olfactory receptors. 

Most instrumental techniques used to determine chemical compounds related to taste 

involve wet chemistry and the use of acid titration or liquid chromatography. Aroma is 

the result of volatile compounds stimulating olfactory receptors, and gas 

chromatography is therefore the preferred analytical tool. 

Gas Chromatography and Olfactometry 

The development of gas chromatography (GC) in the early 30's coupled with 

mass spectroscopy (GC-MS) in the 50's allowed food scientists to separate and identify 

hundreds of volatile components in foods. Additionally, a few groups of researchers 

have assessed the flavor significance of chemicals analyzed by sniffing effluents at the 

outlet of the column (Guadagni et al., 1966a; Acree et al., 1984; Cunningham et al., 

1986; Grosch, 1993; McDaniel et al., 1990). 
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Acree and co-workers (1984) and Grosch (1993) inject the aroma extract into 

the GC after successive dilutions: compounds that are perceived by the human subject at 

the highest dilution level are believed to be the character impact volatiles of the sample. 

Those compounds present in the food at concentrations above their odor threshold (odor 

unit greater than one) contribute to the food aroma. In CharmAnalysis (Acree et al., 

1984), data processing considers duration of the perceived compound as well as its 

dilution value. In aroma extract dilution analysis (AEDA), the dilution level at which 

compounds are perceived gives the flavor dilution (FD)-factor (Grosch, 1994). The two 

methods were compared with beer extracts and methods of calculations resulted in 

different odor activities for the same olfactory data (Abbott et al., 1993). Nevertheless, 

both CharmAnalysis and AEDA are recognized as useful complements to chemical 

analysis for screening potent odorants in foods. Results can be graphically represented 

along the run time of the chromatogram, and compared to the flame ionization (FID) 

chromatogram (Acree, 1993). 

Unlike the former methods based on odor threshold and odor unit, Osme is based 

on modern concepts of psychophysics which state that odor response to stimulus 

concentration follows a power function (Stevens, 1957; McDaniel et al., 1990; Sanchez 

et al., 1992a; Da Silva et al., 1994). Instead of determining thresholds with serial 

dilutions of the sample, subjects directly record the odor intensity and duration of 

response for each odor-active component while describing its quality (Da Silva et al., 

1994). Unlike CharmAnalysis and AEDA where the panelists give a "yes" or "no" 

response to the stimulus, Osme panelists rate the intensity of perceived odor on a 16­

point category scale, where 0 = none and 15 = extreme. The plot of odor intensity of 

eluted compounds versus retention time is called an Osmegram, and like CharmAnalysis 

and AEDA, can be compared to the FID chromatogram of the sample run on the same 

column under the same conditions. As with threshold methods, small peaks on the FID 

chromatogram may have high odor intensity, and large peaks on the FID may have a low 

sensory response (Sanchez, 1990; Acree, 1993). By evaluating different solution 

concentrations, Da Silva et al. (1994) showed that panelists could perceive the 

concentration changes quite accurately. The sensory response measured as perceived 
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intensity of the compound was a power function of compound concentration, which is in 

agreement with Stevens' law (Da Silva et al., 1994). Linear and logarithmic functions 

also provided a good fit in relating sensory responses to the odorant concentration. 

Variation between panelists can be expected due to differences in human sensitivity to 

chemical compounds (Da Silva, 1992; Sanchez, 1990; Abbott et al., 1993; Grosch, 

1993). By training panelists to recognize the character of the measured odors, they can 

come to a consensus on descriptive terms. Likewise, variation within panelists has been 

observed and attributed to physiological and psychological effects (Da Silva, 1992). 

Repeated runs are performed to minimize this variability. 

The use of the GC-effluent sniffing technique is presently the best available 

technique to identify odor significance of volatile compounds in a food sample (Da Silva, 

1992). The disadvantages or failures of this method are inherent to the GC separation 

technique such as problems of co-elution, compounds which may not be resolved by the 

column (Sanchez, 1990). The use of columns coated with different phases, and 

chromatographic runs using different conditions may partially alleviate the problem 

(Grosch, 1993). Another problem is presuming a result based on individual compounds 

rather than an integrated mixture. Last, differences between extraction or headspace 

trapping methods lead to different products. 

Sampling Methods for Gas Chromatography: Headspace versus Extraction 

There are two general approaches used in odor research: one is to study total 

volatiles in the food sample, and the other considers only food odor and therefore 

analysis of only the volatiles present in the vapor phase, or "headspace vapor analysis" 

(Flath et al., 1967; Weurman, 1969). Differences in proportions of classes of volatiles 

due to differences in vapor pressure, and solubility in water and lipids were found if 

volatiles were trapped from headspace, distilled, or solvent-extracted in reports from 

studies on apples (Paillard, 1990). In the "total volatile analysis", the most important 

step is to isolate the volatiles from the sample, and further concentrate them (Weurman, 

1969). Many distillation systems were reviewed by Weurman (1969). However, the 

heat involved in the procedure may alter some components. When comparing different 
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extraction techniques for fruit, a cooked aroma was perceived from steam distillate 

extracts (Giintert et al., 1998). Instead, extraction by organic solvents is often a 

preferred method employed in volatile analysis. The use of more than one solvent having 

specific affinities for different groups of components is better than the use of one single 

"multipurpose" extractant. Cunningham et al. (1986) and Yahia et al. (1990) used 

Freon 113 (1, 1, 2-trichloro-1, 2, 2-trifluoroethane) to extract apple volatiles. Aroma 

volatiles from fruit puree were successfully extracted with Freon 12 by using a two-

chamber glass apparatus and the different freezing temperatures of Freon 12 (-29 °C) 

and the fruit slurry (0 °C) (Blakesley, 1977). The Freon could be separated from the 

fruit slurry at -20 °C, similar to a cold distillation. Gunata et al. (1985) developed a 

method that could extract both free and glycosidically bound volatiles from wine. In the 

first stage, components from the aqueous food system were adsorbed on the non-ionic 

resin Amberlite XAD-2 and then eluted with selective solvents. Free volatiles were 

eluted with pentane and directly analyzed by gas chromatography, while glycosylated 

forms were enzymatically hydrolyzed to release the aglycone portion. Apple pulp and 

juice free and bound volatiles were analyzed by Aubert (1997) using this method. 

Headspace sampling usually captures low molecular weight low boiling point 

compounds (Wampler, 1997). High molecular weight esters (above Co) are seldom 

found in headspace extracts of apples (Paillard, 1990). Charcoal was the only adsorbent 

used before the availability of porous polymeric materials such as Tenax and Porapak Q 

(Teranishi and Kint, 1993). Tenax is less reactive than charcoal, but has a lower 

retention volume (Rothweiler et al., 1991). Trap desorption is usually done with organic 

solvents as in extraction procedures (Teranishi and Kint, 1993). Also, thermal 

desorption (200 °C for Tenax) was proven to give better recovery than diethyl ether 

elution (Cole, 1980). Thermal desorption allows near recovery of all trapped 

compounds while avoiding co-elution of low boiling compounds with the solvent 

(Wampler, 1997). 

In fruit flavor studies, headspace sampling can be done on intact fruit, slices or 

crushed fruit. Sampling from intact fruit allows for time-course studies (Mattheis et al., 

1991b). The amount of volatile compounds in the air depends on the permeability of 
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fruit tissue (Knee and Hatfield, 1976). Therefore, sampling of crushed tissue might be 

preferable in aroma studies. However, enzymatic reactions occurring upon crushing or 

macerating the fruit alter the compounds present in the sample (Drawert, 1975; Paillard 

and Rouri, 1984). Buttery (1993) suggested addition of a saturated solution of calcium 

chloride or sodium chloride to deactivate enzymes that synthesize secondary compounds 

such as those resulting from the lipoxygenase lipid oxidation pathway. Buttery and co­

workers found that calcium chloride was more efficient at deactivating enzymes in 

tomatoes; with this method, Z-3-hexenal concentration remained constant for several 

hours, which allowed isolation of headspace volatiles (Buttery, 1993). Cunningham et 

al. (1986) crushed apples under methanol as an enzyme denaturing agent. To be as close 

as possible to the fruit aroma released upon chewing, the enzyme inhibitor should be 

added after one minute of pulp maceration. 

Odor Units and Odor-Activity of Compounds in Mixtures 

Patton and Josephson (1957) introduced the idea of relating a compound's 

concentration to its odor threshold in order to assess its odor significance. This concept 

was named "aroma value" by Rothe and Thomas (1963), "unit flavor base" by Keith and 

Powers (1968), and is now used as the "odor unit" (Teranishi et al., 1991), and the 

"Odor Activity Value" (OAV) (Grosch, 1994). Odor unit is defined as the ratio of 

compound concentration to its odor threshold; compounds contributing to the food 

aroma have odor unit values above one (Teranishi et al., 1991). Guadagni and co­

workers studied the flavor significance of pure chemical components and determined 

their odor thresholds by sniffing diluted series of pure compounds presented in 

polyethylene wash-bottles (Guadagni et al., 1963). Odor units were then calculated to 

assess the contribution of chemical compounds to the flavor of apple essence (Guadagni 

et al., 1966a), hop oil (Guadagni et al., 1966b), and fresh tomato (Buttery et al., 1987). 

The authors admitted that the odor unit concept does not give any indication of quality, 

nor does it say anything about stimulus concentration and intensity above the threshold 

(Guadagni et al., 1966a). However, it gives an indication of the relative importance of 

components to the food, and comparing between odor units allows ranking of the 
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components into their most probable order of sensory contribution. Odor units have 

been criticized because they assume additivity of odor-active chemicals and do not 

consider synergism or antagonism between compounds (Forss, 1981). Also, they 

assume linearity between sensory perception and component concentration, ignoring the 

power relationship between these two variables as postulated by Stevens' law (Frijters, 

1978). 

In general, binary mixtures of odorants are perceived less intensely than the sum 

of the intensities of unmixed compounds (Cain, 1975; Laing et al., 1984). The degree of 

reduction appeared to depend on the relative proportion of each compound in the 

mixture and on their intensity as individual odorant. Little interaction was observed 

between two low-intensity odorants at concentrations above the threshold, but 

suppression of one odorant over the other was strong with a high intensity odorant at 

high concentration (Laing et al., 1984). Odor suppression or odor masking was studied 

by Laing and co-workers (Laing et al., 1984), Cain and co-workers (Cain, 1975) and 

Berglund and co-workers (Berglund et al., 1971). Berglund and co-workers proposed a 

mathematical model to formalize interactions between two compounds: each odorant 

was described by a vector with length representing odor intensity. The angle between 

two vectors is constant for a pair of odorants and depicted the perceptual interaction 

between compounds. However, this model did not consider asymmetrical interactions, 

i.e. when one compound reduces the perception of the other and not reciprocally (Laing, 

1995). Additionally, the model becomes more complex with more than two 

components. Berglund et al. (1973) tested mixtures of three compounds at five levels of 

perceived intensity and found good agreements between theoretical values for the 

vectors and calculated experimental values. 

Laing (1995) and Laing and Livermore (1992) showed human subjects, trained, 

experts or untrained, could not identify more than three or four odorants in mixtures of 

eight. Discrimination between complex mixtures of odorants were also difficult to obtain 

(Laska and Hudson, 1992). When panelists were presented pairs of mixtures of 3, 6 or 

12 odorants, 40% of "identical" responses were given to similar pairs presented, and 

20% to 40% "identical" responses were given to pairs where one of the mixtures had 



15 

one less compound. Based on physiological knowledge of olfactory receptor cells and 

neural transmission, Laing (1995) summarized the possible mechanisms of odor 

suppression between two compounds: inhibition could occur through competition for 

receptor cells or sites. Competition for receptor sites could be also due to allosteric 

mechanisms where the binding of one odorant to one receptor changes the conformation 

of the adjacent receptor, preventing binding for other odorant. Also, the binding of one 

odorant could trigger the release of Cal+ to fire a neuron, but that excess Ca2+ would act 

as inhibitor for the next transduction event. Laing (1994) also confirmed the temporal 

filtering of odorants found by Getchell et al., (1984). Odorants stimulate the receptor 

cells at different velocities, with differences of several hundred milliseconds. When 

presenting odorants in series at intervals of several hundred milliseconds with a 6-channel 

olfactometer, "fast" odorants were perceived first and inhibited the perception of "slow" 

odorants; the level of inhibition was the same as when odorants were presented 

simultaneously in mixtures, with the "fast" odorant dominating over the "slow" one. 

Laing (1994) also mentioned the possible role of transduction pathways in mixture 

suppressions. Odorants operating via the adenylate cyclase pathway such as carvone 

would dominate odorants that stimulate cells via the inositol phosphate pathway, such as 

propionic acid. 

At sub-threshold concentrations, odorants were found to have an additive or 

synergistic effect (Guadagni et al., 1963; Laska and Hudson, 1991). While Guadagni et 

al. (1963) found an additive effect between compounds from the same chemical family, 

or having a similar chemical structure, Laska and Hudson (1991) measured a decreased 

threshold of compounds in mixtures as compared to when they were presented alone. 

Koster (1969) found synergy to occur rarely, while additivity occurred when compounds 

were mixed in a 1:1 ratio, and suppression occurred when compounds were mixed in 1:6 

or 1:8 ratios. Finally, among phenomena occurring in odor mixtures, blending has been 

used by flavorists and perfumists. Odor blending or fusion occurs when the identity of 

some or all of the constituents of a mixture is lost, but an olfactory sensation is still 

perceived (Laing, 1995). 
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The effect of odor mixtures is complex. Psychophysical studies show mostly a 

suppression of some odorants over others at supra-threshold, while additivity may occur 

at sub-threshold. The wide array of odorant molecular structures and their odor-activity 

explains the difficulty of building a model to predict the odor of a mixture of compounds. 

Odor intensity can be predicted for a mixture containing three or four compounds, but 

underestimation generally occurs with more complex mixtures (Laing, 1995). 

APPLE FLAVOR 

Apple Taste 

Apple flavor is complex and combines taste and flavor attributes. Williams and 

Carter (1977) used 31 descriptors for apple flavor, including basic tastes (acidity, 

sweetness, bitterness), astringency and eight aftertastes. Sweetness is mostly due to 

sugars. Fructose constitutes 50% of the total sugars, which account for 10 to 15% of 

apple fruit fresh weight (Rouchaud et al., 1985). Glucose and sucrose vary between 2 to 

4%, and the sugar alcohol sorbitol, less than 1% (Fourie et al., 1991). Each sugar 

induces different intensities of sensory response: equimolar solutions of fructose taste 

sweeter than sucrose, which tastes sweeter than glucose (Shallenberger and Birch, 

1975). 

Malic acid is the dominant acid in apples and citric is present in lower amounts 

(10% of malic acid). Malic acid is the primary substrate used in respiration metabolism. 

Decreases in malic acid during storage in air are usually perceived as decreasing sourness 

by trained as well as untrained panelists (Williams and Langron, 1983; Gorin, 1973; 

Plotto et al., 1997; Anderson and Penney, 1973; Visser et al., 1968; Watada et al., 

1980). In addition to sourness, malic acid may induce an astringent taste sensation 

(Straub, 1989). 

The major phenolic compounds present in apples are mostly cyanidin-3­

galactoside, or idaein, and quercetin-3-galactoside (Mazza and Miniati, 1993). Both are 

anthocyanins and by themselves, do not show specific sensory properties. However, 
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complexed with phenolic compounds, mainly flavonols and phenolic acids, they play a 

role in bitterness and astringency (Mazza and Miniati, 1993). Bitterness and astringency 

are desired taste attributes in processed apple products such as cider (Williams et al., 

1977a). Phenolic compounds isolated from cider apples were chlorogenic acid, phloretin 

derivatives, catechins and procyanidins. Only procyanidin derivatives (condensed 

tannins) contributed to both bitterness and astringency (Williams et al., 1977a). 

Volatiles Found in Apple 

Early published methods to determine volatile compounds in apples involved 

chemical derivatization or ester hydrolysis (Power and Chesnut, 1920), separation was 

done by paper chromatography and determination by spectrophotometry (Meigh, 1956; 

1957). Gas chromatography and mass spectrometry made separation and identification 

easier, and to date, Yahia (1994) has compiled a list with almost 300 compounds found 

in apples. 

Esters are particularly well represented in analysis of volatiles emitted by apples. 

In reviews of apple flavor, Paillard (1990) listed 92 esters and Yahia (1994) more than 

one hundred. Apple esters have straight and branched chains, usually saturated but 

unsaturated branched chain esters are also found in apples (Yahia, 1994). Esters account 

for 78 to 92% of the total volatile emission adsorbed by activated charcoal (Paillard, 

1967). They are usually emitted in larger quantities by riper fruit (Mattheis et al., 1991b; 

Dirinck et al, 1989). Esters with even-numbered carbon chains from acetic, butanoic 

and hexanoic acids and with ethyl, butyl and hexyl alcohols were more frequently found 

than odd-numbered ones (Paillard, 1967). Differences between apple cultivars were 

found to be mostly quantitative rather than qualitative. (Hannover, 1991; Paillard, 1990). 

Headspace analysis of nine cultivars grown in France led to a classification of apple 

varieties according to the type of predominant esters, acetates, butanoates, propanoates 

or low ester/high alcohol emitting cultivars (Paillard, 1967). Because of the lower 

volatility of higher molecular weight esters, hexyl hexanoate and hexyl octanoate are 

only detected from headspace of cultivars producing large amounts of esters (Kakiuchi 

et al., 1986). Odor thresholds in water for esters vary from 0.006 ppb for ethyl 2­
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methylbutyrate to 13,500 ppb for ethyl acetate (Takeoka et al., 1995; 1996). Such a 

wide range of odor activities within one chemical category shows the limitation of 

chemical analysis alone to explain aroma of a food. 

Straight-chain aliphatic and unsaturated alcohols are found in apple headspace 

and distillate (Paillard, 1990; Yajima et al., 1984). Depending on the cultivar, alcohols 

(mostly butan-l-ol and hexan-l-ol) represented 6-16% of the total volatile emission 

(Paillard, 1967). Alcohols are more water soluble and are therefore found in larger 

proportions in distillate preparations (Kakiuchi et al., 1986). Aliphatic alcohols, some 

diols and phenylethanol were also found in a glycosylated form in 'Jonathan' apples 

(Schwab and Schreier, 1988; 1990; Schwab et al., 1989). Those glycosylated forms may 

play a role as possible precursors or storage alcohols for the formation of esters. 

Straight-chain or branched aliphatic aldehydes identified among apple volatiles 

generally accompany the corresponding alcohol (Paillard, 1990). C6 aldehydes have 

been reported by many authors (Drawert, 1975; Paillard, 1979). Hexenal, E-2-hexenal 

and Z-3-hexenal are considered as secondary metabolites and are produced by the action 

of lipoxygenase on polyunsaturated fatty acids after crushing tissue (Drawert et al., 

1966; Paillard and Rouri, 1984). Acetaldehyde is a normal constituent of apples but its 

production increases during anaerobic respiration. In that situation, large amounts of 

ethanol are also produced (Mattheis et al., 1991a). 

Only a few ketones have been reported in apples (Paillard, 1990; Yahia, 1994). 

They are mostly straight-chain aliphatic ketones including acetone or the hydrocarbon 6­

methylhept-5-en-2-one. 

Carboxylic acids have been reported in apple extracts and volatile emission from 

headspace (Paillard, 1990). In some extraction procedures, carboxylic acids may be the 

result of enzymatic hydrolysis of esters (Paillard, 1990). An esterase has been isolated 

from apple fruit with increasing activity during ripening (Goodenough, 1983). 

Two hydrocarbons play a significant role in post harvest apple physiology. 

Ethylene is the ripening hormone in climacteric fruit. Esters increased concomitantly 

with ethylene during fruit ripening (Flath et al., 1967; Mattheis et al., 1991b). a­

farnesene is detected in headspace vapor (Kakiuchi et al., 1986) and has been extensively 
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studied for its role in development of scald in apple peel (Hue lin and Coggiola, 1968). 

Neither ethylene nor a-farnesene are odor-active. 

Other compounds are produced by apples, with one or two representatives of a 

chemical family and present in low or trace amounts (Yahia, 1994). However, they may 

play important roles in apple aroma when their odor threshold is low or when the odor 

characteristic is distinct from the fruity note imparted by esters. Examples include 13­

damascenone, a C13 nor-isoprenoid compound with a grape juice odor (Cunningham et 

al., 1986) and 4-methoxyallylbenzene, an allylphenol with an anise character (Williams et 

al., 1977b). 

Glycosylated Volatile Compounds in Apples 

Very few studies report analysis of glycosylated volatile compounds in apples. 

All those studies use the technique of separation with Amberlite XAD-2 column and 

enzymatic hydrolysis of glycosylated compounds (Gunata et al., 1985). Aliphatic 

alcohols, diols, C13 norisoprenoid compounds and fatty acids derivatives were found in 

`Jonathan' apples (Schwab and Schreier, 1988; 1990; Schwab et at, 1989). Aubert 

(1997) additionally reported two terpenols and 14 phenols from 'Golden Delicious' 

apple juice. Some of those compounds have a low odor threshold such as 13­

damascenone (Buttery et al., 1990b). The knowledge of the presence of bound volatiles 

is important when the fruit is processed because the bound volatile fraction is released 

during heating (Schreier et al., 1978; Buttery et al., 1990a). However, more attention 

should be paid to the presence of those compounds in the fresh fruit, as they may be 

released in the mouth upon chewing. 

VOLATILE METABOLISM 

Fatty Acid Metabolism 

Fatty acid metabolism is the largest source of substrate for apple volatiles. 

Volatiles resulting from fatty acids are aliphatic acids, alcohols, carbonyls and esters 
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(Schreier, 1984). Free fatty acids are degradation products of the membrane 

phospholipids. In the living cell, there is a constant turnover of phospholipids to 

maintain the composition and surface charge properties of the membrane. The proposed 

sequence of events in phospholipid degradation is the following: conversion of 

phospholipid to phosphatidic acid under the action of phospholipase D (cleavage of the 

acyl chain at the phosphate ester bond), conversion to diacylglycerol by phosphatidate 

phosphatase (phosphate removal), and deacylation by acyl hydrolase to free fatty acids 

(Paliyath and Droillard, 1992). The sequence is more active in senescing cells, 

explaining the observed increasing ratio of free to esterified fatty acids. Meigh and 

Hulme (1965) found a decrease of esterified C18 fatty acids in ripening apples after 160 

days after petal fall. In post-climacteric apples, there was a decrease in the lipids 

associated with plastid (chloroplast) membrane, mostly galactolipids and phosphatidyl 

glycerol (Gaillard, 1968). Bartley (1985) observed an increase in the rate of degradation 

of phospholipids in ripening apples. Therefore, there appears to be an increase in 

substrate for volatile esters in ripening apples. 

In fruit, fatty acids are catabolized through two main oxidative pathways: 13­

oxidation and the lipoxygenase (LOX) pathways (Schreier, 1984; Sanz et al., 1997). In 

some cases, a-oxidation may be involved (Tressl and Drawert, 1973) and is considered a 

respiration process because CO2 is released during a decarboxylation step (Paliyath and 

Droillard, 1992). The f3-oxidation cycle is the same in plants as in animals and micro­

organisms. Fatty acids, or rather, acyl-CoA derivatives, are metabolized to shorter chain 

acyl-CoAs by losing two carbons at every round of the cycle (Goodwin and Mercer, 

1983). Apples or apple discs supplied with aliphatic acids (Paillard, 1979) or methyl 

esters of Cn fatty acids (Bartley et aL, 1985) produced alcohols or methyl esters with C. 

or Cn_2, suggesting active 0-oxidation. Acyl-CoA molecules produced by 0-oxidation 

are used for ester synthesis in ripening fruit (Sanz et al, 1997). The most available acyl 

group determines the type of ester. The rate of transformation of butanoate to acetate 

was higher in 'Golden Delicious' than in 'Delicious' resulting in larger emissions of 

acetate esters by 'Golden Delicious' than by 'Delicious', richer in butanoate esters 

(Paillard, 1979). Acyl-CoA molecules from (3-oxidation are also reduced to aldehydes 
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and hydrogenated to the corresponding alcohol. Feeding apple discs (Pai llard, 1979) or 

intact fruit (De Pooter et al., 1981) short chain aliphatic acids resulted in the production 

of the corresponding alcohols. In banana discs, a proposed pathway for aliphatic 

ketones such as 2-heptanone and 2-pentanone was octanoate 13-oxidation followed by a 

decarboxylation (Tressl and Drawert, 1973). 

The lipoxygenase (LOX) route involves hydroperoxidation of free fatty acids. 

The peroxide intermediates are highly cytotoxic and unstable, and are rapidly 

transformed to keto acids, oxo acids and aldehydes by hydroperoxide lyase and 

isomerase (Schreier, 1984). This pathway is generally activated upon plant cell 

disruption (Schreier, 1984; Drawert et al., 1966), although it is also active in ripening 

fruit and senescing tissue (Sanz et al., 1997; Paliyath and Droillard, 1992). LOX 

purified from 'Golden Delicious' apples was found to be membrane bound (Kim and 

Grosch, 1979). Depending on the type of LOX and plant tissue, 9- or 13­

hydroperoxides or a mixture of both are produced; tomato LOX preferentially 

oxygenates at the 9-position (Gaillard and Matthew, 1977) while apple LOX 

preferentially oxygenates at the 13-position (Feys et al., 1982). Equally important in the 

product is the substrate specificity of hydroperoxide lyase. Apple hydroperoxide lyase 

has a higher affinity for 13-hydroperoxide and, like LOX, is a membrane bound enzyme 

(Schreier and Lorenz, 1982). Products from hydroperoxide lyase are aldehydes. 

Hexanal and E-2-hexenal were produced by crushed apples, with a maximum after 5 

minutes (Paillard and Rouri, 1984). The LOX pathway in fruit and vegetables is 

reviewed in detail by Drawert (1975), Schreier (1984) and Sanz et al. (1997) (Figure 

2.1). 

Hydroperoxide products, aldehydes, are reduced to alcohols by alcohol 

dehydrogenase, with NADH or NADPH as a cofactor (Rhodes, 1973; Paillard, 1979). 

Alcohols are then used as a substrate in the formation of esters. 

Ester Synthesis 

Apple fruit subjected to an atmosphere containing ethanol emit large amounts of 

all ethyl esters compared to the control (Berger and Drawert, 1984). Applications of 
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Figure 2.1. Enzymatic activities and products involved in the LOX pathway (from 
Sanz et al., 1997) 
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vapors of aldehydes or carboxylic acids (De Pooter et al., 1983), alcohols or short-chain 

fatty acids (Bartley et al., 1985) resulted in increased ester production by apples. Similar 

results were obtained from apple discs (Paillard 1979; Knee and Hatfield, 1981). These 

feeding experiments demonstrate an active ester forming activity in apples; Paillard 

(1979) and De Pooter et aL (1981) suggested that the substrate available in the fruit was 



23 

the limiting factor for ester production. Investigations in other fruit revealed that ester-

forming activity was related to fruit ripening, since no activity was found in unripe fruit 

(Yamashita et al., 1977). In fact, significant ester production was only observed at or 

right after the onset of the climacteric peak in 'Bisbee Delicious' apples (Mattheis et al., 

1991b). The lack of ester production during the pre-climacteric stage in apples could be 

due to lower alcohol dehydrogenase activity, as shown by large aldehyde but low alcohol 

production (Mattheis et al., 1991b). However in strawberry fruit, pentanal reduction to 

pentanol occurred at every ripening stage (Yamashita et al., 1977). 

The mechanism of ester formation has been well characterized in micro­

organisms. An acetate-ester transforming enzyme was characterized and identified from 

Cladosporium cladosporioides (Yamakawa et al., 1978), and alcohol acyltransferase 

was purified from Neurospora sp. (Yamauchi et al., 1989). Alcohol acyltransferase 

(AAT) catalyses the transfer of an acyl moiety from an acyl-CoA on to an alcohol (Sanz 

et al., 1997). Fruit AAT was partially purified from banana (Harada et al., 1985), 

strawberry (Perez et al., 1993a), apples (Fellman and Mattheis, 1995) and pears 

(Suwanagul, 1996). Strawberry AAT showed higher substrate affinity for hexanol and 

acetyl-CoA than other alcohols and longer chain acyl-CoAs (Perez et al., 1993a). 

Assays on several fruit species indicated different affinities for acyl-CoA and alcohol in 

bananas and strawberries (Olias et al., 1995). Within a fruit species, AAT substrate 

specificity also varied between cultivars (Perez et al., 1996). AAT activity decreased 

when fruit was stored under low oxygen (Fellman and Mattheis, 1995); however, an 

increase in activity was observed upon retrieval of the fruit to air, which could be either 

due to enzymatic reactivation or de novo synthesis (Fellman and Mattheis, 1995). The 

ester forming system includes ester turnover: esterase activity also exists in apples 

(Bartley et al., 1985; Goodenough, 1983). In AAT assays, the measurements of 

coenzyme A, the acyl-CoA hydrolysis product are more accurate than measurements of 

esters, as those are also hydrolyzed by esterase (Fellman and Mattheis, 1995). 
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Amino Acid Metabolism 

Amino acids can act as direct precursors for alcohols, carbonyls, acids and esters. 

Tressl and Drawert (1973) showed that 14C-leucine and "C-valine are converted into the 

corresponding methyl-branched esters, alcohols and acids and '4C-phenylalanine into 

phenolic esters in banana tissue. The mechanism of conversion involves amino acid 

transamination, decarboxylation to aldehyde and rapid reduction or oxidation to alcohol 

or carboxylic acid, respectively (Drawert, 1975). Apples infiltrated with L-isoleucine or 

exposed to vapor phase 2-methylbutyl esters produced increasing amounts of 2- and 3­

methylbutanol, 2-methylbutyl esters and 2-methylbutyrate esters (Hansen and Poll, 1993; 

Rowan et al., 1996). 

Shikimic Acid Pathway 

As stated above, phenylalanine may be a precursor for some volatile compounds 

found in banana such as 13-phenylethanol, 13-phenylethyl acetate and 13-phenylethyl 

butyrate (Tressl and Drawert, 1973). Phenylalanine originates in the shikimic acid 

pathway, from a condensation reaction between erythrose-4-phosphate and phospho­

enol-pyruvate (Goodwin and Mercer, 1983). Phenylalanine was the precursor for 

allylphenols in plants belonging to the Labiaceae family (Manitto et al., 1974). At least 

one allylphenol was found in apples by Williams et al. (1977b), 4-methoxyallylbenzene. 

Mevalonic Acid Pathway 

Mevalonic acid (MVA) is considered to be the first precursor of terpenic 

compounds. Two phosphorylations and a decarboxylation produce isopentenyl 

pyrophosphate, the base unit of isoprenoid compounds. Of this large family of natural 

products, carotenoids are the source of the C13-norisoprenoid flavor compounds 

(Winterhalter et al., 1995). The C13-norisoprenoid f3-damascenone is present in apples in 

a glycosylated form (Roberts et al., 1994). Roberts and Acree (1995) identified one 

glycoside of the acetylenic diol precursor of13-damascenone, and detected seven other 

precursors, possibly triglycosides, diglycosides and polyols. 
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cc-Farnesene is a sesquiterpene and is formed through the mevalonic acid 

pathway (Jennings and Tressl, 1974). So is 6- methyl -5- hepten -2-one, a degradation 

product of a-farnesene (Stanley et al, 1986) and lycopene (Buttery et al., 1988). 

FACTORS AFFECTING VOLATILE PRODUCTION IN APPLES
 

Cultivar Differences 

Taste differences between apple cultivars are due in part to the different amounts 

of sugars and acids (Watada et al., 1980; 1981; Cliff and Dever, 1990; Rouchaud et al., 

1985). Flavor differences are believed to be due to the differences in quantities of 

volatile compounds (Paillard, 1967). Indeed, with the odor unit theory, only volatile 

compounds present above their perception threshold contribute to the fruit aroma. 

However, when comparing 40 cultivars using CharmAnalysis, Cunningham et al. (1986) 

found that there was no one odor-active peak common to all 40 cultivars. In other 

words, the odor of the cultivars tested could not be explained by variation in the 

concentration of a few chemicals. This is because the human olfactory response to 

compound concentration is not linear (Stevens, 1957), and perception by the nose is 

more sensitive than the FID detector for some compounds (Cunningham et al., 1986). 

Paillard (1967) classified eight cultivars according to the predominant esters emitted: 

`Calville blanc' and 'Golden Delicious' emitted predominately acetate esters, 'Canada 

Blanc' and 'Belle de Boskoop' butyrate esters, while other cultivars produced an equal 

amount of acetate and butyrate esters. 'Canada Gris', a corky peel cultivar, emitted low 

amounts of all volatiles (Paillard, 1967). Dirinck et al. (1989) classified 25 commercial 

Belgian cultivars into groups of dominant volatiles using principal components analysis. 

He also examined the grouping pattern of 17 "acetate-type" cultivars and found 

similarities between 'Golden Delicious' and `Jonagold', and between 'Cox's Orange 

Pippin' and `Elstar'. Varietal comparisons were also performed by Kakiuchi et al. 

(1986), while differences between strains of 'Delicious' were found by Fellman et al. 

(1991). Considering other factors affecting volatile production in the fruit, varietal 
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differences are only valid if apples are at a comparable physiological stage and grown in 

the same environment. Brackmann and Streif (1994) measured emission of CO2, 

ethylene and volatile compounds from 28 cultivars; they found a good correlation 

between CO2 and ethylene production. However, the correspondence between apples 

producing large amount of ethylene and aroma volatiles was not true for all cultivars. 

Pedo-Climatic and Cultural Factors 

Studies in Northern Italy showed differences in quality between 'Golden 

Delicious' grown in the plains and grown in the mountain areas (Zerbini et al., 1980). 

Differences were measured for total sugars, soluble solids, and sugar: acid ratio. 

Regarding the production of volatile compounds, Mattheis et al. (1991b) noted that 

some esters of 'Bisbee Delicious' were absent from apples sampled from one orchard 

compared to another orchard in the same growing region. Differences between orchards 

could be due to nutrients availability from soils, fertilization practices or rootstock effect, 

or different tree age and canopy size, different leaf area: fruit ratio. Fertilization affected 

the quantity of apple volatile production (Somogyi et al., 1964). N application alone 

always resulted in lower volatile production as compared to N supplemented with K, P 

and Ca. The effect of assimilate availability was measured on `Jonagored' apples by 

controlling tree crop load (Poll et al., 1996). Apples with the lowest fruit load emitted 

more butyl acetate, hexyl acetate and butanol. 

Apple Maturity Stage 

Total volatile production generally increase as fruit ripens (Brown et al., 1965; 

Shim et al., 1984; Dirinck et al., 1989; Yahia et al., 1990; Song and Bangerth, 1996; 

Girard and Lau, 1995). Fruit detached from the tree reaches optimum volatile 

production earlier as it is harvested closer to the climacteric (Dirinck et al., 1989; Song 

and Bangerth, 1996). Volatiles that follow the general trend are mostly esters. In turn, 

aldehydes are mostly emitted by pre-climacteric apples (De Pooter et al., 1987; Mattheis 

et al., 1991b). E-2-Hexenal increased during maturation and ripening of 'McIntosh' 

apples (Yahia et al., 1990). However, this observation could be due to increase in free 
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fatty acids in the cell because E-2-hexenal is usually only present in crushed tissue; those 

authors used solvent extraction of fruit puree to sample for volatile compounds. Paillard 

(1986) found a positive correlation between linolenic acid and E-2-hexenal during apple 

ripening; both decreased as apple lost its green color. 

The differences in ester and alcohol production between harvest dates was
 

maintained in air storage for up to six months (Girard and Lau, 1995). 'Golden
 

Delicious' apples harvested at the pre-climacteric stage produced less volatiles than
 

those harvested at the post-climacteric at all times and under any storage condition
 

(Brackmann et al., 1993). 

Storage Effect 

Low temperature and high humidity delay senescence and maintain fruit turgidity. 

Emission of acetate esters by 'Jonathan' apples increased with storage temperature from 

-1 °C to 10 °C (Wills and McGlasson, 1971). Likewise, low humidity during storage 

increased emission of hexyl acetate, isopentyl acetate and butyl acetate, while hexanol, 

isopentanol and butanol were emitted in larger amounts in high humidity atmospheres 

(Wills and McGlasson, 1970). However, the most significant effect on apple volatile 

production is due to controlled atmosphere (CA). 

Despite its many advantages on preserving fruit quality such as acidity and 

firmness (Smock, 1979), CA storage inhibits volatile production (Patterson et aL, 1974; 

Streif and Bangerth, 1988; Hatfield and Patterson, 1974; Willaert et al., 1983). The 

longer the fruit remains in storage, the more pronounced the decrease in volatile 

production (Streif and Bangerth, 1988; Lidster et al., 1983a; 1983b; Willaert et al., 

1983; Yahia et al., 1990). For instance, short term storage of 'McIntosh' apples at 1.5% 

CO2 and 1% 02 at 2.8 °C did not inhibit regeneration of ethyl butanoate and hexanal 

after subsequent return of the fruit to air (Lidster et al., 1983a; 1983b). However, long-

term storage (320 days) under the same conditions resulted in complete loss of the main 

headspace volatiles, without recovery after return of the fruit to air. Additionally, lower 

02 concentrations in storage resulted in lower volatile production and longer recovery 

time (Hansen et al., 1992; Streif and Bangerth 1988; Mattheis et al., 1998a). The 
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atmosphere composition also affects the total quantity of volatiles (Streif and Bangerth, 

1988) as well as the type of esters produced ( Brackmann et al., 1993; Fellman et al., 

1993; Hansen et al., 1992). The curves of volatile production over days at 20 °C after 

removal from storage were different at different levels of 02 in storage; the curves were 

similar for esters belonging to the same alcohol group (Hansen et al., 1992). Based on 

the decreased rate of straight-chain acetate esters versus branched-chain acetates after 

storage, Hansen et al. (1992) suggested that the 02 requirement for 13-oxidation was 

higher than for amino acid transformation. Brackmann et al. (1993) observed a higher 

decrease in straight-chain esters under low 02 than branched-chain; branched-chains 

esters decreased significantly under high CO2 concentrations. Mattheis et al., (1998a) 

found that while 2-methylbutyl acetate was not negatively affected by low 02 storage, 

production of other branched-chain esters decreased. Therefore, it seems that the fatty 

acid metabolism for ester production is negatively affected by low 02 and high CO2, 

while the amino acid metabolism is mostly affected by high CO2 levels (Brackmann et al., 

1993). 

In the study by Brackmann et al. (1993), apples were able to transform 

exogenous straight-chain alcohols, one acid and one aldehyde to esters. Those results 

suggested a high turnover of substrate of the later part of fatty acid metabolism, and that 

alcohol dehydrogenase, esterase and AAT were not irreversibly inhibited by low 02 

(Brackmann et al., 1993). Inhibition could be either at the early steps of I3-oxidation, or 

inhibition of the lipoxygenase activity, which requires 02. In turn, CO2 would suppress 

amino acid metabolism, but it is not clear which step is affected. Another study from 

Fellman et al. (1993) showed that AAT activity was suppressed at 0.5% 02, but was 

detected at 1% 02 when measured at the time of storage removal. AAT activity 

increased to reach a maximum 9 days after removal from storage. Fellman et al. (1993) 

suggested that differences in volatiles affected by CA storage between cultivars could be 

due to different AAT substrate specificities and differences in substrate availability. It 

was suggested earlier that low 02 limits the alcohol availability in the cell (Knee and 

Hatfield, 1981). De Pooter et al. (1987) indicated that high CO2 concentration might 

impact alcohol dehydrogenase reducing capability of carboxylic acids to aldehydes. On 
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the other hand, Ke et al. (1994) reported low 02 and/or high CO2 directly enhanced 

pyruvate decarboxylase and alcohol dehydrogenase activity of strawberries, but 

decreased AAT activity. Increased pyruvate decarboxylase and alcohol dehydrogenase 

activities may result in the accumulation of ethanol which is in turn synthesized to ethyl 

esters (Mattheis et al., 1991a). 

Mechanisms of regulation of volatile production are still unknown. Ethylene 

certainly plays a role, according to the pattern of volatile production before or after the 

climacteric peak. Fruit harvested too early (3 - 4 weeks before the optimum) show a 

delay in production of ripening related volatiles, and the respiratory pattern is strongly 

altered (Song and Bangerth, 1996). Additionally, 'Golden Delicious' volatile production 

was reduced upon treatment with the ethylene production inhibitor aminoethoxy­

vinylglycine (Bangerth and Streif, 1987). A putative effect of ethylene on phospholipase 

D was suggested with a possible regulatory effect on membrane phospholipid 

degradation (Paliyath and Droillard, 1992). However, ethylene would not act directly, 

but a Ca2+ second messenger system would be involved to translate ethylene signal and 

initiate lipid degradation (Paliyath and Droillard, 1992). This system would be more 

active in senescing cells, explaining the observed increasing ratio of free to esterified 

fatty acids, and therefore, increasing substrate for volatile compound formation. 

POSSIBLE IMPROVEMENT OF APPLE FLAVOR 

Precursor Atmospheres 

The capacity of apples to metabolize alcohols, aldehydes and carboxylic acids 

into esters was explored to improve fruit aroma after CA storage (Kollmannsberger and 

Berger, 1992). A mixture of aliphatic alcohols in the precursor atmosphere resulted in a 

better balanced apple aroma than one or two alcohols alone. Panelists could detect a 

pear-like note in 'Delicious' apples after exposure to precursor atmosphere 

(Kollmannsberger and Berger, 1992, data not shown). Precursor atmosphere was 

applied to 'Golden Delicious' apples with aldehydes and carboxylic acids (De Pooter et 
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al., 1983). However, those authors did not observe significant organoleptic 

improvement of the fruit; additionally, the increase in volatile production did not last 

more than eight days. 

Alternate Atmospheres 

Apples exposed to air storage after CA produce more volatiles than had they 

remained under low 02 and high CO2 (Streif and Bangerth, 1988). However, such an 

increase was not observed with 'Bisbee Delicious' (Mattheis et al., 1995) or with 

`McIntosh' (Yahia, 1991) under similar conditions. An increase in ester emission under 

1 kPa 02 was observed after 120 days when fruit was alternatively exposed to ambient 

air once per week, then returned to CA (Mattheis et al., 1998a). Of all those 

experiments, only one was confirmed for aroma improvement by a taste panel (Smith, 

1984). Panelists could detect an increase in aromaticity of 'Cox's Orange Pippin' when 

these apples were transferred to 2% 02 after storage under 1.25% 02 (Smith, 1984). 

Breeding 

Considering the amount of volatiles responsible for apple flavor and the different 

pathways involved, selection of specific traits is difficult. However, flavor is still 

considered as one of the most important criteria in apple selection (Janick et al., 1995). 

Usually, acidity and sweetness are the base of selection for flavor (Janick et al., 1995). 

Acidity and sweetness are inherited independently. Only a gene for malic acid is known 

(Janick et al., 1995). Although a single gene controls malic acid in apple, its inheritance 

is based on a quantitative pattern, with a dominant allele for high acidity. By knowing 

the sugar and the malic acid concentration in the fruits of a cultivar, parents can be 

selected to produce progenies that will have the desired sugar and acids contents. 
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ABSTRACT 

The gas chromatography (GC) and olfactometry method Osme records subjects' 

responses to odorant stimuli by combining intensity and duration of perception. Osme 

was used to evaluate odor-active volatile compounds emitted by 'Gala' apples (Malus 

domestica, Borkh). 'Gala' headspace was sampled on either charcoal or Tenax traps in a 

dynamic flow-through system for 6, 12 and 24 hours and eluted with carbon disulfide 

(CS2) (charcoal traps) or diethyl ether (Tenax traps). Charcoal traps sampled for 24 

hours yielded the largest amount of volatile compounds. A total of 44 odor-active peaks 

were detected by three trained panelists using Osme analysis. Twenty-six of the 39 

compounds identified by GC and mass spectrometry were odor-active at the 

concentration recovered from the traps. Odor-active compounds were mostly esters 

with a fruity odor. The aromas of hexyl acetate and pentyl acetate were the closest to 

that emitted by whole 'Gala' fruit. Butyl acetate and 2-methylbutyl acetate were 

produced in the largest amounts, and had a solvent-like odor. Other esters were 

perceived as either fruity, apple or berry (strawberry). 4-Allylanisole and 0­

damascenone were found in 'Gala' headspace and had odors characteristic of anise and 

grape juice, respectively. Other compounds were found to have watermelon, cucumber, 

mushroom, adhesive tape and skunk odors, but remain unidentified. Sampling 'Gala' 

headspace on charcoal for 24 hours with subsequent elution with CS2 was used in 

further study of changes of odor-active volatiles in storage. 
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INTRODUCTION 

Isolation of volatile compounds from a food system is the first important step in 

aroma analysis. Because of different physical and chemical properties of volatile 

compounds, their interactions in the food matrix and their affinities with the extracting 

solvent or trapping system, each method of isolation introduces a bias in the aroma 

profile (Mistry et al., 1997). Distillation, solvent extraction, cold trapping and 

headspace techniques are reviewed in most texts on flavor analysis (Leahy and 

Reineccius, 1984; Reineccius, 1993; Teranishi and Kint, 1993; Parliment, 1997; 

Wampler, 1997). Headspace of intact fruit is usually preferred for fruit volatile analysis 

when changes over a period of time are monitored (Rizollo et al., 1992; Mattheis et al., 

1991). Sampling an aliquot of headspace without the use of intermediate steps (trapping 

or solvent extraction) would be the method of choice because the exact food aroma is 

then analyzed; however, high water vapor content and low amount of volatiles have 

limited that method's application to fruit (Paillard et al., 1970; Wampler, 1997). The 

amount of volatiles sampled can be increased in a static headspace by letting fruit 

produce and accumulate its own volatiles in a closed system. However, in such a 

system, it becomes difficult to establish whether additional volatiles analyzed are due to 

increased concentration in the headspace or are new products appearing as a 

consequence of altered metabolism in a closed system. Therefore, dynamic headspace, 

where air is flushed through a vessel containing fruit, is preferred as it maintains the fruit 

in aerobic conditions. Volatiles are entrained and adsorbed on solid materials such as 

charcoal or porous polymers including Tenax and Poropak Q, then desorbed by heat 

transfer or with a solvent . Thermal desorption allows near complete recovery of all 

trapped compounds while avoiding co-elution of low boiling compounds with the solvent 

(Wampler, 1997). Thermal desorption also limits the possibility of artifact formation 

from interactions between solute and solvent. However, only solvent desorption allows 

multiple injections from a single sample. 

Once fruit volatiles have been collected, chemical separation by gas 

chromatography (GC) coupled with either mass spectrometry (MS) or a flame ionization 



34 

detector (FID) allows qualitative and quantitative analysis. These analytical techniques 

do not, however, provide information characterizing aroma activity of individual
 

compounds. Olfactometry techniques where the detector is a human sniffing the GC
 

effluent, are well documented (Acree, 1997; Grosch, 1993; Mistry et al., 1997; Blank,
 

1997). Acree and co-workers (1984) and Grosch (1993) inject the aroma extract into a 

GC after successive dilutions: compounds that are perceived by the human subject at the 

highest dilution level are believed to be the character impact volatiles of the sample. In 

CharmAnalysis (Acree et al., 1984), data processing evaluates duration of the perceived 

compound (human response) as well as its dilution value. In aroma extract dilution 

analysis (AEDA), the dilution level at which compounds are perceived gives the flavor 

dilution (FD)-factor (Grosch, 1994). Both CharmAnalysis and AEDA are recognized as 

useful complements to chemical analysis for screening potent odorants in foods. 

Another GC-olfactometry (GCO) technique, Osme, is based on Stevens' law of 

psychophysics and combines time and intensity of perception as a response to odorants 

(McDaniel et al., 1990; Da Silva et al., 1994). Osme gives an odor profile of a food 

extract and comparison between samples or treatments can be made by either comparing 

the aroma profiles (Young, 1997; Sanchez et al., 1992a; 1992b), or by statistical analysis 

(Da Silva et al., 1993). While applications of CharmAnalysis and AEDA usually report 

one person to have evaluated the GC effluents, Osme has used four (Da Silva et al., 

1993, McDaniel et al., 1990; Sanchez et al., 1992a; 1992b; Bazemore, 1995) and three 

(Young, 1997) panelists, each replicating the sniffing of each sample three or four times. 

Additionally, Osme panelists are trained to use a time-intensity device with a 16-point 

intensity scale where 0 = none, and 15 = extreme. Intensity response to odorant 

concentration was shown to follow the principle psychophysics of Stevens' law givenby 

the equation I = k(C-T)n, where I is the reported perception of odor intensity of a 

compound, C the compound concentration, T the compound's threshold value, n the 

exponent of the function and k is the constant of proportionality (Da Silva et al, 1994). 

Those authors also showed that intensity ratings were reproducible with trained panelists 

using Osme. 
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Information relative to odor character of compounds found in apples and 

determined by GCO was first published by Guadagni et al. in 1966. Flath et al. (1967) 

further determined the relative importance of individual compounds in 'Delicious' apple 

essence by determining their odor thresholds using sensory methods. Williams et al. 

(1977a) correlated sensory descriptive analysis data with GCO results for 'Cox's Orange 

Pippin' apples. In that work and in a subsequent paper (1977b), Williams emphasized 

the importance of 4-methoxyallylbenzene, a compound with an anise odor that gives a 

spicy character to that apple cultivar. Nursten and Woolfe (1972) used GC-MS, GCO 

and sensory difference testing to measure changes in 'Brumley Seedling' apple aroma 

after processing. GCO has also been used to describe odorous compounds emitted by 

intact 'Golden Delicious' apples (Perez et al., 1993; Rizzolo et al., 1989; Rizzolo et al., 

1992), and compounds extracted from `Kogyolcu' apple by steam distillation (Yajima et 

al., 1984). In the latter studies, there was no attempt to quantify the aroma intensities of 

the odor producing compounds. CharmAnalysis, which determines the potency of odor-

active peaks, was applied to Freon extracts from apples to investigate cultivar differences 

(Cunningham et al., 1986). However, 'Gala' apple was not included in the study. More 

recently, Young et al. (1996) used CharmAnalysis to investigate the compounds 

contributing to 'Gala' aroma. They found 2-methylbutyl acetate, butyl acetate, hexyl 

acetate and butanol to be important contributors to 'Gala' aroma. Those compounds 

were obtained from vacuum steam distillation and there was no mention of the aroma 

activity of other compounds. 

All the above mentioned GCO studies reported only odor qualities for the 

compounds found in apples, and no comparisons were made between storage treatments 

or maturity stages. Only Cunningham et al. (1986) reported differences between apple 

cultivars. 'Gala' apple is a cultivar which originated in New Zealand and has gained 

worldwide popularity on the European, Asian and American markets because of its 

unique flavor (White, 1991). However, the storage season of 'Gala' is short, in part due 

to a decrease in aroma quality after storage (Young et aL, 1996). We were interested in 

quantifying the changes of 'Gala' aroma in storage from an analytical and sensory point 

of view using GCO. Osme was the method of choice because panelists record an 
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intensity and time-intensity response to compound concentrations, additionally to an 

odor descriptor, and also data can be analyzed by statistical methods (Da Silva et al., 

1993). 

Optimization of 'Gala' volatile isolation for both GC and Osme applications was 

the objective of this study. A dynamic headspace technique sampling intact apples was 

chosen because results could be compared with other studies using methods with intact 

fruit (Mattheis et al., 1998). Among the many adsorbents available, activated coconut 

charcoal, Tenax TA and Poropak Q are the most widely used for trapping fruit 

headspace volatiles. After a few trials, it became obvious that large amounts of volatiles 

were required for the olfactometric setup. Therefore, charcoal and Tenax GR were 

compared during the optimization process. Charcoal, with a large adsorbing surface area 

(1070 m2g-1 for 20/40 mesh particle size), has the largest capacity for capturing organic 

compounds. Tenax GR is a porous polymer based on 2,6-diphenyl-p-phenylene oxide 

(Tenax) that contains 30% of graphitized carbon that has been co-precipitated with the 

polymer. It has the advantage of not being as reactive as charcoal, but with its 

graphitized surface, presents larger adsorbing capacity than Tenax TA (100 m2g-1 versus 
m2g-1). 

In this study, solvent desorption was used for repeated GC injections. 

MATERIALS AND METHODS 

Plant Material and Headspace Sampling 

`Gala' apples from a commercial orchard near Chelan, WA, were harvested on 

September 9, 1994, and September 12, 1995. No pre-harvest or pre-storage chemical 

treatment was applied. Fruit was stored in air at 1 °C for 4 weeks in 1994 and 1995. 

Fruit was ripened at 22 °C for 5 days prior to volatile collection. Four replicate samples 

(five apples each, ca. lkg) were placed in 4 L glass jars sealed using Teflon lids with two 

gas ports. Compressed air purified by flowing through activated charcoal, calcium 

hydroxide and 5 A molecular sieve (W.A. Hammond Drierite, Xenia, OH) was passed 

through the jars at ca. 200 mLmin-1. Volatiles were collected on activated coconut 
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charcoal (20/40 mesh, 150 mg, ORBO-32, Supelco, Bellefonte, PA) for 6, 12 and 24 

hours (ca. 70, 140 and 280 L, respectively). Trapping for less than 6 hours was first 

tested but did not yield enough materials for sniffing. Another batch of 20 apples was 

placed in the same jars as above, and headspace sampled for 24 hours onto Tenax GR 

(60/80 mesh, 1 g) with an air flow of 100 mL-min-1 (ca. 150 L). Sampling took place in 

a ripening chamber maintained at 22 °C. Traps were stored at 25 °C until elution. 

Volatile compounds were desorbed from charcoal with 300 gL of carbon disulfide 

(HPLC grade, 99.9%+, Sigma-Aldrich, St. Louis, MO) containing 100 mg-L-1 of 

tridecane (Sigma, St. Louis, MO) as an internal standard. CS2 was chosen as it was 

shown to be the most effective solvent at displacing molecules adsorbed on charcoal 

(Jennings and Nursten, 1967). Furfuryl pentanoate was the internal standard in 1994, 

but it appeared to contain an odorous impurity not detected by the HD; therefore 

tridecane was chosen for the following season. Solvent was poured onto the charcoal 

particles in 1.8 mL vials, then samples were ready for analysis. Tenax traps were eluted 

with 25 mL of diethyl-ether (HPLC grade, 99.9%, Sigma-Aldrich, St. Louis, MO) 

containing 30 gL of tridecane at 1000 mg-L-1. The solvent was concentrated to 300 gL 

with nitrogen at 200 rnLmin-1, on ice. Both solvents, CS2 and concentrated diethyl ether 

with tridecane were checked for the presence of odorous impurities after elution time of 

five minutes. During the period of the study, samples (sorbent and solvent for charcoal, 

solvent alone for Tenax) were stored at 17 °C. 

Gas Chromatography - Olfactometry 

Samples were analyzed on a HP 5890 (Hewlett Packard, Wilmington, DE) gas 

chromatograph equipped with a 3-way valve (Valco Instruments Co., Inc., Houston, 

TX) to direct column flow to either a FID or a sniff port. The column was Rtx-5 fused 

silica coated with crossbonded 5% diphenyl 95% dimethyl polysiloxane, 30 m, 0.53 mm 

i.d., 1-gm film thickness (Restek, Bellefonte, PA). Conditions for chromatographywere: 

splitless injection at 250 °C, initial oven temperature, 40 °C held for 1 min, increased to 

165 °C at 5 °Cmin-1, then to 250 °C at 20 °Cmin-1, held for 15 min. FID was at 280 °C; 

H2, air and auxiliary gas (He) to FID were 30, 390 and 27 mL-min-1, respectively. Linear 
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velocity of He carrier gas was 30.7 cm.sec-1. The sniff port was a 40 cm long, 4 mm 

diameter glass tubing deactivated with 5% dimethyldichlorosilane (Sylon-CT, Supelco) 

connected with a tee to the outlet of the GC column. Compressed air (breathing quality) 

was purified and humidified before flow to the sniff port at 3.5 L.min-1 (or 4.64 m.seel ) 

through successively: activated charcoal, 5 A molecular sieve and 2 L distilled water held 

at 30 °C. 

Three panelists were trained to smell and describe the column effluents while 

rating the perceived intensity on a 16-point intensity scale (0 = none, 15 = extreme). 

Intensity was rated by moving a linear sliding bar connected to a variable resistor 

interfaced to a personal computer (Da Silva et aL, 1994). The headspace from 'Gala' 

apple sampled for method development was used for training. Panelists were asked to 

identify the strongest odor peak and scale the intensity of the rest of the aromagram as to 

how intense they perceived the peaks. After the panelists had been familiarized with the 

sample and had developed their own vocabulary, reference standards were provided 

before each sniffing session so that panelists remained consistent in the naming ofodors. 

Standards were presented in 120 mL jars closed with a Teflon-lined lid, and were: for 

"sweet, fruity", 107 µgL-1 of ethyl 2-methylbutyrate, 3.5 mg-L-1 of butyl acetate and 14 

mgL-1 of pentyl acetate in 60 mL odor-free double distilled water (Milli-Q); "green 

apple", 8.5 mgL-1 of hexyl acetate, 3.4 mg-L-1 of hexanal and 3.4 mg-L-1 of 2­

methylbutyl acetate in water; "sweet, bubble gum", 'Bubble Yum' original flavor 

(Nabisco, East Hanover, NJ); "butterscotch", Werther's original candies (Stork, 

Chicago, IL); "strawberry", strawberry essential oil (Uncommon Scents, Eugene, OR); 

"oatmeal", fresh dry oatmeal; "watermelon", fresh cut watermelon; "mushroom", fresh 

cut mushroom; "grape juice", Welch's 100% grape juice (Welch's Concord, MA); 

"burnt", burnt matches; "nutty", roasted hazelnuts; "adhesive tape", Scotch tape (3M, 

St. Paul, MN). Additionally, 'Gala' apples were presented in the same set-up (5 apples 

in a 4 L jar) as when they were sampled for volatiles. This was done to familiarize the 

panelists with the specific odor of 'Gala', and to help panelists identify the compounds 

having that odor profile. Panelists were allowed to use their own descriptors, as long as 

they were consistently applied. 
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Each sniffing session started after solvent elution from the column, and each 

session lasted 30 min. Data were recorded for time duration and intensity with Osme v. 

1.0 for Windows 3.1, software developed at Oregon State University. The resulting 

output was, for each response: a) the odor duration time, b) the maximum odor intensity 

('max), c) the area under the curve generated by the odor stimulus response (time x 

intensity), and d) the retention index (Kovats) at the time of maximum perceived 

intensity. Kovats indices were calculated after analyzing a series of hydrocarbon 

standards under the same conditions as the volatile sample. Panelists evaluated each of 

the four apple-batch replications once. Samples were presented in a complete 

randomized order blocked by apple batch (replication). Three panelists participated in 

the testing. 

Initial identification of the compounds was made by running the samples under 

similar conditions on a HP 5890 series II gas chromatograph (Hewlett Packard, 

Wilmington, DE) equipped with a HP 5971a MS detector (Hewlett Packard, Palo Alto, 

CA) and a DB-5, 30 m, 0.25 mm i.d., 0.25-p.m film thickness capillary column (J&W 

Scientific, Folsom, CA), and matching spectra using the Wiley/NBS library (1991). 

Confirmation of identification was made by 1) comparing retention indices of authentic 

standards from Aldrich Flavors and Fragrances (Milwaukee, WI) and 2) Osme evaluation 

of those standards in the same quantities as in the sample. If the odor of a standard was 

different from the odor of the sample peak, the compound was not retained for that peak 

odor identification, even though it was identified by the Wiley library and had the same 

Kovats index as the sample peak. All standards used for olfactometry were food grade. 

Statistical Analysis 

Differences between traps and sampling time were analyzed for each chemical 

compound using ANOVA, with sampling time (and trap) as the main effect. For each 

perceived odor peak intensity (I.) response variable, panelist was included in the 

model, and apple batch (replication) was the error being tested. Sampling time (and 

trap) and panelist were treated as fixed effect and apple batch was treated as random 

effect. Intensity means were separated with the protected LSD test using apple batch 
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(replication) as the error term. Additionally, the frequency of perceived odor peaks was 

examined. All statistical procedures were performed using SAS statistical software v. 

6.12 (SAS Institute, Cary, NC). 

RESULTS AND DISCUSSION 

Volatile Compounds Produced by 'Gala' Apple 

Most of the compounds identified were esters, followed by alcohols, one ketone, 

one allyl phenol, one hydrocarbon and one C13 nor-isoprenoid compound (Table 3.1). 

Total esters accounted for 96% to 98% of the volatile compounds eluted from the traps 

(Table 3.2). Of the total quantity of esters detected, 80% were composed of straight-

chains with the remaining 20% branched-chains. Those figures fall within the range 

compiled for headspace analysis of apples (Paillard, 1990). Butyl acetate, hexyl acetate 

and 2-methylbutyl acetate were present in the largest amounts, representing 21 - 37%, 

16 - 23% and 12 - 25% of total volatiles eluted, respectively. 

We compared 'Gala' volatile compounds trapped on charcoal or Tenax GR 

(sampling volume 70 to 280 L) and solvent eluted in this study, with compounds from 

headspace trapped on Tenax TA (sampling volume 100 mL) and heat desorbed 

(Mattheis et al., 1998). 'Gala' apples originated in the same orchard and were harvested 

at the same maturity stage. Heptyl acetate, pentyl propanoate, propyl butyrate, butyl 

heptanoate, hexyl octanoate, 3- methyl -2- butenyl acetate, butyl 2-methylpropanoate, 3­

methylbutyl propanoate, hexyl 2-methylpropanoate, 3-methylbutyl hexanoate and hexyl 

tiglate were detected in samples trapped for 24 hours on charcoal and Tenax GR but 

were not present in the samples collected on Tenax TA traps and heat desorbed. 

Conversely, ethyl esters (ethyl acetate, ethyl butyrate, ethyl pentanoate and ethyl 

hexanoate), 2-methylbutyl 2-methylbutyrate and several aldehydes, were trapped by 

Tenax TA and heat desorbed but were not present in samples that were trapped on either 

charcoal or Tenax GR. Some smaller molecular weight compounds (acetic acid, ethanol 
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Table 3.1. Volatile compounds and their quantity (ng/pL) in 'Gala' apple head-
space trapped on charcoal for 6, 12 and 24 hours and eluted with CS2 
or on Tenax GR for 24 hours and eluted with ether' 

Charcoal + CS2 Tenax + Ether 
6 hrs 12 hrs 24 hrs 24 hrs 

1-Butanol 13.8 b 53.2 b 196.0 a 54.9 b 

1-Pentanol 1.1 1.8 4.4 3.6 
1-Hexanol 6.8 b 28.8 ab 82.8 a 63.2 ab 

2- Methyl -1- butanol 39.7 55.2 78.6 64.4 
Propyl acetate 68.0 b 141.4 b 367.5 a 98.6 b 

Butyl acetate w'x 1812.5 b 2220.8 b 3499.4 a 2445.2 b 

Pentyl acetate"' 58.5 b 142.1 ab 331.0 a 147.9 ab 

Hexyl acetate' x 1134.1 b 1667.2 b 2666.3 a 1724.5 b 

Heptyl acetate b 
30.9 b 60.5 a 19.9 b 

Cis -3-Hexenyl acetate" -

Propyl propanoatew 4.6 b 16.1 ab 30.3 a 14.9 b 

Butyl propanoate 112.6 b 344.5 ab 629.9 a 356.1 ab 

Pentyl propanoate 11.3 15.0 20.3 10.2 
Hexyl propanoate 51.1 b 239.5 b 491.6 a 210.9 b 

Propyl butyrate' b 17.5 ab 
36.1 a 15.2 b 

Butyl butyratew 100.4 b 269.4 ab 496.3 a 215.7 b 

Pentyl butyrate 2.9 b 9.2 ab 17.6 ab 24.4 a 
Hexyl butyratew 75.1 b 243.7 a 388.9 a 235.7 ab 

Propyl hexanoate 32.3 b 72.8 b 164.2 a 43.4 b 

Butyl hexanoate"' 281.1 ' 734.7 b 1197.1 a 532.2 lac 

Hexyl hexanoate 117.5 ' 619.0 b 1470.0 a 196.1 
Butyl heptanoate 11.5 b 49.5 b 126.4 a 26.1 b 

Hexyl octanoate 9.0 C 27.4 b 59.0 a 11.9 be 

2-Methylpropyl acetate"' 20.9 b 41.1 b 91.8 a 26.7 b 

2-Methylbutyl acetate"''" 718.6 b 1410.4 ab 1949.5 a 999.6 b 

2-Methylbutyl butyrate 1.4 b 
ab a 

3.2 ab 

3- Methyl -2- butenyl acetate"' b 
19.4 b 42.0 a 13.8 b 

3-Methylbutyl propanoatew 3.0 b 9.5 b 23.9 a b 

3-Methylbutyl hexanoate 1.6 ' 8.4 b 20.8 a 4.0 bc 

Butyl 2- methyipropanoate 3.7 7.6 12.9 6.9 
Hexyl 2-methylpropanoate 4.3 14.2 23.6 11.9 
Methyl 2-methylbutyratew b 24.6 b 55.6 a 2.9 b 

Ethyl 2-methylbutyrate' Y 2.4 4.5 4.5 1.4 
Propyl 2-methylbutyrate 13.6 b 41.3 ab 104.7 a 41.6 ab 

Butyl 2- methylbutyrate"' 116.1 b 
ab 664.9 a 355.6 b 

Hexyl 2-methylbutyratew 35.8 b 329.2 b 798.9 a 340.1 
Hexyl tiglate"' 0.1 b 

ab 
9.4 a 1.6 b 

6-Methyl -5-hepten-2-onew 4.9 C 27.5 b 80.8 a be 
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Table 3.1, continued 

4-Allylanisolew b 
56.8 b 202.5 a 77.0 b 

a-Farnesene 0.0 0.0 b 0.0 b 9.7 a 
[3-Damascenonew' Y 

Total volatiles 4913.0 9353.0 16508.0 8427.0 
Z Values are means of 4 replicates of dynamic headspace of 1 kg apples. Means followed by the same 

letter within one row indicate no significant difference by the Waller-Duncan t-test K-ratio, K=100 
W	 

Odor active compounds at those concentrations 
Above the detector linear range 

Y Below the detection limit 
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Table 3.2. Proportion (percent of total) of volatile compounds per sampling 
method for 'Gala' apple headspace 

Charcoal + CS2 Tenax + Ether 
Compound group 6 hrs 12 hrs 24 hrs 24 hrs 
Alcohols 1.2 1.5 2.2 2.2 

Acetates 62.8 44.9 42.0 52.6 
Propanoates 3.7 6.6 7.1 7.0 
Butyrates 3.8 5.8 5.7 5.8 
Hexanoates 8.8 15.3 17.2 9.2 
Heptanoate 0.2 0.5 0.8 0.3 
Octanoate 0.2 0.3 0.4 0.1 

Straight-chain esters 79.4 73.4 73.0 75.1 
Branched-chain esters 19.1 24.2 23.0 21.6 

Total esters 98.5 97.6 96.1 96.7 
6-Methyl-5-hepten-2-one 0.1 0.3 0.5 0.2 
4-Allylanisole 0.2 0.6 1.2 0.9 
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and ethyl acetate) co-eluted with the solvent peak, which explains their absence in our 

study. 

The absence of either ethyl esters and aldehydes from charcoal and Tenax GR 

traps indicates that active sites (carbon oxides, Betz et aL, 1989) on charcoal or the 

graphitized Tenax GR might have irreversibly adsorbed those compounds. It is also 

possible that, in the presence of water vapor (from apples), oxidations or nucleophilic 

attacks by excess sulfur from CS2, and further hydrolysis could occur on the surface of 

charcoal or graphitized Tenax in a catalytic manner. Another explanation would be that 

over a long period of sampling, the missing compounds were displaced by the higher 

molecular weight volatiles. Aldehydes were observed from back up Tenax TA traps 

connected in series after the charcoal or Tenax GR traps and heat desorbed, but not ethyl 

esters. 2-Methylbutyl 2-methylbutyrate was not found on either charcoal or Tenax GR 

traps, but this compound was present on Tenax TA traps heat desorbed. 

Alcohols represented a maximum of 2.2% of the total volatile fraction in our 

samples. We tested alcohol recovery by applying alcohol standards in CS2 directly onto 

charcoal traps. Results showed that alcohols were partially adsorbed on charcoal with a 

50 to 60% recovery (data not shown). Paillard (1990) reported 6 to 16% alcohols from 

headspace sampled on charcoal. Production of 4-allylanisole (1-methoxy-4-(2­

propeny1)-benzene by 'Gala' apples was confirmed (Young et al., 1996). The relative 

headspace concentrations of this compound were less than 0.3% when sampled for 16 

hours on Poropak Q for all cultivars tested (Williams et al., 1977b), while it accumulated 

up to 1.23% in our samples (Table 3.2). a-Farnesene, a compound produced by apple 

skin and known for its involvement in superficial scald (Huelin and Coggiola, 1968), was 

present in the samples trapped by Tenax GR and Tenax TA but not by charcoal. It was 

present in the back-up traps of both Tenax GR and charcoal, indicating that CS2 did not 

elute this high molecular weight compound from charcoal. 

Using charcoal traps (ORBO 32) to sample 'Golden Delicious' for 4 hours with a 

nitrogen dynamic headspace and eluting with CS2, Perez et al. (1993) found only esters 

and one alcohol. Kakiuchi et al. (1986) also found only traces of aldehydes when 

sampling apple headspace for 24 hours on Tenax GC. Aldehydes are very reactive 
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compounds and it possibly explains the difficulty of their recovery after extended 

sampling duration. Also, aldehydes were not present in `Calville Blanc' apple direct 

headspace nor when volatiles were sampled on activated charcoal and vacuum-heat 

desorbed (Paillard et aL, 1970). Desorbed compounds remained in the same proportions 

in both methods of sampling. Streif (1981) described a method of sampling 2 L of apple 

headspace on activated charcoal which was heat desorbed in the injection liner ofthe 

GC; reported results do not show aldehydes, only acetaldehyde was identified in the 

samples (Streif, 1981; Brackmann et al., 1993). Young et al. (1996) indicated butanol 

had the largest concentration in distillate prepared from 'Gala' apples. However, n-

alcohols have often been found in larger amounts from apple essence: quantitatively 48 

to 75% versus 6 to 16% in headspace (Paillard, 1990; Kakiuchi et al., 1986). 

Olfactometric Significance 

More peaks were perceived in 1995 than in 1994; peaks perceived most 

frequently and most intensely were perceived both years (Table 3.3). The following 

discussion refers to the 1995 results unless stated otherwise. Only 26 of 44 odor-active 

peaks were chemically identified (Table 3.3). Most were esters that had fruity odors. 

Hexyl acetate (peak 20) and pentyl acetate (peak 11) were perceived as having the 

closest odor to 'Gala' apples provided as standards. Butyl acetate (peak 4) and 2­

methylbutyl acetate (peak 7), present in the largest amount with hexyl acetate (Table 

3.1), were perceived as solvent and nail polish. Fruity and apple-like descriptors were 

given to butyl 2-methylbutyrate, hexyl 2-methylbutyrate, butyl hexanoate, hexyl butyrate, 

hexyl propanoate, butyl propanoate and 3-methylbutyl propanoate. Methyl 2­

methylbutyrate (peak 2), ethyl 2-methylbutyrate (peak 6) and propyl 2-methylbutyrate 

(peak 13) had a strong sweet, berry-like (strawberry) distinctive odor. Ethyl 2­

methylbutyrate has been reported to be the character impact compound of 'Delicious' 

apple by having a ripe, overripe apple odor (Flath et al., 1967). Butyl butyrate (peak 17) 

was also recognized with its rotten apple or cheesy descriptors. 

GCO illustrates that human olfactory response can differentiate between two 

compounds having a close but distinct odor: butyl hexanoate and hexyl butyrate (peaks 



Table 3.3. Odor active peaks for 'Gala' apple: Kovats indices, odor descriptors, compound 
identities, presence in 1994 and 1995, and perceived intensities on a 16-point
scale (0 = none, 7 = moderate, 15 = extreme) through Osme analysis' 

Category 

Fruity 

Peak Kovatsb 
# Index 

20 1028 

Descriptor 

Gala, ripe, pear 

Compound 

hexyl acetate 

1994 1995 

X X 

Perceived 
intensity 

12.1 
4 827 nail polish butyl acetate X X 10.6 
7 890 solvent 2-methylbutyl acetate X X 9.9 
6 863 sweet strawberry ethyl -2- methylbutyrate X X 8.1 
2 787 sweet fruity methyl -2-methylbutyrate X X 8.0 

19 1018 apple cis -3-hexenyl acetate no X 7.2 
19 1018 and toast + unknownf 
13 959 very sweet, strawberry propyl -2- methylbutyrate X X 7.0 
23 1056 fruity, apple butyl -2-methylbutyrate X X 6.3 
11 926 gala pentyl acetate X X 6.1 
43 1437 grape juice 13- damascenone X X 5.2 
36 1255 apple, grapefruit hexy1-2-methylbutyrate X X 5.2 
31 1205 green apple' butyl hexanoate' X X 4.6 
27 1121 apple hexyl propanoate X X 3.8 
16 997 fruity, tape 6-methyl-5-hepten-2-one X X 3.5 
12 933 fruity, sweet, solvent 3-methyl -2-butenyl acetate X X 2.5 
17 1009 rotten apple, cheesy butyl butyrate X X 2.2 
18 1010 solvent, gala unknownf X X 2.2 
10 921 fruity, apple butyl propanoate X X 2.2 
44 1524 fruity unknownf X X 1.9 
32 1214 apple' hexyl butyrate' X X 1.9 
38 1276 grape juice` unknownf X X 1.3 
42 1418 apple or taped hexyl hexanoate + unknown no X 0.7 

3 813 fruity" propyl propanoate X X 0.0 
15 994 grassy, green apple" 3-methylbutyl propanoate X X 0.0 
9 910 fruityd propyl butyrate no X 0.0 



Table 3.3, Continued 

Floral 26 1118 floral` unknownl X X 3.7 
Anise 33 1222 anise, licorice 4-allylanisole X X 7.7 

22 1041 sweet, anised unknownf X X 0.4 
Cucumber 24 1070 watermelon unknown X X 7.4 

28 1145 cucumber unknownf no X 2.7 
34 1227 cucumber' d unknownf X X 0.9 

Mushroom 14 991 mushroom 1-octen-3-ol no X 4.6 
35 1230 cat urine, mushroom unknownf X X 4.1 
40 1353 nutty, mushroomd hexyl tiglate X X 1.7 

Spicy, 39 1303 tape or fruity unknown X X 4.2 
adhesive tape 41 1364 tape or musty dirty unknownf no X 2.7 

29 1151 anise,spice or mushroom unknownf X X 2.3 
30 1197 tape or fruity unknownf no X 2.1 

1 774 tea, garlic, leaves 2-methylpropyl acetate no X 0.6 
Rubber, 5 836 skunk, rubber no peak X X 8.4 
skunk 37 1272 strong rubber no peak X X 6.9 

8 901 oatmeal, skunk no peak no X 3.2 
25 1112 dusty, musty no peak no X 2.3 
21 1038 metallic, skunk no peak X X 1.3 

a Mean of 3 panelists over 4 replications of 'Gala' apples sampled on charcoal for 24 hours in 1995 
Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 
Perceived by one panelist only 
At or below odor threshold. Perceived sporadically 
Peaks co-elute on the FID, but perceived separately by the panelists (peaks 26 and 27; 31 and 32) 
Correspond to peaks detected by FID, but no satisfactory match was found in the Wiley/NBS library 



48 

31 and 32) co-eluted on the apolar Rtx-5, but were perceived as green apple and apple, 

respectively (Table 3.3). Likewise, cis-3-hexenyl acetate (peak 19) and hexyl hexanoate 

(peak 42) (both apple-like) co-eluted with an unidentified compound that had a toast or 

scotch tape odor, respectively. A floral compound (peak 26) probably co-eluted with 

hexyl propanoate (apple, peak 27) as their Kovats indices for Osme were close but only 

one peak was detected on the FID. Although these peaks could be perceived distinctly 

by all three panelists in 1995, butyl hexanoate and hexyl butyrate were perceived as one 

apple-like peak in 1994. The floral and hexyl propanoate apple odors were also 

recorded as one peak in 1994, but still both descriptors were used. Two of the three 

panelists that participated in the sniffing were the same in 1994 and 1995. The ability to 

discriminate between odors, and the use of the recording device might have improved 

with the second year of practice. 

GCO also allowed identification of some compounds that were not detected 

using GC-MS but were perceived by the human subjects. For example, B-damascenone 

(2,6,6-trimethyl-l-trans-crotony1-1,3-cyclohexadiene) (peak 43) was present in trace 

amounts but was identified by having a strong recognizable grape juice odor and by its 

Kovats index (1437). This compound was reported by Cunningham et al. (1986) to 

have a high Charm value for some apple cultivars. Another 38% of the compounds 

remained unidentified or did not correspond to a visible peak on the FID (Table 3.3). 

The compound with a floral odor mentioned earlier did not correspond to any compound 

in the Wiley/NBS library. Two anise peaks were perceived: one was unidentified and the 

other was identified as 4-allylanisole and reported in 'Royal Gala' by Young et al. 

(1996). Williams et al. (1977b) attributed the distinctive spicy flavor of 'Cox's Orange 

Pippin' to that compound. One watermelon- and two cucumber-like odors were 

reported. While the two cucumber peaks were perceived only sporadically and mostly 

by the most sensitive panelist, the watermelon odor was strong and clearly perceived by 

all panelists. No satisfying match was found in the WileyNBS library for these 

compounds. Three peaks had a mushroom odor: one was unidentified; hexyl tiglate was 

identified by GC-MS, Kovats indices and GCO; and 1-octen-3-ol was tentatively 

identified by matching retention indices and GCO. However, no peak was present on the 
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sample chromatogram, and the mushroom odor might also be due to l- octen -3 -one co­

eluting with 1-octen-3-ol but having a lower odor threshold (Blank, 1997). 1-Octen-3­

one is not available commercially (Blank, 1997) and we could not verify its identity. 

Hexyl tiglate and 1-octen-3-ol were not reported in apple previously but the ketone was 

reported in raspberry (Roberts and Acree, 1996) and in apples (Cunningham et al., 

1986). 

Spicy, adhesive tape, skunk and rubber-like odors were reported from the 

samples. All of these compounds had a low odor threshold (except peak 30, Figure 3.1) 

since the chromatographic peaks were small or undetected by the FED. With these odor 

descriptors, the compounds may be nitrogen or sulfur-containing compounds. It is 

possible these compounds were artifacts resulting from reactions between entrained 

compounds and the CS2 solvent with the charcoal active sites acting as catalyzers. 

However, all these compounds were also present on the Tenax GR (and also charcoal, 

data not shown) traps eluted with diethyl ether, although often perceived witha lower 

intensity. Sulfur compounds have been reported from apple samples. 2­

(Methylthio)ethyl acetate and 3-(methylthio)propyl acetate were reported by Schreier et 

al. (1978), 3-methylthio-l-propanol by Schreier et al. (1978) and by Girard and Lau 

(1995), and benzothiazole was found in `Kogyoku' apples (Yajima et al., 1984). 

Retention time and odor of benzothiazole matched peak 37 in our sample. It is not 

known at this point whether those compounds are natural compounds emitted by the 

fruit, or compounds metabolized from sulfur-containing fungicides used on apple trees 

during fruit development. Panelists that participated in a panel evaluating the same 

`Gala' apples as we used in this experiment mentioned a sulfury odor in the background 

of the fruity apple aroma (Plotto et al., 1998). Because of the high lability of sulfur 

compounds in stored samples (Hofmann et al., 1996) and their instability at each step of 

GC run (Block, 1993), the identification and the representativeness of the skunk-, 

rubber-like peaks perceived by Osme for 'Gala' apples remain to be proven. Descriptors 

such as rotten, putrid, earthy, mushroom and dry dust were also reported from GCO of 

`Golden Delicious' apple sampled by dynamic headspace on activated charcoal and 

eluted with methylene chloride (Rizzolo et al., 1989). 
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Figure 3.1. FID chromatogram (top) and Osme aromagram (bottom) for 'Gala' 
apples stored in air (2 °C) for 4 weeks. Samples (1-kg apples) of 
dynamic headspace for 24 hrs on charcoal traps. Only odor-active 
peaks are numbered. See Table 3.3 for identity. 
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Aldehydes that were not present on charcoal or Tenax GR but isolated on Tenax 

TA heat desorbed traps are probably odor-active in 'Gala' apple because of their low 

odor threshold, ranging from a high of 16.0 [igL-1 for butanal to a low of 0.10 µg-L-1 for 

decanal (Guadagni et al., 1963). Likewise, ethyl butyrate, ethyl pentanoate and ethyl 

hexanoate odor thresholds are 1, 1.5 and 1 tigL-1, respectively (Takeoka et al., 1989). 

This illustrates the distortions introduced by different methods of volatile isolation and 

the relevance of comparing more than one method. GCO gives additional information 

and confirmation of compound identity, provided that authentic standards can be used 

for comparison between odor characters and sample peaks. Since volatile isolation 

techniques may give different aroma profiles, GCO validation with aroma recombination 

studies would be necessary (Mistry et al., 1997). 

Trap Adsorbing Capacities 

The quantity adsorbed by charcoal traps was proportional to the time of sampling 

duration, or volume sampled (Table 3.1). Sampling on Tenax GR for 24 hours with a 

lower flow through rate (100 mL-min-1) generally yielded quantities comparable to 

sampling on charcoal for 12 hours at 200 inL.min-1 (same volume of headspace sampled, 

ca. 140 L). With charcoal, more alcohols were trapped using the longer sampling 

durations, while more acetate esters were present in samples collected for 6 hours (Table 

3.2). It is obvious that higher molecular weight compounds were trapped by longer 

sampling durations, probably displacing smaller compounds such as acetate esters (Table 

3.2). Air flow rate through the traps and long sampling duration times were chosen to 

optimize collection of the higher molecular weight compounds (Takeoka et al., 1990). 

Overall, more odor-active peaks were perceived from the longest sampling 

durations (Table 3.4). Two panelists out of three perceived more odor-active peaks in 

the 12 hour charcoal sample than in the 24 hour Tenax, while one panelist (Pan. 2) 

perceived fewer peaks (Table 3.4). Peaks perceived from charcoal traps had an overall 

higher intensity, except peaks 1 and 30 (Table 3.5). More fruity peaks were perceived in 

the charcoal traps, whether sampled for 24 or 12 hours. The floral, a licorice, a 

watermelon, the adhesive tape and the skunk/rubber peaks were perceived with a higher 



Table 3.4. Total number of odor-active peaks and apple-like peaks perceived by 3 panelists through Osme 
analysis for each sampling method of 'Gala' apple headspaced 

Charcoal + CS2 Tenax + Ether 
6 hrs 12 hrs 24 hrs 24 hrs 

Pan. 1 Pan. 2 Pan. 3 Pan. 1 Pan. 2 Pan. 3 Pan. 1 Pan. 2 Pan. 3 Pan. 1 Pan. 2 Pan. 3 

Total peaks 28 18 17 36 24 21 42 36 25 29 32 16 
Apple peaks 10 5 5 12 7 8 13 11 8 11 9 2 

a Each panelist evaluated four replications per sample 



Table 3.5. Frequency (%) and average intensity max) of odor-active peaks trapped on charcoal (eluted with CS2)
for 6, 12 and 24 hours and onTenax GR (eluted with ether) for 24 hours (n = 12, 3 panelists with 4
replications each)Z 

Charcoal + CS2 Tenax + Ether 
Kovat.s 6 hrs 12 hrs 24 hrs 24 hrs
Peak # Index Descriptor % / max' % /max'
 % / max' % / max' 

20 1028 Gala, ripe, pear 83 8.54 b 92 9.56 b 100 12.05 a 92 8.40 b 
4 827 nail polish 100 8.52 b` 100 9.54 ab 100 10.60 a 100 7.83 C 
7 890 solvent 92 7.37 b 92 9.54 ab 100 9.91 a 100 7.53 b 
6 863 sweet strawberry 100 6.28 83 6.32 100 8.06 100 6.11 
2 787 sweet fruity 100 6.10 b 100 7.50 ab 100 7.95 a 100 8.35 a 
19 1018 apple and toast 17 0.88 b 50 3.69 b 100 7.17 a 33 1.23 b 
13 959 very sweet, strawberry 100 6.49 ab 100 7.56 a 100 7.04 ab 100 5.96 b
23 1056 fruity, apple 67 3.41 b 92 5.20 a 100 6.30 a 67 3.16 b
43 1437 grape juice 33 2.17 b 67 4.74 ab 75 5.21 a 58 3.85 ab
36 1255 apple, grapefruit 17 0.69 b 67 3.47 a 83 5.15 a 42 1.51 b 
31 1205 green apple 17 0.99 b 50 3.44 a 58 4.57 a 17 1.27 b
27 1121 apple 0 0.00 b 25 2.66 a 50 3.76 a 8 0.61 b 
16 997 fruity, tape 17 0.73 b 42 2.29 a 50 3.51 a 0 0.00 b 
12 933 fruity, sweet, solvent 17 0.72 b 33 1.45 ab 42 2.53 a 0 0.00 b 
17 1009 rotten apple, cheesy ab8 0.37 b 17 1.35 ab 25 2.22 a 0
 
18 1009 solvent, gala 17
 0.79 ab 50 2.47 a 42 2.21 a 8 0.25 b 
10 921 fruity, apple 0 0.90 25 1.34 58 2.19 33 1.56
44 1524 fruity 25 1.51 42 1.98 33 1.88 0 0.00 
32 1214 apple 25 1.25 8 1.01 33 1.86 33 1.55 
38 1276 grape juice 17 0.91 8 0.52 17 1.29 50 2.35
42 1418 apple or tape 8 0.48 25 1.04 17 0.67 0 0.00 
3 813 fruity 8 0.16 b 8 0.23 b 0 0.00 b 8 2.32 a 
15 994 grassy, green apple 0 0.00 0 0.00 0 0.00 17 0.72 



Table 3.5, Continued 

26 1118 floral 0 0,00 b 
8 0.49 b 

42 3.67 a 0 0.00 b 
33 1222 anise, licorice 33 1.51 C 50 3.76 bc 1,100 7.69 a 67 4.71 
22 1041 sweet, anise 0 0,00 17 0.68 8 0.37 8 0.37 
24 1070 watermelon 25 1.27 C 83 4.92 b 

92 b7.38 67 3.91a 

28 1145 cucumber 0 0.00 b 25 1.27 ab 50 2.68 a 25 1.06 b
34 1227 cucumber 0 0.00 17 1.07 17 0.93 0 0.00 
14 991 mushroom 0 0.00 C 25 1.56 Ix 

67 4.62 a 58 3.45 a
35 1230 cat urine, mushroom 25 1.47 b 25 1.44 b 58 4.08 a 8 0.41 b
40 1353 nutty, mushroom 0 0.00 b 0 0.00 b 33 1.66 8 0.23 b
39 1303 tape or fruity 0 0.00 b 

8 0.41 b
a 

67 4.15 a 0 0.00 
41 1364 tape or musty dirty 17 0.61 b 17 0.92 b 50 2.68 a 8 0.40 b
29 1151 anise,spice, or mushroom 8 0.32 b 17 0.82 b 33 2.33 25 1.14 b
30 1197 tape or fruity 0 0.00 C bc 

a 

25 42 2.14 b 92 4.98 a 
1 774 tea, garlic, leaves 17 0.94 b 8 0.51 b 8 0.55 b 67 4.34 a 
5 836 skunk, rubber 58 3.08 b 

100 7.12 a 100 8.40 a 58 3.50 b 

37 1272 strong rubber 33 1.98 ' 67 4.91 ab 67 6.88 a 50 2.98 bc 
8 901 oatmeal, skunk 8 0.41 b 25 1.92 a 58 3.21 a 67 4.61 a 

25 1112 dusty, musty 42 2.08 ab 25 0.95 b 33 2.31 ab 67 4.10 a 
21 1038 metallic, skunk 0 0.00 b 0 0.00 b 25 1.25 a 8 0.22 b 

z Means for peak height with a different letter superscript within a row significantly different by the LSDtest, P < 0.05 
Y Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 
x Intensity on a 16-point scale: 0 = none, 7 =moderato. 15 =extreme 
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intensity from the charcoal traps sampled for 24 hours. Frequency analysis is another 

way of evaluating GCO data without necessarily using dilution techniques. Recently, 

Pollien and co-workers (1997) showed that reproducible aromagrams could be generated 

from the frequency of perceived odor peaks with 6 to 8 panelists. The advantage of this 

GCO method is that panelists do not require any training because no scale is used. The 

lowest coefficient of variation was achieved by using at least 8 panelists, as opposed to 

one, two or three panelists as usually reported in the GCO literature (Pollien et al., 

1997). Those authors showed that frequency values increased with compound 

concentration and could therefore be used in sample differentiation, frequency being then 

equivalent to odor intensity. However, they did not mention that when more than one 

peak is perceived 100% of the time, there is no measurement for differences between 

peaks. As an example, 10 peaks were perceived by all panelists at all sniffing runs 

(100% of the time) for 'Gala' apples sampled on charcoal for 24 hours, but the average 

intensities ranged from 12.0 to 6.3 (Table 3.5). 

Peaks that were not perceived were given a zero value as in the Da Silva et al. 

(1993) method of Osme data treatment. Missing peaks in GCO have been subject to 

discussion since it is unclear if they are not perceived because they originate from 

compounds at threshold concentration, or if they are missed due to panelist inattention, 

fatigue or exhaling. In GCO with dilution methods such as CharmAnalysis and AEDA, 

the missing peaks or "gaps" are attributed to the fact that threshold values are not 

absolute but represent a range of concentrations at which the presence of a compound 

may be perceived (Abbott et al, 1993). In the Osme method, since panelists evaluate 

four replications of the same sample, peaks that are perceived one and two times out of 

four may be considered to be from compounds at near threshold concentrations. This 

was confirmed by plotting the response (I) against compound concentration for the 

quantified compounds (Appendix 5, Figures A.1 and A.2). By giving a zero value to the 

non-perceived peaks instead of treating them as missing data, the mean intensity /ma of 

those peaks is lowered. Compounds that are in the threshold range for all three panelists 

are perceived sporadically, and resulting in mean intensities below 2 (between "just 

detectable" and "very slight intensity"), when individually, ratings may be 3 4 ("slight" 
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and "slight to moderate"). These peaks then constitute the "noise" of the aromagram, 

similar to compounds that are present at the FID detection limit represent the noise of a 

chromatogram. These compounds were usually perceived 1, 2, 3 or 4 times out of 12 (8, 

17, 25 and 33%, respectively). More peaks were present at threshold or below threshold 

for the sampling on charcoal for 6 hours and on Tenax GR compared to the 12 and 24 

hours sampling on charcoal (Table 3.5). Peaks 44, 32, 38, 42, 3, 15, 22, 34, 40 and 21 

can be considered as noise as they were all perceived less than 50% of the time with an 

average Imax below 2.0. It is unclear whether these peaks were a response to a true 

stimulus, or due to other psychological factors especially when they were perceived less 

than 50% of the time. Additionally, at threshold, some peaks were not clearly 

recognized with one unique descriptor, such as peaks 41, 29, 30 and 1 (Table 3.5). All 

fruity-like peaks in doubt were identified as esters by GC-MS and GCO of authentic 

standards and therefore were not artifacts. However, the identity and trueness of the 

adhesive tape-like peaks remain unknown. The importance of peaks with low /. in 

apple aroma should be evaluated in model mixture validation experiments. In mixtures, 

compounds below threshold concentrations were found to interact in an additive manner 

(Guadagni et al., 1963) 

A problem not addressed in earlier Osme studies was co-eluting peaks. When 

compounds had a distinct odor, it was possible to calculate the frequency for each. 

However, there was not enough elution time between the two peaks for panelists to 

record In. for both odors. Also, one compound might be dominant over the other, 

leading to odor suppression of the other compound as might have occurred for peak 19. 

Peak 19 was perceived like apple 8 and 17% of the time, and like toast 50 and 100% of 

the time in the 12 and 24 hours sampling on charcoal, respectively (Table 3.5). 

Therefore, it is likely I was recorded for the toast odor. Problems of co-elution are 

generally solved by the use of two columns with different polarities, but it is also 

necessary to use olfactometry as well as an FID or MS detector during the GC 

optimization process. In practice, the availability and reproducibility ofa panelist may 

limit the feasibility of the process. The method development could include the time for 

panelist training to Osme analysis. 
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CONCLUSION
 

Charcoal was chosen because of its high adsorbing surface area. However, 

because of presence of active sites, irreversible binding of some compounds and artifacts 

were expected. Indeed, aldehydes were not eluted from charcoal traps, and alcohols 

were only partially eluted. To elute solutes from the charcoal, a strong solvent was 

required, and CS2 was used (Weurman, 1969; Perez et al., 1993; Tang and Jennings, 

1967). Active sites present on charcoal might have catalyzed the production of artifacts 

derived from solute-solute, or solute-solvent reactions. The presence of sulfur-like odor-

active compounds led to the second hypothesis. However, samples eluted with diethyl 

ether from either charcoal (data not shown) or Tenax GR traps yielded identical odor-

active analytes. It is not known at this point whether sulfur-like odor-active compounds 

are natural compounds emitted by the fruit, or fungicide residues. Sampling large 

volumes of headspace was achieved with charcoal and Tenax GR sampled for 12 and 24 

hours. Overall, less odor-active compounds were perceived from Tenax GR than from 

charcoal traps. Because esters are the major compounds with an apple odor and it is 

unlikely that artifacts were formed with the chemically stable esters, and because getting 

large amounts of odor-active compounds was of interest, charcoal traps with a 24 hour 

sampling time were chosen for further study of the changes in storage of odor-active 

compounds of 'Gala' apple. 
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CHAPTER 4
 

VALIDATION OF GAS CHROMATOGRAPHY OLFACTOMETRY RESULTS
 

FOR 'GALA' APPLES BY EVALUATION OF AROMA-ACTIVE COMPOUND
 

MIXTURES
 

Anne Plotto, James P. Mattheis, David S. Lundahl, and Mina R. McDaniel 

Submitted to Flavor Analysis: Developments in Isolation and Characterization. C.J. 
Mussinan and M.J. Morello (Eds.). ACS symposium series 705. (In press). 
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ABSTRACT 

`Gala' is an early maturing apple variety with a distinctive aroma and flavor. 

Previous research has determined 'Gala's aroma-active compounds by using Osme, a gas 

chromatography olfactometry method that records subjects' olfactory response on a 

time-intensity scale. Sixteen of those compounds were combined in mixtures in water 

solutions at concentrations determined by analyzing apple headspace. Sixteen panelists 

compared aromas of the solutions with fresh apples and rated degree of difference for 

aroma. In a pilot study, mixture solutions were prepared by combining compounds 

based on their intensities as perceived by Osme; results showed a large variability 

between panelists for perception of the solutions. Another experiment used a statistical 

screening design. Hexyl acetate, hexanal, butyl acetate, 2-methylbutyl acetate, and 

methyl 2-methylbutyrate contributed to the least difference between mixtures and apples; 

while pentyl acetate, hexyl 2-methylbutyrate, butyl hexanoate, and 4-allylanisole 

contributed to the largest difference. Further experiments using statistical designs will 

be necessary to determine interactions between compounds. 
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INTRODUCTION 

Smelling gas chromatograph effluents to determine the odor characteristic of a 

compound has been practiced in flavor research chemistry since the development of gas 

chromatography in the 1950's; it has been formalized and is now known as gas 

chromatography olfactometry (GCO) (Acree, 1997; Mistry et al., 1997). However, 

without any quantification of the chemical stimuli and of the subjects' responses, GCO is 

limited to screening odor-active volatiles among those present in a complex sample. 

Potent odorants are often near or beyond the limit of detectability by GC analysis 

(Guadagni et al., 1966; Cunningham et al., 1986). Patton and Josephson (1957) 

introduced the idea of relating a compound's concentration to its odor threshold in order 

to assess its odor significance. This concept was named "aroma value" by Rothe and 

Thomas (1963), "unit flavor base" by Keith and Powers (1968), and is now used as the 

"odor unit" (Teranishi et al., 1991), and the "Odor Activity Value" (OAV) (Grosch, 

1994). The concepts of odor activity, odor potency, and odor threshold of a compound 

have been further developed with the use of dilution techniques in GCO analysis and 

named CharmAnalysis (Acree et al., 1984) and Aroma Extract Dilution Analysis 

(AEDA) (Grosch, 1993). Using these techniques, the compounds that are perceived at 

the highest dilution level are deemed the most potent in the sample. In other words, the 

odor potency of a compound is determined by the quantity necessary to give a response: 

the smaller the concentration, the more potent the compound. Both CharmAnalysis and 

AEDA assume that the response to an odorous stimulus is linear and that all compounds 

have identical response slopes with increasing concentration. In contrast, psychophysical 

events are based on the principles of Stevens' law, which states that the response to a 

stimulus follows a power function, and that the exponent of the function is between 0.3 

and 0.8 for odorants (Stevens, 1957; Cain, 1969). Another GCO technique, Osme, is 

based on Stevens' law of psychophysics and combines time and intensity of perception as 

a response to odorants (McDaniel et al., 1990; Da Silva et al., 1994). Osme produces 

an odor profile, and comparisons between samples can be made by either comparing 
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sample profiles (Young, 1997; Sanchez et al., 1992a; 1992b), or by statistical analysis 

(Da Silva et al., 1993). 

All GCO techniques are useful for determining the odor activity, quality, and 

potency of compounds in foods, and thus allow for sample comparisons. However, the 

limitation inherent to GC techniques is that the information is obtained for individual 

compounds, which are presented to the nose outside of the food matrix. Also, the 

different GCO methods and their data analyses may lead to different conclusions as to 

which compounds are most important in a sample (Abbott et al., 1993; Young, 1997). 

Validations of GCO by aroma reconstitution are required. Confirmation of GCO results 

by sensory comparison of mixtures with the original samples has been demonstrated for 

strawberry juice (Schieberle, 1994; Schieberle and Hofmann, 1997), cheddar cheese 

(Dacremont and Vickers, 1994), and apple (Young et al., 1996). The first four authors 

combined AEDA results with the OAV concept to compare reconstituted aroma 

mixtures with the original samples. Schieberle and colleagues added odor-active 

compounds in pectin, sugars, and acids for strawberry juice (Schieberle and Hofmann, 

1997). They determined the sensory importance for each compound by omitting them 

from the model solution one by one, and they compared the mixtures to the original 

samples. Mixtures most similar to the sample were those containing all the compounds 

with an OAV above one. Dacremont and Vickers (1994) combined 15 compounds in 

two fractionated factorial designs and matched the resulting odors with cheddar cheeses. 

They narrowed the number of optimum compounds to six, and matched the mixtures' 

odors to 15 cheeses to determine which of the cheeses had a cheddar note. Young and 

co-workers (1996) used the four most potent compounds found by CharmAnalysis, 

combined them in four concentration levels, and used sensory descriptive analysis to 

measure differences for attributes generated by the mixture's aroma and flavor. They 

found that the combination of 2-methylbutyl acetate, hexyl acetate, and butanol 

approached most closely the "Red apple" attribute associated with 'Gala' apple flavor. 

Synthetic tomato aroma was also made by using the odor unit values concept (but 

without previous determination of compounds odor potency by GCO) and reported to 

have a tomato odor by a sensory panel (Buttery et al., 1987; 1990). 
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`Gala' apple (Malus domestica Borkh) is an early ripening cultivar that resulted 

from a cross between `Kidd's Orange' (`Cox's Orange Pippin' X 'Red Delicious') and 

`Golden Delicious' (White, 1991). 'Gala' has a sweet and perfumey aroma and flavor, 

which distinguishes it from other cultivars (Green and Autio, 1990). Storage techniques 

such as controlled atmosphere (CA) maintain the apple fruit firmness and acidity for up 

to seven to eight months, but a significant aroma decrease is generally observed 

(Patterson et al., 1974). Determination of compounds contributing to the aroma of fresh 

harvested 'Gala' aroma would assist further research aimed at maintaining 'Gala' flavor 

in storage. The odorants used in this study were previously determined by GCO and 

Osme to contribute to 'Gala' aroma (Plotto et al., 1995). This paper explores two 

methods to validate Osme data by comparing 'Gala' apples with model solutions. One 

method is based on the results found by Osme on compounds' perceived intensities. This 

approach is similar to the odor unit concept, and results are discussed by comparing 

Osme and odor unit values. The other method explored model solutions prepared with 

compounds at the same concentrations as found in apples. The solutions were prepared 

following a statistical screening design, but ignored odor units or odor intensities. 

MATERIALS AND METHODS 

Materials 

Volatiles emitted by 'Gala' apples previously stored in air at 1 °C were analyzed 

one week before sensory analysis as previously described (Mattheis et al., 1991). 

Briefly, headspace of ca. 1 kg apples was trapped onto 50 mg of Tenax TA traps by 

using a dynamic flowthrough system with purified air at 100 mL/min. Samples consisted 

of 100 mL of headspace, and traps were thermally desorbed. Compounds were analyzed 

on a HP 5890A-5971A GC-MSD system. Previous work on 'Gala' using Osme had 

identified 26 compounds which had various levels of odor activity (Plotto et al., 1995). 

Fifteen chemically identified compounds that were perceived consistently by all three 

panelists using Osme were used to construct model solutions (Table 4.1). Hexanal was 



Table 4.1. Concentration of apple headspace compounds, air/water partition coefficient, theoretical concentration
in water, and compound concentrations used in the pilot study and in the screening experiment 

Apple Partition Theoretical Pilot Study Screening Design 
Headspacea Coefficientb Concentration' Solution Solution 

Compound in Apple (K)(Ile) (iigni) (mg/L) (mg/1)
Butyl acetate 7.044 0.0133 529.60 30.00 50.00 
Hexyl acetate 1.160 0.0241 48.12 2.73 4.54 
2-Methylbutyl acetate 0.567 0.025 22.66 1.28 2.14 
Butyl hexanoate 0.549 0.04 13.72 0.78 1.29 
Hexyl 2-methylbutyrate 0.531 0.05 10.62 0.60 1.00 
Butyl butyrate 0.234 0.029 8.07 0.46 0.76 
Butyl 2-methylbutyrate 0.228 0.04 5.71 0.32 0.54 
Hexyl butyrate 0.218 0.0394 5.53 0.31 0.52 
Butyl propanoate 0.184 0.0197 9.34 0.53 0.88 
Methyl 2-methylbutyrate 0.093 0.028 3.30 0.19 0.31 
Pentyl acetate 0.088 0.0211 4.18 0.24 0.39 
2-Methylpropyl acetate 0.049 0.0221 2.22 0.13 0.21 
Hexyl propanoate 0.045 0.0277 1.64 0.09 0.15 
Ethyl 2-methylbutyrate 0.014 0.030 0.46 0.03 0.04 
Hexanal 0.011 0.0087 1.26 0.07 0.12 
4-Allylanisole 0.010 n.a. d 

n.a. 0.042e 0.07e 
a 100 mL of dynamic headspace of 1 kg 'Gala' apples 
b Henry's law air/water partition coefficient; from Buttery et al., 1971; Jordan, 1954; Lyman et al., 1982; Pierotti et al., 1959 
C Calculated by dividing column 1 by column 2 
d No published vapor pressure found for this compound at 25 °C. e Added in the same proportions as found in apple headspace 
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also used in the experimental mixtures, even though it was not present in the Osme 

analysis of samples prepared from charcoal traps and eluted with CS2. It was reported as 

present in the samples heat desorbed from Tenax traps, and was previously found to 

contribute to apple odor with a green apple descriptor (Flath et al., 1967). The 

headspace concentrations measured in the 100 mL sample used in this study were 

converted to concentrations in water by using Henry's law to calculate K, the air-water 

partition coefficient (Buttery et al., 1971; Jordan, 1954; Lyman et al., 1982; Pierotti et 

al., 1959) (Table 4.1). The low solubility of 4-allylanisole did not follow the ideality 

assumptions necessary to calculate its air-water partition coefficient K at 25 °C (Table 

4.1). Therefore, 4-allylanisole was used in the mixtures in the same proportions as found 

in the apple headspace. Experimental solutions were first prepared by mixing the 

compounds as calculated for the theoretical concentration in water (Table 4.1). 

However, the odor intensities of these solutions were too weak to be compared with 

apples; therefore, concentrations in water were increased until the overall aroma could 

be compared with apples while keeping the same relative ratios between compounds. All 

compounds were purchased from Aldrich Flavors and Fragrances (Milwaukee, WI) and 

were food grade. Compound purity was verified by GC-FED and by sniffing the GC 

effluent of a preparation of standards in the same concentrations as found in apple 

headspace. Compounds were mixed in odor -free double distilled water (Milli-Q) 

according to the designs described below. 

Experimental Designs 

Pilot Study. Based on the compounds' odor intensities from Osme analysis 

(Table 4.2), sixteen mixtures were prepared by sequentially adding compounds in an 

incremental manner. The first solution was only hexyl acetate in water, the second 

solution was butyl acetate added to hexyl acetate, the third solution was made by adding 

2-methylbutyl acetate to butyl acetate and hexyl acetate, and so on; the final solution was 

the mixture of the 16 compounds in water. Two replicates of each mixture were 

prepared in 50 mL water at the concentrations shown in Table 4.1 and presented in 120 

mL glass jars with Teflon-lined screw caps. Means separation between mixtures for 



Table 4.2. A) Apple compounds sorted by decreasing Osme intensity', corresponding descriptors and perceived Osme 
intensity B) Apple compounds sorted by decreasing odor units, concentrations in water calculated from 
headspace, published odor thresholds, and calculated odor units 

A) B) Theoretical Odor Odor 
Apple compounds sorted 
by decreasing Osme intensity Descriptor 
Hexyl acetate gala, ripe, pear 

Osme 
Intensitya 

12.26 

Apple compounds sorted 
by decreasing odor unit 
Hexyl acetate 

Concentration Threshold 
(PWL) (PWL) 
48.12 2.00 c'd 

Unit" 
(C/T) 
24.06 

Butyl acetate nail polish 9.72 Methyl 2-methylbutyrate 3.30 0.25 e 13.20 
2-Methylbutyl acetate solvent 8.56 Butyl acetate 529.60 66.00 c4 8.02 
Methyl 2-methylbutyrate sweet fruity 7.36 Ethyl 2-methylbutyrate 0.46 0.10 d 4.60 
Ethyl 2-methylbutyrate sweet strawberry 7.28 2-Methylbutyl acetate 22.66 5.00 d 4.53 
4-Allylanisole anise, licorice 6.48 Pentyl acetate 4.18 5.00 d 0.84 
Pentyl acetate gala 5.82 Hexyl 2-methylbutyrate 10.62 22.00 c 0.48 
Hexyl 2-methylbutyrate apple, grapefruit 5.74 2-Methylpropyl acetate 2.22 5.00 d 0.44 
Butyl 2-methylbutyrate fruity, apple 5.64 Butyl propanoate 9.34 25.00 d 0.37 
Butyl propanoate fruity, apple 5.24 Butyl 2-methylbutyrate 5.71 17.00c 0.34 
2-Methylpropyl acetate tea, leaves 4.22 Hexanal 1.26 4.50 c4 0.28 
Hexanal n.a. n.a. Hexyl propanoate 1.64 8.00c 0.21 
Hexyl propanoate apple 2.97 Butyl butyrate 8.07 100.00 c 0.08 
Butyl butyrate rotten apple 2.43 Hexyl butyrate 5.53 250.00 C 

0.02 
Hexyl butyrate apple 2.02 Butyl hexanoate 13.72 700.00 C 

0.02 
Butyl hexanoate green apple 2.02 4-Allylanisole 0.74 35.00 r 0.02 
a From Plotto et al., 1995; intensity on a 16-point scale: 0 = none, 7 = moderate, 15 = extreme 
b Teranishi et al., 1991. c Takeoka et al., 1990. d Flath et al., 1967. e Takeoka et al., 1989.' Williams et al., 1977. 
n.a.: non applicable. Hexanal was not present in the samples used for Osme analysis 
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degree of difference from apple was performed with the least significant difference
 

(LSD) test, with panelist as a random effect.
 

Screening Design. Because all possible combinations of the 16 compounds 

would generate too many samples to evaluate, a screening design was used. These 

designs are often used by food developers to identify which among many ingredients in a 

sample are the most important to achieve a product characteristic; for example, which 

sugars and acids are necessary to combine in a fruit beverage to have a determined level 

of sweetness. The 16 compounds tested in the pilot study were mixed in 30 mL water 

following combinations computed by the ECHIP v.6.1.2 (Hockessin, DE) statistical 

package. A linear D-optimal screening design was used, with 16 variables (the 16 

compounds) and 8 replicates (Table 4.3). The design resulted in 25 combinations 

containing 6 to 10 compounds (and 16 for the combination containing all compounds). 

Eight combinations were replicated, as the design dictated. Therefore, a total of 33 

samples were prepared for each panelist in the same jars as described above. 

Concentrations and sample headspace used for this experiment were adjusted based on 

panelists' comments during the pilot study, without altering their relative proportions 

(Table 4.1). This experiment was repeated once. Each experiment, the pilot study and 

the two replications of the screening design, was conducted on a different day. 

Sensory Analysis Procedure 

Sixteen panelists participated in the testing. Procedures were discussed with the 

panelists for one hour before the beginning of the study. For both pilot study and 

screening design, the 33 samples were evaluated in three sets of 11 jars containing the 

compound mixtures according to a complete randomized block design across sets. The 

first experiment had 32 jars (two replicates of 16 samples), but the first jar was 

triplicated to give the total of 33 samples and was not used in the statistical analysis. 

Twenty 'Gala' apples were used for each testing day. They were put in four 4 L glass 

jars (5 apples, ca. 1 kg, per jar) and presented randomly to the 16 panelists, one jar for 4 

panelists. When the testing began, one apple jar was covered with aluminum foil and 

presented to the panelist with the sample mixtures. The apple jar remained covered 



Table 4.3. Combinations of compounds for the solutions used in the sceening experiment as computed by ECHIP statistical
software' 

Solution Number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Hexyl acetate X X X X X X X X X X X X X 
Butyl acetate X X X X X X X X X X X X 
2-Methylbutyl acetate X X X X X X X X X X X X X 
Methyl 2-methylbutyrate X X X X X X X X X X X X X X 
Ethyl 2-methylbutyrate X X X X X X X X X X X X X 
4-Allylanisole X X X X X X X X X X X X X 
Pentyl acetate X X X X X X X X X X X X X 
Hexyl 2-methylbutyrate X X X X X X X X X X X X 
Butyl 2-methylbutyrate X X X X X X X X X X X X 
Butyl propanoate X X X X X X X X X X X X 
2-Methylpropyl acetate X X X X X X X X X X X X X 
Hexanal X X X XX X X X X X X X X 
Hexyl propanoate X X X X X X X X X X X X X X 
Butyl butyrate X X X X X X X X X X X X X X 
Hexyl butyrate X X X X X X X X X X X X X X X 
Butyl hexanoate X X X X X X X X X X X X X X X 
Total compounds 8 8 8 8 9 7 10 6 10 6 9 9 8 9 8 8 7 7 8 9 9 8 8 8 16 
a "X" indicates presence 
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during the testing. Panelists were asked to lift the 4 L jar cover, smell the apples, close 

the lid, open the sample containing the mixture solution, smell it, and rate degree of 

difference between the mixture and the apples on a 16-point category scale (0= no 

difference, 15 = extremely different). Panelists could also comment on the quality of the 

mixture. Panelists were asked to rest one minute after the first five samples, and take a 

10 minute break between sets. They were only allowed to smell the samples once. All 

samples and apples were presented at room temperature. Panelists were seated in 

individual testing booths equipped with PCs and Compusense Five, v. 2.2 (Guelph, 

Ontario) software for data recording. 

RESULTS AND DISCUSSION 

Pilot Study: Mixtures Prepared from Osme Odor Intensity Values 

The differences in degree of difference ratings between solutions were small 

(Table 4.4). Average difference ratings ranged from 5.03 to 7.56 (slightly to moderately 

different). The largest average difference ratings was given to the solution containing 

hexyl acetate alone and the solutions containing four, five, six, and seven compounds; 

the least differences were found for the solutions containing 13 and 14 compounds. 

Based on previous research (Schieberle and Hofmann, 1997), a decrease in the degree of 

differences from apples as more compounds were present in the solutions was expected 

for the first five compounds with an odor unit above one, but this trend was not 

observed. Variability between panelists' perception of the sample aromas and their 

comparison with apples was considerable. Some mixtures were found to be very close 

to the apples by some panelists, and rather different for others. Some of this variability 

may have been due to variation in apples used as reference. A variation of 20% is not 

uncommon in apple headspace (Poll and Hansen, 1990) and was observed by sampling 

`Gala' headspace with Tenax traps (unpublished results). Additionally, apples produce 

volatile compounds continuously, and it is possible that, within the few hours in which 

the experiment took place, headspaces were different from jar to jar when presented to 
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panelists. Another source of variability was the lack of training for this specific task 

although panelists had been trained for other types of sensory analysis. Finally, different 

perceptual response between panelists is usually expected. 

Table 4.4. Degree of difference between odorant mixtures and apples 
(n = 32 observations) 

Number of Compounds in Solution'' Average Difference from Apples' 

1 7.56 a 

2 5.81 k 

3 5.84 be 

4 6.44 ab 

5 6.41 ab 

6 6.29 ab 

7 6.69 ab 

8 5.81 k 

9 5.59 k 

10 6.06 k 

11 6.22 k 

12 6.13 k 

13 5.03 

14 5.06 

15 5.56 be 

16 5.81 k 

' Compounds were added incrementally in the order shown in Table 4.1 
Z Difference from apple: 0 = no difference, 15 = extremely different. Means followed by 

the same letter were not significantly different by the LSD test (P < 0.05) with 
panelist as random variable 
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The experimental design in this pilot study was based on assumptions about the 

relative odor activity of the 16 compounds. The combination of aroma-active 

compounds was determined from the data obtained by GCO of 'Gala' apples where 

odorant peak intensities were rated on a 16-point category scale (Plotto et al., 1995). 

To relate Osme data to the odor unit concept, ranking of compounds by decreasing odor 

intensity was compared to the ranking of compounds by decreasing calculated odor units 

(Table 4.2). Odor units were calculated by using odor threshold values published by the 

U.S.D.A. Western Regional lab (Flath et al., 1967; Takeoka et al., 1990; 1989) except 

for 4-allylanisole (Williams et al., 1977). Hexanal, not present in the 'Gala' sample 

analyzed by using Osme, was ranked at the 12th position, similar to the ranking based on 

calculated odor units. Comparison of odor intensity and odor unit data for 'Gala' apple 

headspace indicated that the first five compounds with an odor unit above one were also 

those with the highest odor intensity (Table 4.2). Except for compounds 13 to 16 that 

had the exact same ranking order and 4-allylanisole that was ranked last by the odor unit 

value, there were inversions in the ranking of some of the compounds, but the inversions 

did not exceed two positions. For example, methyl 2-methylbutyrate was ranked in the 

fourth position by Osme intensity and in the second position according to the odor unit 

value. The odor threshold value of 4-allylanisole was obtained from a different group of 

researchers (Williams et aL, 1977), and this may explain the discrepancy with values 

obtained from the U.S.D.A. Western Regional laboratory. Headspace samples used to 

obtain Osme data and calculate odor units were taken from different groups of apples 

(same orchard, same storage type but stored for one versus five months) which might 

account for the slight discrepancy between the two ranking methods. The ranking 

obtained from the perceived odor peak areas, which combine odor intensity and time 

during the perception of the odorous stimulus (Da Silva et al., 1994), also resulted in a 

few inversions from odor intensities (data not shown). 

Overall, the ranking of aroma-active esters present in 'Gala' apple according to 

the information obtained from the GCO technique Osme resulted in an order comparable 

with ranking based on odor units. However, we found limitations to both approaches in 

determining which compounds contributed most significantly to 'Gala' headspace aroma. 
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The use of odor units requires the knowledge of an odor threshold value. Odor 

threshold determination is very time consuming, and threshold values were found to vary 

considerably between laboratories and methods used (Pangborn et al., 1964; Larsen and 

Poll, 1990; Guadagni et al., 1963; Takeoka et al., 1996). For example, the method of 

presenting compounds (100 mL glass jars with lids or in Teflon squeeze bottles) was 

found to significantly affect thresholds and reproducibilities (Guadagni et al., 1963). 

Compounds presented in squeeze bottles had 100 fold lower threshold values than glass 

jars with lid. Odor thresholds used in this study were generated with the method using 

squeeze bottles (Teranishi et al., 1991; Flath et al., 1967; Takeoka et al., 1989; 1990); 

this may explain the discrepancy between the concentrations analyzed from apple 

headspace (in µg/L) and the concentration (in mg/L) necessary to attain a similar level of 

odor in the experimental solutions presented in glass jars with lids (Table 4.1). 

Additionally, odor units or OAV, like Charm values, ignore the power function of the 

response to stimulus concentrations and slope differences between different odorants 

(Dravnieks, 1977). The limitation in using GCO data to prepare mixtures of the odor-

active compounds stands in the fact that unidentified odor-active compounds are not 

accounted for (Dacremont and Vickers, 1994). In 'Gala' apple, 19 of the 44 odor-active 

compounds were unknown (Plotto et al., 1995). Among those, compounds that had 

mushroom, earthy, or skunk descriptors had high odor intensities and probably 

contributed to the apple aroma. One comment from a panelist confirmed that 

hypothesis: this panelist rated some solution mixtures similar to the apples, but 

commented the mixtures were missing a sulfury component perceived in the fruit. The 

lack of duplication of apple aroma by combining apple-like odor-active compounds in a 

decreasing order of odor activities led to the use of an experimental screening design to 

identify those odor-active compounds contributing most to 'Gala' apple aroma. The 

volume of headspace and concentration of compounds in the jars were adjusted after 

some panelists mentioned that some solutions were "too weak" in the first experiment 

(Table 4.1). 



77 

Screening Design 

The first replicate test indicated that hexyl acetate, butyl acetate, and hexanal 

were necessary to impart the least difference between the solutions and apples. Pentyl 

acetate and hexyl 2-methylbutyrate contributed the most to differences between solutions 

and apples. In the second replicate test performed one week later, hexyl acetate and 

hexanal were found again to contribute to the least difference from apples, as did 2­

methylbutyl acetate and methyl 2-methylbutyrate. Similarly, pentyl acetate and hexyl 2­

methylbutyrate contributed to the largest difference, along with butyl hexanoate and 4­

allylanisole. The difference between the two replicate tests again may be due to variation 

between apples on the same day of the experiment as mentioned above, and differences 

in ripening between apples from one week to the other. Nevertheless, common results 

from both replicate tests indicated that hexyl acetate and hexanal contributed to 'Gala' 

aroma. The combination of results of both tests showed that the four esters having the 

highest Osme value and an odor unit greater than one (Table 4.2) contributed the most 

to 'Gala' aroma. Unfortunately, odor intensity of hexanal was not available from the 

samples sniffed by Osme. Published threshold values for hexanal gave an odor unit of 

less than one for our apples; however, the screening design experiment showed that 

hexanal in mixtures contributed significantly to 'Gala' aroma. This confirms that no 

definite conclusion can be drawn from the odor activity of compounds alone. Results 

regarding pentyl acetate and hexyl 2-methylbutyrate led to the same conclusion. Both 

compounds individually have a definite apple odor, but it seems that when present in the 

combinations of mixtures, they enhanced the difference from the apple control. 4­

Allylanisole imparted a similar effect to the mixtures. This could be the effect of the 

chemical aromaticity of that compound or the result of a miscalculation of the 

concentration used, because the air/water partition coefficient K could not be 

theoretically calculated (see materials and methods). 

About Odor Mixtures 

It is generally admitted and has been experimentally demonstrated that odor-

active compounds with a certain odor characteristic do not create a novel odor when 
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mixed, and the perceived intensity of the mixture is less than the sum of intensities of 

individual compounds (Laing and Panhuber, 1979). All compounds in the mixtures in 

this study were esters with fruity, apple-like odors, and one aldehyde with a green apple 

odor (hexanal), and an allyl phenol compound with the odor of anise (4-allylanisole). 

Comments that were generated from some mixtures were either fruity, pear, banana, 

apple-like, or tended towards descriptors like "artificial apple", "bubble gum", "solvent, 

nail polish". At the concentrations tested, butyl acetate and 2-methylbutyl acetate alone 

had those qualities of descriptors (Table 4.2). It was expected that adding other 

compounds would attenuate the solvent note to give a descriptor closer to apple, but 

there was no agreement between panelists as to which combination was closer to the 

apples. Part of the variation between panelists might be an effect of the carryover from 

one solution to the next, because the instructions did not specify resting time between 

jars within a subset of five. Olfactory adaptation occurs between odorants having a 

similar aroma (Moncrieff, 1956; Cain and Polack, 1992) and similar chemical structure 

(Pierce et al., 1995). 4-Allylanisole, a compound structurally different from the esters, 

was occasionally perceived in some but not all solutions containing it. It was believed to 

contribute to the unique aromatic character of 'Cox's Orange Pippin' apple (Williams et 

al., 1977), and we also hypothesized that it might contribute to 'Gala' aroma. However, 

4-allylanisole enhanced the difference from apples at the concentration used in this study. 

Butyl acetate was present in the largest amount in 'Gala' apple headspace, followed by 

hexyl acetate and 2-methylbutyl acetate. Those same compounds were chosen by Young 

et al. (1996) as having the highest Charm value for 'Gala' apple. Those authors also 

included butanol, present in the largest proportion (Young et al., 1996). However, they 

used vacuum steam distillation to isolate flavor volatiles. Butanol was not included in 

our study. We did not believe it would contribute significantly to 'Gala' aroma because 

it has a high odor threshold: 500 ppb (Flath et al., 1967), and the concentration found in 

whole 'Gala' headspace was 0.698 pg/L. Young and co-workers measured the effect of 

compound interactions on a few sensory descriptors that were used to describe 'Gala' 

apple flavor and aroma. They found negative interactions between hexyl acetate and 

butanol, and between 2-methylbutyl acetate and butanol; the former affected "Red apple 
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aroma" and the latter "characteristic apple flavour". However, their method did not 

compare the mixtures with whole apples. Dacremont and Vickers (1994) used a concept 

matching technique with partial factorial designs to screen for the compounds 

contributing to cheddar cheese odor. Similar to the design we used, they questioned the 

reliability of the information obtained for the main effects when the main effects 

(compounds) were included in interactions with other compounds. Nevertheless, their 

technique optimized mixtures of compounds whose odor matched the concept of 

Cheddar and other cheeses (Dacremont and Vickers, 1994). In the end, whichever 

method and design is used, the making of mixtures relies on the previous step of GC 

analysis. Different recoveries observed in methods used for flavor isolation are well-

documented (Reineccius, 1993; Weurman, 1969). We used a headspace technique with 

purge and trap on Tenax because this technique captured the volatile profile of the 

sample with good recovery and without artifacts. However, the method used for Osme 

previously revealed that low odor threshold sulfur compounds were present in the 

samples but were not identified, therefore these compounds could not be included in the 

mixture experiments. 

CONCLUSION 

Mixing 'Gala' odor-active compounds in proportions found in apple headspace 

and in combinations selected by a screening design has confirmed results obtained by the 

Osme GC-olfactometry technique. Hexyl acetate, hexanal, butyl acetate, 2-methylbutyl 

acetate and methyl 2-methylbutyrate were found to contribute to overall 'Gala' aroma. 

The use of a D-optimal linear screening design gave interesting information. The 

advantage of this design was that it was easily implemented since the number of 

compound combinations were limited, and there was no need to train panelists. Further 

experiments using response surface methodology will be necessary to determine 1) the 

level of interactions between compounds, and 2) how the odor mixtures change when 

compounds vary in different proportions. The latter determination would be very useful 
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to post harvest physiologists because volatiles produced by apples vary in different 

proportions when stored in CA as opposed to air. Reduced oxygen and high CO2 in CA 

affect straight-chain acetate esters more than branched-chain esters and aldehydes 

(Brackmann et al., 1993). 

ACKNOWLEDGMENTS 

Dave Buchanan is acknowledged for technical assistance with GC-MS analyses. 

Financial support for this research was provided by the Washington State Tree Fruit 

Research Commission. 



81 

REFERENCES 

Abbott, N., P. Etievant, S. Issanchou, and D. Lang lois. 1993. Critical evaluation oftwo 
commonly used techniques for the treatment of data from extract dilution sniffing 
analysis. J. Agric. Food Chem. 41:1698-1703. 

Acree, T.E. 1997. GC/Olfactometry. Anal. Chem. News and Features, March 1, 1997. 
pp. 170A - 175A. 

Acree, T. E., J. Barnard, and D.G. Cunningham. 1984. A procedure for the sensory
 
analysis of gas chromatographic effluents. Food Chem. 14:273-286.
 

Brackmann, A., J. Streif, and F. Bangerth. 1993. Relationship between a reduced
 
aroma production and lipid metabolism of apples after long-term controlled-

atmosphere storage. J. Am. Soc. Hort. Sci. 118: 243-247.
 

Buttery, R.G., J.L. Bomben, D.G. Guadagni, and L.C. Ling. 1971. Some 
considerations of the volatilities of organic flavor compounds in foods. J. Agri. 
Food Chem. 19:1045-1048. 

Buttery, R.G., R. Teranishi, and L.C. Ling. 1987. Fresh tomato aroma volatiles: a 
quantitative study. J. Agric. Food Chem. 35:540-544. 

Buttery, R.G., R. Teranishi, L.C. Ling, and J.G. Turnbaugh. 1990. Quantitative and 
sensory studies on tomato paste volatiles. J. Agric. Food Chem. 38:336-340. 

Cain, W.S. 1969. Odor intensity: differences in the exponent of the psychophysical 
function. Percept. Psychophys. 6(6A):349-354. 

Cain, W.S., and E.H. Polack. 1992. Olfactory adaptation as an aspect of odor 
similarity. Chem. Senses. 17:481-491. 

Cunningham, D.G., T.E. Acree, J. Barnard, R.M. Butts, and P.A. Braell. 1986. Charm 
analysis of apple volatiles. Food Chem. 19:137-147. 

Da Silva, M.A.A.P., V. Elder, C.L. Lederer, D.S. Lundahl, and M.R. McDaniel. 1993. 
Flavor properties and stability of a corn-based snack: relating sensory, gas-
chromatography, and mass-spectrometry data. In: Shelf Life Studies of Foods 
and Beverages. G. Charalambous (Ed.), Elsevier. pp. 707-738. 

Da Silva, M.A.A.P., D.S. Lundahl, and M.R. McDaniel. 1994. The capability and 
psychophysics of Osme: a new GC-olfactometry technique. In: Trends in 
Flavour Research. H. Maarse and D.G. Van Der Heij (Eds.). Elsevier, 
Amsterdam. pp.191-209. 



82 

Dacremont, C., and Z. Vickers. 1994. Concept matching technique for assessing
 
importance of volatile compounds for Cheddar cheese aroma. J. Food Sci.
 
59:981-985.
 

Dravnieks, A. 1977. Correlation of odor intensities and vapor pressures with structural 
properties of odorants. In: Flavor Quality: Objective measurements. R.A. 
Scanlan (Ed.). ACS Symposium Series 51. American Chemical Society, 
Washington, DC. pp.11-28. 

Flath, R.A., D.R. Black, D.G. Guadagni, W.H. McFadden, and T.H. Schultz. 1967.
 
Identification and organoleptic evaluation of compounds in Delicious apple
 
essence. J. Agric. Food Chem. 15:29-35.
 

Green, D.W., and W.R. Autio. 1990. Comparison of ripening and fruit quality of 'Gala' 
and 'McIntosh' apples at harvest and following air storage. Fruit Var. J. 22:1-4. 

Grosch, W. 1993. Detection of potent odorants in foods by aroma extract dilution
 
analysis. Trends Food Sci. Technol. 4:68-73.
 

Grosch, W. 1994. Determination of potent odourants in foods by aroma extract dilution 
analysis (AEDA) and calculation of odour activity values (OAVs). Flavour 
Fragrance J. 9:147-158. 

Guadagni, D.G., R.G. Buttery, and S. Okano. 1963. Odour thresholds of some organic 
compounds associated with food flavours. J. Sci. Food Agric. 14:761-765. 

Guadagni, D.G., S. Okano, R.G. Buttery, and H.K. Burr. 1966. Correlation of sensory
 
and gas-liquid chromatographic measurements of apple volatiles. Food Technol.
 
20:166-169.
 

Jordan, T.E. 1954. Vapor Pressure of Organic Compounds. Interscience, New York. 

Keith, S.E., and J.J. Powers. 1968. Determination of flavor threshold levels and sub­
threshold, additive and concentration effects. J. Food Sci. 33:213-218. 

Laing, D.G., and H. Panhuber. 1979. Application of anatomical andpsychophysical 
methods to studies of odour interactions. In: Progress in Flavour Research. 
D.G. Land and H.E. Nursten (Eds.). Applied Science Publishers, London. pp. 
27-46. 

Larsen, M., and L. Poll. 1990. Odour thresholds of some important aroma compounds 
in raspberries. Z. Lebensm.-Unters.-Forsch. 191:129-131. 



83 

Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt. 1982. Handbook of chemicalproperty 
estimation methods. Environmental Behavior of Organic Compounds. McGraw-
Hill, New York. 

Mattheis, IP., D.A. Buchanan, and J.K. Fellman. 1991. Change in apple fruit volatiles 
after storage in atmospheres inducing anaerobic metabolism. J. Agric. Food 
Chem. 39:1602-1605. 

McDaniel, M. R., R. Miranda-Lopez, B.T. Watson, N.J. Micheals, and L.M. Libbey, 
1990. Pinot noir aroma: a sensory/gas chromatographic approach. In: Flavors 
and Off-Flavors. G. Charalambous (Ed.), Elsevier. pp. 23-36. 

Mistry, B.S., T. Reineccius, and L.K. Olson. 1997. Gas chromatography-olfactometry
 
for the determination of key odorants in foods. In: Techniques for analyzing
 
food aroma. R. Marsili (Ed.). Marcel Dekker, New York. pp. 265-292.
 

Moncrieff, R.W. 1956. Olfactory adaptation and odour likeness. J. Physiol. 133:301­
316. 

Pangborn, R.M., H.W. Berg, E.B. Roessler, and A.D. Webb. 1964. Influence of
 
methodology on olfactory response. Percept. Motor Skills. 18:91-103.
 

Patterson, B.D., S.G.S. Hatfield, M. Knee. 1974. Residual effects of controlled 
atmosphere storage on the production of volatile compounds by two varieties of 
apples. J. Sci. Food Agric. 25:843-849. 

Patton, S., and D.V. Josephson. 1957. A method for determining significance of 
volatile flavor compounds in foods. Food Research. 22:316-318. 

Pierce, J.D., Jr., X.-N. Zeng, E.V. Aronov, G. Preti, and C.J. Wysocki. 1995. Cross-
adaptation of sweaty-smelling 3- methyl -2- hexenoic acid by a structurally-similar, 
pleasant-smelling odorant. Chem. Senses. 20:401-411. 

Pierotti, G.J., C.H. Deal, and E.L. Derr. 1959. Activity coefficients and molecular 
structure. Ind. Eng. Chem. 51:95-102. 

Plotto, A., M.R. McDaniel, and J.P. Mattheis. 1995. Development ofa flavor profile of 
`Gala' apples using Osme sensory technique. Abstract 802. HortScience. 
30:889. 

Poll, L. and K. Hansen. 1990. Reproducibility of headspace analysis of apples and apple 
juice. Lebensm. -Wiss. Technol. 23:481-483. 



84 

Reineccius, G. 1993. Biases in analytical flavor profiles introduced by isolation method. 
In: Flavor Measurements. C.-T. Ho and C. H. Manley (Eds.). Marcel Dekker, 
New York. pp.61-76. 

Rothe, M. and B. Thomas. 1963. Aroma of bread. Evaluation of chemical taste 
analyses with the aid of threshold value. Z. Lebensm.-Unters.-Forsch. 119:302­
310 . 

Sanchez, N.B., C.L. Lederer, G.B. Nickerson, L.M. Libbey, and M.R. McDaniel.
 
1992a. Sensory and analytical evaluation of hop oil oxygenated fractions. In:
 
Food Science and Human Nutrition. G. Charalambous (Ed.). Elsevier Science.
 
pp. 371-402. 

Sanchez, N.B., C.L. Lederer, G.B. Nickerson, L.M. Libbey, and M.R. McDaniel. 
1992b. Sensory and analytical evaluation of beers brewed with three varieties of 
hops and an unhopped beer. In: Food Science and Human Nutrition. G. 
Charalambous (Ed.). Elsevier Science. pp. 403-426. 

Schieberle, P. 1994. Heat-induced changes in the most odour-active volatiles of
 
strawberries. In Trends in Flavour Research. H. Maarse, and D.J. Van der Heij
 
(Eds.). Elsevier, Amsterdam. pp. 345-351.
 

Schieberle, P., and T. Hofmann. 1997. Evaluation of the character impact odorants in
 
fresh strawberry juice by quantitative measurements and sensory studies on
 
model mixtures. J. Agric. Food Chem. 45:227-232.
 

Stevens S.S. 1957. On the psychophysical law. Psychol. Rev. 64:153-181. 

Takeoka, G.R., R.G. Buttery, R.A. Flath, R. Teranishi, E.L. Wheeler, R.L. Wieczorek, 
and M. Guentert. 1989. Volatile constituents of pineapple (Ananas comosus 
[L.] Men.). In: Flavor Chemistry: Trends and Developments. R. Teranishi, 
R.G. Buttery, and F. Shahidi (Eds.). ACS symposium series 388. American 
Chemical Society, Washington, DC. pp. 223-237. 

Takeoka, G., R.G. Buttery, and L.C. Ling. 1996. Odour thresholds of various branched 
and straight chain acetates. Lebensm.-Wiss. Technol. 29:677-680. 

Takeoka, G.R., R.A. Flath, T.R. Mon, R. Teranishi, and M. Guentert. 1990. Volatile 
constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 38:471-477. 

Teranishi, R., R.G. Buttery, D.J. Stern, and G. Takeoka. 1991. Use of odor thresholds 
in aroma research. Lebensm.-Wiss. Technol. 24:1-5. 

Weurman, C. 1969. Isolation and concentration of volatiles in food odor research. J. 
Agric. Food Chem. 17:370-384. 



85 

White, A.G. 1991. The 'Gala' apple. Fruit Var. J. 45:2-3. 

Williams, A.A., A.G. H. Lea, and C.F. Timberlake. 1977. Measurements of flavor 
quality in apples, apple juices, and fermented ciders. In: Flavor Quality 
Objective Measurement. R.A. Scanlan (Ed.). ACS Symposium Series 51. 
American Chemical Society, Washington, DC. pp.71-88. 

Young, H., J.M. Gilbert, S.H. Murray, and R.D. Ball. 1996. Causal effects of aroma 
compounds on Royal Gala apple flavours. J. Sci. Food Agric. 71:329-336. 

Young, S.L. 1997. Gas Chromatography/Olfactometry and Descriptive Analysis of 
Cold-Pressed Lemon Oil Aroma. M.S. Thesis, Oregon State University, 
Corvallis, OR. 



86 

CHAPTER 5
 

CHARACTERIZATION OF CHANGES IN 'GALA' APPLE AROMA DURING
 

STORAGE USING OSME ANALYSIS, A GAS CHROMATOGRAPHY­

OLFACTOMETRY TECHNIQUE
 

Anne Plotto, James P. Mattheis, and Mina R. McDaniel 

To be submitted to Journal of Agricultural and Food Chemistry 



87 

ABSTRACT
 

`Gala' is an early ripening apple cultivar with a distinct aroma and flavor. Its 

storage season is short and volatile production is reduced following controlled 

atmosphere (CA) storage. Changes in odor-active volatiles for 'Gala' apples were 

measured after 5, 10, and 19 weeks storage at 1 °C in regular atmosphere (RA) and CA 

in 1994-95, and 4, 10 and 20 weeks in RA and CA in 1995-96. In 1995-96, apples were 

also stored 16 weeks in CA followed by 4 weeks in RA. 'Gala' apple dynamic 

headspace was collected on charcoal traps for 24 hours, then eluted with CS2. Aroma 

was evaluated using Osme, a method that combines gas chromatography and 

olfactometry (GCO). Three panelists recorded intensity and duration of odor-active 

compounds eluting from the gas chromatograph via a sniff port. Data were analyzed 

using analysis of variance and multivariate factor analysis (FA). Production of volatile 

esters decreased along with corresponding fruity aromas during CA storage. Hexyl 

acetate, butyl acetate and 2-methylbutyl acetate were emitted in the largest amounts and 

perceived with the strongest intensities from RA stored fruit. While hexyl acetate and 

butyl acetate concentrations and aromas intensities decreased significantly during CA 

storage, 2-methylbutyl acetate remained at RA concentration until 16 weeks in CA. 

Butyl 2-methylbutyrate and hexyl 2-methylbutyrate contributed to the apple, fruity aroma 

of RA stored fruit. Methyl 2-methylbutyrate, ethyl 2-methylbutyrate and propyl 2­

methylbutyrate had strong sweet and berry-like odors. These compounds were 

perceived less intensely than hexyl acetate and butyl acetate in RA stored fruit, but did 

not decrease as much in CA stored fruit. 4-Allylanisole, 13-damascenone and 1-octen-3­

ol, as well as an unknown compound with a watermelon descriptor, were perceived in 

RA stored fruit more than CA stored apples; these compounds had high loadings on 

factor 1 in FA, indicating an important contribution to aroma of 'Gala' apples stored 4 

weeks in RA in 1995-96. Even though these compounds do not have an apple odor, 

they may act synergistically or antagonistically when present with the fruity esters . 
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INTRODUCTION
 

`Gala' apple originated in New Zealand in the early 1960s from a cross between 

`Kiddis Orange' (`Cox's Orange Pippin' X 'Delicious') and 'Golden Delicious' (White, 

1991). This apple has become popular for its distinct flavor and taste. Consumer taste 

panels have almost always given 'Gala' high to very high ratings on a 9-point hedonic 

scale (Stebbins et al., 1994). Stebbins and co-workers (1994) also noted a loss of flavor 

after 60 days in regular air storage (RA), and hedonic ratings were low when apples 

were tasted after 4 months in air (Plotto et al., 1995). 

Controlled atmosphere storage (CA) is a common practice to prolong apple 

shelf-life. Reduced 02 and increased CO2 levels minimize firmness, acidity and 

chlorophyll losses as well as delay the appearance of some storage disorders in apples 

(Smock , 1979). However, reduced production of volatile compounds is also usually 

observed following CA storage (Guadagni et al., 1971; Patterson et al., 1974; Girard 

and Lau, 1995; Streif and Bangerth, 1988; Yahia et al., 1990). Apple maturity stage at 

harvest (Dirinck et al., 1989; Mattheis et al., 1991; Girard and Lau, 1995; Song and 

Bangerth, 1996), ratio of 02 and CO2 in the atmosphere (Streif and Bangerth, 1988; 

Brackmann et al., 1993; Fellman et al., 1993; Hansen et al., 1992) as well as storage 

duration (Willaert et al., 1983) affect the recovery of volatile production after CA 

storage. Lower 02 concentration in storage resulted in lower volatile production and 

longer recovery time (Hansen et aL, 1992; Streif and Bangerth, 1988; Mattheis et al., 

1998a). By raising oxygen levels to 2% (Smith, 1984) or to 21% (Streif and Bangerth, 

1988; Brackmann et al., 1993) after a 1.25% or 3% 02 storage, respectively, apples 

were able to produce more volatiles than had they remained under low 02 during all the 

storage period. However, the amount produced was less than for air stored fruit. 

Nevertheless, panelists could detect an increase in aromaticity of 'Cox's Orange Pippin' 

when these apples were stored in higher 02 atmosphere (Smith, 1984). In similar 

experiments with 'Bisbee Delicious' (Mattheis et al., 1995) or with 'McIntosh' apples 

(Yahia, 1991), no such volatile increase was observed. 



89 

Odor-active volatiles play a significant role in flavor perception. By using 

regression analysis to correlate sensory data with instrumental measurements, Watada et 

al. (1981) found some volatile compounds partly explained the variation in sweetness 

and acidity descriptors in 'Golden Delicious' and 'York Imperial' apples. Williams and 

Knee (1977) reported direct correlations between the 'Cox's Orange Pippin' apple 

character and hexyl acetate and butyl acetate, and between the banana-like attribute and 

2- or 3-methylbutyl acetate when apples were rated by expert panelists, and volatile 

compounds measured after removal from CA storage. Esters with a molecular weight 

between 100 and 130 were necessary for apple aroma (Dimick and Hoskin, 1983). 

Moreover, when using gas chromatography combined with olfactometry (GCO), other 

classes of compounds and also unknown compounds produced by apples had significant 

odor activity (Flath et al., 1967; Williams et al., 1977a; Cunningham et al., 1986). Flath 

et al. (1967) reported green apple descriptors for hexanal and trans-2-hexenal , 4­

methoxyallylbenzene was found to impart a spicy note to the 'Cox's Orange Pippin' 

apple (Williams et al., 1977a), while B-damascenone had an intense odor activity in 

CharmAnalysis (Cunningham et al., 1986). 2-Methylbutyl acetate, butyl acetate, hexyl 

acetate and butanol were found to be important aroma contributors to 'Gala' aroma 

using CharmAnalysis (Young et al., 1996). However, that study analyzed 'Gala' 

essence, which can result in higher proportions of alcohols and less esters (Paillard, 

1990; Kakiuchi et al., 1986). 

The objective of the present study was to identify volatile compounds 

contributing to the aroma of 'Gala' apples and evaluate the impact of CA storage on 

aroma production. A combination of instrumental and sensory analyses were used. 

Osme, a gas chromatography-olfactometry technique based on the modern laws of 

psychophysics, measures panelists' response to odorants on a time-intensity scale 

(McDaniel et al., 1990). Osme has been shown to be a reproducible method with trained 

panelists (Da Silva et al., 1994), and data can be analyzed using parametric statistical 

techniques (Da Silva et al., 1993). Optimization of 'Gala' headspace sampling for the 

Osme method was presented in an earlier paper (Chapter 3). Forty-four compounds 

were odor-active in 'Gala' apples stored in air at 1 °C for 4 weeks. In the present study, 
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changes in production of volatile compounds and perception of odor-active peaks over 

five months in RA and CA storage were quantified. Data were analyzed using univariate 

statistics with analysis of variance (ANOVA). Multivariate factor analysis (FA) was then 

used to establish relationships between odor-active peaks and the impacts of storage 

treatments. 

MATERIALS AND METHODS 

Plant Material and Storage 

A preliminary study was conducted using 'Gala' apples harvested in a 

commercial orchard near Chelan, WA, on September 12, 1994. Apple maturity stage 

and homogeneity of the lots was assessed through the ground color; ground color was 

found earlier to be a good indicator of 'Gala' maturity (Plotto et al., 1995). No pre-

harvest or pre-storage chemical treatment was applied to the fruit. Fruit was stored at 

the USDA-ARS Tree Fruit Research Laboratory in Wenatchee, WA, at 1 °C for 5, 10 

and 19 weeks in regular atmosphere (RA) and 9 and 18 weeks in controlled atmosphere 

(CA) with 02 and CO2 at 1% and 1%, respectively. After removal from storage, fruit 

was shipped to Corvallis, OR, and ripened at room temperature for 5 days prior to 

volatile collection. In 1995, 'Gala' apples from the same orchard were harvested on 

September 12 using the same maturity criteria as in 1994. Fruit was stored for 4, 10 and 

20 weeks at 1 °C in either RA or CA. In 1995-96, one additional storage treatment was 

16 weeks in CA followed by 4 weeks in RA. After removal from storage, apples were 

shipped to Corvallis and stored at 2 °C for 5 days upon receipt. Apples were then 

ripened at 22 °C for 5 days prior to volatile collection. 

Headspace Sampling 

Four replicate samples (five apples each, ca. 1 kg) were placed in 4 L glass jars 

sealed using Teflon lids with two gas ports. Compressed air purified by flowing through 

activated charcoal, calcium hydroxide and 5 A molecular sieve (W.A. Hammond 
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Drierite, Xenia, OH) was passed through the jars at ca. 200 mL.min-1. Volatiles were 

collected on activated coconut charcoal (20/40 mesh, 150 mg, ORBO-32, Supelco, 

Bellefonte, PA) for 24 hours. Sampling took place in a ripening chamber maintained at 

22 °C. Traps were stored at -25 °C until elution. Volatile compounds were desorbed 

from charcoal with 300 1.11, CS2 (HPLC grade, 99.9%+, Sigma-Aldrich, St. Louis, MO) 

containing 100 mgL-1 tridecane (Sigma, St. Louis, MO) as an internal standard. CS2 

was poured onto the charcoal particles in 1.8 mL vials, then samples were ready for 

analysis. Throughout the study, samples (sorbent and solvent for charcoal) were stored 

at -17 °C. 

Gas Chromatography - Olfactometry 

Samples were analyzed using an HP 5890 (Hewlett Packard, Wilmington, DE) 

gas chromatograph equipped with a 3-way valve (Valco Instruments Co., Inc., Houston, 

TX) to direct the column flow to either a flame-ionization detector or a sniff port. The 

analytical column was a Rtx-5 fused silica column coated with crossbond 5% diphenyl -

95% dimethyl polysiloxane, 30 m, 0.53 mm i.d., 1-lam film thickness (Restek, Bellefonte, 

PA). Conditions for chromatography were as follows: splitless injection at 250 °C, 

initial oven temperature, 40 °C held for 1 min, increased to 165 °C at 5 °C-min-1, then to 

250 °C at 20 °C-min-1, held for 15 min. FID was at 280 °C; H2, air and auxilary gas (He) 

to FID were 30, 390 and 27 mL-min-1, respectively. Linear velocity ofHe carrier gas 

was 30.7 cm.seel. The sniff port was a 40 cm long, 4 mm diameter glass tubing 

deactivated with 5% dimethyldichlorosilane (Sylon-CT, Supelco) connected with a tee to 

the outlet of the GC column. Compressed air (breathing quality) was purified and 

humidified by flowing to the sniff port at 3.5 L-min-1(or 4.64 m-sec-1) through activated 

charcoal, 5 A molecular sieve and 2 L distilled water held at 30 °C. Three panelists were 

trained to smell and describe the column effluents while rating the perceived intensity on 

a 16-point intensity scale (0 = none, 15 = extreme). Panelists recorded intensity by 

moving a linear sliding bar connected to a variable resistor interfaced to a personal 

computer (Da Silva et al., 1994). The procedure for panelist training was as described 

(Chapter 3). Each sniffing session started after the solvent had completely eluted on the 
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column and lasted 30 min. Response duration and intensity for individual compounds 

were recorded with Osme v.1.0 for Windows 3.1 software developed at Oregon State 

University. The resulting output for each response was: a) duration of odor perception, 

b) maximum odor intensity (in.), c) area under the curve generated by the odor stimulus 

response (duration x intensity), and d) retention index (Kovats) at the time of maximum 

perceived intensity. Kovats indices were calculated after GC analysis ofa series of 

hydrocarbon standards under the same conditions as the volatile samples. 

Initial identification of the compounds was made by running the samples under 

similar analytical conditions on a HP 5890 series II gas chromatograph (Hewlett 

Packard, Wilmington, DE) equipped with a HP 5971a MS detector (Hewlett Packard, 

Palo Alto, CA) and a DB-5, 30 m, 0.25 mm i.d., 0.25-p.m film thickness capillary column 

(J&W Scientific, Folsom, CA). Spectra of individual compounds were compared with 

those in the Wiley/NBS library (1991). Confirmation of identification was made by 1) 

comparing retention indices of authentic standards (Aldrich Flavors and Fragrances, 

Milwaukee, WI) and 2) Osme evaluation of those standards in the same quantities as in 

the sample. If the odor of a standard was different from the odor of the sample peak, the 

compound was not retained for that peak odor identification; even though it was 

identified by the Wiley library and had the same Kovats index as the sample peak. All 

standards used for olfactometry were food grade. 

Statistical Design and Analysis 

In 1994-95, headspace was initially analyzed for volatile quantity. Foreach 

storage treatment, the sample of the four replicates with the median amount of volatiles 

was chosen for further Osme analysis. That sample was evaluated four times by all three 

panelists. This design measured panelist variation. 

The following year, each panelist evaluated once each of the four replicate 

samples for each storage treatment. This design evaluated apple variability; panelist 

variability was included in the experimental error. Volatile quantity was measured later. 
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Samples were presented completely randomized within a block, where block was 

sample replication. Three panelists participated in the testing each year, two of them 

participated in both years of the study. 

For both years, storage type (RA or CA) and duration were treated 

independently and will be referred to as "storage treatment" in further discussions. 

Differences between storage treatments were analyzed for each compound quantity using 

a one-way ANOVA, with storage as the main effect. 

For each set of peak odor intensity (imax) or peak area response variables, 

differences between storage treatments were analyzed using a 4-way ANOVA. For the 

1994-95 data-set, the model was: Response Variable = Storage Panelist 

Storage *Panelist Replication Storage *Replication Panelist*Replication, where 

replication was the panelist evaluation of the sample. The error term in the denominator 

for the F-ratio and used for the LSD test for means separation was (Storage *Panelist) . 

For the 1995-96 data-set, sample replicate was nested within storage treatment 

[Sample(Storage)] because panelists evaluated each sample only once. The model was: 

Response Variable = Storage Sample(Storage) Panelist Panelist*Storage. Storage 

and Panelist were treated as fixed effects while Sample and therefore Sample(Storage) 

was treated as a random effect. Sample(Storage) was used as the error term for the F-

ratio; by doing so, apple variability was tested, and panelist was included in the 

experimental error. 

Data were also examined using multivariate analysis. Factor analysis (FA) was 

performed on the FID relative peak area of identified odor-active volatile compounds, on 

the peak intensities (Imax) and peak areas of odors perceived by Osme. 

For FID peak areas, FA using the principal component method was performed on 

the data correlation matrix to account for differences in peak scaling (Johnson and 

Wichern, 1992). 

For each set of Osme peak intensity and peak area variables, FA using principal 

component method was performed on the covariance matrix of the residuals of a general 

linear model (GLM) where panelist was the main effect. The GLM residuals were used 

to remove the variability due to panelists using different parts of the scale (Piggott and 
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Sharman, 1986). It was then possible to use the residuals covariance matrix to maximize 

differences between storage treatments. Based on the eigenvalues and the scree tests for 

each analysis (Tabachnick and Fidel, 1989), two factors were extracted from the 

principal component initial analysis, and rotated with the Varimax method. The 

orthogonal rotation Varimax maximizes high and minimizes low correlations, and 

maximizes the variance explained by the new factors (Tabachnick and Fidel, 1989). It 

was performed to determine how peaks correlated with each other. The plots ofstorage 

treatments in the two-factor coordinate system allowed determination of the direction 

variation due to peak intensities (or peak area, or FID area) pulled the storage factor 

scores. In other words, the graphical representation allowed compounds with the most 

weight in specific storage treatments to be identified. 

All statistical analyses were performed using SAS statistical software v.6.12 

(SAS Institute Inc., Cary, NC). 

RESULTS AND DISCUSSION 

Volatile Production in Storage 

In 1995-96, 'Gala' apples emitted the largest amount of volatiles after storage in 

RA for 4 weeks (Table 5.1). Although apples used in this study were post-climacteric at 

harvest (ethylene production above 1 ppm Table A.1), they kept ripening and may have 

reached the highest point of the respiration climacteric after 4 weeks in storage. 

Brackmann and Streif (1994) noted that higher volatile production was observed from 

apples stored 10 to 60 days in RA than from apples sampled at harvest. Fellman and 

Mattheis (1995) observed a close association between ester formation and climacteric 

status. A decrease in volatile production for most compounds was observed after 10 

weeks in RA and then the amount increased again after 20 weeks in RA (Table 5.1). 

This result is contradictory with other findings where less volatiles were produced after 

the longest time in RA (Streif and Bangerth, 1988; Fellman and Mattheis, 1995; Mattheis 

et al., 1998a). Our results could be due to experimental error, or the apples produced 

more volatiles at later stages of senescence because the same trend was observed in 



Table 5.1. Volatile compounds emitted by 'Gala' apples after regular (RA) or controlled atmosphere (CA) storage
(1% 02, 1% CO2) in 1995-96. Values (ng.kg-1.1:1) are means of 4 replicates of dynamic headspace of
1 kg apples'. Total volatiles by chemical group are also presented 

Storage Type 
RA CA 

Storage Duration (Weeks)
Compound 4 10 20 10 16' 20Propyl acetate 409.0 a 261.4 a 271.0 a 53.8 b 26.9 b 2.6 b
Butyl acetatex'Y 3863.2 a 4001.2 a 4258.0 a 1976.2 b 609.9 bc 71.9 cPentyl acetate' a353.1 193.4 be 261.8 ab 128.2 bed 45.3 ed 

10.9 d
Hexylacetatex'Y 2932.8 a 2530.1 ab 2725.0 ab 1758.7 b 662.9 ` 141.6Heptyl acetate a65.9 23.0 b 24.4 b 23.3 b 

be 
2.6 C Total acetate esters 7624.0 7009.1 7540.3 3940.2 1354.3 229.6 

Propyl propanoatex 34.1 a 18.0 b 14.4 be 
4.2 be 2.9 c 0.8 cButyl propanoatex 691.0 a 428.7 a 533.9 a 100.3 b 41.3 b 4.2 b

Pentyl propanoate 22.2 9.1 be 13.6 b 10.8 be 4.7 ed
a 0.9 dHexyl propanoatex 536.5 a 264.2 be 332.5 b 125.7 ed 

57.6 d 9.0 dTotal propanoate esters 1283.9 720.0 894.5 241.0 106.5 14.9 

Propyl butyrate 39.5 a 17.3 be 22.5 b 10.4 bed 
ed 

1.1 d 
Butyl butyratex be536.0 a 255.9 b 483.6 a 153.1 59.2 ` 11.5 e 
Pentyl butyrate 20.8 a 10.8 be 

abc 
23.6 a 17.6 ab 7.2 ` Hexyl butyrate' 428.7 ab 327.6 b 568.7 a 254.8 be 108.9 ed 29.3 dTotal butyrate esters 1025.0 611.5 1090.1 441.9 193.8 49.1 

Propyl hexanoate 179.1 a 40.8 be 54.2 b 26.7 b` 15.9 be 4.5`
Butyl hexanoatex 1313.2 a 631.9 b 1063.9 a 526.7 be 235.5 ed 63.6 d
Hexyl hexanoate 1605.7 a 277.1 ` 500.9 b 214.1 ed 

108.0 ed 
32.8 dTotal hexanoate esters 3098.0 949.8 1619.0 767.5 359.4 100.9 

Butyl heptanoate 134.8 a 27.4 be 42.8 b 30.6 be 14.6 be 4.7 



Table 5.1, Continued 

Hexyl octanoate bcd63.3 a 14.6 bc 20.6 b 4.6 cd 1.4 d 

2-Methylpropyl acetate 
a 

be99.3 b 75.6 be 173.3 111.3 b 25.5` 
2-Methylbutyl acetatex'Y 2099.4 3 1089.0 be 1456.2 ab a1974.4 1432.8 ab 437.7 c 
3- Methyl -2- butenyl acetate" 45.0 b 10.0` 9.2` 110.2 a 122.0 a 39.8 b
 
3-Methylbutyl propanoate
 d25.8 6.8 cd 7.4 " 19.8 ab 14.0 be
 

2-Methylbutyl butyrate 8.7 ab 5.0 be ab ab
10.3 a 2.9 c
 
3-Methylbutyl hexanoate 22.5 a
 C4.7` 7.0` 16.4 b 14.5b 

Butyl 2-methylpropanoate 13.7 b 12.0 b a23.4 5.6 be 2.5` 0.2`
 
Hexyl 2-methylpropanoate
 25.0 ab 18.9 be 40.7 a 15.4 bed 7.0 cd 0.3 d

Total methyl propanoate esters 38.7 30.9 64.1 21.0
 9.4 0.5 

Methyl 2-methylbutyratex 59.7 b 45.9 be 100.0 a 10.7 d 18.5 cd 0.0 d
Ethyl 2-methylbutyratex 4.7 ab 3.1 

be 
7.6 a 0.9 c C 

0.0 c

Propyl 2-methylbutyratex cd
113.5 a 55.8 b 46.2 be 12.4 bcd 0.2 d
 
Butyl 2-methylbutyratex 724.1 a 528.0 a 730.4 ' 158.0 b
 62.0 b 6.0 b 
Hexyl 2-methylbutyratex 872.8 a 477.4 be 768.3 ab 156.2 cd 45.5 d 10.7 d
Total methyl butyrate esters 1774.8 1110.2 1652.4 338.0 135.8 17.0 

Hexyl tiglatex 10.0 a
b b 

1.2 b 2.2 b 0.2 b 

6-Methyl-5-hepten-2-onex 86.8 ' 12.5 b 9.8 b 4.8 b 2.6 b 0.0 la 

4-Allylanisolex 216.2 a 35.9 b 48.4 b 43.8 b 24.6 b 9.2 b 

1-Butanol 211.4 a 57.0 be 119.5 6 11.5 ` 10.8 e 8.1 `
 
1-Pentanol 4.5 a 1.3 be 

ab 
1.5 

be be
 
0.9 

1-Hexanol 88.2 28.3 ba a 

2 Methyl-l-butanol 78.6 a 

78.1 16.8 b 6.0 b 1.7 b 

27.0 be 48.1 b 49.1 ab 35.5 be 

Total alcohols 382.7 113.5 249.6 78.9 53.5 21.4
Z Means followed by the same letter are not significantly different within the same line by the Fisher protected LSD test, alpha = 0.05 
Y Above the linear range of the FID detection 
x Odor active compounds at those concentrations 
w 16 weeks in CA was followed by 4 weeks in RA 

v) 
caN 
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1994-95 (Table A.2). Fellman (1997) observed a correlation between fruit softening and 

increasing ester synthesis in some apple cultivars, speculating that some glycosidically 

bound volatile compounds might be liberated during cell wall degradation. Dettweiler et 

al. (1990) suggested that the formation of volatile compounds as well as conjugation of 

hydroxy compounds to glycosides was similar to a detoxification process during cell 

senescence. Those authors found an increasing amount of free and bound C8 diols 

during the course of ripening of `Purpurroter Cousinot' apples. Straight-chain esters are 

products of lipid degradation (Paillard, 1979); fatty acids oxidized during senescence 

may be the source of substrates for ester formation. 

Overall, total volatile production decreased during CAstorage in both 1994-95 

and 1995-96 (Table 5.1 and Table A.2). In 1995-96, 'Gala' apples exposed to air for 4 

weeks after 16 weeks in CA storage produced more volatiles than fruit stored 20 weeks 

in CA, without reaching the level produced after 10 weeks in CA (Table 5.1). A similar 

effect was reported in earlier work with 'Cox's Orange Pippin' (Smith, 1984), and 

`Golden Delicious' (Streif and Bangerth, 1988) after exposing apples to higher 02 levels 

after CA storage. 

Acetate esters comprised the largest proportion of volatiles emitted by 'Gala' 

apples; butyl acetate, hexyl acetate and 2-methylbutyl acetate were produced in the 

largest amounts (Table 5.1). While all straight-chain esters showed a significant drop in 

production after CA storage, 2-methylbutyl acetate was still produced in high amounts 

after 16 weeks in CA (Table 5.1). Similar results were observed by Mattheis et al. 

(1998a) for 'Gala' apples. Production of straight-chain esters decreased more than 

branched-chain esters under low 02, and branched-chain esters decreased under high 

levels of CO2 (Brackmann et at, 1993). Both straight and branched-chain esters 

decreased under the levels of 02 and CO2 used in our study, except 2-methylbutyl 

acetate and 2-methyl-l-butanol (Table 5.1). 

3- Methyl -2- butenyl acetate was the only ester increasing significantly during CA 

storage, especially after 10 weeks CA or 16 weeks in CA followed by 4 weeks in RA 

(Table 5.1). This unsaturated ester and its different behavior in CA storage has also been 

reported in lonagold' apples (Hansen et al., 1990). 
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Other non-ester compounds detected included several alcohols, one allyl phenol 

and one ketone. With the exception of 2-methyl-l-butanol, all these compounds 

significantly decreased in both storage atmospheres after 10 weeks (Table 5.1). 

In 1994-95, volatile production after 19 weeks in RA was significantly higher 

compared to fruit stored in CA for most compounds (Table A.2). Unlike 1995-96, total 

volatile emission was similar after 5 and 10 weeks in RA. Similar to results in 1995-96, 

volatile production decreased after CA storage. 

Volatile Perception After Storage 

Osme results are presented for peak height or maximum peak intensity (I) as 

panelists were trained to use the scale for that measurement, and peak area results are 

presented in appendices (Tables A.3 and A.4). Peak aroma intensity gives an indication 

of compound potency in the samples (Da Silva et al., 1993). However, the area under 

the curve gives additional information about the psychophysical response as it integrates 

the duration of perceived odor activity. 

Panelist variability was significant both years for most compounds (data not 

shown). Regression curves relating perceived intensity or peak area to odorant 

concentrations showed differences in panelist sensitivities for some compounds, and 

different responses to increasing concentrations (Appendix 5, Figures A.1 and A.2). 

Nevertheless, panelists were consistent in rating concentration changes with storage 

treatments, resulting in little or no significant panelist by treatment interaction. 

Compounds with fruity odors were esters and one ketone (Table 5.2). The 

decrease in ester production following CA storage was quantified: 1) by GC-FED 

analysis; and 2) as reduced perception of fruity odors perceived using Osme. CA 

storage resulted in a loss of fruity peaks, with different amounts of loss of perceived 

intensities. 

Hexyl acetate, butyl acetate and 2-methylbutyl acetate, emitted by 'Gala' apples 

in the largest amounts of all compounds detected, were also perceived with the highest 

intensities until 10 weeks in CA storage (Table 5.2). While hexyl acetate and butyl 



Table 5.2. Peak aroma intensity (I max) in 'Gala' headspace after regular (RA) or controlled atmosphere (CA) storage by
Osme analysis in 1995-96. Values on a 16-point intensity scale (0 = none, 15 = extreme) are means of 4 
replicates for 3 panelistsz. 

Storage Type 
RA CA 

Peak # 
KovatsY 

Index 
20 1028 

Descriptor (Compound) 
Gala, ripe, pear (Hexyl acetate) 

4 
11.4 a 

Storage Duration (Weeks) 
10 20 10 

9.3 b 10.6 ab 9.3 b 
16x 

4.8 ` 
20 

c 

4 

7 

2 

13 

6 

23 

36 

31 

827 
890 
787 
959 
863 

1056 
1255 

1205 

Nail polish, gala (Butyl acetate) 
Solvent, gala (2-Methylbutyl acetate) 
Sweet, fruity (Methyl 2-methylbutyrate) 

Very sweet, strawberry (Propyl 2-methylbutyrate) 
Sweet, strawberry (Ethyl 2-methylbutyrate) 
Fruity, apple (Butyl 2-methylbutyrate) 
Apple, grapefruit (Hexyl 2-methylbutyrate) 
Green apple (Butyl hexanoate + hexyl butyrate) 

10.3 a 

11.0 a 

8.9 a 
a 

6.2 ab 

5.6 a 
5.1 a 

4.7 ab 

8.9 a 

8.6 c 

8.0 a 

6.8 a 

6.7 ab 
b 

2.4 bc 

2.8 b 

9.6 a 

8.4 cd 
7.9 a 

a 

7.4 a 
a 

3.8 ab 

6.3 a 

ab 

10.4 ab 
a 

6.5 a 

6.1 ab 

2.6 b 
cd 

3.4 b 

5.2 c 
bc 

a 

5.7 a 

4.9 b 
1.0 c 

cd 

0.0 c 

1.7 

6.9 d 

1.2 b 

2.3 b 

2.7 
0.2 c 

0.2 d 

0.0 
19 1018 Apple and toast (Unknown) 7.0 a 3.0 b 2.2 bc 2.0 be 2.5 bc 0.3 
16 

18 

27 

997 
1010 
1121 

Fruity, tape (6- Methyl -5- hepten -2 -one) 

Solvent, gala (Unknown) 
Apple (Hexyl propanoate) 

a 

3.1 a 

3.0 a 

1.0 b 

0.4 cd 

ab` 

0.3 b 

3.1 a 

2.0 ab 

0.3 b 
b 

0,5 bc 

0.6 b 

1.3 be 

0.0 c 

0.5 b 

0.0 d 

0.0 c 
17 

44 
10 

3 

1009 

1524 

921 

813 

Rotten apple (Butyl butyrate) 
Fruity (Unknown) 
Fruity, apple (Butyl propanoate) 
Fruity (Propyl propanoate) 

2.3 ab 

1.6 a 
a 

b 

2.3 al' 

1.9 a 

1.7 a 

0.2 ab 

3.0 a 

1.2 ab 

0.7 ab 
ab 

bc 

0.7 ab 

0.0 b 
1.4 a 

0.0 c 

0.0 b 

0.0 b 

0.6 ab 

0.0 c 

0.0 b 

0.0 b 

0.4 ab 
12 933 Fruity, sweet, solvent (3- Methyl -2- butenyl acetate) 

Total fruity 
0.4 c 

91.6 
0.6 ` 

69.1 
0.6 c 

78.3 
5.2 a 

63.1 
4.8 a 

44.4 
2.7 b 

20.3 

43 
38 

1437 

1276 
Grape juice (13- Damascenone) 

Grape juice (Unknown) 
Total grapejuice 

6.2 a 
a 

7.9 

2.2 bc 

0.0 b 
2.2 

2.4 b 

0.5 b 

2.9 

2.2 bc 

0.0 b 

2.2 

1.4 ` 

0.0 b 

1.4 

0.0 d 

0.0 b 
0.0 



Table 5.2, Continued 

26 1118 Floral (Unknown) 1.9 a 0.0 b 0.0 b 0.0 b 
0.0 

24 1070 Watermelon (Unknown) 6.9 3 1.0 b 0.0 c 0.0 c 0.0 0.1 c 
34 1227 Cucumber (Unknown) 2.2 3 0.4 b 0.8 b 0.0 b 0.0 b 0.0 b 

Total watermelon, cucumber 9.1 1.4 0.8 0.0 0.0 0.1 

33 

22 
29 

1222 

1041 

1151 

Anise, licorice (4-Allylanisole) 
Sweet, anise (Unknown) 

Anise, spice, perfumey (Unknown) 
Total anise 

7.6 a 

ab 

2.6 a 
11.5 

bc 

0.0 c 

0.6 bc 

3.7 

2.3 bcd 

0.0 c 

0.0 c 

2.3 

b 

1.6 a 

2.1 ab 

7.2 

1.0 
cd 

bc 

0.4 

1.7 

0.5 cd 

0.0 c 

0.9 be 

1.4 

35 1230 Mushroom, cat urine (Unknown) 5.2 ab cd 
6.9 a 4.6 be 1.4 d 1.4 d 

14 991 Mushroom (1-Octen-3-ol) 2.9 a 0.3 b 0.3 b 0.0 b 0.0 b 0.0 b 
Total mushroom 8.1 3.4 7.2 4.6 1.4 1.4 

5 

25 
836 

1112 
Skunk (Unknown) 
Dusty, musty (Unknown) 

9.0 a 

6.4 a 
4.0 b 

a 
4.0 b 

3.8 a 
5.2 b 

4.3 a 
4.7 b 

2.4 b 

3.4 b 

a 

37 1272 Rubber (Unknown) 5.4 a 5.2 a 1.6 be 2.0 b 0.4 be 0.0 c 
8 901 Oatmeal, skunk (Unknown) 2.1 0.0 0.0 0.0 0.0 0.0 

21 1038 Metallic, skunk (Unknown) 1.6 0.0 0.0 0.0 0.0 0.0 
Total skunk, rubber 24.5 14.5 9.4 11.5 7.5 7.3 

1 

30 
774 

1197 
Tea, garlic, leaves (Unknown) 
Tape or fruity (Unknown) 

2.2 

1.7 a 

1.5 
b 

3.0 

0.0 b 

4.7 

0.2 b 

3.0 

0.0 b 

0.8 
0.7 b 

41 1364 Tape or musty, dirty (Unknown) 1.6 b 0.5 bc 
a 

0.3 c 1.1 be 0.9 bc 
Total tape, others 5.5 2.1 6.4 5.3 4.1 2.4 

9 920 Garlic (Unknown) 0.7 b b 
0.3 b a 

3.0 a 1.2 b 
Z Means followed by the same letter are not significantly different within the same line by the Fisher protected LSD test, alpha = 0.05 
Y Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 

' 16 weeks in CA was followed by 4 weeks in RA 



101 

acetate odor intensities decreased after 10 weeks in CA, 2-methylbutyl acetate had the 

highest perceived intensity of all fruity compounds throughout CA storage. 

While there was a drop in other fruity peak intensities after CAstorage, methyl 2­

methylbutyrate, propyl 2-methylbutyrate and ethyl 2-methylbutyrate were still rated at or 

above 5.0 (slight to moderate) after 16 weeks in CA storage (Table 5.2). These three 

compounds along with hexyl acetate, butyl acetate, 2-methylbutyl acetate and 3-methyl­

2-butenyl acetate were all rated above 1.5 (just detectable) after 20 weeks in CA, while 

other compounds were not perceived. 3-Methyl -2-butenyl acetate was the only ester 

that increased during CA compared to RA storage; its odor was also perceived higher 

after CA storage (Table 5.2). 

A general decrease in the perceived intensity of the fruity peaks was also 

observed during 1994-95 for fruit stored in CA (Table 5.3). Odor-active compounds 

were the same as in 1995-96, except two fruity peaks were perceived in 1994-95 that 

were not perceived in 1995-96 (peak 36b and 39, unknown); also one peak, peak 19 

(unknown), was perceived in 1995-96 and not perceived in 1994-95. Hexyl acetate and 

2-methylbutyl acetate were still rated above 5.0 after 18 weeks in CA, while the intensity 

for butyl acetate decreased significantly to 1.9 (Table 5.3). Methyl-, propyl-, and ethyl 

2-methylbutyrate were also rated above 2.0 after 18 weeks in CA; however, they were 

less potent as indicated by lower ratings for the RA treatments than hexyl acetate, butyl 

acetate and 2-methylbutyl acetate (average of 6.0 for the former versus 9.0 for the later) 

(Table 5.3). 

Other compounds with grape juice, floral, watermelon, cucumber and anise 

odors, were perceived with a higher intensity after 4-weeks in RA (Table 5.2). 13­

damascenone (2,6,6-trimethyl-l-trans-crotony1-1,3-cyclohexadiene) and 4-allylanisole 

(1- methoxy- 4- (2- propenyl)- benzene) were responsible for the most important of the two 

and three grape juice and anise odors, respectively, and were rated between 2.0 and 3.0 

until 10 weeks in CA. In the 1994-95 season, grape juice, watermelon and anise peaks 

were perceived with equal intensities for all RA treatments (Table 5.3). 

Two mushroom-like peaks were perceived. The unknown peak 35 was 

perceived both years, and was rated with a higher intensity in 1995-96. Peak 14, 



Table 5.3. Peak aroma intensity (I max) in 'Gala' headspace after regular (RA) or controlled atmosphere (CA) storage
by Osme analysis in 1994-95. Values on a 16-point intensity scale (0 = none, 15 = extreme) are means of
4 replicates for 3 panelists'. 

Storage Type 
RA CA

Royals' 
Storage Duration (Weeks)

Peak # Index Descriptor (Compound) 5 10 19 9 18
20 1028 Gala, ripe, pear (Hexyl acetate) c10.4 a 11.3 a 11.2 a 8.8 b 
4 

7 

2 
13 

6 
23 

36 
36b 
31 

16 

827 

890 
787 
959 
863 

1056 

1255 

1260 
1205 

997 

Nail polish, gala (Butyl acetate) 

Solvent, gala (2-Methylbutyl acetate) 
Sweet, fruity (Methyl 2-methylbutyrate) 
Very sweet, strawberry (Propyl 2-methylbutyrate) 
Sweet, strawberry (Ethyl 2-methylbutyrate) 
Fruity, apple (Butyl 2-methylbutyrate) 
Apple (Hexyl 2-inethylbutyrate) 
Grapefruit (Unknown) 
Green apple (Butyl hexanoate + hexyl butyrate) 
Fruity, tape (6- Methyl -5- hepten -2 -one) 

9.4 a 

a 

6.2 a 

6.2 a 

6.2 a 

a 

1.9 ab 

2.3 

1.6 ab 

2.7 

10.0 a 

8.9 a 

6.0 a 

6.2 a 
6.1 a 

a 

4.5 a 

1.8 

4.6 a 

0.6 

8.8 ab 

8.4 a 

5.5 a 

6.0 a 
6.1 a 

4.3 ab 

1.9 ab 

1.5 

4.4 a 

1.4 

6.3 b 

a 

5.1 a 

b 

3.8 b 

2.3 be 

1.9 ab 

0.0 
1.6 ab 

0.8 

1.9 ` 

6.4 b 

2.7 b 

3.2 
3.6 b 

0.0 

0.4 b 

0.0 
0.3 b 

0.4 
18 

27 

17 

44 
10 

39 
3 

12 

1010 
1121 

1009 

1524 

921 

1290 

813 

933 

Solvent, gala (Unknown) 
Apple (Hexyl propanoate) 
Rotten apple (Butyl butyrate) 
Fruity (Unknown) 
Fruity, apple (Butyl propanoate) 
Fruity (Unknown) 
Fruity (Propyl propanoate) 

Fruity, sweet, solvent (3- Methyl -2- butenyl acetate) 
Total fruity 

2.6 ab 

4.4 a 

5.2 a 

1.7 

3.0 a 

2.1 
ab 

1.1 

82.6 

4.4 a 

4.3 a 

2.8 ab 

1.9 
a 

2.4 

2.8 a 

0.0 
87.1 

2.5 ab 

4.6 a 

b 

0.3 
a 

0.7 

1.6 ab 

1.1 

77.8 

0.6 b 

0.0 b 

0.5 b 

1.4 

0.0 b 

2.2 

0.0 b 

1.0 

49.6 

0.2 b 

0.2 b 

0.5 b 

0.6 
0.6 b 

0.9 

0.0 b 

1.7 

29.6 
43 1437 Grape juice (13-Damascenone) 2.6 2.5 1.7 3.2 1.9 



Table 5.3, Continued 

24 1070 Watermelon (Unknown) 6.1 a 6.3 a 5.2 a
b 0.0 

34 1227 Cucumber (Unknown) 0.8 ab 2.4 a 
ab 

0.9 ab 0.0 b 
Total watermelon, cucumber 6.9 8.7 6.7 0.9 0.0 

33 1222 Anise, licorice (4-Allylanisole) 6.0 a 4.5 b 6.5 a 4.1 b 3.4 b 

22 1041 Perfumey, anise (Unknown) 3.4 a
a 

4.1 a 0.5 b 0.0 
Total anise 9.4 8.4 10.6 4.6 3.4 

35 1230 Mushroom, cat urine (Unknow) b4.3 a 2.9 ab 2.8 ab 0.3 b 
40 1353 Mushroom (Hexyl tiglate) 2.6 a 3.4 a 1.9 

a 
2.1 a 0.0 b 

Total mushroom 9.0 6.2 4.7 3.1 0.3 

5 836 Skunk (Unknown) a 
6.5 ab 5.4 b 6.4 ab
 

37 1272 Rubber (Unknown)
 a 
3.0 a 2.0 ab 0.0 b 0.4 b 

Total skunk, rubber 11.4 9.5 7.4 6.4 3.9 

9 920 Garlic (Unknown) 0.0 b 0.0 b 0.0 b 3.7 a 1.5 a 
Z Means followed by the same letter are not significantly different within the same line by the Fisher protected LSD test, alpha = 0.05 
Y Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 
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perceived in 1995-96, was identified as 1-octen-3-ol by matching Kovats index and odor 

quality with standard (Table 5.2), while hexyl tiglate (peak 40) was perceived only in 

1994-95 (Table 5.3). The total mushroom peak intensities were higher at the 

beginning of the storage season (4 weeks in RA) both years of the study (Table 5.2 and 

5.3). 

More skunk-, rubber-like peaks were perceived in 1995-96 than in 1994-95. 

Overall, they followed the same trends as the fruity peaks, higher for apples stored 4 

weeks in RA in 1995-96, and higher throughout RA storage in 1994-95. The ratings 

given to peak 5 were very close for each storage treatment both years (Table 5.2 and 

Table 5.3). Two of the skunk-like peaks (peak 8 and 21) were perceived only in the 4 

weeks RA stored fruit in 1995-96. Because of uncertainty as to the origin of these 

compounds, skunk- and rubber-like peaks were not included in the FA analysis of Osme 

peak intensities and peak areas. 

Peaks with multiple descriptors (i.e. peaks 1, 30 and 41) and with low intensity 

ratings were below the odor threshold, and considered as noise in the aromagram 

(Chapter 3). These peaks were not perceived in 1994-95. 

One compound with a garlic odor (peak 9) was perceived only from CA stored 

fruit both years of the study (Table 5.2 and 5.3). It did not correspond to any peak on 

the FID chromatogram. 

Correlative Relationships Between Odor-Active Volatiles 

Factor analysis (FA) of FID peak areas in 1994-95 indicated factors 1 and 2 

explained 78% and 10% of the total variation in the dataset, respectively (Figure 5.1-A). 

In 1995-96, 69% of the total variation was explained by factor 1, and 11% by factor 2 

(Figure 5.2-A). The plots of factor scores for FID relative peak areas reflected the 

decrease of all odor-active compounds during CA storage except 3- methyl -2- butenyl 

acetate (peak 12) (Figures 5.1-A and 5.2-A). In the factor plots, each peak is 

represented by its vector: vector angles reflect peak correlations with each other, and the 

vector magnitude [which is actually the variable (peak) loading] reflects the relative 

contribution of the peak to each factor. In 1994-95, the 19 week RA treatment was 
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Figure 5.1. 1994-95 factor plots of FID peak area (A), Osme peak intensity (B) and 
Osme peak area (C) of 'Gala' apples stored in regular (RA) and controlled 
atmosphere (CA) (1% 02, 1% CO2). 
Scores for treatments are in the 2-factor space. 5 RA, 10 RA, 19 RA are 5, 10 
and 19 weeks in RA, and 9 CA, 18 CA are 9 and 18 weeks in CA. Factor 
loadings are determined by the vector lengths for each peak. All vectors start at 
the origin. Their directions and magnitudes (loadings) are represented by the 
figure diamonds. Peak numbers: 2: methyl 2-methylbutyrate, 3: propyl 
propanoate, 4: butyl acetate, 6: ethyl 2-methylbutyrate, 7: 2-methylbutyl acetate, 
9: unknown garlic, 10: butyl propanoate, 12: 3- methyl -2- butenyl acetate, 13: 
propyl 2-methylbutyrate, 16: 6- methyl -5- hepten -2-one, 17: butyl butyrate, 18: 
unknown solvent, 20: hexyl acetate, 23: butyl 2-methylbutyrate, 24: unknown 
watermelon, 27: hexyl propanoate, 29: unknown perfumey, anise, 31: butyl 
hexanoate + hexyl butyrate, 33: 4-allylanisole, 34: unknown cucumber, 35: 
unknown mushroom, 36: hexyl 2-methylbutyrate, 36b: unknown grapefruit, 39: 
unknown fruity, 40: hexyl tiglate, 43: B-damascenone, 44: unknown fruity. 
Diamonds without numbers in the Osme factor plots represent odor-active peaks 
that contribute less significantly to the variation due to 'Gala' storage. 

Figure 5.2. 1995-96 factor plots of HD peak area (A), Osme peak intensity (B) and 
Osme peak area (C) of 'Gala' apples stored in regular (RA) and controlled 
atmosphere (CA) (1% 02, 1% CO2). 
Scores for treatments are in the 2-factor space. 4 RA, 10 RA, 20 RA, 10 CA, 20 
CA are 4, 10 and 20 weeks in RA and CA, respectively. 16 CA is 16 weeks in 
CA followed by 4 weeks in RA. Factor loadings are determined by the vector 
lengths for each peak. All vectors start at the origin. Their directions and 
magnitudes (loadings) are represented by the figure diamonds. Peak numbers: 1: 

unknown tea, leaves, 2: methyl 2-methylbutyrate, 3: propyl propanoate, 4: butyl 
acetate, 6: ethyl 2-methylbutyrate, 7: 2-methylbutyl acetate, 8: unknown oatmeal, 
9: unknown garlic, 10: butyl propanoate, 12: 3- methyl -2- butenyl acetate, 13: 
propyl 2-methylbutyrate, 14: 1-octen-3-ol, 16: 6-methy1-5-hepten-2-one, 17: 
butyl butyrate, 18: unknown apple solvent, 20: hexyl acetate, 23: butyl 2­
methylbutyrate, 24: unknown watermelon, 26: unknown floral, 27: hexyl 
propanoate, 29: unknown perfumey, anise, 31: butyl hexanoate + hexyl butyrate, 
33: 4-allylanisole, 35: unknown mushroom, 36: hexyl 2-methylbutyrate, 43: 13­
damascenone. Diamonds without numbers in the Osme factor plots represent 
odor-active peaks that contribute less significantly to the variation due to 'Gala' 
storage. 
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Figure 5.2: 
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characterized by the vectors with high loadings for 4-allylanisole (peak 33), and all the 

branched-chain esters (Figure 5.1-A). The 5 and 10 week RA treatments had high 

positive scores for factor 2, characterized by the vectors for straight-chain esters. The 

vector directions for branched-chain esters and 4-allylanisole indicates those compounds 

were correlated with each other and decreased at a similar rate in storage. Likewise, 

straight-chain esters decreased at similar rates in storage, but the rates were different 

from those for branched-chain esters. Hexyl acetate (peak 20), butyl acetate (peak 4) 

and 6- methyl -5- hepten -2 -one (peak 16) had the highest loadings on factor 2 indicating 

high levels of those compounds in 5 weeks RA and 10 weeks RA stored fruit . CA 

storage treatments were positioned in the opposite quadrant from the vectors for all 

volatile peaks, reflecting the decrease in volatile production during CA storage. In 1995­

96, fruit stored 20 weeks in RA also had the highest score on factor 1 (Figure 5.2-A). 

However, there was no grouping by class of volatiles as occurred in 1994-95. Fruit 

stored 4 or 10 weeks in RA had similar scores for factor 1 while the 4 week RA 

treatment had a high score for factor 2 and was located in the same quadrant as all the 

vectors for FID peak area. Fruit stored 10 weeks in RA had a negative factor 2 score, 

suggesting that the rate of decrease of hexyl propanoate (peak 27), 2-methylbutyl acetate 

(peak 7), hexyl 2-methylbutyrate (peak 36) and 6- methyl -5- hepten-2 -one (peak 16) was 

more important relative to other compounds in fruit stored 10 weeks . The 10 and 16 

week CA treatments, as well as the vector for 3- methyl -2- butenyl acetate, had high 

negative scores for factor 1 and positive scores for factor 2. The 20 week CA treatment 

was located, as in 1994-95, in the opposite quadrant from the FID peak vectors, 

indicating that fruit stored 20 weeks in CA produced the least amount of volatiles. 

Odor-Active Peaks and Storage Treatments in the Two-Factor Space 

The distribution of storage treatments in the space of the Osme peak intensities 

and peak areas reflect the higher ratings given to fruit from the RA storage treatments. 

Factor 1 represented 40% and 36% of the variation in peak intensities (Figures 5.1-B 

and 5.2-B) and 57% and 58% of the variation in peak areas (Figures 5.1-C and 5.2-C) in 

1994-95 and 1995-96, respectively. The larger amount of variation explained by factor 1 
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for peak areas indicates larger co-variation between peak areas than between peak 

intensity ratings. This could be the result of panelists being more consistent rating peak 

area than peak intensity (Da Silva et al., 1994). Factor 2 represented 10% and 11% of 

the variation in peak intensities, and 7% and 12% of the variation in peak areas in 1994­

95 and 1995-96, respectively. 

In 1994-95, there was no significant difference between RA treatments which all 

had positive scores on factor 1 (Figures 5.1-B and -C). The position of CA treatments 

with negative scores for factor 1 (9 week CA) and factors 1 and 2 (18 week CA) is 

related to the low intensity ratings given to all odor peaks for these treatments. Only 

peak 9 (garlic), peak 12 (fruity, 3- methyl -2- butenyl acetate) and peak 43 (grape juice, 13­

damascenone) had negative loadings on factor 1. Peak 9 was perceived after CA storage 

only, and peaks 12 and 43 were perceived with higher intensities after CA compared to 

RA storage (Table 5.3). Vectors with high loadings on factor 1 and near zero on factor 

2 were, for peak intensities, peaks corresponding to the watermelon odor (peak 24), 

anise, perfumey odor (peak 29), apple (butyl propanoate, peak 10), solvent (2­

methylbutyl acetate, peak 7) and mushroom odor (peak 35). Vectors representing odor-

active peaks due to hexyl acetate (peak 20), butyl acetate (peak 4), methyl-, ethyl-, 

propyl- and butyl 2-methylbutyrate (peak 2, peak 6, peak 13 and peak 23) were 

positively correlated with each other, with high loadings on factor 1 and 2 (Figure 5.1­

B). Vectors for 4-allylanisole (peak 33) and butyl butyrate (peak 17) were in the same 

direction as the peaks listed above, but with lower loadings, indicating their correlations 

with the former peaks, but a lesser contribution to overall variability. 

Factor 2 for peak intensity in 1994-95 was explained by mushroom (hexyl tiglate, 

peak 40), grape juice (B-damascenone, peak 43), apple (hexyl 2-methylbutyrate, peak 

36), cucumber (peak 34) and adhesive tape (peak 39) (Figure 5.1-B). The 10 week RA 

treatment had high factor 1 and 2 scores , with the vectors for "Gala" (unknown, peak 

18), green apple (butyl hexanoate, peak 31) and apple (hexyl propanoate, peak 27) 

highly correlated in that same direction. In other words; fruit stored 10 weeks in RA had 

developed a stronger "apple" component for peak intensity than other treatments. 
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Correlations between Osme peak areas were different from peak intensities, 

resulting in a different distribution of the corresponding vectors in the factor space 

(Figure 5.1-C). Peaks corresponding to hexyl and butyl acetate (peak 20 and peak 4) 

had the highest loadings on factor 1. 2-Methylbutyl acetate (peak 7) and the mushroom 

odor (peak 35) had high loadings on factor 1, but negative loadings on factor 2, 

indicating less contribution to the perception duration for fruit from RA treatments. 

Vectors for the peaks corresponding to methyl-, ethyl-, propyl-, butyl- and hexyl 2­

methylbutyrate odors (peaks 2, 6, 13, 23 and 36), butyl butyrate (peak 17), and peak 29 

(anise, perfumey), were in the direction of all RA treatments indicating a similar rate of 

decrease in the perception (duration x intensity) of those compounds from RA to CA 

storage. 

Factor 2 for peak area in 1994-95 was explained by the same odors as for peak 

intensity, except peak 18 (Gala, unknown), peak 31 (green apple, butyl hexanoate) and 

peak 36 (apple, hexyl 2-methylbutyrate). The later peaks were correlated with the peaks 

mentioned above (peaks 2, 23, 29). The difference between peak area and peak intensity 

for the loadings of some odor peaks on factor 2 resulted in a better clustering of the RA 

treatments on one side, and the CA treatments on the other side (Figure 5.1-C). This 

confirms the observation by Da Silva et al. (1994) that panelists discriminate better 

differences between treatments using peak area than peak intensity. This also explains 

why the variation explained by factor 1 is larger for peak area (57%) than for peak 

intensity (40%). 

In 1995-96, the 4 week RA treatment had a high factor 1 score in both peak 

intensity and peak area spaces (Figures 5.2-B and 5.2-C). Vectors with high loadings on 

factor 1 in the peak intensity space were watermelon (peak 24), apple (butyl 2­

methylbutyrate, peak 23), apple (hexyl 2-methylbutyrate, peak 36), anise (4-allylanisole, 

peak 33), apple (hexyl propanoate, peak 27) and mushroom (peak 14) (Figure 5.2-B). 

Peaks due to methyl-, ethyl- and propyl 2-methylbutyrate with a sweet, fruity, berry odor 

(peaks 2, 6 and 13) and 2-methylbutyl acetate (solvent, fruity, peak 7) were correlated 

and had high loadings on factor 2. The vectors for hexyl acetate (`Gala', peak 20) and 

butyl acetate (`Gala', nail polish, peak 4) had high loadings on both factors 1 and 2. All 
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RA treatments were in the positive quadrant; scores on factors 1 and 2 were lower for 

fruit stored 10 weeks in RA compared to fruit stored 4 and 20 weeks in RA, indicating 

lower ratings for peak intensity. As in 1994-95, the negative scores for CA treatments 

reflect the decrease in intensity ratings of odor-active peaks. The vectors for peak 9 

(garlic), peak 12 (fruity, 3-methyl -2-butenyl acetate), peak 3 (apple, propyl propanoate) 

and peak 1 (tea, leaves) had negative scores for factor 1 (Figure 5.2-B). 

The plot of factor scores for odor peak areas confirmed correlations between 

some of the peaks, and the differences between the 4 week RA and other storage 

treatments was emphasized (Figure 5.2-C). Peak 43 (grape juice) had the highest score 

on factor 1, indicating the duration x intensity (peak area) of perception of 13­

damascenone was more important than intensity alone. This result explainswhy 13­

damascenone had the highest Charm value in apples (Cunningham et al., 1986) because 

Charm values integrate the dilution factor of the sample injected in the GC and duration 

of odor perception. 13- damascenone had longer perception duration compared to other 

compounds using Osme analysis, possibly due to a different interaction to the olfactory 

receptor, or a different transduction mechanism. Also, because 13- damascenone has a 

high boiling point, it eluted late in the chromatographic run, with some peak broadening; 

this may explain why it was perceived for a longer duration than other compounds. 4­

Allylanisole (peak 33), watermelon (peak 24), and 1-octen-3-ol (mushroom, peak 14) 

also had high loadings on factor 1; perception of these compounds was highest after 4 

weeks in RA, then perception decreased later in storage (Table 5.2). Similar to FA of 

peak intensities, hexyl acetate (peak 20) and butyl acetate (peak 4) were correlated and 

had high loadings on both factors. However, 2-methylbutyl acetate (solvent, peak 7) 

was correlated with, butyl 2-methylbutyrate (apple, peak 23), hexyl 2-methylbutyrate 

(apple, peak 36) and propyl 2-methylbutyrate (sweet, berry, peak 13) (Figure 5.2-C). 

This shows different interrelationships between odor intensities and between duration x 

intensity for those compounds. Unidentified peaks (peak 18, Gala, solvent), peak 26 

(floral) and peak 29 (anise, perfumey) and peak 16 (5- methyl -5- hepten-2 -one, fruity) 

were also correlated to peak 23, 7, 36, 4 and 20, but had lower loadings, indicating a 

lesser contribution to 4 week RA treatment. Similar to peak intensities, methyl 2­
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methylbutyrate (peak 2) and ethyl 2-methylbutyrate (peak 6) had high loadings on factor 

2, both having a sweet fruity odor. 

Significance of Odor Activities After Storage 

Results in 1994-95 illustrated the aroma differences between RA and CA stored 

fruit. There was no compound that alone was responsible for fresh 'Gala' aroma, all RA 

treatments had high factor 1 scores. RA-stored fruit emitted volatiles that had fruity, 

apple-like, mushroom, rubber and skunk odors. Factor analysis in 1994-95 showed the 

importance and correlations between odor intensities and areas of hexyl acetate and butyl 

acetate, and between odors perceived from methyl-, ethyl-, propyl- and butyl 2­

methylbutyrate. In other words, the perception recorded for peak intensity and intensity 

x duration for hexyl acetate and butyl acetate, as well as the butyrate esters decreased at 

the same rate. 

In 1995-96, compounds contributing to 'Gala' aroma (those with vectors 

pointing in the same direction as 4 weeks RA and highly perceived in fruit from that 

treatment) were 4-allylanisole (anise), 13-damascenone (grape juice), compounds 

perceived as watermelon (unknown), and mushroom (1- octen- 3 -ol). None of these 

compounds have an apple odor. Their contribution to 'Gala' aroma may be by 

interactions with the other fruity, apple-like compounds in whole apples. Because these 

compounds are strongly perceived from fruit stored 4 weeks in RA , they may contribute 

significantly to the characteristic aroma of 'Gala' apple. 4-Allylanisole was found in 

'Cox's Orange Pippin' and was responsible for the spicy character determined by a taste 

panel (Williams et al., 1977a). This compound was perceived as anise, licorice by a 

trained panel in a descriptive analysis of the external aroma of 'Gala' apples, although 

with very low intensity (Chapter 6). Identification of 4-allylanisole by Williams et aL 

(1977a) was important because it showed compounds other than esters and aliphatic 

aldehydes and alcohols contributed to apple aroma. Straight-chain esters and their 

corresponding alcohols and aldehydes are known to originate from fatty acid metabolism 

via lipoxygenase activity or ct- and 13-oxidations (Paillard, 1990). In turn, 4-allylanisole 

is a product of the shikimic acid pathway (Williams et al., 1977b), in which the primary 
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precursors of shikimate, erythrose-4-phosphate and phospho-enol-pyruvate, derive from 

glycolytic metabolism (Jensen, 1985). The shikimic acid derived L-phenylalanine was 

shown to be the precursor for allylphenols in plants belonging to the Labiaceae family 

(Manitto et al., 1974). The transformation of the side chain of L-phenylalanine into the 

allyl group involves the loss of the C1 carboxylic acid carbon atom, which remains to be 

demonstrated. 4-Allylanisole was also found in 'Golden Delicious' and 'Delicious' 

apples, but at lower concentrations than in 'Cox's Orange Pippin' (Williamet al., 

1977b). These three cultivars are all parents of 'Gala' apple; the relative proportion of 

4-allylanisole found in 'Gala' in our study was 4 times higher than found in 'Cox's 

Orange Pippin' with a different sampling method (Chapter 3). The isomer of 4­

allylanisole, anethole (1- methoxy- 4- (1- propenyl)- benzene), was also found in trace 

amounts in 1995-96, and in quantifiable amounts in 1994-95 (Table A.2), but the amount 

was too low to be odor-active. 

13-damascenone usually occurs in a glycosidically bound form and is primarily 

found in processed products after hydrolysis (Roberts and Acree, 1995; Nursten and 

Woolfe, 1972; Braell et al., 1986; Buttery et al., 1990). It has a very low odor threshold 

with a sweet fruity, floral odor and non-typical ofa particular fruit. It is believed to be 

an important aroma component of the products in which it was found. It had the highest 

Charm value of compounds extracted from 40 apple cultivars analyzed by Cunningham 

et al. (1986). In spite of low volatility and its bound form, it was captured on charcoal 

(and also Tenax) traps from 'Gala' headspace during long sampling times, and was 

perceived as a grape juice odor (Chapter 3). In 1994-95, 13-damascenone was perceived 

with equally low intensity throughout storage (Table 5.3). However, in 1995-96, its 

odor perception was more intense after 4 weeks in RA, and it decreased significantly in 

CA storage (Table 5.2). 13-damascenone is a C13 nor-isoprenoid compound believed to 

be derived from the xanthophyll neoxanthin (Williams et al., 1992). Its more intense 

perception in 1995-96 implies emission from 'Gala' apples in higher amounts compared 

to 1994-95. Environmental as well as cultural factors may explain the differences 

between years. As an example of a cultural factor, Aubert (1997) found an increase in 
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glycosylated compounds and a decrease in ester production in 'Golden Delicious' apples 

sprayed with sterol inhibitor fungicides. 

The compound perceived as watermelon had high loadings in FA of peak 

intensities and areas both years of the study, indicating its importance in fresh 'Gala' 

aroma as determined by GCO. Watermelon was chosen as a descriptor by panel 

consensus in the descriptive analysis of 'Gala' aroma, but it was never given high ratings 

(Chapter 6). Nevertheless, the compound responsible for the watermelon odor probably 

contributes in a subtle way to 'Gala' aroma. Identifying this compound and testing it in 

mixtures with other known components would clarify its contribution to 'Gala' aroma. 

Nona-Z,Z-3,6-dienol , with an odor threshold of 10 ppb and a clear watermelon aroma, 

was found in muskmelon (Buttery, 1981; Kemp et al., 1974). 

Compounds contributing to the overall fruitiness of 'Gala' aroma in all RA 

treatments in 1995-96 were hexyl acetate and butyl acetate described as ripe 'Gala' and 

`Gala, nail polish', respectively, and butyl 2-methylbutyrate and hexyl 2-methylbutyrate, 

both described as apple, fruity. A positive correlation was observed between hexyl 

acetate and butyl acetate in perceived intensities and peak areas both years of the study, 

indicating production of these two compounds decreased similarly in response to CA 

conditions, and their olfactory perception was highly correlated. The enzyme responsible 

for ester production is alcohol acyl transferase (AAT) (Perez et al., 1993; Fellman et al., 

1993). The quantitative predominance of butyl and hexyl esters indicated that 'Gala' 

AAT had larger affinity for C4 and C6 alcohols, and/or that C4 and C6 alcohols are readily 

available as substrates (Paillard, 1990). Olias et al. (1995) have shown AAT substrate 

specificity varies between fruit species. Within fruit species such as strawberry, AAT 

substrate specificity also varies between cultivars (Perez et al., 1996). The larger 

amount of acetate esters produced indicates acetyl-CoA was the preferred carboxy acid 

for AAT, or that acetyl-CoA is more available in the cell. A higher affinity for acetyl-

CoA was demonstrated for strawberry AAT (Perez et al., 1993). 

Methyl 2-methylbutyrate, ethyl 2-methylbutyrate and propyl 2-methylbutyrate 

contributed significantly to the aroma of RA fruit in 1994-95, and fruit stored 20 weeks 

in RA in 1995-96, as plotted by the factor scores of both Osme peak intensities and peak 
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areas (Figures 5.1 and 5.2, B and C). These compounds have distinctive sweet, fruity 

and strawberry, berry odors. Perceptions of their intensities and peak areas were 

positively correlated both years of the study. Methyl 2-methylbutyrate and ethyl 2­

methylbutyrate have low odor thresholds: 0.25 p.gL-1 and 0.1 tigL-1, respectively (Flath 

et al., 1967; Takeoka et al., 1989). 2-Methylbutyl acetate, with a nail polish odor, was 

also a significant 'Gala' odor volatile. Using banana disks, Myers and co-workers 

(1970) demonstrated valine, L-leucine and L-isoleucine were the precursors for 

branched-chain ester synthesis. Infiltration of whole apple or loading apple peels with L-

isoleucine resulted in production of 2-methylbutyric acid, 2-methyl butyrate esters and 2­

methyl butanol (Hansen and Poll., 1993; Rowan et al., 1996). In 'Golden Delicious' 

apples, branched-chain esters were less affected than straight-chain esters by storage in 

low 02, but branched-chain esters were negatively affected by high CO2 (Brackmann et 

al., 1993). This was confirmed for 2-methylbutyl acetate in our study and by Mattheis et 

al. (1998a). However, production of other branched-chain esters was reduced by the 

CA conditions in this study and that reported by Mattheis et al. (1998a). High 

production of 2-methylbutyl acetate and 2-methyl -1-butanol after CA storage (Table 5.1) 

may be due to larger substrate availability because amino acid metabolism is less affected 

after CA at 1% CO2 (Brackmann et al., 1993). 

Other odor-active esters such as butyl and hexyl propanoate, butyl and hexyl 

butyrate, and hexyl hexanoate, as well as the ketone 6- methyl -5- hepten -2-one, had fruity, 

apple-like aromas. These compounds had lower intensities after RA storage, and usually 

were not perceived after CA storage (Table 5.2). They also had lower loadings in the 

FA, indicating they contributed less to the variability of odor-active peaks due to storage 

treatments. 

The fruity peak corresponding to 3- methyl -2- butenyl acetate and the unknown 

garlic peak were only perceived after CA storage both years of the study. 3-Methy1-2­

butenyl acetate was identified in `Jonagold' by Hansen et al. (1990). This and other 2­

methyl but-2-enyl esters increased under low 02 storage (Hansen et al., 1992). The 

same group of authors showed L-isoleucine was a possible precursor of these 

unsaturated branched-chain esters as well as branched-chain alcohols (Hansen and Poll, 
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1993). They suggested a glycosidic intermediary of L-isoleucine metabolism 

accumulated during CA storage. Schawb and Schreier (1990) found aliphatic 

glycosylated alcohols in apples. Some of those alcohols could be metabolized to 2­

methyl-but-2-enol which then is esterified upon exposing apples to air (Hansen et al., 

1992). 

The garlic peak remains unidentified because it was present below FID detection 

threshold. It might contribute to a musty note found in CA stored 'Gala' by a trained 

panel (Chapter 6). 

Rubber, skunk, mushroom and oatmeal odors were perceived more intensely 

after 4 weeks in RA. Two of the mushroom peaks were hexyl tiglate (1994-95) and 1­

octen-3-ol (1995-96); the other mushroom odors remain unidentified and also 

undetected by FID (Chapter 3). The rubber and skunk compounds may be sulfur 

containing compounds with a very low odor threshold. They are usually not perceived 

from whole apple aroma. The presence of sulfur may indicate synthesis from breakdown 

products of sulfur-containing amino acids (Sanz et al., 1997). Protein turnover was 

shown in apples after harvest (Gorin, 1973). 

CONCLUSIONS 

This study confirmed the contribution of hexyl acetate, butyl acetate and 2­

methylbutyl acetate to 'Gala' aroma (Young et al., 1996). While hexyl acetate and butyl 

acetate concentrations and perceived aromas decreased after CA storage, 2-methylbutyl 

acetate (and its perceived odor intensity) was less affected by the low 02 and high CO2 

regime. Butyl 2-methylbutyrate and hexyl 2-methylbutyrate contributed to the apple, 

fruity aroma in RA stored fruit. The lower molecular weight compounds methyl 2­

methylbutyrate, ethyl 2-methylbutyrate and propyl 2-methylbutyrate had stronger sweet 

and berry-like odors, and because they were still rated high after CA storage, they may 

contribute significantly to fruit aroma. 4-Allylanisole, B-damascenone and 1-octen-3-ol, 

as well as a compound with watermelon descriptor were important contributors to 'Gala' 
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aroma after 4 week RA storage in 1995-96. They were also perceived with a higher 

intensity in all RA fruit in 1994-95. Even though these compounds do not have an apple 

odor, they may act synergistically or antagonistically when present with the fruity esters. 

The differences between the two years of the study in the magnitude of odor activity 

perception illustrates the effect of environmental and possibly cultural factors that affect 

apple aroma production. 

The GCO technique, Osme, allowed measurement of the odor activity of known 

and unknown volatile compounds in 'Gala' apple. Important compounds contributing to 

fresh 'Gala' apple aroma were deduced by comparing fruit stored in CA and RA. 

However, results were limited by the sampling method. Aldehydes are produced by 

`Gala' apples (Mattheis et al., 1998b) but were not eluted by the sampling method used 

in this study. The odor activity of aldehydes in the 'Gala' apple matrix remains to be 

studied. On the other hand, more compounds were found to be important to 'Gala' 

aroma in our study than in another study where apple distillate were used to determine 

odor-active compounds in 'Gala' apple (Young et al., 1996). While the GCO technique 

is a powerful tool for the study and screening of odor-active compounds among many 

volatiles analyzed by GC, confirmation of the results with model mixtures is necessary to 

confirm the importance of individual compounds. 
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ABSTRACT 

`Gala' apple has a distinctive aroma and flavor, but its storage season is short. 

Controlled atmosphere (CA) storage maintains apple firmness and acidity, but volatile 

production is reduced. In this study, the aroma and flavor characters of 'Gala' appleswere 

identified by ten trained panelists. A vocabulary of 13 descriptors for the aroma of whole and 

cut fruit and 16 descriptors for flavor were used to characterize the changes of apples stored 

in CA and/or regular atmosphere (RA) over 20 weeks. When compared to RA storage, 

intensity of fruity (pear, banana and strawberry) and floral descriptors decreased after 10 

weeks in CA for whole and cut fruit aroma and flavor. During the entire storage period 

under CA, aroma of cut apples retained high vegetative and citrus characters but had a less 

intense anise aroma. Sourness, starchiness and astringency were significantly higher; 

however, sweetness was significantly lower. A musty note was perceived in whole apples 

stored in CA for 20 weeks. Differences between fruit stored for 16 weeks in CA followed by 

4 weeks in RA and fruit stored 20 weeks in CA were only found for fruitiness (lower in 20 

weeks CA) of whole fruit and sourness of cut fruit (higher in 20 weeks CA). The changes in 

descriptor ratings during storage are discussed in relation to gas chromatography and 

olfactometry data obtained with the Osme method. 
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INTRODUCTION 

Consumer opinion often determines the success or failure of a product on the 

market (Williams, 1981). However, when able to express an emotion of acceptance or 

rejection, consumers are usually vague and not consistent with the vocabulary they use 

to explain why they prefer one product to another (Williams and Knee, 1977). Panelists 

can be trained to use consistent terminology and to quantify their response, a technique 

referred to as descriptive sensory analysis (DSA). DSA can identify characteristics 

perceived by the human senses that affect product variations. Changes in individual 

attributes may explain consumer acceptance or preference of a product (Williams and 

Knee, 1977). Instrumental measurements may then be used to understand the physico­

chemical stimuli necessary to induce a response from the sensory receptors. 

Assessing horticultural products through DSA, instrumental measurements and 

consumer panels has been extensively used to understand 'Cox's Orange Pippin' apple 

quality (Williams and Carter, 1977; Williams and Knee, 1977; Williams and Langron, 

1983; Williams et al., 1977). Williams and Carter developed a lexicon with 95 terms to 

describe 'Cox's Orange Pippin'. Descriptors were classified by external and internal 

appearance, feel of apple in the hand, external and internal aroma, taste, texture and 

after-taste. 'Cox's Orange Pippin' apples were rated one, two and six weeks after 

harvest for the 95 descriptors on a 0 to 5 scale where each scale number was explained 

by a phrase pertaining to the attribute rated (Williams and Carter, 1977). Reference 

standards were also provided to the panelists. Aroma descriptors were correlated with 

gas chromatographic data (Williams and Knee, 1977). Descriptive analysis data for 

'Cox's Orange Pippin' were used to interpret a consumer survey where panelists were 

asked to rate acceptability of apples that had been stored under different atmospheres 

and temperatures (Williams and Langron, 1983). Other DSA studies were used to 

classify apple cultivars by aroma, flavor and texture characteristics (Daillant-Spinnler et 

al., 1996; Watada et al., 1980). By using preference mapping combined with 

multivariate statistics, Daillant-Spinnler and collaborators (1996) attempted to determine 

the apple attributes consumers used to make quality judgements. Despite thorough 
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descriptive analysis and the large sample size used in the study (12 apple cultivars 

representing a wide range of characteristics were tested, unpeeled and peeled), the 

authors did not determine a clear relationship between apple sensory properties and 

consumer preferences. They did confirm the importance of texture and taste for 

consumer acceptance stated earlier by Williams (1979). When optimum texture was 

present, Williams (1979) suggested that only aroma and flavor could improve apple 

quality. 

Controlled atmosphere (CA) storage is commercially used to prolong apple shelf 

life. While low 02 and high CO2 significantly reduce acidity and firmness loss (Smock, 

1979), volatile production is negatively impacted (Patterson et al., 1974). A consumer 

panel preferred the texture of CA-stored 'Cox's Orange Pippin' apples but found those 

apples had poor aroma and flavor compared to apples stored in air (RA) (Williams and 

Langron, 1983). Panelists judged the apples stored in 1% 02 as "too crisp and too low 

in taste intensity", but those stored in 2% 02 and ripened at 17 °C following storage, 

"too sweet and too soft". Firmer fruit was preferred (Knee and Sharple, 1981). Other 

studies comparing CA with RA-stored fruit found similar differences in firmness, 

tartness, aroma and flavor descriptors (Gorin et al., 1975; Smith, 1984; Anderson and 

Penney, 1973; Frijters, 1979). CA-stored apples were generally preferred to RA-stored 

fruit. However, storage atmosphere, apple cultivar and maturity stage at harvest affect 

differentially the changes in firmness and the amount of volatiles produced in and after 

CA storage (Mattheis et al., 1995; Yahia et al., 1990). 'Gala' apples stored in air were 

preferred to CA fruit (Boylston et al. 1994). In that study, the CA atmosphere was 

implemented after one month of air storage, and the usual benefits of CA for firmness 

and acidity retention were absent. Nevertheless, air-stored fruit emitted more volatiles 

than CA stored fruit. The preference of RA stored 'Gala's was therefore due to a higher 

aroma (Boylston et al., 1994). Another sensory study showed a decrease in flavor was 

perceived before decreases in soluble solids concentration (SSC), malic acid and 

firmness, and decreased apple acceptance (Gorin et al., 1975). 

`Gala' apple has increased in popularity since its introduction from New Zealand 

in the late 60s (White, 1991; Green and Autio, 1990). Consumer taste panels showed 
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strong preferences for 'Gala' over other cultivars (Green and Autio, 1990; Stebbins et 

al., 1994). However, hedonic ratings from consumer taste panels decreased for 'Gala' 

apples stored in air for more than 60 days (Stebbins et al., 1994; Plotto et al., 1997). 

`Gala' apples stored in CA maintain high levels of firmness and acidity (Drake, 1996), 

but the reduction of volatile production reported for other apples also occurs for 'Gala' 

(Mattheis et al., 1998; Boylston et al., 1994; Chapter 5). The odor significance and 

relative olfactory power of volatile compounds emitted by 'Gala' was determined using 

the gas chromatography and olfactometry technique, Osme (Chapter 5). Compounds 

with a fruity and apple-like odor decreased significantly in CA and CA followed by RA 

storage. The Osme technique measures odor activity of individual compounds when 

presented directly to the nose. However, it gives an incomplete picture of the aroma 

perceived from the whole fruit. The objectives of this study were to measure the 

changes in storage of aroma from whole 'Gala' apples using DSA, and to relate DSA 

results to Osme analysis. We also determined changes in aroma and flavor perception 

due to cutting apples. 

MATERIALS AND METHODS 

Plant Material and Storage Conditions 

`Gala' apples from a commercial orchard near Chelan, WA, were harvested on 

September 12, 1995. Apple maturity stage and homogeneity of the lots was assessed 

through the ground color; ground color was found earlier to be a good indicator of 

`Gala' maturity (Plotto et al., 1995). No pre-harvest or pre-storage chemical treatment 

was applied to the fruit. A batch of apples was stored at 2 °C for two weeks until the 

first tests, and was considered the control. The remaining fruit was stored at 1 °C for 10 

and 20 weeks in either regular (RA) or controlled atmosphere (CA) with both 02 and 

CO2 at 1% at the USDA-ARS Tree Fruit Research Laboratory in Wenatchee, WA. One 

additional storage treatment was 16 weeks in CA followed by 4 weeks in RA (CA/RA). 

After removal from storage, apples were shipped to Corvallis and stored at 2 °C for 5 
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days upon receipt. Apples were then ripened at 22 ± 2 °C for 5 days prior to testing; the 

control fruit was ripened for 5 and 10 days. 

Panel Selection and Training 

Twelve volunteer panelists were screened for their capacity to perceive and 

describe odors by nose and flavors by mouth. For odor recognition, matching tests were 

used, with tasks of increasing difficulty (Meilgaard et al., 1991). Panelists were 

presented with two sets of samples in wine glasses covered with aluminum lids and 

perforated aluminum foil to hide the contents. Samples were, for the first two tests, cut 

fruits (banana, apple, strawberry), cut vegetables (cucumber, mushroom, grass) and 

floral extracts from Uncommon Scents, Eugene, OR (rose, lily, violet), and for the next 

four tests, cut apples (`Golden Delicious', 'Red Delicious', 'Granny Smith', `13raeburn', 

`Fuji', 'Gala', `Gravenstein'). Panelists were asked to smell the content of the glasses in 

one set, and match aromas with the glasses of the second set. When apples were used, 

panelists were asked to describe the perceived odor in their own words. These 

descriptors were later discussed during ballot development. For taste discrimination, 

triangle tests were used. Panelists were instructed to choose, based on taste, the odd 

sample between three cut pieces (a quarter of fruit) of apple. Apple varieties tested 

were, by pair: 'Fuji' and Traeburn', 'Fuji' and 'Red Delicious', 'Fuji' and 'Gala', and 

`Gala' from different orchards and/or at different maturity stages. 

Ten panelists of the twelve screened participated in eight one-hour training 

sessions where descriptors, reference standards and a standardized method of smelling 

and presenting the fruit were developed. All panelists were students and staff from 

Oregon State University, and 80% of them were from the Department of Food Science 

and had previously participated in descriptive panels. Of the 13 descriptors chosen for 

aroma and 16 for flavor, 11 were identical. Flavor was defined as the combined effect in 

the mouth of aromatics, basic tastes and mouthfeel (Meilgaard et al., 1991). Descriptors 

and references used for the panel are listed in Table 6.1. Each descriptor was rated using 

a 16-point intensity scale where 0 = "none", 7 = "moderate" and 15 = "extreme". 
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Table 6.1. Attribute descriptors, reference standards and their intensities for 
descriptive sensory analysis of 'Gala' apple aroma and flavor. Intensity 
rated on a 16-point category scale (0 = none, 7 = moderate and 15 = 
extreme) 

Descriptor 

Aroma and Flavor 

Overall fruity 

Pear 

Banana 

Watermelon 

Strawberry 

Citrus 

Floral 

Anise 

Overall vegetative' 

Grassy' 

Greed 
Woody / stemmy` 

Musty/dirty 

Fermented 

Anise flavor 

Cooked fruit flavor 

Taste 

Sweet 

Sour 

Starchy 

Astringent 

Reference Standards Intensity 

3.5 ppm of butyl acetate, 0.8 ppm of pentyl acetate 3
 

and 0.07 ppm of ethyl 2 methyl butyrate in water'
 

- very ripe Gala b 13
 

'Bartlett' pearb 13
 

bananab
 13
 

watermelonb
 8 

strawberry essential oil (Uncommon Scents, Eugene, 8 

OR) diluted to 100 ppma 

citral: 25 ppma 10 

'Hawaiian blossom' (Uncommon Scents, Eugene, OR) 6 
diluted to 0.1 ppma 

anethole: 7.5 ppma 10 

cis-3-hexen -1-ol : 50 ppma 6 
trans-2- hexenal : 25 ppma 8 

hexanal: 9 ppma 8 

terpinen-4-ol: 25 ppma 10 

apples fermented for one week in a tightly closed jar 14 
fennel 14
 

'Welsh' grape juice
 14 

sucrose in water: 2, 5 and 10%d 3, 8, 13 
malic acid in water: 0.025, 0.05 and 0.08%d 2, 6, 12 
jicama root 13 

alum in water: 0.05%d 14 
a All chemical standards were from Aldrich (Milwaukee, WI) except anethole which was from Fluka 

Chemika (Milwaukee, WI). Standards were in 50 mL of odor-free double distilled water (Milli-Q) 
presented in 150 mL glass vials closed with Teflon lids. 

b All fruit samples were cut in pieces (peeled and cored) and placed in wine glasses covered with aluminum 
lids. 

"Grassy", "green" and "stemmy" were combined into "overall vegetative" for flavor attributes.
d 

Taste standards diluted in drinking water (Aqua-Cool, Portland, OR) 
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`Gala', 'Braeburn' and 'Fuji' apples were used to develop the descriptors as 

these varieties represent a wide range ofaromas and flavors. Chemical standards were 

obtained from Aldrich Flavors and Fragrances (Milwaukee, WI) and Fluka (Milwaukee, 

WI) and were food grade. They were diluted in odor-free double distilled water (Milli-

Q) to a concentration comparable to what was perceived in apples. The training was 

finalized with four pre-testing sessions where 'Gala' apples at different maturity stages 

and growing origins were compared. Before testing after each two-month interruption, a 

review session was organized where panelists compared 'Gala', 'Braeburn' and 'Fuji'. 

Testing took place in individual booths set in a well ventilated room under 

daylight illumination. Panelists were provided with drinking water (Aqua-Cool, 

Portland, OR) and expectoration cups to cleanse their palates between samples. 

Sample Presentation 

Six sets of five 'Gala' apples per treatment were placed in single 4 L wide mouth 

glass jars and left uncovered at room temperature for one to six hours prior to testing. 

Two jars representing each storage treatment (or ripening time for the control) were 

presented to each panelist during each test session. Upon their arrival, panelists covered 

the jars with aluminum lids to allow volatile compounds to accumulate for 5 to 10 

minutes while they reviewed reference standards. Panelists then opened the jar lids, 

smelled and rated external aroma (EA) of the apples. All the aroma descriptors were 

rated at once for each jar. After rating EA, panelists took one fruit of each treatment, 

cut it in half, cut one half into two-cubic cm pieces with peel, placed the pieces in a wine 

glass labeled with the same three-digit number as the corresponding jar, and covered the 

glass with an aluminum lid. Cut apples were allowed to stay in the glass at least one 

minute to accumulate volatile compounds. The other half of the apple was set aside to 

evaluate flavor by mouth. Panelists then rated cut fruit for internal aroma (IA) by using 

the same descriptors as for EA. Finally, panelists reviewed the taste standards and rated 

the remaining half apple for flavor. Of the half apple set aside, approximately 1 cm was 

removed on each side, eliminating any possible oxidized tissue. The top, bottom and the 

core of the wedge were also removed, since there was a clear taste difference between 
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those portions of the fruit as demonstrated by Dever and Cliff (1995). Panelists tasted 

the middle 2 cm3 section of apple with peel. 

Panelists evaluated each storage treatment for a total of 6 times (6 replications) 

over a period of 3 days, with two replications per day. 

Instrumental Measurements 

Instrumental measurements were performed using fruit from the same batch as 

DSA. Apple headspace was sampled from whole apples (5 fruit, approximately 1 kg) 

placed in 4 L wide mouth glass jars with a dynamic flow-through system. Volatile 

compound analysis and Osme are fully described in Chapters 3 and 5. 

Approximately two quarter sections cut longitudinally were taken on opposite 

sides of 20 'Gala' apples. Samples were juiced and soluble solids concentration was 

measured with an Auto Abbe electronic refractometer (Leica Inc., Buffalo, NY). Ten 

mL juice was titrated with 0.1 N NaOH to a malic acid end-point of pH 8.2 for titratable 

acidity (TA) measurements (Metrohm AG, Herissau, Switzerland). Juice pH was 

recorded before titration. 

Statistical Analysis 

Panelists' performances were evaluated through individual analyses of variance 

(ANOVA) after each storage pull-out. Differences between storage treatments (RA 

versus CA) were analyzed for each storage time with the compound F-test (Anderson 

and Bancroft, 1952) for each descriptor, using appropriate transformation when 

necessary. Panelists and batch replications were included in the model as random effects. 

Pair-wise comparisons were performed between the two types of storage within each 

storage time. When the ratings of one or two panelists did not agree with the panel for 

one descriptor (rating in the opposite direction), that panelist data were deleted for that 

specific analysis. 

Principal components analysis (PCA) was performed on pooled taste panels. 

PCA was performed using a factor analysis with the principal component method (SAS 

Institute Inc., Cary, NC) on the covariance matrix of the residuals of a general linear 
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model (GLM) where panelist was the main effect. The GLM residuals were used as a 

standardizing method to remove the variability due to panelists using differentparts of 

the scale. Storage scores for each principal component were analyzed using ANOVA. 

Storage means were plotted in the dimensions of the first two principal components 

(PC). In this plot, descriptors were represented as vectors. Vector angles reflected 

descriptor correlations with each other, and vector magnitude reflected the relative 

contribution to each PC. 

Instrumental data were analyzed for storage effect using one-way ANOVA. 

Sample means were separated with the LSD test (P < 0.05). 

All statistical analyses were performed using SAS statistical software, version 

6.12 (SAS Institute Inc., Cary, NC). 

RESULTS 

Descriptive Sensory Analysis 

The differences are presented pair -wise between RA and CA stored fruit for 10 

and 20 weeks in storage, and between CA and CA/RA after 20 weeks in storage (Tables 

6.2, 6.3 and 6.4). There were no significant differences between descriptors for the 

control apples (2 weeks in RA) ripened 5 or 10 days, therefore only the results from the 

5 days of ripening are presented because apples from other storage times were also 

ripened for 5 days. 

Differences between RA and CA storage increased with time in storage for 

overall fruity, pear, banana, strawberry and floral EA descriptors (Table 6.2). All fruity 

and floral characters decreased in CA storage. For the same descriptors, differences 

between CA and the combination of CA/RA storage were not as significant as 

differences between RA and CA storage. A slight musty note was perceived in CA 

stored fruit after 20 weeks. 



Table 6.2. Descriptive profile of external aroma (EA) of 'Gala' apples stored for 2, 10 and 20 weeks
in regular atmosphere (RA), controlled atmosphere (CA) (1% 02, 1% CO2) and 16 weeks 
in CA followed by 4 weeks in RA (CA/RA). Ratings are on a 16-point category scale
(0 = none, 15 = extreme)` 

Time (weeks) and type of storage 
2a 10 20 20
 

Attribute RA RA CA
 RA CA CA/RA CA
 
Overall fruity 8.27 *** ***
9.02 6.92 9.48 6.25 7.25 6.38 *
 
Pear ***
5.17 5.70 3.95 6.03 3.62 *** 4.38 3.80 *
 
Banana 3.02 2.82 1.72 *
 2.80 1.30 * 2.22 1.62 * 

Watermelon 1..47 1.58 1.50 1.48 1.28 1.32 1.17
 
Strawberry 1.65 2.32 1.68 * 2.33 1.47 **b
 

1.70 1.70 
Citrus 1.90 2.17 1.70 1.621.92 1.85 1.57 
Floral 3.70 4.32 3.10 ** 4.27 2.23 *** *b3.22 2.41 
Anise 0.43 0.88 0.68 1.48 0.50 1.08 0.68 
Grassy 0.90 1.35 1.43 1.35 1.52 1.27 1.22 
Green 2.90 2.22 1.85 1.73 1.831.92 1.50 
Stemmy 1.73 1.62 1.85 1.57 2.13 1.52 1.73 
Musty 0.90 0.83 0.73 *b0.50 1.13 1.00 1.42 
Fermented 0.23 0.43 1.070.21 0.98 0.25 0.47 
a Apples stored for 2 weeks were considered as the control. Only results from 5-day ripening are presented
b Numbers in italics were data analyzed after deletion of outliers 

Significance between two types of storage (RA versus CA) within one storage time: *, **, ***: significant at
 
P < 0.05, P < 0.01 and P < 0.001, respectively
 



Table 6.3. Descriptive profile of internal aroma (IA) of 'Gala' apples stored for 2, 10 and 20 weeks
in regular atmosphere (RA), controlled atmosphere (CA) (1% 02, 1% CO2) and 16 weeks 
in CA followed by 4 weeks in RA (CA/RA). Ratings are on a 16-point category scale
(0 = none, 15 = extreme)` 

Time (weeks) and type of storage 
10 20 20
 

Attribute RA RA CA
 RA CA CA/RA CA
 
Overall fruity 7.65 8.30 5.93 *** 8.63 5.10 ***
 5.13 5.35
 
Pear 4.87 5.57 3.67 ** 5.80 ***
2.68 2.82 3.02
 
Banana 2.63 2.52 1.00 ** 3.10 1.02 ** 1.10
 1.13
 
Watermelon 1.45 1.77 1.90 1.57
 1.50 1.30 1.30
 
Strawberry 1.22 1.50 1.06 ** 1.61
 0.98	 *b 1.03 0.98 

*bCitrus 1.95 2.10 2.58 1.50 2.85	 2.45 2.50 
Floral 3.55 3.48 2.10 ** 3.52 1.53 ** 1.95 2.02 
Anise 0.27 0.76 0.24 *	 0.38 **1.07 0.55 0.52 
Grassy 1.43 1.30 1.96 * 0.90 2.25 *b 1.75 1.65 
Green 3.72 2.25 3.13 *b *b1.40 2.93 2.47 2.70 
Stemmy 2.27 1.31 2.58 *b 1.52 2.43 ** 2.57 2.40 
Musty 0.78 0.88 1.17 0.92 1.38 2.10 2.17 
Fermented 0.32 0.52 0.970.98 1.35 0.77 0.97 
a Apples stored for 2 weeks were considered as the control. Only results from 5-day ripening are presented
b 

Numbers in italics were data analyzed after deletion of outliers 
c Significance between two types of storage (RA versus CA) within one storage time: *, **, ***: significant at 

P < 0.05, P < 0.01 and P < 0.001, respectively 



Table 6.4. Descriptive profile of flavor of 'Gala' apples stored for 2, 10 and 20 weeks in regular 
atmosphere (RA), controlled atmosphere (CA) (1% 02, 1% CO2) and 16 weeks in CA 
followed by 4 weeks in RA (CAIRA). Ratings are on a 16-point category scale (0 = none,
15 = extreme)` 

Time (weeks) and type of storage 
10 20 20 

Attribute RA RA CA RA CA CAIRA CA 
Sweet 8.05 8.80 6.88 *** 8.85 6.15 ** 7.35 7.22 
Sour 5.18 3.83 5.28 *0 3.58 6.75 *** 4.52 5.04 *0 

Starchy 1.93 1.02 3.06 *0 1.00 3.45 ** 3.02 3.02 
Astringent 1.07 0.60 1.55 * 0.81 2.16 ** 1.80 1.87 
Overall fruity 7.50 8.46 6.12 ** 8.37 5.31 *** 6.42 6.30 
Pear 4.67 4.97 3.17 * 5.90 3.10 ** 1.97 3.22 
Banana 2.30 2.22 0.87 ** 2.72 0.61 ** 1.20 0.93 
Watermelon 1.75 1.37 1.73 1.57 1.75 1.57 1.83 
Strawberry 1.00 1.25 0.70 1.27 1.20 1.20 1.05 
Citrus 2.38 1.93 2.93 * 1.48 3.37 ** 2.63 2.80 
Floral 3.58 3.74 2.65 * 4.29 2.17 **0 2.75 2.45 
Anise 1.28 0.87 0.62 1.27 0.50 0.50 0.75 
Cooked 1.33 2.90 1.15 * 3.17 1.33 ** 1.57 1.55 
Vegetative 3.62 2.57 4.58 *** 2.68 4.90 *** 4.23 4.18 
Musty 0.38 0.67 0.58 0.92 1.00 0.77 0.57 
Fermented 0.20 0.50 0.13 0.92 1.83 0.12 0.17 
° Apples stored for 2 weeks were considered as the control. Only results from 5-day ripening are presented 

Numbers in italics were data analyzed after deletion of outliers 
Significance between two types of storage (RA versus CA) within one storage time: *, **, ***: significant at 
P < 0.05, P < 0.01 and P < 0.001, respectively 
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Differences between CA and RA storage intensity ratings were within the same 

ranges or slightly less for IA compared to EA for the overall fruity, pear, banana, 

strawberry and floral characters (Table 6.3). The grassy, green and stemmy characters 

were perceived lower and anise higher for RA-stored fruit. The rating for citrus was 

lower for fruit stored 20 weeks in RA. There were no significant differences for any IA 

descriptors between CA and CA/RA stored fruit. 

Sweetness ratings decreased for CA-stored fruit, and sourness decreased in RA 

(Table 6.4). Starchiness and astringency were rated higher for CA-stored apples. 

Similar to the aroma characters, flavor ratings for overall fruity, pear, banana and floral 

decreased after CA storage. The ratings given to citrus and overall vegetative flavor 

notes were higher in CA-stored fruit, and the cooked fruit character was higher in RA-

stored fruit. Similar to internal aroma, there were no differences between CA and 

CA/RA stored fruit after 20 weeks in storage for any flavor descriptor except for 

sourness which was rated higher for CA-stored fruit. 

Effect of CA Storage on 'Gala' Apple Ratings 

The first principal component (PC 1) explained 38, 42 and 38% of the dataset 

variation for EA, IA and flavor, respectively (Figure 6.1). PC 1 was explained by overall 

fruity, pear, banana and floral descriptors for EA, IA and flavor, and also by sweet for 

flavor. Storage types were separated (P < 0.001) on the first principle component axis 

with positive scores for RA stored fruit (including the control) and negative scores for 

CA stored fruit. Treatment scores for PC 1 showed differences for fruity descriptors 

between RA and CA fruit increased with storage time. 

The second principal component (PC 2) explained 11, 13 and 12% of the total 

variation for EA, IA and flavor, respectively (Figure 6.1). Treatment differences in the 

second principal component axis were only significant (P < 0.001) for IA. PC 2 was 

explained on the positive side by the descriptors green, grassy, stemmy and citrus for EA 

and IA, and sour, starch, citrus and overall vegetative for flavor. The fermented 

descriptor had a high negative loading on PC 2 for EA and IA, and banana also had a 
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Figure 6.1. Principal components analysis plots for external aroma, internal aroma 
and flavor of 'Gala' apples stored for 10 and 20 weeks in regular 
atmosphere (RA), controlled atmosphere (CA) (1% 02, 1% CO2) and 
16 weeks in CA followed by 4 weeks in RA ( CA/RA). 
Principal components loadings are determined by the vector lengths for 
each sensory attribute. All vectors start at the origin. Their directions and 
magnitudes (loadings) are represented by the figure diamonds. Scores for 
storage treatments are drawn in circles. 20 CAI and 20 CA2 were 20 weeks 
in CA compared to 20 weeks in RA and CA/RA, respectively. The control 
was stored 4 weeks in RA. 
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Figure 6.1: 
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high negative loading on PC 2 of EA (Figure 6.1). The control sample had the highest 

PC 2 score for IA evaluation. Also, IA of CA fruit had slightly higher scores than IA of 

RA fruit when compared within a storage time. Fruit stored for 20 weeks in CA (20 

CA1) had the highest PC 2 score for flavor when compared with RA-stored fruit. 

PCA was performed on the pooled taste panel results with the assumption that 

panelists were calibrated by training and by using reference standards during each panel. 

It nevertheless appears that panelists rated by comparing and contrasting the two 

treatments that were presented to them in the two jars. Principal component scores for 

the same treatment (20 weeks in CA storage) were lower on PC 1 when fruit stored 20 

weeks in CA (20 CAI and 20 CA2) was compared with RA fruit (20 RA versus 20 CAI) 

than compared with CA/RA fruit (CA/RA versus 20 CA2), especially on flavor ratings 

(Figure 6.1). Therefore, PCA plots should be interpreted by considering the pair-wise 

contrast between storage treatments within a storage time. 

DISCUSSION 

Relationship Between Aroma Descriptors, Osme Data, and Volatiles Emitted by
`Gala' Apples 

The general decrease of perceived fruitiness in CA stored apples confirmed gas 

chromatography and olfactometry (Osme) results (Chapter 5). GC analysis showed the 

highest production of volatile esters by fruit stored 4 weeks in RA, which was the same 

fruit as the control in the descriptive analysis experiment (Table 6.5 and Chapter 5). 

Accordingly, Osme data for peak intensities were higher for that batch of apples (Table 

6.5 and Chapter 5). Nevertheless, descriptive analysis showed ratings for the control 

that were equal to or lower than 10 and 20 storage weeks in RA for fruity characters. 

PCA scores for the control were also lower than scores for 10 and 20 weeks in RA on 

the fruity , pear, banana and floral component (PC 1, Figure 6.1). Because of time 

constraints, we could not test all storage treatments at one panel session. Therefore, it 

appears that we measured a contrast effect (Meilgaard et al., 1991) in the descriptive 



Table 6.5. Total odor-active esters (first row) emitted by 'Gala' apples after regular (RA) or controlled 
atmosphere (CA) storage'. Odor-active peak intensities measured by Osme analysis (2" row 
and below). Total fruity odor peaks is the sum of intensities of 18 peaks due to esters. 
Individual odor-active peaks (compounds in parenthesis) are means of 12 data-pointsb' 

Storage Type 
RA CA 

Storage Duration (Weeks) 
4 10 20 10 16d 20 

Total esters (ng.kg-1.L-1) 14608 10860 13360 7450 3514 837 
Total fruity odor peaks 91.6 69.1 78.3 63.1 44.4 20.3 
Grapejuice (13- Damascenone) 6.2 2.2 2.4 2.2 1.4 0.0 
Floral (Unknown) 1.9 0.0 0.0 0.0 0.0 0.0 
Watermelon (Unknown) 6.9 1.0 0.0 0.0 0.0 0.1 
Anise (4-Allylanisole) 7.6 3.0 2.3 3.5 1.0 0.5 
Garlic (Unknown) 0.7 0.0 0.3 3.5 3.0
a Values (ng.kg-L.L-t) are means of 4 1-kg replications of dynamic headspace sampling 

1.2 

b 3 panelists x 4 replications each. Values are on a 16-point intensity scale (0 = none, 15 = extreme)
Adapted from Chapter 5 

d 16 weeks in CA followed by 4 weeks in RA 



142 

analysis between RA and CA stored fruit rather than the real difference between 

treatments along storage time. The PCA plots for DSA were nevertheless similar to 

volatile analysis PCA plots; CA and RA stored fruit were separated on the first principal 

component with high loadings on fruity descriptors and volatile esters (Chapter 5 and 

Figure 6.1). 

The overall fruity attribute could be explained by volatile esters that had fruity 

and apple-like odors according to Osme analysis (Chapter 5). Hexyl acetate, butyl 

acetate and 2-methylbutyl acetate have been identified to be primarily responsible for 

apple aroma in several cultivars (Williams and Knee, 1977; Pail lard, 1975) including 

`Gala' (Young et al., 1996; Chapter 4). Hexyl acetate is also an important contributor to 

pear aroma (Suwanagul, 1996). The descriptor given to hexyl acetate odor in Osme 

analysis was "Gala, ripe apple, pear" (Chapter 5). When presented to panelists diluted in 

distilled water, it had an aroma similar to apple (Chapter 4). Therefore, hexyl acetate 

was probably the volatile contributing the most to the overall fruity and pear attributes. 

2-Methylbutyl acetate was suggested to be related to banana descriptors in DSA of 

`Cox's Orange Pippin' (Williams and Knee, 1977). However, it did not have a banana 

descriptor in Osme analysis , and no other compound had that descriptor (Chapter 5). It 

is probably the combination of some esters that generated the banana aroma term. 

Methyl 2-methylbutyrate, ethyl 2-methylbutyrate and propyl 2-methylbutyrate 

had a characteristic sweet and strawberry-like aroma using gas-chromatography and 

olfactometry analysis (Chapter 5). There were smaller differences between storage 

treatments for the perception of those compounds by Osme (Chapter 5). The strawberry 

descriptor in the 'Gala' DSA was not given a high rating, nor did it contribute 

significantly to PC loadings. These methylbutyrate esters may be important for the 

general fruity and sweet aroma of 'Gala', without having a character impact. 

The floral descriptor contributed significantly to separate CA and RA-stored 

apples on the PCA plot. However, only one unknown peak had a floral descriptor in 

Osme analysis; it was only perceived in the control fruit with a low intensity (Chapter 5 

and Table 6.5). Therefore, more compounds than this floral peak perceived through 

Osme analysis contribute to the floral note of 'Gala' apple. It would be interesting to 
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determine through mixtures of volatile compounds found in 'Gala' which combination 

produces this specific aroma. 

Using Osme, a compound with a watermelon odor was strongly perceived in the 

control fruit (Chapter 5 and Table 6.5). However, the watermelon descriptor was not 

rated high, or was not perceived by some panelists in the descriptive analysis. The 

watermelon compound perceived in Osme analysis was probably blended in other fruity 

notes, or it might also contribute to the floral character. Floral and watermelon share a 

fresh and sweet type of fragrance. 

The musty note perceived in CA stored fruit (Table 6.2) could be due to a 

compound with a garlic odor (Chapter 5 and Table 6.5). This unknown compound 

perceived only in fruit stored in CA was also given low ratings in Osme analysis. 

However, because the compound had a distinct odor compared to the fruity esters, it 

could be perceived by the descriptive panel. 

Effect of Combined Atmospheres on Aroma Perception 

The inhibiting effect of CA storage on volatile production by apples is well 

documented (Yahia, 1994). A partial recovery of volatile production may occur when 

apples are placed in air or higher 02 levels for some weeks before removal from storage 

(Smith, 1984; Streif and Bangerth, 1988; Brackmann et al., 1993). Volatile compounds 

were emitted in larger amounts when 'Gala' apples stored in CA for 16 weeks were then 

placed in air for 4 weeks (Chapter 5). Differences were also perceived by Osme analysis 

(Chapter 5). The differences were only perceived for the EA fruity and floral descriptors 

by DSA (Table 6.2). A slight decrease from CA was also perceived in CA/RA stored 

fruit for the sour descriptor (Table 6.4). Smith (1984) reported an increase in perceived 

aromaticity of 'Cox's Orange Pippin' by a panel of 12 to 16 experts after apples were 

stored in 1.25% 02 then in 2% 02 for 2 months before testing. He used a paired 

comparison test between treatments, which might be a more sensitive test than intensity 

ratings to perceive differences. An increase in volatile production was not always 

observed in similar experiments (Mattheis et al., 1995; Yahia, 1991). The response may 
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therefore depend on the cultivar, maturity stage at harvest, storage atmosphere 

combinations and other cultural factors. 

Cut Fruit Aroma and Flavor 

The descriptors green, grassy and stemmy were perceived with higher intensities 

in cut than in whole apples, with significant differences between CA and RA stored fruit 

(Table 6.3). Those descriptors were rated higher in CA than in RA stored fruit. 
., 

Compounds known to possess green apple-like odors are hexanal and trans-2-hexenal 

(Flath et al., 1967). Those compounds result from enzymatic reactions occurring upon 

cutting or crushing the fruit cells (Drawert et al., 1966). Therefore, we could expect 

higher ratings for green-like attributes in cut apple aroma and flavor. Fellman et al. 

(1993) found more hexanal in flesh of 'Rome' apples stored in 1% 02 than stored in air. 

However, Yahia et al. (1990), Mattheis et al. (1995) and Mattheis et al. (1998) found a 

negative effect of CA storage on hexanal from 'Cortland' apple juice, 'Bisbee Delicious' 

and 'Gala' apple headspaces of whole fruit, respectively. Hexanal was not found in the 

samples used for Osme analysis. It is possible the green-like attributes were perceived 

with higher intensities in 'Gala' apples stored in CA because the fruity attributes were 

not as strong. 

Green, grassy and stemmy EA and IA descriptors were combined into overall 

vegetative in the flavor DSA descriptors. As in cut fruit aroma, the vegetative flavor 

descriptor decreased in RA stored apples; however, the difference between RA and CA-

stored fruit was larger for the flavor than for the IA descriptor (Table 6.4). Hexanal, 

trans-2-hexenal, and possibly other compounds such as alcohols deriving from enzymatic 

reaction upon chewing the fruit may be present in larger amounts in CA-stored fruit 

because those fruit do not use their reserves by respiration. In our study, the headspace 

analysis that we used to sample free volatiles emitted by whole apples could not reflect 

the amount actually present in the fruit. 

Anise descriptor ratings for IA increased in RA-stored fruit (Table 6.3). 4­

Allylanisole, with an anise character, was emitted in the largest amount and perceived 

most intensely in apples stored 4 weeks in RA by Osme analysis (Table 6.5 and Chapter 
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5). As mentioned for other descriptors, the difference in rating due to storage might be 

due to a contrast between RA and CA stored fruit because 4-allylanisole was not present 

in perceivable amounts in CA fruit. 

The citrus attribute was correlated with green, grassy and stemmy descriptors in 

the PCA of EA and IA (Figure 6.1). A slight drop was observed from CA in the citrus 

ratings for IA after 20 weeks in RA (Table 6.3), and a more significant decrease was 

perceived by flavor (Table 6.4). Odor of aldehydes such as citral, octanal, and decanal 

are part of citrus aroma (Young, 1997; Bazemore, 1995). Citral has not been reported 

in apples (Paillard, 1990), but octanal and decanal were present in 'Gala' apple 

headspace (Mattheis et al., 1998). Those two aldehydes have low odor thresholds: 0.70 
-1 and 0.10 ps.L-1 

for octanal and decanal, respectively (Guadagni et al., 1963). 

However, they were not found in samples analyzed by Osme because of the volatile 

isolation technique used (Chapter 3). Therefore, their contribution to apple aroma is not 

clear. A decrease in citrus aroma flavor in RA fruit could be due to the lower perceived 

sourness from decreasing total acidity. 

Cooked fruit flavor was rated higher in RA stored fruit (Table 6.4). B-

Damascenone may contribute to this descriptor. B-Damascenone is a glycosidically 

bound compound (Buttery et al., 1990) and it is released in the mouth upon chewing 

apple flesh. It was found in apples (Chapter 5; Schreier et al., 1978; Cunningham et al., 

1986) with a low odor threshold. It was perceived with a higher intensity in RA stored 

`Gala' apples using Osme analysis (Chapter 5). 

Relation Between Taste Descriptors and Instrumental Measurements 

Sourness differences between CA and RA stored fruit corresponded to the 

measured differences in pH and in titratable acidity (TA) (Table 6.6). The decrease of 

malic acid from fruit respiration in air storage and a reduced acid loss in CA is well 

documented (Smock, 1979; Chen et al., 1985; Anderson and Penney, 1973). Changes in 

titratable acidity in apples are usually perceived by trained and untrained panelists 

(Williams and Langron, 1983; Gorin, 1973; Plotto et al., 1997; Anderson and Penney, 

1973; Visser et al., 1968; Watada et al., 1980). 



Table 6.6. 'Gala' pH, titratable acidity (TA) and soluble solid content (SSC) in regular (RA) and controlled
atmosphere storage (CA). Values are means of 20 apples 

Storage Type 
RA CA 

Storage Duration (Weeks) 
4 10 20 10 16Y 20 

pH 3.88 b 3.85 c 4.00 a 3.83 c 3.79 d 3.78 d 
TA (% malic acid) 0.371 b 0.328 ` 0.264 d 0.394 a 0.364 b 0.359 b 
SSC ( °Brix) 14.0 b 13.3 c 13.1 c 14.5 a 13.8 b 13.2 c 
i Means followed by the same letter are not significantly different Within the same line by the Fisher protected LSD test, alpha = 0.05
Y 16 weeks in CA was followed by 4 weeks in RA 
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Sweetness ratings were significantly lower for CA than RA stored fruit (Table 

6.4). However, the sensory difference between treatments was not reflected by the 

refractometer measurements (Table 6.6). Refractive index alone is usually a poor 

predictor for perceived sweetness in apples (Dever and Cliff, 1995; Knee and Smith, 

1989; Plotto et al., 1997). Rouchaud et al. (1985) did not find good correlative values 

between total sugar content in lonagold' or 'Cox's Orange Pippin' perceived sweetness 

by a panel of experts. The difference of 1 °Brix or 10% total sugars between two levels 

of SSC may just not be enough to be perceived as sweetness differences. Dever and 

Cliff (1995) found better predictive values for sensory data with instrumental 

measurements by looking at the underlying dimensions of the combined variables using 

canonical correlations. The differences between CA and RA in perceived sweetness 

could be due to the differences in perceived acidity; sweetness perception could also be 

the result of both soluble sugars and volatile esters with a sweet odor. Watada et al. 

(1981) reported some contribution of volatile compounds to the sweetness and tartness 

ratings of 'Golden Delicious' and 'York Imperial'. 

Descriptors for starchiness and astringency were significantly higher in CA stored 

apples (Table 6.4). Panelists might have perceived some starch that remained from 

harvest in CA storage. Starch index with the iodine test (Bartram et al., 1993) at harvest 

was 3.9 on a 1 - 6 scale (1 = non starch breakdown, 6 = all starch hydrolyzed). The 

magnitude of the difference between RA and CA stored apples could be a contrast effect 

between no starch in RA stored fruit, and a little starch present in CA stored fruit. 

Ratings for the astringent descriptor decreased in RA storage in all cultivars tested 

(Watada et al., 1980). The feeling of astringency has long been accepted to be due to 

the binding between polyphenolic compounds with saliva proteins (Bate-Smith, 1973). 

Some acids also induce astringency: malic acid at 0.037% or 0.075% (w/v) in water 

induced stronger intensity responses for astringency than for sourness (Straub, 1989). 

Therefore, the higher astringent ratings for CA stored fruit may be due to the higher 

malic acid content of the fruit. Finally, it is not clear whether all panelists could 

distinguish clearly the difference between the feeling left in the mouth by starch coating 

and the puckering sensation characteristic of astringency. 
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CONCLUSION 

A descriptive sensory study of 'Gala' apples stored in air and controlled 

atmosphere showed a significant decrease in fruity and floral descriptors (pear-, banana-

and strawberry-like) for EA, IA and flavor of CA stored fruit. Descriptor differences 

were due to a decrease in volatile ester production, mostly hexyl acetate, butyl acetate 

and 2-methylbutyl acetate. Green, vegetative and citrus descriptors were perceived with 

higher intensities in cut fruit aroma and flavor. Volatiles responsible for those odors are 

released by the cells upon cutting. The higher ratings for those descriptors in CA stored 

fruit was probably due to the decrease in fruity aromas, because volatile aldehydes 

responsible for green-like odors decreased in CA stored fruit. 

The combination of DSA, GC and Osme analyses explained earlier findings from 

a consumer panel with 'Gala' apples (Boylston et al., 1994). In that study, the decrease 

in total volatiles resulted in a lower acceptance of delayed CA stored 'Gala' apples with 

the same firmness values as RA stored fruit. On the other hand, firmer apples are usually 

preferred (Williams, 1979; Daillant-Spinnler et al., 1996). Transferring apples to air 

storage for 4 weeks following 16 weeks CA improved volatile production. However, 

the increase in volatile esters was not perceived as increased fruity flavor in our panel. 

The use of CA technology allows maintenance of quality and freshness of apples 

from harvest compared to air storage. However, the complexity of the effects of 

physical and chemical stimuli on human taste buds and olfactory receptors require 

sensory analysis following CA experiments to evaluate fruit eating quality. 
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CHAPTER 7
 

SUMMARY AND CONCLUSION
 

`Gala' apple aroma was evaluated by using Osme, a gas chromatography and 

olfactometry (GCO) technique. During the optimization phase, headspace sampling time 

and trap type were compared, and panelists' performances evaluated. Of the volatile 

compounds identified by gas chromatography and mass spectrometry, esters were odor-

active with different fruity odors. The aroma of hexyl acetate and pentyl acetate most 

closely approximated that of emitted by 'Gala' apples. Butyl acetate and 2-methylbutyl 

acetate were produced in the largest amounts, and were described as solvent and fruity. 

Butyl 2-methylbutyrate, hexyl 2-methylbutyrate, butyl hexanoate and hexyl butyrate were 

perceived as apple or green apple. Methyl 2-methylbutyrate, ethyl 2-methylbutyrate and 

propyl 2-methylbutyrate had sweet, fruity, berry-like odors. Butyl butyrate was 

perceived as cheesy. Non ester compounds with characteristic odorswere 4-allylanisole 

(anise) and 13-damascenone (grape juice). Unidentified peaks had cucumber or 

watermelon, mushroom, adhesive tape or skunk odors. Analysis of variance for peak 

intensities and peak areas showed a sampling time effect. Peaks perceived 100% of the 

time from the 24 hour charcoal traps could be ranked by decreasing order ofperceived 

intensity. 'Gala' headspace sampled with activated charcoal for 24 hours yielded the 

largest amount of volatile compounds and the largest number of odor-active peaks. 

Therefore this sampling method was used for the storage study. 

GCO provided information for individual compounds presented to the nose via 

an olfactometer. Compounds that had intense odor activity were mixed in water then the 

mixture odors were compared with 'Gala' apples. Compounds at concentrations found 

in apple headspace were mixed based on the odor unit theory (Teranishi et al., 1991), or 

following a statistical screening design. The design based on odor units theory did not 

give information as to which mixture most closely resembled 'Gala' odor, because all the 

sample combinations had an odor close to 'Gala'. The design based on statistical 

screening revealed that hexyl acetate, hexanal, butyl acetate, 2-methylbutyl acetate and 
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methyl 2-methylbutyrate contributed to the least differences between mixtures and 

apples. Pentyl acetate, hexyl 2-methylbutyrate, butyl hexanoate and 4-allylanisole 

contributed to the largest differences. Solutions were prepared based on analytical 

results from 'Gala' headspace, and headspace sampling tends to be more representative 

of lower molecular weight volatile compounds. Although Osme analysis showed that 

compounds other than those used in the mixtures were present in 'Gala' headspace, 

similarities to 'Gala' aroma were still apparent. Validation of GCO with model solutions, 

although a necessary step to understand compound interactions, is limited by the 

information obtained from the previous GC analysis. 

Changes in 'Gala' aroma during storage were characterized using Osme analysis 

and by descriptive sensory analysis (DSA). During the first year of the study, apples 

were stored 5, 10 and 19 weeks at 1 °C in regular (RA) and controlled atmosphere 

(CA). In the second year of the study, apples were stored 4, 10 and 20 weeks in RA and 

CA; one treatment was 16 weeks in CA followed by 4 weeks in RA (CA/RA). DSA was 

only performed during the second year. Production of volatile esters decreased along 

with fruity aroma during CA storage. Hexyl acetate and butyl acetate were emitted in 

the largest amounts in RA but decreased significantly in CA. 2-Methylbutyl acetate, also 

produced in large quantities by fruit stored in RA, did not decrease as much in CA as 

butyl acetate and hexyl acetate. 2-Methylbutyl acetate remained at RA concentrations 

until 16 weeks CA, and was perceived accordingly with high intensity. 2-Methylbutan-l­

ol, the acyl moiety of 2-methylbutyl acetate, was also less affected by CA storage. Butyl 

2-methylbutyrate and hexyl 2-methylbutyrate contributed to the apple, fruity aroma of 

RA stored fruit. Methyl 2-methylbutyrate, ethyl 2-methylbutyrate and propyl 2­

methylbutyrate were perceived less intensely than hexyl acetate and butyl acetate in RA 

stored fruit, but did not decrease as much in CA. A multivariate factor analysis of peaks 

perceived using Osme revealed 4-allylanisole (anise), 13-damascenone (grape juice), 1­

octen-3-ol (mushroom) and an unknown compound with a watermelon odor were 

perceived mostly in RA stored fruit. 

DSA of 'Gala' apples confirmed the significant decrease in fruit aroma following 

CA. Specific descriptors from DSA and Osme analysis did not necessarily correspond. 
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For instance, a floral descriptor contributed to 'Gala' aroma in DSA, but was not 

perceived intensely during Osme analysis. The watermelon compound strongly 

perceived in RA stored fruit during Osme did not have an important weight in DSA. A 

musty note appeared in CA stored fruit, which could be the same as a garlic odor peak 

during Osme. Green and grassy descriptors in DSA of cut apples were not explained by 

any peak in Osme analysis. Those attributes are usually due to aldehydes released upon 

cutting the cells; this explain their absence from samples used for Osme analysis. 'Gala' 

apples stored 16 weeks in CA followed by 4 weeks in RA emitted more volatiles than 

fruit stored 20 weeks in CA. The difference in volatile production was perceived by 

Osme analysis, and differences in overall fruity aroma between 16 and 20 weeks CA 

stored fruit were perceived only for whole fruit external aroma. There was no difference 

between those two types of storage for fruit flavor. 

Relationship between compound quantity and odor intensity obtained with Osme 

has allowed determination of the key compounds contributing to 'Gala' aroma. 

However, the exact reproduction of 'Gala' aroma through model mixtures was not 

achieved. The sampling technique chosen, although representative of the overall 'Gala' 

headspace, still gave a distorted image of 'Gala' headspace. Preferential adsorptions and 

desorptions, interactions between solute-solute and solute-solvent certainly occurred. 

Additionally, headspace sampling could not give information on volatiles in the matrix 

such as those glycosidically bound; those compounds no doubt contribute to the specific 

`Gala' flavor. Finally, GC-MS showed some limitation at identifying some compounds 

below the detection limit of MS, but perceived by the nose. Compounds with 

watermelon, mushroom, cucumber and skunk odors yet remain to be identified. 

Predictive models to determine aroma when compounds vary in different proportions is 

necessary. The later determination would be useful to postharvest physiologists because 

volatiles produced by apples vary in different proportions when stored in CA as opposed 

to RA. 
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Table A.1. 'Gala' maturitya and ripening indices after storage. 
Storage was: 5, 9, 10, 18, 19 weeks in regular (RA) or controlled (CA)
atmosphere in 1994-95; 4, 10 and 20 weeks in RA or CA in 1995-96. 
16 CA is 16 weeks in CA followed by 4 weeks in RA in 1995-96. 
Values are means (standard deviation) of 20 individual fruit. 

1994-95 Date Weight Ethylene Firmness SSC pH Titratable 
measured (g) (ppm) (N) ( °Brix) Acidity (% malic)

Harvest 12-Sep	 3.18 70.7 12.7 0.364 

5 RA 26-Oct 192.78 86.89 57.20 12.87 3.84 0.307 
(19.77) (45.64) (4.56)	 (0.06)(0.34)	 (0.02) 

10 RA 29-Nov 179.01 163.45 51.54 12.74 4.02 0.295 
(14.19) (49.99) (2.05) (0.53) (0.05) (0.023) 

19 RA 28-Jan 180.20 358.24 46.51 12.65 4.17 0.213 
(18.03) (101.28) (4.14)	 (0.10)(0.48)	 (0.030) 

9 CA 19-Nov 187.80 34.66 67.33 13.16 3.76 0.338 
(18.46) (29.06) (5.91) (0.74) (0.05) (0.032) 

18 CA 22-Jan 23.53	 12.87197.49	 65.12 3.87 0.303 
(22.35) (24.78) (6.43) (0.58) (0.06) (0.026) 

1995-96
 
harvest 12-Sep 217.91 2.46
 80.83 13.74 0.498 

(28.05) (0.93) (8.25) (0.73) (0.053) 

4 RA 17-Oct 214.4 267.6 55.07 13.99 3.88 0.371 
(23.86) (96.24) (5.66) (0.84) (0.06) (0.042) 

10 RA 1-Dec 219.4 758.7 49.06 13.27 3.85 0.328 
(27.99) (200.57) (2.37) (0.65) (0.05) (0.025) 

20 RA 9-Feb 214.2 731.7 43.63 13.14 4.00 0.264 
(30.16) (266.20) (4.42)	 (0.07)(0.67)	 (0.022) 

10 CA 29-Nov 232.1 52.7 60.14 14.54 3.83 0.394 
(24.87) (31.89) (4.89) (0.68) (0.04) (0.038) 

16 CA 14-Feb 220.8 179.8 55.58	 3.7913.83	 0.364 
(26.42) (82.38) (5.20) (0.57) (0.03) (0.028) 

20 CA 7-Feb 222.1 26.0 60.46 13.18 3.78 0.359 
(22.78) (23.54)	 (0.89)(7.85)	 (0.07) (0.036) 

a	 
Starch index on a 1 - 6 scale (1 = no starch breakdown, 6 = all starch hydrolyzed) with iodine test 
at harvest: 2.4 in 1994-95, 3.9 in 1995-96 



Table A.2. Volatile compounds emitted by 'Gala' apples after regular (RA) or controlled atmosphere
(CA) storage (1% 02, 1% CO2) in 1994-95. Values (relative FID peak area) are means of 4 
replicates of dynamic headspace of 1 kg apples'. Total volatiles by chemical group are presented 

Storage Type 
RA CA 

Compound 5 10 
Storage Duration (Weeks) 

19 9 18 
Propyl acetate 160.2 ab 98.4 be 270.6 a 13.3 C 3.2 c 
Butyl acetate"' Y 2821.8 a 4879.3 a 4738.7 a 769.1 b 101.1 b 
Pentyl acetate 221.9 ab 271.1 a 395.1 a 71.6 6 19.1 b 

Hexyl acetate"' ' 2722.6 ab 4430.6 a 4021.3 ab 1397.4 be 350.1 c 
Heptyl acetate 22.8 ab 30.6 a 33.1 a 11.9 ab 

b 

Total acetate esters 5949.3 1710.1 9458.8 2263.3 478.8 

Propyl propanoatex 29.2 ab 14.7 be 48.6 a 0.0 ' 0.0 c 
Butyl propanoatex 536.5 b 582.8 b 1098.6 a 33.5 C 8.2 ' 
Pentyl propanoate 15.8 a 14.6 a 24.7 a 3.4 b 

b 

Hexyl propanoatex 428.9 b 
ab 

804.6 a 75.8 ' 34.8 c 
Total propanoate esters 1010.2 1071.2 1976.5 112.8 46.3 

Propyl butyrate 23.1 b 13.0 b' 39.9 a 0.0 c 0.0 ' 
Butyl butyrate" 466.1 b 528.0 b 959.7 a 81.7 ' 22.3 ' 
Total butyrate esters 489.2 540.9 999.6 81.7 22.3 

Propyl hexanoate + pentyl butyrate 116.0 ab 
bc 

179.0 a 17.0 ' 10.5 
Butyl hexanoatex + hexyl butyrate" 2103.1 a 2568.4 a 3882.2 a 620.2 b 208.0 b 

Hexyl hexanoate 983.1 at' 1705.8 ab 2072.5 a 643.9 be 231.5 ' 
Total hexanoate esters 3202.2 4351.7 6133.6 1281.0 450.0 

Butyl heptanoate 22.3 b 18.1 
be 42.5 a 6.6 ' 23.8 b 

Hexyl octanoate 28.2 ab 61.5 a 53.9 a 1.0 b 9.2 b 



Table A.2, Continued 

2-Methylpropyl acetate 
2-Methylbutyl acetate"' Y 

3-Methyl-2-butenyl acetate' 
3-Methylbutyl propanoate 
2-Methylbutyl butyrate 
3-Methylbutyl hexanoate 

Butyl 2-methylpropanoate 
Hexyl 2-methylpropanoate 
Total methyl propanoate esters 

Methyl 2- methyl butyrate" 
Ethyl 2-methylbutyratex 
Propyl 2-methylbutyrate" 
Butyl 2-methylbutyrate" 
Hexyl 2-methylbutyrate" 
Total methyl butyrate esters 

Hexyl tiglatex 

6-Methyl-5-hepten-2-one" 

4-Allylanisole 
Anetholex 

1-Butanol 
1-Pentanol 
1-Hexanol 
2- Methyl -1- butanol 
Total alcohols 

57.5 b 

1963.2 
14.6 b 

29.6 a 

0.1 

24.6 b 

16.2 a 

ab 

54.9 

16.9 b 

1.7 b 

46.4 ab 

859.1 b 

1531.9 b 

2455.9 

24.7 ab 

25.2 a 

102.1 b 

98.4 be 

386.0 b 

4.6 b 

63.1 be 

96.8 ab 

550.5 

50.0 b 

1564.2 
11.3	 b 

ab 

0.1 

18.3 b 

14.9 a 

33.9 abc 

48.8 

9.1 b 

0.0 b 

16.4 be 

612.7 b 

1243.4 be 

1881.6 

27.9 ab 

30.0 a 

70.0 b 

132.9 ab 

1393.5 a 
7.0 ab 

122.7	 ab 

ab 

1606.5 

160.8 a 
2667.1 

24.1 b 

22.1 ab 

0.1 

27.7 ab 

28.2a 
70.1 a 

98.3 

147.9 a 

6.9 a 
66.9 a 

1639.9 a 

3075.0 a 
4936.7 

41.7 a 

17.2 ab 

218.1 a 
201.6 a 

989.5 a 

10.8 a 

158.4 a 

153.4 a 

1312.1 

25.8b 
1555.5 

28.3 b 

8.9b 
0.1 

32.1 ab 

1.4b 
14.2 be 

15.6 

b 

0.0 b 

0.8 
64.1 

337.1 cd 
403.5 

19.7 ab 

4.2 b 

54.2 b 

49.0 be 

68.7 b 

0.0 c 
20.8 
51.6 b 

141.0 

21.2b 
1138.1 

49.9 a 
12.4 b 

0.1 

49.0 a 

0.0b 
5.2° 
5.2 

0.0b 
0.0 b 

0.0 
13.1 

87.2 d 

100.4 

b 

4.9 b 

69.0 b 

23.6 

41.0b 
0.0 
7.5 c 

48.5 b 

96.9 
" Means followed by the same letter are not significantly different within the same line by the Fisher protected LSD test, alpha = 0.05

Odor active compounds at those concentrations 
Y Above the linear range of the FID detection 



Table A.3. Perceived aroma peak area in 'Gala' headspace after regular (RA) or controlled atmosphere (CA) 
storage by Osme analysis in 1995-96. Values (I ..*duration of odorant perception) are means of
4 replicates for 3 panelists'. 

Storage Type 
RA CA 

KovatsY Storage Duration (Weeks)

Peak # Index Descriptor (Compound)
 4 10 20 10 16x 20 

20 1028 Gala, ripe, pear (Hexyl acetate) a1.79 0.99 bc 1.25 b 0.85 e 0.35 d 0.23 d 
4 827 Nail polish, gala (Butyl acetate) a1.70 0.94 e 1.25 b 0.64 d 0.29 e 0.06 e 
7 890 Solvent, gala (2-Methylbutyl acetate) 1.26 a 0.65 b 0.67 b 1.03 a 0.67 b 0.43 b 

2 787 Sweet, fruity (Methyl 2-methylbutyrate) 0.78 a 0.86 a 0.85 a 0.72 a 0.78 a 0.08 b 
13 959 Very sweet, strawberry (Propyl 2-methylbutyrate) 0.54 a 0.43 ab 0.42 ab 0.42 ab 0.33 b 0.07 
6 863 Sweet, strawberry (Ethyl 2-methylbutyrate) 0.47 b 0.49 ab 0.69 a 0.43 b 0.29 bc 0.12 

23 1056 Fruity, apple (Butyl 2-methylbutyrate) 0.32 a 0.16 b 0.32 a 0.12 bc 0.03 cd 0.01 d 
36 1255 Apple, grapefruit (Hexyl 2-methylbutyrate) 0.32 a 0.10 bc 0.21 ab 0.07 e 0.04 e 0.01 e 
31 1205 Green apple (Butyl hexanoate + Hexyl butyrate) 0.35 b 0.17 ' 0.51 a 0.18 e 0.00 d 0.00 d 
19 1018 Apple and toast (Unknown) a0.78 0.24 b 0.15 bc 0.15 bc 0.14 bc 0.01 c 
16 997 Fruity, tape (6- Methyl -5- hepten -2 -one) 0.17 a 0.03 b 0.01 b 0.02 b 0.02 b 0.01 b 
18 1010 Solvent, gala (Unknown) a0.17 0.02 cd 0.13 ab 0.09 bc 0.04 cd 0.00 d 
27 1121 Apple (Hexyl propanoate) 0.17 a 0.06 bc 0.10 ab 0.01 bc 0.00 c 0.00 c 
17 1009 Rotten apple (Butyl butyrate) 0.08 a 0.11 a 0.13 a 0.06 ab 0.00 b 0.00 b 
44 1524 Fruity (Unknown) 0.07 ab 0.10 a 0.03 ab 0.03 ab 0.00 b 0.00 b 
10 921 Fruity, apple (Butyl propanoate) 0.05 0.05 0.04 0.00 0.00 0.00 
3 813 Fruity (Propyl propanoate) 0.00 0.01 0.04 0.06 0.02 0.02 

12 933 Fruity, sweet, solvent (3- Methyl- 2- butenyl acetate) 0.02 b 0.02 b 0.01 b 0.31 a 0.25 a 0.12 b 

Total fruity 9.01 5.40 6.80 4.86 2.99 1.05 

43 1437 Grape juice (B-Damascenone) 1.49 a 0.24 b 0.30 b 0.25 b 0.11 b 0.00 b 
38 1276 Grape juice (Unknown) a0.08 0.00 b 0.02 b 0.00 b 0.00 b 0.00 b 

Total grape juice 1.57 0.24 0.32 0.25 0.11 0.00 



Table A.3, Continued 

26 1118 Floral (Unknown) a0.09 0.00 b 0.00 b 0.00 b 0.00 b 0.00 b 

24 1070 Watermelon (Unknown) 0.48 a 0.04 b 0.00 b 0.00 b 0.00 b 0.00 b 
34 1227 Cucumber (Unknown) 0.02 0.04 0.00 0.00 0.00 0.00 

Total watermelon, cucumber 0.50 0.08 0.00 0.00 0.00 0.00 

33 1222 Anise, licorice (4-Allylanisole) 0.61 a 0.11 b 0.10 b 0.15 b 0.03 b 0.01 b 
22 1041 Sweet, anise (Unknown) 0.06 a 0.00 b 0.00 b 0.06 a 0.01 a 0.00 b 
29 1151 Anise, spice, perfumey (Unknown) 0.12 a 0.02 ab 0.00 b 0.12 a 0.02 ab 0.03 ab 

Total anise 0.79 0.13 0.10 0.34 0.07 0.04 

35 1230 Mushroom, cat urine (Unknown) 0.35 b 0.15 cd 0.58 a 0.29 be 0.07 d 0.04 d 
14 991 Mushroom (1- Octen -3 -ol) 0.16 a 0.01 b 0.02 b 0.00 b 0.00 b 0.00 b 

Total mushroom 0.51 0.16 0.60 0.29 0.07 0.04 

5 836 Skunk (Unknown) a0.69 0.22 b 0.23 b 0.29 b 0.28 b 0.22 b 

25 1112 Dusty, musty (Unknown) 0.56 a 0.39 ab 0.27 b 0.31 ab 0.12 b 0.26 b 
37 1272 Rubber (Unknown) 0.51 a 0.24 b 0.09 C 0.05 ' 0.02 c 0.00 
8 901 Oatmeal, skunk (Unknown) 0.08 a 0.00 b 0.00 b 0.00 b 0.00 b 0.00 b 

21 1038 Metallic, skunk (Unknown) 0.06 a 0.00 b 0.00 b 0.00 b 0.00 b 0.00 b 
Total skunk, rubber 1.90 0.85 0.59 0.64 0.42 0.48 

1 774 Tea, garlic, leaves (Unknown) 0.15 be 0.12 be 0.23 ab 0.41 a 0.20 be 0.04 
30 1197 Tape or fruity (Unknown) 0.09 a 0.00 b 0.00 b 0.01 b 0.00 b 0.02 b 
41 1364 Tape or musty, dirty (Unknown) 0.07 I) 0.01 c 0.18 a 0.01 c 0.03 be 0.03 be 

Total tape, others 0.30 0.13 0.42 0.44 0.23 0.09 

9 920 Garlic (Unknown) 0.04 b 0.00 b 0.02 b 0.21 a 0.18 a 0.07 b 
Z 

Means followed by the same letter are not significantly different within a row by the Fisher protected LSD test, alpha = 0.05 
Y Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 
X 

16 weeks in CA was followed by 4 weeks in RA 



Table A.4. Perceived aroma peak area in 'Gala' headspace after regular (RA) or controlled atmosphere (CA)
storage by Osme analysis in 1994-95. Values (I max * duration of odorant perception) are means of 
4 replicates for 3 panelists'. 

Storage Type 
RA CA 

KovatsY Storage Duration (Weeks)
Peak # Index Descriptor (Compound) 5 10 19 9 18 

20 1028 Gala, ripe, pear (Hexyl acetate) be1.98 ab 2.46 a 2.31 a 0.48 
4 827 Nail polish, gala (Butyl acetate) 1.70 a 1.80 a 1.64 a 0.45 b 0.10 b 
7 890 Solvent, gala (2-Methylbutyl acetate) 1.34 a 1.05 ab 1.09 ab 0.90 ab 0.61 b 
2 787 Sweet, fruity (Methyl 2-methylbutyrate) 0.78 a 0.75 a 0.50 ab 0.35 ab 0.19 b 
13 959 Very sweet, strawberry (Propyl 2-methylbutyrate) 0.59 a 0.68 a 0.50 ab 0.36 ab 0.20 b 
6 863 Sweet, strawberry (Ethyl 2-methylbutyrate) 0.62 a 0.62 a 0.57 a 0.24 b 0.23 b 
23 1056 Fruity, apple (Butyl 2-methylbutyrate) 0.50 a 0.53 a 0.34 ab 0.10 b 0.00 b 
36 1255 Apple (Hexyl 2-methylbutyrate) 0.20 b 0.56 a 0.12 b 0.13 b 0.02 b 
36b 1260 Grapefruit (Unknown) 0.36 0.12 0.21 0.00 0.00 
31 1205 Green apple (Butyl hexanoate + Hexyl butyrate) 0.18 be 0.55 a 0.47 ab 0.09 c 0.01 c 
16 997 Fruity, tape (6- Methyl -5- hepten -2 -one) 0.23 0.04 0.12 0.05 0.02 
18 1010 Solvent, gala (Unknown) 0.23 ab 0.27 a 0.18 ab 0.02 b 0.01 b 
27 1121 Apple (Hexyl propanoate) 0.40 a 0.36 a 0.34 a 0.00 b 0.02 b 
17 1009 Rotten apple (Butyl butyrate) 0.35 a 0.19 ab 0.28 a 0.03 b 0.02 b 
44 1524 Fruity (Unknown) 0.13 0.13 0.02 0.06 0.03 
10 921 Fruity, apple (Butyl propanoate) 0.20 0.36 0.30 0.00 0.03 
39 1290 Fruity (Unknown) 0.14 0.15 0.04 0.16 0.05 
3 813 Fruity (Propyl propanoate) 0.07 ab 0.25 a 0.10 ab 0.00 b 0.00 b 
12 933 Fruity, sweet, solvent (3- Methyl -2- butenyl acetate) 0.08 ab 0.00 b 0.07 ab 0.06 ab 0.17 a 

Total fruity 10.08 10.87 9.19 4.04 2.20 

43 1437 Grape juice (B-Damascenone) 0.37 0.31 0.23 0.41 0.18 



Table A.4, Continued 

24 1070	 Watermelon (Unknown) 0.48 a 0.63 a 0.40 ab 0.00 b 0.00 b 
34 1227 Cucumber (Unknown) 0.05 ab 0.22 a ab 0.08 ab 0.00 b 

Total watermelon, cucumber 0.53 0.85 0.51 0.08 0.00 

33 1222	 Anise, licorice (4-Allylanisole) 0.47 b 0.31 b` 0.71 0.22 C 0.21 ca
 

22 1041 Perfumey, anise (Unknown) 0.31 ab
 0.33 a 0.29 abc 0.03 bc 0.00 c 
Total anise 0.78 0.64 1.00 0.25 0.21 

35 1230	 Mushroom, cat urine (Unknown) 0.36 a 0.36 a 0.29 ab 0.06 b 0.02 b 

40	 1353 Mushroom (Hexyl tiOate) 0.17 a 0.25 a 
ab 

0.10 ab 0.00 b 
Total mushroom 0.53 0.62 0.41 0.16 0.02 

5 836 Skunk (Unknown) 0.86 a 0.52 ab 0.45 b 0.56 ab 0.35 b 

37 1272 Rubber (Unknown) 0.26 a a0.25 0.15 ab 4 0.00 b 0.02 ab 

Total skunk, rubber 1.11 0.76 0.60 0.56 0.37 

9 920 Garlic (Unknown) 0.00 b 0.00 b 0.00 b 0.27 a 0.09 b 

z Means followed by the same letter are not significantly different within a row by the Fisher protected LSD test, alpha = 0.05 
Y Kovats indices on RTX-5 (5% diphenyl 95% dimethyl polysiloxane) column 
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Appendix 5: Relation between Osme response and compound concentrations 

During the development of the Osme method, Da Silva et al. (1994) found that in 

general, a logarithmic or power function was generated between the response for peak 

intensity and stimulus concentration, while peak area produced a linear response. In our 

study, as the design was not planned for that purpose, we could not validate the response 

curves with the lack of fit test (Neter et al., 1989). However, because there was a large 

range of concentrations being analyzed for some of the compounds, response curves 

relating peak intensity and peak area to compound concentration were generated (Figure 

A.1 and A.2). The data showed that: 1) panelists do not all have the same sensitivity 

and/or do not use the category scale in the same manner, 2) intensity responses tended to 

flatten out with a logarithmic fit and area responses were more often of a power type, 

and 3) response curves are relevant only if the range of stimuli induce responses that are 

in the range covered by the extremes of the category scale. 

Butyl acetate (Gala, solvent, fruity) and hexyl acetate (Gala, ripe apple, pear) 

concentrations covered the whole range of intensity responses (Figure A.1). All panelist 

curves had a good fit, with R2 above 0.65. Intensity response curves followed a 

logarithmic function for all three panelists for butyl acetate, and a power function for 

hexyl acetate. There was a good fit for power and linear functions for peak area 

responses of butyl acetate and hexyl acetate. No good fit was found for 2-methylbutyl 

acetate (solvent) intensity responses; all ratings were high, indicating concentrations 

were at the plateau of perception for that compound. However, a slightly better fit with 

higher slopes for the linear functions were found for the peak area response. The 

difference between peak intensity and peak area response curves for butyl acetate, hexyl 

acetate and 2-methylbutyl acetate could indicate the psychological upper limits imposed 

to panelists with a category scale. Peak area is not constrained over time, therefore the 

curves could follow power functions with higher slopes. 

No good fit was found for ethyl 2-methylbutyrate (strawberry) (Figure A.1). 

This compound has a very low odor threshold and was present at the lower limit of 

detection for the FID; however, intensity ratings ranged from 2.0 to 10.0. 
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Logarithmic and linear functions were found between methyl 2-methylbutyrate 

(sweet fruity), propyl 2-methylbutyrate (very sweet, strawberry), butyl 2-methylbutyrate 

(fruity, apple) and hexyl 2-methylbutyrate (apple, grapefruit) concentrations and peak 

intensities (Figure A.2). Panelists had different sensitivities and reproducibilities, as was 

shown by the curve slopes and R-squares. The poor fits found for methyl 2­

methylbutyrate and propyl 2-methylbutyrate indicated those compounds were not 

presented over a wide range of concentrations, and more dilute solutions would have 

clarified the psychophysical response to those compounds. The best curve fits for the 

series of methyl butyrate esters were found for butyl 2-methylbutyrate peak intensities 

and peak areas. 
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Figure A.1. Response curves for butyl acetate, hexyl acetate, 2-methylbutyl acetate 
and ethyl 2-methylbutyrate perceived intensity and peak area by 
Osme versus compound concentration. Each point is one panelist 
response. Best curve fits are shown with corresponding R2. 

Figure A.2. Response curves for methyl 2-methylbutyrate, butyl 2-methylbutyrate, 
propyl 2-methylbutyrate and hexyl 2-methylbutyrate perceived 
intensity and peak area by Osme versus compound concentration. 
Each point is one panelist response. Best curve fits are shown with 
corresponding R2. 
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Appendix 5 - Figure A.1 (continued) 
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Appendix 5 - Figure A.2 
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Appendix 5 - Figure A.2 (continued) 
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