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environments are generated using a simulation procedure. The

generated portfolio returns are based on the historical

patterns and time series behavior of a market portfolio proxy

and on a sample of mutual funds.

The proposed timing and selectivity portfolio returns

mimic the activities of actual mutual fund managers who

possess varying degrees of skill. Using the constructed

portfolio returns, various performance models are compared in

terms of their power to detect timing and selectivity

abilities, by means of an iterative simulation procedure.

The frequency of errors in rejecting the null hypotheses



of no market timing and no selectivity abilities shape the

analyses between the models for power comparison. The

results indicate that time varying beta models of Lockwood-

Kadiyala and Bhattacharya-Pfleiderer rank highest in tests of

both market timing and selectivity. The Jensen performance

model achieves the best results in selectivity environments

in which managers do not possess timing skill. The

Henriksson-Merton model performs most highly in tests of

market timing in which managers lack timing skill.

The study also investigates the effects of

heteroskedasticity on the performance models. The results of

analysis before and after model correction for nonconstant

error term variance (heteroskedasticity) for specific

performance methodologies do not follow a consistent pattern.
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Chapter 1

INTRODUCTION

An area of interest in the field of finance that has

brought forth considerable debate among academicians and the

investment community is investment performance evaluation.

From the academic and theoretical perspective, the topic of

investment performance has been debated to offer answers and

insights on research areas such as the capital asset pricing

model (CAPM) and the efficient market hypothesis (EMH). Part

of the research has attempted to provide explanations as to

whether portfolio active management is a viable task as

practiced by the professional investors (money managers) who

might possess superior information. In academics, this is

referred to as a test of market efficiency in the strong

form. The traditional performance evaluation techniques rely

on the portfolio's risk-adjusted returns, which is a

comparison of managed and naively selected (not

professionally managed) portfolios with similar risk

characteristics. In the context of EMH, this translates to

informed investors, who achieve higher returns on a risk-

adjusted basis than do the uninformed, who do not act on

quality information. An efficient market is defined as an

investment environment where consistently "beating the

market" is not possible. Superior returns would be due to
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mere chance, and any attempts to outperform the market would

produce subaverage results due to incurred costs in resource

usage.

Mutual funds, one area of professional portfolio

management activities, have experienced considerable growth

in recent years. The diversity and variety of the forms of

portfolio management practices in the mutual fund industry

have provided unlimited research opportunities for

theoreticians in the field of finance, with EMH being a main

focus of interest. This study is mainly concerned with the

performance techniques that are used to evaluate mutual fund

managers.

The financial literature points to various problems that

investment performance evaluators face when examining

professional portfolio managers. Aside from model

misspecification, incomplete knowledge about the portfolio

managers' activities in portfolio risk adjustments cause

biases when the portfolio's risk-adjusted returns are

measured based on risk. Another controversial issue among

academicians is the appropriateness of market indices used as

proxies for the market portfolio. It has been suggested that

the market portfolio is not observable.

Part of the research in the area of performance

evaluation has concentrated on formulating models that

measure investment performance. A recent development is the

distinction between managerial skills in market timing
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(macroforecasting) and selectivity (microforecasting)

abilities. Market timing is defined as forecasting the broad

movements of the market as a whole and predicting how various

asset categories will perform. At the micro-level,

selectivity skill is the ability to identify superior

securities within a broad asset category which will

outperform others.

The justification of an active management strategy would

be trivial if the performance models were flawless. A

perfect evaluation model would show the true skills of a

portfolio manager and, therefore, it would be possible to

assess the effectiveness of decisions made by following a

designed active strategy. However, imperfect and approximate

models, together with data contaminated with noise, would

produce results that warrant complex analysis to understand

the investment activities of the portfolio managers. It is

possible that the formulated performance models are accurate

in differentiating among the range of managerial skill

levels. However, if the performance models are marginally

accurate, the results of performance studies would be biased.

This study is organized as follows. The results of the

literature review are presented in Chapter 2. This part of

the thesis also includes a brief description of the

theoretical concepts behind the state of the art mutual fund

timing and selectivity models. Furthermore, the empirical

studies based on these models are examined. The lack of
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attention to the power of performance models in previous

mutual fund timing and selectivity studies demonstrates the

need for this study. We question the empirical findings of

the recent mutual fund studies, that fund managers, on

average, do not possess timing and selectivity skills. Our

primary concern is with the performance models that are used

to evaluate fund managers. A simulation procedure is devised

which provides the means for model comparison. The models

chosen include Jensen, Henriksson-Merton, Lockwood-Kadiyala,

and Bhattacharya-Pfleiderer. These models have been used

extensively in mutual fund performance studies.

In Chapter 3, the time series behavior and

distributional properties of the market return series are

discussed. The procedures for designing timing and

selectivity portfolios, as well as those for the noise model,

are also addressed in Chapter 3. The characteristics of a

sample of mutual funds and the data on a market portfolio

proxy provide the means for constructing simulated mutual

fund portfolio returns. Furthermore, a flowchart summarizes

the designed simulation model, and the proposed model is

validated in the latter part of Chapter 3. The basis for

this part of the analysis is to investigate whether the

generated timing and selectivity portfolios' returns are

adequate and satisfy the simulation model's assumptions. The

constructed mutual fund returns will then be used to test the

timing and selectivity models in terms of their accuracy.
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The experimental design is described in the final section of

Chapter 3.

Chapter 4 presents the results on how the models perform

and whether the models can be differentiated in terms of

their accuracy. The models are examined in terms of their

power to uncover true managerial timing and selectivity

abilities, which are classified as no-skill, semi-skilled,

and skilled. In other words, hypothetical mutual fund

returns are constructed to simulate the abilities of managers

with varying degrees of information. In testing the

hypotheses of no market timing and no selectivity abilities,

the frequency of errors committed are used to compare the

power of various models.

A viable model should be able to detect a manger's

abilities separately in terms of timing and selectivity

skills. Using various methodologies, the simulated mutual

fund returns, controlled portfolios, and their performance in

terms of timing and selectivity will provide explanations

regarding the models' usefulness in performance evaluation

studies.

It has been shown that the results of timing studies are

biased if the performance models are not modified to account

for nonconstant error term variance, which in econometrics is

referred to as heteroskedasticity. The effects of correction

for nonconstant error term variance will also be addressed in

this part of the analysis. In the final phase of the study,
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a summary of the findings and conclusions are presented.

Our goal is to compare different state of the art mutual

fund timing and selectivity models in a designed experiment

that simulates fund managers' investment behavior. This

study's simulation environment relies on the empirical

distributions of the market risk-premium returns and equity

mutual funds' asset allocations to Treasury bills. The

results of the comparison of the models provides insights

into the working characteristics of mutual fund timing and

selectivity models.



7

Chapter 2

REVIEW OF LITERATURE

Earlier studies on investment performance evaluation

concentrated on techniques which identified a portfolio's

return on a risk-adjusted basis. These performance measures

were designed to rank portfolios according to their risk and

return characteristics.

In portfolio analysis, the part of the risk that can

nearly be eliminated by holding a widely diversified

portfolio is called non-systematic risk, sometimes referred

to as firm-specific. As the alternative name implies, this

risk is born out of factors which affect any company on an

individual basis, based on its particular operating

environment. However, the risk factors which affect firms in

isolation can be greatly reduced if a large number of these

companies' securities are held in a portfolio. As a result,

rational investors will hold diversified portfolios to

eliminate firm-specific risk.

The systematic risk (or market risk), portfolio beta

Op), is the part of the total risk, in the portfolio

context, which can not be eliminated. Systematic risk, flp,

explains how the portfolio's return is affected by the

market, which is in turn influenced by general economic

conditions. This relationship can be expressed in terms of

the portfolio return, Rp, and market return, Rm, covariance
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and the variance of the market return, ez,:

flp = COV(Rp,12,)/a216,0 (2.1)

The original performance measures as developed by Sharpe

(1966), Treynor (1965), and Jensen (1968), were all

formulated under the assumption of constant portfolio risk.

The findings of these classical works, as well as most of the

recent studies, indicate that after accounting for fund

expenses, most of the mutual funds have not been able to

outperform the market.

Next, an overview of mutual fund performance models is

presented and the findings of the empirical studies based on

these models are discussed.

Treynor's Reward-to-Volatility Ratio

The CAPM based reward-to-volatility ratio introduced by

Treynor (1965) uses systematic risk as its risk adjustment

factor. This relationship is of the form:

(Rp-R.f)/fip. (2.2)

The numerator, the excess return, is the difference between

the portfolio return, Rp, and the risk-free interest rate, Rft

which is the reward for the risk-bearing investor, while the

denominator, portfolio beta, Op, is the adjustment factor for

risk. Since the Treynor measure only considers the

systematic risk portion of the total risk, it ignores the

portfolio's diversification, and the implicit assumption is

that the portfolio is relatively well-diversified.
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Sharpe's Reward-to-Variability Ratio

Sharpe's (1966) reward-to-variability ratio is also CAPM

based. It adjusts the portfolio's return based on its total

risk, namely systematic and non-systematic risk. The total

risk is measured by the standard deviation of the portfolio.

This relationship is of the form:

(Rp-R1) /op. (2.3)

The numerator is the risk premium earned by the portfolio,

Rp-R1, and the variability in the portfolio's returns is

expressed as the standard deviation of the portfolio, orp. As

a result, the reward-to-variability index is, in effect, the

excess return per unit of total risk. The Sharpe ratio is an

appropriate measure for nearly perfectly diversified

portfolios, since the standard deviation is a good measure of

the total risk. Sharpe (1966) found that using his model and

taking into account the fund expenses, a sample of 34 mutual

funds underperformed the Dow-Jones portfolio.

The Sharpe and Treynor ratios would have identical

results if the portfolio under consideration is perfectly

diversified, as the portfolio risk is represented either by

the portfolio beta factor (market risk) or its standard

deviation. A set of portfolios can be ranked on the basis of

risk-adjusted returns using these methods.

The Sharpe and Treynor performance statistics can be

classified as measures that are based on return per unit of

risk. The next performance measure, the Jensen model, can be
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described in terms of return differential expressed as a

function of portfolio return and benchmark portfolio (market

proxy).

Jensen Measure

Jensen (1968) proposed a measure of performance which

also relies on CAPM assumptions. It was shown that portfolio

or security returns can be expressed in risk premium form,

Re=Rm-Rft, as:

Rpit = pRmf + eof (2.4)

which defines a linear relationship among the effects

portfolio beta, Op, market return in risk premium form,

Rv1=Rw-Rf, and random error, em, where E(em)=0, and R ft is the

risk free rate. Jensen showed that a manager with superior

forecasting ability will show em>0. In other words, this

excess return is a new added term to what is already realized

as the premium due to portfolio risk. The proposed

performance measure, ap, was formulated by using expression

(2.4) without the constraint of a zero intercept:

Ro = ap + flpRno + um, (2.5)

where um is the error term which has an expectation of zero.

According to this formulation he suggested that

portfolios with better than average returns will have a

positive ap, or a positive regression intercept. Therefore,

a is considered as the specific return of a particular

portfolio over the market return. In an efficient market
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under equilibrium conditions, this intercept will equal zero,

which is consistent with the assumptions of the Capital Asset

Pricing Model. Jensen claims that when a manager possesses

timing ability, his model will show a portfolio risk, ft,

which is biased downward and an ap, which is biased upward.

However, the model's results would be unbiased if the manager

is an unsuccessful market timer. Jensen (1968) found that

his sample of 115 mutual funds over the period 1945-1964 did

not outperform the passive policy known as buy-the-market-

and-hold.

McDonald (1974) investigated the risk and return

characteristics of 123 mutual funds and their consistency

with the stated objectives. The study used monthly returns

over the period 1960-1969. The findings suggested that funds

with more aggressive objectives (higher risk) produced better

results, in terms of Sharpe's and Treynor's measures, than

the average funds (lower risk). Only 5% of the funds showed

a significant ap at the 5% level using Jensen's performance

measure, which could be explained in terms of mere chance.

Murphy (1980), using risk-adjusted (Jensen's a,) and

absolute returns, conducted a simulation study to measure the

performance of 100 portfolio managers over 10 years. He

claimed that the abnormal returns reported by most of the

mutual fund studies are rarely large enough to be reported as

significant, given their measurement errors. The results of

the study show that over the period of 10 years,
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underperformers (outperformers) occasionally had superior

(inferior) performance, an outcome explained by chance.

However, one would expect that over longer time periods, the

true skill of the managers could be correctly identified.

French and Henderson (1985) examined the Sharpe,

Treynor, and Jensen measures for 50 simulated portfolios,

over a 5 year period, using monthly returns. The study

considers the accuracy of these performance measures given

the amount of random noise in the stock returns. The

rankings are accurate and consistent with the designed

portfolios. However, the authors found that their results

were similar to those of Murphy (1980), that the estimates

for portfolios' abnormal returns are only significant when

the resulting alphas are very large. The study claimed that

the monthly portfolio excess returns were approximately 1% or

greater before they appeared to be significant at the 5%

level. Murphy also proposed a similar figure.

In a recent study, Grinblatt and Titman (1989) used

quarterly portfolio returns over the period 1975-1984 to test

for abnormal performance as modeled by Jensen's ap. They

found evidence of superior performance among funds classified

as aggressive-growth and growth, and among funds with small

net asset value. However, due to the high expense of this

particular group of funds, their returns did not show

abnormal performance after adjusting for the fund expense.

Ippolito (1989) conducted a similar study over the
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period 1965-1984 using the Jensen measure to evaluate the

mutual fund industry, and examined its implications on market

efficiency. He claimed that the absence of superior returns

by mutual fund managers are consistent with the efficient

market hypothesis, given the cost of acquired information.

The performance models discussed above assume the

portfolio systematic risk (beta), 0,, to be stationary over

time. The possibility that 0, may vary over time is not

considered. A market timer will attempt to adjust the

portfolio's riskiness according to market conditions. In

anticipation of a rising (bull) market, the portfolio will

consist of high risk securities, and in a declining (bear)

market, the portfolio holdings will be shifted to low risk

securities. Therefore, in market timing environments, the

portfolio beta, Op, will no longer be stationary, and the

results of previously discussed risk-adjusted performance

measures will not be valid.

Even if the portfolio manager is not attempting to

engage in market timing, the systematic risk of the

individual securities held in the portfolio might be changing

through time. Another factor influencing the portfolio beta

could be the changing market value of the securities. These

changes in turn cause the portfolio beta to be nonstationary,

which would be evidence to invalidate the studies that are

based on the assumption of constant beta. Furthermore, there

are other factors that also might affect the portfolios'
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rankings using the traditional performance measures. Some of

these findings are briefly discussed in the following

section.

Grant (1977) showed that the performance and risk

measures defined by Treynor and Jensen are biased if the

market timer possesses skill in macroforecasting activities.

Furthermore, his study's results indicate that in the

presence of market timing ability, the Jensen performance

measure, ap, will be biased downward, which is contradictory

to Jensen's findings.

Miller and Gehr (1978) found the Sharpe measure to be

biased when the sample size was varied. Through analytical

derivation, the magnitude of the bias for various sample

sizes was presented. For N=3, the bias in the Sharpe measure

was approximately 77% upward, and for N=50, the upward bias

was 1.6%. The study suggested that for equal sample sizes,

the rankings of the portfolios will not change. However, the

results will vary if unequal sample sizes are used. Chen and

Lee (1986) claimed that, using the Sharpe measure, the

portfolio rankings are a function of sample size, the

investment horizon, and market conditions. To compensate for

the observed bias, they suggest that a shorter investment

horizon and a large sample size be used.

The previous measures presented by Jensen, Sharpe, and

Treynor focus on the overall portfolio return on a risk-

adjusted basis. Next, the performance measures which make
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distinctions between managerial timing and selectivity

abilities are discussed.

Traynor and Mazuy's Timing Model

Treynor and Mazuy (1966) used a sample of 57 mutual

funds over the period 1953-1962 to test for market timing

ability. They claimed that a fund with successful market

timing will have a concave characteristic line, which they

account for by adding a quadratic term to the market model

expression, Rprap+i3pRnin+epz:

Rpft = ap + flAvi + 7pR2,0 + co, (2.6)

where a test of market timing is equivalent to the test of

the null hypothesis 110:7p=0. The study found no evidence of

market timing ability on the part of mutual fund managers.

Williamson (1972), using Treynor and Mazuy's method, tested

a sample of 180 mutual funds for the period 1961-1970, and

his results also indicate that the fund managers were not

successful in forecasting the market.

Fama's Timing and Selectivity Model

Fama (1972) offered a more specific breakdown of the

total portfolio return. The study was one of the original

contributors which made distinctions between selectivity and

timing components of the portfolio return. Selectivity

(microforecasting) was defined as the return differential

between a managed portfolio and a naively selected portfolio
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with similar risk characteristics, and timing was referred to

as the part of the portfolio return that is due to the

movements of the market as a whole. The study proposed the

following model:

Rift = (R0 RoAd] rRw(0p) Rft] . (2.7)

where ReRpt-Rit is portfolio's overall performance component

in risk premium form consisting of the portfolio return, Itp,

and the risk free rate, Rf; (Ro-R0(f31,)] is the selectivity

component which is expressed in terms of portfolio return,

Rp, market return, Rm, and the portfolio beta, Op; and the

portfolio risk (timing) component is captured by the term

[Rm,(13p)-Rft].

There have been attempts to develop models which take

into account the nonstationarity of the portfolio beta. In

the following paragraphs, the empirical evidence on the

stationarity of the portfolio beta is presented and the

models which account for a nonstationary portfolio beta are

discussed. This next section consists of a review of the

studies that deal with mutual fund portfolios rather than

individual stocks.

The test for mutual fund selectivity and systematic

risk parameters' stability during bear and bull markets was

undertaken by Fabozzi and Francis (1979). The authors

employed the following modification of the single-index

market model, Rpt=api-OpR+ep to test for the nonstationarity



of the mutual fund performance parameters:

rpt = Alp + A2pDt + B 'Fr,: + B2pArmi + elm,

17

(2.8)

where ro and rw are the portfolio and market returns, A is

a binary variable which equals one for a bull market and

takes a value of zero for a bear market, and A
21

and B
1,
are

, 2

coefficients that show the effects of a bull market on

selectivity (alpha), Alp, and timing (beta), Blp, measures. To

examine the stationarity of the performance parameters, the

hypotheses hrp:A4=0 and 110:B2p=0 are tested for significance

using the t-test. The authors conducted the study for a

sample of 85 mutual funds over the period 1965-1971. The

alphas were found to be stable and not sensitive to market

conditions. The results of the study for market timing

ability are essentially the same as in the work conducted by

Treynor and Mazuy (1966), that mutual fund portfolio managers

do not alter the portfolio beta to account for changing

market conditions. Alexander and Stover (1980) also used the

indicator variable regression model which, in addition,

accounted for leads and lags. The study found no evidence

that mutual fund managers are successful market timers.

Kon and Jen (1978,1979) and Kon (1983) used switching

regression to test for beta stationarity for a sample of 49

mutual funds over the period 1960-1971. They found

substantial evidence in favor of the nonstationarity of

mutual fund systematic risk. The authors claimed that the

observed beta nonstationarity was due to managerial timing
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activities. The study did not report consistent patterns of

selectivity and timing performance of the selected mutual

funds.

Miller and Gressis (1980) also showed that mutual fund

portfolio beta nonstationarity exists, and their study

proposed a partition regression method to estimate the

performance parameters. The study used the weekly returns of

a sample of 28 mutual funds over the period 1973-1974.

Francis and Fabozzi (1980) used the random coefficient

model (RCM) and reached the same conclusions, that portfolio

beta for some funds is best described by a random process.

The RCM estimation procedure relies on the residuals, em, of

the market model, Ro=ap+13pRw+ept, and on the variances of the

residual and the fund's beta for each period around the mean

beta. The study used a sample of 85 funds' monthly returns

over the period 1965-1972. Furthermore, the investment

objectives of the funds were classified as Growth, Growth-

Income, Balanced, and Income.

It is possible that the mutual fund portfolio betas are

not stationary, but this evidence should not always lead to

the conclusion that fund managers are engaged in market

timing. As previously discussed, the portfolio beta

nonstationarity could be attributed to the changing market

value or betas of the individual securities held in the

portfolio. This argument was discussed by Alexander, Benson,

and Eger (1982), who also concluded that mutual fund
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portfolio betas are nonstationary. Following the previously

proposed models of beta nonstationarity, namely switching and

partition regression models, the authors used a technique

based on the first-order Markov process. The data consisted

of monthly returns for a sample of 67 mutual funds over the

period 1965-1973.

In a recent study, Kane and Marks (1988) examined the

validity of the Sharpe measure when market timing exists.

They have shown that the Sharpe measure will fail to rank

market timers correctly according to their ability if

quarterly or longer time periods of return data are used.

The study finds that using monthly or daily fund return data

is much more accurate in ranking the fund managers who are

successful market timers, which could be explained in terms

of parameter stationarity (stability) in shorter time

intervals.

To predict market movements, a portfolio manager has to

forecast bear and bull markets. The accuracy of the market

predictions depends on a manager's forecasting ability and on

how frequently (s)he is correct. The level of predictive

accuracy required to justify timing activities is one of the

main issues addressed in the timing studies dealing with

potential benefits and limitations of market timing.

Sharpe (1975) showed the likely gains from market timing

using the historical data on an annual basis for the period

1929-1972. The gains from perfect timing are shown to be
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approximately 4% per year, and it is suggested that only

managers who possess truly superior timing skills, stated at

a minimum of 70% accuracy, should engage in timing to beat a

buy-and-hold strategy. The study classified each year as a

bull or bear market, depending on whether stocks or cash

equivalent returns exceeded each other on an annual basis.

Because of the drastic market conditions experienced during

The Great Depression and in the two decades immediately after

World War II, the study also investigated the more

conservative years, those during the periods 1934-1972 and

1946-1972, and the previously mentioned results remained

intact. The proportion of the bull markets in all the three

periods had a range of 0.60-0.70.

In a similar study conducted by Jeffrey (1984) over the

period 1926-1982, he stressed that the risks from market

timing outweigh its rewards. The study suggests that to

engage in successful market timing is to take a "contrarian

view" to the market consensus, which would be in conflict

with the objectives of the trustees of the funds. Jeffrey

concluded that, because of an unfavorable potential loss-gain

relationship in market timing activities, fund managers

should follow the established policies and guidelines of the

trustees, and avoid the costly and risky task of forecasting

market movements.

Chua and Woodward (1986) extended Sharpe's (1975) work

in a more detailed analysis. Their study differentiated
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between the ability to forecast bear and bull markets, and it

considered various combinations of forecasting abilities for

rising and declining markets. Furthermore, the study

considered assets such as long-term corporate bonds and real

estate in addition to Treasury bills for portfolio

switchings. The study found that to beat a buy-and-hold

strategy, it is necessary to have, at the minimum, the

following accuracies: 80% bull and 50% bear; 70% bull and 80%

bear; or 60% bull and 90% bear. The results for corporate

bonds and real estate as alternative investment assets

indicated that even higher predictive accuracies are required

to surpass a buy-and-hold strategy. These results indicate

the importance of being in a bull market versus a bear

market, as predicting rising markets requires higher

accuracy. For example, a portfolio manager with less than a

60% bull market predictive accuracy should not attempt to

time the market. The authors confirm Jeffrey's (1984)

results that, historically, the years in which the stock

market has shown high returns are not frequent and have

happened over short time periods. They also suggest that the

market can be characterized as having had average or

subaverage years, which is an argument in favor of a passive

buy-and-hold strategy if managers do not possess superior

timing skills, particularly for bull markets. Chua and

Woodward (1986) reported large standard deviations in returns

resulting from the timing activities. The study suggested
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that with such large variations, it would be difficult to

have "consistently positive gains," while it would be

possible for some fund managers to have superior returns and

outperform others.

Droms' (1989) main contribution to the body of timing

studies was that, in addition to the yearly switchings, he

also considered quarterly and monthly portfolio timing

revisions between bear and bull markets. The study showed

that managers can attain higher returns if they engage in

more frequent switchings, and as a consequence, the

accuracies required to beat a buy-and-hold strategy would be

lower. However, as was discussed in the other studies,

transaction costs affect portfolio returns more dramatically

as timing activities increase. In other words, it becomes

less advantageous to engage in market timing as transaction

costs increase. It is possible that the trade-off between

portfolio switchings and transaction costs does not produce

returns large enough to justify market timing in real world

portfolio management activities.

All the studies discussed have formulated the degree of

accuracy required to beat a buy-and-hold strategy portfolio

during up and down markets. However, it should be emphasized

that the results of the majority of the time studies

discussed are based on historical data. If the market would

have taken a different path, the results might favor market

timing. For example, Vandell and Stevens (1989) show that
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during the period 1973-1984, it was more important to time

bear markets than to time bull markets, which contradicts the

findings of the previous studies. As a result, in this case,

the rewards of timing would have outweighed its risks.

Clarke, FitzGerald, Berent, and Statman (1989) argued

that market timers' returns depend on the level of

information they possess. He claimed that even with moderate

information, a market forecaster can beat a buy-and-hold

strategy. According to the study, a market timer who does

not possess any information follows the passive strategy of

buy-and-hold. Clarke proposed a simple model based on GNP,

which aids in forecasting market movements. The information

about future stock trends is gathered by analyzing the

correlation ccefficient between the GNP number and the stock

returns. According to this model, in the case of a buy-and-

hold strategy, the market timer is correct 66% of time, which

corresponds to a correlation of 0.1 between the GNP and stock

returns. The 66% rate of accuracy is period specific and

represents the proportion of bull markets (versus bear) in

the time period during which the study was conducted.

Furthermore, a 67% rate of accuracy corresponds to a

correlation of 0.3 between the GNP and stock returns.

However, with transaction costs included, higher levels of

accuracy are required to surpass a buy-and-hold strategy.

Sy (1990) confirmed Vandell's (1989) and Dorms' (1989)

results that, because of the stock market's recent behavior,
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it would be easier to beat a buy-and-hold strategy than had

been implied in the previous timing studies. The study

suggested that gains from market timing are period specific,

and the influencing factor was mentioned as the return

differential between stock and cash returns. Furthermore, it

was stressed that the advantage of the market timers in

recent years is due to the narrowing of the gap between stock

and cash returns. According to Sy, small investors will be

less successful in market timing than professional investors,

because small investors must pay large transaction costs and

do not hold the skills. Next, the mutual fund performance

models which distinguish between timing and selectivity

measures are discussed.

Jensen's Timing and Selectivity Model

Jensen (1972) formulated a model of timing and

selectivity, where the input variables include the ex post

returns of the portfolio, Rft, the market return, Rmit, the

expected return on the market, E(Rmj), the portfolio target

beta in time t, 00, and the manager's response to the market

information, 0. This relationship is expressed as:

Rift = no + lpt + n2 + up,, (2.9)

where 7rm=A0E(R4). Jensen (1972) specified the large sample

least-squares estimates, or probability limits, of the

coefficients as:

plim 10 = ap + SpiE (Rnd + B ( p2nm - 1) a27r , (2.10)



and

plim 712 = p222m0E(R,f) +

plim 712 = 0,

where the manager's market timing ability measure is

estimated by pnm, which is the correlation between the

manager's forecast and the outcome of it,,,. The parameters of

managerial selectivity measure, a,,, and timing ability, pnm,

cannot be computed unless the estimates of the market's

expected return, E(Rm), and details about the market forecast

and the corresponding portfolio adjustments, are known.

Henriksson-Merton Bivariate Regression Model

Based on the value of macroforecasting skills, Merton

(1981) formulated an equilibrium theory which is based on two

possible market conditions, namely whether stocks or riskless

securities provide a greater return. This approach to the

prediction of market conditions does not rely on the

magnitude of the forecasts as does Jensen (1972). However,

the procedure requires forecasts by the fund manager whether

stocks or riskless securities will outperform each other.

According to the manager's belief about the direction of

the market, the funds will be appropriately invested in

stocks or riskless securities. Therefore, the portfolio beta

will be adjusted depending on the forecast of a bear or a

bull market. And as expected, a rational market timer will

design a higher portfolio beta for a bull market than for a
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bear market. A brief explanation of the model follows.

If y, is denoted as the market timer's forecast variable

predicted at time t -1 for time period t, then the conditional

probabilities of 7, given the outcome of the market return

are:

= prob[7t=0 RmTtjt], (2.13)

1 - p1, = prob[7,=1 Rm.R.11],

and

p21 = probpy,=1 Rm)-BW, (2.14)

1 - = probpy,=0
I
Rm>4W,

where p1 and p2, are the conditional probabilities of a

correct forecast given a bear market, RmiR:12, and a bull

market, Rw.R.ft. HM showed that ph+132i is a necessary and

sufficient statistic for evaluating the manager's timing

skill. A greater than one summation of probabilities

indicates that the manager possesses macroforecasting

(timing) ability. Furthermore, pn=1 and 132:=1 are the

necessary conditions for perfect foresight. The situation

where the manager fails to predict the market directions

correctly is represented by the condition philaz=1. In

addition, it is denoted as the portfolio target beta during

a bear market, RnaBlil, and in the presence of a bull market,

Rm>.R.11, the portfolio beta is represented by n2 Therefore,

at time t, depending on a bear or a bull market, the fund

manager will adjust the portfolio beta between Ali and n2 A

rational manager is expected to have 112-n2. Using these
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concepts, Henriksson and Merton (1981) derived the following

timing and selectivity model:

Rpft = ap + 1:31X, + 132Y1 + 6k,, (2.15)

where

X, = R011 - Rft,

and

171 = max(0, .

The large sample estimates of the regression coefficients are

shown as:

plim /31 = P1712 (1-132) %, (2.16)

plim /32 = (P1 + P2 1) (n2 ni) , (2.17)

where pl and p2 are the proportions of successful predictions

for bear, RmsB!ft, and bull markets, Rm>dt.i.

A measure of the manager's macroforecasting skill is

provided by testing the null hypothesis H0:1:12=0. If 132=0, two

conditions arise: 1) p11 +p2,=1 indicates lack of timing

ability; and 2) n1 = 'i2 represents an identical bull and bear

market portfolio beta, which shows that the fund manager does

not engage in portfolio risk adjustments. Furthermore, ap

provides a consistent estimate of the managerial selectivity

ability, which is tested by the null hypothesis 11,,:ap=0.

Henriksson and Merton (1981) have also derived a

nonparametric procedure which relies on the predictions of

the forecaster. This study uses the described CAPM-based

parametric test which relies on the observed market and

portfolio returns to test for managerial timing and
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selectivity abilities.

Henriksson and Merton (1981) showed that the derived

performance model is heteroskedastic and the error term em

has nonconstant variance. This study uses the White method

(see p. 71) to correct for heteroskedasticity to obtain

efficient estimates.

Chang and Lewellen (1984) tested a sample of 67 mutual

funds for the period 1971-1979 using monthly data. The

authors used the Henriksson-Merton model to test for the

presence of market timing and stock selectivity abilities.

They found no evidence of superior market timing, nor did the

managers show any microforecasting abilities. Another study

performed by Henriksson (1984) reached the same conclusions

using a sample of 116 mutual funds over the period 1968-1980.

Bhattacharya-Pfleiderer Time-Varying Beta Model

The shortcomings of the Jensen's timing and selectivity

model were corrected by Bhattacharya and Pfleiderer (1983).

The authors substitute Rmfl for nx, and through their

formulation, the portfolio's timing and selectivity measures

rely on return data from the fund, Re, and the market, Icor.

The model does not require any forecast data as in Jensen's

case. The Bhattacharya and Pfleiderer's (BP) modification of

Jensen's model is expressed as:

Rpn = ap + (R4) (1-(p)Rma + 09(R2,0) + coo, (2.18)

where
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= a2./ (a2. + a2,)

The term e is the error associated with the fund manager's

forecast, and (72 and (72, are the variances of the terms irm and

elm. Furthermore, ap is shown to be the proper consistent

estimator for managerial selectivity skill. To test for the

fund's macroforecasting (timing) skill, the components of the

error term, coo, are considered:

(opt = 09,601%0 + UM. (2.19)

BP showed that the manager's timing ability can be estimated

by running a no-intercept regression of (J20 on R2,0:

where

(Wo)
2 02s0202t 2 +

= 020,2 2 2pt,old + 2 + 2 0

Merton (1980) proposed the following estimator for a2ir

= f t [in (1 + Riot) ] 2}/n, (2.22)
t=i

which requires only the market risk premium return, kilt, as

the input variable.

Using expressions (2.18), (2.19), and (2.22), BP showed

that the manager's timing ability can be measured by

investigating the correlation between the portfolio beta, Aap,

and the market return, RIf:

PTIM Y'X
aw2

1,6
2 (2.23)

To test for the manager's timing ability, the null hypothesis

H0:pm=0 is tested. The managerial selectivity ability is
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tested by the null hypothesis 110:ap=0.

Correction for Heteroskedasticity

The BP timing and selectivity model specified in

expressions (2.18) and (2.20) is heteroskedastic and does not

provide the most efficient estimates of the managerial timing

and selectivity parameters due to the nonconstancy of the

error terms' variance. The efficient estimates of the timing

and selectivity measures can be computed using a generalized

least squares method (GLS) which relies on the variances of

the error terms coo and Lee and Rahman (1990) offered the

following derivations for the variances of the error terms:

a2, 02902a2, 2 + a2u

and

(2.24)

204904(Rmi)4a, 2(74, 4029,p2a2,(Rmi)2a2,0 (2.25)

where a2, is the estimate derived from expressions (2.18) and

(2.20), and a2,, is estimated using expression (2.5):

Rppap-1-8pR,fl+up,. Furthermore, the variables in expression

(2.18), including the intercept term, ap, are divided by a..

This forms the following expression:

Re/a, = ap/a + 0E(Rnif) (1-(p)Rno/a, + Oso(R2,0)/a, + (00, (2.26)

which is a no-intercept regression estimation procedure.

Similarly, the variables in expression (2.19) are divided by

ar:

(0pt /Qt

02602a2 (R )2/a r,
E mft pt i (2.27)

where (4120 is the original disturbance term of the expression
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(2.18), and the computation procedure is continued as before.

These new approximations provide the most efficient estimates

for the managerial selectivity and timing ability measures.

Lee and Rahman (1990), using the BP model, tested for

microforecasting and macroforecasting abilities of a sample

of 93 mutual funds. The study used monthly returns over the

period 1977-1984. The results show that 15% of the funds had

significant positive stock selectivity, and 10% showed

significant negative selectivity. Furthermore, 17% of the

funds show that the managers were successful market timers,

as evidenced by the significance of the results at the 5%

level. The authors concluded that there is "some evidence"

of superior performance among the individual mutual funds,

and suggested that their results have implications for

managers on how to formulate timing and selectivity

strategies.

Lockwood-Radiyala Stochastic Regression Model

Lockwood and Kadiyala (1988) (LK) proposed a time

varying beta model to test for managerial timing and

selectivity ability. The LK model avoids the shortcomings of

the Jensen model (1968), which assumes a constant portfolio

beta, and of the Henriksson-Merton model (1981) which relies

on the assumption that the portfolio beta, dip,p I be altered

only when the market's condition is changed, i.e., when the

sign of Rmit=Rmi-R.11 is switched between bear and bull markets.
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The LK model treats the portfolio beta as a stochastic

parameter, 00. The model is formulated such that the

portfolio beta is a time varying parameter:

00 = (Spi 61,2ffmt 00, (2.28)

where

= R to - E (R,f) ,

and

00 = random error.

The expected market return, E(Rmj), is approximated using the

sample market risk premium returns, Rie. Under the LK's

formulation, the time varying portfolio beta market model,

Rprap+00Rmt+ep is combined with the expression (2.28) to form

the following timing and selectivity model:

a + 6ppIR,14 + 8 1
P

1Q + vPt
(2.29)

where

and

Qw = R,flicu ,

v = Rma0 + 6k,,

corr(0,6) = 0.

In addition, the mean of expression (2.29) is expressed as:

E(Rpf) = ap + 6pIE (AV + (V2/unf, (2.30)

which shows that the outcome of the manager's portfolio

timing activities are related to the market risk premium

return volatility.

To test for the manager's timing ability, the null

hypothesis H0:62=0 is tested. Furthermore, ap provides a
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consistent estimator of the managerial selectivity ability,

which is a test of the null hypothesis 1,10:ap=0.

Due to the heteroskedasticity of the error term:

O2. = 472, + 02082,0, (2.31)

the derived timing and selectivity model requires correction

to account for nonconstant error term variance. This study

uses White's method (see p. 71) to correct for the model's

heteroskedasticity.

The Lee and Chen (1982) variable mean response

regression model and Chen and Stockum's (1986) generalized

random beta model are similar to the LK model with minor

differences in interpretation of the parameters and

formulation of the methodology. However, all of these models

are based on the pioneering work of Treynor and Mazuy (1966)

which introduced the quadratic regression model to test for

managerial timing ability. Treynor and Mazuy did not

consider the heteroskedasticity of the error term.

Using the stochastic regression performance model,

Lockwood and Kadiyala (1988), tested a sample of 47 mutual

funds over the period 1964-1979 using monthly returns. The

results reported show that the majority of funds do not

demonstrate any managerial skill in macroforecasting and

microforecasting abilities.

The BP timing and selectivity model specification is

similar to the LK methodology. The estimation procedures for

measuring the managerial selectivity ability, aP, are



34

identical. However, the BP model uses the error term, cup to

measure the managerial timing ability, whereas the LK

methodology relies on the significance of the coefficient of

R2,0 in their quadratic regression model. This study uses the

generalized least squares (GLS) for the BP model and White's

method (see p. 71) for the LK model to correct for the

models' heteroskedasticity to account for nonconstant error

terms variance. The White method is not applicable to the BP

methodology because of the model's specification.

Using the JN, HM, LK, and BP performance models, we

tested our sample of mutual funds for the period 1984-1989

using monthly data. This study uses the funds data from the

Weisenberger and Standard and Poor's (1984-1989) "Security

Owner Stock Guide" reports. The return data is based on

selected mutual funds over the period 1984-1989 (6 years)

which are invested primarily in U.S. stocks and satisfy the

following criteria:

1) the fund existed for the entire 1984-1989
period;

2) at most, 15% of assets in cash majority of the
time;

3) at most, 2% in bonds;
and
4) short selling, investments in options, and calls

are not permitted.

Using the above criteria, a sample of 31 mutual funds

qualified. Appendix A provides a list of the selected funds

and their investment objective. The fund size distribution

is shown in Table 1.
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Table 1

Selected Mutual Funds' (31) Size Distribution

Total Assets ($mil) Frequency

< 100 6

100 - 250 4

250 - 500 4

500 - 750 6

750 - 1000 5

> 1000 6

The Wiesenberger report (1989) classifies the selected funds

as Maximum Capital Gains, Long-Term Growth, and Growth and

Current Income.

The market proxy is represented by the S&P 500 value-

weighted index, which includes capital appreciation,

dividends, and their reinvestment. The risk-free rate is

represented by one-month T-bills. The performance results

are summarized in Table 2. The individual fund performance

results are included in Appendix B. As the results indicate,

we also confirm the previous studies that, on average, fund

managers do not possess superior timing and selectivity

abilities.
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Table 2
Summary of Sample Mutual Funds' (31) Performance Using
Various Models

Model

Jensen

Henriksson-Mertonb

(1) (24)

2 3(1)
Lockwood-Kadiyalab 2* 18(5")

Bhattacharya-Pfleidererb ls (2")

'Number of funds with significant performance parameter.
bModels corrected for heteroskedasticity.
*Significant at the 5% level.
( ")Significant at the 1% level.

Roll (1978) has criticized the performance evaluation

studies suggesting that a true market portfolio is not

observable, which in turn affects the computation of the

portfolio beta. Mayers and Rice (1979) acknowledge the

problems with the proper identification of the benchmark

portfolio. However, in response to Roll, the study argues

that the widely used market proxies as the benchmark

portfolio are the "best available" and that the results of

CAPM-based portfolio studies are valid.

As discussed by Grinblatt and Titman (1989), the set of

assets that comprise the benchmark portfolio and the

portfolio being evaluated should be consistent. This

argument is applicable to our study and a further discussion

is provided in Section (4.2.2).

Cornell (1979) proposed a model which uses the portfolio

composition data to arrive at an overall performance measure.
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The model avoids the claimed shortcomings of the CAPM-based

performance measures by Roll (1978). The Cornell measure

does not distinguish between managerial selectivity and

timing abilities. Elton and Gruber (EG) (1986) also proposed

a timing and selectivity model which requires knowledge about

the portfolio composition. The EG timing measure relies on

the covariance, COV(7(s),X,), between the proportion of the

portfolio invested in stocks, 7(s), and the market return,

X,. The selectivity parameter is based on the covariance

between the proportion of the portfolio invested in

individual securities and on their returns.

Using portfolio composition data, Ferri, Oberhelman, and

Roenfeldt (1984) tested a sample of 69 mutual funds for

market timing ability. The study employed the quarterly data

for funds which were classified as Maximum Capital Gains or

Long-Term Growth, over the period 1975-1980. The funds'

asset sizes were categorized as small (less than $100M),

medium ($100M-$250M), and large (greater than $250M). The

study's approach did not consider the change in portfolio

beta using the timing and selectivity models as did other

studies, and their methodology was based on whether or not

the percentage of the total assets in common stocks changed

during bull and bear markets. Regardless of the type and

size of the fund, the evidence found was against successful

market timing.

Hwang (1988) examined the robustness of various
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performance measures for their accuracy in ranking portfolios

and in the identification of positive performance. The

study's results indicated that the Elton-Gruber measure is

the most robust in detecting managerial timing performance.

The Henriksson-Merton methodology was chosen as the best

model to reveal managerial selectivity ability, and the

Cornell measure was recommended as the most appropriate for

capturing total performance.

Another recent development in the area of performance

measurement is investment evaluation using the Arbitrage

Pricing Theory (APT) proposed by Ross (1976). In the APT

model context, the portfolio (security) returns are expressed

in terms of a linear relationship between multiple factor

shocks. The difficulty in identification of these factors

has been suggested as one of the shortcomings of the APT.

Some of the popular economic (factor) shocks include market

portfolio return, real economic growth, inflation,

unemployment, and interest rates. Chang and Lewellen (1985),

Connor and Korajczyk (1986), and Lehman and Modest (1987),

among others, have proposed performance models based on the

APT. Because of the data requirement constraints of the

Cornell, Elton and Gruber, and APT performance models, we

will not address them further in this study.

The previous discussion has provided ample evidence of

mutual funds' performances using various methodologies with

different specifications. The majority of the results
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indicate that fund managers are unable to produce returns

above the benchmark portfolio, often represented by various

market indices. Occasional evidence of superior performance

in prior work has been regarded as mere chance. One argument

to explain the poor performance of mutual funds has been the

incurring fund expenses and transaction fees. Furthermore,

this has given an opportunity for proponents of the efficient

market hypothesis to defend their position, that "beating the

market" is not possible. However, a review of mutual funds'

performance records indicates that some of the funds have

been able to beat the market during extended periods of time,

i.e., five or ten years, in absolute returns.

These arguments point to several possible explanations.

As one group of researchers has discussed, it is possible

that fund managers are not able to produce superior returns

due to their inability to correctly forecast future economic

events. One could also perceive the problem from the widely-

used models' perspective that the performance models are weak

and misspecified in detecting managerial skills. Yet, the

common data problems including noise, measurement errors, and

misspecified variables also contribute to the biases in

inferences drawn from the performance studies. The amount of

variability that exists in the return data due to known and

unknown factors plays a major role in what the output of the

performance models means.

If the input to the model is controlled, it would be
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possible to understand the mechanism (or working

characteristic) of the model. One way to approach this is by

means of a simulation. A reasonable question is how great a

manager's return needs to be before it is recognized as

skillful. The only studies to date that have addressed this

point are those of Murphy (1980) and French and Henderson

(1985). Utilizing the Jensen measure, both studies proposed

that funds should have monthly excess returns of at least 1%

before being shown statistically significant by the Jensen

model. However, Jensen's measure is only adequate for

specific portfolio management environments. For example, the

model breaks down in the presence of managerial timing

activities. However, the more sophisticated models that

account for managerial timing and selectivity activities have

not yet been tested using a simulation procedure.

Furthermore, the form of input return data that is

constructed after the real mutual fund portfolios has not

been discussed.

Given the amount of noise that is characteristic of the

mutual fund return data, how skillful do managers need to be

before being identified as superior? In other words, in

managerial timing and selectivity environments, what

magnitude of portfolio returns are required before the

various mutual fund performance models show a manager as

having superior ability in market timing and stock selection.

In this study, these skills will be considered both in
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isolation and in combination.

The literature review shows an absence of adequate

simulation studies to test the power of various timing and

selectivity models. The selected models represent a complete

set when the available data includes the portfolio returns

and relevant market data. This study will examine the

following timing and selectivity models: 1) Jensen (JN); 2)

Henriksson-Merton (HM); 3) Lockwood-Kadiyala (LK); and 4)

Bhattacharya-Pfleiderer (BP). Furthermore, the models chosen

for our study have been used on an extensive basis to test

mutual fund performance. The simulation design in this study

is unique as it considers realistic portfolio environments.

This study proposes a variety of skill environments in timing

and selectivity abilities, which is a realistic assumption in

classifying the mutual fund portfolio managers as

underperformers (no-skill), average (semi-skilled), and

outperformers (skilled). Using these skill environments, the

designed simulation examines the power of mutual fund

performance models.
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Chapter 3

DESIGN OF SIMULATION MODEL

The objective of the designed simulation is to examine

the power of various timing and selectivity models. The

models considered treat the portfolio beta with varying

degrees of stationarity. The findings of the study will show

whether the stochastic beta models result in significant

improvements over the simpler models, those which treat the

portfolio beta as constant or bivariate. The experiments are

conducted in environments in which there are diverse

portfolio management skill levels. The generated portfolios

depict varying degrees of skill in market timing and stock

selectivity. After having designed several different

portfolio structures, the study conducts tests to examine the

effectiveness of various timing and selectivity models to

detect macroforecasting and microforecasting skills.

The important question being addressed is how different

timing and selectivity models perform when varying degrees of

managerial skill exist. Therefore, it is necessary to devise

a simulation procedure to introduce timing and selectivity

ability into portfolio returns in a realistic manner.

The expertise of the portfolio manager in market timing

(macroforecasting) and stock selectivity (microforecasting)

is based on how frequently (s)he can correctly predict market

direction and stocks with superior returns. We assume that
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the skills of macroforecasting and microforecasting are

independent events, as it is possible for a portfolio manager

to be a successful market timer, yet have holdings in stocks

that give merely average or subaverage returns.

We employ a simulation procedure that compares the power

of selected timing and selectivity models by examining their

errors in testing the null hypotheses of no market timing and

no selectivity abilities. Errors are committed by rejecting

the null hypotheses that no market timing and no selectivity

forecasting abilities (independent events) exist when, in

actuality, they do (managers lack ability). Similarly, after

having introduced timing and selectivity abilities into the

data, errors will be committed when the test fails to reject

the null hypotheses, that no timing and no selectivity

abilities exist, when it is false (managers possess skill).

In this chapter, the time series behavior and

distributional properties of monthly market returns over the

period 1975-1989 (15 years) are investigated. Then, the

modelling procedure for the market returns is discussed.

This forms the basis for the proposed design of timing and

selectivity portfolios. The design of portfolio returns is

based on the simulated series of market returns and on the

portfolio cash composition.

The monthly portfolio and market returns in the risk

premium form and the portfolio's monthly percentage of assets

in cash will be generated according to a ten year period
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(N =120). The market risk premium returns are modelled using

the distributional characteristics of the series over the

period 1975-1989. The portfolio's monthly cash composition,

expressed in percentage, will be generated according to the

empirical distribution of the series for our sample of mutual

funds over the period 1984-1989 (6 years). Our choice of

these particular periods is consistent with most of the

recent mutual fund timing and selectivity studies' data.

3.1 BEAR AND BULL MARKET CLASSIFICATION

Various mutual fund timing and selectivity studies have

defined bull and bear markets according to the parameters of

the market and their trends. Some of the most common

definitions found in mutual fund performance studies

performed by Fabozzi and Francis (1979), Kim and Zumwalt

(1979), and Veit and Cheney (1982) are the following:

1) a bull market is distinguished from a bear market
according to the magnitude of the market return, R.
A bull (up) market is defined where:

a) the market return, Rm, exceeds the average
market return, E(12,); or

b) the market return, Rm, exceeds the risk-free
rate, R1; or

c) the market return, Rm, exceeds zero.

2) some of the popular definitions taking into account
the market trend are:

a) a period is defined as an up or down market
depending on whether the absolute value of the
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market return, IRml, is larger than one half
of one standard deviation of the market
return, criem/2. The periods which do not
qualify are not used and are defined as
neither up nor down market.

b) another trend-based definition by Cohen,
Zinbarg, and Zeikel (1973) considers a period
as bearish or bullish depending on whether the
markets in surrounding periods are rising or
declining. For example, a rising period
surrounded by declining periods is classified
as a bearish period.

There are still other definitions which are variations

of the above classifications. Some of the mutual fund

studies have examined the sensitivity of the results to the

different bull/bear market definitions. For example, Veit

(1982) used four different definitions of up and down markets

to test if mutual funds over the period 1944-1978 were

successful timers. His study results did not change with

different up and down market definitions. Similarly,

Alexander and Stover (1980), Fabozzi and Francis (1979), and

Kim and Zumwalt (1979) used different definitions to test for

the stability of mutual fund performance parameters, i.e.,

alpha and beta, and found that their studies' results were

not sensitive to different bull/bear market classifications.

To test for required predictive accuracies in bear and

bull markets, the timing studies conducted by Sharpe (1975),

Jeffrey (1984), Chua (1986), Clarke (1989), Droms (1989), Sy

(1990), and Kester (1990) define the bull/bear market based

on whether the market return, 11", or the risk-free rate, Rf,

exceed each other in each period, i.e., Rm-Rfis classified as
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a bull period, and RmRfindicates a bear period. We will use

this definition for our study. Given our intention to

examine the relative power among the mutual fund performance

models, the validity of our results should not be jeopardized

by our choice of bear/bull market definition.

To be consistent with our sample mutual fund return

data, the generated portfolio returns will be on a monthly

basis. Furthermore, monthly switchings, or portfolio

revisions, will be introduced into the data to reflect timing

and selectivity skills. The mutual fund performance models

chosen for our study for the purpose of relative power

comparison have been empirically tested in most of the recent

studies that have used monthly switchings. Kon (1983), Chang

and Lewellen (1984), Henriksson (1984), Lockwood and Kadiyala

(1988), and Lee and Rahman (1990) have assumed monthly

switchings to test for the presence of managerial timing and

selectivity skills.

Other mutual fund timing studies, dealing with

predictive accuracy, undertaken by Droms (1989), Clarke

(1989), Sy (1990), and Kester (1990) have also considered

portfolio revisions on a monthly basis. The trade-off

between transaction costs and more frequent switchings is

dependent upon variables which are specific to each fund

manager, i.e., portfolio size and funds' established

guidelines. Our choice of bear/bull market definition and

monthly switchings, or portfolio revisions, is consistent
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with the other recent mutual fund performance studies and

will thus allow us to compare our results with the work of

others and improve upon the previous work.

3.2 DATA GENERATION OF MARKET RETURNS

The focus of our study is equity mutual fund portfolios

and their measures of timing and selectivity. As was

previously discussed, we are assuming monthly switchings

between common stocks and Treasury bills for the purpose of

managerial timing activities, or portfolio revisions. The

timing and selectivity models used in our study are all

expressed in terms of risk premium, i.e., RifRp-Rf and RnyFR.

R. The risk premium can be explained in terms of the premium

(expected return) that investors receive from taking risk in

their investments; in other words, the expected return from

investments in risky assets.

To generate the simulated market and portfolio returns

in the risk premium form, the time series behavior and

distribution of market risk premium, R,f, are investigated.

To accomplish this, it is also necessary to explore the

relationship between the proxies for the market return, Rm,

and the risk-free rate, Rf, through time. Furthermore, this

study is concerned with the behavior of assets in the

aggregate, i.e., portfolios, rather than individual stocks.
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3.2.1 Time Series Behavior of Market Risk Premium

The time series behavior of security prices and their

distribution have been investigated extensively in the

financial literature. In one of the original studies,

Granger and Morgenstern (1963) showed that during the period

1875-1956, U.S. stock indices including S&P, Dow Jones, and

other stock prices indices in manufacturing, transportation,

utilities, mining, and trade and finance closely followed a

random walk. The authors used spectral analysis with weekly

and monthly returns to investigate the presence of any cycles

that could be used for forecasting the price movements. The

study's conclusion was that, "the evidence of 'cycles'

obtained" was not significant and that any attempts to

exploit the stock price trends would be, "at best only

marginally worthwhile."

The majority of the random walk studies in the financial

literature have considered individual stock returns on a

daily basis and some even used annual data. Fama (1965)

examined the daily prices of stocks on the Dow Jones

Industrial Average over the period 1957-1962 to test for

dependence. The results for daily, four-day, nine-day, and

sixteen-day price changes indicated a strong independence in

the data. The three methods used to test for dependance were

serial correlation, runs test, and Alexander's filters test.

Fama and French (1988) studied the permanent and

temporary components of stock prices. The data consisted of
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the monthly returns of all stocks listed on the New York

Stock Exchange. The study considered value-weighted and

equal-weighted portfolios, together with a grouping of stocks

based on a specific industry and size. The authors reported

a predictable variation of less than three percent of the

total variation for small time horizons. For longer time

horizons, those of 3-5 years, the predictability increases.

The results of this study confirmed the previous random walk

studies' results that the reported autocorrelations are not

substantial for time horizons that could provide any

meaningful results for portfolio management practices.

Jegadeesh (1990) claimed that individual stock returns

are predictable. The study employed monthly return data from

the Center for Research in Security Prices (CRSP) file. The

author reported that patterns of serial correlation are

seasonal, and in particular, the month of January was found

to be different from the other months. The dependence in

data was reported as significant at the 5% level for negative

first-order and positive higher-order serial correlations.

It is suggested that these results are due to an inefficient

market or variations in expected stock returns.

The issue of random walk in the capital markets will

continue to be debated in the financial literature. It is

certain that no study has shown an absolute random walk or

departure among the share prices on an individual or an

aggregate basis. Whatever the form of the market "walk", it
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is possible that, occasionally, patterns might exist that

could offer insight into the direction of this debate.

However, it is possible that period-specific social,

economical, and political factors influence the share prices

as well. The studies that have identified a trend in

security prices point to patterns which are not economically

significant. On the other hand, the statistical models used

to examine the behavior of security prices could also be

inadequate or lacking in power. The upcoming discussion

regarding the distribution of stock prices also shares such

shortcomings.

The argument of inadequate models was considered by

Peters (1989,1991) who applied the Chaos theory to test for

patterns and trends in capital market returns. This

relatively new technique relies on modelling systems based on

non-linear dynamics. The preliminary work of Peters has not

produced results that could be economically implemented in

practice, i.e., for forecasting purposes. However, if the

capital markets and the economical systems have properties

that can be explained in terms of a fractal structure, then

there is promise in developing financial models that are

based on non-linear dynamic systems.

For this study's modelling purposes, the S&P 500 monthly

risk premium returns over the period 1975-1989 (15 years,

N=180) are investigated. Our proxy for the risk-free rate,

Nt., is the one-month Treasury bill rate. This particular



51

choice of risk-free rate is consistent with mutual fund

timing and selectivity studies. The market return, RM, is

estimated using the S&P 500 value-weighted index. The

monthly returns for Rm and Rf were obtained from the Ibbotson

and Sinquefield annual year book (1990).

Ibbotson and Sinquefield (1989) used annual return data

over the time period 1926-1989 to investigate the time series

behavior of equity risk premium composed of value-weighted

S&P 500 index (including capital appreciation, dividends, and

their reinvestments), and Treasury bills having the shortest

maturity (not less than one month). They suggested that the

equity risk premium closely follows a random walk pattern.

The study reports a first-order autocorrelation of .02.

Since our study employs models which are in terms of equity

risk premia, we would extend Ibbotson and Sinquefield's work

in a more detailed way using monthly data over the period

1975-1989.

First, the results of the serial correlation analysis

with various lags are reported. The cross correlation

between the market return, Rm, and risk-free rate, Rf, is also

investigated. The behavior of the S&P 500 risk premium,

1n(1 +R,), over the 15 year period 1975-1989 using monthly

data is presented in Figure 1. The time pattern does not

show any observed trends. The estimated autocorrelations up

to lag fifty are depicted in Figure 2. The significance of

autocorrelation estimates is investigated using the test
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Q = N E 21,
k=1

52

(3.1)

where r2k is the autocorrelation estimate at lag k, M is the

number of lags, and N represents the number of observations

(N=120). Q is approximately distributed as X2 with M degrees

of freedom. The results, at the 5% significance level,

indicate that the hypothesis of random walk is not rejected

for our market risk premium, Rnif, monthly data. In other

words, the series does not present any significant dependance

among its elements. The cross correlation analysis between

the market return, Rm, and risk-free rate, R1, using a similar

test statistic, offered by Box and Jenkins (1976):

S = N E rj! ,

k=1
(3.2)

also shows a lack of significant cross correlation among the

market risk premium, AI., components, Rm and Rf, at the 5%

significance level. For the S statistic, 12k represents the

cross correlation estimate at lag k between Rm and Rf . The

test for significant cross correlation between the market

return, Rm, and the risk-free rate, Rf, is conducted using

leads and lags of ±48 periods. The estimated cross

correlations are shown in Figure 3. These results confirm

the hypothesis of random walk for the monthly market risk

premium data, ln(1 +R4), over the period 1975-1989.
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3.2.2 Distributional Properties of Market Risk Premium

In addition to the time series behavior, the underlying

distribution of asset returns has also been widely

investigated. The common practice in the field of finance is

to assume a lognormal distribution for the stock returns.

Part of the research, performed by Officer (1972), Fieltz and

Smith (1972), Leitch and Paulson (1975), and Simkowitz and

Beedles (1980), among others, has emphasized stable paretian

(SP) distributions as alternatives in explaining the

population model of the returns. The normal and lognormal

distributions are among the family of SP distributions, which

are identified by four parameters. A particular distribution

is differentiated by the first parameter a, i.e., a=2 for the

normal distribution. The mean, variance, and symmetry of the

distribution are characterized by the second, third, and

fourth parameters.

Next, the empirical studies dealing with the

distribution of stocks are discussed, and then for this

study's modelling purposes, the distributional properties of

the sample market risk premium return series, Rw, are

explored and the results are presented.

Most of the studies investigating the distribution of

stock returns have dealt with individual securities, but

recently the underlying distribution of stocks in the

aggregate has also been investigated. Press (1967) proposed

that the distributions of individual stocks are generally



0.15

0.1

0.05

0

-0.05

-0.1

-0.15

Figure 3. Estimated Cross Correlations
Between ln(l+Rmft) and ln(1 +Rft)

1 1 1 1 l 1 1 1 1 f f 1 1 l 1 1 1 1 1 1 1 1 I 1 1 1 1 1

-50 -40 -30 -20 -10 0 10 20 30 40 50

Lag

56



57

skewed and leptokurtic, a distribution which is peaked higher

and has denser tails than a normal variate. The author used

the monthly data of the Dow Jones Industrial Average stocks

over the period 1926-1960. Officer (1972), Fieltz and Smith

(1972), Leitch and Paulson (1975), and Simkowitz and Beedles

(1980) using daily and monthly stock returns, concluded that

the observed distributions deviate from a normal variate and

can be characterized as leptokurtic. Furthermore, kurtosis

and skewness representative of a asymmetric stable

distribution were present.

Blattberg and Gonedes (1974) used daily rates of return

for 30 securities of the Dow Jones Industrial Average over

the period 1957-1962 to show that the student (or t)

distribution presented a better fit than the symmetric stable

distributions. Hsu, Miller, and Wichern (1974) challenged

the notion of variance nonstationarity and heavy-tailed

distributions. Using the daily closing prices of four stocks

over the period 1963-1970, the study concluded that during

"subperiods of homogenous activities," stock returns can be

modeled using a normal family of distributions. Furthermore,

in the periods of time during which the capital markets are

characterized by constant changes, it is suggested that the

parameters of the assumed distributions are subject to

nonstationarity.

Using the daily returns of individual stocks on the Dow

Jones Industrial Average, and the S&P 500 equal-weighted and
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value-weighted indices, over the period 1962-1980, Kon (1984)

showed that the stocks' underlying distribution can be better

represented by a discrete mixture of normal distributions

than the student model. Bookstaber and McDonald (1987) used

the daily returns of 21 randomly chosen stocks from the

Center of Research in Security Prices (CRSP) files to

introduce a generalized distribution which accounts for

different degrees of fat tails in the observed stock

distributions. The individual stocks' returns were also

examined for longer holding periods. The study suggested

that the proposed distribution is viable for explaining the

behavior of option pricing models.

Other studies have considered the distribution of stock

returns on an aggregate basis, which is consistent with our

study. Upton and Shannon (1979), using monthly returns over

the period 1956-1975, investigated how the portfolios of

fifty stocks, randomly chosen from the New York Stock

Exchange, were distributed. The authors used the Kolmogorov-

Smirnov (KS) test to examine the goodness-of-fit, and their

findings indicate that monthly portfolio returns follow a

lognormal distribution. The results for individual assets

showed a departure from lognormality. Furthermore, the

portfolio strategies, rebalanced verses buy-and-hold, did not

alter the study's findings.

Tehranian and Helms (1982) conducted a similar study

using monthly returns over the period 1961-1976. The
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distribution of NYSE stocks were investigated by examining

500 portfolios of 20 stocks randomly selected from the set of

685 stocks listed on the Exchange. This study, also using

the KS test, concluded that portfolio returns fall under a

lognormal distribution. Next, the empirical distribution of

the market risk premium series, Rmit, over the period 1975-1989

is explored.

The market risk premium monthly returns are calculated

by subtracting the risk-free rate (one-month T-bills) from

the market return (S&P 500), Rmit=R,-Rit. This study uses the

natural logarithm of asset return relatives, 1n(1+124), to

investigate the distributional properties of this time

series. The frequency distribution of the monthly market

risk premium return relatives, 112(1-1-R,0), over the period

1975-1989 (15 years) is shown in Figure 4. The mean and

standard deviation of the period 1975-1989 and various

subperiods are summarized in Table 3.

Table 3

Mean and Standard Deviation of Monthly Market Risk Premium
Series Return Relatives, ln(l+And

Period 1975-1989 1975-1979 1980-1984 1985-1989

Aka +Rmfi 0.005699 0.004348 0.002767 0.009983

lna +12,0 0.045369 0.039163 0.043675 0.052672
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The results of the goodness-of-fit test using the

Kolmogorov-Smirnov (KS) test is overwhelmingly in favor of

the lognormal distribution at the 5% significance level

(KS=0.0684, Sig. level=0.37) . In other words, the assumption

of a normal distribution for the time series ln(l+Rmi) is

confirmed.

The studies that have investigated the volatility, or

variability in returns, of the stock market also provide

insights into the behavior of security prices. Poterba and

Summers (1986) claimed that volatility shocks, or periods of

higher uncertainty, to the stock market are temporary and

will dissipate over long periods. The authors used the S&P

500 composite stock index data over the period 1926-1984.

They showed that the volatility shocks last for less than six

months, sometimes lasting only a month.

Jones and Wilson (1989) undertook a similar study which

considered volatility between months over the period 1885-

1989 using S&P 500 and other indices existing before the

formation of S&P. The authors investigated the within-decade

volatility over the past 100 years and reported that the

highest volatility was observed during the Great Depression

of the 1930's. Based on month-to-month percentage changes

within decades, the volatility in the 1980's is shown to be

comparable to other decades.

Bookstaber and Pomerantz (1989) suggested that

volatility tends to be mean-reverting: above-average
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volatility declines and below-average volatility increases.

The study claimed that volatility is expected to be stable

over long time periods and should not deviate from the mean

level significantly.

Harris (1989) studied the volatility of S&P 500 stocks

and the factors that might influence it. Causes of relative

increased volatility in the S&P 500 stock index were listed

as: the origin of trade in index futures and index options,

growth in foreign ownership of American equities, and the

growth in index funds. The magnitude of increase was less

significant over bi-weekly and longer return time intervals.

Schwert (1990) confirmed the results of previous studies

which had shown that growth in computerized trading and in

stock index futures and options did not increase stock market

volatility. The volatility of monthly returns on the S&P 500

and NYSE stock indices over the period 1885-1989 is shown to

be stable. The significant increases in volatility were

observed only during times of uncertainty, such as throughout

the Great Depression, 1929-1939, and following Black Monday,

October 1987. The study cites several economic factors that

cause long-term volatility: financial leverage, operating

leverage, personal leverage, and the condition of the

economy.

In our study, the stationarity of the market risk

premium return relatives' distribution over various

subperiods, as was shown in Table 3 (p. 59), was tested. At
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the 5% significance level, the mean and variance of the

underlying distributions over the three five-year subperiods

were not statistically different, which implies strict

stationarity for the series/n(1+1V. These results validate

our assumption of a normal distribution model for the market

risk premium return relatives, ln(l+Ro)

In the previous discussion, the time series properties

and the distributional characteristics of the market return

series in the risk premium form, in(l+Rno), were examined.

It was shown that the series, ln(l+R,o) , can be approximated

using a normal distribution with parameters N(0.0057,0.0454).

Using a sequence of generated standard normal variates, ZRMF,

the simulated monthly market returns are computed as follows:

A,10 = EXP(ZRMFiab(, +Rno + Abga,w) - 1 t=1,120. (3.3)

The procedures for the design of timing and selectivity

portfolios are presented in the following sections. This

part of the study also includes a discussion of how to

account for noise. The latter part of Chapter 3 presents a

summary of the simulation procedure and the model validation.

3.3 DESIGN OF TIMING PORTFOLIOS

Market timing is the ability to predict major market

movements. A manager with superior timing skills is ideally

fully invested in common stocks when the share prices are

rising; yet when the share prices are declining, the skilled

timer will invest in assets which are not affected by the
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down-turn of the market, such as cash equivalents or short-

term securities. If bear markets did not exist, there would

be no need to forecast the market movements, as the

investors' primary research activities would be directed

toward stock selection. Therefore, the main objective of

market timing is to stay out of declining stock markets for

as long as they last.

From the above discussion, one can conclude that a fund

manager will ideally invest a higher proportion of assets in

stocks when a bull market is present, and while a bear market

is present, the proportion of the portfolio invested in

stocks will be lowered. Such portfolio adjustments during

market movements can also be explained in terms of changing

the risk of the portfolio. As an upward-moving market

warrants a higher risk portfolio to capitalize on the

increasing share prices, and a declining market will require

a partial divestment in stocks to control for the falling

share prices. A manager, given the fund's objectives and

guidelines, can control the portfolio risk in three ways. If

a manager is to be invested in stocks at all times, the

portfolio management timing activities will be directed

primarily toward the identification of high and low risk

stocks. However, a manager whose guidelines permit a varying

degree of investments in other assets has the advantage of

switching the portfolio holdings to alternate assets during

up and down markets, which could be thought of as an asset
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allocation strategy. Finally, the manager could engage in a

combination of the two stated strategies. This study's

timing model is based on fund managers whose portfolio

management activities are primarily focused on switchings

between stocks and cash equivalent/short term Treasury

securities, with the majority of the assets being invested in

the stock market portfolio.

This study's model of managers' timing behavior is

formulated based on the assumption that there is a

correlation between the market movements and the proportion

of portfolio assets being invested in common stocks and cash.

A successful market timer will decrease the cash portion

during up (bull) markets, and in declining markets, will

lower portfolio holdings in common stocks. This strategy

will enhance portfolio returns during market fluctuations.

This study uses the sample mutual fund data to model the

fund managers' timing behavior. The percentage of total

assets in cash, bonds, and common stocks are reported on a

quarterly basis. These funds have the majority of their

portfolio holdings in common stocks at all times. The funds'

major shifts in portfolio composition are indicative of the

designed strategy to predict the market fluctuations in an

attempt to time such movements. This study's model of fund

manager's timing behavior is based on the empirical

distribution of the percentage of assets invested in cash

during the 1984-1989 period. The selected funds, as
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previously discussed (p. 34), have a wide range of asset

sizes and objectives, which provide a suitable representation

of the universe of the mutual funds that behave in accordance

to this study's model.

The distribution of our sample of mutual funds' percent

investments in cash equivalents/short-term T-bills denoted by

no is shown in Figure 5. Similar to the ;ft series, the

observed percentages of investments in T-bills, ir,, cannot

theoretically fall below 100%, and the series distribution is

positively skewed. These properties can be modeled using a

lognormal distribution. The data is transformed to the

natural logarithm of one plus the observed percentage of

assets in T-bills, ln(1 +ir,). Using the Box-Jenkins Q

statistic for the series ln(l+nd, the autocorrelation

estimates and their significance indicate that the hypothesis

of a random walk is a reasonable assumption.

Although the results of the KS test (KS=0.081, Sig.

level=1.16E-4) show that the observations of ln(141rd do not

closely conform to a normal distribution, for the purposes of

this study, a normal distribution assumption with parameters

N .., (0.05640,0.04799) is reasonable. Furthermore, this

assumption facilitates the use of a bivariate lognormal

timing model which is discussed in the following paragraph.

The results of the KS test and autocorrelation analysis for

market risk premium returns, in(l+Rmi), showed that this

series can be accurately modelled using a normal distribution
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with parameters N.40.0057,0.0454).

This study's timing model is based on the assumption

that the monthly market risk premium returns, ln(l+Rmid, and

the percentage of assets invested in cash (T-bills), ln(l+vd,

follow a joint bivariate normal distribution. This

particular specification is advantageous in that it allows

for the correlation, per, between the two variables. In

other words, the degree of relationship between the market

risk premium and percentage of assets in cash can be

accurately modeled by varying the value of pnm. A manager

with perfect skill in forecasting the market movements is

assigned a correlation coefficient of pnm=-1, indicating that

at least 100 percent of the total portfolio's assets were

invested in common stocks during up markets, ideally fully

divested in cash. This study's timing model allows for

borrowing against cash (risk-free rate) to invest in stocks

(greater than 100% portfolio composition in stocks), which is

consistent with the real mutual fund portfolios and portfolio

theory. Perfect foresight will also show an increasing

percentage of portfolio switchings to cash during bear

markets. Another advantage of the bivariate distribution

model is the control for the magnitude of such shifts during

extreme market environments, as a severe bear market warrants

maximum allowable shift to cash. In other words, the noise

factor is controlled, as insignificant fluctuations will

prevent managerial overreaction to switch the fund's holdings
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between stocks and cash. The bivariate lognormal model is a

reliable assumption as it accounts for the stochastic nature

of the market fluctuations and the proportionate magnitude of

the shifts to cash during bull and bear markets. The timing

model using a bivariate normal distribution has the following

specification, i.e. , N., (1,02) :

ill Ina +Rnt0+ P77111( a rho +id c r Ina +Rm")) ( XIbqrAbta +RIO)) 1 a2In(r +7) ( 1-P2Tud 1 I (3.4)

where pnm is the correlation coefficient between market risk

premium, R,,o, and the percentage of the assets in cash, n,.

The marginal distribution of in(l+Rmi) is N....(Aina+mo,a1,04,m0).

The parameters of the bivariate lognormal distribution model

are estimated using the mean and standard deviation of

historical observations of the market risk premium, Rvi, and

the percentage of assets in cash, /rt. However, these

observations are converted to the natural logarithmic form,

i.e. , ln (1+R) and in ( 1+7r d, to follow the model

specification. Using two sequences of generated standard

normal random variates, ZRMF and ZPCT , the simulated monthly

percentage of assets in cash, portfolio composition in T-

bills, is computed as follows (for t=1,120) :

n t=EXPr u-. ln(l+w) +PT/14Crin(l+x) ZRMF+ ZPCTa in (i+,) V (1- p.z-m) ] -3.. (3.5)

By adjusting the correlation coefficient, pnm, between the

market risk premium, Rno/ and the percentage of assets in

cash, no it is possible to simulate managers with varying

degrees of skill in macroforecasting. A manager with perfect
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foresight is assigned a pnm=-1. As the market accelerates

upward, the portfolio holdings in cash will be

proportionately decreased, and in down markets, the

percentage of portfolio assets in cash will be raised to

compensate for declining share prices. Once the monthly

percentage of assets in T-bills, yo are generated, the

monthly portfolio return can be expressed by the following

timing model:

Rso = (1 - iri)R + 7TZRft t=1,120, (3.6)

and by subtracting Rft from both sides, expression (3.6) in

risk premium form is:

RPM = (1 - irdR,ft t=1,120, (3.7)

where 120=R0-Rsit and IceRmi-Rii.

The portfolio's monthly T-Bill composition is computed

according to the expression (3.5). The corresponding

simulation parameters for the monthly T-bill percentage,

ln(l+vd, depend on the series distribution, which is

specified as N-40.0564,0.0480). However, in environments in

which the manager's timing ability is classified as skilled,

pnm=-/, the constructed portfolio returns are not large

enough for models to have a perfect or nearly perfect timing

ability detection rate, i.e., 95% or greater. The specified

parameters of the T-bill distribution, N.,40.0564,0.0480),

affect the timing portfolio's return. One way to resolve

this issue is to permit a higher proportion of the portfolio

to be invested in cash. This can be accomplished by varying
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the standard deviation of the T-bill distribution until the

models can detect the timing ability with an approximate

probability of 0.95 or greater. Using the described

procedure, the models attain an approximate detection rate of

95% or greater, when the T-bill distribution, ln(l+nd, is

specified as N...40.0564,0.240). The newly specified standard

deviation is five times the magnitude of the previous

parameter.

Heteroskedasticity and Tests of Market Timing

The models of market timing thus far discussed have been

shown to be heteroskedastic or to have nonconstant residual

variance when market timing is present in portfolio returns.

Henriksson and Merton (1981) and Huang and Jo (1988) have

offered the nonstationarity of the portfolio systematic risk,

flp, as the cause of heteroskedasticity. Although some

studies in the financial literature have assumed

homoskedastic (constant) error term variance, the results of

timing studies will be substantially different if

heteroskedasticity is present. This incorrect assumption

would lead to erroneous statistical inferences regarding the

significance of the parameters. Nonconstant error variance

produces inefficient but consistent selectivity and timing

parameter estimates; however, the covariance matrix estimates

affecting the standard errors would be inconsistent.

White (1980) proposed a covariance matrix estimator
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which is heteroskedastic-consistent and does not require

knowledge of the heteroskedasticity structure. In other

words, White's method is applicable when the variables that

cause the nonconstant error variance in the model are not

known. The study offered the following covariance matrix

estimator to allow for the nonconstant error term variance:

(X' X)4(Xidiag(ei2)X)(X1X)4, (3.8)

where X is the matrix of the model's independent variables

and diag(e?) is the diagonal matrix of the squared residuals

of the model. White (1980) showed that the proposed

covariance matrix estimator provides reliable inferences and

confidence intervals in analyzing the parameter estimates,

and when testing hypotheses on their accuracy.

Henriksson and Merton (1981) were among the original

contributors to have observed the heteroskedasticity of the

error term variances in portfolio timing studies. They

offered generalized weighted least squares estimation to

correct for the heteroskedasticity.

Chang and Lewellen (1984) and Henriksson (1984) reported

that their studies' results using the HM timing model were

almost identical before and after the correction for the

heteroskedasticity. To correct for the nonconstant error

term variance, the authors applied the weighted least squares

to a sample of mutual funds' monthly returns over the period

1968-1980. However, despite Henriksson's (1984) assertion

that the results were not affected by the heteroskedasticity
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correction, its presence in the data was confirmed.

Jagannathan and Korajczyk (1986) claimed that the

corrected standard errors for the heteroskedasticity can be

as much as two or three times the size of uncorrected

standard errors. This amount of error would be substantial

when testing for the presence of timing ability, and the

results would present a completely different picture of a

manager's ability to time market movements. Breen and

Jagannathan, and Ofer (1986), using the HM timing model,

undertook a simulation study to investigate the significance

of correction made for heteroskedasticity when testing for

the timing ability of portfolio managers. By building

hypothetical portfolios for managers who had varying degrees

of timing skill, it was shown that correction for

heteroskedasticity can significantly affect the results of

tests for market timing ability. The authors employed both

the White and the generalized least squares methods for the

treatment of nonconstant error term variance. Another

important finding was that the importance of correction for

heteroskedasticity in market timing studies is dependent upon

the specific asset samples and their distributional

properties.

Lockwood and Kadiyala (1988) also used the weighted

least squares procedure to correct for the heteroskedasticity

in their time varying beta model. Lee and Rahman (1990)

employed the BP model to investigate the market timing and
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selectivity of selected mutual funds. Similar to previously

conducted performance studies, generalized least squares

(GLS) was applied to account for the nonconstancy of the

error term variance.

We will test the effect of correction for

heteroskedasticity in our designed timing and selectivity

portfolios. White's heteroskedasticity-consistent covariance

matrix estimator is applied to the HM and LK mutual fund

performance models. For the BP model, the statistical

inferences do not directly rely on the standard errors of the

model. Therefore, the White method is not applicable. This

study uses the generalized least squares estimator for the BP

model, as described by Lee and Rahman (1990), to test for the

effects of heteroskedasticity.

3.4 DESIGN OF SELECTIVITY PORTFOLIOS

To model managerial selectivity behavior, different

levels of excess returns are added to the market risk premium

series, &I. Excess return is the return component, denoted

by 411, that represents a manager's ability to invest in

superior stocks. With T-bills included in the portfolio, vo

the monthly portfolio returns in risk premium form can be

expressed by the following timing and selectivity model:

RPM= (1 - rdIRift + (1 - ndLi, t=1,120, (3.9)

the first term, (1 - gi)Rmji, captures the timing effect of the
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portfolio, and the second term, (1 - Ir)At, represents the

selectivity effect of the managed fund.

Our study's approach is consistent with the previous

studies, Brown and Warner (1980) and French (1985), among

others, that assumed excess returns to be constant over time.

This specification does not consider the stochasticity of the

monthly excess returns due to managerial selectivity

activities. However, the results of the study will be more

tractable when examining the power of the models to detect

microforecasting skill.

The level of excess return is the controlling factor for

the degree of the manager's expertise in superior stock

selection. To design portfolios with selectivity skill,

constant levels of excess return, z,, due to superior stock

selection, are introduced into the monthly portfolio returns.

The introduced levels of excess return due to selectivity

skill are 0% (no-skill), 1% (semi-skilled), and 2% (skilled).

With this formulation, regardless of the market conditions,

i.e., bull or bear periods, the simulated fund manager's

abilities for superior (inferior) stock selection will be

reflected by their decision to invest in undervalued

(overvalued) stocks.

3.5 MODEL OF NOISE

The designed model of managerial timing and selectivity

behavior does not account for noise (error), el. The models'

power to detect managerial selectivity and timing abilities
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would be overestimated if the parameter variability and the

amount of noise for the process is underestimated. On the

other hand, in the presence of excessive amounts of

variability, the power of the models would be underestimated.

The variability of the parameters in the simulation model, R,10

and no are accounted for using the historical distributional

properties of these variables, i.e., aw and a,.

To introduce noise into the constructed timing and

selectivity portfolio returns, the observed distribution of

the error terms for various performance models using our

sample of the mutual funds' return data is considered. The

summary statistics of the error terms for the group of mutual

funds using the four performance models are shown in Table 4.

Using these results, the noise (error) term is added to

the monthly portfolio returns in the following manner:

Rift = (1 - irt)R,ft + (1 - yrdZir + et t=1,120, (3.10)

where e, is generated according to the distribution

N.40,0.044).

Table 4
Summary Statistics of Error Terms For Sample Mutual Fund
Data Using Various Performance Models

Model a2
ea

Jensen 0.0451

Henriksson-Merton 0.0447

Lockwood-Kadiyala 0.0442

Bhattacharya-Pfleiderer 0.0442

`Average of 31 funds.
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3.6 SIMULATION FLOWCHART

With three levels of timing ability, p =0,-0.50,-1, and

three levels of selectivity ability, A =0%,1%,2%, nine

combinations of portfolio environments are possible as shown

in Figure 6.

Figure 6. Timing and Selectivity Environments

Selectivity 0%

Skill, i 1%

2%

0.0

Timing Skill, pnm

-0.50 -1

In each timing and selectivity environment, 1000 sets of 120

monthly (10 years) observations of market returns, /2,0,

portfolio composition in T-bills, it,, and portfolio returns,

Rft, are generated. The randomly generated market returns,

and portfolio composition in T-bill, vo are used to

construct portfolio returns, Rft. Furthermore, three sets of

random number seeds are used to replicate the experiment in

each of the nine timing and selectivity environments.

The choice of 1000 iterations and three replications

insures high precision in the designed simulation results.

More specifically, with 1000 iterations, the 95% confidence
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interval about the expected rejection rate, using a binomial

distribution, will be approximately within 30% of the nominal

significance level. Furthermore, it is necessary to have a

minimum of two replications in order to have an estimate of

the error variance between the treatments in the analysis of

variance, which is discussed in detail in Section 3.8. In

our study, a total of three replications are performed to

conduct the experimental design to achieve higher accuracy.

The steps in the simulation procedure are summarized and

a flowchart of the model is shown in Figure 7.

STEP 1: Initialize random number seeds: IRMF (used for
generation of Rmft), JPCT (used for generation of
70, and KERR (used for generation of ed. Three
sets of random numbers are used to replicate the
experiment three times in each timing and
selectivity environment.

STEP 2: Select timing, pnm=0,-0.50,-1, and selectivity,
0mm=0%,1%,2% environments; nine possible
combinations.

STEP 3: Using the random number seeds in step 1, generate
120 standard normal variates, N(0,1), for
generating market returns, ZRMF,, portfolio
composition in T-bills, ZPCTo and error terms,
ZERR,.

STEP 4: Generate market risk premium returns, Rmft, and
portfolio composition in T-bills, (for t=1,120) :

Rmft = EXP ZRMPto141+w + Abw+w) - 1

ZRAT + ZPCTaino.+74 (1-141-14)) 1nt = EXP[Pinu+x) PTIMCIln(14.11)

STEP 5: Generate timing and selectivity portfolio returns:
Rift = (1 - Rmft + ( / - vd 1 s, + e, t=1,120

STEP 6: Collect summary statistics on the generated series,
Rmill ir

t I
and R0.



STEP 7:

STEP 8:

STEP 9:

STEP 10:

STEP 11:
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Apply timing and selectivity models:
1) Jensen (JN);
2) Henriksson-Merton (HM), both with and

without correction for heteroskedasticity
using White's method;

3) Lockwood-Kadiyala (LK), both with and
without correction for heteroskedasticity
using White's method;

and
4) Bhattacharya-Pfleiderer (BP), both with

and without correction for
heteroskedasticity using the GLS method.

Return to Step 3 (1000 iterations).

Collect summary statistics and print results.

Return to Step 2, select the next timing and
selectivity environment (9 possible environments).

Return to Step 1, reinitialize the random number
seeds, IRMF, ZPCT, KERR (3 iterations).

The computer program, coded in Fortran77, is presented

in Appendix C.
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Figure 7. Simulation Flowchart

Initialize Random Number Seeds: IRMF,JPCT,KERR
1=1,3

t
Select Timing and Selectivity Environment

prw=0,-0.50,-1 4EL=0%,1%,2%

i
Generate Standard Normal Variates: J=1,1000

ZRMF, .. N(0,1) ZPCT, .... N(0,1) ZERR, .., N(0,1)
t=1,120

1

Generate Market Risk Premium Return and

Portfolio T-Bill Percentage Series, t=1,120:

R0=EXP((ZRMF,aba+m,in+Am(1 +Rnio)-1

ir,=EXP[1.40+,0+pmfa ma+)ZRMF+ZPCTab,04.741T1-777m) 3-1

80

III

`Generate Portfolio Returns: Rim= (1-7Tt) R,fti- ( 1-ir ,) A,+e, t=1,120

I
1

Collect Summary Statistics: Rflo,R,7r,

i
Timing, 110:1377m.0, and Selectivity, Ho:ap<O, Tests

Collect Errors Rates

JN: Rpft=ap+t3pRno+up,

HM: Rpfi= ap+131X1+132Yi+ ept Heteroskedastic

LK: Rprap+614120+61,2Q,,+vp, Heteroskedastic

BP: Re=ap+OE (R,f) (1 -ca) Rffat+ 0 co (R2,0) +cop, Heteroskedastic

i
Collect Summary Statistics and Print Results

ip

STOP
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3.7 MODEL VALIDATION

To validate the designed simulation model, we

investigate the distributional properties and the time series

behavior of the generated market risk premium returns, Ann,

percent allocation to T-bills, yo and the timing and

selectivity portfolio returns, Rift. The specification of the

timing model in the following expression:

Itt=EXP[111n(l+w) PTImaln (1+x) ZRMF + ZPCTain(l )V (1-p ] 1

is validated using the input and output values of the timing

parameter, pnm. The structure and specification of the

simulation model is tested for its adequacy using the

described procedure. The simulated series of the model, Rno,

Ro, vo are compared to the market's actual performance in

order to measure their accuracy.

3.7.1 Time Series Behavior of the Generated Series

The hypothesis of random walk for historical patterns of

market risk premium series, ln(l+Rmi) , and percent allocation

to T-bills, ln(l+vd, in their natural logarithmic form was

previously confirmed. Similarly, the simulated series are

tested for their time independence in order to validate the

random walk hypothesis. The time pattern of the generated

portfolio returns, ln(l+Ro), is also investigated. Randomly

selected samples from the nine managerial timing and
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selectivity environments were chosen and tested for trends,

and the estimated autocorrelations up to lag fifty were

estimated. The results using the Box and Jenkins (1976) Q

statistic, at the 5% significance level, indicate that the

hypothesis of random walk is not rejected for the market risk

premium series, ln(l+Rvi) , percent allocation to T-bills,

ln(l+nd, and for the generated portfolio returns, 1n(l+R00).

These findings indicate that the simulated series do not

present any significant dependence among their elements.

Thus, the mirror behavior of the designed model's output and

input validates the simulation procedure.

The designed timing model is validated by investigating

the cross correlation, per, between the generated market risk

premium returns, Imo, and the percent allocation to T-bills,

The accuracy of the timing model is measured by comparing

the input (actual) values of the timing parameter, pnm, with

its output (simulated) values. The results, as shown in

Table 5, confirm the accuracy of the designed timing model.

The correlation between the generated portfolio returns, Rift,

and the portfolio composition in T-bills, Iro in various

timing and selectivity environments are shown in Table 6.
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Actual vs. Simulated Values of Timing Parameter, pnm

Cross Correlation

Actual
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Coefficient, pnm

Simulated' (95% Conf. Inter.)

- 1.00 -0.9809 (not defined)b

- 0.50 -0.4908 (-0.37,-0.73)

0.00 -0.0027 (-0.18,0.18)

'Averages of three experiments each with 1000
replications.

bFailure in log transformation on the mean:
z'= (1/2) loge( (1+pnm) / (1-pnm) )

3.7.2 Distributional Properties of the Generated Series

Similar to the analysis of the time series behavior of

the generated series, the

distributional parameters

compared. To achieve this,

of the generated series

returns, Rio, and percent

compared with their input

input and output values of the

of the generated series are

the mean and standard deviation

(output), market risk premium

allocation to T-bills, iro are

values. The input values were

chosen according to the distributional characteristics of the

historical patterns of these series. These results are shown

in Tables 7 and 8. These results indicate that the

characteristics of the generated distributions are identical

to their historical patterns, validating the model.



Table 6

Correlation Between Portfolio Returns, Re, and Portfolio Composition in T-bills,

vt, in Various Timing and Selectivity Environments

Pnm = 0

TIMING SKILL

pum = -0.50 Prim = -1

A = 0% -0.0288 -0.3097 -0.5874

SELECTIVITY

A = 1% -0.0727 -0.3470 -0.6142

SKILL

A = 2% -0.1123 -0.3814 -0.6397
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Table 7

Mean and Standard Deviation of Monthly Market Risk Premium
Return Series, Rmf, Actual vs. Simulated

Actual Simulated'

1975-1989 (95% Conf. Interval)

0.0067 0.0069 (-0.0013,0.0147)

0.0448 0.0458 (0.0407,0.0526)

'Averages of three experiments each with 1000
replications.

Table 8

Mean and Standard Deviation of Monthly Percent Allocation
to T-bills, vo Actual vs. Simulated

b

bW

Actual Simulated'

1975-1989 pnm=0 pnm=-0.50 pnm=-1

0.0593 0.0897 0.0893 0.0884

0.2614 0.2657 0.2658 0.2653

'Averages of three experiments each with 1000
replications.

b95% confidence intervals: gw:(0.0125,0.1061) and
ow:(0.2362,0.3051).
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3.8 EXPERIMENTAL DESIGN

The degree of a manager's expertise in market timing

(macroforecasting) is simulated according to the percent of

assets in Treasury bills indicating the manager's ability to

forecast the market movements. Similarly, the selectivity

model (microforecasting) is designed by introducing various

levels of excess returns into the designed selectivity

portfolios' returns.

We assume that the timing and selectivity abilities for

both bear and bull markets are equal. The values of the

timing skill parameter, designated by the correlation

coefficient between the market risk premium and the

distribution of the Treasury bills, pnm, considered are 0 (no

skill), -0.50 (semi-skilled), and -1 (skilled). This choice

of values gives us the extremes and the average skill level

of the fund managers, which is a suitable representation of

the range of managerial skill level. Similarly, the

selectivity skill parameters are chosen at 0% (no skill), 1%

(semi-skilled), and 2% (skilled) levels. With this

specification, nine combinations of portfolio environments

are possible, as was shown in Figure 6 (p. 77).

For every cell, we will generate portfolio returns which

are transformed to show various levels of market timing and

selectivity skills. The monthly market risk premium return,

R
1,1

will be randomly generated for a ten year period (N=120)0
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according to its empirical distribution over the period 1975-

1989 (15 years). This is the period in which most of the

state of the art mutual fund performance studies were

conducted. Given this return data, we construct portfolio

returns that would have been realized, ex post, if the

managers would have had a variety of skill levels in market

timing and stock selection. In other words, various

combinations of managerial abilities in predicting market

movements and superior stock selection are examined. We test

the mutual fund performance models for their ability to

detect managerial timing and selectivity skills.

According to a manager's expertise on forecasting the

market direction and superior stock returns, the generated

portfolios are transformed to show investments in the market

portfolio or in Treasury bills to account for market timing.

With this specification, we introduce timing ability by

switching between the stock market portfolio and Treasury

bills.

Regardless of market conditions, i.e., bear or bull

periods, the hypothetical fund managers' abilities for

superior stock selection will be reflected by the level of

excess return added to the portfolio returns.

Each of the nine environments for generating portfolio

returns will be used to construct 1000 samples of 120 monthly

observations (over 10 years) that are consistent with the

mutual funds studies. The tests for statistical significance



88

of market timing and selectivity parameters under different

models will provide the means for comparing the error rates

across a variety of skill environments. The results of this

power analysis will show how different models perform under

a variety of managerial timing and selectivity skills under

changing market and portfolio conditions.

In the no-skill environments, we examine the

performance models by testing how frequently the null

hypotheses of no market timing and no selectivity abilities

are rejected when the null is true. Concurrently, in skilled

environments, the error rates for failing to reject the null

hypotheses of no managerial skills in timing and selectivity

environments will be examined when the null is false.

However, for the purpose of power curve analyses, in skilled

environments, we will be interested in the decision rule that

leads to the acceptance of the alternative hypotheses, i.e.,

one minus the observed error rate.

The specified experimental study is a three-factor

(3X3X4) complete randomized design. These analyses define

two experimental studies to be conducted for tests of market

timing and of selectivity abilities. The designed experiment

will provide answers on how the three factors of model,

timing, and selectivity, and their interactions affect the

models' power to detect managerial skills in market timing

and selectivity abilities. Furthermore, since the study's

results are reported in proportion form, p, i.e., the error
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rates are reported in terms of the number of times that they

occur out of 1000 trials, the analyses of variance are

conducted using the transformation pg=2arcsinVp.



90

Chapter 4

ANALYSIS OF RESULTS

For each specific level of microforecasting and

macroforecasting abilities and their combinations, each model

is tested for statistically significant timing and

selectivity parameters at the 5% level. In other words, the

power of various timing and selectivity models is analyzed.

A model's power can be explained in terms of the rate of

errors committed.

The experiments are conducted to collect the number of

times out of 1000 repetitions where the null hypothesis of no

selectivity ability, 11:ap40, is rejected for each model.

Similarly, the null hypothesis of no market timing ability,

Ho:/3 <0, is tested across the performance models.

The results of the simulation in the test of market

timing are presented in Appendix D, and the results for the

test of selectivity ability are included in Appendix E. The

probabilities in these tables are the proportion of times

that the null hypotheses of no timing ability, hro:fl 0, and

no selectivity ability, 11,:ap0, are rejected at the 5% (1%)

level in each of the nine microforecasting and

macroforecasting environments. The proportions are averages

of three experiments, each consisting of 1000 trials. The

experiments are replicated using three different sets of

random number seeds.
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Chapter 4 is organized as follows. First, the effects

of heteroskedasticity correction are investigated. Then, the

results of analyses on the power of models in tests of market

timing and selectivity performance are presented. In this

chapter, significance at the 5% level refers to the

inferences drawn on the analyses of variance, i.e., not on

the tests of null hypotheses Ho: Q <0 and 11,:apV).

4.1 EFFECTS OF HETEROSREDASTICITY CORRECTION

Breen, Jagannathan, and Ofer (BJO) (1986) showed that

correction for heteroskedasticity in tests of market timing

ability can be important. Using the Henriksson-Merton (HM)

model, the study concluded that when testing for market

timing ability, the adjustments for heteroskedasticity have

minimal effects in the case of normally distributed asset

returns. However, the effects of correction for nonconstant

error term variance were not investigated in tests of

managerial selectivity skill. Our study's results confirm

BJO's (1986) study when testing for timing ability using the

HM model. Furthermore, there is no observed pattern in the

differences, and the model's results, using analysis of

variance, before and after correction for heteroskedasticity

are not statistically significant at the 5% level. These

results are shown in Table 9. The factors of model and

timing, and model and selectivity do not interact in a

significant way at the 5% level.
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Table 9

ANOVA Table for Testing Henriksson-Merton Model's Results
Before and After Correction for Heteroskedasticity, Using
White's Method, in Test of Market Timing

Source of Sig.

Variation SS df MS Fs level

MAIN EFFECTS

A:HM Hetrosk. 0.0 1 0.0 0.0 .99

B:Timing 148785.3 2 74392.6 9521.1 .00

C:Selectivity 39.8 2 19.9 2.5 .09

INTERACTIONS

AB 0.7 2 0.4 0.0 .95

AC 0.9 2 0.4 0.0 .94

BC 21.1 4 5.3 0.7 .61

ABC 1.1 4 0.3 0.0 .99

RESIDUAL 281.3 36 7.8

TOTAL 149130.2 53

In tests of selectivity ability when a manager does not

possess skill, Aum=0%, the uncorrected heteroskedastic HM

model tends to underreject (cause fewer errors) the null

hypothesis of no selectivity ability, 11,:clp<0. In the

presence of managerial selectivity skill, z = 1 %,2 %, when the

HM model is not corrected for the nonconstant error term

variance, the model's response is characterized by an

overrejection tendency (increased errors) in testing the null

hypothesis 110:(1,40. However, as shown in Table 10, the

analysis of variance indicates that these observed

differences in results are not significant at the 5% level.
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Furthermore, the interaction between the factors of model and

timing, and model and selectivity, are not significant at the

5% level.

Table 10

ANOVA Table for Testing Henriksson-Merton Model's Results
Before and After Correction for Heteroskedasticity, Using
White's Method, in Test of Selectivity Ability

Source of

Variation

Sig.

SS df MS Fs level

MAIN EFFECTS

A:HM Hetrosk. 5.9 1 5.9 0.7 .41

B:Timing 13207.5 2 6603.7 819.4 .00

C:Selectivity 72006.2 2 36003.1 4467.6 .00

INTERACTIONS

AB 7.8 2 3.9 0.5 .62

AC 8.2 2 4.1 0.5 .60

BC 1113.1 4 278.3 34.5 .00

ABC 9.0 4 2.2 0.3 .89

RESIDUAL 290.1 36 8.1

TOTAL 86647.8 53

This study uses the White method to correct for HM's

nonconstant error term variance, and it should be emphasized

that these original findings are based on the assumption of

normally distributed asset returns.

In the case of the Lockwood-Kadiyala (LK) model, the

test of null hypotheses of no market timing ability, hro:ftilm0,

and no selectivity ability, Honx,,40, are characterized by

fewer errors (underrejection) in no-skill environments and by
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increased errors (overrejection) in skilled environments,

when ignoring heteroskedasticity. Furthermore, as shown in

Tables 11 and 12, the analyses of variance indicate that

these differences are significant at the 5% level. In

addition, the factors of model and timing, and model and

selectivity, when testing for timing and selectivity

abilities (110:13nms.0 and 1-1,,:ap50) do not exhibit significant

interactions at the 5% level.

Table 11

ANOVA Table for Testing Lockwood-Kadiyala Model's Results
Before and After Correction for Heteroskedasticity, Using
White's Method, in Test of Market Timing

Source of

Variation SS df MS Fa

Sig.

level

MAIN EFFECTS

A:LK Hetrosk. 40.9 1 40.9 4.7 .04

B:Timing 25.5 2 12.7 1.5 .24

C:Selectivity 150402.3 2 75201.1 8616.2 .00

INTERACTIONS

AB 0.2 2 0.1 0.0 .99

AC 3.6 2 1.8 0.2 .81

BC 44.2 4 11.0 1.3 .30

ABC 1.6 4 0.4 0.0 .99

RESIDUAL 314.2 36 8.7

TOTAL 150832.7 53
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Table 12

ANOVA Table for Testing Lockwood-Kadiyala Model's Results
Before and After Correction for Heteroskedasticity, Using
White's Method, in Test of Selectivity Ability

Source of Sig.

Variation SS df MS Fs level

MAIN EFFECTS

A:LK Hetrosk. 17.8 1 17.8 5.7 .02

B:Timing 162278.3 2 81139.1 25884.7 .00

C:Selectivity 104.1 2 52.0 16.6 .00

INTERACTIONS

AB 1.7 2 0.8 0.3 .76

AC 2.8 2 1.4 0.4 .64

BC 38.3 4 9.6 3.0 .03

ABC 1.6 4 0.4 0.1 .97

RESIDUAL 112.8 36 3.1

TOTAL 162557.4 53

Similar to the LK model, the Bhattacharya-Pfleiderer

(BP) model tends to underreject (fewer errors) the null

hypothesis of no selectivity ability, Ho:ap40, when a manager

does not possess microforecasting skill, Asim=0%. In the

presence of selectivity ability, AsEr-=1 %,2%, this is

characterized by an increase in errors (overrejection). The

analysis of variance, shown in Table 13, indicates that these

differences are significant at the 5% level, and that the

factors of model and selectivity and model and timing do not

exhibit significant interaction in testing the hypothesis

11,:ap0.
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Table 13

ANOVA Table for Testing Bhattacharya-Pfleiderer Model's
Results Before and After Correction for
Heteroskedasticity, Using GLS Method, in Test of
Selectivity Ability

Source of

Variation SS df MS Fs

Sig.

level

MAIN EFFECTS

A:BP Hetrosk. 12.9 1 12.9 5.4 .03

B:Timing 161950.1 2 80975.1 33852.9 .00

C:Selectivity 84.9 2 42.4 17.7 .00

INTERACTIONS

AB 2.2 2 1.1 0.4 .64

AC 7.2 2 3.6 1.5 .23

BC 18.8 4 4.7 2.0 .12

ABC 2.9 4 0.7 0.3 .88

RESIDUAL 86.1 36 2.4

TOTAL 162165.1 53

The patterns of errors for the BP model are completely

different than for other models when testing for managerial

timing ability. This is characterized by more errors

(overrejection) in no-skill environments and by fewer errors

(underrejection) in skilled environments when the model is

not corrected for heteroskedasticity. Furthermore, the

analysis of variance, as summarized in Table 14, indicates

that these differences are significant at the 5% level. In

addition, the interaction between the model and timing

factors is significant at the 5% level, but the factors of

model and selectivity do not interact in a significant way.
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Table 14

ANOVA Table for Testing Bhattacharya-Pfleiderer Model's
Results Before and After Correction for
Heteroskedasticity, Using GLS Method, in Test of Timing
Ability

Source of

Variation SS df MS

Sig.

Fs level

MAIN EFFECTS

A:BP Hetrosk. 1347.2 1 1347.2 128.4 .00

B:Timing 148396.0 2 74198.0 7072.1 .00

C:Selectivity 27.2 2 13.6 1.3 .28

INTERACTIONS

AB 110.9 2 55.5 5.3 .01

AC 4.0 2 2.0 0.2 .83

BC 21.2 4 5.3 0.5 .73

ABC 1.0 4 0.2 0.0 .99

RESIDUAL 377.7 36 10.5

TOTAL 150285.2 53

In this study, the LK model is corrected for

heteroskedasticity using White's method, and the BP model

accounts for the nonconstancy of error term variance using

the generalized least squares (GLS) method. The effects of

correction for heteroskedasticity using the Lockwood-Kadiyala

and Bhattacharya-Pfleiderer models, under the assumption of

normally distributed asset returns, have not previously been

investigated.

The Jensen (JN) model does not present any

heteroskedasticity-related biases and, therefore, is not

modified to account for nonconstant error term variance. In



98

comparing the power of models in tests for managerial

selectivity and timing abilities, we rely on results of

corrected models (except Jensen) for heteroskedasticity in

order to avoid the biases of nonconstant error term variance.
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4.2 POWER COMPARISON AMONG THE MODELS

In this Section, the power of the performance models is

examined at each timing and selectivity environment, when

they are applied to each sample of randomly generated market

and portfolio returns. As previously mentioned, the analyses

of variance for the HM, LK, and BP models are conducted using

the heteroskedasticity-corrected results. Furthermore, the

analyses are undertaken using the arcsin transformed

simulation results. However, the analyses of variance graphs

will be presented in proportion form, i.e., without the

arcsin transformation, in order to facilitate a better

understanding and discussion of the models' comparison in

terms of their power.

4.2.1 Power of Models in Test of Market Timing Ability

A three-factor experimental design is performed to

explore the relationship among the timing, selectivity, and

model factors. Furthermore, this study explores whether the

interactions among these factors have an effect on various

models' ability to show true managerial timing skill. These

results, as shown in the ANOVA Table 15, indicate that the

main effects of all the factors are highly significant at the

5% level. The interactions among the three factors are also

highly significant.
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Table 15

ANOVA Table for Testing No Timing Ability, Ho: nm50; All
Models Included

Source of Sig.

Variation SS df MS Fs level

MAIN EFFECTS

A:Model 31690.6 3 10563.5 1233.2 .00

B:Timing 225953.2 2 112976.6 13189.3 .00

C:Selectivity 10589.7 2 5294.8 618.1 .00

INTERACTIONS

AB 15300.5 6 2550.1 297.7 .00

AC 36755.4 6 6125.9 715.2 .00

BC 2592.4 4 648.1 75.7 .00

ABC 5989.2 12 499.1 58.3 .00

RESIDUAL 616.7 72 8.6

TOTAL 329487.9 107

The Jensen index is often used as a selectivity model to

test for managerial microforecasting ability. This model

assumes that the portfolio beta, flp, is constant through time

and it does not consider market timing. However, as Lockwood

and Kadiyala (1988), among others, have discussed, and as our

results indicate, Jensen's model can be considered as an

overall performance model. In the presence of both market

timing and selectivity abilities, the model's performance

parameter, ap, tends to absorb both skills as a combination.

In other words, in the presence of a given level of market

selectivity (timing) and with added levels of timing

(selectivity) skill, the model's power is increased.
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The behavior of the Jensen performance parameter, ap, in

the nine timing and selectivity environments is shown in

Figure 8. Our results confirm Jensen's (1968) contention

that in the presence of market timing ability, the model's

estimated selectivity parameter, ap, is biased upward.

Furthermore, as shown in Table 16, the differences in alfas,

ap, in the various timing environments, pnm=0,-0.50,-1, are

statistically significant at the 5% level, i.e., Sig. level

for the Timing factor = .00. These results are in

contradiction to Grant's (1977) study that predicted ap would

be biased downward when a manager possesses market timing

ability. The behavior of the selectivity parameters of the

HM, LK, and BP models will be discussed when comparing the

Table 16

ANOVA Table for Differences in JN's Alfas, ap, in Various
Timing and Selectivity Environments

Source of

Variation SS df MS F.

Sig.

level

MAIN EFFECTS

A:Selectivity 0.001427 2 7.14E-04 2.748E5 .00

B:Timing 0.000584 2 2.92E-04 1.124E5 .00

INTERACTIONS

AB 3.79E-07 4 9.49E-08 3.654E1 .00

RESIDUAL 4.68E-06 18 2.60E-09

TOTAL 0.002012 26
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power of the models in tests for managerial selectivity

abilities (see section 4.2.2).

The Jensen model is a single parameter performance model

which is used to test for managerial selectivity ability.

The Henriksson-Merton (HM), Lockwood-Kadiyala (LK), and

Bhattacharya-Pfleiderer (BP) are two parameter performance

models which have been formulated to differentiate between

managerial selectivity and timing abilities.

The Jensen model is included in this part of the

analysis only for the purpose of comparing statistical power

among the performance models to uncover managerial timing

ability. However, it will not be formally discussed as it is

used only as a selectivity model. A formal analysis of this

model is presented when the study examines statistical power

among models to test for managerial selectivity ability

(Section 4.2.2).

The analysis of variance using the HM, LK, and BP models

when testing for timing ability are presented in Table 17.

The main effects of the factor model are highly significant

at the 5% level, however, the interaction between the model

and timing factors is not significant.

A pairwise comparison among the factor level means for

various models indicates that models LK and BP behave

similarly, and are both significantly different from the HM

model at the 5% level. This is depicted in Figure 9 which

exhibits the 95% confidence intervals for the models' means.
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Table 17

ANOVA Table for Testing No Timing Ability, hro:finm0; All
Models Included (Except Jensen)

Source of Sig.

Variation SS df MS F. level

MAIN EFFECTS

A:Model 319.2 2 159.6 17.12 .00

B:Timing 224034.8 2 112017.4 12.02E3 .00

C:Selectivity 49.7 2 24.9 2.67 .08

INTERACTIONS

AB 42.6 4 10.6 1.14 .35

AC 4.1 4 1.0 0.11 .98

BC 36.0 4 9.0 0.97 .43

ABC 1.5 8 0.2 0.02 1.0

RESIDUAL 503.3 54 9.3

TOTAL 224991.2 80

As shown in Figure 10, the HM model has more power to

demonstrate no timing ability when the manager possesses no

skill, i.e., pnm=0. In other words, the HM model has fewer

errors. However, in environments that are classified as

semi-skilled and skilled in timing ability, pnm=-0.50,-/, the

LK and BP models have more power. This argument is also

depicted in Figure 10, as the time varying beta models of LK

and BP show fewer errors.

In the skilled timing environment, pnm=-/, all the

models have almost perfect detection rates, i.e., > 95%.

Although all of the models are highly powerful, models LK and

BP commit fewer errors than the HM model in skilled
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Figure 9. 95% Confidence Intervals for
Models' Means in Test of Market Timing
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environments. The analysis of variance showed that the

interaction among the factors model and timing is not

significant at the 5% level. In other words, the models in

the specific timing environments: pnm=0,-0.50,-1, respond

similarly, which can be seen as almost parallel lines in

Figure 10.

The same model behavior is repeated in the specific

selectivity environments: 0 m=0%,1%,2%. The selectivity

levels affect the models' responses in the same way, meaning

that the model and selectivity factors do not interact. All

the models sacrifice power or have higher error rates across

the selectivity environments. These models' behavior are

shown in Figure 11. In other words, the models' responses

are not significant at the 5% level. The rankings of the

models in tests of market timing are summarized in Table 18.

The portfolio returns associated with the nine timing

and selectivity environments are summarized in Table 19. The

portfolio returns, RP, associated with the nine skill

environments are shown in the form of a response surface in

Figure 12. A manager with no skill in timing and selectivity

activities, pnm=0 and 0 sEL=0%, on average, shows an annual

return of 16.43%. The market return under the same simulated

conditions was 17.43%.

In the semi-skilled managerial timing environment, pm

=-0.50, the minimum realized portfolio return equals 24.99%

annually when the manager possess no selectivity ability,
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Table 18

Rankings of Mutual Fund Performance Models in Test of Market Timing Ability,

lic:Brv<0, in Various Timing and Selectivity Environments

prim = 0

TIMING SKILL

orm = -0.50 pay, =
1. HM 1. LK,BP 1. LK,BP

A = 0% 2. LK,BP 2. HM 2. HM

SELECTIVITY

1. HM 1. LK,BP 1. LK,BP

A = i% 2. LK,BP 2. HM 2. HM

SKILL

1. HM 1. LK,BP 1. LK,BP

AsEL = 2% 2. LK,BP 2. HM 2. HM



Table 19

Portfolio Annual Returns' in Absolute, Rp, and Risk-Premium, Re, Forms, and

Standard Deviationb, aim, in Various Timing and Selectivity Environments°

PTIAI =

TIMING SKILL

Prey = -0.50 Prier = -1

R Annual: 16.43% 24.99% 33.99%

A = 0% Rpf Annual: 5.61% 13.45% 21.70%

aRpf: 6.23% 6.31% 6.35%

SELECTIVITY

R Annual: 29.63% 39.00% 48.86%

A = 1% Rpf Annual: 17.71% 26.25% 35.28%

aRpf: 6.25% 6.39% 6.51%

SKILL

R Annual: 44.05% 54.52% 65.58%

A =2% Re Annual: 30.94% 40.38% 50.38%

aRpf: 6.28% 6.49% 6.68%

'Averages of three experiments, each with 1000 trials. Experiments are replicated

using three different sets of random number seeds.

bStandard deviation of returns in the risk-premium form, Re.

°Market performance statistics: R. annual=17.43%, R,f annual=7.40%, and a -4.58%.
0
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A =0%. In this case, the HM, LK, and BP models all detect

managerial timing ability with probabilities of 0.50 or

greater. The power of models in the test of market timing

and the corresponding timing skill and portfolio returns are

shown in Figure 13.

In skilled environments, pnm=-/, the minimum portfolio

annual return equals 33.99% when the manager is not

successful in superior stock selection, 0 sEL=0%. Given this

return environment, all of the models detect managerial

timing ability with probabilities of 0.95 or greater as is

shown in Figure 13.

When the managed fund and the market have approximately

the same performance, Rp=16 . 43% and Rm=17 . 43% , the Henriksson-

Merton model exhibits the highest power in detecting lack of

managerial timing skill. The LK and BP models also perform

well in exposing lack of ability. On the other hand, when

the manager is skillful in forecasting the market direction,

pnm=-/, with a minimum realized return of 33.93% annually,

the LK and BP models perform better than the HM model. This

model behavior is also repeated in semi-skilled timing

environment, pnm=-0.50. A graphical representation of these

results is presented in Figure 13.
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4.2.2 Power of Models in Test of Selectivity Ability

The tests for managerial selectivity ability to

investigate the power of the models are conducted in a

similar fashion to the tests for market timing ability.

Appendix E summarizes the three-factor experimental design

study to explore the relationship among the factors of model,

selectivity, and timing. The proportions in Appendix E are

the probabilities that the null hypothesis of no selectivity

ability, liro:a0, is rejected by selectivity parameters that

are statistically significant at the 5% level. The results

of analysis of variance are summarized in Table 20. The main

effects of all the factors and interactions between them are

highly significant.

A closer investigation of Appendix E reveals that with

timing skill added to the constructed portfolio returns, the

Henriksson-Merton model tends to sacrifice power. Given the

selectivity skill environments, A =0%,1%,2%, the probability

of rejecting the null hypothesis of no selectivity ability,

11,:a<0, tends to decrease across all timing environments,

pnm=0,-0.50,-1. This is characterized by fewer errors in no-

skill environments and by increased errors in skilled

environments. This particular model's behavior can be

explained in terms of a negative correlation between timing

and selectivity skills. Figure 14 depicts the behavior of

the model's selectivity parameter, ap, in the presence of
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Table 20

ANOVA Table for Testing No Selectivity Ability, 110:ap0;
All Models Included

Source of

Variation SS df MS F*

Sig.

level

MAIN EFFECTS

A:Model 82084.9 3 27361.6 5525.0 .00

B:Timing 233140.0 2 116570.0 23538.3 .00

C:Selectivity 871.1 2 435.5 87.9 .00

INTERACTIONS

AB 10556.2 6 1759.4 355.3 .00

AC 23105.9 6 3851.0 777.6 .00

BC 3104.5 4 776.1 156.7 .00

ABC 6075.3 12 506.3 102.2 .00

RESIDUAL 356.6 72 4.9

TOTAL 359294.6 107

market timing ability. With the added managerial timing

skill, the model tends to break down as it becomes biased in

showing the true selectivity ability of the manager. As

shown in Table 21, the differences in alfas, ap, in the

various timing environments, p =0,-0.50,-1, are

statistically significant at the 5% level, i.e., Sig. level

for the Timing factor = .00.

Various empirical mutual fund studies, Kon (1983), Chang

and Lewellen (1984), Henriksson (1984), and more recently

Connor and Korajczyk (1991) have confirmed this

characteristic of the HM model. The mutual funds with

significant timing parameter have most often demonstrated a



116

Figure 14. Behavior of HM's Alfa in
Timing and Selectivity Environments, Test of Selectivity
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negative selectivity performance. Henriksson (1984) has

offered possible explanations, including market portfolio

proxy and errors-in-variables biases, and model

misspecification.

Table 21

ANOVA Table for Differences in HM's Alfas, ap, in Various
Timing and Selectivity Environments

Source of

Variation SS df MS

Sig.

F' level

MAIN EFFECTS

A:Selectivity .001523 2 7.61E-4 7917.1 .00

B:Timing .000331 2 1.65E-4 1721.9 .00

INTERACTIONS

AB 3.36E-7 4 8.40E-8 0.9 .50

RESIDUAL 1.73E-6 18 9.61E-8

TOTAL .001856 26

Jagannathan and Korajczyk (1986) also pursued this

problem and their study suggested that the HM model tends to

break down due to the nature of the constructed portfolios.

The existence of options or option-like securities in mutual

fund portfolios have been offered as possible directions to

explain the negative correlation among the timing and

selectivity measures observed when using the HM model. This

particular behavior of the HM model, negative correlation

between ap and added managerial timing abilities, pnm=0, -0.50,

-1, is also confirmed in our study. Furthermore, given the
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investment objectives of our sample fund data, our results

are applicable in environments where the mutual funds are

classified as Maximum Capital Gains (MCG), Growth and Current

Income (GCI), and Long-Term Growth (LTG). In addition, the

constructed fund portfolios in this study can be categorized

as investments in companies with high-capitalization stocks.

The LK and BP models' selectivity parameters tend to be

robust in the various levels of timing environments. Figures

15 and 16 show the behavior of these models' alfa, ap, in

timing, pnm=0,-0.50,-1, and selectivity, AsEL=0%,/%,2%,

environments. Furthermore, as Table 22 shows, the timing

(selectivity) environments do not affect the models' alfas,

a
pf

i.e., the timing (selectivity) and model factors do not

interact: Sig. level = 0.99 (.28). In addition, the models'

alfas, a,,, behave similarly, as the main effect of the factor

model is not statistically significant at the 5% level, i.e.,

Sig. level = .07.

The inadequacy of the Jensen model in tests for

managerial timing ability was mentioned in the previous

section. Therefore, to investigate the power of these models

in testing for managerial selectivity ability, we examine all

of the models in the no-skill managerial timing environment,

PnAr=0. The JN and HM models tend to be robust in

environments where the portfolio manager possesses no timing

ability. However, when testing for models' power in

environments where managerial timing (macroforecasting)
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ability exists, the JN and HM models tend to break down.

Therefore, we only investigate the LK and BP models in these

environments, i.e., p=0,-0.50,-1.

Table 22

ANOVA Table for Differences in LK and BP's Alfas, a:1,, in
Various Timing and Selectivity Environments

Source of

Variation SS df MS F*

Sig.

level

MAIN EFFECTS

A:Model 1.00E-07 1 1.00E-07 3.5 .07

B:Timing 0.002956 2 0.001478 48821.4 .00

C:Selectivity 1.00E-06 2 5.00E-07 16.4 .00

INTERACTIONS

AB 8.47E-10 2 4.23E-10 1.40E02 .99

AC 8.07E-08 2 4.03E-08 1.3 .28

BC 1.07E-07 4 2.67E-08 0.9 .48

ABC 1.10E-09 4 2.76E-10 0.90E-2 .99

RESIDUAL 1.09E-06 36 3.03E-08

TOTAL 0.002959 53

Analysis of variance was conducted for all the models

when testing for the null hypothesis of no selectivity

ability in the presence of no macroforecasting (timing)

skill, pnm=0. These results are summarized in Table 23. The

main effects and interactions between the model and

selectivity factors are highly significant at the 5% level.
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Table 23

ANOVA Table for Testing No Selectivity Ability, hro:orp<0;
When pnm=0, All Models Included

Source of

Variation SS df MS F`

Sig.

level

MAIN EFFECTS

A:Model 3043.3 3 1014.4 291.8 .00

B:Selectivity 99021.9 2 49511.0 14241.1 .00

INTERACTIONS

AB 1853.4 6 308.9 88.8 .00

RESIDUAL 83.4 24 3.5

TOTAL 104002.1 35

The treatment means are used to conduct a pairwise

comparison among the models. Figure 17 demonstrates how

these models behave in various managerial selectivity

environments, 0sEL=0%,1%,2%, when managerial timing ability

does not exist, pnm=0.

The error rates for the environment in which no

managerial selectivity ability exists, Amm=0%, do not differ

significantly, hence, all of the models exhibit similar

power. However, in the presence of managerial selectivity

ability, 0mm=1%,2%, error rates differ significantly. As is

shown in Figure 17, the Jensen model is significantly

different at the 5% level and exhibits the highest power,

i.e., commits the least number of errors, when 0 EL=/%,2%.

The LK and BP models show the next highest performance,
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Figure 17. Plot of Interactions for
Model by Selectivity Level, Test of Selectivity
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and behave very similarly in both managerial selectivity

environments where the added levels of skill are 1% and 2%.

The HM methodology has the least power as it commits the most

errors in skilled environments, and the model is

significantly different from other models at the 5% level.

These results, together with the selectivity environments and

the associated portfolio returns, Rp, when the manager does

not possess timing ability, pm=0, are depicted in Figure 17.

An overall comparison, using multiple range analysis,

among the models' means showed that the JN model has the

highest discriminatory power when testing for the null

hypothesis of no selectivity ability, and the HM model is

most inferior. The 95% confidence intervals for models'

means are shown in Figure 18. It can be seen that models LK

and BP are very similar and the results indicate that both

models are significantly different from the JN and HM models

at the 5% level.

These results are only applicable when the managerial

timing ability does not exist, p,,,=0. Next, the LK and BP

models are explored in terms of their power across

macroforecasting (timing) skill environments, pnm=0,-0.50,-1.

The results of the analysis of variance when testing for

selectivity ability for the LK and BP models is shown in

Table 24. Due to the biases of the JN and HM models, these

methodologies are not included. The main effects and

interactions between the model and selectivity factors, and
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model and timing, are not statistically significant at the 5%

level. The results of range analysis showed that there is no

significant difference among the LK and BP models at the 5%

level. The 95% confidence intervals for models' means, shown

in Figure 19, confirm these results.

Table 24

ANOVA Table for Testing No Selectivity Ability, 11,:a ,,O;
Across All Timing Environments Using LK and BP Models

Source of

Variation SS df MS Fs

Sig.

level

MAIN EFFECTS

A:Model 0.4 1 0.39 0.17 .69

B:Timing 161161.3 2 80580.67 3.439E4 .00

C:Selectivity 57.0 2 28.50 12.16 .00

INTERACTIONS

AB 2.0 2 1.01 0.43 .65

AC 1.3 2 0.65 0.28 .76

BC 20.8 4 5.19 2.22 .09

ABC 5.3 4 1.32 0.56 .69

RESIDUAL 84.3 36 2.34

TOTAL 161332.5 53

Figure 20 shows the effect of various managerial

selectivity abilities, Amm=0%,1%,2%, on these models' power.

The models are virtually identical and do not exhibit

statistically significant differences in various levels of

microforecasting skill. The interactions between the factors

of model and timing is depicted in Figure 21. The LK model
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has fewer errors in the no-skill environment, pnm=0;

therefore, it has more power than the BP model in showing

lack of managerial selectivity ability. This specific

behavior is also repeated in environments in which the

manager possesses timing ability, pm=-0.50,-1, as is shown

in Figure 21. Although the LK model exhibits higher power in

revealing managerial selectivity ability, these differences

are marginal and the models are not statistically significant

at the 5% level. Furthermore, this leads us to the

conclusion that the heteroskedasticity correction methods of

White and GLS, in this case, perform equally. The rankings

of the models in tests of managerial selectivity ability are

summarized in Table 25.

The selectivity portfolio returns are summarized in

Table 21, as are the timing portfolios. With a minimum

portfolio return of 16.43% annually, when managers have no-

skill in both timing and selectivity abilities, pnm=0 and

bt,=.0%, all of the models perform well in detecting no

selectivity ability with the probability of errors

approaching 0.05.

When the manager is semi-skilled in selectivity ability,

Amm=1%, and possess no timing ability, pnm=0, the realized

portfolio return equals 29.63%. In this return environment,

all the models except the HM detect managerial selectivity

ability with probabilities of 0.50 or greater, with the JN

showing the highest power.



Table 25

Rankings of Mutual Fund Performance Models in Test of Managerial Selectivity

Ability, 119:ar50, for Various Timing and Selectivity Environments

Oyu =
TIMING SKILL

p = -0.50 pm, =
1. JN 1. LK,BP 1. LK,BP

Am = 0% 2. LK,BP

3. HM

SELECTIVITY

1. JN 1. LK,BP 1. LK,BP

Am = 1% 2. LK,BP

3. HM

SKILL

1. JN 1. LK,BP 1. LK,BP

Am = 2% 2. LK,BP

3. HM

-1



132

The models exhibit the same behavior when the manager

has superior skills in selectivity and has no-skill in market

timing, Aum=2% and pm=0. With a realized portfolio return

of 44.05% annually, the JN, LK, and BP models detect

managerial ability with probabilities of 0.95 or greater.

The HM model exhibits minimum power when the manager is

skilled in stock selectivity, 0 mm=2%. With the increased

timing skill and improved portfolio return, the LK and BP

models show the same power in tests of managerial selectivity

ability, whereas the JN and HM models break down.

The LK and BP methodologies provide identical model

specifications in testing for managerial selectivity ability.

However, when the models are corrected for the

heteroskedasticity due to nonconstant error term variance,

the LK model is modified using the White method and the BP

model is corrected using the GLS formulation. Our study

examines the power of these models in testing for managerial

selectivity ability to explore the differences among the two

methods.
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Chapter 5

SUMMARY AND CONCLUSIONS

The results of this study provide evidence on the

statistical power of various mutual fund timing and

selectivity models. However, the results are subject to a

set of constraints. The simulated portfolio returns were

constructed under a set of assumptions. The market risk

premium monthly returns were generated according to the

distribution of the series during the period 1975-1989. The

timing portfolios were constructed using the T-bill

distribution of mutual fund sample data over the period 1984-

1989. The investment objectives of these funds were

classified as Maximum Capital Gain (MCG), Growth and Current

Income (GCI), and Long-Term Growth (LTG). The amount of

noise in the constructed portfolio returns was modeled

according to the observed distribution of the error terms

when the performance models were applied to the mutual fund

return data. The market risk premium returns and portfolio

composition in T-bills were modeled using a lognormal

distribution. In addition, the timing portfolio returns were

simulated, according to a bivariate lognormal distribution,

using the market returns and the sample mutual fund T-bill

distribution. Furthermore, the selectivity portfolios were

simulated by adding constant levels of excess returns to the

monthly generated returns.
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Mutual fund portfolio management activities are very

complex and diverse. Therefore, the results of our study are

applicable only under the specified conditions. The outlined

assumptions were an attempt to capture and model mutual fund

portfolio managers' behavior in specific timing and

selectivity environments.

The observed error rates for the Henriksson-Merton model

were not affected by correction for heteroskedasticity. The

results indicate that this condition holds true both in tests

of market timing and managerial selectivity abilities,

hro:1377A/0 and 11,:ap0. However, in the case of the Lockwood-

Kadiyala model, the observed differences in error rates are

significantly different at the 5% level after correction for

heteroskedasticity. This pattern is observed in both tests

of managerial timing and selectivity abilities. Similar to

the LK model, the Bhattacharya-Pfleiderer model's results for

tests of managerial timing and selectivity abilities are

significantly different at the 5% level after accounting for

nonconstant error term variance.

In tests of market timing, the LK and BP models

exhibited more power to reveal managerial ability in

macroforecasting than the HM model. However, in environments

where managers do not possess timing ability, the HM model

was more powerful in demonstrating lack of skill.

The power of performance models were also examined when

testing for managerial selectivity ability. In the no-skill
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timing environment, the models had the following ranking: 1)

Jensen; 2) Lockwood-Kadiyala and Bhattacharya-Pfleiderer

(tied); and 3) Henriksson-Merton. However, when managers

possess timing skill, the LK and BP models performed

identically in revealing managerial skill in testing for

selectivity ability. Furthermore, in selectivity

environments where managers possess timing ability, the

Jensen and Henriksson-Merton models were not robust, as the

models broke down in detecting managerial ability. According

to the described rankings, the time-varying beta models of

Lockwood-Kadiyala and Bhattacharya-Pfleiderer overall showed

the highest power in tests of both market timing and

selectivity abilities.

Most of the recent mutual fund studies have concluded

that, on average, the fund managers do not possess timing and

selectivity skills. Attempts have been made to provide

answers to this pattern of results. From this study's

perspective, a simulation procedure was designed to model the

managerial timing and selectivity skills. According to the

amount of noise which is characteristic of equity mutual

funds, together with this study's assumptions, a fund manager

would be identified as a market timer when the realized

portfolio return exceeds the market return by at least 17%

annually. More specifically, the corresponding accuracies of

detection rate for managerial timing ability were as follows:

HM: 96.5%, LK: 97.4%, and BP: 97.3%. In tests of selectivity
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ability, the minimum portfolio return in excess of market

return was at least 27% annually before the fund manager

could be identified as skillful in superior stock selection.

Furthermore, the models achieved the following levels of

accuracy in detecting the managerial selectivity ability:

JN: 99.6%, HM: 82.2%, and LK and BP: 97.5%.

This partly explains the results of previous mutual fund

studies that managers, on average, cannot "beat the market."

This may be discussed in terms of the noise that is present

in the return data. The models selected in this study did

not provide reliable results given the characteristics of the

data used in current performance studies. The models lack

power in detecting ability, unless the fund managers are

extremely skillful in forecasting market directions and

selecting superior stocks.

Aside from the results of the performance models, if the

fund returns are not superior compared to the benchmark

portfolios, it is possible that managers do not engage in

active management due to the excessive transaction costs

incurred in trading securities. It is also possible that

managers do not attempt to time the market, simply because

the down-side risk is not tolerable. One interesting

explanation could be that fund managers engage in "herd

behavior", as discussed by Scharfstein and Stein (1990).

Under this behavioral theory, the manager acts according to

"group psychology", and ignores quality information that
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might be available. Furthermore, the asset allocation

activities of fund managers can also be analyzed under this

theory. If mutual fund managers behave according to the

"herd" model, then it is possible that, on average, they will

not be able to outperform the market.

Given a portfolio management environment where money

managers engage in timing and selectivity activities, more

powerful models that account for noise need to be formulated.

In addition, the state of the art performance models require

further examination. The designed timing and selectivity

portfolios could be expanded to include investments in small

stocks and fixed-income securities. Another possibility is

the inclusion of non-cash securities as a timing medium.

Further examination of mutual fund timing and selectivity

models under diverse portfolio and market conditions would

provide more in-depth insight into the working

characteristics (power) of these models.
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APPENDIX A

LIST OF SELECTED MUTUAL FUNDS (AS OF 1989)

GCI:
LTG:
MCG:

Growth and Current Income
Long-term Growth
Maximum Capital Gains

Fund Objective Total Assets(Smil)
1. Aim Eq. - Aim Const. MCG 83.58
2. Alliance (Chemical) LTG 837.42
3. American Capital Entr. MCG 601.24
4. David L. Babson (Gr.) LTG 273.39
5. Bull & Bear Cap. Gr. LTG 65.43
6. Colonial Gr. GCI 124.76
7. Eaton Vance Gr. LTG 92.12
8. Eaton Vance Sp. Eq. LTG 53.49
9. Evergreen MCG 792.37
10. Fidelity Destiny LTG 1753.30
11. Fidelity Magellan MCG 12699.60
12. Fidelity Trend LTG 883.64
13. Financial Ind. LTG 369.49
14. Franklin Equity MCG 412.45
15. Franklin Gr. Series LTG 144.14
16. Lord Abbett Dev. Gr. MCG 135.79
17. M. Lynch Sp. Value LTG 66.44
18. Morgan (W.L.) Gr. LTG 732.80
19. Pioneer II GCI 4382.59
20. Price T. Rowe Gr. Stock LTG 1516.04
21. Price T. Row New Era LTG 826.58
22. Putnam Hlth. Sci. LTG 293.80
23. Putnam Investors LTG 691.68
24. Putnam Voyager MCG 731.36
25. Scudder Cap. Gr. MCG 993.11
26. Seligman Cap. MCG 124.62
27. Seligman Gr. LTG 554.36
28. State Str. Investments GCI 575.11
29. Strategic Investments LTG 59.40
30. 20th Cent. Select LTG 2858.68
31. Vanguard Index Trust GCI 1803.84
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APPENDIX B

PERFORMANCE MODELS' STATISTICS FOR SELECTED MUTUAL FUNDS
(HETEROSKEDASTICITY-CORRECTED)

Fund 1 Fund 2 Fund 3 Fund 4

Size

R
1,./

;1

am W

($mil)

Ann. %

Mon. %

83.58

20.37

9.81

837.42

6.94

7.64

601.24

4.32

12.62

273.39

6.61

6.03

JN: a 0.017 -0.002 0.003 -0.001

f3 0.324 1.125** 0.832** 0.956

R2 0.027 0.530 0.106 0.616

a, 0.097 0.053 0.120 0.038

HM: a 0.039* -0.005 0.011 -0.004

tinm 3.031* 0.200 0.424 0.132

R2 0.309 0.532 0.110 0.617

a 0.083 0.053 0.121 0.038

LK: a -0.015 -0.002 0.007 -0.001

flilm 11.099** 0.066 1.377 -0.310

R2 0.465 0.530 0.110 0.617

a, 0.073 0.053 0.121 0.038

BP: a -0.013 -0.003 0.008 -0.002

pm 0.475** 0.029 -0.071 0.045

R2 0.465 0.530 0.110 0.617

a, 0.073 0.053 0.121 0.038

'Significant at the 5% level.

"Significant at the 1% level.

1Returns are in risk premium form, Re = Rp - Rf. For the
same period, 1984-1989, Market Return: Rmi,= 0.92%

and aw = 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 5 Fund 6 Fund 7 Fund 8

Size

RIV !

aR,
Pf

($mil)

Ann. %

Mon. %

65.43

-5.37

7.61

124.76

8.20

6.09

92.12

7.34

5.71

53.49

0.00

6.23

JN: a -0.011 -0.001 -0.001 -0.007

0 1.045** 1.006 0.993 1.020

R2 0.461 0.666 0.739 0.653

a, 0.056 0.035 0.029 0.037

HM: a -0.003 -0.003 0.002 -0.009

I3Thm -0.042 0.120 -0.203 0.092

R2 0.470 0.667 0.743 0.654

a, 0.056 0.036 0.029 0.037

LK: a -0.008 -0.001 0.000 -0.008

nm -0.967 0.058 -0.391 0.079

R2 0.467 0.666 0.741 0.653

0 0.056 0.036 0.029 0.037

BP: a -0.008 -0.001 0.000 -0.008

pnm -0.102 0.049 -0.085 0.035

R2 0.467 0.666 0.741 0.653

Of 0.056 0.036 0.029 0.037

*Significant at the 1% level.

"Significant at the 5% level.

'Returns are in risk premium form, R1 = RP For the

same period, 1984-1989, Market Return: Rm1 = 0.92% and

= 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 9 Fund 10 Fund 11 Fund 12

Size

R 1

aDf

($mil) 792.37

Ann. % 4.69

Mon. % 5.32

1753.30

8.80

6.68

12699.60

11.73

6.04

883.64

5.77

6.18

JN: a -0.002 0.000 0.002 -0.003

fl 0.819** 0.979** 1.038** 1.050**

R2 0.580 0.526 0.722 0.705

a, 0.035 0.046 0.032 0.034

HM: a 0.000 0.003 0.006 0.003

/3Thm -0.143 -0.132 -0.242 -0.310

R2 0.582 0.527 0.727 0.713

a, 0.035 0.046 0.032 0.034

LK: a 0.000 0.001 0.003 0.000

137Thi -0.656 -0.436 -0.550 -1.115

R2 0.586 0.530 0.725 0.717

a, 0.035 0.046 0.032 0.033

BP: a -0.001 0.001 0.004 0.000

pnm -0.066 -0.030 -0.083 -0.103

R2 0.586 0.530 0.725 0.717

a, 0.035 0.046 0.032 0.033

*Significant at the 1% level.

"Significant at the 5% level.

1Returns are in risk premium form, R = RP
- RP For the

same period, 1984-1989, Market Return: Icy, = 0.92% and

= 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 13 Fund 14 Fund 15 Fund 16

Size

Rpi

amW

($mil) 369.49

Ann. % 4.01

Mon. % 6.33

412.45

8.37

6.06

144.14

7.50

3.96

135.79

-6.27

6.14

JN: a -0.005 0.001 0.000 -0.013**

0 1.105** 0.840** 0.716** 1.012**

R2 0.746 0.470 0.801 0.664

a, 0.032 0.044 0.018 0.036

HM: a -0.003 0.016* -0.006 -0.011

flTIM -0.084 -0.817 0.347** -0.081

R2 0.746 0.524 0.824 0.665

a, 0.032 0.042 0.016 0.036

LK: a -0.005 0.008* -0.003 -0.012*

-0.019 -2.606 1.160** -0.385

R2 0.746 0.534 0.831 0.666

a, 0.032 0.042 0.016 0.036

BP: a -0.004 0.008 -0.003 -0.012*

11 TIM -0.036 -0.168 0.403** -0.033

R2 0.746 0.534 0.831 0.666

a, 0.032 0.042 0.016 0.036

*Significant at the 1% level.

"Significant at the 5% level.

1Returns are in risk premium form, 1Rpf = Rp - 12f. For the

same period, 1984-1989, Market Return: R4, = 0.92% and

QRmf = 4.95%.
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Performance Models'

Appendix B (cont.)

Statistics for Selected Mutual Funds

Fund 17 Fund 18 Fund 19 Fund 20

Size

R10
aRe

($mil)

Ann. %

Mon. %

66.44

-4.07

5.49

732.80

4.46

6.51

4382.59

5.14

6.73

1516.04

5.82

5.52

JN: a -0.010** -0.003 -0.004 -0.002

13 0.938** 0.965** 1.114** 0.879**

R2 0.716 0.540 0.670 0.621

a, 0.029 0.044 0.039 0.034

HM: a -0.002 0.000 0.004 0.000

TIM -0.481* -0.145 -0.405 -0.078

R2 0.738 0.539 0.681 0.622

a, 0.028 0.045 0.039 0.034

LK: a -0.006 0.000 0.002 0.000

71V -1.648** -0.960 -1.861** -0.672

R2 0.747 0.545 0.696 0.626

a, 0.028 0.044 0.038 0.034

BP: a -0.006 -0.001 0.001 -0.001

Pm -0.222 -0.036 -0.151 -0.046

R2 0.747 0.545 0.696 0.626

a, 0.028 0.044 0.038 0.034

Significant at the 1% level.

"Significant at the 5% level.

'Returns are in risk premium form, Rpf = Rp - R1. For the

same period, 1984-1989, Market Return: Ril, = 0.92% and

amq = 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 21 Fund 22 Fund 23 Fund 24

Size

Rpf

amW

($mil)

Ann. %

Mon. %

826.58

7.56

5.27

293.80

9.06

6.70

691.68

6.27

6.21

731.36

9.30

7.00

JN: a 0.000 0.000 -0.001 -0.001

13 0.848** 1.092** 0.841** 1.200**

R2 0.632 0.650 0.448 0.720

a, 0.032 0.040 0.046 0.037

HM: a 0.003 0.001 0.001 -0.001

fl TIM -0.157 -0.076 -0.070 -0.009

R2 0.635 0.650 0.448 0.720

a, 0.032 0.040 0.047 0.038

LK: a 0.002 0.000 -0.001 -0.002

hPrim -0.951* -0.337 0.217 0.202

R2 0.644 0.651 0.448 0.720

a, 0.032 0.040 0.047 0.038

BP: a 0.001 0.000 0.000 -0.001

pnm -0.063 -0.026 -0.002 -0.006

R2 0.644 0.651 0.448 0.720

a, 0.032 0.040 0.047 0.038

*Significant at the 1% level.

"Significant at the 5% level.

'Returns are in risk premium form, Rpf = RP - R1. For the

same period, 1984-1989, Market Return: RmIr= 0.92% and

amv = 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 25 Fund 26 Fund 27 Fund 28

Size

Riel

alze

($mil) 993.11

Ann. % 10.40

Mon. % 5.89

124.62

-1.11

6.67

554.36

4.63

7.40

575.11

7.15

5.13

JN: a 0.002 -0.009 -0.001 -0.001

0.920 1.098** 0.822** 0.900**

R2 0.595 0.663 0.302 0.754

aE 0.038 0.039 0.062 0.026

HM: a 0.010 -0.008 -0.002 -0.001

flnm -0.462* -0.027 0.072 -0.001

R2 0.613 0.663 0.302 0.754

of 0.037 0.039 0.063 0.026

LK : a 0.006 -0.008 0.000 -0.001

linm -1.650** -0.296 -0.252 0.048

R2 0.622 0.664 0.302 0.754

a, 0.037 0.039 0.063 0.026

BP: a 0.006 -0.008 -0.002 -0.001

pnm -0.173 -0.021 0.022 0.006

R2 0.622 0.664 0.302 0.754

a, 0.037 0.039 0.063 0.026

Significant at the 1% level.

"Significant at the 5% level.

'Returns are in risk premium form, Re = RP - R1. For the

same period, 1984-1989, Market Return: R4.= 0.92% and

amv = 4.95%.
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Appendix B (cont.)

Performance Models' Statistics for Selected Mutual Funds

Fund 29 Fund 30 Fund 31

Size

R1

e

($mil) 59.40

Ann. % -13.19

Mon. % 13.69

2858.68

6.54

6.94

1803.84

9.70

5.11

JN: a -0.003 -0.003 0.000

0 0.037 1.241** 0.972**

R2 0.000 0.782 0.887

a, 0.138 0.032 0.017

HM: a 0.005 -0.003 0.000

Onm -0.437 -0.042 -0.017

R2 0.003 0.782 0.887

a( 0.139 0.033 0.017

LK: a 0.005 -0.005 0.000

flnm -2.894 0.392 -0.042

R2 0.015 0.783 0.887

a( 0.138 0.033 0.017

BP: a 0.001 -0.003 0.000

Pnm -0.028 -0.035 0.000

R2 0.015 0.783 0.887

a( 0.138 0.033 0.017

'Significant at the 1% level.

"Significant at the 5% level.

'Returns are in risk premium form, R
f
= R

P
- R f' For the

same period, 1984-1989, Market Return: Rnif = 0.92% and

alw = 4.95%.
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APPENDIX C

COMPUTER PROGRAM

The subroutines for the least squares estimation using
singular value decomposition and random number generation
have been adapted from Press, Flannery, Teukolsky, and
Vetterling (1989).

PROGRAM PORTMGT
C

PARAMETER(M=120,NJ=2,N=3,LIM=1000)
C

DOUBLE PRECISION DIV,EXRET,AB(N),VAR(N,N),AX(M,N),
AY(N,N),AZ(N),UU(M,N),X(N),B(M),PAR(N),DEL(M),
PAR1(N),SIG(N),BEAR,BULL

DOUBLE PRECISION ABJ(NJ),VARJ(NJ,NJ),AXJ(M,NJ),
AYJ(NJ,NJ),AZJ(NJ),UUJ(M,NJ),XJ(NJ), PARJ(NJ),
PAR1J(NJ),SIGJ(NJ)

DOUBLE PRECISION ERROR(M),ZERR(M),ERRMN,ERRSIG
DOUBLE PRECISION RPF(M),RMF(M),ZRMF(M),PCTBILL(M),

ZPCT(M),RHM(M),RMFSQ(M),QMF(M),PIMF(M),TVAL(N),
TVALJ(NJ),RES(M),RESQ(M),DIAG(M,N),PP(N,N),
SS(N,N),HETMAT(N,N),HETT(N),XB(M)

DOUBLE PRECISION QMSE,RSQ,RSQJN,QMSEJN,RSQHM,QMSEHM,
RSQLK,QMSELK,RSQBP,QMSEBP

DOUBLE PRECISION ALFJN,ALFHM,ALFHMK,ALFLK,ALFLKK,ALFBP,
ALFBPK

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

ANNRPF
DOUBLE PRECISION

ANNRMF
C

BETJN,UPBET,DNBET,UPBETK,DNBETK
RMFMN,RMFSIG,PCTMN,PCTSIG,TIMRHO
GEORMF,AVGRMF,SDRMF,GEORPF,AVGRPF,SDRPF
RMFGEO,RMFAVG,RMFSD,RPFGEO,RPFAVG,RPFSD
RMFSKW,RMFKUR,RPFSKW,RPFKUR,RPFANN,

SKWRMF,RKURMF,SKWRPF,RKURPF,RMFANN,

DOUBLE PRECISION RMMON,RMANN,RMGEO,
RPMON,RPANN,RPGEO,
SMMON,SMANN,SMGEO

C
DOUBLE PRECISION ZSMF(M)

AVGSMF,SDSMF
DOUBLE PRECISION SMFGEO,

SMFRHO
DOUBLE PRECISION SMFSKW,

C

,SMF(M),SMFMN,SMFSIG,GEOSMF,

SMFAVG,SMFSD,SMFANN,ANNSMF,

SMFKUR,SKWSMF,RKUSMF



C
C

C
C

C

C
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DOUBLE PRECISION AVGPCT,SDPCT,SKWPCT,RKUPCT,GEOPCT,
PCTGEO

DOUBLE PRECISION PCTAVG,PCTSD,PCTSKW,PCTKUR,ANNPCT,
PCTANN

DOUBLE PRECISION TJNS,HMS,HMT,HMKS,HMKT,TLKS,TLKT,TLKKS,
TLKKT

DOUBLE PRECISION DELFI,BPS,DEFISQ,SIGESQ,DLORMF,SIGPIS,
BPRHO,BPT,VARWSQ(M),VARGSQ(M),BHRPF(M),BHRMF(M),
BHRMFS(M),BPKS,GLSWSQ(M),GLRMFS(M),BPKT,VARU,
XM,WSQ(M),ABPRHO,HBPRHO,WRMFSQ,RMFQUA

DOUBLE PRECISION AVGRES,SDRES,RESSKW,RESKUR
DOUBLE PRECISION TRAVJN,TRSDJN,TRSKJN,TRKUJN
DOUBLE PRECISION TRAVHM,TRSDHM,TRSKHM,TRKUHM
DOUBLE PRECISION TRAVLK,TRSDLK,TRSKLK,TRKULK
DOUBLE PRECISION TRAVBP,TRSDBP,TRSKBP,TRKUBP
DOUBLE PRECISION TRAVHT,TRSDHT,TRSKHT,TRKUHT
DOUBLE PRECISION SUMCOR,SUMRMF,SUMPCT,SUMSMF,AVGCOR,

SMCORR,AVCORR

OPEN(UNIT=6,FILE='SIM1',STATUS='NEW')

DO 2 IJ=1,11,5
TIMRH0=-(IJ-1.)/10.

DO 3 IJK=1,21,10
EXRET=(IJK-1.)/1000.

IRMF=-35249
JPCT=-36247
KERR=-72055
LSMF=-35553

C
C IRMF=-74815
C JPCT=-76509
C KERR=-19689
C LSMF=-42751
C
C IRMF=-39737
C JPCT=-97025
C KERR=-68763
C LSMF=-99083
C

WRITE(6,180) IRMF,JPCT,KERR
180 FORMAT(//,2X,'IRMF = ',I10,2X,'JPCT = 1,I10,

2X,'KERR= ',I10)

BULL=0.
BEAR=0.
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RMFGE0=0.
RMFANN=0.
RMFAVG=0.
RMFSD=0.
RMFSKW=0.
RMFKUR=0.

SMFGE0=0.
SMFANN =O.
SMFAVG =O.
SMFSD =O.
SMFSKW =O.
SMFKUR =O.

RPFGE0=0.
RPFANN =O.
RPFAVG =O.
RPFSD =O.
RPFSKW =O.
RPFKUR =O.

PCTGE0=0.
PCTANN =O.
PCTAVG =O.
PCTSD =O.
PCTSKW =O.
PCTKUR=0.

AVGCOR =O.
AVCORR =O.

KNTJN =O
ALFJN =O.
BETJN =O.
TRAVJN =O.
TRSDJN =O.
TRSKJN =O.
TRKUJN =O.
JASP5=0
JBSN5=0
JCSP1=0
JDSN1=0

RSQJN =O.
QMSEJN =O.

KNTHM=0
ALFHM=0.
ALFHMK=0.
UPBET =O.
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DNBET=0.
UPBETK=0.
DNBETK=0.
TRAVHM =O.
TRSDHM=0.
TRSKHM=0.
TRKUHM=0 .
KAHSP5=0
KBHSN5=0
KCHSP1=0
KDHSN1=0
KEHTP5=0
KFHTN5=0
KGHTP1=0
KHHTN1=0

RSQHM=0.
QMSEHM=0.

KPHSP5=0
KQHSN5=0
KRHSP1=0
KSHSN1=0
KTHTP5=0
KUHTN5=0
KVHTP1=0
KWHTN1=0

KNTLK=0
ALFLK=0.
ALFLKK=0.
TRAVLK=0.
TRSDLK=0.
TRSKLK=0.
TRKULK=0.
LASP5=0
LBSN5=0
LCSP1=0
LDSN1=0
LETP5=0
LFTN5=0
LGTP1=0
LHTN1=0

RSQLK=0.
QMSELK=0.

LPKSP5=0
LQKSN5=0
LRKSP1=0
LSKSN1=0



C
C

C

C

C
C
C

LTKTP5=0
LUKTN5=0
LVKTP1=0
LWKTN1=0

KNTBP =O
ALFBP=0.
ALFBPK=0.
ABPRHO =O.
HBPRHO =O.
TRAVBP =O.
TRSDBP=0.
TRSKBP =O.
TRKUBP=0.
TRAVHT =O.
TRSDHT=0.
TRSKHT=0.
TRKUHT=0.
KABSP5=0
KBBSN5=0
KCBSP1=0
KDBSN1=0
KEBTP5=0
KFBTN5=0
KGBTP1=0
KHBTN1=0

RSQBP=0.
QMSEBP=0.

KPBSP5=0
KQBSN5=0
KRBSP1=0
KSBSN1=0
KTBTP5=0
KUBTN5=0
KVBTP1=0
KWBTN1=0
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C *******************
C Collect Error Rates
C *******************
C

DO 4 IREP=1,LIM
C
C**************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **

C Generate Normally distributed Random Variables, N(0,1),
C For Market Risk-Premium Returns, RMF:ZRMF, and Timing
C Skill, PCTBILL:ZPCT, Parameters
C
C**************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **

C
C

C

C

C

C

CALL STDNOR(ZRMF,M,IRMF)

CALL STDNOR(ZPCT,M,JPCT)

CALL STDNOR(ZERR,M,KERR)

CALL STDNOR(ZSMF,M,LSMF)

C
C********************* * * * * * * * * * * * * * * * * * * * * * * * ** * * * * **

C Generate RMF, PCTBILL, and SUPRET Based on the
C Simulation Parameters
C********************* * * * * * * * * * * * * * * * * * * * * * * * ** * * * * **

C

C
C

*

C

C

C

RMFMN=0.0056995
RMFSIG=0.0453691
SMFMN=.01097
SMFSIG=.0649738
SMFRHO=0.75899
PCTMN=0.0564033
PCTSIG=0.0479906*5.
ERRMN=0.0
ERRSIG=0.0446604

DO 14 I=1,M
RMF(I)=EXP((ZRMF(I)*RMFSIG)+RMFMN)

-1.

IF (RMF(I).GT.0.) BULL=BULL+1.
IF (RMF(I).LE.0.) BEAR=BEAR+1.

PCTBILL(I)=EXP(PCTMN+(TIMRHO*PCTSIG*
ZRMF(I))+(ZPCT(I)*PCTSIG*
DSQRT(1.-(TIMRHO**2))))-1.



*

C
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SMF(I)=EXP(SMFMN+(SMFRHO*SMFSIG
ZRMF(I))+(ZSMF(I)*SMFSIG*DSQRT
(1.-(SMFRHO**2))))-1.

ERROR(I)=ERRMN+(ZERR(I)*ERRSIG)
C

14 CONTINUE
C
C
C
C
C*************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **

C Generate Portfolio Returns With Timing and Selectivity
C Skills
C*************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **

C
C

DO 16 I=1,M
C

RPF(I)=((1.-PCTBILL(I))*RMF(I))+
C * ((1.-PCTBILL(I))*SMF(I)*0.20)+

((1.-PCTBILL(I))*EXRET)+
ERROR(I)

C
16

C
C
C
C
C
C

*

17

CONTINUE

********************************************
Calculate Summary Statistics for RMF and RPF
********************************************

CALL STATS(M,RMF,GEORMF,ANNRMF,AVGRMF,SDRMF,
SKWRMF,RKURMF)

CALL STATS(M,SMF,GEOSMF,ANNSMF,AVGSMF,SDSMF,
SKWSMF,RKUSMF)

CALL STATS(M,RPF,GEORPF,ANNRPF,AVGRPF,SDRPF,
SKWRPF,RKURPF)

CALL STATS(M,PCTBILL,GEOPCT,ANNPCT,AVGPCT,
SDPCT,SKWPCT,RKUPCT)

SUMCOR=0.
SUMRMF=0.
SUMPCT =O.
DO 17 I=1,M

SUMCOR=SUMCOR+((RMF(I)-AVGRMF)*
(PCTBILL(I)-AVGPCT))

SUMRMF=SUMRMF+((RMF(I)-AVGRMF)*
(RMF(I)-AVGRMF))

SUMPCT=SUMPCT+((PCTBILL(I)-AVGPCT)*
(PCTBILL(I)-AVGPCT))

CONTINUE
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C

20
C

*

C

C

C

C

C
C
C

AVGCOR=AVGCOR+(SUMCOR/(DSQRT(SUMRMF)
*DSQRT(SUMPCT)))

SMCORR=0.
SUMRMF=0.
SUMSMF=0.

DO 20 I=1,M
SMCORR=SMCORR+((RMF(I)-AVGRMF)*

(SMF(I)-AVGSMF))
SUMRMF=SUMRMF+((RMF(I)-AVGRMF)*

(RMF(I)-AVGRMF))
SUMSMF=SUMSMF+((SMF(I)-AVGSMF)*

(SMF(I)-AVGSMF))
CONTINUE

AVCORR=AVCORR+(SMCORR/(DSQRT(SUMRMF)*
DSQRT(SUMSMF)))

RMFGEO=RMFGEO+GEORMF
RMFANN=RMFANN+ANNRMF
RMFAVG=RMFAVG+AVGRMF
RMFSD=RMFSD+SDRMF
RMFSKW=RMFSKW+SKWRMF
RMFKUR=RMFKUR+RKURMF

SMFGEO=SMFGEO+GEOSMF
SMFANN=SMFANN+ANNSMF
SMFAVG=SMFAVG+AVGSMF
SMFSD=SMFSD+SDSMF
SMFSKW=SMFSKW+SKWSMF
SMFKUR=SMFKUR+RKUSMF

RPFGEO=RPFGEO+GEORPF
RPFANN=RPFANN+ANNRPF
RPFAVG=RPFAVG+AVGRPF
RPFSD=RPFSD+SDRPF
RPFSKW=RPFSKW+SKWRPF
RPFKUR=RPFKUR+RKURPF

PCTGEO=PCTGEO+GEOPCT
PCTANN=PCTANN+ANNPCT
PCTAVG=PCTAVG+AVGPCT
PCTSD=PCTSD+SDPCT
PCTSKW=PCTSKW+SKWPCT
PCTKUR=PCTKUR+RKUPCT
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C *************************************
C * *

C * JENSEN MODEL *

C * *

C *************************************
C

KNTJN=KNTJN+1
C

CALL JENSEN(M,NJ,AXJ,RMF,B,RPF)
C

CALL LSTSQR(M,NJ,AXJ,AYJ,AZJ,ABJ,B,XJ,UUJ,
* PARJ,DEL,PAR1J)

C
CALL STDERR(NJ,AYJ,AZJ,VARJ,SIGJ)

C
CALL REGSTA(M,NJ,UUJ,RPF,ABJ,QMSE,RSQ,VARJ,

* TVALJ,XB,RES,RESQ)
C

CALL RESID(M,NJ,RES,RESQ,AVGRES,SDRES,
* RESSKW,RESKUR)

C
VARU=SDRES*SDRES

C
TRAVJN=TRAVJN+AVGRES
TRSDJN=TRSDJN+SDRES
TRSKJN=TRSKJN+RESSKW
TRKUJN=TRKUJN+RESKUR

C
TJNS=TVALJ(1)
ALFJN=ALFJN+ABJ(1)
BETJN=BETJN+ABJ(2)

C
IF (TJNS.GE.1.658) JASP5=JASP5+1
IF (TJNS.LE.-1.658) JBSN5=JBSN5+1
IF (TJNS.GE.2.358) JCSP1=JCSP1+1
IF (TJNS.LE.-2.358) JDSN1=JDSN1+1

C
RSQJN=RSQJN+RSQ
QMSEJN=QMSEJN+QMSE

C
C
C ***********************************
C * *

C * HENRIKSSON-MERTON MODEL *

C * *

C ***********************************
C

KNTHM=KNTHM+1
C

CALL HENMER(M,N,AX,RMF,RHM,B,RPF)
C
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C

C

C

C

C

C

C

C

CALL LSTSQR(M,N,AX,AY,AZ,AB,B,X,UU,PAR,
DEL,PAR1)

CALL STDERR(N,AY,AZ,VAR,SIG)

CALL REGSTA(M,N,UU,RPF,AB,QMSE,RSQ,VAR,
TVAL,XB,RES,RESQ)

CALL RESID(M,N,RES,RESQ,AVGRES,SDRES,
RESSKW,RESKUR)

TRAVHM=TRAVHM+AVGRES
TRSDHM=TRSDHM+SDRES
TRSKHM=TRSKHM+RESSKW
TRKUHM=TRKUHM+RESKUR

ALFHM=ALFHM+AB(1)
UPBET=UPBET+AB(2)
DNBET=DNBET+(AB(2)-AB(3))

HMS=TVAL(1)
HMT=TVAL(3)

IF (HMS.GE.1.658) KAHSP5=KAHSP5+1
IF (HMS.LE.-1.658) KBHSN5=KBHSN5+1
IF (HMS.GE.2.358) KCHSP1=KCHSP1+1
IF (HMS.LE.-2.358) KDHSN1=KDHSN1+1

IF (HMT.GE.1.658) KEHTP5=KEHTP5+1
IF (HMT.LE.-1.658) KFHTN5=KFHTN5+1
IF (HMT.GE.2.358) KGHTP1=KGHTP1+1
IF (HMT.LE.-2.358) KHHTN1=KHHTN1+1

C
RSQHM=RSQHM+RSQ
QMSEHM=QMSEHM+QMSE

C
C ******************************************
C Hansen-White Heteroscedasticity Correction
C ******************************************
C

CALL HETRSC(M,N,DIAG,UU,AB,RESQ,PP,SS,VAR,
HETMAT,HETT)

C
ALFHMK=ALFHMK+AB(1)
UPBETK=UPBETK+AB(2)
DNBETK=DNBETK+(AB(2)-AB(3))

C
HMKS=HETT(1)
HMKT=HETT(3)

C
IF (HMKS.GE.1.658) KPHSP5=KPHSP5+1



C

IF (HMKS.LE.-1.658) KQHSN5=KQHSN5+1
IF (HMKS.GE.2.358) KRHSP1=KRHSP1+1
IF (HMKS.LE.-2.358) KSHSN1=KSHSN1+1

IF (HMKT.GE.1.658) KTHTP5=KTHTP5+1
IF (HMKT.LE. -1.658) KUHTN5=KUHTN5+1
IF (HMKT.GE.2.358) KVHTP1=KVHTP1+1
IF (HMKT.LE. -2.358) KWHTN1=KWHTN1+1
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C
C *************************************
C
C * LOCKWOOD-KADIYALA MODEL
C
C *************************************
C

KNTLK=KNTLK+1
C

CALL LOCKAD(M,N,AX,RMF,AVGRMF,QMF,PIMF,B,
RPF)

C
CALL LSTSQR(M,N,AX,AY,AZ,AB,B,X,UU,PAR, DEL,

PAR1)
C

CALL STDERR(N,AY,AZ,VAR,SIG)
C

CALL REGSTA(M,N,UU,RPF,AB,QMSE,RSQ,VAR,
TVAL,XB,RES,RESQ)

C
CALL RESID(M,N,RES,RESQ,AVGRES,SDRES,

RESSKW,RESKUR)
C

TRAVLK=TRAVLK+AVGRES
TRSDLK=TRSDLK+SDRES
TRSKLK=TRSKLK+RESKUR
TRKULK=TRKULK+RESSKW

C
ALFLK=ALFLK+AB(1)

C
TLKS=TVAL(1)
TLKT=TVAL(3)

C
IF (TLKS.GE.1.658) LASP5=LASP5+1
IF (TLKS.LE.-1.658) LBSN5=LBSN5+1
IF (TLKS.GE.2.358) LCSP1=LCSP1+1
IF (TLKS.LE.-2.358) LDSN1=LDSN1+1

C
IF (TLKT.GE.1.658) LETP5=LETP5+1
IF (TLKT.LE.-1.658) LFTN5=LFTN5+1
IF (TLKT.GE.2.358) LGTP1=LGTP1+1
IF (TLKT.LE.-2.358) LHTN1=LHTN1+1

C
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RSQLK=RSQLK+RSQ
QMSELK=QMSELK+QMSE

C
C ******************************************
C Hansen-White Heteroscedasticity Correction
C ******************************************
C

CALL HETRSC(M,N,DIAG,UU,AB,RESQ,PP,SS,VAR,
HETMAT,HETT)

C
ALFLKK=ALFLKK+AB(1)

C
TLKKS=HETT(1)
TLKKT=HETT(3)

C
IF (TLKKS.GE.1.658) LPKSP5=LPKSP5+1
IF (TLKKS.LE.-1.658) LQKSN5=LQKSN5+1
IF (TLKKS.GE.2.358) LRKSP1=LRKSP1+1
IF (TLKKS.LE.-2.358) LSKSN1=LSKSN1+1

C
IF (TLKKT.GE.1.658) LTKTP5=LTKTP5+1
IF (TLKKT.LE.-1.658) LUKTN5=LUKTN5+1
IF (TLKKT.GE.2.358) LVKTP1=LVKTP1+1
IF (TLKKT.LE.-2.358) LWKTN1=LWKTN1+1

C
C **************************************
C
C * BHATTACHARYA-PFLEIDERER MODEL
C
C **************************************
C

KNTBP=KNTBP+1
C

CALL BP(M,N,AX,RMF,RMFSQ,B,RPF)
C

CALL LSTSQR(M,N,AX,AY,AZ,AB,B,X,UU,PAR,
DEL,PAR1)

C
DELFI=AB(3)

C
CALL STDERR(N,AY,AZ,VAR,SIG)

C
CALL REGSTA(M,N,UU,RPF,AB,QMSE,RSQ,VAR,

TVAL,XB,RES,WSQ)
C

CALL RESID(M,N,RES,WSQ,AVGRES,SDRES,
RESSKW,RESKUR)

C
TRAVBP=TRAVBP+AVGRES
TRSDBP=TRSDBP+SDRES
TRSKBP=TRSKBP+RESSKW
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TRKUBP=TRKUBP+RESKUR
C

ALFBP=ALFBP+AB(1)
C

BPS=TVAL(1)
C

IF (BPS.GE.1.658) KABSP5=KABSP5+1
IF (BPS.LE.-1.658) KBBSN5=KBBSN5+1
IF (BPS.GE.2.358) KCBSP1=KCBSP1+1
IF (BPS.LE.-2.358) KDBSN1=KDBSN1+1

C
RSQBP=RSQBP+RSQ
QMSEBP=QMSEBP+QMSE

C
WRMFSQ=0.
RMFQUA =O.
DO 18 I=1,M

WRMFSQ=WRMFSQ+(WSQ(I)*RMFSQ(I))
RMFQUA=RMFQUA+(RMFSQ(I)*RMFSQ(I))

18 CONTINUE
C

DEFISQ=WRMFSQ/RMFQUA
C

SIGESQ=DEFISQ/(DELFI*DELFI)
C

SIGPIS =O.
DO 19 I=1,M

DLORMF=(DLOG(1 +RMF(I)))**2
SIGPIS=SIGPIS+DLORMF

19 CONTINUE
SIGPIS=SIGPIS/(M-0.)

C

C

C
C
C
C
C

XM=M
BPRHO=DSQRT(SIGPIS/(SIGPIS+SIGESQ))
IF (DELFI.LT.0.0) BPRHO= -BPRHO
BPT=(BPRHO*DSQRT(XM-2.))/DSQRT(1.-(BPRHO

*BPRHO))
ABPRHO=ABPRHO+BPRHO

IF (BPT.GE.1.658) KEBTP5=KEBTP5+1
IF (BPT.LE.-1.658) KFBTN5=KFBTN5+1
IF (BPT.GE.2.358) KGBTP1=KGBTP1+1
IF (BPT.LE.-2.358) KHBTN1=KHBTN1+1

*********************************
GLS Heteroscedasticity Correction
*********************************

DO 25 I=1,M
VARWSQ(I)=DSQRT((DEFISQ*RMFSQ(I))+VARU)
BHRPF(I)=RPF(I)/VARWSQ(I)



C
*

25
C

C

*

C

C

C

*

C

*

C

C

C

C

C

C
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BHRMF(I)=RMF(I)/VARWSQ(I)
BHRMFS(I)=RMFSQ(I)/VARWSQ(I)
VARGSQ(I)=(2*((DABS(DEFISQ))**2)*

(RMFSQ(I)**2))+(2*(VARU**2))+
(4*DEFISQ*RMFSQ(I)*VARU)

GLSWSQ(I)=WSQ(I)/DSQRT(VARGSQ(I))
GLRMFS(I)=RMFSQ(I)/DSQRT(VARGSQ(I))

CONTINUE

CALL BPTWO (M, N , AX , BHRMF , BHRMFS , B , BHRPF , VARWSQ )

CALL LSTSQR(M,N,AX,AY,AZ,AB,B,X,UU,PAR,
DEL,PAR1)

DELFI=AB(3)

CALL STDERR(N,AY,AZ,VAR,SIG)

CALL REGSTA(M,N,UU,BHRPF,AB,QMSE,RSQ,VAR,
TVAL,XB,RES,RESQ)

CALL RESID(M,N,RES,RESQ,AVGRES,SDRES,
RESSKW,RESKUR)

TRAVHT=TRAVHT+AVGRES
TRSDHT=TRSDHT+SDRES
TRSKHT=TRSKHT+RESSKW
TRKUHT=TRKUHT+RESKUR

ALFBPK=ALFBPK+AB(1)

BPKS=TVAL(1)

IF (BPKS.GE.1.658) KPBSP5=KPBSP5+1
IF (BPKS.LE.-1.658) KQBSN5=KQBSN5+1
IF (BPKS.GE.2.358) KRBSP1=KRBSP1+1
IF (BPKS.LE.-2.358) KSBSN1=KSBSN1+1

WRMFSQ =O.
RMFQUA =O.
DO 29 I=1,M

WRMFSQ=WRMFSQ+(GLSWSQ(I)*GLRMFS(I))
RMFQUA=RMFQUA+(GLRMFS(I)*GLRMFS(I))

29 CONTINUE

DEFISQ=WRMFSQ/RMFQUA
C

SIGESQ=DEFISQ/(DELFI*DELFI)
C

BPRHO=DSQRT(SIGPIS/(SIGPIS+SIGESQ))
IF (DELFI.LT.0.0) BPRH0=-BPRHO
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C
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4

C

C

C
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BPKT=(BPRHO*DSQRT(XM-2.))/DSQRT(1.-(BPRHO*
BPRHO))

HBPRHO=HBPRHO+BPRHO

IF (BPKT.GE.1.658) KTBTP5=KTBTP5+1
IF (BPKT.LE.-1.658) KUBTN5=KUBTN5+1
IF (BPKT.GE.2.358) KVBTP1=KVBTP1+1
IF (BPKT.LE.-2.358) KWBTN1=KWBTN1+1

******************************
Continue Simulation Iterations
******************************

CONTINUE

DIV=LIM

BULL=BULL/DIV
BEAR=BEAR/DIV

RMFGEO=RMFGEO/DIV
RMFANN=RMFANN/DIV
RMFAVG=RMFAVG/DIV
RMFSD=RMFSD/DIV
RMFSKW=RMFSKW/DIV
RMFKUR=RMFKUR/DIV

SMFGEO=SMFGEO/DIV
SMFANN=SMFANN/DIV
SMFAVG=SMFAVG/DIV
SMFSD=SMFSD/DIV
SMFSKW=SMFSKW/DIV
SMFKUR=SMFKUR/DIV

RPFGEO=RPFGEO/DIV
RPFANN=RPFANN/DIV
RPFAVG=RPFAVG/DIV
RPFSD=RPFSD/DIV
RPFSKW=RPFSKW/DIV
RPFKUR=RPFKUR/DIV

PCTAVG=PCTAVG/DIV
PCTSD=PCTSD/DIV
PCTSKW=PCTSKW/DIV
PCTKUR=PCTKUR/DIV

AVGCOR=AVGCOR/DIV
AVCORR=AVCORR/DIV

ALFJN=ALFJN/DIV
BETJN=BETJN/DIV



TRAVJN=TRAVJN/DIV
TRSDJN=TRSDJN/DIV
TRSKJN=TRSKJN/DIV
TRKUJN=TRKUJN/DIV
RSQJN=RSQJN/DIV
QMSEJN=QMSEJN/DIV

C
ALFHM=ALFHM/DIV
ALFHMK=ALFHMK/DIV
UPBET=UPBET/DIV
DNBET=DNBET/DIV
UPBETK=UPBETK/DIV
DNBETK=DNBETK/DIV
TRAVHM=TRAVHM/DIV
TRSDHM=TRSDHM/DIV
TRSKHM=TRSKHM/DIV
TRKUHM=TRKUHM/DIV
RSQHM=RSQHM/DIV
QMSEHM=QMSEHM/DIV

C
ALFLK=ALFLK/DIV
ALFLKK=ALFLKK/DIV
TRAVLK=TRAVLK/DIV
TRSDLK=TRSDLK/DIV
TRSKLK=TRSKLK/DIV
TRKULK=TRKULK/DIV
RSQLK=RSQLK/DIV
QMSELK=QMSELK/DIV

C
ALFBP=ALFBP/DIV
ALFBPK=ALFBPK/DIV
ABPRHO=ABPRHO/DIV
HBPRHO=HBPRHO/DIV
TRAVBP=TRAVBP/DIV
TRSDBP=TRSDBP/DIV
TRSKBP=TRSKBP/DIV
TRKUBP=TRKUBP/DIV
TRAVHT=TRAVHT/DIV
TRSDHT=TRSDHT/DIV
TRSKHT=TRSKHT/DIV
TRKUHT=TRKUHT/DIV
RSQBP=RSQBP/DIV
QMSEBP=QMSEBP/DIV

C
C

CALL STATMON(M,RMFGEO,RMMON,RMANN,RMGEO)
CALL STATMON(M,RPFGEO,RPMON,RPANN,RPGEO)
CALL STATMON(M,SMFGEO,SMMON,SMANN,SMGEO)

C
C
C

170
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WRITE(6,125) TIMRHO,EXRET
125 FORMAT(/,2X,'TIMRHO = ',F8.5,2X,'EXC. RET. = ',F8.5)

C
WRITE(6,103) BULL,BEAR

103 FORMAT(/,2X,'NO. BULL = ',F7.2,2X,'NO. BEAR = ',F7.2)
C
C

C

C

C
C

C

C

C

WRITE(6,104) RMGEO,RMANN,RMMON
104 FORMAT(//,2X,'RM GEO = 1,F9.6,3X,IRM ANN = ',F9.6,

3X,'RM MON = ',F9.6)

WRITE(6,105) RMFGEO,RMFANN,RMFAVG
105 FORMAT(/,2X,'RMF GEO = ',F9.6,3X,'RMF ANN = ',F9.6,

3X,IRMF AVG = ',F9.6)

WRITE(6,107) RMFSD,RMFSKW,RMFKUR
107 FORMAT(/,2X,'RMF SD = ',F9.6,3X,'RMF SKW = ',F9.6,

3X,'RMF KUR = ',F9.6)

WRITE(6,102)
102 FORMAT(//,2X,

3X,

WRITE(6,250)
250 FORMAT(/,2X,'

3X,

SMGEO,SMANN,SMMON
'SM GEO = ',F9.6,3X,'SM ANN = ',F9.6,
'SM MON = ',F9.6)

SMFGEO,SMFANN,SMFAVG
SMF GEO = ',F9.6,3X,'SMF ANN = ',F9.6,
'SMF AVG = ',F9.6)

WRITE(6,252) SMFSD,SMFSKW,SMFKUR
252 FORMAT(/,2X,'SMF SD = ',F9.6,3X,'SMF SKW = ',F9.6,

3X,'SMF KUR = ',F9.6)

WRITE(6,108)
108 FORMAT(//,2X,

C
WRITE(6,109)

109 FORMAT(/,2X,'
3X,

C
C

PCTAVG
'PCT AVG = ',F9.6)

PCTSD,PCTSKW,PCTKUR
PCT SD = ',F9.6,3X,'PCT SKW = ',F9.6,
'PCT KUR = ',F9.6)

WRITE(6,101) RPGEO,RPANN,RPMON
101 FORMAT(//,2X,'RP GEO = ',F9.3,3X,'RP ANN = ',F9.6,

3X,'RP MON = ',F9.6)

WRITE(6,110) RPFGEO,RPFANN,RPFAVG
110 FORMAT(/,2X,'RPF GEO = ',F9.3,3X,'RPF ANN = ',F9.6,

3X,'RPF AVG = ',F9.6)

WRITE(6,112) RPFSD,RPFSKW,RPFKUR
112 FORMAT( /,2X,'RPF SD = SKW = ',F9.6,

3X,'RPF KUR = ',F9.6)
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WRITE(6,114) AVGCOR
114 FORMAT(/,2X,'AVG COR(RMF,PCTBILL) = ',F9.6)

C
WRITE(6,115) AVCORR

115 FORMAT(/,2X,'AVG COR(RMF,SMF) = ',F9.6)
C
C

C

C

C

C

C

WRITE(6,130)
130 FORMAT(//,2X,'JN CNT',2X,'JN SP5',2X,'JN SN5',2X,

'JN SP1',2X,'JN SN1')

WRITE(6,134) KNTJN,JASP5,JBSN5,JCSP1,JDSN1
134 FORMAT(2X,16,2X,I6,2X,16,2X,16,2X,16)

WRITE(6,135) ALFJN,BETJN
135 FORMAT(/,2X,'JN ALFA = ',F9.6,3X,'JN BETA = ',F9.6)

WRITE(6,182) TRAVJN,TRSDJN
182 FORMAT(/,2X,'JN RES AV = ',F9.6,3X,'JN RES SD = ',F9.6)

WRITE (6,184) TRSKJN, TRKUJN
184 FORMAT ( / , 2X, ' JN RES SKW = ' , F9.6,3X, ' JN RES KUR = ' , F9.6)

WRITE(6,137) RSQJN,QMSEJN
137 FORMAT(/,2X,'RSQ JN = ',F9.6,3X,'MSE JN = ',F9.6)

C
C
C

WRITE(6,140)
140 FORMAT(//,2X,'HM CNT',2X,'HM SP5',2X,'HM SN5',2X,

'HM SP1',2X,'HM SN1')
C

WRITE(6,142) KNTHM,KAHSP5,KBHSN5,KCHSP1,KDHSN1
142 FORMAT(2X,I6,2X,16,2X,16,2X,16,2X,16)

C

C

C

C

C

WRITE(6,148)
148 FORMAT(/,2X,'HM TP5',2X,'HM TN5',2X,'HM TP1',2X,

'HM TN11)

WRITE(6,149) KEHTP5,KFHTN5,KGHTP1,KHHTN1
149 FORMAT(2X,I6,2X,16,2X,16,2X,16)

WRITE(6,172)
172 FORMAT(/,2X,

WRITE(6,141)
141 FORMAT(/,2X,

WRITE(6,170)

ALFHM,ALFHMK
'HM ALF = ',F9.6,3X,'HM ALF H = ',F9.6)

UPBET,DNBET
'UP BETA = ',F9.6,3X,'DN BETA = ',F9.6)

UPBETK,DNBETK
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170 FORMAT(/,2X,'UP BETA H = ',F9.6,3X,'DN BETA H = ',F9.6)
C

WRITE(6,190) TRAVHM,TRSDHM
190 FORMAT(/,2X,'HM RES AV = ',F9.6,3X,IHM RES SD = ',F9.6)

C
WRITE(6,192) TRSKHM,TRKUHM

192 FORMAT (/ ,2X, 'HM RES SKW = ' ,F9.6,3X,IHM RES KUR = , F9.6)

C
WRITE(6,143) RSQHM,QMSEHM

143 FORMAT(/,2X,'RSQ HM = ',F9.6,3X,'MSE HM = ',F9.6)
C

WRITE(6,144)
144 FORMAT(/,2X,'HM H SP5',2X,'HM H SN51,2X,'HM H SP1',

2X,'HM H SN1')
C

WRITE(6,145) KPHSP5,KQHSN5,KRHSP1,KSHSN1
145 FORMAT(2X,18,2X,I8,2X,18,2X,18)

C
WRITE(6,146)

146 FORMAT(/,2X,'HM H TP5',2X,'HM H TN5',2X,'HM H TP1',
2X,'HM H TN1')

C
WRITE(6,147) KTHTP5,KUHTN5,KVHTP1,KWHTN1

147 FORMAT(2X,I8,2X,18,2X,18,2X,18)
C
C
C

WRITE(6,150)
150 FORMAT(//,2X,'LK CNT',2X,'LK SP5',2X,'LK SN5',2X,

'LK SP1',2X,'LK SN1')
C

WRITE(6,152) KNTLK,LASP5,LBSN5,LCSP1,LDSN1
152 FORMAT(2X,I6,2X,16,2X,16,2X,16,2X,16)

C
WRITE(6,159)

159 FORMAT(/,2X,ILK TP5',2X,'LK TN5',2X,'LK TP1',2X,
'LK TN1')

C
WRITE(6,158) LETP5,LFTN5,LGTP1,LHTN1

158 FORMAT(2X,16,2X,16,2X,16,2X,16)
C

WRITE(6,151)
151 FORMAT(/,2X,

C
WRITE(6,153)

153 FORMAT(/,2X,
C

C

WRITE(6,203)
203 FORMAT(/,2X,

WRITE(6,202)

ALFLK,ALFLKK
'LK ALF = ',F9

RSQLK,QMSELK
'RSQ LK = ',F9

.6,3X,'LK ALF H = ',F9.6)

.6,3X,'MSE LK = ',F9.6)

TRAVLK,TRSDLK
'LK RES AV = ',F9.6,3X,'LK RES SD = ',F9.6)

TRSKLK,TRKULK



202 FORMAT(/,2X,'LK RES SKW = ',F9.6,3X,
'LK RES KUR = ',F9.6)

C
WRITE(6,154)

154 FORMAT( /,2X,'LK H SP5',2X,'LK H SN5',2X,'LK H SP1',
2X,'LK H SN1')

C
WRITE(6,155) LPKSP5,LQKSN5,LRKSP1,LSKSN1

155 FORMAT(2X,18,2X,18,2X,18,2X,I8)
C

WRITE(6,156)
156 FORMAT(/,2X,'LK H TP5',2X,'LK H TN5',2X,'LK H TP1',

2X,'LK H TN1')
C

WRITE(6,157) LTKTP5,LUKTN5,LVKTP1,LWKTN1
157 FORMAT(2X,18,2X,18,2X,18,2X,18)

C
C
C

WRITE(6,160)
160 FORMAT(//,2X,'BP KNT',2X,'BP SP5',2X,'BP SN5',2X,

'BP SP1',2X,'BP SN1')
C

WRITE(6,162) KNTBP,KABSP5,KBBSN5,KCBSP1,KDBSN1
162 FORMAT(2X,I6,2X,16,2X,16,2X,16,2X,16)

C
WRITE(6,168)

168 FORMAT(/,2X,'BP TP5',2X,'BP TN5',2X,
'BP TP1',2X,'BP TN1')

C
WRITE(6,169) KEBTP5,KFBTN5,KGBTP1,KHBTN1

169 FORMAT(2X,16,2X,16,2X,16,2X,16)
C

WRITE(6,161) ALFBP,ALFBPK
161 FORMAT(/,2X,'ALF BP = ',F9.6,5X,'ALF BP H = ',F9.6)

C
WRITE(6,175) ABPRHO,HBPRHO

175 FORMAT(/,2X,'BP RHO = ',F9.6,5X,'BP RHO H = ',F9.6)
C

WRITE(6,163) RSQBP,QMSEBP
163 FORMAT(/,2X,'RSQ BP = ',F9.6,5X,'MSE BP = ',F9.6)

C

C

C
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WRITE(6,210) TRAVBP,TRSDBP
210 FORMAT(/,2X,IBP RES AV = ',F9.6,3X,'BP RES SD = ',F9.6)

WRITE(6,212) TRSKBP,TRKUBP
212 FORMAT(/,2X,IBP RES SKW = ',F9.6,3X,

'BP RES KUR = ',F9.6)

WRITE(6,214) TRAVHT,TRSDHT
214 FORMAT(/,2X,'BP RES AV HT = ',F9.6,3X,



C

C

C

C

'BP RES SD HT = ',F9.6)

WRITE(6,216) TRSKHT,TRKUHT
216 FORMAT(/,2X,'BP RES SKW HT = ',F9.6,3X,

'BP RES KUR HT = ',F9.6)

WRITE(6,164)
164 FORMAT(/,2X,'BP H SP5',2X,'BP H SN5',2X,'BP H SP1',

2X,'BP H SN1')

WRITE(6,165) KPBSP5,KQBSN5,KRBSP1,KSBSN1
165 FORMAT(2X,I8,2X,18,2X,18,2X,18)

WRITE(6,166)
166 FORMAT(/,2X,'BP H TP5',2X,'BP H TN5',2X,'BP H TP1',

2X,'BP H TN1')
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C
WRITE(6,167) KTBTP5,KUBTN5,KVBTP1,KWBTN1

167 FORMAT(2X,18,2X,18,2X,18,2X,18)
C
C

3 CONTINUE
C

2 CONTINUE
C

END
C
C
C *********************************
C END OF MAIN PROGRAM
C *********************************
C
C

SUBROUTINE JENSEN(MX,NX,AXJ,RMF,B,RPF)
C

DOUBLE PRECISION AXJ(MX,NX),B(MX),RMF(MX),RPF(MX)
C

5
C

C
C
C

DO 5 I=1,MX
AXJ(I,1)=1.
AXJ(I,2)=RMF(I)
B(I)=RPF(I)
CONTINUE

RETURN
END



C

C

C

C
C
C

C

C

C

C
C
C

C

C
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SUBROUTINE HENMER(MX,NX,AX,RMF,RHM,B,RPF)

DOUBLE PRECISION AX(MX,NX),RMF(MX),RHM(MX),B(MX),
RPF(MX)

DO 5 I=1,MX
IF (RMF(I).LT.O.) THEN

RHM(I)=-RMF(I)
ELSE

RHM(I)=0.0
ENDIF
AX(I,1)=1.0
AX(I,2)=RMF(I)
AX(I,3)=RHM(I)
B(I)=RPF(I)

5 CONTINUE

RETURN
END

SUBROUTINE LOCKAD(MX,NX,AX,RMF,AVGRMF,QMF,PIMF,B,RPF)

DOUBLE PRECISION AX(MX,NX),RMF(MX),QMF(MX),PIMF(MX),
AVGRMF,B(MX),RPF(MX)

DO 5 I=1,MX
PIMF(I)=RMF(I)-AVGRMF
QMF(I)=RMF(I)*PIMF(I)
AX(I,1)=1.0
AX(I,2)=RMF(I)
AX(I,3)=QMF(I)
B(I)=RPF(I)

5 CONTINUE

RETURN
END

SUBROUTINE BP(MX,NX,AX,RMF,RMFSQ,B,RPF)

DOUBLE PRECISION AX(MX,NX) ,RMF(MX) ,RMFSQ(MX) ,B(MX) ,
RPF(MX)

DO 5 I=1,MX
RMFSQ(I)=RMF(I)*RMF(I)
AX(I,1)=1.
AX(I,2)=RMF(I)
AX(I,3)=RMFSQ(I)



C
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C
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C
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C

C

C

C

C
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B(I)=RPF(I)
5 CONTINUE

RETURN
END

SUBROUTINE BPTWO(MX,NX,AX,BHRMF,BHRMFS,B,BHRPF,
* VARWSQ)

DOUBLE PRECISION AX(MX,NX),BHRMF(MX),BHRMFS(MX),
B(MX),BHRPF(MX),VARWSQ(MX)

DO 5 I=1,MX
AX(I,1)=1./VARWSQ(I)
AX(I,2)=BHRMF(I)
AX(I,3)=BHRMFS(I)
B(I)=BHRPF(I)

5 CONTINUE

RETURN
END

SUBROUTINE STATS(MX,RET,GEORET,ANNRET,AVGRET,SDRET,
RSKW,RKUR)

DOUBLE PRECISION RET(MX),GEORET,AVGRET,SDRET,RVAR,D,
D1,RETVAR,RSKW,RKUR,ANNRET

GEORET=1.
AVGRET=0.0

DO 5 I=1,MX
GEORET=GEORET*(1.+RET(I))
AVGRET=AVGRET+RET(I)

5 CONTINUE

GEORET=GEORET-1.
ANNRET=((GEORET+1.)**0.10)-1.
AVGRET=AVGRET/(MX-0.)
RVAR =O.
RSKW =O.
RKUR =O.

DO 10 I=1,MX
D=RET(I)-AVGRET
D1=D*D
RVAR=RVAR+D1



C
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D1=D1*D
RSKW=RSKW+D1
D1=D1*D
RKUR=RKUR+D1

10 CONTINUE

RETVAR=RVAR/(MX -1.)
SDRET=DSQRT(RETVAR)
RSKW=RSKW/(MX*(SDRET**3))
RKUR=(RKUR/(MX*(SDRET**4))) -3.

RETURN
END

SUBROUTINE STATMON(MX,RETGEO,RTMON,RTANN,RTGEO)

DOUBLE PRECISION RETGEO, RTMON, RTANN, RTGEO, DIV, RFAVG

DIV=MX-0.
RFAVG=0.00655778

RTMON=((RETGE0+1.)**(1./DIV))-1.+RFAVG
RTANN=((RTMON+1.)**(DIV/10.))-1.
RTGE0=((RTMON+1.)**DIV)-1.

RETURN
END

SUBROUTINE RESID(MX,NX,RES,RESQ,AVGRES,SDRES,RESSKW,
* RESKUR)

DOUBLE PRECISION RES(MX),RESQ(MX),AVGRES,SDRES,
* RESSKW,RESKUR,VARU,D,D1

AVGRES=0.0
VARU=0.0

DO 5 I=1,MX
AVGRES=AVGRES+RES(I)
VARU=VARU+RESQ(I)

5 CONTINUE

AVGRES=AVGRES/(MX-0.)
SDRES=DSQRT(VARU/(MX-NX-0.))

RESSKW=0.
RESKUR =O.



C

C

C

C
C
C

C

C

C

C

C

C

DO 10 I=1,MX
D=RES(I)-AVGRES
D1=D*D
D1=D1*D
RESSKW=RESSKW+D1
D1=D1*D
RESKUR=RESKUR+D1

10 CONTINUE

RESSKW=RESSKW/(MX*(SDRES**3))
RESKUR=(RESKUR/(MX*(SDRES**4)))-3.

RETURN
END

SUBROUTINE REGSTA(MX,NX,UU,Y,
* RES,RESQ)

DOUBLE PRECISION UU(MX,NX) ,
* TVAL(NX),QMSE,RSQ,YSUM,
* RES(MX),RESQ(MX)

YSUM=0.
YTY=0.
SSE=0.

DO 5 I=1,MX
YTY=YTY+(Y(I)*Y(I))
YSUM=YSUM+Y(I)

5 CONTINUE
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AB, QMSE,RSQ,VAR,TVAL,XB,

Y(MX),AB(NX),VAR(NX,NX),
YTY,SSTO,SSE,XB(MX),

DO 10 I=1,MX
XB(I)=0.
DO 15 J=1,NX

XB(I)=XB(I)+UU(I,J)*AB(J)
15 CONTINUE

RES(I)=Y(I)-XB(I)
RESQ(I)=RES(I)*RES(I)
SSE=SSE+(RES(I)*RES(I))

10 CONTINUE

SSTO=YTY-((YSUM*YSUM)/MX)
QMSE=SSE/(MX-NX)
RSQ=1.-(SSE/SSTO)

DO 20 J=1,NX
TVAL(J)=AB(J)/DSQRT(QMSE*VAR(J,J))

20 CONTINUE
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RETURN
END

SUBROUTINE HETRSC(MX,NX,DIAG,UU,AB,RESQ,PP,SS,VAR,
* HETMAT,HETT)

DOUBLE PRECISION DIAG(MX,NX),UU(MX,NX),RESQ(MX),
* PP(NX,NX),SS(NX,NX),VAR(NX,NX),HETMAT(NX,NX),
* HETT(NX),AB(NX)

DO 5 J=1,NX
DO 10 I=1,MX

DIAG(I,J)=UU(I,J)*RESQ(I)
10 CONTINUE
5 CONTINUE

DO 15 II=1,NX
DO 20 J=1,NX

PP(J,II)=0.
DO 25 I=1,MX

PP(J,II)=PP(J,II)+UU(I,J)*DIAG(I,II)
25 CONTINUE
20 CONTINUE
15 CONTINUE

DO 30 II=1,NX
DO 35 J=1,NX

SS(J,II)=0.
DO 40 I=1,NX

SS(J,II)=SS(J,II)+VAR(J,I)*PP(I,II)
40 CONTINUE
35 CONTINUE
30 CONTINUE

DO 45 II=1,NX
DO 50 J=1,NX

HETMAT(J,II)=0.
DO 55 I=1,NX

HETMAT(J,II)=HETMAT(J,II)+SS(J,I)*VAR(I,II)
55 CONTINUE
50 CONTINUE
45 CONTINUE

DO 60 J=1,NX
HETT(J)=AB(J)/DSQRT(HETMAT(J,J))

60 CONTINUE

RETURN



C
C
C

C

C

C

C

C

C

C
C
C

END

FUNCTION UNFORM(ISEED)

DOUBLE PRECISION X(89),XI,XJ

1=121500
11=2041
12=25673
XI=1./I

J=117128
J1=1277
J2=24749
XJ=1./J

K=312500
K1=741
K2=66037
DATA L /0/

IF (ISEED.LT.O.OR.L.EQ.0) THEN
L=1
N1=MOD(I2-ISEED,I)
N1=MOD(I1 *N1+12,I)
N2=MOD(N1,J)
N1=MOD(Il*N1+12,I)
N3=MOD(N1,K)
DO 5 11=1,89

N1=MOD(I1*N1+I2,I)
N2=MOD(J1*N2+J2,J)
X(II)=(DFLOAT(N1)+DFLOAT(N2)*XJ)*XI

5 CONTINUE
ISEED=1
ENDIF
N1=MOD(I1 *N1+12,I)
N2=MOD(J1*N2+J2,J)
N3=MOD(K1 *N3+K2,K)
II=1+(89*N3)/K
IF(II.GT.89.OR.II.LT.1) PAUSE 'FUNCTION UNFORM'
UNFORM=X(II)
X(II)=(DFLOAT(N1)+DFLOAT(N2)*XJ)*XI

RETURN
END
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FUNCTION XNORM(ISEED)

DOUBLE PRECISION A,B,C,Y,Z

DATA K /0/

IF (K.EQ.0) THEN
A=2.*UNFORM(ISEED)-1.
B=2.*UNFORM(ISEED)-1.
C=(A*A)+(B*B)
IF (C.GE.1.) GO TO 5
Y=DSQRT(-2.*DLOG(C)/C)
Z=A*Y
XNORM=B*Y
K=1

ELSE
XNORM=Z
K=0

ENDIF

RETURN
END

SUBROUTINE STDNOR(ZVAR,MX,ISEED)

DOUBLE PRECISION ZVAR(MX)

DO 5 I=1,MX
ZVAR(I)=XNORM(ISEED)

5 CONTINUE
ITEMP=INT(ZVAR(MX)*1E7)
ISEED=-ABS(ITEMP)

RETURN
END

SUBROUTINE LSTSQR(MX,NX,AX,AY,AZ
* DEL,PAR1)

DOUBLE PRECISION B(MX),AB(NX)
AZ(NX),UU(MX,NX),X(NX),PAR

DOUBLE PRECISION XAZ,XLIM

PREC=1.D-12

DO 5 I=1,MX
DO 10 J=1,NX

UU(I,J)=AX(I,J)
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,AB,B,X,UU,PAR,

,AY(NX,NX),AX(MX,NX),
(NX),DEL(MX),PAR1(NX)
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10 CONTINUE
5 CONTINUE

CALL LSQALG(MX,NX,AX,AY,AZ,PAR1)

XAZ=0.0
DO 15 J=1,NX

IF (AZ(J).GT.XAZ) XAZ=AZ(J)
15 CONTINUE

XLIM=PREC*XAZ
DO 20 J=1,NX

IF (AZ(J).LT.XLIM) AZ(J)=0.0
20 CONTINUE

CALL REGC0F(MX,NX,AX,AY,AZ,B,AB,PAR)
CALL ITERAT(MX,NX,AX,AY,AZ,UU,AB,B,X,PAR,DEL)

RETURN
END

SUBROUTINE STDERR(NX,AY,AZ,VAR,SIG)

DOUBLE PRECISION AY(NX,NX),AZ(NX),VAR(NX,NX),
* SIG(NX),TOT

DO 5 I=1,NX
SIG(I)=0.0
IF(AZ(I).NE.0.) SIG(I)=1./(AZ(I)*AZ(I))

5 CONTINUE

DO 10 I=1,NX
DO 15 J=1,I

TOT=0.0
DO 20 K=1,NX

TOT=T0T+AY(I,K)*AY(J,K)*SIG(K)
20 CONTINUE

VAR(I,J)=TOT
VAR(J,I)=TOT

15 CONTINUE
10 CONTINUE

RETURN
END
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SUBROUTINE REGCOF(MX,NX,AX,AY,AZ,B,X,PAR)

DOUBLE PRECISION AX(MX,NX),AZ(NX),AY(NX,NX),B(MX),
X(NX),PAR(NX),T

DO 5 J=1,NX
T=0.
IF (AZ(J).NE.0.) THEN

DO 10 I=1,MX
T=T+AX(I,J)*B(I)

10 CONTINUE
T=T/AZ(J)

ENDIF
PAR(J)=T

5 CONTINUE

DO 15 J=1,NX
T=0.0
DO 20 JJ=1,NX

T=T+AY(J,JJ)*PAR(JJ)
20 CONTINUE

X (J) =T

15 CONTINUE

RETURN
END

SUBROUTINE LSQALG(MX,NX,AX,AY,AZ,PAR1)

DOUBLE PRECISION AX(MX,NX),AZ(NX),AY(NX,NX),
PAR1(NX),PAR2,PAR3,E1,E2,E3,E4,E5,E6,E7,E8

E1=0.0
PAR2=0.0
PAR3=0.0

DO 5 J=1,NX
I=J+1
PAR1(J)=PAR2*E1
E1=0.0
E2=0.0
PAR2=0.0

IF (J.LE.MX) THEN
DO 10 L=J,MX

PAR2=PAR2+DABS(AX(L,J))
10 CONTINUE

IF (PAR2.NE.0.0) THEN



DO 15 L=J,MX
AX(L,J)=AX(L,J)/PAR2

E2=E2+AX(L,J)*AX(L,J)
15 CONTINUE

C

C

C

E3=AX(J,J)
E1=-DSIGN(DSQRT(E2),E3)
E4=E3*E1 -E2
AX(J,J)=E3-E1
IF (J.NE.NX) THEN

DO 20 K=I,NX
E2=0.0
DO 25 L=J,MX

E2=E2+AX(L,J)*AX(L,K)
25 CONTINUE

E3=E2/E4
DO 30 L=J,MX

AX(L,K)=AX(L,K)+E3*AX(L,J)
30 CONTINUE
20 CONTINUE

ENDIF
DO 35 L=J,MX

AX(L,J)=PAR2*AX(L,J)
35 CONTINUE

ENDIF

ENDIF

AZ(J)=PAR2*E1
E1=0.0
E2=0.0
PAR2=0.0
IF ((J.LE.MX).AND.(J.NE.NX)) THEN

DO 40 L=I,NX
PAR2=PAR2+DABS(AX(J,L))

40 CONTINUE
IF (PAR2.NE.0.0) THEN

DO 45 L=I,NX
AX(J,L)=AX(J,L)/PAR2
E2=E2+AX(J,L)*AX(J,L)

45 CONTINUE
E3=AX(J,I)
E1=-DSIGN(DSQRT(E2),E3)
E4=E3*E1 -E2
AX(J,I)=E3-E1
DO 50 L=I,NX

PAR1(L)=AX(J,L)/E4
50 CONTINUE

IF (J.NE.MX) THEN
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DO 55 K=I,MX
E2=0.0
DO 60 L=I,NX

E2=E2+AX(K,L)*AX(J,L)
60 CONTINUE

DO 65 L=I,NX
AX(K,L)=AX(K,L)+E2*PAR1(L)

65 CONTINUE
55 CONTINUE

ENDIF

DO 70 L=I,NX
AX(J,L)=PAR2*AX(J,L)

70 CONTINUE
ENDIF

ENDIF

PAR3=DMAX1(PAR3,(DABS(AZ(J))+DABS(PAR1(J))))
5 CONTINUE

DO 75 J=NX,1,-1

IF (J.LT.NX) THEN

IF (El.NE.0.0) THEN

DO 80 K=I,NX
AY(K,J)=(AX(J,K)/AX(J,I))/E1

80 CONTINUE
DO 85 K=I,NX

E2=0.0
DO 90 L=I,NX

E2=E2+AX(J,L)*AY(L,K)
90 CONTINUE

DO 95 L=I,NX
AY(L,K)=AY(L,K)+E2*AY(L,J)

95 CONTINUE
85 CONTINUE

ENDIF

DO 100 K=I,NX
AY(J,K)=0.0
AY(K,J)=0.0

100 CONTINUE
ENDIF

C
AY(J,J)=1.0
El=PAR1(J)
I=J

75 CONTINUE
C
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DO 105 J=NX,1,-1
I=J+1
E1=AZ(J)
IF (J.LT.NX) THEN

DO 110 K=I,NX
AX(J,K)=0.0

110 CONTINUE
ENDIF
IF (E1.NE.0.0) THEN
E1=1.0/E1
IF (J.NE.NX) THEN

DO 115 K=I,NX
E2=0.0
DO 120 L=I,MX

E2=E2+AX(L,J)*AX(L,K)
120 CONTINUE

E3=(E2/AX(J,J))*E1
DO 125 L=J,MX

AX(L,K)=AX(L,K)+E3*AX(L,J)
125 CONTINUE
115 CONTINUE

ENDIF
DO 127 K=J,MX

AX(K,J)=AX(K,J)*E1
127 CONTINUE

ELSE
DO 128 K=J,MX

AX(K,J)=0.0
128 CONTINUE

ENDIF

AX(J,J)=AX(J,J)+1.0
105 CONTINUE

DO 130 L=NX,1,-1
DO 135 ICNT=1,30

DO 140 I=L,1,-1
KR=I-1
IF ((DABS(PAR1(I))+PAR3).EQ.PAR3) GO TO 7
IF ((DABS(AZ(KR))+PAR3).EQ.PAR3) GO TO 17

140 CONTINUE
17 E5=0.0

E2=1.0
DO 145 J=I,L

E3=E2*PAR1(J)
IF ((DABS(E3)+PAR3).NE.PAR3) THEN

E1=AZ(J)
E4=DSQRT(E3*E3+E1 *E1)
AZ(J)=E4
E4=1.0/E4
E5= (E1 *E4)
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E2=-(E3*E4)
DO 150 K=1,MX

E7=AX(K,KR)
E8=AX(K,J)
AX(K,KR)=(E7*E5)+(E8*E2)
AX(K,J)=-(E7*E2)+(E8*E5)

150 CONTINUE
ENDIF

145 CONTINUE
7 E8=AZ(L)

IF (I.EQ.L) THEN
IF (E8.LT.0.0) THEN

AZ(L)=-E8
DO 155 K=1,NX

AY(K,L)=-AY(K,L)
155 CONTINUE

ENDIF
GO TO 27

ENDIF
IF (ICNT.EQ.30) PAUSE 'SUBROUTINE LSQALG'
E6=AZ(I)
KR=L-1
E7=AZ(KR)
E1=PAR1(KR)
E4=PAR1(L)
E3=((E7-E8)*(E7+E8)+(E1-E4)*(E1 +E4))/

* (2.0*E4*E7)
E1=DSQRT(E3*E3+1.0)
E3=((E6-E8)*(E6+E8)+E4*((E7/(E3+

* DSIGN(E1,E3)))-E4))/E6
E5=1.0
E2=1.0
DO 160 K=I,KR

J=K+1
El=PAR1(J)
E7=AZ(J)
E4=E2*E1
E1=E5*E1
E8=DSQRT(E3*E3+E4*E4)
PAR1(K)=E8
E5=E3/E8
E2=E4/E8
E3=(E6*E5)+(El*E2)
E1=-(E6*E2)+(E1 *E5)
E4=E7*E2
E7=E7*E5
DO 165 KK=1,NX

E6=AY(KK,K)
E8=AY(KK,J)
AY(KK,K)=(E6*E5)+(E8*E2)
AY(KK,J)=-(E6*E2)+(E8*E5)
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165 CONTINUE
E8=DSQRT(E3*E3+E4*E4)
AZ(K)=E8
IF (E8.NE.0.0) THEN

E8=1.0/E8
E5=E3*E8
E2=E4*E8

ENDIF
E3=(E5*E1)+(E2*E7)
E6=-(E2*E1)+(E5*E7)
DO 170 KK=1,MX

E7=AX(KK,K)
E8=AX(KK,J)
AX(KK,K)=(E7*E5)+(E8*E2)
AX(KK,J)=-(E7*E2)+(E8*E5)

170 CONTINUE
160 CONTINUE

PAR1(I)=0.0
PAR1(L)=E3
AZ (L) =E6

135 CONTINUE
27 CONTINUE

130 CONTINUE

RETURN
END

SUBROUTINE ITERAT(MX,NX,AX,AY,AZ,UU,AB,B,X,PAR,DEL)

DOUBLE PRECISION AX(MX,NX),AY(NX),AZ(NX,NX),B(MX),
AB(NX),DEL(MX),UU(MX,NX),X(NX),PAR(NX),REM

DO 5 I=1,MX
REM=-B(I)
DO 10 J=1,NX

REM=REM+(UU(I,J)*AB(J))
10 CONTINUE

DEL(I)=REM
5 CONTINUE

CALL REGCOF (MX,NX,AX,AY,AZ,DEL,X,PAR)

DO 15 J=1,NX
AB(J)=AB(J)-X(J)

15 CONTINUE

RETURN
END



APPENDIX D. RESULTS OF MARKET TIMING TESTS

THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO MARKET TIMING ABILITY, 11,0 <0, IS

REJECTED BY TIMING PARAMETERS STATISTICALLY SIGNIFICANT AT THE 5% LEVEL.b

PTIAI =

TIMING SKILL

pnm = -0.50 Prim = -1

JN: .063 .046 .047 .357 .375 .349 .833 .852 .867

Asa, = 0% HM: .057 .047 .074 .536 .532 .579 .976 .954 .964

LK: .073 .053 .085 .621 .584 .624 .984 .966 .972

BP: .068 .049 .090 .605 .566 .611 .987 .963 .969

SELECTIVITY

JN: .649 .647 .672 .961 .972 .989 1.00 .999 .999

A = 1% HM: .056 .048 .073 .545 .518 .562 .964 .946 .957

LK: .082 .061 .087 .623 .580 .607 .975 .970 .969

BP: .070 .048 .091 .598 .554 .596 .974 .959 .966

SKILL

JN: .994 .998 .997 1.00 1.00 1.00 1.00 1.00 1.00

A = 2% HM: .062 .054 .060 .527 .514 .558 .965 .940 .949

LK: .080 .066 .073 .606 .578 .604 .974 .954 .962

BP: .066 .056 .076 .584 .553 .586 .972 .949 .961

'The experiments are replicated using three different sets of random number seeds.

bThe HM and LK performance models are corrected for heteroskedasticity using

White's method. Similarly, the BP model is modified using the GLS method.



APPENDIX D

THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO MARKET TIMING ABILITY, Ho:/3 <0,

REJECTED BY TIMING PARAMETERS STATISTICALLY SIGNIFICANT AT THE 5% LEVEL.b

IS

Pm, =
TIMING SKILL

pm, = -0.50 Pnm = -1

JN: .063 .046 .047 .357 .375 .349 .833 .852 .867

Asa, = 0% HM: .054 .049 .074 .543 .533 .576 .975 .955 .964

LK: .058 .044 .081 .593 .569 .611 .986 .961 .971

BP: .115 .087 .128 .713 .680 .719 .994 .983 .986

SELECTIVITY

JN: .649 .647 .672 .961 .972 .989 1.00 .999 .999

Amm = 1% HM: .050 .050 .074 .544 .523 .558 .971 .948 .959

LK: .076 .048 .084 .595 .557 .595 .974 .962 .964

BP: .133 .089 .129 .697 .691 .703 .991 .985 .983

SKILL

JN: .994 .998 .997 1.00 1.00 1.00 1.00 1.00 1.00

Amm = 2% HM: .059 .054 .059 .528 .511 .545 .963 .941 .949

LK: .066 .059 .075 .583 .558 .585 .968 .949 .959

BP: .119 .097 .121 .691 .697 .703 .990 .976 .978

'The experiments are replicated using three different sets of random number seeds.

bThe performance models are not modified to account for heteroskedasticity.
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THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO MARKET TIMING ABILITY, 1100 <0,

REJECTED BY TIMING PARAMETERS STATISTICALLY SIGNIFICANT AT THE 1% LEVEL.b

IS

ppu = 0

TIMING SKILL

PTTM = -0.50 Pnm = -1

JN: .012 .006 .007 .165 .143 .155 .586 .621 .615

Asa, = 0% HM: .013 .011 .019 .299 .285 .324 .918 .855 .871

LK: .019 .017 .037 .374 .360 .388 .928 .889 .918

BP: .010 .014 .027 .331 .335 .367 .927 .890 .915

SELECTIVITY

JN: .395 .394 .374 .855 .864 .870 .991 .993 .995

A = 1% HM: .009 .009 .019 .285 .276 .330 .888 .861 .859

LK: .033 .016 .040 .355 .343 .389 .910 .894 .901

BP: .015 .015 .026 .317 .309 .368 .910 .891 .897

SKILL

JN: .973 .982 .991 1.00 .999 .999 1.00 1.00 1.00

Amm = 2% HM: .011 .012 .015 .272 .282 .314 .868 .808 .834

LK: .026 .017 .030 .342 .350 .373 .894 .859 .888

BP: .011 .018 .019 .311 .303 .352 .893 .854 .878

'The experiments are replicated using three different sets of random number seeds.

bThe HM and LK performance models are corrected for heteroskedasticity using

White's method. Similarly, the BP model is modified using the GLS method.
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THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO MARKET TIMING ABILITY, Ho:13 <0, IS

REJECTED BY TIMING PARAMETERS STATISTICALLY SIGNIFICANT AT THE 1% LEVEL.b

TIMING SKILL

pry = 0 P7711 = -0.50 pnm = -1
JN: .012 .006 .007 .165 .143 .155 .586 .621 .615

Amm = 0% HM: .005 .009 .021 .316 .291 .330 .904 .858 .875

LK: .014 .012 .028 .363 .336 .359 .924 .885 .906

BP: .042 .031 .064 .538 .513 .557 .979 .955 .968

SELECTIVITY

JN: .395 .394 .374 .855 .864 .870 .991 .993 .995

OS, = 1% HM: .006 .008 .020 .302 .275 .325 .884 .860 .856

LK: .016 .010 .028 .349 .316 .349 .909 .882 .895

BP: .055 .032 .063 .519 .504 .542 .967 .954 .959

SKILL

JN: .973 .982 .991 1.00 .999 .999 1.00 1.00 1.00

A = 2% HM: .005 .011 .014 .290 .268 .303 .861 .811 .841

LK: .013 .011 .019 .335 .306 .343 .899 .840 .877

BP: .047 .036 .052 .506 .498 .522 .964 .936 .949

'The experiments are conducted using three different sets of random number seeds.

bThe performance models are not modified to account for heteroskedasticity.



APPENDIX E. RESULTS OF SELECTIVITY TESTS

THE PROBABILITY` THAT THE NULL HYPOTHESIS OF NO SELECTIVITY ABILITY, lio:a<0, IS

REJECTED BY SELECTIVITY PARAMETERS STATISTICALLY SIGNIFICANT AT THE 5% LEVEL.b

ppm = 0

TIMING SKILL

prim = -0.50 P7w = -1
JN: .063 .046 .047 .357 .375 .349 .833 .852 .867

A = 0% HM: .061 .056 .066 .011 .013 .022 .004 .001 .005

LK: .068 .062 .061 .049 .063 .064 .050 .072 .075

BP: .068 .059 .062 .057 .060 .064 .060 .072 .069

SELECTIVITY

JN: .649 .647 .672 .961 .972 .989 1.00 .999 .999

A = 1% HM: .358 .401 .329 .164 .191 .164 .054 .066 .072

LK: .536 .551 .520 .573 .571 .546 .584 .588 .572

BP: .541 .555 .535 .565 .561 .534 .569 .567 .560

SKILL

JN: .994 .998 .997 1.00 1.00 1.00 1.00 1.00 1.00

A = 2% HM: .824 .828 .815 .620 .542 .611 .427 .458 .401

LK: .976 .977 .972 .976 .979 .974 .977 .985 .983

BP: .976 .977 .972 .975 .979 .974 .977 .985 .983

'The experiments are replicated using three different sets of random number seeds.

bThe HM and LK performance models are corrected for heteroskedasticity using

White's method. Similarly, the BP model is modified using the GLS.
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THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO SELECTIVITY ABILITY, 11,:a<0, IS

REJECTED BY SELECTIVITY PARAMETERS STATISTICALLY SIGNIFICANT AT THE 5% LEVEL.b

P77*, = 0

TIMING SKILL

p,,, = -0.50 P = -1

JN: .063 .046 .047 .357 .375 .349 .833 .852 .867

A = 0% HM: .057 .047 .059 .011 .013 .017 .000 .001 .005

LK: .061 .053 .055 .044 .056 .061 .049 .066 .070

BP: .061 .053 .055 .044 .056 .061 .049 .066 .070

SELECTIVITY

JN: .649 .647 .672 .961 .972 .989 1.00 .999 .999

Amm = 1% HM: .355 .379 .313 .163 .184 .156 .057 .065 .074

LK: .536 .537 .498 .551 .563 .528 .568 .583 .562

BP: .536 .537 .498 .551 .563 .528 .568 .583 .562

SKILL

JN: .994 .998 .997 1.00 1.00 1.00 1.00 1.00 1.00

A = 2% HM: .815 .820 .809 .620 .630 .589 .422 .456 .396

LK: .971 .968 .973 .972 .974 .975 .980 .983 .986

BP: .971 .968 .973 .972 .974 .975 .980 .983 .986

'The experiments are replicated using three different sets of random number seeds.

%The performance models are not modified to account for heteroskedasticity.
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THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO SELECTIVITY ABILITY, 11,:a<0, IS

REJECTED BY SELECTIVITY PARAMETERS STATISTICALLY SIGNIFICANT AT THE 1% LEVEL."

0771, =0

TIMING SKILL

PTut = -0.50 pnm = -1

JN: .012 .006 .007 .165 .143 .155 .586 .621 .615

A 0% HM: .023 .012 .018 .000 .001 .001 .000 .000 .000

LK: .020 .012 .014 .013 .009 .016 .017 .013 .020

BP: .023 .010 .016 .011 .007 .018 .013 .010 .021

SELECTIVITY

JN: .395 .394 .374 .855 .864 .870 .991 .993 .995

A = 1% HM: .155 .171 .141 .043 .066 .065 .016 .019 .025

LK: .269 .305 .259 .319 .320 .265 .345 .322 .303

BP: .299 .310 .256 .310 .316 .270 .329 .317 .294

SKILL

JN: .973 .982 .991 1.00 .999 .999 1.00 1.00 1.00

A = 2% HM: .603 .618 .588 .370 .394 .330 .193 .217 .179

LK: .878 .874 .881 .865 .886 .884 .897 .920 .907

BP: .877 .876 .886 .880 .884 .878 .904 .913 .893

'The experiments are replicated using three different sets of random number seeds.

"The HM and LK performance models are corrected for heteroskedasticity using

White's method. Similarly, the BP model is modified using the GLS method.
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THE PROBABILITY' THAT THE NULL HYPOTHESIS OF NO SELECTIVITY ABILITY, 1-10:a<0, IS

REJECTED BY SELECTIVITY PARAMETERS STATISTICALLY SIGNIFICANT AT THE 1% LEVEL.b

ppm = 0

TIMING SKILL

pm, = -0.50 Prim = -1

JN: .012 .006 .007 .165 .143 .155 .586 .621 .615

A = 0% HM: .022 .010 .016 .000 .002 .001 .000 .000 .000

LK: .015 .009 .010 .013 .008 .013 .015 .012 .018

BP: .015 .009 .010 .013 .008 .013 .015 .012 .018

SELECTIVITY

JN: .395 .394 .374 .855 .864 .870 .991 .993 .995

Asa, = 1% HM: .131 .161 .133 .043 .057 .061 .015 .017 .022

LK: .249 .273 .244 .291 .291 .256 .312 .313 .291

BP: .249 .273 .244 .291 .291 .256 .312 .313 .291

SKILL

JN: .973 .982 .991 1.00 .999 .999 1.00 1.00 1.00

Ami = 2% HM: .579 .592 .565 .342 .366 .321 .176 .213 .186

LK: .865 .866 .870 .864 .880 .874 .889 .920 .898

BP: .865 .866 .870 .864 .880 .874 .889 .920 .898

'The experiments are replicated using three different sets of random number seeds.

bThe performance models are not modified to account for heteroskedasticity.


