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NUMERICAL STUDIES OF MESOSCALE EDDIES USING QUASIGEOSTROPHIC

AND PRIMITIVE EQUATION OCEAN MODELS

CHAPTER 1. INTRODUCTION

The role of the ocean in climatic change is becoming an

increasingly important element of climate research. The large

heat capacity, coupled with the large transport of heat by cur

rents, give the oceans the potential for exerting a strong

influence upon climate and its variation (Manabe, 1983). Obser-

vational studies have shown that the kinetic energy of mesoscale

eddies can be one or two orders of magnitude greater than that

of the time-averaged motions, at least in certain parts of the

world ocean (see Wyrtki et al., 1976, for example). These

observations suggest that the ocean general circulation may be

significantly influenced by the mesoscale eddy field, especially

in areas of intense currents, such as the Gulf Stream, where

active air-sea interaction occurs. Since eddies have been shown

to be important mechanisms for transporting momentum and poten-

tial vorticity (Holland, 1983), it seems likely that they could

also be important mechanisms for transporting heat.

In order to properly assess the role of mesoscale eddies in

climate, we need an appropriate tool that will allow us to

systematically investigate not only the eddies' contribution to

the ocean heat transport, but also their effect on the ocean
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general circulation. Observations, analytical investigations,

and numerical models are all possible tools.

In the following chapter, we will briefly review how the

use of each of these tools has contributed to our present under-

standing of eddies and the ocean general circulation, and then

consider the use of these tools for studying the role of meso-

scale eddies in both the ocean general circulation and in cli-

mate. Currently, eddy-resolving general circulation models

(ECCMs) appear to be the most appropriate tool for an in-depth,

quantitative analysis, and so they will form the basis for this

study.

We next survey the types of EGCMs available, and review

intercomparisons between the models to help decide what type of

EGCM to use. From this survey we see that there is at the pre-

sent time no "ideal" model to study the role of mesoscale eddies

in climate. An "ideal" model for our purposes would be one that

incorporates complete thermodynamic processes yet uses reason-

able amounts of computer time.

A good candidate for this EGCM might be a model inter-

mediate between quasigeostrophic (QC) and primitive equation

(PE) models. This type of model could possibly Incorporate

thermal effects not found in a QG model, yet use less conputer

time than a FE model. It soon becomes apparent that the proper

development and evaluation of such a model requires a deeper

understanding of QG and PE physics.
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This has led to the present study: a quantitative inter-

comparison of QG and PE models which have both been modified in

order to emphasize differences and similarities. The main

purpose of this model intercomparison is to explore the follow-

ing questions:

a) Can the two models be configured to give nearly simi-

lar results?

b) Are the differences due to numerics or to physics?

c) What is the best choice of model configuration for the

basic problem, i.e., the role of mesoscale eddies in

climate?

d) What is the best configuration for an intermediate

model?

e) How well does QG physics represent more complete phy-

sics?

We begin this study in Chapter 3 by describing the PE and

QG model equations, and discussing their similarities and

differences. Next, in order to overcome differences in model

equations and prognostic variables, we start with the PE system

of equations and derive a set of equations which has the same

form and prognostic variables as the QG system, as well as some

variables not found in QG. We then make the following approxi-

mations to this set: 1) full balance, 2) linear balance, and 3)

QG. Either the full or linear balance set of equations could be

the basis of the "ideal" model described previously. As a
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result we obtain a hierarchy of systems of equations from FE to

QG, which allows us to evaluate the importance of each of the

terms involved in this sequence of approximations.

Using these and other methods of analysis presented in

Chapter 4, the results of two QC and PE numerical experiments

are systematically intercompared (Chapters 5 and 6). In Chapter

7, the results of these comparisons are discussed. Finally, in

Chapter 8 we summarize the results.
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CHAPTER 2. BACKGROUND

2.1 Current state of knowledge

Observational studies of currents in many parts of the

world ocean have revealed the presence of mesoscale eddies

(Swallow and Hamon, 1960; Crease, 1962; Koshlyakov and Grachev,

1973; Kitano, 1974, 1975; Bernstein and White, 1974; Dantzler,

1976; Wyrtki et al., 1976; Richinan et al., 1977; Schznitz, 1977;

Baker et al., 1977). Field programs (POLYGON, MODE, POLYMODE,

ISOS, NORPAX) have been conducted to determine the basic

characteristics of these eddy systems.

What is known about eddies from observations on a global

basis has recently been summarized by: 1) Dickson (1983), using

flow statistics from long-term current meter moorings; and

2) Emery (1983), using temperature measurements. Regional sum-

maries have been presented by: 1) Schtnitz (1978), Richardson

(1983), Wunsch (1983), Rossby et al. (1983) and McWilliams et

al. (1983) for the Western North Atlantic Ocean; 2) Gould (1983)

for the Northeast Atlantic Ocean; 3) Bernstein (1983) for the

North Pacific Ocean; 4) Needler (1983) for the subpolar gyre and

Arctic Ocean; 5) Siedler (1983) for tropical equatorial regions;

6) Swallow (1983) for the Indian Ocean; 7) Bennett (:1983) for

the South Pacific Ocean and East Australian Current;

8) GrUndlingh (1983) for the Southern Indian Ocean and Aguihaus
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Current; and 9) Bryden (1983) for the Southern Ocean.

The results of these observational studies have shown that

the mesoscale eddy field has wavelengths of tens to hundreds of

kilometers and periods on the order of weeks to months. The

kinetic energy of such eddies can be one or two orders of magni-

tude greater than that of the time-averaged motions (Dickson,

1983). The intensity of these eddies varies geographically,

being weakest in mid-ocean regions such as the center of the

subtropical gyres, and strongest in the vicinity of strong flows

such as the Gulf Stream, Kuroshio and North Equatorial Currents

(Dantzler, 1977; Wyrtki et al., 1976; Leetma et al., 1977;

Dickson, 1983; Schmitz et al., 1983).

Despite a steadily growing data base on oceanic mean flows

and statistics, there are still many data-sparse regions of the

ocean, and no synoptic coverage of the ocean presently exists.

As technology advances, especially In the area of remote sensing

(Heinmiller, 1983), synoptic coverage of mesoscale eddies could

be obtained on a regular basis. Until this advancement is made,

however, we are left with sparse oceanographic data sets, which

are a far cry from the 'ideal description of the mesoscale eddy

field which would consist of an "adequately resolved continuous

time series of the three-dimensional physical (and chemical)

fields throughout the global ocean" (Robinson, 1983).

In addition to the observational studies, analytical

investigations have been undertaken to understand the dynamics
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of mesosca].e eddies and their role in the ocean general circula-

tion. (See Bretherton, 1975; MacLeish, 1976; Rhines, 1977;

McWilliams, 1979; Schmitz et al., 1983; Holland etal., 1983;

and Robinson, 1983, for reviews on both observational and theo-

retical studies.) One of the earliest mechanisms proposed for

eddy production was baroclinic instability (Schulman, 1967; Gill

et al., 1974; Robinson and McWilliams, 1974; Holland and TAn,

l975a,b; Tang, 1975; Haidvogel and Holland, 1978; Holland and

Haidvogel, 1980). Direct atmospheric forcing (Frankignoul and

MUller, 1979) has also been suggested.

Schmitz et al., (1983), after surveying twenty years of

mesoscale eddy research, concluded that: 1) eddies seem to be

generated via baroclinic, barotropic or mixed instabilities of

the strong mean flows; and 2) transient wind forcing seems to be

less important in generating the eddies. It should be pointed

out, however, that because of the lack of both atmospheric and

oceanographic data sets, the significance of direct transient

atmospheric forcing in most parts of the ocean is difficult to

determine. It may well turn out that a significant part of the

variability may be due to such time-dependent direct forcing,

either wind or thermohaline, particularly in the eastern basins

of the world ocean.

In addition to observational and analytical studies, meso

scale eddies have been simulated using numerical models. This

approach has provided great Insight into the eddy dynamics and

generation mechanisms, and permits a systematic exploration of
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the dynamical role of eddies in the ocean general circulation.

Simulations of mesoscale eddies in regional open ocean

domains by Bretherton (1975), Bretherton and Karweit (1975),

Owens and Bretherton (1978), Rhines (1975, 1977), Bretherton and

Haidvogel (1976), and Haidvogel (1983), have shown that the

statistical structure of the mesoscale eddies agrees well with

the available observations. In particular, Bretherton (1975)

has claimed that QG dynamics essentially determine the structure

of mid-ocean eddies.

Simulations of mesoscale eddies in enclosed midlatitude

ocean basins have been explored by Holland and Lin (1975a,b),

Han (1975), Robinson et al., (1977), Semtner and Mintz (1977),

Holland (1978), Mintz (1979), and Semtner and Holland (1980).

These studies have shown that eddies can originate when fine-

scale horizontal resolution (< 50 kin) and low viscosity are

used even when the forcing is entirely steady. The eddies and

mean flow can then interact through exchanges of momentum and

energy. Through these interactions, a statistically steady

state is reached in which the characteristics of the large-scale

ocean circulation are established. Holland (1978), in particu-

lar, has suggested that the eddies determine the character of

the large-scale ocean circulation by limiting the amplitude of

the mean flow in the upper ocean and by causing a downward

momentum flux to the deeper water. Semtner and Mintz (1977) and

Mintz (1979) have shown that the poleward heat transfer across
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the mean position of the Gulf Stream front is primarily due to

the mesoscale eddies.

In order to investigate the role of eddies in particular

regions of the oceans (since eddies are not spatially homo-

geneous), regional budgets have been analyzed by: 1) Han

(1975), Harrison and Robinson (1978), and Harrison (1979) for

energy; and 2) Rhines and Holland (1979), Holland and Rhines

(1980), and Harrison and Holland (1981) for vorticity. The

energy budget studies have shown that 1) eddies in the Gulf

Stream region are produced by baroclinic, barotropic, or 'mixed

instabilities, and 2) in the interior region eddies are main-

tained against frictional dissipation by secondary baroclinic

instabilities in the southwestward and westward flow of the

Sverdrup gyre. The vorticity budget studies have shown that

eddies can play a major role in the mean circulation, because

they transport most of the vorticity put into each gyre by the

wind stress curl across the boundary between the gyres, thereby

allowing equilibration to take place without much need for a

frictional vorticity sink (Holland et al., 1983).

Comparisons of model and ocean data have been made by

Holland and Lin (1975a,b), Robinson et al. (1977), Holland

(1978), and by Schmitz and Holland (1982). Since only a few

long-term time series of ocean data exist, and due to the

idealized framework of the models, such comparisons are

difficult. As pointed out by Holland et al. (1983), it is not

clear just how such comparisons should be carried out.
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Although these comparisons have so far been primarily

qualitative, as the ocean data base grows and models become more

realistic, quantitative comparisons will be possible. These

comparisons, together with theoretical investigations, will

certainly help us to advance from the "zero-order" description

of the eddy field that presently exists (see Schmitz et al.,

1983) to a first-order, more quantitative understanding of the

dynamics of the ocean general circulation.

2.2 Survey of eddy-resolving ocean general circulation models

(EGCMs)

2.2.1 Types of ECCMs available

The requirements for an EGCM, according to Holland (1978),

are: 1) fine horizontal resolution (lO or 20 1cm) in a baro-

clinic ocean, and 2) the ability to perform extended calcula-

tions in time in order to reach a "statistically steady state",

in which eddies and the mean flow are in mutual balance. Three

types of EGCMS presently exist: 1) adiabatic PE models, 2) QG

models, and 3) non-adiabatic PE models. To help decide what

type of EGM to use for the present study, we examine the

capabilities of each type of model.
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Adiabatic PE EGCMs

Adiabatic PE EGCMs have been used by Holland and Lin

(1975a,b) for enclosed ocean basins. Because the PE system of

equations is used, all of the experiments require relatively

large amounts of computer time to reach a statistically steady

state. Because of the expense involved, extensive parameter

studies cannot be made with this type of model and realistic

basins (in size and shape) are extremely expensive. In addition

such adiabatic models do not allow for possibly important water

mass conversion processes such as convective overturning and

thermohaline mixing. As a result, these models may be appropri-

ate for ocean general circulation studies, but cannot be

considered "complete" models for climate studies. However, it

should be kept in mind that models with simpler physics are also

much easier to understand, so there is a trade-off here, even

for understanding "climate.

QC ECCMs

The models used by Holland (1978) for an enclosed ocean

basin and by McWilliams et al. (1978) for a zonally open basin

(analogous to the Antarctic Circumpolar Ocean) are both based on

the Phillips (1956) system of QC equations. This system may be

solved much more economically than the PE equations. As a
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result parameter studies needed at the present stage of eddy

modeling are feasible and basins of realistic size (-5000 kin)

can be used. According to Holland (1978), Haidvogel (1979), and

Robinson et al. (1979), the choice of model parameters can sig-

nificantly influence the results so that a large number of case

studies is needed.

In these adaptations of Phillips' system of equations, wind

stress is the only energy source. Although these models can be

modified to include thermal forcing, it has not yet been done.

In addition, the static stability of these models is not

allowed to change either temporally or spatially in the QG

thermodynamic energy equation. The importance of static sta-

bility variations has been discussed by Lorenz (1960, 1962). In

short, Lorenz argued that static stability is a factor in deter-

mining the dynamic stability of a baroclinic flow. Because the

baroclinically unstable waves are accompanied by a sinking of

colder fluid and simultaneous rising of warmer fluid across the

same level, the static stability should increase in an overall

sense. It is also well known that the static stability par-

tially controls the preferred scale and growth rate of baro-

clinically unstable waves (Charney, 1947; Eady, 1949; Robinson

and McWilliams, 1974; Gill et al., 1974). According to Lorenz

(1960), the release of kinetic energy without static stabili

zation could overpredict the growth of disturbances. Because of

these and other approximations to the thermodynamic energy equa-

tions, the QG EGCMs, by themselves, will not be adequate for
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climate studies.

In addition, even for dynamic studies, the models are

limited to areas of the ocean where the QC approximation is

valid. Examples of where the QG approximation may be invalid

are: 1) near steep topography, seamounts, Islands, and conti-

nental boundaries, and 2) where "contorted meandering and eddy-

ing of intense currents, rings, and smaller long-lived isolated

lenses...have strong centripetal acceleration (cyclostrophic

effects)" (Robinson, 1983).

Non-adiabatic PE EGCMs

Non-adiabatic PE EGCMs have been used by Han (1975),

Robinson et al. (1977), Semtner and Mintz (1977), and Mintz

(1979). Like the adiabatic PE EGCMs, large amounts of computer

time are required to reach a statistically steady state.

Because of the expense involved, extensive parameter studies

cannot be made even though there are more parameters involved

(those having to do with subgrid scale heat diffusion parameter-

ization). Although the models can incorporate most physics,

they cannot presently be run to a complete thermodynamic equili-

brium state because of the expense. As a result, these models

may be appropriate for ocean general circulation studies, but

are limited in their application to climate studies.
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ing of intense currents, rings, and smaller long-lived isolated

lenses...have strong centripetal acceleration (cyclostrophic

effects)" (Robinson, 1983).

Non-adiabatic PE EGCMs

Non-adiabatic PE EGCMs have been used by Han (1975),

Robinson et al. (1977), Semtner and Mintz (1977), and Mintz

(1979). Like the adiabatic PE EGCMs, large amounts of computer

time are required to reach a statistically steady state.

Because of the expense involved, extensive parameter studies

cannot be made even though there are more parameters involved

(those having to do with subgrid scale heat diffusion parameter-

ization). Although the models can incorporate most physics,

they cannot presently be run to a complete thermodynamic equili-

brium state because of the expense. As a result, these models

may be appropriate for ocean general circulation studies, but

are limited in their application to climate studies.
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2.2.2 EGCM intercomparison studies

Two intercomparison studies between EGCMs have been made:

1) QG and adiabatic PE studies, and 2) QG and non-adiabatic PE

studies. The first intercomparison was done by Holland (1978),

and the second by Semtner and Holland (1978).

In the first study, qualitative agreement was obtained for

a number of cases. However, because the product of height and

horizontal velocity, rather than velocity itself, is the basic

prognostic variable in the PE momentum equation used in the

study, the PE and QG models could not be readily compared.

Quantitative intercomparisons have yet to be made.

In the second study, qualitative agreement was also

obtained. There were several significant differences between

these models however, most notably: 1) model physics; 2) verti-

cal resolution (two-layer QG model compared to five-layer PE

model); and 3) effective horizontal resolution (B-grid PE model

compared to C-grid QG model). As a result, observed differences

between the models cannot be ascribed to any one factor, and

comparisons of any similarities can be made on a qualitative

basis only.

In fact, as Semtner and Holland (1978) have discussed, no

two EGCM experiments have ever been parametrically identical.

As a result, differences between model results could be due to

any number of factors.
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2.3 The "ideal" EGCM for climate studies

From our survey of the types of EGCMs available, we see

that there is at the present time no single "ideal" model to

study the role of mesoscale eddies in climate. At the present

time some mix of all these models is needed to get at the array

of problems involved.

A useful candidate might be a model intermediate between QG

and non-adiabatic PE models. This type of model could possibly

incorporate thermal effects not found in a QG model, yet use

less computer time than a PE model. As stated in Chapter 1, the

proper development and evaluation of such a model requires a

deeper understanding of QG and PE physics, which is the aim of

this thesis.

In the following chapters, we will provide a foundation for

the first guantitative intercomparison of QG and PE models. In

particular, a hierarchy of systems of equations from PE to QC

will be obtained. This will allow us to evaluate the importance

of each of the terms involved in the sequence of approximations,

and eventually help us to design the "ideal" EGCM for climate

studies.
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CHAPTER 3. MODEL FORMULATIONS

One of the primary goals of this study is to try to obtain

a deeper understanding of PE and QG physics. In this chapter we

demonstrate how, without rebuilding or reformulating PE and QG

models, we can derive a set of consistent quantities that can be

intercompared. Before presenting this set, the PE and QG model

equations will be briefly described.

3.1 The basic models

The PE model used in this study is a new one (see Appendix

A for the numerical details), and makes use of the following

assumptions and approximations:

1) the hydrostatic and traditional approximations charac-

teristic of PE models in general (Phillips, 1966);

2) the Boussinesq approximation which assumes that density

variations are important only in calculations involving

the buoyancy force (Phillips, 1969); and

3) the assumption that density is a function only of tern-

perature.

The fluid motion is represented in Cartesian coordinates

x,y and z, where x is the east-west direction, y the north-south

direction and z the vertical direction. The velocity components

are u,v and w in the zonal, meridional and vertical directions,
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where t is time, p is pressure, p0 Is a reference density, V2

is the horizontal Laplacian operator, is the horizontal

biharmonic operator, is the eddy viscosity coefficient in

the vertical direction, and A and Bm are eddy viscosity

coefficients in the horizontal direction for Laplacian and

biharmonic momentum diffusion, respectively. The subscripts t,

x, y and z in the equations are used to denote differentiation

with respect to these variables. The Coriolis parameter f is a

linear function of latitude so that f = f0 + y. The

advection operator L is defined as

L( ) [u( + [v( )]y

The hydrostatic equation is

= -pg '

where p is the density and g is the acceleration of gravity.

The continuity equation, which assumes the fluid to be incom-

pressible, is
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where t is time, p is pressure, p0 is a reference density, V2

is the horizontal Laplacian operator, V' is the horizontal

biharmonic operator, Km is the eddy viscosity coefficient in

the vertical direction, and A., and B are eddy viscosity

coefficients in the horizontal direction for Laplacian and

biharmonic momentum diffusion, respectively. The subscripts t,

x, y and z in the equations are used to denote differentiation

with respect to these variables. The Coriolis parameter f is a

linear function of latitude so that f = f0 + y. The

advection operator L is defined as

L( ) [u( + [v( )}

The hydrostatic equation is

= pg '
(33)

where p is the density and g is the acceleration of gravity.

The continuity equation, which assumes the fluid to be incom-

pressible, is
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u +v +w = 0. (3-4)
x y z

The first law of thermodynamics is

+AHV2T

T + L(T) + (wT) K T
{

or
t z H zz

_BHV'T

' 35)

where T is temperature, KH is the eddy diffusivity coefficient

in the vertical direction, and AH and BR are eddy diffusi-

vity coefficients in the horizontal direction for Laplacian and

biharinonic heat diffusion, respectively. The equation of state

is

p = (3-6)

where T0 is a reference temperature and c& is the thermal

expansion coefficient. The prognostic variables for this system

are the zonal velocity u, the meridional velocity v and the

temperature T.

The QG model used in this study is essentially that of

Holland (1978). The governing equations consist of relative

vorticity and thermal wind equations:

+AV2

(V24)t = -J(4,V24 + f) - f w + K
{

or (3-7)
oz mzz

-BV2
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U + V + W = 0 . (3-4)
x y z

The first law of thermodynamics is

+A.V2T

T + L(T) + (wT) K T
{

or , (3-5)
t z H ZZ -BVT

where T is temperature, KH is the eddy diffusivity coefficient

in the vertical direction, and AH and are eddy diffusi-

vity coefficients in the horizontal direction for Laplacian and

biharmonic heat diffusion, respectively. The equation of state

is

p = p0(1-a(T-T0)), (3-6)

where T0 is a reference temperature and a is the thermal

expansion coefficient. The prognostic variables for this system

are the zonal velocity u, the meridional velocity v and the

temperature T.

The QG model used in this study is essentially that of

Holland (1978). The governing equations consist of relative

vorticity and thermal wind equations:

+AV2

(V21) = -J(,V24 + f) f w + K C
{

or (3-7)
oz mzz

By C
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( ) = -J(, ) + (g'/f )w . (3-8)

zt z 0

Here i is the QG streamfunction, = v2p is the relative vorti-

city, g' = gAp/p0 is "reduced gravity", and all other vari-

ables are defined as before. The prognostic variables for this

system are the relative vorticity V2 and the thermal wind
.

A comparison of the PE and QG model equations shows that

the models have different equations and prognostic variables.

In order to quantitatively intercompare the models, some modifi-

catlons are necessary. Without rebuilding or reformulating the

models themselves, we would like to derive a set of consistent

quantities that can be intercompared. Then we can use this set

to address some of the questions posed in Chapter 1. In parti-

cular, we could address the questions: Can the two models be

configured to give nearly similar results?; and, Are the differ-

ences due to numerics or to physics? In the next section, we

show how a particular set of consistent quantities can be

obtained.

3.2 Continuous form of the comparison equations

Starting with the PE system of equations, we derive a set

of equations which has the same form and prognostic variables as

the QG system. In particular, we form vorticity and divergence
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equations from the momentum equations. From the divergence

equation, we obtain the thermal wind relationship (which we will

later substitute into the thermodynamic energy equation). We

next decompose the horizontal velocity field into rotational and

divergent components, and substitute this decomposition into all

of the equations.

3.2.1 The PE comparison equations

The Cartesian form of the horizontal equations of motion,

Eqs. (3-1) and (3-2), can be written in vector form as

+A
in

+
+ +fkx=_LVp+K { or, (39)

Vt +
z p m zz

-B
m

where v Is the horizontal velocity vector. Using the vector

identity

v
v.Vv = V(-j-) + k x

where k.V x v Is the vertical component of vorticity, we can

rewrite Eq. (3-9) as

+A V2
m

t
_2 + k x +K { or . (3-10)

z m zz
0 -BV

In
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Operating on Eq. (3-10) with the vector operator k.Vx( ), we

obtain the vorticity equation

+A V2C
in

= -v.V(C+f) -w -(+f)V. + k.( x Vw)+K { or .(3-11)
t z z mzz

-B
m

Operating on Eq. (3-10) with the vector operator v.( ), we

obtain the divergence equation

+A V2S
in'5t2+ !j!)_V.[k x '(C+f)]-w'5 '5 { or ,(312)

z z inzz
° -BV

m

where the horizontal divergence '5 V.. From Eq. (3-12), we

can obtain the thermal wind relationship. Taking the vertical

derivative of Eq. (3-12), solving for the pressure term and sub-

stituting the relationship

VPz = -gV2p ctgV2T

(where Eq. (3-3) and (3-6) have been used) into the pressure

teriii, we can obtain

ctgV2T -V.[k x '(+f)] -(w6 ) -(v .Vw) + (K '5 )
z z zz z z mzzz

+A
m z

{ or

-B V '5
m z

(3-13)

which is analogous to the the thermal wind relationship, but

without any balance conditions assumed.
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Using a theorem of Helmholtz (see Bourne and Kendall,

1968), which states that any velocity field can be decomposed

+

into non-divergent and irrotational components, we can let v be

expressed as

+
v = kxVp+Vx, (3-14)

where , is a streamfunction for the non-divergent part of ' and

x is the velocity potential for the irrotational part. Hence,

the vorticity = and the horizontal divergence S V2. In

order to make this decomposition unique, we need to consider the

kinematic condition on the side walls, .tt = 0, which means

it.I x V + 0. We shall choose to completely specify

and x by choosing i.VX = 0 and it.lt x V, = 0 independently. This

means the normal derivative of the divergent velocity is zero at

the boundary and the streanifunction Is a constant there. This

is consistent with the boundary condition choice in the Holland

(1978) QG model, i.e., p = constant on the boundary, and with

integral continuity constraints.

Substituting Eq. (3-14) into Eq. (3-11), the vorticity

equation becomes

C1 -VfV VX.VC CV2X

+A

{
or (3-15)

where J is the Jacobian operator. Substituting Eq. (3-14) into
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where J Is the Jacobian operator. Substituting Eq. (3-14) into



Eq. (3-12), the divergence equation becomes
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x Vip)) - Vw.(k x vip)
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Using Eq. (3-14), the thermal wind relationship becomes

ctgV2T = -(v2x) + v.(fvI,)

-V.((k x vp).v(k x

x )"2x) 7x7(k x

-(Vw.(k x vIi)) ((Vx.V2x))
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(3-16)
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Again using Eq. (3-14), the continuity equation (3-4) can be

rewritten as

V2 + w = 0. (3-18)

The thermodynamic energy equation (3-5) can be rewritten in

vector and advective form as

+AHV2T
+

T + v.VT + wT = K T { or (3-19)
t z Rzz

-B11vT
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Using Eq. (3-14), the thermal wind relationship becomes
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Again using Eq. (3-14), the continuity equation (34) can be

rewritten as

+ wz 0. (3-18)

The thermodynamic energy equation (3-5) can be rewritten in

vector and advective form as

I + VVT + wT = K T {
or (3-19)

t z fizz _B11VLfT
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If we substitute Eq. (314) into Eq. (3-19) we can obtain

+AHV2T

T + J(,T) + V'VT + wT = K T
{

or (3-20)
t z Hzz -B11VT

The vorticity equation (3-15), the divergence equation

(3-16), the derived thermal wind relationship (3-17), the

continuity equation (3-18) and the thermodynamic energy equation

(3-20) form the basic PE comparison set of equations. In the

next section we will make the following approximations to this

set: 1) full balance, 2) linear balance, and 3) QG. As a

result we can obtain a hierarchy of systems of equations from PE

to QG, and can then make systematic comparisons among these

systems. This also allows us to evaluate the importance of each

of the terms involved in this sequence of approximations.

3.2.2 Approximations to the PE comparison equations

Following Lorenz (1960), systematic approximations to the

interconiparison set of PE equations, which were obtained in the

last section, will be made in order to obtain energetically

consistent sets of full balance, linear balance and QG equa-

tions. We first replace the divergence equation with the full

balance equation, which is obtained by neglecting all terms

containing divergence In the divergence equation. In an
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analogous fashion we neglect certain terms containing divergence

in other equations. We next neglect certain nonlinear terms in

the above equations to obtain linear balance equations. Lastly

we omit certain additional terms from the linear balance equa-

tions to obtain the QG system of equations, which is the basic

set of equations we will use in intercomparisons with the PE

model.

The full balance approximation and equations

In order to obtain the full balance equations, we assume

that the horizontal velocity is quasi-non-divergent, i.e.,

IvxI<<(; x
(3-21)

where the notation introduced in Eq. (3-14) has been used. We

then find that terms involving w and VX in the divergence equa-

tion (3-16) may all be neglected. Eq. (3-16) then reduces to

0 -v2(--2--) + V.(fV) - x x V))

which can be rewritten as

+ = v.[(f + v2p)vp] . (3-22)

This equation, called the full balance equation, expresses a

rather complicated nonlinear relationship between p and p,
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similar to a gradient wind balance. It is important to note

that dropping the divergence tendency omits gravity waves from

the system.

Using the assumption (3-21), the thermal wind relationship

(3-17) reduces to

cgV2T = _v2[4_<v2]2 + v.[(f + (3-23)

and the vorticity equation (3-15) to

= + f) V.fV CV2X

+AV2

Vw.V K { or . (3-24)
z z

m

We note in Eq. (3-24) that all terms involving both the rota-

tional and divergent part of the horizontal velocity field are

still retained. As shown by Lorenz (1960), this retention is

necessary in order for the full balance system of equations to

possess suitable energy invariants.

The thermodynamic energy equation (3-20) along with the

continuity equation (3-18) are left intact. In particular, the

term V.VT in Eq. (3-20), which might otherwise be neglected, is

retained for energetic consistency.

Eqs. (3-23), (3-24), (3-20) and (3-18) make up the full

balance system of equattons.
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The linear balance approximation and equations

In order to obtain the linear balance equations, we assume

that nonlinear terms are negligible compared to linear terms in

the divergence equation. The divergence equation (3-22) then

reduces to

= v.(fV) (3-25)

which is the linear balance equation. This equation expresses a

simple linear relationship between and p.

Neglecting nonlinear terms in the thermal wind relationship

Eq. (3-23) and small terms in the vorticity equation (3-24), we

obtain

and

ctgV2T (3-26)

+A
In

= + fV2x + K
{

or (3-27)
m zz -Bvç

The term -V.Vf, which is the advection of the planetary vorti-

city by the divergent component of the horizontal velocity

field, although small compared to other terms in Eq. (3-27),

must be retained for energetic consistency (Lorenz, 1960).

Eqs. (3-20) and (3-18) remain intact and together with

Eqs. (3-26) and (3-27) make up the linear balance system of

equations.

L----------

27

The linear balance approximation and equations

In order to obtain the linear balance equations, we assume

that nonlinear terms are negligible compared to linear terms in

the divergence equation. The divergence equation (3-22) then

reduces to

= v.(fv) (3-25)

which is the linear balance equation. This equation expresses a

simple linear relationship between and p.

Neglecting nonlinear terms in the thermal wind relationship

Eq. (3-23) and small terms in the vorticity equation (3-24), we

obtain

and

cgV2T =
(3-26)

+AV2 ç

= J(,+f) V.Vf + fV2 + K
{

or (3-27)
m zz BV

The term -V.Vf, which is the advection of the planetary vorti-

city by the divergent component of the horizontal velocity

field, although small compared to other terms in Eq. (3-27),

must be retained for energetic consistency (Lorenz, 1960).

Eqs. (3-20) and (3-18) remain intact and together with

Eqs. (3-26) and (3-27) make up the linear balance system of

equations.

L-------



The QG approximation and eqations

In order to obtain the QG equations, we assume that the

advection of the planetary vorticity by the divergent component

of the horizontal velocity field, I.e., -VXVf, is negligible

compared to other terms in Eq. (3-27). For energetic consis-

tency (Lorenz, 1960), it is necessary to simultaneously replace

f by a constant mean value f0 in the term fV2x in Eq. (3-27)

and in the term V.(fV) in Eq. (3-25). The vorticity equation

(3-27) then reduces to

+AV2

+ + K
{

or , (328)
-BVm

and the divergence equation (3-5) to

= f0V2* (3-29)

The latter equation states that the streamfunction can be

given approximately by p/(f0p0) and that the pressure field

is approximately proportional to the streainfunction field.

If we replace f by f0 in Eq. (3-26), we obtain the

thermal wind relationship

agV2T f0V24
(3-30)

This equation states that can be given approximately by
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ctgTIf0.

According to threnz (1960), no approximations need be made

to either Eqs. (3-20) or (3-18), so that the equations (3-28),

(3-30), (3-20) and (3-18) form a suitable energetically consis-

tent system of equations. In our study, however, in order to

use the Holland (1978) model, we wish to simplify the thermo-

dynamic energy equation by replacing variable static stability

by a constant value. For energetic consistency, following

Lorenz (1960), it is necessary to simultaneously neglect in the

thermodynamic energy equation (3-20) the advection of tempera-

ture by the divergent component of the horizontal velocity

field. With these simplifications the thermodynamic energy

equation (3-20) reduces to

+AHV2T

Tt + J(,T) + c0w = { or , (3-31)

where is the static stability, which is constant in time

and in the horizontal domain. Using the thermal wind relation-

ship (3-30), Eq. (3-31) can be rewritten as

+AHV Z
czg

zt +
J(4,) a w

{
or . (332)

f °
-o B

H z

The set of equations (3-28), (3-30), (3-18) and either (3-31) or

(3-32) make up the QG system of equations.
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3.3 Choice of model parameters

Besides a consistent set of equations and prognostic vari-

ables to intercompare the results of PE and QG numerical experi-

ments, we need to obtain a consistent model set-up. In parti-

cular the models should have not only the same model parameters,

but also the same vertical and horizontal distribution of vari-

ables.

3.3.1 Basic experimental design

Before any experiments are conducted, the numerical aspects

of each model must be tested, i.e., grid resolution, choice of

layer depths, choice of friction formulations, forcing function

structure and amplitude, and boundary conditions. The results

of these tests determine the choice of model parameters to be

used in the experiments.

Since the QG model has already had the numerical aspects

tested and has been successful in generating mesoscale eddies

(see Holland, 1978), we initially base our choice of model para-

meters for both models on what Holland (1978) used. Because of

the great expense involved in running the PE model, we are

limited to running only two experiments for our intercomparison

study. We choose to run single-gyre and double-gyre experiments

using many of the model parameters used in Hollandts Case 1.
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3.3.2 Domain of the ocean and grid system

For both experiments a rectangular ocean basin centered at

midlatitudes is used. For single-gyre runs a 1000 x 1000 km

basin, centered at 35°N, is used; for doublegyre runs, a 2000

(north-south extent) x 1000 km basin, centered at 40°N, is used.

The horizontal grid size to be used in all experiments is

20 km. This size meets a basic requirement cited by Holland

(1978) for an eddy-resolving model, namely that fine horizontal

resolution (-10 or 20 kni) is needed, and is the size that

Holland consistently uses. It should be pointed out that this

choice of horizontal grid size is twice as fine as that used in

all previous non-adiabatic "eddy-resolving" PE ocean models

(e.g.., Han, 1975; Robinson et al., 1977; Setntner and Mintz,

1977). The use of these coarser resolutions (i.e., greater than

or equal to 40 km), according to Han (1975), may not be adequate

to resolve baroclinic and barotropic eddy processes, particu-

larly in the western boundary and subarctic regions.

Although it is known that continental margins and bottom

topography influence both large-scale currents and eddy dynamics

(Warren, 1963; Holland, 1967; Orlanski and Cox, 1973;

Bretherton, 1975; Bretherton and Haidvogel, 1976; Rhines, 1977;

Semtne and Mintz, 1977), flat-bottomed models are used, follow-

ing the philosophy of Holland (1978), who recommends proceeding

from simple to more complex models. The use of flat-bottomed
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models should result in fewer computational requirements and

more straightforward intercomparisons between the QG and PE

models.

For the same reasons, we use two-layer instead of multi-

layer versions of the models in both experiments. The upper

layer represents the warm water above the thermocline while the

lower layer represents the deep ocean.

The vertical structure of the PE and QG models is shown in

Figs. 3.1 and 3.2, respectively. The fundamental variables of

the PE model (u,v,T, and w) plus the derived variables ( and x)

are shown in Fig. 3.1. The fundamental variables of the QG

model ( and w) are shown in Fig. 3.2. For both models, the

layers are numbered from top to bottom with the layer thickness

(constant for each layer) given by hk. The vertical coordi-

nate is the height z, which is positive upwards with z 0 at

the surface. In both experiments, the same two-layer versions

of the models are used with h1 = 1000 m and H h1 +

5000 m.

The horizontal arrangement of variables for the PE model is

shown in Fig. 3.3. The zonal velocity u and Coriolis parameter

f are carried at a distance ,/2 (t being the uniform grid inter-

val in both the x and y directions) to the east and west of the

point of a rectangular grid where the temperature T is carried.

The meridional velocity v is carried at the same distance to the

north and south of the temperature point. The pressure p is

located at the same point as temperature. The vertical velocity
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w is located at a distance A/2 to the east of u and to the north

of v (i.e., also at T points) in order to facilitate differen-

tiation of the continuity equation.

This space-staggered grid, called the C-scheme by Arakawa

and Lamb (1977), has been shown by Batteen and {an (1981) to be

free of noise for the gravest mode when fine-scale resolution

(<40 kxn for the ocean), as in mesoscale ocean eddy models, is

used. It has been used extensively in both ocean and atmo-

spheric general circulation modeling (Holland and Lin, 1975a,b;

Arakawa, 1966, 1972). When the grid size is smaller than the

Rossby radius of deformation (-50 km in the ocean, -1000 km

in the atmosphere), this scheme will simulate geostrophic

adjustment more adequately than other schemes (Winninghoff,

1968; Arakawa and Lamb, 1977; Schoenstadt, 1978).

Also shown in Fig. 3.3 are the derived variables , defined

at the corner points of the grid, and x defined at the center

point of the grid. This grid arrangement facilitates the

decomposition of the horizontal velocity field into its

rotational and divergent components, i.e.,:

U = Xx 1I)y (3-33a)

and

V = Xy + (3-33b)

Two different horizontal arrangements of variables are

shown for the QC model in Fig. 3.4. Fig. 3.4a shows the hori-

zontal arrangement of variables for actual QC runs, while Fig.
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Also shown in Fig. 3.3 are the derived variables p, defined

at the corner points of the grid, and x defined at the center

point of the grid. This grid arrangement facilitates the

decomposition of the horizontal velocity field into its

rotational and divergent components, i.e.,:
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and

V = Xy + 4x
(3-33b)

Two different horizontal arrangements of variables are

shown for the QG model in Fig. 3.4. Fig. 3.4a shows the hori-

zontal arrangement of variables for actual QC runs, while Fig.
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3.4b shows the arrangement of the additional derived variables

when intercomparisons with the PE model are to be made.

Both p and w are carried at the corner points of the grid

in Fig. 3.4a; in Fig. 3.4b, however, the variables are arranged

to be consistent with the PE arrangement of variables (see Fig.

3.3). An averaging of w at the corner points of the grid in

Fig. 3.4a is made to determine w in the center of the grid in

Fig. 3.4b. The horizontal velocities u and v in Fig. 3.4b are

arranged, as in the PE model, to facilitate the decomposition of

the horizontal velocity field into its components, which, in the

quasigeostrophic system, is just the rotational component, i.e.,

U = 4)y (3-34a)

and

v (3-34b)

3.3.3 Wind forcing

Following Holland (1978), the upper layer of the ocean is

driven by a zonal wind stress which is steady in time and varies

with latitude in a simple sinusoidal manner. For single-gyre

runs,

T(y) --r0 cos (iry/D). (335)

where -r is the wind stress acting on the surface, TO is the
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3.3.3 Wind forcing

Following Holland (1978), the upper layer of the ocean is

driven by a zonal wind stress which is steady in time and varies

with latitude in a simple sinusoidal manner. For single-gyre

runs,

T(y) --r0 cos (jry/D). (3-35)

where T is the wind stress acting on the surface, TO is the
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constant wind stress amplitude, and D is the north-south extent

of the rectangular basin. For double-gyre runs

r(y) = - cos (2,y/D). (3-36)

The use of a wind forcing steady in time rather than tran-

slent does not significantly suppress eddy generation. As

stated earlier, eddies are primarily generated by instabilities

of strong mean flows, and the eddy response to transient wind

forcing may be a second-order effect in midlatitude gyres

(Schmitz et al., 1983).

3.3.4 Friction formulations

Lateral momentum diffusion and bottom friction

Holland (1978) used t forms for lateral momentum

diffusion, which he called "Laplacian" and "biharmonic"

friction. In several of his experiments, Laplacian friction was

incorporated:

F (3-37)

where F represents lateral momentum diffusion. In other

experiments, biharmonic friction was used:

F (3-38)

When Laplacian friction was incorporated, no bottom friction was

included; when biharmonic friction was used, bottom friction was

included in a simple linear form:
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where F represents lateral momentum diffusion. In other
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When Laplacian friction was incorporated, no bottom friction was

included; when biharmonic friction was used, bottom friction was

included in a simple linear form:



B = BV1P,
(3-39)

where B represents bottom friction, and CB is the bottom

friction coefficient.

For single-gyre experiments, Holland (1978) investigated

two cases (see Table 2 in Holland (1978) for a complete list of

cases and choices of model parameters): Case 1) Laplacian

friction (AM 330 m2s1 with no bottom friction included,

and Case 2) biharmonic friction (BM 8 X i09 ms1) with

bottom friction (CB = 1 x 10 s1) incorporated. Case 2 was

only briefly discussed in Holland (1978), but Case 1 was

extensively explored. We therefore use Case 1 as guidance for

the single-gyre experiment and so choose Laplacian friction

(AM 330 m2s1) with no bottom friction included.

For double-gyre experiments, we also use Laplacian friction

(AM 330 m2s1) but include bottom friction (CB 1 X 10

s'1). The choice of the same lateral momentum diffusion coef-

ficient as in our single-gyre case allows some comparisons to be

made between the single-gyre and double-gyre results. The addi-

tional incorporation of bottom friction also allows the role of

bottom friction in the ocean general circulation to be examined

in a limited way.

Lateral heat diffusion

Lateral heat diffusion is incorporated in non-adiabatic PE
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models in order to suppress computational noise that would

otherwise develop. In QG models, no computational noise will

develop if this term is neglected. As a result, Holland (1978)

does not include heat diffusion in his QG model, and we cannot

use his case studies as a guide for the choices of heat diffu-

sion formulation and coefficient in our PE model.

Since we had already decided to use a Laplacian momentum

diffusion formulation, we initially decided to use a Laplacian

heat diffusion formulation:

2
G = AflV T, (3-40)

where C represents lateral heat diffusion. We used the same

value for the heat diffusion coefficient as the momentum diffu-

sion coefficient, i.e., 330 m2s1. We found that this value was

large enough to successfully suppress computational noise. We

also found, however, that no mesoscale eddies were generated.

Instead of reaching a statistically steady state in which eddies

and the mean flow are in mutual balance, a steady state without

eddies was obtained.

The cause of this mesoscale eddy suppression was not

clear. A combination of model parameter choices could be

responsible. Given these model parameters, the heat diffusion

could be more effective at suppressing the eddies than the

momentum diffusion.

Since the PE model is too expensive to carry out a para-

meter study, we conducted the following investigation. We
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knew that the choices Holland (1978) had used in his Case 1 were

not responsible for mesoscale eddy suppression, since eddies had

been successfully generated with these choices. He effectively

had no heat diffusion. But heat diffusion has not been

neglected in Eqs. (3-31) and (3-32) when the QG approximation

was made, and it was decided to Incorporate this term, which we

call "thermal wind" diffusion, in the QC model. This allowed us

to conduct an inexpensive parameter study with the QG model in

which: 1) different types of thermal wind diffusion, i.e.,

Laplacian and biharmonic formulations, could be incorporated,

and 2) different diffusion coefficients could be used, ranging

from zero (the Holland case) to typical choices used in PE

models. From such a study, we could examine the extent to which

the use of each diffusive paraineterization would result in any

suppression of instability processes. The results could be used

as a guide for determining the heat diffusion formulation and

coefficient for the PE model which would suppress computational

noise, yet still allow the active generation of mesoscale

eddies.

The results of this study showed that, if Laplacian thermal

wind diffusion is used, values consistent with those used in PE

models can result in the suppression of mesoscale eddies

altogether. When a biharmonic formulation is used, however,

typical PE choices of biharmonic diffusion coefficients do not

lead to any suppression of mesoscale eddies. Because of this
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finding, we use a biharmonic rather than a Laplaclan heat diffu-

sion formulation in the PE model, i.e.,

G -BHVT (3-41)

With this choice, we find that we can use the same coefficient

for heat diffusion that Holland (1978) used for the biharmonic

momentum diffusion i.e., -1O ms1, without any noticeable

generation of computational noise in the PE model.

3.3.5 Boundary conditions

The lateral boundary condition on the velocity can be

either free-slip or no-slip. In the present models, following

Holland (1978)) free-slip conditions are used. The use of this

condition not only reduces dissipation by lateral friction

(Blandford, 1971), but also allows a strong inertial boundary

current to develop (Holland and Lin, 1975a,b). The free-slip

boundary condition for the PE model is:

= 0 on x = 0,L (3-42)

and

uy = 0 on y = O,D, (3-43)

where L is the east-west length of the basin.

The use of biharmonic temperature diffusion requires two

boundary conditions. As in Semtner and Mintz (1977), in order

to conserve heat in exchanges between gridpolnts and to prevent
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heat transfer across all of the boundaries, the values of T and

V2T are reflected across the boundary.

The rigid-lid assumption, w = 0 at the surface of the

ocean, is made to exclude external gravity waves for economy in

computation. The constraint this assumption makes on the method

of solution for the PE model is discussed in Appendix A.

The boundary conditions on the ocean bottom are those of no

vertical velocity and no vertical heat flux. As in Holland

(1978), there is no incorporation of interfacial friction

that would couple the layers together.

Physical boundaries

In the PE model, following Holland and Lin (1975a), the

physical boundaries of the basin are set up to coincide with

lines of u points at the north-south boundaries and with lines

of v points at the east-west boundaries. This choice of the

boundaries readily accommodates the kinematic boundary

condition of having no norma]. flow across the lateral walls,

i.e.,

and

uO onx0,L (3-44a)

v 0 on y = 0, D. (3-44b)
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At a distance L/2 outside each boundary, an extra array of grid

points is introduced both to allow the same computing algorithm

to be utilized for points next to the boundary as for points in

the interior, and to provide a way for specifying the free-slip

boundary condition. In particular, the tangential velocity out-

side is set equal to that of its mirror-reflection counterpart

inside the boundary.

In the QC model, the physical boundaries of the basin are

set up to coincide with lines of points on the boundaries.

This choice of the boundaries, like the PE model, also accom-

modates the kinematic boundary condition. At a distance A out-

side each boundary, an extra array of grid points is introduced

to accommodate the free-slip boundary conditions.

3.4 Semi-discrete form of the comparison equations

In previous sections we have obtained: 1) a consistent set

of comparison equations and prognostic variables in continuous

form, and 2) a consistent model set-up. In this section we pre-

sent the semi-discrete form of the comparison equations as a

hierarchy from PE to QG. This will allow us to evaluate the

importance of each of the terms involved in the sequence of

approximations from PE to QG.

3.4.1 The vorticity equations
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points is introduced both to allow the same computing algorithm
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In order to facilitate the vertical differencing of the

vorticity equation, Eq. (3-15) is first rewritten as

(V2) = -J(ip,V24,+f) + f w + (f-f )w VVfoz 0 Z

Vx.Vc + çw (wV2)
z z

+ w + (Vw.Vp) + Vp.w

+ J(,w ) + ç +A V2ç
z mzz m

where, as explained earlier, the alternative choice of bihar-

monic momentum diffusion term is no longer retained. Dividing

the ocean into two layers, with h1 representing the thickness of

the upper layer, h2 the thickness of the lower layer (see Fig.

3.1), and defining at layer mid-points, we find the semi-

discrete analogue of the above equation:

and

where

(V2i) A1QG + A1LB + A1FB + A1PE
(345)

(V22)t = A2QG + A2LB + A2FB + (3-46)

A1QG E -J(1,V21 + f) (f/h1)w2

+h1'curlT(y) + AmVI)1 (347)

A1LB = -(f f0)/h1)w2 - Vi.Vf, (3-48)
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47

A1FB VXi.Vi -(2/h1)t1w2

+ - hi'(Vw2.V*)

-h11(V1)w2 (349)

A1PE -h1'J(X1,w2) +h1'J(w2,X*) (3-50)

A2QG -J(2,v22 + f) + (f/h2)w2

+AV2 CBV22,
(3-51)

A2LB ((f - f)1h2)w vx2.vf, (3-52)

A1PE -hi'J(i,w2) +hiJ(W2,x*) (3-50)

A2QG -J(2,V22 + f) + (f01h2)w2

+AV2 CBV22,
(3-51)

A2LB ((f - f0)1h2)w VX2.Vf, (3-52)

A2FB - -VX2.V2 +(2/h2)2w2

_h2'w2* + h2(Vw2V*)

+h21(V2)w2 (3-53)

A2PE h2'J(2,W2), _h2J(W2,x*)

+ 2)12
(3-54)

(1 + )2)/2, (3-55)

(xi + X2)'2'
(3-56)

and cur1t(y) is the vertical component of the wind stress

curl.
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Here and in the following equations, the subscripts PE, FB,

LB and QG are introduced to symbolize the terms retained In the

hierarchy of equations from PE to QG. The notations FB and LB

stand for full balance and linear balance, respectively.

3.4.2 The divergence equations

In order to facilitate the vertical differencing of the

divergence equation, Eq. (3-16) is first rewritten as

-1 2 + fV2 + (f-f)V2 + V.(f-f0)
(V2x)

= -p0 V p

-(f,) -V.((k x V).(V(k x V))

+V.((k x Vp)w) V.(V.V(k x V))

-((k x V).Vw) + ((k x Vij).Vw)

+V.(VX.w) -(Vw.Vx) + (VX.VWZ)

+K +AV26mzz m

Defining x at layer mid-points in Fig. 3.1, the semi-

discrete analogue of the above equation is

and

0 = B1 + B1LB + B1FB + B1PE (3-57)

0 B2QG + B2LB + B2FB + B2PE (3-58)
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Defining x at layer mid-points in Fig. 3.1, the semi-

discrete analogue of the above equation is

and

0 = BIQG + BILB B1FE + B1 (357)

0 = B2QG + B2LB B2FB + B2 (3-58)



where

BIQG -P01V2p1 + f0v2p1, (3-59)

B1LB (f - f0)V21 + Vip1.Vf, (3-60)

B1FB V'((k x Vi1).V(k x (3-61)

B1PE (V2xi)t ('i) (3-62)

x V1)w2) V.(Vx1.V(k x

+h11(k x Vp*).Vw2 + h('(k x Vip1).Vw2 hi'V.(V1.w2)

+ h1'(Vw2.VX*) hi'(V1.Vw2)

+ V.t(y) +AVxl (3-63)

1 2
B2QG = o V 2

= po 1V2P1 - (gct}I/2)V2T* + fV22, (3-64)

B2LB (f f0)v22 + V2 Vf , (3-65)

B2FB v.((k x vp2).v(k x vp2)) , (3-66)

B2PE (V2x2)t

+h21((k X 2)W2) V.(Vx2.V(k x J2))

h21(k x Vji*).Vw2 + h2'(k x

+h2'V.(V2.w2) h2(Vw2.VX*)

+h2'(VX2.Vw2) +AVx2 CBV2X2 , (3-67)

T* (T1 + T2)/2 , (3-68)

where
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BIQG p01V2p + f0v2p1, (359)

B1LB - (f f0)V2*i + 7*iVf, (3-60)

B1FB V.((k x Vj).V(k x (3-61)

RiPE ('xi)
(3-62)

x v1)w2) V.(VX1.V(k x

+h11(k x V*).Vw2 + h11(k x Vp1).Vw2 h1'V.(VX1.W2)

+ h1'(Vw2.Vx*) h1'(VX1.VW2)

+ V.r(y) +AVx1 (3-63)

1 2
B2QG -p0 P2

= po1V2P1 - (gcdl/2)V2T* + fV2ip2, (3-64)

B2LB (f f0)V22 + V2 Vf (3-65)

B2FB .((k x v2).v(k X v2)) (3-66)

B2PE (V2xz)

+h21((k x V2)w2) V.(V2.V(k X

x T*).Vw2 h2Oc x V2)7w2

+h2'7.(V2.w2) - hz(c7wz.Vx*)

+h2'(V2.Vw2) +AmVX2 CBV2XZ (367)

(T1 + T2)/2 (3-68)
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and Eq. (A-4) has been used. (See Appendix A for the derivation

of Eq. (A-4).) The definition of T* in Eq. (3-68) is chosen in

order to guarantee total energy conservation in the PE system of

equations, and to satisfy conservation of the first and second

moments of temperature as far as vertical advection is concerned

(Lorenz, 1960). (Demonstrations of these conservation

principles are given in Appendix A.)

3.4.3 The thermal wind relationship

In order to facilitate the vertical differencing of the

thermal wind relationship, we first rewrite Eq. (3-17) as

agV2T = f + (f-f )v2p + vp (f-f ) (V2X)
0 Z 0 z 0 zt

- V.((k x v).V(k x

x Vi)w ) -V.(V.V(k xzz

-((k x Vi4).Vw) + ((k x
zz

+V.(VX.w) (Vw.VX) +(V.Vw)

mzzz +AV25

The semi-discrete analogue of the above equation is

agV2T* = CQG + CLB + CFB + CPE (3-69)
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where

CQG (2f/H)v2(1 2)
(3-70)

CLB (21H)(f - f)V2(1 '2)

+(2/H)V(1 2).(f f )0
(3-71)

and

CFB -H1V.[(V21.V1

-H1V(V1.V1 - (3-72)

CPE _(2/H)V2(x1-x2)t (2/H)J(f,XlX2)

-(2/H)V2(VipiVi V2VX2)

-1,
-H VXiVXi VX2VX2

+ h2wZV2X*)

+(2/H)(h1'Vw2.VX* + h2VW2VX*)

+(2A/H)v'(x1-x2) (2CB/H)v2(x1x2)
(373)

3.4.4 The continuity equation

The semi-discrete analogue of the continuity equation

(3-18) is

and

w2/h1 = 0 (3-74a)

+ w2/h2 = 0. (3-74b)

3.4.5 The thermodynamic energy equation
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3.4.4 The continuity equation

The semi-discrete analogue of the continuity equation

(3-18) is

and

V2x1 w2fh1 = 0

V2XZ + w2/h2 = 0.

3.4.5 The thermodynamic energy equation

(3-74a)

(3-74b)
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To facilitate vertical differencing of the thermodynaniic

energy equation for the PE model, we first rewrite Eq. (3-20) as

T + J(,T) + VXVT + (wT) Tw
z z

KT -BVTHzz H

where, as explained previously,

term is no longer retained.

The semi-discrete analogue

Tit + J(1,T1) + Vi.VTi

+ h11T1w2 l(2KH/hlH

and

the Laplacian heat diffusion

of the above equation, is

h1'T*w2

)(T1 - T2) BHVT1 (3-75)

T2t + J(p2,T2) + VX2.VT2 + h2'T*w2

h21T2w2 = (2KH/(h2H)(T1 T2) BHV4T2, (3-76)

where Eq. (3-68) has been used.

Since the QG model does not have mid-layer temperatures

(see Fig. 3.2), but only the interfacial temperature T* defined

by the thermal wind relationship Eq. (3-70), the QG semi-dis-

crete analogue of the thermodynamic energy equation cannot be

readily obtained from Eqs. (3-75) and (3-76). In the following

we derive a set of equations from Eqs. (3-75) and (3-76), which

we will hereafter use for comparisons between the QG and PE

models, since this new set will allow QG temperature equations

to be readily obtained.
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(see Fig. 3.2), but only the interfacial temperature T* defined

by the thermal wind relationship Eq. (3-70), the QG semi-dIs-

Crete analogue of the thermodynamic energy equation cannot be

readily obtained from Eqs. (3-75) and (3-76). In the following

we derive a set of equations from Eqs. (3-75) and (3-76), which

we will hereafter use for comparisons between the QG and PE

models, since this new set will allow QO temperature equations

to be readily obtained.
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Decomposition of the temperature equations

Defining static stability as

(T1 - T2)/(H/2) (3-77)

and recalling Eq. (3-68), we note that we can decompose the tem-

perature fields T1 and T2 into T* and o components as follows:

and

T1 = T* + (l-I/4)o (3-78)

T2 T* (H/4)cy .
(3-79)

We can use these relationships to obtain both T* and o

prediction equations from Eqs. (3-75) and (3-76). If we divide

Eqs. (3-75) and (3-76) by 2, substitute the relationships (3-78)

and (3-79) into the resulting equation and add, we can obtain

T = DQG + DPE

where

DQG J(*,T*) + (H2/(8h1h2)w20 BHVT*

DPE (H21(8h1h2)w20' + J(T,O') + (1/2)VX.VT*

and

+ (l/2)VX2.VT* +

+ (H/8)Vx2.Vo' (h2-h1)/(2h1h2)K',

o o + o'(x,y,z,t),
0

T (Fl/8)(ii-p2)

(3-80)

(3-8 1)

(3-82)

(3-83)
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and

+ (l/2)7X2.VT* + (H/8)Vi.Va'

+ (H/8)VX2.Va'

a +

T (H/8)(ip-p2)

(3-80)

(3-8 1)

(3-82)

(3-83)



54

Here y represents constant static stability. No subscripts

for the full and linear balance approximations are used since

the thermodynamic energy equation does not involve these

approximations. If we multiply Eqs. (3-75) and (3-76) by (2/H),

substitute the relationships (3-78) and (3-79) Into the

resulting equations, subtract Eq. (3-79) from Eq. (3-78), and

use the relationship (3-83), we can obtain

= EQG + EPE, (3-84)

where

EQG ot
= (3-85)

and

EPE
= J(*,') - J(T,T*) (2/H)Vxi.VT1

+(2/H)VX2.VT2 ((h2-h1)/(2h1h2)w2y

-(2H/h1h2) BHVc. (3-86)

Using the relationship (3-83) and Eq. (3-85), we can also obtain

the QG counterparts to Eqs. (3-77) - (3-79):

and

oQG
(T1 T2)01(H/2), (3-87)

T1QG T* + (H/4)o0 (388)

T2QG T* = (H/4)0 . (3-89)

In Eq. (3-87) a subscript has been attached to (T1 T2) to

denote that (Ti T2) is constant in our QG system.
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Here a represents constant static stability. No subscripts

for the full and linear balance approximations are used since

the thermodynamic energy equation does not involve these

approximations. If we multiply Eqs. (3-75) and (3-76) by (2/H),

substitute the relationships (3-78) and (3-79) into the

resulting equations, subtract Eq. (3-79) from Eq. (3-78), and

use the relationship (3-83), we can obtain

a =E +E (3-84)
t QG PE'

where

EQG a = 0 (3-85)

and

EPE = a' J(41*,0') - J(T,T*) (2/H)Vxi.VT1

((h2-h1)/(2h1h2)w2a

BHVO. (3-86)

Using the relationship (3-83) and Eq. (3-85), we can also obtain

the QG counterparts to Eqs. (3-77) - (379):

and

°oQG
(T1 T2)0/(H/2), (3-87)

T1QG T* + (H/4)a0 (388)

T2QG = (H/4)a0 . (3-89)

In Eq. (3-87) a subscript has been attached to (T1 T2) to

denote that (T1 T2) is constant in our QG system.
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Eqs. (3-80) and (3-84) form the temperature set of equa-

tions. This set completes the semi-discrete form of comparison

equations that we will use in the following chapters.
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equations that we will use in the following chapters.
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CHAPTER 4. METHODS OF COMPARISON

The analyses of energy, relative vorticity, and potential

vorticity each emphasize different aspects of the dynamics of

the ocean general circulation. The analysis of energy sources,

sinks and transformations associated with the motions can be

used to explore generation processes for eddy kinetic energy.

Relative vorticity equations can be used to investigate the

degree of quasigeostrophy. According to Holland and Rhines

(1980), potential enstrophy (i.e., the square of the potential

vorticity) can be used as the principal measure of mesoscale

eddy activity, since the "time-mean potential vorticity Q is the

fundamental reference field for the mean circulation."

In this chapter we use the set of equations just derived to

develop analysis procedures in the following areas: 1) energy,

2) relative vorticity, and 3) potential vorticity. The results

of the single-gyre and double-gyre QG and PE numerical experi-

ments (Chapters 5 and 6) will be analyzed in each of these

areas.

4.1 Energetics

In the present experiments, two sets of energy equations

are used. The first set is composed of time-dependent energy

quantities, and the second describes time-averaged and eddy
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motions. We first show how the kinetic energy can be decomposed

into rotational and divergent components.

Using the identity (3-14), the kinetic energy per unit mass

can be written as

1 1
v.v = Vp.Vp + (4',X) + VX.VX

If the above relationship is horizontally averaged, the Jacobian

term will vanish, and the kinetic energy becomes

1 = <V4.V4> + <V.V> (41)

where the angle brackets denote a horizontal average over the

entire basin. If we differentiate Eq. (4-1) with respect to

time, we can obtain

1
<v.v> <(v)2> + <(v)2>

which can also be written as

<(B)V2t> <xv2xt> . (4-2)

where 4g represents p on the lateral boundary points. We note

that we can use the above relationships to obtain time-dependent

kinetic energy equations from the vorticity and divergence

equations.

4.1.1 Time-dependent energy equations
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4.1.1 Time-dependent energy equations



58

Rotational and divergent kinetic energy

The rotational component of kinetic energy for each layer

is obtained by multiplying the relative vorticity equations

(3-45) and (346) by h1(41lI1B) and

respectively, and horizontally averaging:

and

(K1R)t (hi/2)<(vi)2>= G1QG + G1LB + G1FB + G1PE (4-3)

(K2R)t (h2/2)<(v2)2>t= G2QG + G2LB + G2FB + G2PE,(44)

where

G1QG f
0

<(ii1 )curl T(y)> Amh1<(l1_l)lB)V)1> (4-5a)
B z

= f<(4*_*B)w2> + (fo/2)<w2((11B) (lI.2lI.2B))>

<(1-i )curl t(y)> (4-5b)
B z

G1LB - (f

= (f-f )<(p*_p*)w>
0

(4-6a)

(4-6b)

G1FB _h1<(1ll)*AlfB>, (47)

G1PE - 0,

G2QG

Ah2<(lI)2lI)2B)(V1lI)2)> + CBh2<(l)2lI)2B)VlI)2> (4-8a)

= _fO<w2(lp*_lp*B)>+ (f/2)<w2((1-1B)-(l2-l2B))>
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Rotational and divergent kinetic energy

The rotational component of kinetic energy for each layer

is obtained by multiplying the relative vorticity equations

(3-45) and (3-46) by -h1(11B) and

respectively, and horizontally averaging:

and

where

(K1R)t (h1/2)<(vI)l)2>t= G1QG + GILB + GIFB + G1PE (43)

(K2R)t (h212)<(v1p2)2>t= GZQG + G2LB + G2FB + G2(4-4)

G1QG fo<(1ilB)wz>

<(1Rrl1 )curl T(y)> Ah1<(1_lB)Vip1> (4-5a)
B z

= f<(i4)*_)*B)w2> + (f0/2)<w2((p1-1)- (22B))>

<(1-lB)curiZ T(y)> Amh1<(1_lB)V1>, (4-5b)

G1LB = (f fo)<(i1PlB)w2>

= (f-f )<(*_*B)W2>
0

(4-6a)

+( (f-f )/2)<w2( (4-6b)

G1FB _h1<(1lg)*AlfB>,
(4-7)

G1PE E 0,

G2QG E

= _fo<w2(*_**B)>+

+ CBh2<()21)2B)V)2> (4-8a)
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_Amh2<(1)2_)2B)(VJ)2)> + CBh2<(2_1p2B)v21p2>,
(4'-8b)

G2LB - -(f fo)<w2(22B)>

= _(f_fo)<w2(1p*_*B)>

(4-9a)

(4-9b)

G2FB
(4-10)

G2PE E 0,

and K1R and K2R are the rotational components of kinetic

energy for the upper and lower layers, respectively. !e note

that in Eqs. (4-5b), (4-6b), (4-8b), and (4-9b), the relation-

ship (3-55) has been used.

The divergent component of the kinetic energy for each

layer is obtained by multiplying the divergence equations (3-57)

and (3-58) by -hixi and h2x2, respectively, and horizontally

averaging:

(K1D)t (hl/2)<(vxl)2>t = M1QG M1LB M1FB M1PE (4-11)

and

(K2D)t (h2/2)<(vx2)2>t = M2QG + M2LB + M2FB + M2PE (4-12)

where

M1QG hip0'<iV2pi> f0h1<V2ijj> , (413)

M1LB - _(f f)h1<1V21>h1<1(Vp1.Vf)>, (4-14)
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_Amh2<(2_)2B)(V2)> + CBh2<G2_4)2B)v22>, (4-8b)

G2LB -(f fo)<w2(4)2i)2B)>
(4-9a)

= _(f_fo)<w2(*_*B)>

(4-9b)

G2FB _h2<(2_p2B)A2FB>
(4-10)

G2PE 0,

and K1R and K2R are the rotational components of kinetic

energy for the upper and lower layers, respectively. We note

that in Eqs. (4-5b), (4-6b), (4-8b), and (4-9b), the relation-

ship (3-55) has been used.

The divergent component of the kinetic energy for each

layer is obtained by multiplying the divergence equations (3-57)

and (3-58) by -hixi and h2x2, respectively, and horizontally

averaging:

(KID)t (h1I2)<(vx1)2> = MIQG + MILE + M1FE + MIPE (4-11)

and

(K2D)t (h212)<(vx2)2>t M2QG + M2LB + M2FB M2 (4-12)

where

M1QG hip0'<iV2pi> f0hi<iV2i> , (4-13)

M1LB -(f f)hi<x1V2x1>h1<xi('74,l.Vf)>,
(414)



M1FB E h1<x1BiFB> (4-15)

M1PE h1<x1BlPE> (4-16)

M2QG h2p'<X2.v2p2> fh2<x2.v22>, (4-17)

M2LB -(f f)h2<2.V2i2>-h2<2(Vi2.Vf)>, (4-18)

M2FB h2<x1B2FB>,
(4-19)

M2PE h2<x2B2PE>, (4-20)

and KiD and K2D are the divergent components of kinetic

energy for the upper and lower layers, respectively.

PE kinetic and available potential eney

The total kinetic energy for each layer is obtained as

follows. First, the semi-discrete analogues of the PE momentum

equations (3-i) and (3-2) are obtained:

+ (uu) + (v1u1) _h11(w2u*)

= fv1 + AV2u1 + h11T(y), (421)

°2t
+ (u2u2)X + (v2u2) + h21(w2u*)

= fv2 'O 2x + AmV2u2 CBu2, (4-22)

vi + (u1v1) + (v1v1) - h11(w2v*)

= -fu1 o1 1y + AmV2vi (423)

v2 + (u2v2) + (v2v2) + h21(w2v*)

MIFB h1<xlBLFg> , (4-15)

M1PE E h1<x1BlpE> , (4-16)

M2QG h2p'<X2.V2p2> fh2<2.v2p2>, (4-17)

M2LB -(f f0)h2<x2.V2p2>-hz<x2(V2.Vf)>, (4-18)

M2FB E h2<x1B2FB>,
(4-19)

M2PE h2<x2BZpE>, (4-20)

and KiD and K2D are the divergent components of kinetic

energy for the upper and lower layers, respectively.

PE kinetic and available potential enegy

The total kinetic energy for each layer is obtained as

follows. First, the semi-discrete analogues of the PE momentum

equations (3-1) and (3-2) are obtained:

u1 + (uiui) + (v1u1) _h11(w2u*)

= fv1 + A V2u1 + h1t(y), (4-21)

u2 + (u2u2) + (v2u2) + h21(w2u*)

= fv2 o1 2x
+ A V2u2 CBU2, (4-22)

v1 + (u1v1) + (vivi) - h11(w2v*)

= -fu1 p
-1

p + A 72v1 (4-23)
0 ly m

v2 + (u2V2) + (v2v2) + h2'(w2v*)
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-fu2 p01 2y
+ AV2v2, (4-24)

(ui + u2)12

v* (v1 + v2)/2

(4-25)

(4-26)

where, as explained earlier, the biharmonic momentum diffusion

term Is no longer retained. Next, the kinetic energy for each

layer is obtained by: 1) multiplying Eq. (4-21) by (h1u1),

(4-22) by (h2u2), and adding them together; 2) multiplying Eq.

(4-23) by (h1v1), and (4-24) by (h2v2) and adding them; and

3) horizontally averaging the resulting equations:

h1<L u + v2 > (K1)
2 it

= Ah1<u1V2u1 + v1V2v1> p'<ulpix +

+ <u1T(y)> (4-27)

h24 u + - v2 > (K2)t2 2t

2 2 -1
= Ah2<u2V u2 + v2V v2> p0 <u2p2X + V2p2,>

CBh2<u + v> (4-28)

= (P1 + P2)!2

The available potential energy of the system is chosen to

be consistent with the definition of Lorenz (1955); it is pro-

portional to the horizontal temperature variance, i.e., the
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(4-22) by (h2u2), and adding them together; 2) multiplying Eq.

(4-23) by (h1v1), and (4-24) by (h2v2) and adding them; and

3) horizontally averaging the resulting equations:

h <- u2 + v2 > (K1)
1 2 it 2 it

Ah1<u1V2u1 + v1V2v1>
-1,

p + v1p1>
0

+ <u1T(y)> (4-27)

h2<.- u + - v2 > (K2)
2 2t

2 2 -1
Ah2<u2V u2 + v2V v2> p <u2p2X + v2p2,>

CBh2<u + v> (4-28)

P (P1 + P2)!2

The available potential energy of the system is chosen to

be consistent with the definition of Lorenz (1955); it is pro-

portional to the horizontal temperature variance, i.e., the



square of the deviation of the temperature from its horizontal

average. First, the semi-discrete analogue of the PE tempera-

ture equation (3-5) is obtained:

Tit + (u1T1) + (viTi) _h11(w2T*)

((2KH)/(h1H))(T1 - T2) BHVT1 (4-29a)

T2 + (u2T2)X + (v2T2) + h21(w2T*)

((2KH)/(h2H))(Tl T2) _BHVT2 , (4-29b)

where, as explained earlier, the Laplacian heat diffusion term

is no longer retained. Next, using angle brackets as before to

denote the horizontal average, and the symbol tilde (-) to

denote the deviation from the horizontal average, we can derive

the following equations:

and

<Tt> + <T1w> <ci> - (l/(2h1))<T*2w2>

= ((2KH)/(h1H))<Tl(T1 T2)> - BH <VT1> (4-30a)

<lit> + <T2w2> <(Y> (1/(2h2))<T*2w2>

= ((2KH)/(h2H)<T2(TJ - T2)> BH<V1T> . (4-30b)

If we multiply Eq. (4-30a) by (h1ag/<o>) and Eq. (4-30b) by

(h2ag/<>) we can obtain
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square of the deviation of the temperature from its horizontal

average. First, the semi-discrete analogue of the PE tempera-

ture equation (3-5) is obtained:

+ (u1T1) + (viTi) _h1'(w2T*)

ZKH)/(h1H))(T1 T2) B11v4T1 (4-29a)

T2 + (u2T2) + (v2T2) + h2'(w2T*)

= ((ZKH)/(h2H))(Tl T2) BHVT2 , (4-29b)

where, as explained earlier, the Laplaclan heat diffusion term

is no longer retained. Next, using angle brackets as before to

denote the horizontal average, and the symbol tilde (-) to

denote the deviation from the horizontal average, we can derive

the following equations:

and

<T> + <T1w2> <> - (l/(2h1))<T*2w2>

= ((2KH)/(h1H))<Tl(Tl - BH <VT> (4-30a)

+ <T2w2> <o> + (1/(2h2))<T*2w2>

= ((2KH)/(h2H)<T2(TJ T2)> B<VT> . (4-30b)

If we multiply Eq. (4-30a) by (h1czg/<cr>) and Eq. (4-30b) by

(h2ctg/<a>) we can obtain



and
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((hiag)/2)<cY'><T> <Pit>

= ((h1ag)/2) <T1w2> - (ag/2)<cr'><T*2w2>

((h2ct)f2)<Y><T>

= ((h2ctg)/2)<T2w2>

=

where P1 and P2 are the available potential energies for the

upper and lower layers, respectively.

We note that in order to have consistent conversions of

available potential energy into kinetic energy, some muanipula-

tion of Eqs. (4-27) and (4-28) is necessary. Using the semi-

discrete forms of Eqs. (3-3) and (3-6), the terms

+ viPly> and p0 1<u2p2x + v2P2y> can be

rewritten as

and

-P01<u1pi + vlPiy> = <;2p*> - (h1ag/2)<Tiw2> (4-33a)

PO<u2p2 + v2P2> = _<;2p*> - (h2czg/2)<T2w>, (4-33b)

where the continuity equations (3-74a,b) and the substitution

and

r]

((hiag)I2)<cY'><Tt> <Pit>

= ((h1cxg)12) <T1w2> - (ag/2)<n><T*2w2>

=2Kg/H)<a1><Tl(T1_T2)>_B11(hJcxg/2)<c:1'><VT>(4_3l)

((h2g)/2)<ci1><T> =

= ((h2ag)/2)<T2w2> (czg/2)<cr'><T*2w2>

=

where and P2 are the available potential energies for the

upper and lower layers, respectively.

We note that in order to have consistent conversions of

available potential energy into kinetic energy, some manipula-

tion of Eqs. (4-27) and (4-28) is necessary. Using the semi-

discrete forms of Eqs. (3-3) and (3-6), the terms

+ v1p1> and Po<U2P2x + v2p2> can be

rewritten as

and

-P0<u1pi + viply> = <;2P> - (h1ng/2)<Tw2> (4-33a)

+ V22> = _<;2p*> - (h2cgf2)<Tw>, (4-33b)

where the continuity equations (3-74a,b) and the substitution



w2 = w2 have been used. If the relationships, (4-33a) and

(4-33b) are substituted into Eqs. (4-27) and (4-28), respec-

tively, we can obtain

and

where

h14- u + v > = (K1)
2 it

= Ah1<u1V2u1 + v1V2v1> +

-(hctg/2) <1;2> + <uT(y)> (4-34a)

h24 + v> (K2)t

= A h2<u2V2u2 + v2V2v2> -

-(hctg/2) <T2w2> CBh2<u + v> (4-34b)

= (pi + P2)!2

The Instantaneous energy conversions then become apparent.

They are

K> <u1r(y)> (4-35a)

P1> (h1ctg/2)<T1;2> (4-35b)

<1(2 P2> E (h2ctg/2)<T2;2> (4-35c)

<K1 K2> <W2> (4-35d)

<K1 + D1> E -Ah<(u1V2u14-v1V2v1)> (4-35e)

<K2 DH2> -Ah<(u2V2u2+v2V2v2)> (435f)
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= w2 have been used. If the relationships, (4-33a) and

(4-33b) are substituted into Eqs. (4-27) and (4-28), respec-

tively, we can obtain

hi<- u + v2 > (K1)
2 it

and

where

= Ah1<ujV2u1 + v1V2v1> +

-(h1ag/2) <T1w2> + <u1t(y)> (4-34a)

h24 ut + v> (K2)t

= A h2<u2V2u2 + v2V2v2> -

-(h2ctg/2) <T2w2> CBh2<u + v> (4-34b)

(pi + J2)/2

The instantaneous energy conversions then become apparent.

They are

+ K1> <u1T(y)> (4-35a)

<K1 + (h1cg/2)<T1;2> (4-35b)

<1(2 P2> (h2czg/2)<T;> (4-35c)

+ 1(2> <w2p*> (4-35d)

<K1 + -Ah<(u1V2ui+v1V2vi)> (4-35e)

<1(2 + E -A h <(u2V2u2+v2V2v2)> (4-35f)
m2
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<K2 + CBh2<(u+v> (4-35g)

<2 + Pi> _(ag/2)<i'><T*2;2> (4-35h)

<P1 + B1> (Bh1ag/2)<cr'><VT>

+ (2Kag/H)<'><T (T1-T2)> (4-351)

<2 + B2> (Bh2ag/2)<'><V4T>

+ (2Kag/H)<1><T2(Ti-T2)> (4-35j)

Here (4-35a) represents the energy transfer rate from the

surface wind to the upper layer of the ocean. Eqs. (4-35b) and

(4-35c) represent the work done by buoyancy forces in the upper

and lower layers, respectively. Eq. (4-35d) represents the work

done by pressure forces at the interface in transferring energy

downward. The terms (4-35e) and (4-35f) are the rates of energy

dissipation by Laplacian momentum diffusion in the upper and

lower layers, respectively. The terni (435g) is the rate of

energy dissipation by bottom friction in the lower layer. The

term (4-35h) represents the work done by buoyancy forces at the

interface in transferring energy downward. The terms (4-35i)

and (4-35j) are the rates of energy dissipation by biharmonic

heat diffusion and vertical heat diffusion for the upper and

lower layers, respectively. The energy transfer rates and

energy levels are summarized by means of the energy box diagram

shown in Fig. 4.1.

65

<1(2 + DB> Ch2<(u+v> (4-35g)
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Energy comparisons

There are several forms of energy equations which can be

used in the PE-QG comparison. From Eq. (4-2), we see that the

total kinetic energy is the sum of the rotational and divergent

components, i.e.,

and

(Ki) E (K1R)t + (K1D)t (4-36)

(K) (K2R)t + (K2D)t . (4-37)

We note that for the QG, LB and PB systems of equations, Eqs.

(4-36) and (4-37) reduce to

and

(Ki)t = (K1R)t (4-38)

(K2)t (K2R)t
(4-39)

As a result, the divergent kinetic energy equations (4-11) and

(4-12) will not be used in the comparisons. Instead, the total

and rotational kinetic energy equations will be used, with the

divergent component computed as the difference between total and

rotational kinetic energy.

The form of the available potential energy to be used in

conjunction with the rotational component of the kinetic energy

is chosen to be consistent with the definition of Lorenz

(1955). From Eq. (3-80), we can derive the following equation:
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=

- B<VT*> + <T*D> (4-40)

We note that in order to have consistent conversions of

available potential energy into kinetic energy, some manipula-

tion of the rotational kinetic energy equations (4-3)-(4-1O) is

necessary. Using the thermal wind relationship (3-69) we can

obtain

and

f0<w2(1 = (ctgH/2)<w2T*> (4-41a)

(f f0)<w2(1 2)> = (cgH/2)<wT*> (4-41b)

for the QG and LB approximations, respectively. Similarly,

using the divergence equations (3-57) and (3-58) we can obtain

and

- - -1 - -

f<w2*> p0 <w2p*> (4-42a)

(f f)<w2*> = PO_1<;2;> (4-42b)

for the QG and LB approximations, respectively. If we now

substitute the thermal wind relationship (3-69) into Eq. (4-40),

and multiply the resulting equation by (f2/g') we can obtain

RQGt + RLBt

where

RQGt = (f02/2g')<(P P2)t >

(4-43)
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<*2> = (H2/(8h1h2)),<T*w2>
2 t

- B<VT*> + <T*D> . (4-40)

We note that in order to have consistent conversions of

available potential energy into kinetic energy, some manipula-

tion of the rotational kinetic energy equations (4-3)-(4-lO) is

necessary. Using the thermal wind relationship (3-69) we can

obtain

and

f0<w2(1 2)> = (czgH/2)<w2T*> (4-41a)

(f f0)<w2(p1 ;2)> = (cgH/2)<w2T*> (4-41b)

for the QG and LB approximations, respectively. Similarly,

using the divergence equations (3-57) and (3-58) we can obtain

and

-1 - -

= p0 <w2p> (4-42a)

(f f )<w2*> = (4-42b)
0

for the QG and LB approximations, respectively. If we now

substitute the thermal wind relationship (3-69) into Eq. (4-40),

and multiply the resulting equation by (f2/g') we can obtain

RQGt + RLBt
(443)

where

RQGt
= (f02I2gt)<(9i *2)t >



and

= -f0 <w(1

(4-43a)

RLBt
= ((f2- f 2)I2g')<1 -

= -(f2- f02) <w2(

BH<V PRLB>

+((f2- f02)gcxH/2g')<1 (4-43b)

gt -(agH3)/(16h1h2)y (4-44)

where, for the sake of simplifying notation, we drop the tilde

symbol.

The system of equations (4-43a) and (4-43b), and the

relationships (4-41) and (4-42), will be used in conjunction

with the QG and LB rotational kinetic energy equations (4-5),

(4-6), (4-8) and (4-9). Terms of higher order than LB will be

treated as a residual. As in the PE system, we can make use of

energy box diagrams to examine the global energy transfers for

the rotational components of energy. In the next section, we

will present such a diagram for the statistically steady state.

and
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= -f0 <w2(1

(4-43a)

RLBt
= ((f2 f2)/2g')<1

= -(f2- f02) <w2(*1 *2)>

BH<VPRLB>

f 2)gaH/2g')<(*i *z)DE> , (4-43b)
0

g' -(agH3)/(16h1h2)n (4-44)

where, for the sake of simplifying notation, we drop the tilde

symbol.

The system of equations (4-43a) and (4-43b), and the

relationships (4-41) and (4-42), will be used in conjunction

with the QG and LB rotational kinetic energy equations (4-5),

(4-6), (4-8) and (4-9). Terms of higher order than LB will be

treated as a residual. As in the PE system, we can make use of

energy box diagrams to examine the global energy transfers for

the rotational components of energy. In the next section, we

will present such a diagram for the statistically steady state.
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4.1.2 Time-mean and eddy energy equations

When the flow is examined over a period of time in the

statistically steady state, the time-dependent variables can be

divided into a time-mean part (denoted by an overbar) and an

eddy part (denoted by a prime), which is the deviation from the

time-mean. Thus, for the rotational component of kinetic energy

(h112) <(v1)2>

12R E (h212) <(v2)2>

1'R
E (f2/2g')<(1

K' = (h1/2) <(v4Y>
1R

KR E (1)2/2) <(Vp2>

P (f2/2g')<(1' 2)>

are the kinetic energies and available potential energy of the

mean flow and the eddies, respectively. The energy relations

between the mean and the eddies over the period of time

averaging can then be summarized by means of the energy diagram

shown in Fig. 4.2, where the energy transfer terms are

+ K1QG}R -<7i curls r(y)>, (4-45a)
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4.1.2 Time-mean and eddy energy equations

When the flow is examined over a period of time in the

statistically steady state, the time-dependent variables can be

divided into a time-mean part (denoted by an overbar) and an

eddy part (denoted by a prime), which is the deviation from the

time-mean. Thus, for the rotational component of kinetic energy

K1R E (h1/2) <(V*i)2>

'2R
(h212) <(v2)2>

(f2I2g')<(1 tJ2)>

K' = (h1/2) <(v>
1R

KR (h2/2) <(v)2>

(f2/2g')<(p1'- 412)>

are the kinetic energies and available potential energy of the

mean flow and the eddies, respectively. The energy relations

between the mean and the eddies over the period of time

averaging can then be summarized by means of the energy diagram

shown in Fig. 4.2, where the energy transfer terms are

{T
+
K1QG}R = -<j;1 curls T(y)>, (4-45a)
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{KlQG QG}R
= -(f/2)<w2(1 (4-45b)

{i +2QG QGR = -(f/2)<w2( (4-45c)

{1Qc K2QG}R = (4-45d)

{1QG 'H1R = (4-45e)

{2Qc 'H2}R
= (445f)

{2QG DB}R = Ch2<j)2VI)2> (4-45g)

{1LB LB}R
- f )/2)<w2(1 (4-45h)

{2LB LB}R
= f0)/2)<w2(1 (4-451)

{1LB K2LB}R = -(f _f)<w2*>, (4-45j)

{QG BHQG}R _B(f/2gt)<V(1 - (4-45k)

{LB BHLB}R _B((f2_f)/2gt)<V(1 2)>, (4-451)

{1Qc KjQG}R hi<iJ(V2j,i)>, (4-45m)

{K2QG KQG}R = h2<2J(V2,)>, (4-45n)
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{11Qc QC}R = /2)&( *2)>, (4-45b)

{ + }2QG QG R = P2)>, (4-45c)

{1Qc 2QG}R
-f<*>

,
(4-45d)

+
}1QG }IIR = Amh1<*1V'*l>

(4-45e)

{2QG DH2}R =
(4-45f)

+
} =

2QG BR CBh2<1p2v22>,
(445g)

{K1LB LB}R = f0)12)<w2(*i *2)> (4-45h)

{2LB + LB}R = f0)/2)<w2(*i *2)>, (4-451)

{1LB K2LB}R (f _f0)<2*>, (4-45j)

{QG + BHQG}R =
-B(f2/2g')<v(j - *2)2> (4-45k)

{LB + BULB}R =
_B((f2f)/2gf)<v(1 j)2>, (4-451)

{1QG + KIQG}R = hl<*iJ(72*j,*j)>, (4-45m)

{2QG
h2<2J(v2pp)>, (4-45n)
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+ K'} (f/2)<w( (4-45o)

{P' + KQG} (f/2)<wç -

KILB}R
(4-45q)

LB
+ K'2LBR

((f - )/2)<w(ip' (4-45r)

{KIQG + D;ll}R , (4-45s)

H2IR Ah2<Vp>, (4-45t)
{K

+ D'

{KQG + D}R = _CBh2<V21I)P , (4-45u)

{QG + QG}R = -(fJg')<(Pi - ;2)J(;p]',;I)p>, (4-45v)

{LB + LB}R = -((f2-f)/g')<6j - (4-45w)

{q + KjQG}R = f0<w*'> (4-45x)

{KLB + KjLB}R = (f - f)<w*'>, (4-45y)

{G + B1'IQG}R =
- (4-45z)

{'LB BLB}R =
- )2> . (4-45aa)

{' +I(' 1
QG 1QGR

Ip' +K' 1
QG 2QGR

{' K' 1
LB 1LBR
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(f/2)<w(4 p)>, (4-45o)

Cf J2)<wcp (4-45p)

((f f)/2)<w(4 (4-45q)

+ K' ((f f )/2)<w(g (4-45r)
LB 2LBR

{KjQG + Dl}R Ahi<jVj> (4-45s)

H2 R
Ah2<Vip>, (4-45t)+ D' }

{KQG + D}R =
(4-45u)

{QG QG}R
= -(f/g')<(Pi - (4-45v)

{LB LB'R
= -((f2-f)/g')<6j;1 - (4-45w)

{KG+K' 1 =
1QGJR

f0<w*'> (4-45x)

{KLB + K' 1 = (f - f )<w*'>, (4-45y)
1LBR

(QG + B' . = -B11(f2/2g')<Vt( - 4)?)2>, (4-45z)
HQGJ R

HLBR
-B((f2_f2)/2g')<V(14 - . (4-45aa)

{'LB
B' =
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Terms of higher order than LB will be treated as a residual,

indicated by the symbol "Res." in Fig. 42. Note that "Res."

should be identically zero for the QG model, except for time

averaging (i.e., our time series for the eddy/mean breakdown may

not be quite long enough). However, "Res." for PE may also

represent real energy fluxes from the divergent component of

flow to the rotational part (or vice versa). We will make use

of this energy box diagram to examine the global energy trans-

fers. In addition, in order to examine the local energy trans-

fers, we will obtain plots of the spatial distributions of some

of the integrands on the right hand side of Eq. (445).

4.2 Time-mean relative vorticity equations

Averaging the vorticity equations (3-45) and (346) in

time, we can obtain

and

where

(v2i) A1QG + A1LB + A1FB + A1PE (4-46)

(V2p2)t A2QG + A2LB + A2FB + AZPE
(4-47)

A1QG = 1x
- (f/h1)w2

+h11curlt(y) + AmV1 -J(,) , (4-48)

A1LB = -((f f0)/h1)w2 Xly'
(4-49)
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Terms of higher order than LB will be treated as a residual,

indicated by the symbol "Res.' in Fig. 4.2. Note that Res."

should be identically zero for the QG model, except for time

averaging (i.e., our time series for the eddy/mean breakdown may

not be quite long enough). However, "Res." for PB may also

represent real energy fluxes from the divergent component of

flow to the rotational part (or vice versa). We will make use

of this energy box diagram to examine the global energy trans-

fers. In addition, in order to examine the local energy trans-

fers, we will obtain plots of the spatial distributions of some

of the integrands on the right hand side of Eq. (4-45).

4.2 Time-mean relative vorticity equations

Averaging the vorticity equations (3-45) and (346) in

time, we can obtain

(v2pi) A1QG + A1LB + A1FB + AIPE
(4-46)

and

(V2ip2) A2QG + A2LB + A2FB + A2PE , (4-47)

where

A1QG = -J61,1) 1x
- (f/h1)2

+hi'cur1T(y) + AV'4i1 -J(p1,) , (4-48)

A1LB = -((f f0)1h1)w2
1y'

(4-49)
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A1FB = -V1.V1 (2/hi)Ciw2

- h1(VW2.V*)

-h1'(Vi1)w2 VxjVCj

+ hiwC*t

_h1'(Vw.V*') - h11((V)w) (4-50)

A1PE = hi'J(w2,X*) h1'J(xi,W2)

+hi'J(w,X*t) hi'J(,w), (4-51)

A2QG = + (f /h2)w2
2x

+Amvl;2 - cv2 -J(,) (4-52)

A2LB = ((f - f )/h2)w2 2y
(4-53)

A2FB = -VX2 . + (2/hi )C2w2

+ h2'(Vw2Vj)*)

+h2(Vip2)w2

+(2/h1)w h21 w'
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A1FB = VX1.7i (2/h1)1w2

-. h1l(VW2.Vl*)

h11(Vi1)w2 - VxjVj

(2/hi)cw +

_h1'(Vw.V*t) h11((V)w) (4-50)

= hilJ(w2,X*)

+hi'J(w,X*t) hi1J(,w), (4-51)

A2QG = J(q)2,z;2) + (f /h2)w22x 0

+Amvl;z - cv2 J(4',c) (452)

A2LB = ((f - f )/h2)w2 2y
(4-53)

A2FB = VX2.V2 + (2/h1)2w2

+ h2'(Vw2Vi*)

+h21(Vp2)w2

+(2/h1)w h21 wç*'
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and
+h2'(VwV,*') + h21(Vp2)w2 , (4-54)

A2PE = _h21J(w2,X*) + h21J(2,w2)

_h2J(w,X*) + h2'J(x,W) . (4-55)

We note that for the statistically steady state, (V2i)t and

(V2p2)t are zero and a balance will exist for the various

terms on the right-hand side of Eq. (4-46) and Eq. (4-47). For

each layer we will examine the geographical distributions of

these terms as well as the mean relative vorticity itself.

4.3 Potential vorticity

In the present experiments, two sets of potential vorticity

equations are used. The first set is written in terms of time-

dependent potential vorticity, and the second in terms of time-

averaged motions.

4.3.1 Time-dependent potential vorticity equations

The potential vorticity equation for the upper layer is

obtained by: 1) substituting Eq. (3-69) into Eq. (3-80);

2) multiplying the resulting equation by (-f2/g'h1), and 3) add-

ing the resulting equation to the relative vorticity equation

(3-45);

DQ1 D(Q1Q) D(Q1LB)
+ (4-56)

Dt Dt
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and
+h2(VwVp*') + h21(vp2)w2 , (4-54)

AZPE = _h21J(w2,X*) + h2'J(2,w2)

_h2J(W,X*t) + hz1J(x,w) . (4-55)

We note that for the statistically steady state, (V2i)t and

(V2)2)t are zero and a balance will exist for the various

terms on the right-hand side of Eq. (4-46) and Eq. (4-47). For

each layer we will examine the geographical distributions of

these terms as well as the mean relative vorticity itself.

4.3 Potential vorticity

In the present experiments, two sets of potential vorticity

equations are used. The first set is written in terms of time-

dependent potential vorticicy, and the second in terms of time-

averaged motions.

4.3.1 Time-dependent potential vorticity equations

The potential vorticity equation for the upper layer is

obtained by: 1) substituting Eq. (3-69) into Eq. (3-80);

2) multiplying the resulting equation by (-f2/g'h1), and 3) add-

ing the resulting equation to the relative vorticity equation

(3-45);

DQ1 D(Q] D(Q1LB)
(4-56)5 Dt



where

D(Q1QC) = h1' curlt(y) + AVj)1
Dt

and
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+(f02/g'h1)BV(1 '2)

(457)

D(QILB) = ((f2-f2)/g'h1)B11v(1 2)
Dt

-((f2- f2)/g'h1)F

+A1LB +
FB + A1PE, (4-58)

lQG
2l + (f2/g'h1)(1 2)

(4-59)

lLB
((f2-f)/g'h1)(1 '2) (4-60)

Q1 v2,1 + f -(f2/g'h1)(1 '2) (4-61)

D(Q1QC)

Dt 1Q&t
+ j(1,

1Qc
(4-62)

D(Q1LB)

Dt 1LBt + 1LB
(4-63)

The potential vorticity for the lower layer is obtained by:

1) substituting Eq. (3-69) into Eq. (3-80), 2) multiplying the

resulting equation by (f2/g'h2), and 3) adding the resulting

equation to the relative vorticity equation (3-46);

DQ2 D(Q2QC) D(Q2LB)
(4-64)

i5E Dt +Dt

where

D(Q2QC)
= C3v2p2

Dt

where

D(Q1QC) = hi curlT(y) +
Dt

and
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+(f02/g'h1)BV(tp1 p2)

(457)

D(Q1LB) = ((f2-f2)/g'h1)B11v(p1 2)
Dt

-((f2- f2)/g'h1)F

+A +
1LB A1FB + A1PE, (4-58)

1QG
+ f (f 2/g'h1)(1 ) (459)

1LB
= ((f2-f)/g'h1)(1 iji2) (4-60)

V2i + f -(f2/g'h1)( (4-61)

D Q1QG

Dt 1QGt + J()1,
1QG

(4-62)

D(Q1LB)

Dt 1LBt + j'1
1LB

(4-63)

The potential vorticity for the lower layer is obtained by:

1) substituting Eq. (3-69) into Eq. (3-80), 2) multiplying the

resulting equation by (f2/g'h2), and 3) adding the resulting

equation to the relative vorticity equation (3-46);

DQ2 D(Q2QG) D(Q2LB)
(4-64)

Dt +Dt

where

D(Q2QG)
= CV2p2

Dt



and

78

(f2/g'h2)Bv1(1

+(f02/gth)Fp (4-65)

D
2LB

Dt
= ((f2 f2)/g'h1)Bv(1 2)

+((f2- f2)/g'h2)F

+A2LB + A2FB + A2PE (4-66)

2QG
V22 + f + (f2/gth2)(i 2) , (467)

2LB
((f2 f2)/g'h2)(1 2) , (4-68)

+ f + (f2/gth2)(j 2) (4-69)

D(Q2QG)

Dt 2QGt + (2'Q2QG)
(4-70)

D(Q2LB)

Dt 2LBt + J(2,Q2LB) (471)

4.3.2 Time-mean potential vorticity equations

Averaging the potential vorticity equations (4-56) and

(4-64) in time, we can obtain

D(Q1QG) D(Q1LB )

Dt Dt Dt
(4-72)

and

DQ2 D(Q2QG) D(Q2LB)

DtDt Dt
(473)

where

and
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_(f2/g'h2)BHv(*1 *2)

(4-65)

D(Q2LB)

Dt
= f2)/g'hl)Bv(*1 *2)

+((f2- f)/g'h2)F

+A2LB A2FB + A2 (4-66)

2QG
v2 + f + (fJg'h2)(1 *2) (4-67)

2LB
E ((f2- f2)Ig'h2)(1 *2) , (4-68)

v2*2 + f (f2/g'h2)(j *2) (4-69)

D(Q2QG)

Dt 2QGt + (*2'Q2QG)
(4-70)

D(Q2LB)

Dt 2LBt + J(*2,Q2LB) (4-71)

4.3.2 Time-mean potential vorticity equations

Averaging the potential vorticity equations (4-56) and

(4-64) in time, we can obtain

D(Q) D(Q1LB )

Dt Dt
+

Dt
(4-72)

and

DQ2 D(Q2QG) D(Q2LB)

DtDt Dt
(473)

where



1QG
= h1 cur1(y) AmV1Dt 1

+(f2/g4h1)BV(l1)

(f02/g'h1)Fp

((f2_f2)/gth1)Bv1)1
Dt

-((f2-f)Ig' hl)FpE

+A1LB + A1FB + A1PE

1QG
= v23 + f - (f2/g'h1)(11i \1)2)

= ((f2-f2)/g'h1)(i1)1 11)2)
1LE 0

+ f - (f2/g'h1)(111 z)

-
Dt = Q1QGt + J(11n.QlQG)

1LB
1LBt + J(41,QlLB)Dt
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(4-74)

(4-75)

(4-76)

(4-77)

(4-78)

(4-79)

(4-80)
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DQ1

h cur11(y) +
Dt

+(fZ/gth1)Bv(l

(4-74)

= *2)

-((f2-f)/g'h1)F

+ A1FB + A1PE (475)

1QG
= + (f02/g'h1)(1 *2) (4-76)

1LB
= ((f2-f2)/g'h1)(j *2)

(4-77)

= + f (f2/g'h1)(1 2) (4-78)

D(Q1QG) -
Dt 1QGt + J(*i '1QG

(4-79)

D(Q1LB) - - -
Dt 1LBt + J(*1 '1LB

(4-80)



and

D(Q2QG)
= AV2 C3V22

Dt

I)2)

+(f
0

D(Q2LB) -
I)2)Dt

+((f2_f2)Igth2)F
0

+A2LB + 2FB + A2PE

2QG
= 22 + f + (f2Ig'h2)(1 )2)

2LB
= ((f2-f)Ig'h2)(1 2)

Q2 + f +(f2/g'h2)(1 2)

D -
(QQG) 2QGt + J(2Q2QG)

(QLB) 2LBt + J(I)2,Q2LB)

(4-8 1)

(4-82)

(4-83)

(4-84)

(4-85)

(4-86)

(4-87)

and

D(Q2QG)
= AVp2 CBV2IPZDt

-(f02/g'h2)BV'('P1 'P2)

D(Q2LB) -=_((f2_f2)/g1)11l4('P1
'P2)Dt

+((f2-f2)/'h2)F
0

+A2LB + A2FB +

2QG = + f + (f2/g'h2)(ip1 'P2)

2LB
= ((f2-f)/g'h2)('P1 'P2)

Q2 V2'P2 + f +(f2/g'h2)('P1 'P2)

D - -
(QQG) 2QGt + J('P2Q2QG)

D - - --(Q) 2LBt + J(4'2,Q2LB)

(4-81)

(4-82)

(4-83)

(4-84)

(4-85)

(4-86)

(4-87)
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We note that for the statistically steady state (Q)t'

1QGt' 1LBt' (2QG)t' Q2LBt are zero and

a balance exists for the various terms of Eqs. (4-74), (475),

(4-81), and (4-82). For each layer we will examine the geogra-

phical distributions of the mean potential vorticity.

4.4 Summary

We have now obtained from the PE and QG model equations a

set of basic comparison quantities that will be used extensively

in the following chapters. For the convenience of the reader,

we present in Table 4.1 a suimuary of these basic quantities,

including text references. Some of the quantities listed need

additional explanation, which we now present.

For the PE model, we obtain 4, and x as follows: From Eqs.

(3-33a) and (3-33b) we can obtain

and

2 -u
x y

2
V x = ux + vy

which in semi-discrete form is

v u (4-88a)
lx ly

v2 - u, (4-88b)
'C b

V2X1 = u1 + v (4-89a)
x ly
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We note that for the statistically steady state (Qi)t'

1Qct' 1LBt' (2Qc)t' Q2LBt are zero and

a balance exists for the various terms of Eqs. (4-74), (4-75),

(4-81), and (4-82). For each layer we will examine the geogra-

phical distributions of the mean potential vorticity.

4.4 Summary

We have now obtained from the PE and QC model equations a

set of basic comparison quantities that will be used extensively

in the following chapters. For the convenience of the reader,

we present in Table 4.1 a summary of these basic quantities,

including text references. Some of the quantities listed need

additional explanation, which we now present.

For the PE model, we obtain i and x as follows: From Eqs.

(3-33a) and (3-33b) we can obtain

and

2Viv -u
x y

2V=u +vx y

which in semi-discrete form is

V2i1 v1 u, (4-88a)
x iy

= v2 u, (4-88b)
x y

V2i = u1 + v (4-89a)
x ly
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V2X2 = u + v . (4-89b)
2x 2y

Eqs. (4-88a) and (4-88b) are solved with j 0 and i2 = 0,

respectively, on the lateral boundaries; Eqs. (4-89a) and

(4-89b) are solved with Xln 0 and X2n = 0 on the lateral

boundaries, where n is the derivative of x perpendicular to the

boundary.

For the QG model, the quantity (i 2) changes in time

along the lateral boundary (see Holland, 1978). In order to

compare with the PE model, we need to subtract this changing

boundary value, so we use Pk in place of as follows:

and

l boundary
(4-90a)

2 boundary
(4-90b)

The vector velocity fields LD LR' 2' '2D' and

2R are obtained by combining the x and y components:

and

+
v1 = (u1,v1) (4-91a)

+
vlD (Xlx'Xly)

(4-91b)

+
V1R

(4-91c)

+
v2 = (u2,v2) , (4-91d)

"2D (X2x'X2y)
(4-91e)

+
v2R 2y'2x

(4-91f)
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V22 = u + v .
(4-89b)

2x 2y

Eqs. (4-88a) and (4-88b) are solved with )1
= 0 and '2 = 0,

respectively, on the lateral boundaries; Eqs. (4-89a) and

(4-89b) are solved with Xln = 0 and X2n = 0 on the lateral

boundaries, where n is the derivative of x perpendicular to the

boundary.

For the QG model, the quantity (lpi P2) changes in time

along the lateral boundary (see FIolland, 1978). In order to

compare with the PE model, we need to subtract this changing

boundary value, so we use ij, in place of p as follows:

and

11)1 boundary
(4-90a)

''2 boundary
(4-90b)

The vector velocity fields jp 1R' 2' 2D'
and

2R
are obtained by combining the x and y components:

and

v1 = (u1,v1) (4-91a)

= (x1x1) , (4-91b)

'ViR iy'ix
(4-91c)

"2 = (u2,v2) (4-91d)

= (xz'xz) (4-91e)

+
V2R '2y'2x

(4-91f)
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The vertical velocity field w2 in the QG model is obtained

diagnostically from the semi-discrete form of Eq. (3-8):

w2 = -(f0/gt)(J(,1 (i '2)t)
(4-92)

Finally, the horizontal pressure variants p1 and P2 are obtained

by 1) horizontally averaging Eqs. (A-19) and (A-20), and 2) sub-

tracting the horizontal average of P1 and p2.
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The vertical velocity field w in the QG model is obtained

diagnostically from the semi-discrete form of Eq. (3-8):

W2 (f0Ig')(J(1 2,4*) . (492)

Finally, the horizontal pressure variants p1 and P2 are obtained

by 1) horizontally averaging Eqs. (A-19) and (A-20), and 2) sub-

tracting the horizontal average of P1 and p2.



Table 4.1 Basic comparison quantities

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

84

QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

la (4-88a) lb p* (4-90a)

2a 2 (4-88b) 2b 2* (4-90b)

3a X (4-89a)

3b X2 (4-89b)

4a u (4-21)

4b x lx
(3-33a)

4c
ly

(3-33a) 4d (3-34a)

5a u2 (4-22)

5b x 2x
(3-33a)

5c (3-33a) 5d (3-34a)

6a v1 (4-23)

6b x1, (3-33b)

6c
1x

(3-33b) 6d 1x
(3-34b)

7a V2 (4-24)

7b x2. (3-33b)

7c j)

2x
(3-33b) 7d 2x

(3341

8a (4-91a)

8b "iD
(4-91b)

8c V1R (4-91c) 8d (4-91c)

9a
+
v2 (4-91d)

9b
"2D

(4-91e)

Table 4.1 Basic comparison quantities

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

84

QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

la (4-88a) lb * (4-9Oa)

2a '2 (4-88b) 2b 1P2* (490b)

3a Xi (4-89a)

3b X2 (4-89b)

4a u1 (4-21)

4b XIX (3-33a)

4c (3-33a) 4d 1y
(3-34a)

5a u2 (4-22)

5b x2 (3-33a)

5c
2y

(3-33a) 3d 2y
(3-34a)

6a v1 (4-23)

6b x1. (3-33b)

6c lx
(3-33b) 6d lx

(3-34b)

7a V2 (4-24)

7b x2,. (3-33b)

7c
2x

(3-33b) 7d 2x
(3-34b)

8a (4-91a)

8b
lD

(4-91b)

Sc (4-91c) 8d (4-91c)

9a 'q2 (4-91d)

9b
"2D

(4-91e)



Table 4.1 (continued)

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

9c
112R

(4-91f)

lOa w2 (3-74)

ha (A-19)

lib (3-59)

lic ;1-f0;1

12a P2 (A-20)

12b (3-64)

12c p2-f01

13a T1 (4-29a)

13b T2 (4-29b)

14 T* (3-68)

iSa a (3-77)

15b a0 (3-87)

15d a' (3-83)

16a V2T* (3-69)

16b (2f0/agll)

*v2(1_p2) (3-70)

17a K1 (4-34a)

17b KiD (4-11)

17c K1R (4-3)

85

QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

9d V2g (4-91f)

lOb w2 (4-92)

lid f0p1 (3-59)

12d f0,2 (3-64)

15c a (3-87)
0

16c (2f0/ctgll)

*v2(,1_2) (3-70)

17d K1R (4-3)

Table 4.1 (continued)

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

9c
"2R

(4-91f)

lOa w2 (3-74)

ha (A-19)

lib f04)j (3-59)

lie

12a P2 (A-20)

12b f 4'2 (3-64)

12c

13a T1 (4-29a)

13b T2 (4-29b)

14 T* (3-68)

15a c (3-77)

15b (3-87)

15d c' (3-83)

16a V2T* (3-69)

16b (2f0/cgH)

*72(4'1_4'2) (3-70)

17a K1 (4-34a)

17b KiD (4-li)

17c K1R (4-3)
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QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

9d (4-91f)

lOb w2 (4-92)

lid (3-59)

12d f0iI2 (3-64)

15c 00 (3-87)

16c (2f0/ctgH)

*v2(4'1_4'2) (3-70)

i7d K1R (4-3)



Table 4.1 (continued)

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.
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QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

18a K2 (4-34b)

18b K2D (4-12)

18c K2R (4-4) 18d K2R (44)

19a (443)

19b
RQG

(4-43a) 19c
RQG

(4-43a)

19d
RLB

(4-43b)

20a (3-45) 21a (3-45)

20b (3-46) 21b (3-46)

22a Qi (4-61)

22b
1QG

(4-59) 22c
1QG

(459)

22d
1LB

(4-60)

23a Q2 (4-69)

23b
2QG

(4-67) 23c
2QG

(4-67)

23d
2LB

(4-68)

Table 4.1 (continued)

PE MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

QG MODEL
QUANTITY TEXT REF.

No. Symbol Eq. No.

18a K2 (4-34b)

lBb K2D (4-12)

18c K2R (4-4) 18d K2R (44)

19a
R

(443)

19b
RQG

(4-43a) 19c
RQG

(4-43a)

19d
RLB

(4-43b)

20a (3-45) 21a (345)

20b (3-46) 21b (3-46)

22a Qi (4-61)

22b
1QG

(4-59) 22c
1QG

(459)

22d
1LB

(4-60)

23a Q2 (4-69)

23b
2QG

(4-67) 23c
2QG

(4-67)

23d
2LB

(4-68)
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CHAPTER. 5. RESULTS OF THE SINGLE-GYRE EXPERIMENT

Two-layer versions of the QG and PE models were spun-up

with fine-grid horizontal resolution (20 kin) using a single-gyre

wind-forcing in a 1000 x 1000 kin basin. Both models used

lateral Laplacian diffusion and no bottom friction. Biharmonic

heat diffusion was used in the PE model. A summary of the para-

meters used in the experiment is given in Table 5.1. In this

table, Rd is the internal radius of deformation, which,

following Holland (1978), is defined as

Rd
((h1h2gt)/(Hf02))2 .

(5-1)

The initial state of the experiment consisted of a horizon-

tally uniform temperature stratification with no motion. Eq.

(4-44) provided the basis for making the stratifications consis-

tent in the two models. Using the Holland (1978) choice of g'

and the standard values g and n (given in Table 5.1), we find

that the initial temperatures in the PE system are constrained

by:

(T1 T2)0 13.06°C (5-2)

We chose an initial temperature of 16.06°C for the upper layer

and 3°C for the lower layer.
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CHAPTER 5. RESULTS OF TIlE SINGLE-GYRE EXPERIMENT

Two-layer versions of the QG and PE models were spun-up

with fine-grid horizontal resolution (20 km) using a single-gyre

wind-forcing in a 1000 x 1000 km basin. Both models used

lateral Laplaclan diffusion and no bottom friction. Biharmonic

heat diffusion was used in the PE model. A summary of the para-

meters used in the experiment is given in Table 5.1. In this

table, R is the internal radius of deformation, which,

following Holland (1978), is defined as

Rd
((h1h2gt)/(Hf2))1'2 .

(51)

The initial state of the experiment consisted of a horizon-

tally uniform temperature stratification with no motion. Eq.

(4-44) provided the basis for making the stratifications consis-

tent in the two models. Using the Holland (1978) choice of g'

and the standard values g and (given in Table 5.1), we find

that the initial temperatures in the PE system are constrained

by:

(T1 - T2)0 13.06°C (5-2)

We chose an initial temperature of 16.06°C for the upper layer

and 3°C for the lower layer.
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Table 5.1 Summary of parameters used in the singlegyre
experiment

PARAMETER VALUE MODEL

Symbol Units

h1 m 1000 Both

h2 m 4000 Both

A km 20 Both

L km 1000 Both

D km 1000 Both

AN
2 -1ms 330 Both

BH 1010ms1 1.0 PE

BH
i+ -1ms 0.0 QG

CB 10 0.0 Both

io
2 -1ms 1.0 Both

0

icr2
-2

2.0 QG

g ms2 9.8 PE

CL 10°C1 2.0 PE

f 105t1 8.365 Both
0

B0
10i -1m s 1.875 Both

Rd km 48 Both

-+ 2 -1
K 10 ms 1.0 PE
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Table 5.1 Summary of parameters used in the single-gyre

experiment

PARAMETER VALUE MODEL

Symbol Units

h1 m 1000 Both

h2 m 4000 Both

km 20 Both

L km 1000 Both

D km 1000 Both

AN
2ms 330 Both

BR 1010ms1 1.0 PE

BH
t4 -1ms 0.0 QG

CB
i071 0.0 Both

T io
2 -1ms 1.0 Both

0

1o_2 -2
ms 2.0 QG

g ms2 9.8 PB

ci 10°C1 2.0 PE

f 1O5t1 8.365 Both
0

B0
-1
m s 1.875 Both

Rd km 48 Both

K 1021ms 1.0 PB
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5.1 Spin-up and statistical equilibrium

Figs. 5.1 and 5.2 show the time-dependent behavior of the

energetics for the QG and PE models, respectively. Figs. 5.1A-C

and 5.2A-C show the energetics for the total model simulation

time, while Figs. 5.1D-F and 5.2D-F show the energetics for the

final 1000 days. In Figs. 5.1A,D and 5.2A,D the kinetic ener-

gies in the two layers are shown as a function of time. Figs.

5.1B,E and 5.2B,E show the rates of energy transfer in the upper

layer, and Figs. 5.1C,F and 5.2C,F the rates of energy transfer

in the lower layer.

At time zero the wind stress is applied to the surface

layer and the ocean begins to spin up. Because an impulsive

start of the full wind stress excited high-amplitude Kelvin

waves in the PE model, the wind stress was slowly increased in

both models to its full amplitude over the first 30 days. This

resulted in smaller-amplitude Kelvin waves in the PE model.

During the first 600 days the spin-up process is character

ized by an increase in both the upper layer kinetic energy and

the available potential energy (not shown). The lower layer

remains nearly motionless. At about 600 days the available

potential energy and the upper layer circulation have built up

sufficiently for the flow to become baroclinically unstable.

After -600 days the release of available potential energy

gives rise to eddy motions. As in Experiment 1 of Holland

(1978), the eddies generate deep mean flows in the lower layer
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both models to its full amplitude over the first 30 days. This

resulted in smaller-amplitude Kelvin waves in the PE model.

During the first 600 days the spin-up process is character-

ized by an increase in both the upper layer kinetic energy and

the available potential energy (not shown). The lower layer

remains nearly motionless. At about 600 days the available

potential energy and the upper layer circulation have built up
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gives rise to eddy motions. As in Experiment 1 of Holland

(1978), the eddies generate deep mean flows in the lower layer
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Fig. 51 The time-dependent energetics for the QG single-gyre

experiment. A) Energy per unit area showing: upper
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ment) (d) jPK2}.
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via energy transfers from the upper to the lower layer. After

-1500 days the system has come into statistical equilibrium in

which eddies and the mean flow are in mutual balance.

The time scale for the energetic oscillations can be read-

ily estimated from the expanded horizontal scale shown in Fig.

5.lD-F. Using the cyclic behavior of the wind energy input

{ T+K1}, we estimate a period of oscillation of about 62 days.

This is close to the 64-day period both Holland and Lin (1975a)

and Holland (1978) (Experiment 1) obtained, using eddy energy

spectra.

A comparison of Figs. 5.1 and 5.2 shows similar energies

and energy transfer rates. The main differences are: 1) the

upper and lower layer kinetic energies are higher by about 35%

for the PE model, and 2) the PE model has high frequency oscil-

lations, due to the presence of Kelvin waves. Using the

expanded horizontal scale in Fig. 5.2D-F, we estimate the

periods of these oscillations to be 1.9 days. The low frequency

oscillation of 62 days can also be seen in these figures. These

results will be further analyzed in Section 5.4.

It should be noted that there are two time scales in the PE

model, a fast-time and a long-term scale. The statistical equi-

librium shown in Fig. 5.2 is for the fast-time scale adjustment

process, i.e., at -1500 days, the level of PE kinetic energy

has reached a state of statistical equilibrium. On the long-

term time scale, however, the PE experiment is not in equili-

brium. The horizontally-averaged temperatures in each layer are

94

via energy transfers from the upper to the lower layer. After

-1500 days the system has come into statistical equilibrium in

which eddies and the mean flow are in mutual balance.

The time scale for the energetic oscillations can be read-

ily estimated from the expanded horizontal scale shown in Fig.

5.1D-F. Using the cyclic behavior of the wind energy input

{ t+K1}, we estimate a period of oscillation of about 62 days.

This is close to the 64-day period both Holland and Lin (1975a)

and Holland (1978) (Experiment 1) obtained, using eddy energy

spectra.

A comparison of Figs. 5.1 and 5.2 shows similar energies

and energy transfer rates. The main differences are: 1) the

upper and lower layer kinetic energies are higher by about 357.

for the PE model, and 2) the PE model has high frequency oscil-

lations, due to the presence of Kelvin waves. Using the

expanded horizontal scale in Fig. 5.2D-F, we estimate the

periods of these oscillations to be 1.9 days. The low frequency

oscillation of 62 days can also be seen in these figures. These

results will be further analyzed in Section 5.4.

It should be noted that there are two time scales in the PE

model, a fast-time and a long-term scale. The statistical equi-

librium shown in Fig. 5.2 is for the fast-time scale adjustment

process, i.e., at -1500 days, the level of PE kinetic energy

has reached a state of statistical equilibrium. On the long-

term time scale, however, the PE experiment is not in equili-

brium. The horizontally-averaged temperatures in each layer are



95

changing at constant rates throughout the experiment, i.e.,

0.014°C per year for the upper layer and -0.003°C per year for

the lower layer. The calculations of Bryan and LewIs (1979)

have indicated that the ocean's diffusive relaxation scale is of

the order of 1000 years, which is considerably longer than this

experiment's time integration of 20 years.

5.2 Basic comparison quantities

The basic time-averaged FE and QG quantities are compared

with each other in order to assess similarities and differ-

ences. The mean has been calculated as an average over the last

five years using two-day sampling intervals. For the conven-

ience of the reader, the quantities are presented in the order

listed in Table 4.1, which also cites text references. Notes on

the processing and plotting of the data can be found in Appendix

B.

Fig. 5.3 shows the time-averaged upper layer streamfunc-

tions. In both models the circulation patterns are quite

similar. The subtropical anticyclonic gyre shows up as expected

from the imposed surface wind stress pattern. Comparable non-

linear circulations near the northern wall are obtained. Over

most of the basin interior, comparable, linear Sverdrup circula-

tions are also obtained. The basic difference in the plots is

the greater intensity of the subtropical high in the PE model.

Fig. 5.4 shows the time-averaged lower layer stream-
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functions. Again, the circulation patterns are quite similar.

As Holland (1978) has pointed out, since neither external stress

nor interfacial friction acts on the lower layer, the deep mean

circulation Is driven entirely by the eddies. According to

Holland and Rhines (1980), the lower layer is driven from above

by inviscid pressure forcing at the interface; this is accoxn-

panied by downgradient potential vorticity flux everywhere in

the lower layer.

The dominant feature in Figs. 5.4a and b is the presence of

two gyres with alternating northward and southward flowing boun-

dary layers. This feature of abyssal gyres is seen in many of

Rollandts (1978) experiments. Holland and Rhines (1980) have

noted that the point on the western boundary dividing the north-

ward and southward flowing boundary currents corresponds to

where K.VQ2 (here K is the Lagrangian diffusivity and Q2 is the

time-mean potential vorticity for the lower layer) takes its

maxima, and assert that the presence of the two gyres arises

from this maxima.

Fig. 5.5 shows the time-averaged velocity potential for the

upper and lower layers of the PE model. Except for sign and

scaling, xi and X2 are really just the sane quantity, and do not

give independent information. Maximum values of the velocity

potential are seen on the lateral boundaries. These are associ-

ated with counterclockwise-traveling Kelvin waves which 1)

propagate along the boundaries with the phase speed of inertia-

gravity waves, i.e., c (gh1h2/R)1/2 = 4 m s 400
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km/day, and 2) decay exponentially away from the coast. A com-

parison of Fig. 5.5 with Figs. 5.3 and 5.4 shows that the velo-

city potential is much smaller in magnitude than either the

upper or lower layer streainfunction.

It is not clear whether the patterns in Fig. 5.5 are the

residual after time averaging or reflect aliasing due to the

two-day sampling of 1.9-day period Kelvin waves. A longer time

series and more frequent sampling may show that this divergence

pattern will become even smaller upon time averaging.

Figs. 5.6 and 5.7 show the time-averaged zonal velocity for

the upper and lower layer, respectively. Again, virtually all

the same patterns are present in both models and only a slight

difference (i.e., a few percent) in amplitude occurs. This

difference is not due to an important divergent component of

flow in the PE case.

Figs. 5.8 and 5.9 show the time-averaged meridional velo-

city for the upper and lower layers, respectively. In both

layers there is comparable northward flow along the western

boundary, and in the upper layer southward flow, indicative of a

linear Sverdrup circulation, over most of the rest of the

basin. In the lower layer there is also a comparable southward

flow along the western boundary, indicative of deep western

boundary currents that close the eddy-driven gyres. The diver-

gent flow is still less than 1% of the total PE flow, and for

all practical purposes is unimportant.

Figs. 5.10 and 5.11 show the time-averaged horizontal
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vector velocity fields for the upper and lower layers, respec-

tively. In both layers, the same features discernible in the

streainfunction plots are shown in vector form.

The vertical velocity is shown in Fig. 5.12. The strong

upwelling on the southern edge of the recirculation region

agrees with the results of McWilliams (1983), who analyzed the

time-mean vertical velocity field on the southern edge of the

Gulf Stream Recirculation Zone from data taken in the POLYMODE

Local Dynamics Experiment. The upwelling and downwelling

patterns seen in the westward recirculation region are consis-

tent with baroclinic instability (Holland, 1978). The alter-

nation of upwelling and downwelling near the western boundary

could be related to offshore meanderings of the time-averaged

flow (Han, 1975). The presence of alternating upwelling and

downwelling areas on the southern and eastern boundaries in the

PE model (Fig. 5.12a) could be due to either the time-averaged

effects of the Kelvin waves of to strong aliasing with a two-day

frequency.

The upper and lower layer pressure fields are shown in

Figs. 5.13 and 5.14, respectively. Most of the upper and lower

layer PE pressure fields are explained by the geostrophic

streamfunction, shown in Figs. 5.13b and 5.14b. In the recircu-

lation region, Figs. 5.13c and 5.14c suggest that other terms

could become significant. In particular, terms with variable f

could become important. Due to the small north-south extent of

the basin, however, this is only a small effect here. A
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Fig. 5.12 Time-mean of entry 10 in Table 4.1: a) w2 (PE), b) w2
(QG).
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Fig. 5.13 Time-mean of entry 11 in Table 4.1: a) ,
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(PE), c) i - f01, d) f,1 (QG).
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Fig. 5.14 Time-mean of entry 12 in Table 4.1: a) 2' b) f0

(PE), c) -f2, d) f2 (QG).
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comparison of Figs. 5.13 and 5.14 with Figs. 5.10 and 5.11,

respectively, confirm the expected high degree of geostrophy.

The upper and lower layer time-averaged PE temperature

fields are shown in Fig. 5.15, along with the average PE temper-

ature and the per cent time change of PE static stability since

the beginning of the experiment. In general, the temperature

distribution in each layer corresponds to the streainfunction

pattern (see FIgs. 5.3 and 5.4). Notable exceptions to the

dynamically-induced temperature distribution are seen in the

areas of changing static stability (see Fig. 5.15d). The areas

of changing static stability are simply a reflection of the fact

that a long-term temperature adjustment is occurring, as discus-

sed previously.

Lastly, the time-averaged thermal wind relationship is

shown In Fig. 5.16. To a good approximation the thermal wind

relationship is explained by the QG contribution (compare

Figs. 5.16a and 5.16b).

5.3 Instantaneous, time mean and eddy fields

FIg. 5.17 shows the QG instanteous, time mean, and eddy

fields for f01, f02, 'Vfl and v2R at a particular

instant in time. The mean has been calculated as an average

over the last five years. A comparison of the upper layer mean

and eddy quantities shows that the eddies and mean flow have

about the same amplitude. A comparison of the lower layer
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Fig. 5.15 Time-mean of entry 13 in Table 4.1: a) T1, b) T2,
c) T* (entry 14 in Table 3.1), d) a (entry 15 in Table

4.1).
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Fig. 5.16 Time-mean entry 16 in Table 4.1: a) V2T*, b)
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model: a) instantaneous, b) time mean, and c) eddy.
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quantities show that the eddies are dominant. As stated

previously and as Holland (1978) and Holland and Lin (1975a)

have noted, since there is no direct mean driving of the lower

layer, the lower layer mean circulation is driven by the eddies.

Fig. 5.18 shows the PE instantaneous, time mean, and eddy

fields for p, P2, i and 2 at a particular instant in time. A

comparison of Figs. 5.17 and 5.18 shows similar patterns, except

that the boundary-trapped Kelvin waves in the PE experiment are

absent in the QC experiment. The mean horizontal velocities

show no hint of a divergent component. This is to be expected

since the mean dynamical velocity is much smaller than the mean

rotational velocity. In the eddy velocity fields, however, the

Kelvin waves are comparable to the mesoscale eddies.

Fig. 5.19 shows eddy maps of f01, f02, v, and

2R
at 8-day intervals for the QG model. The mesoscale eddies

propagate westward at -5.5 km per day. In the northern half

of the basin, the eddies have a basic wavelength of 45O kin

(eddy diameter -225 kin), while in the southern half of the

basin, the eddies have a larger wavelength. If Figs. 5.19a and

5.19b are overlaid, it is seen that 1) in the northern half of

the basin, there is a tilt in the vertical, consistent with

baroclinic instability, with the upper layer eddies lagging the

lower layer eddies, and 2) in the southern half, there is

little, if any, tilt, so that the eddies are very nearly baro-

tropic. This basic eddy structure agrees well with that of

Holland (1978) and Holland and Lin (1975a).
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Fig. 5.18 The p, P2' i, 2 fields for the PE model:
a) instantaneous, b) time mean, and c) eddy.
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Fig. 5.20 shows maps of P1, P2' and 2 at the same time

intervals, but for the PE model. The mesoscale eddies in these

plots have basically the same properties as the QG eddies.

These plots also show the Kelvin waves traveling counterclock-

wise around the lateral boundaries of the basin. (Note that

this 8-day sampling frequency severely aliases these waves which

travel completely around the basin in about 10 days.)

5.4 Energetics

Table 5.2 lists the horizontally-averaged, time-mean and

eddy kinetic energies for both models. In the PE model, the

total kinetic energy is listed, along with the breakdown into

the rotational and divergent components. The PE total and

rotational kinetic energy components are consistently higher

than the QG kinetic energy components. The divergent component

of Kit, contributes almost 50% to the total. Instead of being a

few percent of the total kinetic energy, as the mean stream-

function and velocity potential (Figs. 5.3-5.5) would suggest,

the mean divergent component for each layer contributes -l3%.

This can be explained by the large areal extent: since the

Kelvin waves are confined to within the Rossby radius of defor-

mation, which is -50 km in this experiment, the areal extent

of the Kelvin waves covers -10% of the total in this small

basin.

The geographical distribution of the time-mean and eddy
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Table 5.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

K1 K2 K1' K2'

No. Energy Quantity
J

of PE
) total

Quantity
(k J

of PE Quantity of PE Quantity of PE
(k iii m ) total (k J m ) total (k J iii ) total

1) Total PE 8.70 1007 2.27 1007 2.29 1007 1.93 1OO7

la) Rotational
component 7.57 877 2.00 887 1.16 5l7 1.64 857

lb) Divergent
component 1.13 l37 0.27 l27 1.13 497 0.28 l57

2) QG 5.82 67% 1.52 67% 0.43 l97 1.26 657

N.)

Table 5.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

No. Energy

K1

Quantity
(k J iii )

% of PE
total

Quanti9'
(k J m )

K2

% of PE
total

K1'

Quantity
(k J xii )

% of PE
total

Quantity
(k J xii )

K2'

% of PE
total

1) Total PE 8.70 100% 2.27 100% 2.29 100% 1.93 100%

la) Rotational
component 7.57 87% 2.00 88% 1.16 51% 164 85%

ib) Divergent
component 1.13 13% 0.27 12% 1.13 497. 0.28 15%

2) QG 5.82 67% 1.52 677. 0.43 197. 1.26 65%

N.)
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kinetic energy for each layer is shown in Figs. 5.21-5.24. As

in Fig. 12 of Holland and Lin (1975a), large local values of the

mean kinetic energy are present. The PE eddy kinetic energy

maps (Figs. 5.23a and 5.24a) suggest two regions of active tran-

sience: 1) the boundary, where Kelvin waves are present, and

2) the recirculation region, where the mesoscale eddies are

driven by baroclinic instability processes. In the QG model

only the latter region is present.

The geographical distribution of the time-mean and eddy

rotational available potential energy for each model is shown in

Figs. 5.25 and 5.26. Most of the mean and eddy rotational

available potential energies In both models is produced in the

recirculation region. The PE mean available potential energy is

greater than the QG, but the patterns are very similar. Again,

much of the eddy energy in the PE model occurs in the boundary

regions, due to the presence of Kelvin waves. The linear

balance component (Figs. 5.25d and 5.26d) contributes -10% to

the PE mean rotational available potential energy. This term

would probably play a more important role if a larger basin size

were used. The small basin size used here tends to diminish one

of the important differences between PE and QG models, namely,

the variation of the Coriolis parameter in some terms.

The energetic properties of the mean and eddy motions for

the final, statistically steady state for the QC and PE models

are shown in Figs. 5.27 and 5.28, respectively. These diagrams

show the energy (units k j m2) and the rates of energy transfer
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Fig. 5.24 Time-deviation of entry 18 in Table 4.1: a) K2,
b)K2D, c) K2R (PE), d) K2R (QG).
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Fig. 5.27. The QG global energetics (the energy box diagram shown in Fig. 4.2) for the
single-gyre experiment. The numbers within the boxes are the energy levels
of the various components (units k J m2), and the numbers on the arrows show
the energy transfers (units io6 k J m2 _1), described by Eq. (4-45). Unless
indicated by a negative sign, the arrow head shows the direction of energy flow.

Fig. 5.27. The QG global energetics (the energy box diagram shown in Fig. 4.2) for the
single-gyre experiment. The numbers within the boxes are the energy levels
of the various components (units k J m2), and the numbers on the arrows show
the energy transfers (units io6 k J m2 s1), described by Eq. (4-45). Unless
indicated by a negative sign, the arrow head shows the direction of energy flow.



Fig. 5.28 Same as for Fig. 5.27, but for the PE model.
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Fig. 5.28 Same as for Fig. 5.27, but for the PE model.
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(units 106 k J m2 s1) for the rotational mean and eddy avail-

able potential and kinetic energies, as shown in Eq. (4-45).

Fig. 5.27 shows that the wind puts on the average

1.58 x 106 k J m2 into the upper layer mean kinetic

energy. About 75% of this is dissipated by lateral friction,

primarily in the western and northern boundary layers. The

other 25% of the energy put in by the wind participates in the

eddy generation process. Work done by the pressure forces tran-

sfers 0.25 x 106 k J n12 s from the upper layer to the lower

layer. Work done by buoyancy forces transfers 0.16 x 10 k J

m2 from each layer to maintain the mean available potential

energy of the system, which is continually releasing energy to

supply to the eddies. Buoyancy forces transform eddy potential

energy into eddy kinetic energy in order to maintain the eddy

field, which would otherwise be dissipated by lateral friction.

A very small amount of energy goes directly from mean to eddy

kinetic energy. Thus the eddy field receives Its energy mainly

as a result of baroclinic instability processes. This transfer

of energy occurs almost entirely in the recirculation region.

These results are similar to those in Experiment I of Holland

(1978).

A comparison of Fig. 5.28 with Fig. 5.27 shows that 1) the

QG energy transfer rates are similar, but in general, higher for

the PE model, 2) little energy is dissipated by biharmonic heat

diffusions, 3) the work done by pressure forces in transferring

eddy energy from the lower to upper layer is of opposite sign,
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and 4) the LB transfer rates are generally small, due to the

small basin size.

The small residuals shown for the QG eddy energy terms in

Fig. 5.27 would be identically zero if longer time averaging

were used. The large residuals shown for the PE eddy energy

terms in Fig. 5.28 imply important FB and PE energy transfers

(which were not explicitly computed in this study). These terms

presumably represent transfers between rotational and divergent

components. A more complete analysis of the total PE energe-

tics, necessary to explain the underlying dynamics, has not been

done here.

5.5 Vorticity

5.5.1 Relative vorticity

The geographical distributions of the time-averaged

relative vorticity (i.e., v2i) for both the PE and QG models are

shown in Figs. 5.29 and 5.30, respectively. The vorticity

patterns are similar, but the QG model has, in general, larger

values of both clockwise and counterclockwise vorticity.

In order to examine the local vorticity transfers, plots of

the geographical distribution of various terms on the right-hand

side of Eqs. (4-46) and (4-47) are shown in Figs. (531)

(5-36). We first examine the spatial distribution of the A1QG
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Fig. 5.29 Timemean of entry in Ta1e 4.1: a)
b) V P2, c) H1(h1V ji + h2V )2) (not shown in Table

4.1).
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Fig. 5.31 QG spatial distributions of the time-averages of the
A1QG terms on the right-hand side of Eq. (4-46):

a) J(*i, Ci), b) *1x4 c) -(f0/h1)w2,

d) hcurlT(y), e) AmV 1pi, f) -(i'i',i')
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Fig. 5.32 Same as Fig. 5.31, but for the PE model.
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Fig. 5.33 PE spatial distribution of the time-averages of the
A1LB terms in Eq. (4-46): a) -(f-f0)/h1)w2,
b) 8Xly
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Fig. 5.33 PE spatial distribution of the time-averages of the
A1LB terms in Eq. (4-46): a) -(f-f0)/h1)w2,
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Fig. 5.34 QG spatial distribution of the time-averages of the
time-averages of the A2QG terms on the right-hand
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Fig. 5.35 Same as Fig. 5.34, but for the PE model.
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Fig. 5.36 FE spatial distributions of the tiuie-average of the
A2LB terms in Eq. (4-47): a) ((f f0)1h2),
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terms in Eq. (4-46) for the QG model (Fig. 5.31). In the

western boundary region, the Laplacian friction (Fig. 5.31e) and

horizontal advection (Fig. 5.31a) terms tend to increase the

counterclockwise vorticity (see Fig. 5.29a), while the planetary

vorticity (Fig. 5.31b) tends to decrease it. The stretching

term (Fig. 5.31c) is -15-20% of the other terms, and tends to

decrease the vorticity in the northern portion of the western

boundary region, and increase it in the southern portion.

In the northern boundary region, the main balances are as

follows: 1) in the western portion of the northern boundary,

Laplacian friction and the stretching tendency combine to

increase the counterclockwise vorticity, while the horizontal

advection tends to decrease it, 2) in the central portion of the

northern boundary region (near the vicinity of the recirculation

region) the planetary vorticity tends to increase the counter-

clockwise vorticity, while the horizontal advection tends to

decrease it.

In the interior and southern portions of the basin, a

Sverdrup balance exists, i.e., the planetary vorticity is

balanced by the wind stress curl (Fig. 5.31d).

The change of vorticity due to the eddies (Fig. 5.31f) is

concentrated in the recirculation region. In this area, the

eddies both increase and decrease the vorticity, with the result

that the net contribution to the vorticity is small. The maxi-

mum amplitudes are an order of magnitude smaller than amplitudes

of other terms in the boundary currents, but are of comparable
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amplitude in the middle of the recirculation region, where all

terms are important (note the contour intervals in Fig. 5.31).

These vorticity balances are similar to the vertically-averaged

balances obtained by Holland and Lin (1975a), and in some

respects to the steady-state cases with strong Inertial effects

in Veronis (1966).

Fig. 5.32 shows the spatial distribution of the AIQG

terms in Eq. (4-46) in the PE model. A comparison of Fig. 5.32

with Fig. 5.31 shows similar "mean vorticity tendencies", except

for Kelvin wave effects in the boundary regions of the PE model.

Fig. 5.33 shows the geographical distribution of the time-

averaged linear balance terms in Eq. (4-46). Except in the

recirculation region, both of the linear balance terms are

smaller than any of the A1QG terms discussed previously. Much

of the structure of these patterns is apparently determined by

the Kelvin wave behavior, and severe aliasing may be a problem.

The terms A1FB and A1PE in Eq. (4-46) were calculated

as a residual, and shown to be significant. Further analysis is

necessary to determine what terms in particular are important.

Such analysis also may help to explain why the PE vorticity

pattern has generally smaller values of vorticity than the QG

model.

The time average of the time rate of change of relative

vorticity, i.e., V21, was also calculated. This term was

close to zero, which is to be expected in a statistically steady

state.
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Fig. 5.32 shows the spatial distribution of the A1QG

terms in Eq. (4-46) in the PE model. A comparison of Fig. 5.32

with Fig. 5.31 shows similar "mean vorticity tendencies", except

for Kelvin wave effects in the boundary regions of the PE model.

Fig. 5.33 shows the geographical distribution of the time-

averaged linear balance terms in Eq. (4-46). Except in the

recirculation region, both of the linear balance terms are

smaller than any of the terms discussed previously. Much

of the structure of these patterns is apparently determined by

the Kelvin wave behavior, and severe aliasing may be a problem.

The terms AIFB and A1PE in Eq. (4-46) were calculated

as a residual, and shown to be significant. Further analysis is

necessary to determine what terms in particular are important.

Such analysis also may help to explain why the PE vorticity

pattern has generally smaller values of vorticity than the QG

model.

The time average of the time rate of change of relative

vorticity, i.e., V2i, was also calculated. This term was

close to zero, which is to be expected in a statistically steady

state.
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Fig. 5.34 shows the geographical distribution of the A2QG

terms in Eq. (4-47) in the QG model. In the northwestern area

of the basin, the main balance is between the Laplacian friction

(Fig. 5.34d), horizontal advection (Fig. 5.34a), planetary

vorticity (Fig. 5.34b), and the stretching term (Fig. 5.34c).

The Laplacian friction term tends to increase the counterclock-

wise vorticity (see Fig. 5.3].b), while the other terms tend to

decrease it. In the western boundary region, the clockwise

vorticity in general tends to be increased by the stretching

term, planetary vorticity, and the mean advection terms, and

decreased by the Laplacian friction. The clockwise vorticity in

the recirculation area tends to be increased by the stretching

tendency and eddies (Fig. 5.34e), and decreased by the planetary

vorticity and Laplacian friction.

The change of vorticity due to the eddies (Fig. 5.34e) is

concentrated in the vicinity of the recirculation region. Along

the southeastern, southern and southwestern regions, smaller

contributions are discernible. Like the upper layer, the eddies

both increase and decrease the vorticity, with the result that

the net contribution to the vorticity is small.

Fig. 5.35 shows the geographical distribution of the A2QG

terms in Eq. (4-47) in the PE model. Again a comparison of

Fig. 5.35 with Fig. 5.34 shows similar mean vorticity tenden-

des, except for Kelvin wave effects in the PE model.

Fig. 5.36 shows the geographical distribution of the time-
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averaged linear balance terms in Eq. (4-47). The linear balance

planetary vorticity tendency (Fig. 5.36b) increases the vorti-

city primarily in the recirculation region. The linear balance

Coriolis divergence (Fig. 5.36a) increases the vorticity In the

northern boundary regions, and decreases it in the recirculation

region. Both terms play a minor role in the net balance how-

ever.

The terms A2FB and A2PE in Eq. (447) were calculated

as a residual. The time average of the time rate of change of

relative vorticity for the lower layer, i.e., V22t, was also

calculated. As in the upper layer, the residual terms were

significant, whereas the latter term was small.

5.5.2 Potential vorticity

The geographical distributions of the QG and PE time-

averaged quasigeostrophic potential vorticity for the upper and

lower layers are shown in Figs. 5.37 and 5.38, respectively. In

the upper layer the following features are discernible: 1)

sharp gradients or "tongues" of potential vorticity near the

western boundary and northeastern regions, 2) uniform regions of

potential vorticity in the recirculation region, and 3) a

gradual northward increase of potential vorticity in the

eastern, interior, and southern portions of the basin. In the

lower layer the following features can be seen: 1) a gradual

northward increase of potential vorticity throughout most of the
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basin, 2) a uniform region of potential vorticity in the north-

em boundary region, and 3) a southward extending tongue of

potential vorticity in the northern portion of the western boun-

dary region. It should be noted that the reason that the poten-

tial vorticity patterns are so similar is that only the lowest

order component (i.e., the quasigeostrophic) component has been

calculated for the PE model. Analysis of the higher order com-

ponents in the PE model is necessary in order to address differ-

ences.

5.6 Eddy momentum transports

The zonally-averaged off-diagonal component of the eddy

momentum transports in each layer for both models are shown in

Figs. 5.39 arid 5.40. The main contribution in the PE model is

by the rotational component, which is generally larger than the

QG. In some areas the u'v' correlations tend to retard the mean

flow, whereas in other areas they tend to drive it. Such cor-

relations, as a result, may be unimportant as momentum trans-

ports, compared to other terms, but they are signatures of the

instability.

5.7 PE heat transports

5.7.1 Meridional heat transports
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Fig. 5.39 Time-mean of the zonally-averaged eddy momentum
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Fig. 5.40 Time-mean of the zonally-averaged eddy momentum
transports in the lower layer: a) u2v,
b) X2xX2y' c) 4'2y2x (PE), d) 4'2y2x
(QG).
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Fig. 5.40 Time-mean of the zonally-averaged eddy momentum
transports in the lower layer: a) u2v,
b) X2xX2y' c) P2y*2x (PE), d) 11i2y*2x

(QG).



160

The spatial distribution of the time-mean and eddy, meri-

dional heat transports in each layer and for both layers is

shown in Figs. 5.41-5.46. In general, the eddies act against

the mean transport of heat. Eddy heat transport occurs in the

recirculatlon regions, and along the western and eastern boun-

daries. For each layer, both divergent and rotational compo-

nents are significant in local eddy heat transports.

The main contribution for eddy heat transport by the rota

tional component is in the recirculation region, an area noted

by Gill (1983) to be of possible importance for eddy-equatorward

transports of heat. Fig. 5.47, which shows the vertically-

integrated and zonally-averaged, time-mean and eddy, meridional

heat transports (obtained from vertically integrating and

zonally averaging the PE temperature equations (4-29)) empha-

sizes the mean-poleward and eddy-equatorward transports of heat

in this region. The slight imbalances seen in Fig. 5.47 are due

to the transport of heat by biharmonic heat diffusion processes.

The main contribution for eddy meridional heat transport by

the divergent component is along the western and eastern boun-

daries, and is due to the Kelvin waves. Since there would also

be eddy zonal heat transports along the northern and southern

boundaries by the Kelvin waves, these divergent components

represent a "circular" flux around the basin perimeter and may

play little role in the actual eddy heat transports. A more

detailed discussion of these waves and their transports Is given

in Chapter 7.
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Fig. 5.41 Spatial distribution of the time-averaged, meridional
heat transport in the upper layer: a) h1v1T1,
b) hixiTi, c) h1Ip1T1.
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Fig. 5.42 Spatial distribution of the eddy meridional heat

transport in the upper layer: a) h1v1T1,

b) hlxlyTl, c) hiiTi.
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Fig. 5.43 Spatial distribution of the time-averaged meridional
heat transport in the lower layer: a) h2v2T2,
b) h2X2yT2, c) h2*2xT2.
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Fig. 5.43 Spatial distribution of the time-averaged meridional
heat transport in the lower layer: a) h2v2T2,
b) h2X2yT2, c) h2*2xT2.
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Fig. 5.44 Spatial distribution of the eddy meridional heat
transport in the lower layer: a) h2v2T2,
b) h2X2yT2, c) h2p2T2.
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Fig. 5.45 Spatial distribution of the time-averaged, meri-
dional heat transport summed for both layers:
a) h1vjT1 + h2v2T2, b) hiX1 T1 + h2x2T2
c) h11piT1 h2*2Tz.
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Fig. 5.46 Spatial distribution of the eddy meridional heat
transport summed for both layers:
a) h1v1T1 + h2v2T2, b) hiX1 T1 + h22 T2,
c) h141T1 + h24,2T2.
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Fig. 5.46 Spatial distribution of the eddy meridional heat
transport summed for both layers:
a) h1v1T1 + h2v2T2, b) hi1 T1 + h22 T2,
c) h14,1T1 + h2*2T2.
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Fig. 5.47 Zonal average of the a) time-mean and b) eddy, verti-
cally-integrated, meridional heat transport.

DAYS 5402.0 10 7200.0 8 2.0
EDDY TOTAL VERI HI (PJ

OArS 5402.0 10 7200.0 Br 2.0
EDDY TOTAL VERT MT PE)

31 33 33 34 35 3O 37 38 3

l.*TtTLC IO(CEESI

a

CONIOUR INTERVAL IS 0.20000E-02
DIVIDE LABELS BY 10000.

b

Fig. 5.48 Zonal average (a) and spatial distribution (b) of the
time-mean, vertically-integrated, vertical heat
transport.
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Fig. 5.47 Zonal average of the a) time-mean and b) eddy, verti-
cally-integrated, meridional heat transport.
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Fig. 5.48 Zonal average (a) and spatial distribution (b) of the
time-mean, vertically-integrated, vertical heat
transport.
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5.7.2 Vertical heat transports

The vertically-integrated, time-mean vertical heat trans-

port is shown in Fig. 5.48. The presence of positive vertical

heat transport in the recirculation region is associated with

baroclinic instability. The concentration of vertical heat

transport in the northeastern portion of the basin is likely a

reflection of the long-term adjustment process, in which the

ocean temperature field is responding to long-time scale, verti-

cal diffusion processes.
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CHAPTER 6. RESULTS OF THE DOUBLE-GYRE EXPERIMENT

We now show some results from the double-gyre PE and QG

experiments. These experiments differ from the previous experi-

ments in the following respects: 1) a double-gyre wind forcing

is used, with the result that the northern boundary of the

single-gyre experiment is replaced by a free jet at mid-

latitudes, 2) the north-south extent of the basin is Increased

from 1000 to 2000 kilometers, and 3) bottom friction is incor-

porated. A summary of the parameters used in the experiment is

given in Table 6.1.

As In the single-gyre experiment, the initial state of the

experiment consisted of a horizontally uniform temperature

stratification with no motion. The same initial temperatures as

in the single-gyre experiment were used, i.e., 16.06°C for the

upper layer and 3°C for the lower layer.

6.1 Spin-up and statistical equilibrium

Figs. 6.1 and 6.2 show the time-dependent behavior of the

energetics for the QG and PE models, respectively. As shown in

Fig. 6.1, during the first 1300 days the spin-up process is

characterized by an increase in both the upper layer kinetic

energy and available potential energy (not shown). The lower

layer remains nearly motionless. After -1300 days available
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Table 6.1 Summary of parameters used in the double-gyre

experiment

PARAMETER
Symbol Units

h1

h2

A

L

D

A
in

BH

BR

CB

T
0

g

a

f
0

Rd

m

in

km

km

km
2 -1ms

1O10ms1

-10 + -1
10 ins

10-7 S_i

-L 2 -1
10 in s

VALUE

1000

4000

20

1000

2000

330

1.0

0.0

1.0

1.0

MODEL

Both

Both

Both

Both

Both

Roth

PE

QG

Both

Both

102ms2 2.0 QG

ms2 9.8 PE

1O°C 2.0 PE

9.374 Both

1Oms 1.754 Both

km 13 Both

-+ 2 -1
K 10 ins 1.0 PE

170

Table 6.1 Summary of parameters used in the doublegyre

experiment

PARAMETER
Symbol Units

VALUE MODEL

h1 m 1000 Both

h2 m 4000 Both

km 20 Both

L km 1000 Both

D km 2000 Both

A m2s1 330 Both
m

B11 1O10mj1 1.0 PE

B11 1O'0ms1 0.0 QG

CB
1071 1.0 Both

10m2s1 1.0 Both
0

g 102ms2 2.0 QG

g ms2 9.8 PE

a 1O0C 2.0 PE

f 9.374 Both
0

0
1011u11s1 1.754 Both

Rd km 13 Both

- 2 -1
K 10 ms 1.0 PE
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Fig. 6.1 The time-dependent energetics for the QG double-gyre
experiment. A) Energy per unit area showing: upper
layer kinetic energy (a), lower layer kinetic energy
(b). B) Energy fluxes into the upper layer:
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C) Energy fluxes into the lower layer: (a) jKiK2},
(b) {K2+D}, (c) {K2+DB}, (d) {P+K2}.
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potential energy begins to be released and gives rise to eddy

motions, which generate deep mean flows in the lower layer via

energy transfers from the upper to the lower layer. After

-5000 days the system has come into a quasi-statistically

steady state.

As in the single-gyre experiment, only the fast-time scale

is in statistical equilibrium for the PE model. The long-term

scale is not in equilibrium: there is a very slow continuing

adjustment as the static stability changes on a long time scale.

A comparison of Figs. 6.1 and 6.2 shows similar energies

and energy transfer rates. The main differences are: 1) the

spin-up time for the PE model is shorter (-900 days compared

to -1300 days), 2) kinetic energies for both layers are

slightly higher for the PE model, and 3) the PE model has high

frequency oscillations.

A comparison of the QG single-gyre (Fig. 5.1) and double-

gyre (Fig. 6.1) time-dependent energetics, which are

horizontally-averaged over the respective basin, shows the

following: 1) a much larger available potential energy level

and a smaller lower layer kinetic energy level in the double-

gyre, and 2) more irregular oscillations in the double-gyre

energies and energy transfer rates. The Irregularity in the

equilibriuni oscillations can be accounted for since Holland

(1978) has shown that the free jet contributes an additional

source of instability in double gyres; the eddy field is no

longer so simple.

175

potential energy begins to be released and gives rise to eddy

motions, which generate deep mean flows in the lower layer via

energy transfers from the upper to the lower layer. After

-5000 days the system has come into a quasi-statistically

steady state.

As in the single-gyre experiment, only the fast-time scale

is in statistical equilibrium for the PE model. The long-term

scale is not in equilibrium: there is a very slow continuing

adjustment as the static stability changes on a long time scale.

A comparison of Figs. 6.1 and 6.2 shows similar energies

and energy transfer rates. The main differences are: 1) the

spin-up time for the PE model is shorter (-900 days compared

to -1300 days), 2) kinetic energies for both layers are

slightly higher for the PE model, and 3) the PE model has high

frequency oscillations.

A comparison of the QG single-gyre (Fig. 5.1) and double-

gyre (Fig. 6.1) time-dependent energetics, which are

horizontally-averaged over the respective basin, shows the

following: 1) a much larger available potential energy level

and a smaller lower layer kinetic energy level in the double-

gyre, and 2) more irregular oscillations in the doublegyre

energies and energy transfer rates. The irregularity in the

equilibrium oscillations can be accounted for since Holland

(1978) has shown that the free jet contributes an additional

source of instability in double gyres; the eddy field is no

longer so simple.



176

A comparison of the PE single-gyre (Fig. 5.2) and double-

gyre (Fig. 6.2), time-dependent energetics shows similar erier-

gies and energy transfer rates. The main differences are

1) much smaller amplitude in the variability of {P+K1} and

{ P+K2} transfer rates in the double gyre (note that the

ordinates for both experiments have the same scales), and

2) smaller lower layer kinetic energy in the double gyre. These

smaller values could be due to the additional dissipation

mechanism, i.e., bottom friction, in the doublegyre experiment.

These results will be further analyzed in Section 6.4.

6.2 Basic comparison quantities

In order to assess similarities and differences, in both

models and experiments, the basic time-averaged PE and QG quan-

tities are compared with each other, and with the corresponding

single-gyre quantities. Again the period of time averaging is

for five years, using two-day sampling intervals.

Fig. 6.3 shows the time-averaged upper layer stream-

functions. Both subtropical anticyclonic and subpolar cyclonic

gyres show up as expected from the imposed surface wind stress

pattern. A comparable free jet exists at mid-latitudes, which

draws off more boundary-current fluid to the south than to the

north. As Holland (1978) has pointed out, barotropic insta-

bilities are likely to occur in this free jet region, resulting

in a different stability problem than in the singlegyre
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Fig. 6.3 Time-mean of entry 1 in Table 4.1: for a) PE,
b) QG.
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experiment. Comparable linear, Sverdrup circulations are

obtained in the Interior and eastern portions of the basin. The

basic difference in the plots is the slightly greater intensity

of the subpolar low and subtropical high in the PE model. A

comparison of Figs. 53 and 6.3 for both models shows a similar

anticyclonic gyre, which is more intense in the doublegyre

case.

Fig. 6.4 shows the time-averaged lower layer streamfunc-

tions. Again, the circulation patterns are quite similar.

There Is a pair of inertial gyres with non-linear circulations

near the free jet region with counter-rotating cells adjacent to

each gyre. Holland and Rhines (1980) have explained that the

presence of the four gyres arises from the minimum of the lower

layer eddy potential vorticity flux at mid-basin, which separ-

ates two broad maxima. This minimum is directly attributable to

the "flat" region in the lower layer mean potential vorticity

(see Fig. 6.29).

Fig. 6.5 shows the time-averaged velocity potential for the

upper and lower layers of the PE model. Again it is important

to note that xi and X2 are really just the same except for sign

and scaling. The largest values are in the western boundary

current as it approaches separation. This same feature is

discernible in the single-gyre velocity potential (Fig. 5.5),

which Is twice as intense as the double-gyre. As in the

single-gyre case, the velocity potential is much smaller in

magnitude than either the upper or lower layer streanifunction.
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Fig. 6.5 Time-mean of entry 3 in Table 4.1: a) xi b) xz.
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Again it is not clear whether the velocity potential pattern is

statistically well-determined. A longer time series and more

frequent sampling may show that this divergence pattern will

become even smaller upon time averaging.

The time-averaged horizontal vector velocity fields are

shown in Figs. 66 and 6.7 for the upper and lower layers,

respectively. Only every other point is plotted. In the PE

model, the rotational component dominates the divergent by a

factor of 50. Both the PE and QG models show similar horizontal

velocity patterns. In both layers, the following features can

be seen: 1) strong eastward flow in the area of the free jet,

with strong recirculation regions to the north and south, 2)

strong western boundary currents which flow northward (south-

ward) in the southern (northern) half of the basin, 3) weak

Sverdrup flow over most of the basin, and 4) very weak divergent

flow which is strongest in the vicinity of the free jet and

recirculation regions. In the lower layer, deep countercurrents

near the western wall are evident. The basic difference in the

PE and QG plots is the greater intensity of the PE subpolar low

and anticyclonic high in the recirculating portions of the

basin. Figs. 6.6 and 6.7 are similar to their single-gyre

counterparts, i.e., Figs. 5.10 and 5.11.

The vertical velocity is shown in Fig. 6.8. The QG verti-

cal velocity field shows the same areas of upwelling and down-

welling in the southern half of the basin as in the singlegyre

(compare Figs. 6.Bb and 5.12b), and a mirror-image in the

180

Again it is not clear whether the velocity potential pattern is

statistically well-determined. A longer time series and more

frequent sampling may show that this divergence pattern will

become even smaller upon time averaging.

The time-averaged horizontal vector velocity fields are

shown in Figs. 6.6 and 6.7 for the upper and lower layers,

respectively. Only every other point is plotted. In the PE

model, the rotational component dominates the divergent by a

factor of 50. Both the PE and QG models show similar horizontal

velocity patterns. In both layers, the following features can

be seen: 1) strong eastward flow in the area of the free jet,

with strong recirculation regions to the north and south, 2)

strong western boundary currents which flow northward (south-

ward) in the southern (northern) half of the basin, 3) weak

Sverdrup flow over most of the basin, and 4) very weak divergent

flow which is strongest in the vicinity of the free jet and

recirculation regions. In the lower layer, deep countercurrents

near the western wall are evident. The basic difference in the

PE and QG plots is the greater intensity of the PE subpolar low

and anticyclonic high in the recirculating portions of the

basin. Figs. 6.6 and 6.7 are similar to their single-gyre

counterparts, i.e., Figs. 5.10 and 5.11.

The vertical velocity is shown in Fig. 6.8. The QG verti-

cal velocity field shows the same areas of upwelling and down-

welling in the southern half of the basin as in the single-gyre

(compare Figs. 6.8b and 5.12b), and a mirror-image in the



DAYS 6302.0 TO 8100.0 BY 2.0
MEAN VELOCITY I (PEI

MAXIMUM VECTOR LENGTH IS 0.55424

a

DAYS 6302.0 TO 8OO.O BY 2.0
MEAN ROTATIONAL VELOCITY 1 IPEI

MAXIMUM VECTOR LENGTH IS 0.55428

C

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN DIVERGENT VELOCITY 1 (PE)

.-.-. .\\.y.". '
I' '.'.' -. .

. Ifl

;: ::

'
'r

S<_._ . . .4.. ...

--
,

7

;

/,,?f,.
-

I

,,. - . -,' _.

I_'_ _ . -

MAXIMUM VECTOR LENGTH IS O.13201E-02

b

DAYS 6302.0 TO 8100.0 BY 20
:AN ROTATIONAL VELOCITY 1 (BG

MAXIMUM VECTOR LENGTH 15 0.52784

d

181

Fig. 6.6 Time-mean of entry 8 in Table 4.1: a) b) 1D'

c) (PE), d) 1R (QG). Only every other

velocity vector is plotted.

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN VELOCITY 1 PE

MAXIMUM VECTOR LENGTH IS 0.55424

a

DAYS 6302.0 10 8100.0 BY 2.0
MEAN ROTATIONAL VELOCITY 1 (PC)

MAXIMUM VECTOR LENGTH IS 0,55428

C

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN DIVERGENT VELOCITY 1 (PE)

,r'..-.

:<' :;
.'. ,..,- .\\.,

I.. 'R

.4.2'

:::..;:f:.-

'' .__..s
iV.i U/I __\i

'/,-': :,:::-'
;

4 lI 4*4. ..

H !: :h ::;

--' -

MAXIMUM VECTOR LENGTH IS 0.13201E-02

b

OATS 6302.0 TO 8100.0 BY 2.0
MEAN ROTATIONAL VELOCITY 1 (BC)

MAXIMUM VECTOR LENGTH IS 0.52784

d

181

Fig. 6.6 Time-mean of entry 8 in Table 4.1: a)
,

b) 1D'

c) ia (PE), d) 1R (QG). Only every other

velocity vector is plotted.



182

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN VELOCITY 2 PEJ

MAXIMUM VECTOR LENGTH IS O.5Q984E-01

a

DS 6302.0 TO 9100.0 Wv 2.0
MEAN ROTATIONAL VELOCtTY 2 PE

DAYS 6302.0 TO $100.0 BY 2.0
MEAN DIVERGENT VELOCITY 2 (PE

..s'.'.",s.'
:; _; ;:ci

'/,

S - 'U

..

t'' -' ,.
1i'--'1/::,,.

i_ :::

MAXIMUM VECTOR LENGTH IS O.3003E-O3

b

DS b302.0 10 8100.0 2.0
MEAN ROTATIONAL VELOCtTY 2 QC

MAXIMUM VECTOR LENGTh tS O.5977E-01 AXtUM VECTOR LENGTh tS 048398-01

c d

Fig. 6.7 Time-mean of entry 9 in Table 4.1: a) 2' b) 2D'
c)2R (PE), d) 2R (QG). Only every other
velocity vector is plotted.

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN VELOCITY 2 PEJ

MAXIMUM VECTOR LENGTH IS O.5Q984E-01

DAYS 6302.0 TO 8100.0 BY 2.0
MEAN ROTATIONAL VELOCITY 2 (PEt

MAXIMUM VECTOR LENGTH IS O.577E-01

C

DAYS 6302.0 To $100.0 BY 2.0
MEAN DIVERGENT VELOCITY 2 (PE

'.!:'''
ti' _; ;:ci

:!'.;;

'St. ....

S ' S S 'If

/5.- .5_LI
S 'I \

t'' ' S.'

i_

MAXIMUM VECTOR LENGTH IS O.33003E-03

b

DAYS b302,0 10 8100.0 81 2.0
MEAN ROTATIONAL VELOCITY 2 IQG

MAXIMUM VECTOR LENGTH IS O,48398E-01

d

182

Fig. 6.7 Time-mean of entry 9 in Table 4.1: a) 2' b) 2D'
c)2R (PE), d) 2R (QG). Only every other
velocity vector is plotted.



DAYS 6302.0 10 8100.0 BY 2.0
MEAN U IPEI

CONTOUR INTERVAL IS OB0000E-05
DIVIDE LABELS BY O.1OOOOEOB

a

DAYS 6302.0 10 8100.0 BY 2.0
MEAN U IQG)

_H
CONTOUR INTERVAL IS O10000E-05
DIVIDE LABELS BY O.1O0OOEOB

b

183

Fig. 6.8 Time-mean of entry 10 in Table 4.1: a) w2 (PE), b) w2
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northern half of the basin.

One would expect the PE mean vertical velocity field to

resemble the QG, as in the single-gyre experiments. The

presence of high frequency activity in the PE vertical velocity

suggests that more time averaging may be necessary to average

out these gravity waves in this experiment. A closer inspection

of the PE time-dependent energetics for the double-gyre experi-

ment (Fig. 6.2) suggests that trends could still be present,

which could be affecting the results. In the PE upper layer

kinetic energy there is a 32-day oscillation superimposed on a

longer (-300-day) oscillation, neither of which is evident in

the QG energetics.

The upper layer pressure field is shown in Fig. 6.9. The

basic circulation patterns are similar, with the PE high pres-

sure cell more intense than the QG geostrophic streamfunction.

Fig. 6.9c shows that terms in addition to the PE geostrophic

streamfunction are significant, but only at the 10% level.

Fig. 6.9 cannot be readily compared with Fig. 5.13 because 1)

these fields are deviations from their respective horizontal

means, which are considerably different in the single-and

double-gyre experiments, and 2) the choice of f0 is different

in the two gyres.

Fig. 6.10 shows the lower layer pressures. Again the PE

pressure cells are more intense than the QG geostrophic stream-

function cells. Fig. 6.lOc shows that terms in addition to the

PE geostrophic streanifunction can become important at the 10%
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Fig. 6.9 Time-mean of entry 11 in Table 4.1: a) , b) f0]

(FE), c) i f0i1, d) f1 (QG).
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(PE), c) j2-f02, d) f02 (QG).
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level. As in the single-gyre experiment, there is a high degree

of geostrophy.

Lastly, the upper and lower layer timeaveraged temperature

fields are shown in Fig. 6.11, along with the average PE tem-

perature and the per cent time change of PE static stability

since the beginning of the experiment. Evidence of the two time

scales in the PE model can be seen. The temperature fields

reflect the fast-time scale, i.e., baroclinic adjustments, while

the slow continuing adjustment of the static stability (seen in

Fig. 6.11d) reflects the long-time scale.

6.3 Instantaneous, time mean and eddy fields

Fig. 6.12 shows the QG instantaneous, time mean, and eddy

fields for fi 1R and 2R at a particular

instant in time. As in the single-gyre experiment, a comparison

of the upper layer mean and eddy quantities shows that the

eddies and mean flow have about the same amplitude. A compari-

son of the lower layer quantities shows that the eddies are

dominant. Since there is no direct mean forcing of the lower

layer, the lower layer mean circulation is again driven by the

eddies.

Fig. 6.13 shows the PE instantaneous, time mean, and eddy

fields for P1' P2' i and '2
at a particular instant in time. A

comparison of Fig. 6.13 with Fig. 6.12 shows similar patterns,

except that the boundary-trapped Kelvin waves in the PE
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Fig. 6.11 Time-mean of entry 13 in Table 4.1: a) T1, b) T2,
c) T* (entry 14 in Table 3.1), d) a (entry 15 in Table

4.1).
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Fig. 6.12 The f01, fi2, V, v2R fields for the QG
model: a) instantaneous, b) time mean, and c) eddy.



190

DAYS 6302.0 70 8100.0 BY 2.0
FO * MEAN PSI1 (TILDEJ ()

CONTOUR INTERVAL 15 0 30000
LABELS ARE UNSCALED

DAYS 6302,0 TO 8100.0 BY 2.0
MEAN ROTATIONAL VELOCITY ¶ (QGI

.'S
.. ............

DAYS 6302.0 TO 8100.0 BY 2.0
FO I MEAN PSI2 (TILDE) laG)

CONTOUR INTERVAL IS 0.30000E-01
LABELS ARE UNSEALED

DAYS 6302.0 10 8100.0 BY 2.0
MEAN ROTATIONAL VELOCITY 2 )QG)

MAXIMUM VECTOR LENGTH IS 0.52784 MAXIMUM VECTOR LENGTH IS 0.4B398E-01

b

Fig. 6.12 (cont.)
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Fig. 6.12 (cont.)
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Fig. 6.13 The p, P2' 2 fields for the FE model:
a) instantaneous, b) time mean, and c) eddy.
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Fig. 6.1.3 (cont.)
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Fig. 6.13 (cont.)
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experiment are absent in the QG experiment.

+
Fig. 6.14 shows eddy maps of f01, o2' viR, an

vZR at 8-day intervals for the QC model. The eddies propagate

westward at -4 to 7 km per day. In the central portions of

the basin, the eddies have a basic wavelength of -450 km,

while in the northern and southern areas of the basin, the

eddies have a larger wavelength. If Figs. 6.14a and b are over-

laid, it is seen, as in the single-gyre experiment, that 1) in

the central portions of the basin, there is a tilt in the verti-

cal, consistent with baroclinic Instability, with the upper

layer eddies lagging the lower layer eddies, and 2) in the

northern and southern areas of the basin, there is little, if

any, tilt, so that the eddies are very nearly equivalent baro-

tropic.

Finally, Fig. 6.15 shows eddy maps of P, P2' v1, and v2 at

8-day intervals for the PE model. In the interior, the PE and

QG mesoscale eddies look similar and tend to be quite baro-

tropic. The main difference between the PE and QG eddy fields

is the additional eddy field propagating counterclockwise around

the basin. This field, which is due to the Kelvin waves, is,

unlike the interior, entirely baroclinic. A comparison with the

single-gyre experiment shows the Kelvin waves to have the same

wavelengths (-675 km). Further discussion of these Kelvin

waves will be given in the following chapter.

6.4 Energetics
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Fig. 6.14 The QG eddy fields at 8-day intervals for a) f01,
b) f0ij'2, c) 1R' d) 2R
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Fig. 6.14 (cont.)
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Fig. 6.14 (cont.)
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Fig. 6.15 The FE eddy fields at 8-day intervals for a) Pi,
b) P2 c) j, d) 2



201

DAY 6302.0
EDDY P2 (PC)

CONTOUR IWERVAL IS 0.40000E-01
LLS ARE UNSCALED

DAY 6318.0
EDDY P2 (Pt)

DAY 6310.0
EDDY P2 IPE

CONTOUR INTERVAL IS 0.40000E-01
LABELS ARE UNSCALED

DAY 6326.0
EDDY P2 (PC)

CONTOUR INTERVAL IS O.40000E-o1 CONTOUR INTERVAL IS O.40000E-01
LABELS ARE UV6CALED LABELS ARE UNSCALED

b

Fig. 6.15 (cont.)



202

DAY 6302.0
EDDY VELOCITY I (RE)

6 ::::

MAXIMUM VECTOR LENTM IS 0.25806

DAY 6318.0
EDDY VELOCITY I (RE)

.1

1

DAY b310.0
EDDY VELOCITY 1 (DEl

.1

MAXIMUM VECTOR LENGTH IS 0.26143

DAY 6326.0
EDOY VELOCITY I (RE)

...: :..-''': ?-'
.

::z(%

MAXIMUM VECTOR LENGTH IS 0.27850 MAXI*)M VECTOR LENGTH 15 0.286%

C

Fig. 6.15 (cont.)
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Table 6.2 lists the horizontally-averaged, time-mean and

eddy kinetic energies for both models. As in the single-gyre

experiment, the PE total and rotational kinetic energy compo-

nents are always higher than the QG kinetic energy components,

and 2) the divergent component of the PE kinetic energy is

small, except for K1t, where the divergent component contributes

-33% to the total. A comparison of Table 6.2 with Table 5.2

shows that the PE energies for the single-gyre experiment are

higher. This is probably due to the added dissipation process,

i.e, the bottom friction, in the double-gyre experiment. The

divergent component in the double-gyre experiment is also

smaller by about 30-50% than that in the singlegyre. This is

likely due to the smaller ratio of radius of deformation size

(the "trapping" scale for the Kelvin waves) to the horizontal

domain.

The geographical distribution of the time-mean and eddy

kinetic energy for each layer is shown in Figs. 6.16-6.19.

Again very large local values of the mean kinetic energy are

noted. The PE eddy kinetic energy maps (Figs. 6.18a and 6.19a)

suggest three regions of active transience: 1) the boundary,

where Kelvin waves are present, 2) the recirculation region,

where the mesoscale eddies are driven by baroclinic instability

processes, and 3) the area of the free jet, where the mesoscale

eddies are driven by barotropic processes. In the QG model only

the latter two regions are present.
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Table 6.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

Mo. Energy Quantity % of PE Quantity
J

% of PE Quantity % of PE Quantity % of PE
(k J m ) total (k m ) total (k J m ) total (k J m ) total

1) Total PE 7.20 1007w 1.10 1007w 1.3 1OO7 0.77 1OO7

la) Rotational
component 6.77 94% 0.95 90% 0.86 67% 0.66 867

ib) Divergent
component 0.43 6% 0.11 10% 0.43 33% 0.11 14%

2) QG 6.08 90% 0.77 70% 0.60 46% 0.59 77%

0
U'

Table 6.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

K1 K2 K1' K2'

Mo. Energy Quantity
J )

% of PH
total

Quantity
(k J

% of PE Quanti9 % of PE Quantity % of PE
(k m m ) total (k J m ) total (k J m ) total

1) Total PE 7.20 100% 1.10 100% 1.3 100% 0.77 100%

Ia) Rotational
component 6.77 94% 0.95 90% 0.86 67% 0.66 86%

ib) Divergent
component 0.43 6% 0.11 10% 0.43 33% 0.11 14%

2) QG 6.08 90% 0.77 70% 0.60 46% 0.59 77%

t)
0
U,
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Fig. 6.16 Time-mean of entry 17 in Table 4.1: a) K1, b) KiD,

c) K1R (PE), d) K1R (QG).
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Fig. 6.17 Time-mean of entry 18 in Table 4.1: a) K2, b) K2D,
c) K2R (PE), d) K2R (QG).
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Fig. 6.18 Time-deviation of entry 17 in Table 4.1: a) K1, b)
KiD, c) K1R (PE), d) K1R (QG).
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Fig. 6.19 Time-deviation of entry 18 in Table 4.1: a) K2,
b)K2D, c) K2R (PE), d) K2R (QG).
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A comparison of Figs. 6.18 and 6.19 with Figs. 5.23 and

5.24 shows that the inaxitnuni eddy kinetic energy has shifted from

the recirculation regions and northwestern corner of the

single-gyre experiment to the axis of the free jet. The pre-

sence of the eastward free jet can be conducive to the produc-

tion of eddies by instability processes, whereas the presence of

the northern boundary can inhibit eddy production (Holland,

1978).

The eddy divergent kinetic energy of the upper layer has

also decreased considerably in the double-gyre case. This

decrease could be due to several factors related to the Kelvin

waves, which are the main reason for significant eddy divergent

kinetic energy in these experiments. Since the Kelvin waves

always travel counterclockwise (in the northern hemisphere)

along the basin boundaries the change from single'-gyre to

double-gyre wind forcing could be affecting their propagation.

These waves travel in the same direction as the wind in the

northern half of the basin, but in the opposite direction in the

southern half. Since the generation mechanism for the Kelvin

waves is not known, it is possible that the mechanisms involved

in their generation may have changed too. Other possible

factors are the increased basin size and the incorporation of

bottom friction In the double-gyre case. The latter could be

acting to dissipate the Kelvin waves along the continental

boundaries.
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The geographical distributions of the time-mean and eddy

rotational available potential energy for each model are shown

in Figs. 6.20 and 6.21. Again most of the mean and eddy rota-

tional available potential energy in both models is produced in

the recirculation regions, where baroclinic instability occurs.

The linear balance component still plays a lesser role than if a

much larger basin size were used. Due to the dependence on

symmetry about the mid-point of the basin, the linear balance

terms in the single-gyre and double-gyre experiment are not

readily comparable.

The energetic properties of the mean and eddy motions for

the final, statistically steady state for the QG and PE models

are shown in Figs. 6.22 and 6.23, respectively. Fig. 6.22 shows

that the wind puts on the average 1.62 x 106 k J rn2 into

the upper layer mean kinetic energy. About 657 of this is

dissipated by lateral friction, primarily along the axis of the

free jet and in the western boundary regions. The other 357 of

the energy put in by the wind participates in the eddy genera-

tion process. Work done by the presure forces transfers

0.32 x 106 k J tn2 from the upper to the lower layer. Work

done by buoyancy forces transfer 0.16 x 106 k J 2 1 from

each layer to maintain the mean available potential energy,

which is continually supplying energy to the eddies. Buoyancy

forces transform eddy potential energy into eddy kinetic energy

in order to maintain the eddy field, which would otherwise be

dissipated by both lateral and bottom friction. Thus the eddy
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Fig. 6.20 Time-mean of entry 19 in Table 4.1: a) b)

PRQG (PE), c) RQG (QG), d) RLB
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Fig. 6.22 The QG global energetics (the energy box diagram shown in Fig. 4.2) for the
double-gyre experiment. The numbers within the boxes are the energy levels
of the various components (units k j m2), and the numbers on the arrows show
the energy transfers (units 106 k j m2 s1), described by Eq. (4-45). Unless
indicated by a negative sign, the arrow head shows the direction of energy flow.

Fig. 6.22 The QG global energetics (the energy box diagram shown in Fig. 4.2) for the
double-gyre experiment. The numbers within the boxes are the energy levels
of the various components (units k J m2), and the numbers on the arrows show
the energy transfers (units 106 k J m2 s), described by Eq. (4-45). Unless
indicated by a negative sign, the arrow head shows the direction of energy flow.



Fig. 6.23 Same as for Fig. 6.22, but for the PE model.Fig. 6.23 Same as for Fig. 6.22, but for the PE model.
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field receives its energy mainly as a result of baroclinic

instability processes. The incorporation of bottom friction

results in nearly equal amounts of lower layer kinetic energy

being dissipated by lateral and bottom friction.

A comparison of Fig. 6.23 with Fig. 6.22 shows that 1) the

QG energy transfer rates are similar, but generally higher for

the PE model, 2) little energy is dissipated by biharmonic heat

diffusion, 3) the work done by pressure forces in transferring

eddy energy from the lower to upper layer is a significant path-

way in the FE model, 4) a significant amount of energy goes

directly from eddy to mean kinetic energy in the upper layer of

the PE model, and 5) due to the small basin size, the LB terms

are small.

The residuals for the QG model shown in Fig. 6.22 are

small, implying that the five-year time-averaging is long enough

to examine the eddy/mean breakdown in this model. Fig. 6.23

shows large residuals for the PE eddy energy, which could imply

important FB and PE energy transfers, which were not explictly

computed in this study. These residuals may represent real

energy fluxes from the divergent component of flow to the

rotational part (or vice versa). A more complete analysis of

the total PE energy itself, necessary to explain the underlying

dynamics, has not been done here.

A comparison of Figs. 5.27 and 5.28 with Figs. 6.22 and

6.23 shows that 65 to 75% of the upper layer mean kinetic energy

input by the wind is dissipated by Laplacian friction, leaving
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only 25 to 35% of the energy to participate in the eddy genera-

tion process. Thus the generally similar results between the

single-gyre and double-gyre experiments can be most likely

explained by the use of a rather large Laplacian friction coef-

ficient. This suggests that in both experiments Laplacian

friction dominates over eddy processes, with the result that

rather weak instabilities and nonlinearities are observed. If

the friction were reduced, the eddy processes could play a

greater role, and stronger instabilities might be observed (see

Holland, 1978). In particular, as stated previously, barotropic

instabilities would be more likely to occur in the free jet of

the double-gyre case, resulting in a different stability process

than the single-gyre.

6.5 Vorticlty

6.5.1 Relative vorticity

The geographical distributions of the time-averaged rela-

tive vorticity for both the QG and PE models are shown in Figs.

6.24 and 6.25, respectively. The vorticity patterns are simi-

lar. The QG model has slightly larger values of vorticity in

the southern half of the basin, whereas the PE model has

slightly larger values of vorticity in the northern half of the

basin. The vertically-averaged vorticity, as in the singlegyre

experiment, to a large extent resembles the upper layer vorti-
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city, due to the generally larger values of vorticity in the

upper layer.

In order to examine the local vorticity transfers, plots of

the geographical distribution of the vertically-averaged

relative vorticity are shown in Figs. (6.26)-(6.27). We first

examine the spatial distribution of the vertical averages of the

A1QG and A2QG terms in Eqs. (4-46) and (4-47), respectively,

for the QG model (Fig. 6.26). In the western boundary regions,

the main balance is between the Laplacian friction (Fig. 6.26d),

planetary vorticity (Fig. 6.26b), and the horizontal advection

(Fig. 6..26a). In the southern (northern) half of the basin, the

Laplacian friction and horizontal advection terms tend to

increase the counterclockwise (clockwise) vorticity, while the

planetary vorticity tends to decrease it.

In the recirculation regions, the main balances are between

the horizontal advection, the planetary vorticity, and to a

lesser extent, the Laplacian friction. In the southern (north-

ern) half of the basin, the planetary vorticity tends to

increase the counterclockwise (clockwise) vorticity, while the

horizontal advection and Laplacian terms tend to increase it.

To the south and north of the axis of the free jet, the

main balance is between the horizontal advection and Laplacian

friction. To the south (north) of the axis of the free jet, the

horizontal advection tends to increase the counterclockwise

(clockwise) vorticity, while the Laplacian friction tends to

decrease it.
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Fig. 6.26 QG spatial distribution of the time and vertical
averages of the A1OG and A2QG terms on the
right-hand sides o Eqs. (4-46) and (4-47):

a) -(h1J(4i1,1)+h2J(4i2,2))/H,

b) -(hl81x+h2Li2x)/H, c) (hi/H)curlr(y),

d) (/H)(h1Vp1+h2V,2),

DAYS 6302.0 10 8100.0 BY 2.0
MEAN RYT 140R17 AOVECTION (BG)

CONTOUR INTERVAL IS O.I0000E-12
DIVIDE LABELS BY 0.1O0O0E.5

a

DAYS 6302.0 10 8100.0 BY 2.0
NEAN RVT WIND (BGP

CONTOUR INTERVAL IS 0.70000E-14
DIVIDE LABELS BY 0.10000E.17

C

DAYS 6302.0 10 8100.0 BY 2.0
flEAN RYT ØUASIGCOS PLY IBC)

CONTOUR INTERVAL S O.20000E-12
DIVIDE LABELS BY O.10OD0E15

b

DAYS 6302.0 'TO 8100.0 BY 2.0
MEAN RYT LAP RICTI0N 8G

CONTOUR INTERVAL IS 0.20000E-12
OIVIDE LABELS 8'! 0.10000E.15

d

221

Fig. 6.26 QG spatial distribution of the time and vertical
averages of the A1QG and A2QG terms on the
right-hand sides of Eqs. (4-46) and (4-47):

a) -(h1J(4,i,1)+h2J(4i2,2))/H,

b) -(hl8q)1X+h22)/H, c) (h1/H)curlt(y),

d) (/H)(h1V1+h2V2),
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f) -(h2/H)C3V22.
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Fig. 6.27 Same as Fig. 6.26, but for the PE model.
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Fig. 6.27 Same as Fig. 6.26, but for the FE model.
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hi the interior aiid southern portions of the basin, a

Sverdrup balance exists, i.e., the planetary vorticity is

balanced by the wind stress curl (Fig. 6.26c).

The change of vorticity due to the eddies (Fig. 6.26e) is

concentrated 1) along the axis of the free jet, and 2) to the

north and south of the axis of the free jet. In these areas,

the eddies both increase and decrease the vorticity, with the

result that the net contribution to the vorticity is small.

The change of vorticity due to the bottom friction is shown

in Fig. 6.26f. Alternate areas of clockwise and counterclock-

wise vorticity are seen along the western boundary, and to the

north and south of the axis of the free jet. The bottom fric-

tion term is in general small compared to the other terms.

Fig. 6.27 shows the spatial distribution of the vertical

averages of the A1QG and A2QG terms in Eqs. (4-46) and

(4-47), respectively, for the PE model. A comparison of Fig.

6.27 with Fig. 6.26 shows similar "mean vorticity tendencies",

except for Kelvin wave effects in the boundary regions of the PE

model.

The vertical averages of the A1LB and A2LB terms in

Eqs. (4-46) and (4-47) were calculated, and shown to be much

smaller than any of the vertically-averaged A1QG and A2QG

terms discussed previously. The vertical averages of the terms

and A1PE in Eq. (4-46), and A2FB and A2PE in Eq.

(4-47) were calculated as a residual, and shown to be signifi-

cant, as in the single-gyre experiment. The time rate of change
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in Fig. 6.26f. Alternate areas of clockwise and counterclock-

wise vorticity are seen along the western boundary, and to the

north and south of the axis of the free jet. The bottom fric-

tion term is in general small compared to the other terms.

Fig. 6.27 shows the spatial distribution of the vertical

averages of the A1QG and A2Q0 terms in Eqs. (4-46) and

(4-47), respectively, for the PE model. A comparison of Fig.

6.27 with Fig. 6.26 shows similar "mean vorticity tendencies,

except for Kelvin wave effects in the boundary regions of the PE

model.

The vertical averages of the A1LB and A2LB terms in

Eqs. (4-46) and (4-47) were calculated, and shown to be much

smaller than any of the vertically-averaged A1QG and A2QG

terms discussed previously. The vertical averages of the terms

A1FB and in Eq. (4-46), and and A2pE Eq.

(4-47) were calculated as a residual, and shown to be signifi-

cant, as in the single-gyre experiment. The time rate of change
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of the horizontally-averaged vorticity, i.e., ((h1V2lt+

h2V2p2t)/H), was also calculated. This term was close to

zero, which is to be expected in a statistically steady state.

The geographical distributions of the PE and QG vertically-

averaged relative vorticity for the southern half of the

double-gyre basin (the lower half of Figs. 6.26 and 6.27) are

similar to those for the single-gyre basin (not shown). The

main difference is that the change of vorticity due to the

eddies is concentrated in the vicinity of the recirculation

region in the single-gyre case, and near the axis of the free

jet in the double-gyre experiment.

6.5.2 Potential vorticity

The geographical distributions of the QG and PE time-

averaged potential vorticity for the upper and lower layers are

shown in Figs. 6.28 and 6.29, respectively. In the upper layer

(Fig. 6.28), the following features are discernible in both

models, which are similar to the single-gyre results: 1) sharp

gradients or tongues" of potential vorticity in the western

boundary regions, 2) in the southern (northern) half of the

basin, a southwestward (northwestward) tongue of potential vor-

ticity near the eastern side of the basin, 3) sharp gradients of

potential vorticity along the axis of the free jet, and 4) a

gradual northward increase of potential vorticity in the rest of

the basin. In the lower layer, the following features, also
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similar to the single-gyre results, can be seen in both models:

1) a gradual northward increase of potential vorticity through-

out most of the basin, 2) a uniform region of potential vorti-

city in the central portion of the basin, and 3) in the southern

(northern) half of the basin, a southward (northward) extending

tongue of potential vorticity in the western boundary region.

Again, only the lowest order component has been calculated

for the PE model, which explains why the QG and PE patterns are

so similar. Analysis of the higher order components in the PE

model is necessary to address the differences.

6.6 Eddy momentum transports

The zonally-averaged, off-diagonal components of the eddy

momentum transports in each layer for both models are shown in

Figs. 6.30 and 6.31. As in the single-gyre case, the main

contribution to the eddy momentum transports or stresses in the

PE model is by the rotational component, which is generally

larger than the QG. The geographical distribution (not shown)

of the off-diagonal components shows 1) adjacent regions of

positive and negative eddy momentum transports along the axis of

the free jet, and to the north and south of the free jet and 2)

in the recirculation regions, positive (negative) transports in

the southern (northern) half of the basin. A comparison of the

southern half of Figs. 6.30 and 6.31 with Figs. 5.39 and 5.40

shows similar eddy transport patterns.
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Again, as in the single-gyre experiment, the uv corre-

lations, although retarding the mean flow in some areas and

driving it In others, are probably unimportant as momentum

transports. Instead they are just signatures of the instability

processes.

6.7 PE heat transports

6.7.1 Meridional heat transports

The spatial distribution of the time-mean and eddy, meri-

dional heat transports in each layer and for both layers is

shown in Figs. 6.32-6.37. As in the single-gyre case, the

eddies generally act against the mean transport of heat. Eddy

heat transport occurs in the recirculation regions, in the area

of the free jet, and along the western and eastern boundaries.

For each layer, both divergent and rotational eddy heat trans-

ports are significant. The main contribution for eddy heat

transport by the rotational component occurs in the recircula-

tion region and in the vicinity of the free jet. Fig. 6.38

emphasizes the mean-poleward and eddy-equatorward transports of

heat in these regions. The slight imbalances seen are due to

the transport of heat by biharmonic heat diffusion processes.

Again the main contribution for eddy meridional heat transport

by the divergent component occurs along the western and eastern

boundaries. Presumably the main contribution for eddy zonal
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Fig. 6.32 Spatial distribution of the time-averaged, meridional
heat transport in the upper layer: a) h1v1T1,
b) hixiTi c) h1ij1T1.
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Fig. 6.33 Spatial distribution of the eddy meridional heat
transport in the upper layer: a) h1v1Tj,
b) h1XlyTl c) hiiTi.
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Fig. 6.33 Spatial distribution of the eddy meridional heat
transport in the upper layer: a) h1v1Tj,
b) hixiTi, c) hpj,1T.
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Fig. 6.34 Spatial distribution of the time-averaged meridional
heat transport in the lower layer: a) h2v2T2,
b) h2X2yT2 c) h2ip2T2.
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Fig. 6.35 Spatial distribution of the eddy meridional heat
transport in the lower layer: a) h2v2T2,
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Fig. 6.35 Spatial distribution of the eddy meridional heat
transport in the lower layer: a) h2v2T2,
b) hzx2yT2) c) hv12xT2.
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Fig. 6.36 Spatial distribution of the time-averaged, meri-
dional heat transport summed for both layers:
a) h1v1T1 + h2v2T2, b) hi1 T1 + h2X2 T2,
c) h11T1 + h242T2. y y
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heat transport by the divergent component occurs along the

northern and southern boundaries, so that overall the divergent

component may not play much of a role in actual eddy heat

transports. These divergent transports are due to Kelvin waves,

whose properties will be discussed further in the following

chapter.

6.7.2 Vertical heat transports

The vertically-integrated, time-mean vertical heat trans-

port is shown in Fig. 6.39. The presence of alternate regions

of positive and negative heat transport throughout most of the

basin looks very much like the signature of gravity waves. This

suggests that a longer time averaging is needed in the

double-gyre experiment to average out these waves.
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CHAPTER 7. DISCUSSION OF RESULTS

Based on the results of the two QG and PE numerical experi-

ments, it is obvious that the two models can be configured to

give nearly similar results. Extensive analyses have shown that

similar results for both models can be obtained for 1) basic

quantities, such as horizontal velocities and streamfunctions,

2) energetics, 3) relative and potential vorticity, and 4)

momentum transports.

Although overall the results are fairly similar between the

two models, a closer examination does reveal some significant

differences. In both experiments, consistently higher PE

energies and energy transfer rates are obtained. An examination

of the geographical distributions of these energy quantities

shows that most of the differences between the models occur

along the lateral boundaries of the basin. This appears to be

the result of Kelvin waves traveling along these boundaries in

the PE model. Instead of being dissipated, these waves travel

counterclockwise around the basin and perhaps even interact with

the eddies and mean general circulation. Although these experi-

ments were not designed with the Kelvin waves in mind, the

results can be used to deduce some of the basic properties of

these waves.

From the instantaneous plots of P1 in Figs. 5.18a and

6.13a, we determine that the basic wavelength is -666 km for
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both experiments. For two layers, the propagation speed of

1/2 -1
Kelvin waves is given by c = (g h1h2/H) = 4 m s (same for

both experiments). Using the wavelength and propagation speed,

we calculate a period of 1.9 days. Fig. 7.1 is a time series of

the vertical velocity at a single grid-point near the southern

boundary of the basin for the last 1000 days of the single-gyre

experiment. (The point plotted here has coordinates (26,1),

where point (1,1) is the center of the southwest-corner grid box

and point (50,50) is the center of the northeast-corner grid

box). The sampling frequency for this time series is 0.5 days.

The dominant feature of this time series is a very regular wave

with a period of 1.9 days, which exactly matches the period

calculated for the Kelvin waves.

Kelvin waves also have the "pecularity" that they can

travel along lateral boundaries in one direction only, i.e.,

counterclockwise in the Northern Hemisphere. A time sequence of

the vertical velocity field at four-hour intervals (not shown)

establishes that this is the direction of propagation of the

observed waves near the boundaries.

Finally, Kelvin waves have the characteristic that the

amplitudes decay rapidly with distance from the boundary, and

become insignificant beyond a distance on the order of the

Rossby radius of deformation. Fig. 7.2 shows ten-day time

series of p and P2 at half-day intervals for five separate grid

points in the single-gyre basin. The five points form a line
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moving northward from the center of the southern boundary.

These time series clearly show the decay In amplitudes away from

the boundaries. The 1.9 day period of the waves is also

evident. Note that Fig. 7.2 also shows that p1 and P2 are 1800

out of phase.

We next show that the Kelvin waves are the likely mechanism

for the meridional eddy heat transport by the divergent compo-

nent shown in Figs. 5.42b, 5.44b, 6.33b, and 6.35b. Fig. 7.3

shows ten-day time series plots of the total meridional eddy

heat transport (i.e., h1v1'T1' + h2v2'T2') at the midpoint of

each lateral boundary. Along the northern (Fig. 7.3c) and

southern (Fig. 7.3a) boundaries, there is no net meridional

transport. Along the western boundary (Fig. 7.3b) there is net

equatorward transport, while along the eastern boundary (Fig.

7.3d) there is net poleward transport. Figs. 7.4 and 7.5 shows

how these transports are accomplished in layers 1 and 2,

respectively. Along the northern (Figs. 7.4c and 7.5c) and

southern (Figs. 7.4a and 7.5a) boundaries, the kinematic boun-

dary condition (v = 0) results in insignificant meridional eddy

heat transports. Along the western boundary in the upper layer

(Fig. 7.4b) and along the eastern boundary in the lower layer

(Fig. 7.4d), the v' and T' waves are 180° out of phase, with the

result that the meridional eddy heat transports are equatorward

in these regions. Along the eastern boundary in the upper layer

(Fig. 7.4d), and along the western boundary in the lower layer

243

moving northward from the center of the southern boundary.

These time series clearly show the decay in amplitudes away from

the boundaries. The 1.9 day period of the waves is also

evident. Note that Fig. 7.2 also shows that Pi and p are 1800

Out of phase.

We next show that the Kelvin waves are the likely mechanism

for the meridional eddy heat transport by the divergent compo-

nent shown in Figs. 5.42b, 5.44b, 6.33b, and 6.35b. Fig. 7.3

shows ten-day time series plots of the total meridional eddy

heat transport (i.e., h1v1tT1' + h2v2tT2') at the midpoint of

each lateral boundary. Along the northern (Fig. 7.3c) and

southern (Fig. l.3a) boundaries, there is no net meridional

transport. Along the western boundary (Fig. 7.3b) there is net

equatorward transport, while along the eastern boundary (Fig.

7.3d) there is net poleward transport. Figs. 7.4 and 7.5 shows

how these transports are accomplished in layers I and 2,

respectively. Along the northern (Figs. 7.4c and 7.5c) and

southern (Figs. 7.4a and 7.5a) boundaries, the kinematic boun-

dary condition (v = 0) results in insignificant meridional eddy

heat transports. Along the western boundary in the upper layer

(Fig. 7.4b) and along the eastern boundary in the lower layer

(Fig. 7.4d), the v' and T' waves are 180° out of phase, with the

result that the meridional eddy heat transports are equatorward

in these regions. Along the eastern boundary in the upper layer

(Fig. 7.4d), and along the western boundary in the lower layer



244

S

-N-

.02

z

-'-S.

Hfl26,21 (Pt)

7QO 7Q 72 7Q3 744 7i 7*ó 77 7QS 7Q 7200

T!M DAYSI

a

141(2,26 (Pt)
.00I

0

- .001

- .00

- .003

-.004

2
0
a

- .001

-.001

-.00

- .010

_.0I1L I I I I I

7QO 1Q1 7Q2 71Q3 7104 71 71% 7Q7 71qe 7QQ 7OO
TINE IOAYS

b

Fig. 7.3 Time series of the total meridional, eddy heat trans-
port (h1vT + h2vT)/H for points near the middle
of the a) southern, t) western, c) northern, d) eastern
boundaries.

244

a

."0.

z

HT26,2I (Pt)

7*00 7*0* 7*02 7103 7*44 7100 7*00 7107 7100 7100 7200

TIPIE DAYSI

a

HT(2,26( (Pt)
.00I

0

- .00I

00

- .003

004

-.000

2
0
a

- .001

-.000

-.000

- .010

-.01 I1iI, I I I

7*00 71,, 7*02 71,3 7104 7104 71% 7*07 7*00 7*00 7300

TINE OATS

b

Fig. 7.3 Time series of the total meridional, eddy heat trans-
port (h1vT{ + h2vT)/H for points near the middle
of the a) southern, t) western, c) northern, d) eastern
boundaries.



a

7
Ca

-a

--a

-.0011

.001

.001

.000

.003

.004

7
.003

.002

.001

0

HT(26.49) IPE)

IO 7I1 71Q 7t34 715 71% 7137 7130 7130 7OO

TMt tDAYS

C

HTt49,261 PE;

I I I I I

7190 7191 7192 7193 7194 7199 71% 7197 7190 7130 7200

flNE (DAYS)

d

Fig. 7.3 (cont.)

L.

245

a
a

2
0

-a

-.1.
7IO 7il 1%Q 7S3 7j4

TIM( (DAYSt

C

HT(249) (PEt

.00

.00

00

00

0%

-.0W.
?1Q% 7192 7193 7194 71"

TII4E (DAYS)

d

uTC&9 26% (PEt

Fig. 7.3 (coat.)

245



246

.30

.25

20

IS

IC

.05

0

05

- .10

-IS

- .20

EDDY h1.V1 (26.21 IPEJ

-.23 .
7190 7191 7192 7193 7194 7195 7196 7197 7199 7199 7200

TINE 0*751

a

EDDY 11,V1(2.26( IPE
.35

.30

25

.20

Is

IC

.05

t
0a 0

- .05

-.10

- .15

- .20

7190 7191 7192 7193 7194 7193 71% 7197 7199 7199 7200

huE IOATSI

b

Fig. 7.4 Time series of T (solid line) and Vj (dashed line)
for points near the middle of the a) southern, b) west-
ern, c) northern, d) eastern boundaries.

30

.25

.20

¶5

10

.05

z
0

- .05

-.10

-.15

- .20

EDDY T1.V1 (26.21 (PEt

-.23 I I I I I

7190 7151 7152 7153 7194 7195 7196 7197 71% 7199 7200

TINE 10*751

a

EDDY 11.V1(2.26) IPE)
.35

.30

.25

.20

.15

to /1 /1

/ \
/ \ (\ ,I\ //\\

- .:

z:: \
I \

i

-.20 y

a I I I I

7150 7191 7192 7193 7194 7193 71% 7197 7155 7199 7200

YulE IDATSI

b

Fig. 7.4 Time series of T (solid line) and Vj (dashed line)
for points near the middle of the a) southern, b) west-
ern, c) northern, d) eastern boundaries.



247

EDDY T1.v1(2d5 IPE)
.33

.30

.25

.20

.15

.10

.05

S..-,- -

-.10

-.15

- .20

-.23

-.30
7150 7191 7192 7193 7194 7193 7196 7197 7I0 7199 7200

TtN( 10*151

C

.30

.25

20

.15

10

.03

z
0

a

- .03

- .10

- IS

- .20

- .39

EDDY 11v114q.2b, PEI

1\ A
I,

/

N
\

\ I

\/

\ ,1 \1

7*50 7*91 7*92 7*93 7194 7*93 7*95 7*97 7190 7199 7200

T1I 10*15)

d

Fig. 7.4 (cont.)

247

EDDY T1.vl(2.q IPE)
.35

30

7190 7191 7192 7193 7194 7193 ltQb 7197 7199 7199 7200

TtN( I0ASI

.30

25

.20

IS

10

.03

z
0

a

- .03

- .10

-'3

- .20

C

EDDY T1.v114q.2b) PE

1\ i\ i'\ A
I,

I

N
\

\ I

\/

,I \\ I

1*90 7*91 7*92 7*93 7194 7193 71% 7*97 7*90 7199 7200

T1I lOAfS)

d

Fig. 7.4 (cont.)



248

EDDY T2.V212b.2) IPEI
.10

.04

.08

.07

.06

.05

.04

.03
0a

.02

.01

0

-
-.0l

- .02

-.03 I I I I

7180 7181 7182 7183 7194 7198 7194 7187 7198 7198 7200

TIME ISAYSI

12

.10

.08

06

.04

7
o .02a

0

- .02

- .04

-06

a

EDDY 12.V212,2b IPE1

I \ 1"\ Ii

\\
/,\ /

\

I!
\\ ji I\\ I

\\

\\

/

ti1
\

1,1

VI'
/\I

\

\

\\J

7190 7181 7182 7193 7184 7195 7146 7147 7198 7199 7200

lIME DAYS,

Fig. 7.5 Time series of T' (solid line) and v (dashed line)
for points near he middle of the a) southern,
b) western c) northern, d) eastern boundaries.

248

EDDY T2.V212b.2) IPEI
.10

.04

.08

.07

.06

.05

.04

.03
0a

.02

.01

0

-
- .01

- .02

-.03 I I I I

7140 7191 7192 7193 7144 7199 7194 7197 71,0 1199 7200

TIME IOATSI

.12

.10

.08

06

.04

2
o .02
a

0

- .02

- .04

-06

a

EDDY 12.V212,2b IPE1

I \ I"\ II \\\ IJ\\ /
I' \\ ii I\\ I
iI \\

\\

\

/1

Vi
/\I

\
\\J

7190 7141 7142 7193 7144 7195 7146 1147 7141 7199 1200

lIME DAYS,

b

Fig. 7.5 Time series of V (solid line) and v (dashed line)
for points near he middle of the a) southern,
b) western c) northern, d) eastern boundaries.



249

EDDY T2.V2126.49) (PEt
.t2

.10

oe

.06

.04

z
.02

- -

- .02

- .04

-.06 - I

1t90 119t 1t92 1(93 7(94 7t95 7t96 7t97 1(98 1(99 1200

lINE DAYS)

C

to

.08

.06

.04

.02
z

0

- .02

- .04

-.06

EDDY T2.V2149.26) (PEtl'II!II!I!IjV,,

/1 -
V d \i' 'N \ I \ I/\/

\ /

I

/ f\ A I

1(90 1(91 1192 1(93 1194 1(95 7(96 1(91 1(98 1(99 1200

1(NE (DAYS)

d

Fig. 7.5 (cont.)

249

EDDY T2.V22b.49) (PE)
.12

.10

.08

.06

.04

z
.02

0

- .02

- .04

-.06 - I

7190 7191 7)92 7193 1194 1)99 1)96 1197 7199 7199 1200

lINE DAYS)

C

.10

.08

.06

.04

.02
z

0

- .02

- .04

-.06

EDDY T2.V2)49.26) (PE)I' I.I,i,I,i. I.

/1 -
/ \ I i ' I \ I \ I

/\ \/
/

7
/

1

7)90 1191 7)92 7)93 7)94 7)95 1)96 1191 7)98 7)99 7200

lINE 10875)

d

Fig. 7.5 (cont.)



250

(Fig. 7.5b), the v' and T' waves are in phase, with the result

that the meridional eddy heat transports are poleward in these

regions. Because the upper layer transports are so much larger

than the lower layer, the total meridional eddy heat transports

shown in Fig. 7.4 reflect the upper layer values. In all of

these figures, the 1.9 day period signature of the Kelvin waves

is clearly seen. As stated previously, there would also be

divergent components of zonal eddy heat transports along the

northern and southern boundaries to close the circuit. Thus the

Kelvin waves just rotate heat around the basin. As a result,

the divergent heat flux probably plays no important role but is

just the "signature" of the Kelvin waves.

Finally, Fig. 7.6 shows strong evidence that the Kelvin

waves are also the likely cause of the maximum in the divergent

component of the eddy kinetic energy near the lateral boun-

daries. Both the 1.9 day period and the decrease in amplitude

away from the lateral boundaries are clear signatures of these

waves. Lastly, Fig. 7.7 suggests the interesting possibility

that these waves can also contribute to the rotational component

of the eddy kinetic energy near the lateral boundaries.

In all of the figures presented so far in this chapter, we

have used half-day time intervals. In the five-year analyses

presented in Chapters 5 and 6, two-day time intervals were

used. Because the Kelvin waves have a period of 1.9 days, it is

likely that the two-day sampling interval introduced aliasing

into the five-year statistics. Fig. 7.8 is a comparison of the
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time series of the horizontally-averaged kinetic energy compo-

nents for each layer at two-day and half-day intervals.

Although the time averages for these energy statistics are pro-

bably not affected by the aliasing, it certainly seems possible

that other, higher-order statistics could be.

Whether the presence of these Kelvin waves is due to

numerics or to physics remains uncertain. The questions of how

Kelvin waves are generated, maintained and dissipated, and how

they interact with eddies and the ocean general circulation need

to be better understood not just in this type of PE model, but

in real oceans as well. Kelvin waves are known to be sensitive

to wind forcing, but a steady wind forcing, as used here, cannot

give rise to transient waves. It is worth noting, however, that

during the model spin-up, when wind forcing is first introduced,

it is not steady. It is possible that, in the absence of a

suitable dissipative mechanism, the waves introduced during

spin-up could remain, even after 20 years. A comparison of

Kelvin wave amplitudes at 15 and 20 years into the single-gyre

integration showed no change in amplitude. This implies either

1) dissipation is very small for these waves, or 2) the waves

are being continuously forced. Another possibility is that they

are generated by nonlinear interactions of the mesoscale eddy

field or by physical or numerical instability processes.

Recent theoretical studies by Davey et al. (1983) have

shown that the use of lateral and vertical viscosity can

influence free Kelvin waves. Lateral viscosity can signifi-
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it is not steady. It is possible that, in the absence of a

suitable dissipative mechanism, the waves introduced during

spin-up could remain, even after 20 years. A comparison of

Kelvin wave amplitudes at 15 and 20 years into the single-gyre

integration showed no change in amplitude. This implies either

1) dissipation is very small for these waves, or 2) the waves

are being continuously forced. Another possibility is that they
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Recent theoretical studies by Davey et al. (1983) have

shown that the use of lateral and vertical viscosity can

influence free Kelvin waves. Lateral viscosity can signifi
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cantly affect baroclinic Kelvin waves, whereas vertical viscous

effects can affect barotropic Kelvin waves. Hsieh et al. (1983)

have shown that in addition to viscosity, horizontal grid reso-

lution, the type of grid, and the choice of boundary conditions

can significantly influence the behavior of free Kelvin waves.

Based on their results, each of our PE model choices, i.e., the

use of a fine-grid horizontal resolution with a C-grid scheme

and free-slip boundary conditions, should have the least effect

on the behavior of these waves. As a result, our model seems to

be ideal for their study.

More extensive analysis of the PE model results is clearly

needed in order to gain a deeper understanding of the underlying

physics. This comparison study highlights similarities in the

PE and QG models, but further investigations of the results

should highlight differences. The possible interaction of

Kelvin waves with mesoscale eddies and the ocean general circu-

lation is a new and important problem which deserves further

Investigation.
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CHAPTER 8. SUMMARY

The present study provides a foundation for the first quan-

titative intercomparison of QG and PE models, which have both

been modified in order to make the numerics as similar as possi-

ble so that the differences in PE and QG physics can be under-

stood. In order to give nearly similar results, we had to

overcome differences 1) in model equations and prognostic vari-

ables, and 2) in the basic model configurations. We started

with the PE system of equations and derived a set of equations

which had the same form and prognostic variables as the QG

system. We then made the QG approximation to this set. As a

result we obtained a consistent set of PE and QG comparison

equations and prognostic variables, which could be used to make

systematic comparisons between the PE and QG systems. We

obtained a consistent model configuration by choosing the same

parameters for both models, and by using the same vertical and

horizontal distribution of variables.

Using this set of analysis equations, we developed analysis

procedures in the following areas: 1) energy, 2) relative and

potential vorticity, and 3) eddy momentum and heat transports.

The results of two QG and PE numerical experiments were then

analyzed in each of these areas.

In the first experiment, two-layer versions of the QG and

PE models were spun up with fine-grid horizontal resolution (20

256

CHAPTER 8. SUMMARY

The present study provides a foundation for the first quan-

titative intercomparison of QG and FE models, which have both

been modified in order to make the numerics as similar as possi-

ble so that the differences in PH and QG physics can be under-

stood. In order to give nearly similar results, we had to

overcome differences 1) in model equations and prognostic vari-

ables, and 2) in the basic model configurations. We started

with the FE system of equations and derived a set of equations

which had the same form and prognostic variables as the QG

system. We then made the QG approximation to this set. As a

result we obtained a consistent set of PE and QG comparison

equations and prognostic variables, which could be used to make

systematic comparisons between the PH and QG systems. We

obtained a consistent model configuration by choosing the same

parameters for both models, and by using the same vertical and

horizontal distribution of variables.

Using this set of analysis equations, we developed analysis

procedures in the following areas: 1) energy, 2) relative and

potential vorticity, and 3) eddy momentum and heat transports.

The results of two QG and PE numerical experiments were then

analyzed in each of these areas.

In the first experiment, two-layer versions of the QG and

PH models were spun up with fine-grid horizontal resolution (20



257

km) using a single-gyre wind forcing in a 1000 x 1000 km

rectangular basin centered at midlatitudes. It is important to

note that the small basin size tended to diminish one of the

important differences between PE and QG models, the variation in

the Coriolis parameter in some terms. Both models used lateral

Laplacian friction and no bottom friction. Biharinonic heat

diffusion was used in the PE model. The choice of parameters

was made on the basis of making the models as similar as

possible.

The second experiment was similar to the first, but dif-

fered in the following respects: 1) a double-gyre wind forcing

was used, with the result that the northern boundary of the

single-gyre experiment was replaced by a free jet at mid-

latitudes, 2) the north-south extent of the basin was increased

from 1000 to 2000 kilometers, and 3) bottom friction was incor-

porated. The model parameters used in this experiment were

chosen in order to explore the roles of a free jet and bottom

friction in the ocean general circulation for both models, while

still allowing some comparisons to be made between the single-

gyre and double-gyre results. Another difference between the

two experiments is the value of the constant Coriolis parameter

f0; this alone would cause such processes as baroclinic

instability to change.

The results of the single-gyre and double-gyre experiments

were quite similar. The reason for this is most likely due to
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the use of a rather large Laplacian friction coefficient. In

both experiments, 65 to 75% of the upper layer mean kinetic

energy input by the wind was dissipated by Laplacian friction,

leaving only 25 to 35% of the energy to participate in the eddy

generation process. This suggests that in both experiments

Laplacian friction dominated over eddy processes, with the

result that rather weak instabilities and nonlinearities were

observed. If the friction were reduced, the eddy processes

could play a greater role, and stronger instabilities might be

observed (see Holland, 1978). In particular, barotropic insta-

bilities would be more likely to occur in the free jet of the

double-gyre case, resulting in a different stability problem

than the single-gyre.

In both experiments and models, the spin-up process was

characterized by an increase in both upper layer kinetic energy

and available potential energy, with the lower layer remaining

nearly motionless until some critical shears were reached.

Between 2 and 4 years, the available potential energy and the

upper layer circulation had built up sufficiently for the flow

to become baroclinically unstable. The release of available

potential energy then gave rise to eddy motions, which generated

deep mean flows in the lower layer via energy transfers from the

upper layer. Between -1500 and 5000 days, the system caine

into a statistical equilibrium in which eddies and the mean flow

were in mutual balance.
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A comparison of the PE and QC time-dependent energetics

showed similar energetics and energy transfer rates for both

experiments. The main differences were: 1) the upper and lower

layer kinetic energies were higher by about 35% for the PE

model, and 2) the PE model had high frequency oscillations,

which corresponded to the frequency of Kelvin waves.

The basic time-averaged PE and QG quantities were compared

with each other in both experiments in order to assess similari-

ties and differences. Most quantities were quite similar.

The main difference in the models was due to the presence of

Kelvin waves along the lateral boundaries of the PE model.

These waves propagated counterclockwise along the boundaries

with the phase speed of inertia-gravity waves, i.e., 4 m s1.

An examination of instantaneous, time mean and eddy fields

for both models showed that in the upper layer, the eddies and

mean flow had about the same amplitude, while in the lower

layer, the eddies were dominant and were the main driving

mechanism for the lower layer mean circulation. The eddies

propagated westward at -5.5 km per day. In the single-gyre

experiment, the eddies were baroclinic in the northern half

of the basin, and barotropic in the southern half. In the

double-gyre experiment, the eddies tended to be quite barotropic

in the interior. The main difference between the PE and QG eddy

fields in both experiments was the additional eddy field
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propagating counterclockwise around the basin in the PE model.

This field was due to the Kelvin waves and was entirely baro-

clinic.

An examination of the horizontally-averaged, time-mean

energetics showed consistently higher PE total and rotational

kinetic energy components than QG, and small but significant

divergent components of PE kinetic energy. Geographical distri-

butions of PE eddy kinetic energy suggested the following

regions of active transience: 1) the boundary, where Kelvin

waves are present, 2) the recirculation region, where the meso-

scale eddies are driven by baroclinic instability processes, and

3) in the double-gyre experiment, the area of the free jet,

where the mesoscale eddies are driven by barotropic instability

processes. In the QG model only the latter two regions were

present.

The results of the relative vorticity analysis showed simi-

lar QG and PE vorticity patterns, but generally larger QG values

of both clockwise and counterclockwise vorticity. The change of

vorticity due to the eddies was concentrated in the recircula-

tion region for the single-gyre experiment, and in the vicinity

of the free jet region for the double-gyre experiment. Analysis

of relative vorticity terms showed similar PE and QG "mean

vorticity tendencies, except for Kelvin wave effects in the

boundary regions of the PE model. Except in the recirculation

region, the LB terms were smaller than any other vorticity

terms. The small basin sizes used in these experiments
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tended to diminish the importance of these LB terms. The FB and

PE terms were calculated as a residual, and shown to be signifi-

cant. Further analysis would be necessary to determine what

terms in particular, were important.

An examination of the geographical distributions of the

time-averaged quasigeostrophic potential vorticity showed that

the PE and QG potential vorticity patterns were very similar in

both layers. The reason for this similarity was that only the

lowest order (i.e., the quasigeostrophic) component had been

calculated for the PE model. Again further analysis of the

higher order PE components would be necessary to address differ-

ences.

The zonally-averaged off-diagonal component of the eddy

momentum transports showed that the PE rotational component was

dominant over the divergent, and was generally larger than the

QG. In some areas the u'v' correlations tended to retard the

mean flow, whereas in others they tended to drive it.

Both eddy and mean meridional heat transports were calcu-

lated for the PE model. In general the eddies acted against the

mean transport of heat. Both divergent and rotational compo-

nents were significant in transporting eddy meridional heat

transports. The main contributions for eddy heat transport by

the rotational component was in the recirculation area, an area

shown by Holland and Lin (1975a) and Holland (1978) to be of

possible importance for eddy transports of heat equatorward.
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The main contribution for eddy meridional heat transport by the

divergent component was along the western and eastern boun-

daries, and was shown to be due to the Kelvin waves. Presumably

the main contribution for eddy zonal heat transport by the

divergent component would be along the northern and southern

boundaries to close the circuit. As a result, the divergent

heat flux probably plays no role but is just the "signature" of

the Kelvin waves.

Thus most of the differences in the PE and QC models were

due to the presence of Kelvin waves along the lateral boundaries

of the PE model. Whether the presence of these waves is due to

numerics or to physics remains uncertain and awaits further

investigation.
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Appendix A. Numerical details of the PE model

The PE model used in this study is a new one. It has much

of the same basic model structure (e.g., C-grid horizontal

distribution of variables) as the adiabatic PE model of Holland

and Lin (1975a,b), yet has complete thermodynamics. Essentially

the prognostic layer depth equations of the Holland and Lin

model (see the Appendix in Holland and Lin, l975a) are replaced

by prognostic thermodynamic energy equations and constant layer

depths. In this section, we describe numerical details of the

PE model not presented in previous sections of the thesis,

namely, vertical differencing (Section A.l), horizontal and time

differencing (Section A.2), method of solution (Section A.3),

and some integral properties of the PE finite-difference

equations (Section A.4).

A.l Vertical differenci

The vertical structure of the model, shown as a two-layer

version in Fig. 3.1, has multi-layers. Here we use the

subscripts k + 1 and k - 1 to denote the layers above and below,

respectively, the layer k the vertical differencing is applied

n Fig. 3.1, the layers are numbered from top to bottom

layer thickness given by hk. The vertical coordinate
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is the height z, which is positive upwards with z = 0 at the

surface. The horizontal velocities, temperature and pressure

are all defined at layer mid-points. The vertical velocity is

defined at layer interfaces.

The therinodynauic energy equation (Eq. 3-5) in vertical

difference form is

Tkt+ L (Tk) +
T

[wkTk + wkTk_i wk+iTk wk+iTk+il

2KH 2KH

Thk(hki+hk)
(Tk_i_Tk)

hk(hk+hk+i)
(Tk_Tk+i)

+AHV2Tk

{
or (A-i)

_BHV4Tk

In Eq. (A-i), (Tk+Tk_i)/2 and (Tk+Tk+i)/2 have been

chosen for the vertical differencing of (wT)z in order to

satisfy the conservation of the first and second moments of

temperature, as far as vertical advection is concerned (Lorenz,

i960). A demonstration of this conservation principle for the

PE model is given in Section A.4.

The vertical-difference form of the hydrostatic equation

Eq. (3-3) is chosen to be

kk-i kki
zkzk_i p0 2

(A-2)
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i960). A demonstration of this conservation principle for the

PE model is given in Section A.4.
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Eq. (3-3) is chosen to be

kk-i __ kk-i
Zk_Zki po 2

(A-2)
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in order to be consistent with the vertical advection differen-

cing of temperature. This form of the hydrostatic equation,

under adiabatic,inviscid conditions, guarantees total energy

conservation (Bryan, 1969; Semtner, 1974; Han, 1975).

The equation of state (3-6) in vertical difference form is

= pO(1_ct(Tk_TO)) (A-3a)

for k layers and

k+1
= p(1-ct(T -T ))k-fl 0 (A-3b)

for k-fl layers. If we differentiate Eqs. (A-2), (A-3a) and

(A-3b) with respect to x, and subsequently substitute the

differentiated forms of Eqs. (A-3a) and (A-3b) into Eq. (A2),

we obtain

N
gct v

kx 1x L. (hk + hk+l) (T + T(k+l)X) , (A-4a)
kx

k=1

where N denotes the bottom layer. Similarly, differentiating

Eqs. (A-2), (A-3a), and (A-3b) with respect to y and subse-

quently substituting the differentiated forms of Eqs. (A-3a) and

(A-3b) into Eq. (A-2) results in

ky 1y 4 (hk + h.) (Tky + T(k+1)y) (A-4b)
k=1

Using Eq. (A-4a), the zonal momentum equation (3-1) in

vertical difference form is
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Eqs. (A-2), (A-3a), and (A-3b) with respect to y and subse-

quently substituting the differentiated forms of Eqs. (A-3a) and

(A-3b) into Eq. (A-2) results in

=
ky ply 4 L (hk + hk+l) (Tk T(kl)). (A-4b)

k=1

Using Eq. (A-4a), the zonal momentum equation (3-1) in

vertical difference form is
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Ukt + L(uk) +
k IWkUk + WkUk_l Wk+lUk Wk+lUk+11

+A V2u
m k

x
{

or= fvk + -CU
_BVLUk

where the following notation has been used:

p1
as in Holland and Lin (1975a,b);

x 1
= j- r(y) for k=1; and

1

N

4 (hk + hk ) (T + T ) for k > 1.
+1 kx (k+1)x

(A-5)

Similarly, using Eq. (A-4), the meridional momentum equation

(3-2) in vertical difference form is

vk + L(vk) + [wkvk + wkvk_1 wk+lvk wk+lvk+1]

+A V2v
m k

= -fuk + p1 CBvk { or , (A6)

-BV4v
m k

where the following notation has been used:

ly
ly =

, as in Holland and Lin (1975a,b);

y 1
E T = 0 for k1; and

y _gct
N

k=l
(hk + hk+l) (T + T ) for k > 1

ky (k+l)y
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Ukt + L(uk) + [WU + WkUk_l Wk+lUk WklUk+ll

+A V2u
in k

x
{ or= fvk + Tk CBUk

BVuk

where the following notation has been used:

p1-f , as in Holland and Lin (1975a,b);

x 1= jj T(Y) for k=1; and
1

N

Tk 4 ) (h +
(T + T ) for k > 1.
kx (k+1)x

(A-5)

Similarly, using Eq. (A-4), the meridional momentum equation

(3-2) in vertical difference form is

Vkt + L(vk) + [wkvk + WkVk_1 Wk+lVk Wk+lVk+1]

2
+AV Vk

= fUk + p1 CBVk { o , (A-6)

-B V V
in k

where the following notation has been used:

ply
= , as in Holland and Lin (1975a,b);

y 1
T = 0 for k1; and

y _ga
Tk '

k=l
(hk hk+l) (T T ) for k > 1

ky (k+l)y
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The continuity equation Eq. (3-4) in vertical difference

form, is

u +v +
kx ky hk

Wk
hk

Wk+l = 0 . (A-7)

A.2 Horizontal and time differenci

To keep the finite-difference analogues of the equations

relatively coulpact, the operators and ()C are defined

such that

and

1

K [rl(x + .) rl(x

x
(x) [rl(x + ) + rl(x

where (x) is any function of x. The finite-difference Lapla-

cian V2( ) is defined as

) ) + ).

Using this notation, the finite-difference analogue of the

governing equations (A-l), (A-5), (A-6) and (A-7) can be written

as

= * 2tt {ts ( u.k) + vk)

+ a- [W(T + wk+l(Tk + Tk+l)l
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The continuity equation Eq. (3-4) in vertical difference

form, is

U +V +
kx ky hk

Wk j Wk+i = 0 . (A-7)

A.2 Horizontal and time differencing

To keep the finite-difference analogues of the equations

relatively compact, the operators 6, and ()X are defined

such that

and

ri(x) [ri(x + '-) r(x

x(x) [r(x + + r(x

where r(x) is any function of x. The finite-difference Lapla-

clan V2( ) is defined as

) = c5( ) + ( ).

Using this notation, the finite-difference analogue of the

governing equations (A-i), (A-5), (A-6) and (A-7) can be written

as

T1 = T1 - 2tt {s ( uk) + vk)

Ewk(Tk + Tk_i) wk+i(Tk + Tk+i)l
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n-i2
1 n-i KH

(hki+)
(T1 Tk )

+ (hk++i)
(Ti

Tk+i)

+AHV2Tk

or
+ BHV4Ti,

(A-8)

n+i n-i -X -X (XY)
u u -2At(u u )+
k k lxk k y

+ kk + uki) ii (u + Uk+i)]

x -A V2u
n-i

x n-i
m k

fvk Tk + CBu.K {
or }} -2Atpi, (A-9)

+B V4u
n-i

m k

n+i n-i (uYvC) + (VV)Vk =Vk -2At
x k k y

+ ['(v + Vk_i) i'k + vk+i)]

_____y -A V2ni
m k-K y n-i

+ fu.K Tk BVk {
or -2AtS

i'
(A-iO)

+B V4ni y
m k

Wk+i x"k
+ + Wk

In Eq. (A-9), for k i,

x i

Ti m T(y)

for k > i,

N

Tk =
k=i

(hk + hk+i) (T + T(k+i)X)

(A-i i)
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n-i n-i n-i n-i

h,K(hk_i+h,K)
(Tk_i Tk h.k(hk+hki) (Tk Tki)

+AHV2 Tk

or

+ BHV4T1,
(A-8)

n+i n-i r x x (XY)
I_i =U -2t uS (u u )+6
k k lxk k y

+ kk + uki) (u + Uki)]

x -A V2u
n-i

m k

fvk + CBu' { or }} -2Ltp1, (A-9)

+B V4u
n-iink

n+1 n-i
{

(uvX) + (vv)Vk Vk -2tt
x k k y

+ (Vk + Vk_l) Wi (Vk + Vk+i)]

_____y -A
in kx y n-i

+ fuk Tk +CBVk { or }} -2tbS p1, (A-b)
+B Vv y

in k

Wk+l hkxk + h.Vk + Wk

In Eq. (A-9), for k =1,

x I
T1 T(y)

for k > 1,

N

Tk =
k=i

(hk + hk+i) (T + T(k+i)x)

(A-il)
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In Eq. (A-b), for k1,

for k > 1,

N

k1
(hk + hk+i) (Tk + T(k+i))

In both Eqs. (A-9) and (A-b), and are the x and y

derivatives of the upper layer pressure divided by p0, the

mean density.

Eq. (A-8) is written with reference to a T point, Eq.

(A-9) with reference to a u point, Eq. (A-10) with reference to

a v point and Eq. (A-b) with reference to a w point. As in

Holland and Lin (1975a), the horizontal differencing scheme is

similar to that of Lilly (1965) for homogeneous problems. The

scheme conserves both total energy and mass (See Section A.4).

The superscripts n-i and n+i in the equations denote the

time level. Denoting the present time level as n, n-i is one

time step in the past and n+i is one time step in the future.

All terms which are not superscripted are at time level n. The

friction terms are lagged a time step in order to avoid linear

numerical instability (Thompson, 1961; Richtmyer and Morton,

1967; Haltiner, 1971; Phillips, 1973; Haltiner and Williams,

1980).
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The principal time differencing scheme used in the model is

the leap-frog scheme. Periodically, we use Eulers backward

scheme (Matsuno, 1966) to suppress "time splitting", which is

inherent in the leap-frog scheme. At the beginning of the inte-

gration the backward scheme is used for ten consecutive time

steps. The leap-frog scheme is then used to continue the inte-

gration. Every 47 time steps the backward scheme is used

again. According to Raltiner (1971), gravity waves of wave-

length comparable to two grid intervals should be damped by

periodic use of the backward scheme.

As a reference value for what the time step At should be in

the model, the classical stability criterion, i.e., the CFL con-

dition, can be used. Since the rigid lid condition excludes

external gravity waves, the highest frequency motions are inter

nal, inertial gravity waves. The propagation speed c of these

waves is

g'h1h2 1/2
c=( )H

where g' is reduced gravity, h1 and h2 are layer thicknesses and

H is the total depth. Using the model choices of Holland

(1978), i.e., a grid inverval A of 20 kin, g' = 0.02

h1 = 1000 m, and h2 = 4000 m, the CFL condition for the time

step At is
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tt < = 5 x 103s,
C

when one-dimensional criteria are used, and

t < - 3.5 iO3s,
/2 c

when two-dimensional criteria are used (Haltiner and Williams,

1980).

It should be noted, as in Holland and Lin (1975a), that

since the CFL condition is deduced from simple linear theory,

this criterion should only be used as a reference value for the

choice of t. Indeed, a trial-and-error process showed that a

time step of 1200 s led to an unstable integration.

Another stability criterion for the time step comes from a

consideration of the Laplacian lateral momentum diffusion.

2-1
Using a viscosity coefficient Am of O m s , we can obtain

t < < 3 x lO ,

which is a less stringent criterion than the CFL condition.

The above criteria are obtained from either diffusive or

advective considerations. Cushman-Roisin (1983) has shown that

consideration of both advective and diffusive criteria can lead

to more restrictive stability conditions. This consideration

could lead to a criterion closer to our trial-and-error

instability value of -1200 s.
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consideration of the Laplacian lateral momentum diffusion.

Using a viscosity coefficient Am of 330 m2s1, we can obtain

it < i- < 3 x 10 s,

which is a less stringent criterion than the CFL condition.

The above criteria are obtained from either diffusive or

advective considerations. Cushman-Roisin (1983) has shown that

consideration of both advective and diffusive criteria can lead

to more restrictive stability conditions. This consideration

could lead to a criterion closer to our trial-and-error

instability value of -1200 s.
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To be on the safe side, we use a time interval of 600 s for

all PE experiments.

A.3 Method of solution

The rigid-lid assumption, w 0 at the surface of the

ocean, puts a constraint on solving the system of equations

(A-8) - (A-li). Because of this assumption, the vertically-

integrated horizontal velocity must satisfy a non-divergent

condition, i.e.,

0 0
J udz j

vdz 0, (A-12)

-H -H

obtained by integrating Eq. (3-4) and applying both the rigid-

lid and flat-bottom assumptions. This condition then requires

that the vertically integrated pressure satisfy a balance equa-

tion that can be obtained from Eqs. (3-i) and (3-2) using Eq.

(A-12). Because of this condition, the pressure cannot be

obtained by integrating the hydrostatic equation from the free

surface. Instead, the pressure must be determined such that

Eq. (A-12) is satisfied. This leads to a rather special solu-

tion procedure, developed by Bryan (1969) and used extensively

by ocean modelers (e.g., Semtner, 1974; Haney, 1974; Takano,

1974; Holland and Lin, 1975a; Han, 1975; Kim, 1979; Han and

Gates, 1982). The solution procedure described below closely

281

To be on the safe side, we use a time interval of 600 s for

all PE experiments.

A.3 Method of solution

The rigid-lid assumption, w 0 at the surface of the

ocean, puts a constraint on solving the system of equations

(A-8) (A-li). Because of this assumption, the vertically-

integrated horizontal velocity must satisfy a non-divergent

condition, i.e.,

0 °
Judz jvdzo,
-H -H

(A-i 2)

obtained by integrating Eq. (3-4) and applying both the rigid-
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follows the method discussed in Holland and Lin (1975a).

We first derive the vorticity equation for the vertically

integrated flow. This eliminates the upper layer pressure

Pi
The resulting vorticity equation is then solved for the

transport streamfunction 'P at time step n+l. The vertical velo-

cities wk at time step n+l can be calculated directly from the

continuity equation (A-li) using the boundary conditions

n+l
Wi = = 0. The temperature Tk can be calculated

calculated directly from the thermodynamic energy equation

(A-8).

As in Holland and Lin (l975a), we use the continuity equa-

tion (A-li) and vertical averaging to obtain

(h u ) + (h v ) = 0kxk kyk

which, since hk is constant, can be rewritten as

6 Ohkuk) + 6y
hkvk) = 0

This equation enables us to define a finite-difference transport

streainfunction such that

Sy'P = hkuk (A-13a)

and
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= . (A-13b)

To eliminate the upper-layer pressure, we first write the

finite-difference forms of Eqs. (A-9) and (A-b) in shorthanded

forms. Thus, multiplying Eqs. (A-9) and (A-b) each by hk, we

can write

n+l n-i
hkuk = hkuk hk2tt Uk -2tt hkSkPl

(A-14)

and
n+l n-i

h.Kvk = h.Kvk - h.K2tt Vk_2tt hyP1 (A-15)

where, Uk, for instance, is the abbreviation for the bracketed

terms in Eq. (A-9), which are not shown explicitly In Eq.

(A-14), and is a number evaluated at every u point.

Substituting Eqs. (A-13a) and (A-13b) into Eqs. (A-14) and

(A-15), respectively, we obtain

and

n+l 1,nl _2tt)hk1Jk - 2ttHop1 (A-16)
y y

n+1
=

n-1
_2tthkVk 2ttHISyP1 (A-17)

x x

Next, we operate S, on Eq. (A-16) and on Eq. (A-17) and

then subtract Eq. (A-16) from Eq. (A-17) to obtain

2n+l = + (2tthkUk)

_I5y(2tthiKVk) . (A-18)
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can write
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and n+i n-i
h.K Vk = h.KVk h.K2t Vk2t h5p1 , (A-15)

where, Uk, for instance, is the abbreviation for the bracketed

terms in Eq. (A-9), which are not shown explicitly in Eq.

(A-14), and is a number evaluated at every u point.

Substituting Eqs. (A-i3a) and (A-13b) into Eqs. (A-i4) and

(A-15), respectively, we obtain

and

n+i ni
_2tt)hkUk 2ttHSp1 (A-16)

y y

2MhkVk _2tH6yPl (A-i7)

Next, we operate on Eq. (A-16) and on Eq. (A-17) and

then subtract Eq. (A-16) from Eq. (A-i7) to obtain

2pfl+l 2n-i (2MhkUk)y

_Sy(2tthkVk) . (A-18)
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If the values of uk and vk are given at every point for time

levels n-i and n and if the values of wk are given for time

level n, the right hand side of Eq. (A-18) is a known function

of space and is a finite-difference Poisson equation in

with Dirichiet boundary conditions.

Once the solution for the Poisson equation is obtained,

Eqs. (A-16) and (A-17) can be used to evaluate -2tt5pi and

-2t51:

and

-2t5 p
1 (A-19)

xi H

_2tSyPi =
n+1 nl+2V) . (A-20)

H x x

Substituting the right hand side of Eq. (A-19) into Eq. (A-9)

and Eq. (A-20) into Eq. (A-b), Eqs. (A-9) and (A-b) can be

used to solve for ukn+i and vktl. Explictly, these

equations become

n+1 n-i
Uk = Uk -2tt{(ii i) + j)

k [(uk+uk_1) +i(uk + uk+i)]

X -A V2u n-i

fY_ + Cui
{

or

+BVu }}

+
1n+i + n-i

+ 2thkUk] (A-2i)
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levels n-i and n and if the values of wk are given for time

level n, the right hand side of Eq. (A-18) is a known function

of space and is a finite-difference Poisson equation in

with Dirichlet boundary conditions.

Once the solution for the Poisson equation is obtained,

Eqs. (A-16) and (A-17) can be used to evaluate -2itSpi and

-2t51:

and

1 n+16
1+2tythkUk)

(A-19)-2ttS p
y yxl H

-2itp = (c$ +2MhkVk) . (A-20)
1 H x x

Substituting the right hand side of Eq. (A-19) into Eq. (A-9)

and Eq. (A-20) into Eq. (A-b), Eqs. (A-9) and (A-b) can be

used to solve for ukfl+l and vk1. Explictly, these

equations become

n+1 n-i
Uk -2t{6(i uK) + (v u.ykk
1 x x

+ [wk(uk+uk_i) wk+i(uk +

x -A V2u n-i- m k
fY.... + CBu {

or

+B
m k

+ [n+1 + ôyYfll + 2thkUk] (A-2i)
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n+l ni
Vk Vk -2At {cuk vk) +

+
-:-

[w(vk + vk_l) _+l (v + vk+i)J

2 n-i
-A v V
m k

+ fuk + CBvk{ or

+BVv}}

+
1

[S
n+1 n1

+ 2At,hkVk} . (A-22)
H y y

The equations of motion can be integrated indefinitely.

The method used for solving the Poisson equation (A-15) gives

the exact solution to the finite-difference Poisson equation in

a rectangular domain with zero boundary conditions. An

efficient Fast Fourier Transform is used for this purpose.

A.4 Some integral properties of the PE finite-difference

equations

1. Conservation of the first and second moments of temperature

We first show that the differential form of the temperature

equation conserves the first and second moments of temperature.

First, we horizontally average Eq. (3-5) to obtain

and
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n+1 ni
= Vk -2tt {cS(Uk vk) +

+
* [W(Vk + vk_1) _+1 (v + Vk+1)]

-Am k
n-i

{
or

+BVv}}

[5
,n+1 %,nl

+ 2t,hkVkJ . (A-22)
H y y

The equations of motion can be integrated indefinitely.

The method used for solving the Poisson equation (A-is) gives

the exact solution to the finite-difference Poisson equation in

a rectangular domain with zero boundary conditions. An

efficient Fast Fourier Transform is used for this purpose.

A.4 Some integral properties of the PE finite-difference

equations

i. Conservation of the first and second moments of temperature

We first show that the differential form of the temperature

equation conserves the first and second moments of temperature.

First, we horizontally average Eq. (3-5) to obtain
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jjTt dxdy + jj(uT) dxdy + jJ(vT)dxdy

+ jj(wT) dxdy = jjQ dxdy, (A-23)

+AHV2T

QEkT {or
H zz

BHVT

' (A-24)

and JJ( )dxdy denotes the horizontal integration. We note that

the second and third terms in Eq. (A-23) integrate to zero.

Next, we vertically average Eq. (A-23) and apply the boundary

conditions of a rigid lid at the surface and a flat bottom.

Then

iii(wT)z dxdydz = 0,

so that Eq. (A-23) reduces to

jjjTdxdydz = jjjQ dxdydz, (A-25)

which, under adiabatic conditons, proves that the first moment

of temperature is conserved.

Next, we multiply Eq. (3-5) through by the temperature to

obtain

1/2(T2) + T(uT) + T(vT) + T(wT) = TQ, (A-26)
t x y z

where Q is given by Eq. (A-24). We note that

and

T(uT) = 1/2(uT2) + Tu (A27)

T(vT) = 1/2(vT2) + Tv . (A-28)
y y y

where

jjTt dxdy + jJ(uT) dxdy + JJ(vT)dxd

+ jJ(wT) dxdy = jJQ dxdy, (A-23)

+AHV2T

QEkT {or
H zz

(A-24)

and jJ( )dxdy denotes the horizontal integration. We note that

the second and third terms in Eq. (A-23) integrate to zero.

Next, we vertically average Eq. (A-23) and apply the boundary

conditions of a rigid lid at the surface and a flat bottom.

Then

JJJ(wT)2 dxdydz = 0,

so that Eq. (A-23) reduces to

JJJTtdxdydz = JjjQ dxdydz, (A-25)

which, under adiabatic conditons, proves that the first moment

of temperature is conserved.

Next, we multiply Eq. (3-5) through by the temperature to

obtain

1/2(T2) + T(uT) + T(vT) + T(wT) TQ, (A-26)
t x y z

where Q is given by Eq. (A-24). We note that

and

T(uT) = l/2(uT2) + Tu (A-27)

T(vT) = l/2(vT2) + Tv . (A-28)
y y y
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If we add Eqs. (A-27) and (A-28), use the continuity equation

and substitute the resulting equation into Eq. (A-26), we obtain

(T2) = (uT2) + (vT2) Tw+ T(wT) = TQ. (A-29)

We note that

T(wT) =
+

(A-30)

If we substitute Eq. (A-30) into (A-29), globally integrate the

resulting equation and apply the boundary conditions of a rigid

lid at the surface and a flat bottom, then Eq. (A-29) reduces to

1/2jjJ(T2)dxdydz = JJJTQ dxdydz, (A-31)

which, under adiabatic conditions, proves that the second moment

of temperature is conserved.

We next show that the finite-difference form of the

temperature equation preserves the first and second moments of

temperature. First, if we take a summation of Eq. (A-8) for all

i,j and apply the kinematic boundary conditions, we find that

. 'i)
ôy( vk) = 0,

i,j 1,3

(A- 32)

where denotes a summation taken over the horizontal ocean
i,j

domain. Next it we multiply Eq. (A-8), through by hk, take a

summation of Eq. (A-8) for all k and apply the boundary condi-

tions w1 wn+1 = 0, we find that

+ Tk_l) Wk+1(Tk + Tk+l)) = 0. (A-33)
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5
(X

x kuk) +). ôy( vk) = 0,

1,3 1,3

(A- 32)

where denotes a summation taken over the horizontal ocean
i,j

domain. Next it we multiply Eq. (A-8), through by hk, take a

summation of Eq. (A-8) for all k and apply the boundary condi-

tions w1 wn+l = 0, we find that

+ Tk_l) Wk+1(Tk + Tk+l)) = 0. (A-33)



Using (A-32) and (A-33) in the global average of Eq. (A-8),

under adiabatic conditions, we obtain

or

T1 T1
hk(2At

k =0
1,.] ,k

it
= 0,

i,j,k

(A-34)

which is the finite-difference form of the conservation of the

first moment of temperature.

To obtain the second moment of temperature, we multiply

Eq. (A-8) through by hkTk and note that

and

hkTkoy(uk) = h S (uk)= h(T)ô u (A-35)
2 xx x

hkTkcSk( vk) =
)2u) - hk(Tk)2oyv. (A-36)

If we add Eqs. (A-35) and (A-36), use the continuity equation

for the last terms in Eqs. (A-35) and (A-36), substitute the

equations into Eq. (A-8) and take a summation of Eq. (A-8) for

all i,j, we find that the first terms on the right hand sides of

Eqs. (A'-35) and (A-36) = 0. If we take a summation of Eq. (A-8)

for all k and apply the boundary conditions w1 wn+l = 0, we

find that the last terms in Eqs. (A-35) and (k-36) and the

Using (A-32) and (A-33) in the global average of Eq. (A-8),

under adiabatic conditions, we obtain

or

Tn-i

h(k k =0
i,j ,k

it hTi = 0,

i,j,k
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(A-34)

which is the finite-difference form of the conservation of the

first moment of temperature.

To obtain the second moment of temperature, we multiply

Eq. (A-8) through by hkTk and note that

and

1 x2
hkTk(uk) h S (fuk) hk(Tk )ô u (A-35)

2 xx x

hkTktSk( vk) = )u.) h.K(Tk)26v. (A36)

If we add Eqs. (A-35) and (A-36), use the continuity equation

for the last terms in Eqs. (A-35) and (A-36), substitute the

equations into Eq. (A-8) and take a summation of Eq. (A-8) for

all i,j, we find that the first terms on the right hand sides of

Eqs. (A-35) and (A-36) = 0. If we take a summation of Eq. (A-B)

for all. k and apply the boundary conditions w1 = Wn+1 = 0, we

find that the last terms in Eqs. (A-35) and (A-36) and the



vertical advection of temperature terms in Eq. (A8) sum to

zero. Hence, under adiabatic conditions, we obtain

or

(T1)2 - (T1)2

.) h(
4At

=0

(T. )2

2
=0,

i,j,k
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(A-3 7)

which is the finite-difference form of the conservation of the

second moment of temperature.

Conservation of mass

We first show that the differential form of the continuity

equation conserves mass. First, we horizontally integrate Eq.

(3-4):

jju dxdy + jjv dxdy = -jjw dxdy . (A38)

We note that the left hand side of Eq. (A-38) integrates to

zero. Next, we vertically Integrate Eq. (A--38). Applying the

boundary conditions of a rigid lid at the surface and a flat

bottom, we find that the right hand side of Eq. (A-38) inte-

grates to zero. This proves, for the differential form, that

mass for the total ocean is conserved.

Next, we show that the finite-difference form preserves

mass. First, we take a summation of Eq. (A-li) for all l,j to

obtain

vertical advection of temperature terms in Eq. (A-8) sum to

zero. Hence, under adiabatic conditions, we obtain

or

(Trl)2 - (T')2

.) h( 4tt
=0

(T. )2
1

h
,j,k

2
=0,

i,j ,k
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(A- 37)

which is the finite-difference form of the conservation of the

second moment of temperature.

Conservation of mass

We first show that the differential form of the continuity

equation conserves mass. First, we horizontally integrate Eq.

(3-4):

jju dxdy + Jjv dxdy = -Jjw dxdy . (A-38)

We note that the left hand side of Eq. (A-38) integrates to

zero. Next, we vertically integrate Eq. (A-38). Applying the

boundary conditions of a rigid lid at the surface and a flat

bottom, we find that the right hand side of Eq. (A-38) inte-

grates to zero. This proves, for the differential form, that

mass for the total ocean is conserved.

Next, we show that the finite-difference form preserves

mass. First, we take a summation of Eq. (A-il) for all i,j to

obtain
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ij
Wjjk+1 W..k = (hk/A))Euj+l,j,k

u + v. v. ]
, (A-39)

i,j,k i,j+1,k i,j,k

We note that all terms on the right hand side of Eq. (A-39)

cancel out, except those at lateral boundaries, which are set to

zero as kinematic boundary conditions. Consequently, the right

hand side of Eq. (A-39) = 0. If we take a summation of Eq.

(A-39) for all k and use the boundary conditions w1 = wn+1 = 0,

we find that the left hand side of equation = 0. This proves,

for the finite-difference form, that mass for the total ocean is

conserved.
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w. =
i,j

i,j,k+1 i,j,k (hk/) Eujljk
1,j

-u +v -
i,j,k i,j+l,k Vijk] ' (A-39)

We note that all terms on the right hand side of Eq. (A-39)

cancel out, except those at lateral boundaries, which are set to

zero as kinematic boundary conditions. Consequently, the right

hand side of Eq. (A-39) = 0. If we take a summation of Eq.

(A-39) for all k and use the boundary conditions w1 = Wn+l = 0,

we find that the left hand side of equation 0. This proves,

for the finite-difference form, that mass for the total ocean is

conserved.
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Appendix B. Notes on the processing and plotting of the data

The processing and plotting of the data is complicated by

the fact that the PE model has a staggered grid, and some QG

variables (such as vertical velocity) are not defined on the

same grid points as the PE. The following notes describe how

these problems are handled and clarify the relationship between

the plots and the model grid.

1) For both models, the physical basin grid size is

51 x 51 for the single gyre, and 51 x 101 for the double gyre

(This leaves 50 x 50 or 50 x 100 grid spaces). The stream-

function is defined on the basin boundaries.

2) One- or two-dimensional linear interpolation is used to

get variables on the same grid for computations.

3) All horizontal averages are area averages over the

basin (Data points located on the basin boundaries are half-

weighted).

4) The boundary of the physical basin is located one grid

point inside of the perimeter of all horizontal slab-plots. The

latitude and longitude axes in these plots are linear with

respect to the model grid. The interior tick marks along these
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axes locate the points at which the streainfunction is defined

(both models). When data are defined on grid points other than

the streainfunction points, they are plotted midway between the

tick marks.

5) The vector plots combine scalar components to form

velocity vectors. For clarity, only every other vector is plot-

ted, starting at the lower left. The arrow length is scaled to

the velocity magnitude as specified by the key (the longest

arrow always spans four-grid spaces).

6) On the zonal average plots, the interior tick marks

locate the model streamfunction grid points, in the same manner

as the horizontal slab plots. The exterior tick marks locate

latitudes in a manner consistent with the s-plane assumption

(the latitude scale is therefore nonlinear).
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