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NUMERICAL STUDIES OF MESOSCALE EDDIES USING QUASIGEOSTROPHIC

AND PRIMITIVE EQUATION OCEAN MODELS

CHAPTER 1. INTRODUCTION

The role of the ocean in climatic change is becoming an
increasingly important element of climate research. The large
heat capacity, coupled with the large transport of heat by cur-
rents, give the oceans the potential for exerting a strong
influence upon climate and its variation (Manabe, 1983). Obser-
vational studies have shown that the kinetic energy of mesoscale
eddies can be one or two orders of magnitude greater than that
of the time-averaged motions, at least in certain parts of the
world ocean (see Wyrtki et al., 1976, for example). These
observations suggest that the ocean general circulation may be
significantly influenced by the mesoscale eddy field, especially
in areas of intense currents, such as the Gulf Stream, where
active air-sea interaction occurs. Since eddies have been shown
to be important mechanisms for transporting momentum and poten-—
tial vorticity (Holland, 1983), it seems likely that they could
also be important mechanisms for transporting heat.

In order to properly assess the role of mesoscale eddies in
climate, we need an appropriate tool that will allow us to
systematically investigate not only the eddies' contribution to

the ocean heat transport, but also their effect on the ocean
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general circulation. Observations, analytical investigations,
and numerical models are all possible tools.

In the following chapter, we will briefly review how the
use of each of these tools has contributed to our present under-~
standing of eddies and the ocean general circulation, and then
consider the use of these tools for studying the role of meso~
scale eddies in both the ocean general circulation and in cli-
mate. Currently, eddy-resolving general circulation models
(EGCMs) appear to be the most appropriate tool for an in-depth,
quantitative analysis, and so they will form the basis for this
study.

We next survey the types of EGCMs available, and review
intercomparisons between the models to help decide what type of
EGCM to use. From this survey we see that there is at the pre-
sent time no "ideal” model to study the role of mesoscale eddies
in climate. An "ideal" model for our purposes would be one that
incorporates complete thermodynamic processes yet uses reason~
able amounts of computer time.

A good candidate for this EGCM might be a model inter-
mediate between quasigeostrophic (QG) and primitive equation
(PE) models. This type of model could possibly incorporate
thermal effects not found in a QG model, yet use less computer
time than a PE model. It soon becomes apparent that the proper
development and evaluation of such a model requires a deeper

understanding of QG and PE physics.
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This has led to the present study: a quantitative inter-—

comparison of QG and PE models which have both been modified in
order to emphasize differences and similarities. The main
purpose of this model intercomparison is to explore the follow-
ing questions:

a) Can the two models be configured to give nearly simi-
lar results?

b) Are the differences due to numerics or to physics?

c) What is the best choice of model configuration for the
basic problem, i.e., the role of mesoscale eddies in
climate?

d) What is the best configuration for an intermediate
model?

e) How well does QG physics represent more complete phy-
sics?

We begin this study in Chapter 3 by describing the PE and

QG model equations, and discussing their similarities and
differences. Next, in order to overcome differences in model
equations and prognostic variables, we start with the PE system
of equations and derive a set of equations which has the same
form and prognostic variables as the QG system, as well as some
variables not found in QG. We then make the following approxi-
mations to this set: 1) full balance, 2) linear balance, and 3)
QG. Either the full or linear balance set of equations could be

the basis of the "ideal” model described previously. As a
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result we obtain a hierarchy of systems of equations from PE to
QG, which allows us to evaluate the importance of each of the
terms involved in this sequence of approximations.

Using these and other methods of analysis presented in
Chapter 4, the results of two QG and PE numerical experiments
are systematically intercompared (Chapters 5 and 6). In Chapter
7

, the results of these comparisons are discussed. Finally, in

Chapter 8 we summarize the results.




CHAPTER 2. BACKGROUND

2.1 Current state of knowledge

Observational studies of currents in many parts of the
world ocean have revealed the presence of mesoscale eddies
(Swallow and Hamon, 1960; Crease, 1962; Koshlyakov and Grachev,
1973; Kitano, 1974, 1975; Bernstein and White, 1974; Dantzler,
1976; Wyrtki et al., 1976; Richman et al., 1977; Schmitz, 1977;
Baker et al., 1977). Field programs (POLYGON, MODE, POLYMODE,
1S0S, NORPAX) have been conducted to determine the basic
characteristics of these eddy systems.

What is known about eddies from observations on a global
basis has recently been summarized by: 1) Dickson (1983), using
flow statistics from long-term current meter moorings; and
2) Emery (1983), using temperature measurements. Regional sum-—
maries have been presented by: 1) Schmitz (1978), Richardson
(1983), Wunsch (1983), Rossby et al. (1983) and McWilliams et
al. (1983) for the Western North Atlantic Ocean; 2) Gould (1983)
for the Northeast Atlantic Ocean; 3) Bernstein (1983) for the
North Pacific Ocean; 4) Needler (1983) for the subpolar gyre and
Arctic Ocean; 5) Siedler (1983) for tropical equatorial regions;
6) Swallow (1983) for the Indian Ocean; 7) Bennett (1983) for
the South Pacific Ocean and East Australian Current;

8) Griindlingh (1983) for the Southern Indian Ocean and Agulhaus




Current; and 9) Bryden (1983) for the Southern Ocean.

The results of these observational studies have shown that
the mesoscale eddy field has wavelengths of tens to hundreds of
kilometers and periods on the order of weeks to months. The
kinetic energy of such eddies can be one or two orders of magni-
tude greater than that of the time—averaged motions {Dickson,
1983). The intensity of these eddies varies geographically,
being weakest in mid-ocean regions such as the center of the
subtropical gyres, and strongest in the vicinity of strong flows
such as the Gulf Stream, Kuroshio and North Equatorial Currents
(Dantzler, 1977; Wyrtki et al., 1976; Leetma et al., 1977;
Dickson, 1983; Schmitz et al., 1983).

Despite a steadily growing data base on oceanic mean flows
and statistics, there are still many data-sparse regions of the
ocean, and no synoptic coverage of the ocean presently exists.
As technology advances, especially in the area of remote sensing
(Heinmiller, 1983), synoptic coverage of mesoscale eddies could
be obtained on a regular basis. Until this advancement is made,
however, we are left with sparse oceanographic data sets, which
are a far cry from the "ideal” description of the mesoscale eddy
field which would consist of an "adequately resolved continuous
time series of the three-dimensional physical (and chemical)
fields throughout the global ocean” (Robinson, 1983).

In addition to the observational studies, analytical

investigations have been undertaken to understand the dynamics
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of mesoscale eddies and their role in the ocean general circula-
tion. (See Bretherton, 1975; MacLeish, 1976; Rhines, 1977;
McWilliams, 1979; Schmitz et al., 1983; Holland et al., 1983;
and Robinson, 1983, for reviews on both observational and theo-
retical studies.) One of the earliest mechanisms proposed for
eddy production was baroclinic instability (Schulman, 1967; Gill
et al., 1974; Robinson and McWilliams, 1974; Holland and Lin,
1975a,b; Tang, 1975; Haidvogel and Holland, 1978; Holland and
Haidvogel, 1980). Direct atmospheric forcing (Frankignoul and
Muiller, 1979) has also been suggested.

Schmitz et al., (1983), after surveying twenty years of
mesoscale eddy research, concluded that: 1) eddies seem to be
generated via baroclinic, barotropic or mixed instabilities of
the strong mean flows; and 2) transient wind forcing seems to be
less important in generating the eddies. It should be pointed
out, however, that because of the lack of both atmospheric and
oceanographic data sets, the significance of direct transient
atmospheric forcing in most parts of the ocean is difficult to
determine. It may well turn out that a significant part of the
variability may be due to such time-dependent direct forcing,
either wind or thermohaline, particularly in the eastern basins
of the world ocean.

In addition to observational and analytical studies, meso~
scale eddies have been simulated using numerical models. This

approach has provided great insight into the eddy dynamics and

generation mechanisms, and permits a systematic exploration of
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the dynamical role of eddies in the ocean general circulation.

Simulations of mesoscale eddies in regional open ocean
domains by Bretherton (1975), Bretherton and Karweit (1975),
Owens and Bretherton (1978), Rhines (1975, 1977), Bretherton and
Haidvogel (1976), and Haidvogel (1983), have shown that the
statistical structure of the mesoscale eddies agrees well with
the available observations. In particular, Bretherton (1975)
has claimed that QG dynamics essentially determine the structure
of mid-ocean eddies. .

Simulations of mesoscale eddies in enclosed midlatitude
ocean basins have been explored by Holland and Lin (1975a,b),
Han (1975), Robinson et al., (1977), Semtner and Mintz (1977),
Holland (1978), Mintz (1979), and Semtner and Holland (1980).
These studies have shown that eddies can originate when fine-
scale horizontal resolution (< 50 km) and low viscosity are
used even when the forcing is entirely steady. The eddies and
mean flow can then interact through exchanges of momentum and
energy. Through these interactions, a statistically steady
state is reached in which the characteristics of the large-scale
ocean circulation are established. Holland (1978), in particu-
lar, has suggested that the eddies determine the character of
the large-scale ocean circulation by limiting the amplitude of
the mean flow in the upper ocean and by causing a downward
momentum flux to the deeper water. Semtner and Mintz (1977) and

Mintz (1979) have shown that the poleward heat transfer across
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the mean position of the Gulf Stream front is primarily due to
the mesoscale eddies.

In order to investigate the role of eddies in particular
regions of the oceans (since eddies are not spatially homo-
geneous), regional budgets have been analyzed by: 1) Han
(1975), Harrison and Robinson (1978), and Harrison (1979) for
energy; and 2) Rhines and Holland (1979), Holland and Rhines
(1980), and Harrison and Holland (1981) for vorticity. The

energy budget studies have shown that 1) eddies in the Gulf

Stream region are produced by baroclinic, barotropic, or "mixed"

instabilities, and 2) in the interior region eddies are main-
tained against frictional dissipation by secondary baroclinic
instabilities in the southwestward and westward flow of the
Sverdrup gyre. The vorticity budget studies have shown that
eddies can play a major role in the mean circulation, because
they transport most of the vorticity put into each gyre by the
wind stress curl across the boundary between the gyres, thereby
allowing equilibration to take place without much need for a
frictional vorticity sink (Holland et al., 1983).

Comparisons of model and ocean data have been made by
Holland and Lin (1975a,b), Robinson et al. (1977), Holland
(1978), and by Schmitz and Holland (1982). Since only a few
long-term time series of ocean data exist, and due to the
idealized framework of the models, such comparisons are

difficult. As pointed out by Holland et al. (1983), it is not

clear just how such comparisons should be carried out.
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Although these comparisons have so far been primarily
qualitative, as the ocean data base grows and models become more
realistic, quantitative comparisons will be possible. These
comparisons, together with theoretical investigations, will
certainly help us to advance from the "zero-order” description
of the eddy field that presently exists (see Schmitz et al.,
1983) to a first—order, more quantitative understanding of the

dynamics of the ocean general circulation.

2.2 Survey of eddy-resolving ocean general circulation models

(EGCMs)

2.2.1 Types of EGCMs available

The requirements for an EGCM, according to Holland (1978),

are: 1) fine horizontal resolution (~10 or 20 km) in a baro-
clinic ocean, and 2) the ability to perform extended calcula-
tions in time in order to reach a "statistically gteady state”,
in which eddies and the mean flow are in mutual balance. Three
types of EGCMs presently exist: 1) adiabatic PE models, 2) QG
models, and 3) non-adiabatic PE models. To help decide what
type of EGCM to use for the present study, we examine the

capabilities of each type of model.
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Adiabatic PE EGCMs

Adiabatic PE EGCMs have been used by Holland and Lin
(1975a,b) for enclosed ocean basins. Because the PE system of
equations is used, all of the experiments require relatively
large amounts of computer time to reach a statistically steady
state. Because of the expense involved, extensive parameter
studies cannot be made with this type of model and realistic
basins (in size and shape) are extremely expensive. In addition
such adiabatic models do not allow for possibly important water
mass conversion processes such as convective overturning and
thermohaline mixing. As a result, these models may be appropri-
ate for ocean general circulation studies, but cannot be
considered "complete” models for climate studies. However, it
should be kept in mind that models with simpler physics are also
much easier to understand, so there is a trade-off here, even

for understanding “climate”.

QG EGCMs

The models used by Holland (1978) for an enclosed ocean

basin and by McWilliams et al. (1978) for a zonally open basin

(analogous to the Antarctic Circumpolar Ocean) are both based on

the Phillips (1956) system of QG equations. This system may be

solved much more economically than the PE equations. As a
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result parameter studies needed at the present stage of eddy
modeling are feasible and basins of realistic size (~5000 km)
can be used. According to Holland (1978), Haidvogel (1979), and
Robinson et al. (1979), the choice of model parameters can sig-
nificantly influence the results so that a large number of case
studies is needed.

In these adaptations of Phillips' system of equations, wind
stress is the only energy source. Although these models can be
modified to include thermal forcing, it has not yet been done.

In addition, the static stability of these models is not
allowed to change either temporally or spatially in the QG
thermodynamic energy equation. The importance of static sta-
bility variations has been discussed by Lorenz (1960, 1962). 1In
short, Lorenz argued that static stability is a factor in deter-
mining the dynamic stability of a baroclinic flow. Because the
baroclinically unstable waves are accompanied by a sinking of
colder fluid and simultaneous rising of warmer fluid across the
same level, the static stability should increase in an overall
sense. It is also well known that the static stability par-
tially controls the preferred scale and growth rate of baro-
clinically unstable waves (Charney, 1947; Eady, 1949; Robinson
and McWilliams, 1974; Gill et al., 1974). According to Lorenz
(1960), the release of kinetic energy without static stabili-
zation could overpredict the growth of disturbances. Because of
these and other approximations to the thermodynamic energy equa-

tions, the QG EGCMs, by themselves, will not be adequate for
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climate studies.

In addition, even for dynamic studies, the models are
limited to areas of the ocean where the QG approximation is
valid. Examples of where the QG approximation may be invalid
are: 1) near steep topography, seamounts, islands, and conti-
nental boundaries, and 2) where "contorted meandering and eddy~
ing of intense currents, rings, and smaller long-lived isolated
lenses...have strong centripetal acceleration (cyclostrophic

effects)” (Robinson, 1983).

Non—adiabatic PE EGCMs

Non-adiabatic PE EGCMs have been used by Han (1975),
Robinson et al. (1977), Semtner and Mintz (1977), and Mintz
(1979). Like the adiabatic PE EGCMs, large amounts of computer
time are required to reach a statistically steady state.

Because of the expense involved, extensive parameter studies
cannot be made even though there are more parameters involved
(those having to do with subgrid scale heat diffusion parameter-
ization). Although the models can incorporate most physics,
they cannot presently be run to a complete thermodynamic equili-
brium state because of the expense. As a result, these models
may be appropriate for ocean general circulation studies, but

are limited in their application to climate studies.
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2.2.2 EGCM intercomparison studies

Two intercomparison studies between EGCMs have been made:
1) QG and adiabatic PE studies, and 2) QG and non—adiabatic PE
studies. The first intercomparison was done by Holland (1978),
and the second by Semtner and Holland (1978).

In the first study, qualitative agreement was obtained for
a number of cases. However, because the product of height and
horizontal velocity, rather than velocity itself, is the basic
prognostic variable in the PE momentum equation used in the
study, the PE and QG models could not be readily compared.
Quantitative intercomparisons have yet to be made.

In the second study, qualitative agreement was also
obtained. There were several significant differences between
these models however, most notably: 1) model physics; 2) verti-
cal resolution (two-layer QG model compared to five-layer PE
model); and 3) effective horizontal resolution (B-grid PE model
compared to C-grid QG model). As a result, observed differences
between the models cannot be ascribed to any one factor, and
comparisons of any similarities can be made on a qualitative
basis only.

In fact, as Semtner and Holland (1978) have discussed, no
two EGCM experiments have ever been parametrically identical.
As a result, differences between model results could be due to

any number of factors.
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2.3 The "ideal" EGCM for climate studies

From our survey of the types of EGCMs available, we see
that there is at the present time no single "ideal” model to
study the role of mesoscale eddies in climate. At the present
time some mix of all these models is needed to get at the array
of problems involved.

A useful candidate might be a model intermediate between QG
and non-adiabatic PE models. This type of model could possibly
incorporate thermal effects not found in a QG model, yet use
less computer time than a PE model. As stated in Chapter 1, the
proper development and evaluation of such a model requires a
deeper understanding of QG and PE physics, which is the aim of
this thesis.

In the following chapters, we will provide a foundation for

the first quantitative intercomparison of QG and PE models. In

particular, a hierarchy of systems of equations from PE to QG
will be obtained. This will allow us to evaluate the importance
of each of the terms involved in the sequence of approximations,
and eventually help us to design the "ideal™ EGCM for climate

studies.
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CHAPTER 3. MODEL FORMULATIONS

One of the primary goals of this study is to try to obtain
a deeper understanding of PE and QG physics. In this chapter we
demonstrate how, without rebuilding or reformulating PE and QG
models, we can derive a set of consistent quantities that can be
intercompared. Before presenting this set, the PE and QG model

equations will be briefly described.

3.1 The basic models

The PE model used in this study is a new one (see Appendix
A for the numerical details), and makes use of the following
assumptions and approximations:

1) the hydrostatic and traditional approximations charac-
teristic of PE models in general (Phillips, 1966);

2) the Boussinesq approximation which assumes that density
variations are important only in calculations involving
the buoyancy force (Phillips, 1969); and

3) the assumption that density is a function only of tem—
perature.

The fluid motion is represented in Cartesian coordinates

X,y and z, where X is the east-west direction, y the north-south
direction and z the vertical direction. The velocity components

are u,v and w in the 2zonal, meridional and vertical directions,
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respectively. The equations of motion can be written as
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where t is time, p is pressure, p, is a reference density, v2
. . . o .
is the horizontal Laplacian operator, V is the horizontal

biharmonic operator, k., is the eddy viscosity coefficient in

m
the vertical direction, and Ay and B are eddy viscosity
coefficients in the horizontal direction for Laplacian and
biharmonic momentum diffusion, respectively. The subscripts t,
X, vy and z in the equations are used to denote differentiation
with respect to these variables. The Coriolis parameter f is a
linear function of latitude so that f = f, + 8y. The
advection operator L is defined as

LC) = [u( )]y + VO, -
The hydrostatic equation is

Pz T TPE » (3-3)
where p is the density and g is the acceleration of gravity.

The continuity equation, which assumes the fluid to be incom~

pressible, is
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u +v +w = 0. (3-4)
X y z

The first law of thermodynamics is

+A, V2T
T, + L(D) + (WI), = « T . { or . , (3-5)
“BV'T

where T is temperature, xy is the eddy diffusivity coefficient

in the vertical direction, and Ay and By are eddy diffusi-

vity coefficients in the horizontal direction for Laplacian and
biharmonic heat diffusion, respectively. The equation of state

is
p = po(l‘G(T‘To)), (3-6)

where T, is a reference temperature and a is the thermal

expansion coefficient. The prognostic variables for this system

are the zonal velocity u, the meridional velocity v and the
temperature T.

The QG model used in this study is essentially that of
Holland (1978). The governing equations consist of relative
vorticity and thermal wind equations:

+4 7

V2, = 30,7+ B - fu, o, | or (3-7)
-B_v%¢
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(b)) = =I(0,0,) + (g'/E v - (3-8)
t

Here ¢ is the QG streamfunction, 7 = Vzw is the relative vorti-
city, g' = gbp/po is "reduced gravity”, and all other vari-
ables are defined as before. The prognostic variables for this
system are the relative vorticity Vzw and the thermal wind ¢,-

A comparison of the PE and QG model equations shows that
the models have different equations and prognostic variables.
In order to quantitatively intercompare the models, some modifi-
cations are necessary. Without rebuilding or reformulating the
models themselves, we would like to derive a set of consistent
quantities that can be intercompared. Then we can use this set
to address some of the questions posed in Chapter 1. In parti-
cular, we could address the questions: Can the two models be
configured to give nearly similar results?; and, Are the differ-
ences due to numerics or to physics? In the next section, we
show how a particular set of consistent quantities can be

obtained.
3.2 Continuous form of the comparison equations
Starting with the PE system of equations, we derive a set

of equations which has the same form and prognostic variables as

the QG system. In particular, we form vorticity and divergence
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equations from the momentum equations. From the divergence
equation, we obtain the thermal wind relationship (which we will
later substitute into the thermodynamic energy equation). We
next decompose the horizontal velocity field into rotational and
divergent components, and substitute this decomposition into all

of the equations.

3.2.1 The PE comparison equations

The Cartesian form of the horizontal equations of motion,

Eqs. (3-1) and (3-2), can be written in vector form as

>
+A Vzv
~ 1 > m
> >
V o+ I +ww +fkxVv=- — Vp + ¢ Vv { or, (3-9)
t z ) m zz
o y>
=B V'v
m

>
where v is the horizontal velocity vector. Using the vector

identity
> _> -\)7--) ~ >
veUv = V( v) + k x vz,

2

~

+
where ¢ = keV x v is the vertical component of vorticity, we can

rewrite Eq. (3-9) as

+A_v2%
> > m
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o b
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Operating on Eq. (3-10) with the vector operator ke« Vx( ), we
obtain the vorticity equation
2
+AmV '
or .(3-11)
—n ok
BmV z

> > ~
g, = ~VeV(gHE) —wp ~(ZHETev + ke (V) X vyt o, ]

Operating on Eq. (3-10) with the vector operator Ve( ), we

obtain the divergence equation

+A_v2s
2, P 3& ~ > > n
6t=-v (po + —E—)—V-[k X v(;+f)]—w62-v2~Vw+KmGZZ{ or ,(3-12)
-B V"6

where the horizontal divergence § = V+%¥. From Eq. (3-12), we
can obtain the thermal wind relationship. Taking the vertical
derivative of Eq. (3-12), solving for the pressure term and sub-
stituting the relationship

Vzpz = 'gvzp = agVZT

(where Eq. (3-3) and (3-6) have been used) into the pressure

term, we can obtain

> > ~
27 = -5 -y2(XY) -v. v - —(V_» +
agV*eT §,, V(=) V- [k x v(gHf)] —(ws ) ~(v, vw) + (e 8 )

m zz 2
+A_v2s
m z
or, , (3-13)
-B V'§
m z

which is analogous to the the thermal wind relationship, but

without any balance conditions assumed.
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Using a theorem of Helmholtz (see Bourne and Kendall,
1968), which states that any velocity field can be decomposed
into non~divergent and irrotational components, we can let ; be

expressed as

vV o= k x Vp+ Vy, (3-14)

where y is a streamfunction for the non-divergent part of ¥ and
x 1s the velocity potential for the irrotational part. Hence,
the vorticity ¢ = Vzw and the horizontal divergence § = VZX. In
order to make this decomposition unique, we need to consider the
kinematic condition on the side walls, ¥+d = O, which means
#+k x Vy + 3+Vy = 0. We shall choose to completely specify
and y by choosing #+Vy =0 and #-R x Vy =0 independently. This
means the normal derivative of the divergent velocity is zero at
the boundary and the streamfunction ¢y is a constant there. This
is consistent with the boundary condition choice in the Holland
(1978) QG model, i.e., y = constant on the boundary, and with
integral continuity constraints.

Substituting Eq. (3-14) into Eq. (3-11), the vorticity

equation becomes

= 2
g, ==J(p,cHf) —V-£Vx - Vx-Vz —ZVx - wg ~Iwe Ty~ x )t ),
2
+A_vic
or, . (3-15)
-B V¢
m

where J is the Jacobian operator. Substituting Eq. (3-14) into
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Eq. (3-12), the divergence equation becomes

5 = _VZ(;B—) + Ve(fWy) - J(£,X)
(o]

7o ((k x v¢)-v(£ x vw))—v-((ﬂ X Tp) +V2y)
Y (TxeT(K X TY)) = Twe(k X TY),
+4_v%¢

or . (3-16)

2
~Ve (VyoV2y) ~VweVy + 8 |
z m zz —Bqué

Using Eq. (3-14), the thermal wind relationship becomes

agVZT = —(vzx)zt + Ve (fvy), - (J(f,x))z

—v-((i X vw)-v(ﬂ X vw))z

Ve (k x W) +92y), 7. (- T(k x V),
—(vW-(ﬁ x W), —v-((vxcvzx))z

+A_ V%6
m Z
- . . - 7
(Vwevy, ), + <6, { OE (3-17)
-B V6
m Z

Again using Eq. (3-14), the continuity equation (3-4) can be

rewritten as

vZx + w, = 0. (3-18)

The thermodynamic energy equation (3-5) can be rewritten in
vector and advective form as

2
+AHV T

>
o = . - 9
T, + VeV + W, = T . { or, (3-19)
~B V' T



If we substitute Eq. (3-14) into Eq. (3-19) we can obtain

+AHV2T
T +J T) + Vye + =
¢ (v,T) x*9T sz KHTzz -Bo;“T
3!

. (3-20)

The vorticity equation (3-15), the divergence equation
(3-16), the derived thermal wind relationship (3-17), the
continuity equation (3-18) and the thermodynamic energy equation
(3-20) form the basic PE comparison set of equations. In the
next section we will make the following approximations to this
set: 1) full balance, 2) linear balance, and 3) QG. As a
result we can obtain a hierarchy of systems of equations from PE
to QG, and can then make systematic comparisons among these
systems. This also allows us to evaluate the importance of each

of the terms involved in this sequence of approximationms.

3.2.2 Approximations to the PE comparison equations

Following Lorenz (1960), systematic approximations to the
intercomparison set of PE equations, which were obtained in the
last section, will be made in order to obtain energetically
consistent sets of full balance, linear balance and QG equa-—
tions. We first replace the divergence equation with the full
balance equation, which is obtained by neglecting all terms

containing divergence in the divergence equation. In an
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analogous fashion we neglect certain terms containing divergence
in other equations. We next neglect certain nonlinear terms in
the above equations to obtain linear balance equations. Lastly
we omit certain additional terms from the linear balance equa-
tions to obtain the QG system of equations, which is the basic

set of equations we will use in intercomparisons with the PE

model.

The full balance approximation and equations

In order to obtain the full balance equations, we assume

that the horizontal velocity is quasi-non-divergent, i.e.,

’Vx‘<<'k X vw', (3-21)
where the notation introduced in Eq. (3-14) has been used. We

then find that terms involving w and Vx in the divergence equa~

tion (3-16) may all be neglected. Eq. (3-16) then reduces to

0= -VZ(EL) + T(EVY) - To((k x Tp)oV(k X TP)) ,
(o]

which can be rewritten as

1
v2[53-+ —5-(V¢)2] = Vo [(f + VEQ)W] - (3-22)

(o]

This equation, called the full balance equation, expresses a

rather complicated nonlinear relationship between y and p,
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similar to a gradient wind balance. It is important to note
that dropping the divergence tendency omits gravity waves from

the system.

Using the assumption (3-21), the thermal wind relationship

(3-17) reduces to
1
ag?’T = v [5Hw)?]_ + V-[(f + V2V, (3-23)
and the vorticity equation (3-15) to

g, = ~J(y,g + £) ~VefVy = VxVg —gVx
+Amv2;
—wg, = WWeVy, + kT { or . (3-24)
—BmV z
We note in Eq. (3-24) that all terms involving both the rota-
tional and divergent part of the horizontal velocity field are
still retained. As shown by Lorenz (1960), this retention is
necessary in order for the full balance system of equations to
possess suitable energy invariants.

The thermodynamic energy equation (3-20) along with the
continuity equation (3-18) are left intact. 1In particular, the
term VyxsVT in Eq. (3-20), which might otherwise be neglected, is
retained for energetic consistency.

Eqs. (3-23), (3-24), (3-20) and (3-18) make up the full

balance system of equations.



27

The linear balance approximation and equations

In order to obtain the linear balance equations, we assume
that nonlinear terms are negligible compared to linear terms in
the divergence equation. The divergence equation (3-22) then
reduces to

vz(;B—) = Ve (£7Y) (3-25)

o

which is the linear balance equation. This equation expresses a

simple linear relationship between y and p.

Neglecting nonlinear terms in the thermal wind relationship

Eq. (3-23) and small terms in the vorticity equation (3-24), we

obtain
ag¥’T = V.(£VY) (3-26)
and
2
+AmV g
g, = ~I(p,gHD) ~UxeVE + £vx + kg, o or . (3727)
m°zz '_p ghp
m

The term —VyeVf, which is the advection of the planetary vorti-
city by the divergent component of the horizontal velocity
field, although small compared to other terms in Eq. (3-27),
must be retained for energetic consistency (Lorenz, 1960).

Eqs. (3-20) and (3~18) remain intact and together with
Eqs. (3-26) and (3-27) make up the linear balance system of

equations.
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The QG approximation and equations

In order to obtain the QG equations, we assume that the
advection of the planetary vorticity by the divergent component
of the horizontal velocity field, i.e., -Vx°Vf, is negligible
compared to other terms in Eq. (3-27). For energetic consis—
tency (Lorenz, 1960), it is necessary to simultaneously replace
f by a constant mean value f, in the term fVZX in Eq. (3-27)
and in the term V-(fVy) in Eq. (3-25). The vorticity equation
(3-27) then reduces to

2
+AmV z

2
g, = ~J(,THE) + £ VX + kT, { or , (3-28)

- 4
BmV 4

and the divergence equation (3-5) to

2, Py - 2 -
v (po ) = £,9%9 . (3-29)

The latter equation states that the streamfunction y can be

given approximately by p/(f,p,) and that the pressure field

is approximately proportional to the streamfunction field.
If we replace f by f, in Eq. (3-26), we obtain the

thermal wind relationship
og?’T = £ vy - (3-30)

This equation states that y, can be given approximately by
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agl/f,-

According to Lorenz (1960), no approximations need be made
to either Egs. (3-20) or (3-18), so that the equations (3-28),
(3-30), (3-20) and (3-18) form a suitable energetically consis—
tent system of equations. In our study, however, in order to
use the Holland (1978) model, we wish to simplify the thermo-
dynamic energy equation by replacing variable static stability
by a constant value. For energetic consistency, following
Lorenz (1960), it is necessary to simultaneously neglect in the
thermodynamic energy equation (3-20) the advection of tempera-
ture by the divergent component of the horizontal velocity
field. With these simplifications the thermodynamic energy
equation (3-20) reduces to

00T

Tt + J(y,T) + oW = { or , (3-31)

_ b
BHV T

where o, is the static stability, which is constant in time

and in the horizontal domain. Using the thermal wind relation-

ship (3-30), Eq. (3-31) can be rewritten as

2
L
b, +IW,Y) - o w = { or . (3-32)
0 —BHVL'\pZ

The set of equations (3-28), (3-30), (3-18) and either (3-31) or

(3-32) make up the QG system of equations.
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3.3 Choice of model parameters

Besides a consistent set of equations and prognostic vari-
ables to intercompare the results of PE and QG numerical experi-
ments, we need to obtain a consistent model set-up. In parti-
cular the models should have not only the same model parameters,
but also the same vertical and horizontal distribution of vari-

ables.

3.3.1 Basic experimental design

Before any experiments are conducted, the numerical aspects
of each model must be tested, i.e., grid resolution, choice of
layer depths, choice of friction formulations, forcing function
structure and amplitude, and boundary conditions. The results
of these tests determine the choice of model parameters to be
used in the experiments.

Since the QG model has already had the numerical aspects
tested and has been successful in generating mesoscale eddies
(see Holland, 1978), we initially base our choice of model para-
meters for both models on what Holland (1978) used. Because of
the great expense involved in running the PE model, we are
limited to running only two experiments for our intercomparison
study. We choose to run single-gyre and double-gyre experiments

using many of the model parameters used in Holland's Case 1.
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3.3.2 Domain of the ocean and grid system

For both experiments a rectangular ocean basin centered at
midlatitudes is used. For single-gyre runs a 1000 x 1000 km
basin, centered at 35°N, is used; for double-gyre runs, a 2000
(north-south extent) x 1000 km basin, centered at 40°N, is used.

The horizontal grid size to be used in all experiments is
20 km. This size meets a basic requirement cited by Holland
(1978) for an eddy-resolving model, namely that fine horizontal
resolution (~10 or 20 km) is needed, and is the size that
Holland consistently uses. It should be pointed out that this
choice of horizontal grid size is twice as fine as that used in
all previous non-adiabatic "eddy-resolving” PE ocean models
(e.g., Han, 1975; Robinson et al., 1977; Semtner and Mintz,
1977). The use of these coarser resolutions (i.e., greater than
or equal to 40 km), according to Han (1975), may not be adequate
to resolve baroclinic and barotropic eddy processes, particu-
larly in the western boundary and subarctic regions.

Although it is known that continental margins and bottom
topography influence both large~scale currents and eddy dynamics
(Warren, 1963; Holland, 1967; Orlanski and Cox, 1973;
Bretherton, 1975; Bretherton and Haidvogel, 1976; Rhines, 1977;
Semtner and Mintz, 1977), flat-bottomed models are used, follow—
ing the philosophy of Holland (1978), who recommends proceeding

from simple to more complex models. The use of flat-bottomed



32

models should result in fewer computational requirements and
more straightforward intercomparisons between the QG and PE
models.

For the same reasons, we use two—layer instead of multi-
layer versions of the models in both experiments. The upper
layer represents the warm water above the thermocline while the
lower layer represents the deep ocean.

The vertical structure of the PE and QG models is shown in
Figs. 3.1 and 3.2, respectively. The fundamental variables of
the PE model (u,v,T, and w) plus the derived variables (y and x)
are shown in Fig. 3.1. The fundamental variables of the QG
model (¢ and w) are shown in Fig. 3.2. For both models, the
layers are numbered from top to bottom with the layer thickness
(constant for each layer) given by hy. The vertical coordi-
nate is the height z, which is positive upwards with z = 0 at
the surface. In both experiments, the same two-layerAversions
of the models are used with hy = 1000 m and H = h) + hy =
5000 m.

The horizontal arrangement of variables for the PE model is
shown in Fig. 3.3. The zonal velocity u and Coriolis parameter
f are carried at a distance A/2 (A being the uniform grid inter-
val in both the x and y directions) to the east and west of the
point of a rectangular grid where the temperature T is carried.
The meridional velocity v is carried at the same distance to the
north and south of the temperature point. The pressure p is

located at the same point as temperature. The vertical velocity
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Fig. 3.1 The vertical structure of the two-layer PE model.
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Fig. 3.2 The vertical structure of the two-layer QG model.
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Fig. 3.3 Arrangement of variables in the PE finite-
difference grid system.
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w is located at a distance A/2 to the east of u and to the north
of v (i.e., also at T points) in order to facilitate differen-
tiation of the continuity equation.

This space-staggered grid, called the C-scheme by Arakawa
and Lamb (1977), has been shown by Batteen and Han (1981) to be
free of noise for the gravest mode when fine-scale resolution
(<40 km for the ocean), as in mesoscale ocean eddy models, is
used. It has been used extensively in both ocean and atmo-
spheric general circulation modeling (Holland and Lin, 1975a,b;
Arakawa, 1966, 1972). When the grid size is smaller than the
Rossby radius of deformation (~50 km in the ocean, ~1000 km
in the atmosphere), this scheme will simulate geostrophic
adjustment more adequately than other schemes (Winninghoff,
1968; Arakawa and Lamb, 1977; Schoenstadt, 1978).

Also shown in Fig. 3.3 are the derived variables y, defined
at the corner points of the grid, and x, defined at the center
point of the grid. This grid arrangement facilitates the
decomposition of the horizontal velocity field into its
rotational and divergent components, i.e.,:

u = xx T ¥y oo (3-33a)
and
Vo= Xy + vy - (3-33b)

Two different horizontal arrangements of variables are

shown for the QG model in Fig. 3.4. Fig. 3.4a shows the hori-

zontal arrangement of variables for actual QG runms, while Fig.
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Fig. 3.4 Arrangement of variables in the QG finite-
difference grid system for (a) actual runs and
(b) intercomparisons with the PE model.
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3.4b shows the arrangement of the additional derived variables
when intercomparisons with the PE model are to be made.

Both ¢ and w are carried at the corner points of the grid
in Fig. 3.4a; in Fig. 3.4b, however, the variables are arranged
to be consistent with the PE arrangement of variables (see Fig.
3.3). An averaging of w at the corner points of the grid in
Fig. 3.4a is made to determine w in the center of the grid in
Fig. 3.4b. The horizontal velocities u and v in Fig. 3.4b are
arranged, as in the PE model, to facilitate the decomposition of
the horizontal velocity field into its components, which, in the

quasigeostrophic system, is just the rotational component, i.e.,

by (3-34a)

[=4
]

and

3.3.3 Wind forcing

Following Holland (1978), the upper layer of the ocean is
driven by a zonal wind stress which is steady in time and varies
with latitude in a simple sinusoidal manner. For single-gyre
runs,

1(y) = -1, cOS (ny/D). (3-35)

where T is the wind stress acting on the surface, 1o is the
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constant wind stress amplitude, and D is the north—south extent
of the rectangular basin. For double-gyre runs

1(y) = -1, c0s (2my/D). (3-36)

The use of a wind forcing steady in time rather than tran-—
sient does not significantly suppress eddy generation. As
stated earlier, eddies are primarily generated by instabilities
of strong mean flows, and the eddy response to transient wind
forcing may be a second-order effect in midlatitude gyres

(Schmitz et al., 1983).

3.3.4 Friction formulations

Lateral momentum diffusion and bottom friction

Holland (1978) used two forms for lateral momentum
diffusion, which he called "Laplacian” and "biharmonic”
friction. In several of his experiments, Laplacian friction was
incorporated:

F = AgV ¥s (3-37)
where F represents lateral momentum diffusion. In other
experiments, biharmonic friction was used:

F = -Byv°y- (3-38)
When Laplacian friction was incorporated, no bottom friction was

included; when biharmonic friction was used, bottom friction was

included in a simple linear form:
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B = —Cg¥%y> (3-39)
where B represents bottom friction, and Cg is the bottom
friction coefficient.

For single-gyre experiments, Holland (1978) investigated
two cases (see Table 2 in Holland (1978) for a complete list of
cases and choices of model parameters): Case 1) Laplacian
friction (Ay = 330 m?s”!) with no bottom friction included,

48-1) with

and Case 2) biharmonic friction (By = 8 x 10° m
bottom friction (Cp =1 x 1077 §7hy incorporated. Case 2 was
only briefly discussed in Holland (1978), but Case 1 was
extensively explored. We therefore use Case 1 as guidance for
the single~gyre experiment and so choose Laplacian friction
(Ay = 330 m®s™!) with no bottom friction included.

For double-gyre experiments, we also use Laplacian friction
(Ay = 330 m2S—l) but include bottom friction (Cg =1 X 10~/
S—l). The choice of the same lateral momentum diffusion coef-
ficient as in our single-gyre case allows some comparisons to be
made between the single-gyre and double-gyre results. The addi-
tional incorporation of bottom friction also allows the role of

bottom friction in the ocean general circulation to be examined

in a limited way.

Lateral heat diffusion

Lateral heat diffusion is incorporated in non-adiabatic PE
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models in order to suppress computational noise that would
otherwise develop. In QG models, no computational noise will
develop if this term is neglected. As a result, Holland (1978)
does not include heat diffusion in his QG model, and we cannot
use his case studies as a guide for the choices of heat diffu-
sion formulation and coefficient in our PE model.

Since we had already decided to use a Laplacian momentum
diffusion formulation, we initially decided to use a Laplacian
heat diffusion formulation:

G = AgveT, (3-40)
where G represents lateral heat diffusion. We used the same
value for the heat diffusion coefficient as the momentum diffu-
sion coefficient, i.e., 330 m?s™!. We found that this value was
large enough to successfully suppress computational noise. We
also found, however, that no mesoscale eddies were generated.
Instead of reaching a statistically steady state in which eddies
and the mean flow are in mutual balance, a steady state without
eddies was obtained.

The cause of this mesoscale eddy suppression was not
clear. A combination of model parameter choices could be
responsible. Given these model parameters, the heat diffusion
could be more effective at suppressing the eddies than the
momentum diffusion.

Since the PE model is too expehsive to carry out a para-

meter study, we conducted the following investigation. We
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knew that the choices Holland (1978) had used in his Case 1 were
not responsible for mesoscale eddy suppression, since eddies had
been successfully generated with these choices. He effectively
had no heat diffusion. But heat diffusion has not been
neglected in Eqs. (3-31) and (3-32) when the QG approximation
was made, and it was decided to incorporate this term, which we
call "thermal wind" diffusion, in the QG model. This allowed us
to conduct an inexpensive parameter study with the QG model in
which: 1) different types of thermal wind diffusion, i.e.,
Laplacian an@ biharmonic formulations, could be incorporated,
and 2) different diffusion coefficients could be used, ranging
from zero (the Holland case) to typical choices used in PE
models. From such a study, we could examine the extent to which
the use of each diffusive parameterization would result in any
suppression of instability processes. The results could be used
as a guide for determining the heat diffusion formulation and
coefficient for the PE model which would suppress computational
noise, yet still allow the active generation of mesoscale
eddies.

The results of this study showed that, if Laplacian thermal
wind diffusion is used, values consistent with those used in PE
models can result in the suppression of mesoscale eddies
altogether. When a biharmonic formulation is used, however,
typical PE choices of biharmonic diffusion coefficients do not

lead to any suppression of mesoscale eddies. Because of this
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finding, we use a biharmonic rather than a Laplacian heat diffu-
sion formulation in the PE model, i.e.,

G = —BHV”T . (3-41)
With this choice, we find that we can use the same coefficient
for heat diffusion that Holland (1978) used for the biharmonic
10 4 -1

momentum diffusion i.e., ~10°° m's =, without any noticeable

generation of computational noise in the PE model.

3.3.5 Boundary conditions

The lateral boundary condition on the velocity can be

either free-slip or no-slip. In the present models, following

Holland (1978), free-slip conditions are used. The use of this

condition not only reduces dissipation by lateral friction
(Blandford, 1971), but also allows a strong inertial boundary
current to develop (Holland and Lin, 1975a,b). The free-slip

boundary condition for the PE model is:

v, =0 on x = O0,L (3-42)

and

it

u, =0 ony = 0,D, (3-43)

y

where L is the east-west length of the basin.
The use of biharmonic temperature diffusion requires two
boundary conditions. As in Semtner and Mintz (1977), in order

to conserve heat in exchanges between gridpoints and to prevent
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heat transfer across all of the boundaries, the values of T and
V2T are reflected across the boundary.

The rigid-1lid assumption, w = O at the surface of the
ocean, is made to exclude external gravity waves for economy in
computation. The constraint this assumption makes on the method
of solution for the PE model is discussed in Appendix A.

The boundary conditions on the ocean bottom are those of no
vertical velocity and no vertical heat flux. As in Holland
(1978), there is no incorporation of interfacial friction

that would couple the layers together.

Physical boundaries

In the PE model, following Holland and Lin (1975a), the
physical boundaries of the basin are set up to coincide with
lines of u points at the north-south boundaries and with lines
of v points at the east-west boundaries. This choice of the
boundaries readily accommodates the kinematic boundary
condition of having no normal flow across the lateral walls,

i.e.,

u=20 on x =0, L (3-44a)

and

v=20 ony =0, D. (3-44Db)
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At a distance A/2 outside each boundary, an extra array of grid
points is introduced both to allow the same computing algorithm
to be utilized for points next to the boundary as for points in
the interior, and to provide a way for specifying the free-slip
boundary condition. In particular, the tangential velocity out-
side is set equal to that of its mirror-reflection counterpart
inside the boundary.

In the QG model, the physical boundaries of the basin are
set up to coincide with lines of ¢ points on the boundaries.
This choice of the boundaries, like the PE model, also accom-
modates the kinematic boundary condition. At a distance A out-
side each boundary, an extra array of grid points is introduced

to accommodate the free-slip boundary conditions.

3.4 Semi-discrete form of the comparison equations

In previous sections we have obtained: 1) a consistent set
of comparison equations and prognostic variables in continuous
form, and 2) a consistent model set-up. In this section we pre-
sent the semi-discrete form of the comparison equations as a
hierarchy from PE to QG. This will allow us to evaluate the
importance of each of the terms involved in the sequence of

approximations from PE to QG.

3.4.1 The vorticity equations
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In order to facilitate the vertical differencing of the

vorticity equation, Eq. (3-15) is first rewritten as
2 - 2 - - Uye
v w)t J(yp,VytE) + fowz + (f fo)wz Ve VE
2
- . + -
Vxevz + gw, (wv w)z
+ » + L
gw, + (Vw Vq;)z Vyew,

- 2
(J(W)X))Z + J(X,Wz) + Kmsz +Amv 4 ’

where, as explained earlier, the alternative choice of bihar-
monic momentum diffusion term is no longer retained. Dividing
the ocean into two layers, with h; representing the thickness of
the upper layer, h, the thickness of the lower layer (see Fig.
3.1), and defining ¢ at layer mid-points, we find the semi-

discrete analogue of the above equation:

2 - -
(V1) = Ajqe * A1 T Ars t AreE (3-45)
and
2 - -
(V7¥2) ¢ = Ayqe * Aarp * Aors T A2pE’ (3-46)
where
- 2
AIQG = ‘J(¢1,V U1 + f) - (fo/hl)wz
+h1—1curlzr(y) + Aqu¢1: (3-47)

Apg = ~(F - £,)/h)we = Va9, (3-48)
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=h; (Vypwz ,

-1 -1
-hy " J(x1,w2) +h1 J(w2,x*) ,
~I(y2,9%y + £) + (£ /hp)w;

4 2
+AmV Yo = CBV Yo,
((f - fo)/hz)wz = Ux2°Vf,

~hy " Cxp W) hy TR x)
3wz, 70y + £) + (£ /h)w
Ty, - Cp70ys,

(£ = £,)/h2)w = TxaeVE,

=Vx2+9zp +(2/h)gows

'hz—IWZC* + hz—l(VW2V¢*)

m

1]

H

-1
+hy  “(Vy2)lw2 ,

hy” 10 (x2,W2)s ~hy P (Waux*)
(Cl + CZ)/Z ’
(p1 + v2)/2,
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(3-49)

(3-50)

(3-51)

(3-52)

(3-50)

(3-51)

(3-52)

(3-53)

(3-54)
(3-55)

(3-56)

and curl,t(y) is the vertical component of the wind stress

curl.
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Here and in the following equations, the subscripts PE, FB,
LB and QG are introduced to symbolize the terms retained in the
hierarchy of equations from PE to QG. The notations FB and LB

stand for full balance and linear balance, respectively.
3.4.2 The divergence equations

In order to facilitate the vertical differencing of the

divergence equation, Eq. (3-16) is first rewritten as

2 . _ _ -12 2 ) el
(V) = o, Vp + £ 979 + (£-£ )V 9 + Ty (f-f,)

“ICE,x) ~Ve(Ck x V) - (V(k X )

7 ((k x TPIW) - 7o (Ve V(K X V)

-((k x Tp) VW) + ((k x 7y) =T )
+7e (Vxew,) =(VweVx), + (Vx+Vw,)
+e 5 HATVES .
m zz m
Defining x at layer mid-points in Fig. 3.1, the semi-
discrete analogue of the above equation is
(3-57)

= B1ge * By * Birs * Bire

and

2qc ¥ B2z * Bars t Bopg, (3-58)



where
-1_2 2
Bigg = TPo VPl + £ V9,
_ 2
By = (f - £ + Vy1VeE,
Bypp = ~Ve((k x T91) +V(k x VY1),

2
Bipg = -(v Xl)t - J(f,x1)

—hl—lV.((£ X le)WZ) - V'(Vxl‘V(£ X V¢l))
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(3-59)

(3-60)

(3-61)

(3-62)

+h1—1(k X Vy*)eVw, + h1°1(k X V) eVwy = hl’lv-(vxl-wz)

+ hl—l(VwZ‘VX*) - hl—l(VXI'VWZ)

L
+Ter(y) ATy

-1_2
= —po—IVZPl - (gaH/Z)VZT* + fovzwz,
2
Byg = (£ £))V70p + Typ o vf ,
Bopp = -7e ((k X Typ) o0k X Typ))

2
BZPE = -(V Xz)t - J(f,x)

+hy Nk % Ty2)wa) = T (Txp Wk x T92))

-, "k x TyE) evw, + hy, "L (k x 7yy).vw,

+h2_1V~(Vx2-w2) - hz—l(Vw2~Vx*)
-1 4 2

T*

1§}

(Tl + Tz)/z s

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)
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and Eq. (A-4) has been used. (See Appendix A for the derivation
of Eq. (A-4).) The definition of T* in Eq. (3-68) is chosen in
order to guarantee total energy conservation in the PE system of
equations, and to satisfy conservation of the first and second
moments of temperature as far as vertical advection is concerned
(Lorenz, 1960). (Demonstrations of these conservation

principles are given in Appendix A.)
3.4.3 The thermal wind relationship

In order to facilitate the vertical differencing of the

thermal wind relationship, we first rewrite Eq. (3-17) as
20 - 2 - 2 L (f=f ) - (g2
agV°T = £ vy, + (f fo)v v, W, (f fo) (v X)zt

~(J(£,%)), - Ve ((k x T9)T(k X T9)),
Fe((k x W) Ve (TxeT(k X TY),

S(C x TP eTw)_ + ((k x TY)T,),
+V-(onwz)z - (Vw-VX)Zz +(VX‘VWZ)

2
+Kmszzz +AmV $ .

The semi-discrete analogue of the above equation is

2*= -
agV'T CQG + CLB + CFB + CPE s (3-69)
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where

Coe = 2,/ (01 = ¥2) (3-70)

Cp = (2/B)(E - £)72(¥1 = ¥2)

+(2/H)V(y1 - Y2)+(f - £)) (3-71)
Cpp = By [(92yp ey = TPppeT2)
HT V(T T - Te2eT92)] (3-72)

and

(9]
1

o = (/DT (x17x2), = (2/B)I(£,x17X2)

-(2/H)v2(v¢1vxl - TypVx2)

-0 (T 9%~ Tx2¥x2)
+(2/1) (hy " Fwp¥2x* + hy "l viy®)
+(2/H) (hy " wa - Ux* + hy 17w ux*)

+(28_/H)V" Gamx2) - (2C,/M7* (x17x2) - (3-73)
3.4.4 The continuity equation

The semi-discrete analogue of the continuity equation

(3-18) is

VZXl - wy/hy =0 (3-74a)
and

v2ys + wa/hy = O. (3-74b)

3.4.5 The thermodynamic energy equation
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To facilitate vertical differencing of the thermodynamic

energy equation for the PE model, we first rewrite Eq. (3-20) as
+ . -
T, + J(y,T) + Vxe¥T + (WD) = Tw,

= - 4
KHTzz BHV T,

where, as explained previously, the Laplacian heat diffusion
term is no longer retained.
The semi-discrete analogue of the above equation, is

-1
Ty, + J(01,T)) + V) oVT) - by Ty

+ b7 e, = 12k /B (T) - T2) - B,V T, (3-75)
and

-1
Ty, + J(¥2,Tp) + Vx2+VTp + by THw,

(26, / (h2H) (T = T2) - Bﬂv“rz, (3-76)

]

- by Tw,

where Eq. (3-68) has been used.

Since the QG model does not have mid-layer temperatures
(see Fig. 3.2), but only the interfacial temperature T* defined
by the thermal wind relationship Eq. (3-70), the QG semi-dis-—
crete analogue of the thermodynamic energy equation cannot be
readily obtained from Eqs. (3-75) and (3-76). In the following
we derive a set of equations from Egs. (3-75) and (3-76), which
we will hereafter use for comparisons between the QG and PE
models, since this new set will allow QG temperature equations

to be readily obtained.
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Decomposition of the temperature equations

Defining static stability as
o = (Ty - Ty)/(H/2) (3-77)
and recalling Eq. (3-68), we note that we can decompose the tem—

perature fields T; and T, into T* and ¢ components as follows:

T, = T* + (H/4)o (3-78)
and

T* - (H/4)o . (3-79)

3
()
il

We can use these relationships to obtain both T* and o
prediction equations from Egs. (3-75) and (3-76). If we divide
Eqs. (3-75) and (3-76) by 2, substitute the relationships (3-78)

and (3-79) into the resulting equation and add, we can obtain

T* = DQG + Dpp > (3-80)
where
Dog = J¥*TH) + (H2/(8hyhp)wao, ~ BV 'T* (3-81)
Dpg = (H2/(8hyhy)wys’ + J(1,0") + (1/2)Vx-VI*
+ (1/2)Vyp+VT* + (H/8)Vxy+Vo'
+ (H/8)Vyz+Vo' = (hp=hy)/(2hihp)xe’, (3-82)
o= o0, + ¢o'(x,y,2,t), (3-83)

and

T = (H/8)(¥1-v2)
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Here o, represents constant static stability. No subscripts
for the full and linear balance approximations are used since
the thermodynamic energy equation does not involve these
approximations. If we multiply Eqs. (3-75) and (3-76) by (2/H),
substitute the relationships (3-78) and (3-79) into the
resulting equations, subtract Eq. (3-79) from Eq. (3-78), and

use the relationship (3-83), we can obtain

9% = Eqc T Fppe (3-89)
where

g = ¢ = 0 (3-85)
and

Epg = 0p = J(¥*,0") - J(,T*) = (2/H)Vx;+VTy

+(2/H)Vx2+VT2 = ((h2-h})/(2hyhy)wz0

-(2H/h1hy)o = Bv'o’ . (3-86)

Using the relationship (3-83) and Eq. (3-85), we can also obtain

the QG counterparts to Egqs. (3-77) - (3-79):

OOQG =z (T - Tz)o/(H/Z), (3-87)

TIQG = T% + (H/4)oo , (3-88)
and

TZQG = T* = (H/lo)oo . (3-89)

In Eq. (3-87) a subscript has been attached to (T; - T,) to

denote that (T; - T,) is constant in our QG system.
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Eqs. (3-80) and (3-84) form the temperature set of equa-
tions. This set completes the semi-discrete form of comparison

equations that we will use in the following chapters.
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CHAPTER 4. METHODS OF COMPARISON

The analyses of energy, relative vorticity, and potential
vorticity each emphasize different aspects of the dynamics of
the ocean general circulation. The analysis of energy sources,
sinks and transformations associated with the motions can be
used to explore generation processes for eddy kinetic energy.
Relative vorticity equations can be used to investigate the
degree of quasigeostrophy. According to Holland and Rhines
(1980), potential enstrophy (i.e., the square of the potential
vorticity) can be used as the principal measure of mesoscale
eddy activity, since the “time-mean potential vorticity Q is the
fundamental reference field for the mean circulation.”

In this chapter we use the set of equations just derived to
develop analysis procedures in the following areas: 1) energy,
2) relative vorticity, and 3) potential vorticity. The results
of the single-gyre and double-gyre QG and PE numerical experi-
ments (Chapters 5 and 6) will be analyzed in each of these

areas.

4.1 Energetics

In the present experiments, two sets of energy equations

are used. The first set is composed of time-dependent energy

quantities, and the second describes time-averaged and eddy
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motions. We first show how the kinetic energy can be decomposed
into rotational and divergent components.

Using the identity (3-14), the kinetic energy per unit mass

can be written as

%—ch = %-vw-v¢ + J(v,x) + %‘VX'VX .

1f the above relationship is horizontally averaged, the Jacobian

term will vanish, and the kinetic energy becomes

1 > >

1w = 2 <Tpem> + 5 Tyt (4-1)

where the angle brackets denote a horizontal average over the
entire basin. If we differentiate Eq. (4-1) with respect to

time, we can obtain
1 220 _1 2 1 2
7<V0V>t = 7<(V¢) >t + 7‘ <(VX) >t >
which can also be written as

= - TR - TR (4-2)

where yp represents y on the lateral boundary points. We note
that we can use the above relationships to obtain time-dependent
kinetic energy equations from the vorticity and divergence

equations.

4.1.1 Time-dependent energy equations
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Rotational and divergent kinetic energy

The rotational component of kinetic energy for each layer
is obtained by multiplying the relative vorticity equations
(3-45) and (3-46) by —hy (y1-yyp) and ~hy(yo~yop)s

respectively, and horizontally averaging:

3 2y _ _
(Rip)y = (1/2)T9)™> = Gyo6 + Gypp + Gypp * Cppp (473)
and

_ 2y - -
(X = (ho/2)<(Vyy) >.= Gyoc * + Gypp * Gypps (4 4)

2R)t - QG 2LB
where

G

1QG = f°<(1l)1'1l)lB)W2>

~<(y=pygleurl  T(y)> - Amh1<(¢1—¢1B)v”¢1> (4-5a)

£ C(WA-yrpwp> + (£, /2)<wa ((h17vy)~ (b2vp))>

~<(g=pypdeurl (9> - A <=y p)V 91>, (4-5D)

Gip = (f = £)<(V1-dyp)wa> (4-6a)
= (£~ )<(p*-y*plwz>
H((E-£)/2) < ((h1 =1y )~ (b2 990>, (4-6b)
Gipp = "hi<(n¥yp) A pp”s 4-7)
Gpg = 0
Goqe = ~EoM2(v2mvyp)>

~A_hp<(b2=0yp) (7" 92)> + Coha<(ha=vpp) ¥2>  (4-8a)

—£ Swa(p*-y* >+ (£ /2)<wa (1791 )~(¥27¥95))?
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A _ho<(ypmyg) (V' p)> + Cth<(¢z‘¢zB)V2¢z>’ (4-8b)
Gyrp = —(f = £)<wa(¥2-vpp)> (4-9a)

= ’(f’fo)<wz(¢*‘¢*B)>

+((f"fo)/2)<wz((411‘4113)“(412‘4123))), (4-9b)
Gopp = ~h2<(¥27¥,p) “Agpp” > (4-10)
G2PE = 0,

and Kip and Kyp are the rotational components of kinetic

energy for the upper and lower layers, respectively. We note

that in Egqs. (4-5b), (4-6b), (4-8b), and (4-9b), the relation-

ship (3-55) has been used.

The divergent component of the kinetic energy for each
layer is obtained by multiplying the divergence equations (3-57)
and (3-58) by -h;y; and ~h,y,, respectively, and horizontally

averaging:

Mo ¥ M t M

"

(K FB + MIPE (4-11)

o) = (/2> By

and

M + M + M (4-12)

2qc T Mars T Mors * M2pe

]

®yp), = (ha/2)<(vx) %>,

where

M qc

11

-1 2 2
h1po 1VpyY - foh1<x1V P1> (4-13)

M

2 -
1LB ‘(f - fo)h1<X1V Xl)"h1<xl(V¢1'Vf)>, (4 14)

1t
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M pE

Maqe

MyLB

MorB

M)pE

and K;p and Kop are the divergent components of kinetic

energy for the upper and lower layers, respectively.

’h1<X1‘BlFB> ’

- 2 2
hop'<x2+V 2> = £ hyp<xa+V 92>,
(£ = £ hp<xa- T hp>ha<xz (W2 V),

_h2<X1.B2FB>’

_h2<X2.B2PE>’

PE kinetic and available potential energy
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(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

(4-20)

The total kinetic energy for each layer is obtained as

follows. First, the semi-discrete analogues of the PE momentum

equations (3-1) and (3-2) are obtained:

+

Y1t

+

Yot

<
+

]

-1
(ulul)x + (Vlul)y _hl (qu*)
- 2 -1
fv) = b, Pt AV Uty (y),
-1
(ugup), + (Vzuz)y + hy (wpu*)
-1 2
fvy - o P2y + AmV up - CBuz,
-1
(ulvl)x + (Vlvl)y - hl (WZV*)

-1 2
-fu;, - o p1y + AmV V]

-1
(uzva)y, + (vava)y + hy " (wpv¥)

(4-21)

(4-22)

(4-23)
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u* = (u; + uwp)/2 , (4-25)
vk = (v + vy)/2 (4-26)
1 2 ’

where, as explained earlier, the biharmonic momentum diffusion

term is no longer retained. Next, the kinetic energy for each
layer is obtained by: 1) multiplying Eq. (4-21) by (hyuy),
(4-22) by (hpuy), and adding them together; 2) multiplying Eq.
(4-23) by (hyv;), and (4-24) by (hyvy) and adding them; and
3) horizontally averaging the resulting equations:
1 2 1 2
ol + = =
hi<z v ¥ 2V = Ry
= A hy<u;¥2u; + V929> = p " uypyL + v >
MO 1V V) o 1P1x 1P1y
+ <uyt(y)> (4-27)
1 2 1
= + =
hy<zu . 7V
= A hy<upVlu, + vo¥2vy> = o " i<u + v >
p 2 Y42y U2 2V V2 Po 2P2x 2Py
- C hy<u? + v3> (4-28)
B 272 2
p* = (p1 *+ P2)/2 .
The available potential energy of the system is chosen to

be consistent with the definition of Lorenz (1955); it is pro-

portional to the horizontal temperature variance, i.e., the
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square of the deviation of the temperature from its horizontal
average. First, the semi-discrete analogue of the PE tempera-

ture equation (3-5) is obtained:

-1
Tlt + (“lTl)x + (VlTl)y -h) (WZT*)

~((2ep)/ (MB)) (T = Tp) - Bv'Ty (4-29a)

-1
th + (usz)x + (Vsz)y + hp (WZT*)

= ((2ep)/(haB))(T) = T)) B V', (4-29b)

where, as explained earlier, the Laplacian heat diffusion term
is no longer retained. Next, using angle brackets as before to
denote the horizontal average, and the symbol tilde (-) to

denote the deviation from the horizontal average, we can derive

the following equations:

1 1,0 "y
5 T2 > + 5 <Tywpd> <o> - (1/(2hy))<T*%wy>
) S 1 42
= =((2¢)/ (W R))<T (T} = Tg)> = 7 By <V'Ip> (4-30a)

and

~ o~ ~

1 2 1 B}
L <Al 4 g <Tpup> o> + (1/(2h))<T#%wp>

- - 1 42
= ((26g)/(hH)<To(T) = To)> = 7 By<v'Tp> - (4-30D)

If we multiply Eq. (4-30a) by (hjag/<oc>) and Eq. (4-30b) by

(hyag/<c>) we can obtain
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<P, >

-1 .2
((hjag)/2)<c "><T}.> 1t

= ((hiag)/2) <Tiwp> - (ag/2)<o™ '><T*%uy>

=-(2KHag/H)<o‘1><§1(51—52)>—BH(h1ag/2)<o'1><v“if>(4-31)

and

-1..22
((h2ag) /2)<a” "><Ty, > = <&y,

((hpag) /2)<Tpwp> + (ag/2)<o™ ' ><T*?up>

(zKHag/H)<o‘1><iz(f1-52)>-BH(h2ag/2)<o“1><v“i§>(4—32)

where P, and P, are the available potential energies for the
upper and lower layers, respectively.

We note that in order to have consistent conversions of
available potential energy into kinetic energy, some manipula-
tion of Eqs. (4-27) and (4-28) is necessary. Using the semi-
discrete forms of Eqs. (3-3) and (3-6), the terms
’Po_1<U1Plx + le1y> and _po.1<“2P2x + v2p2y> can be

rewritten as

-1 ~ o~ ~
G <uppy, t v1p1y> = <wyp*> = (hjag/2)<Tiw2? (4-33a)

and

-1 ~ o~ ~ -
o <uzpy, + v2p2y> = —<wyp*> — (hpag/2)<Taw2>, (4-33b)

where the continuity equations (3-74a,b) and the substitution



wp = wp have been used.
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If the relationships, (4-33a) and

(4-33b) are substituted into Eqs. (4-27) and (4-28), respec-

tively, we can obtain

o
o
/\
I
=
N
+
|
<
N
v
ni

Ky,

2 2 - -
= Amh1<u1V uyp + vV >+ <wyp*d

~(hyag/2) <T wpd> + <upt(y)>

and

1
h2<§

where

~

P*

m

2
Y2e

L L
2

~(h0g/2) <Tpwp> - Cghp<uy

>

2

2 2 -
= A hy<upViu, + vy¥ vy> — <wyp*>

(51 + 52)/2 .

+ v2>

(4-34a)

(4-34b)

The instantaneous energy conversions then become apparent.

They are

<t

<K,
<Ky
<K
<Ky

<K;

P1>
Po>

Ko>

DH1>

H2

151

151

11

<uyt(y)>
(hyag/2)<T wy>
(hoag/2)<Towp>
—<wp p*>
2 2
_Amh1<(u1V Ul+V1V V1)>

2 2
—Amh2<(u2V UZ+‘V2V V2)>

(4-35a)
(4=35b)
(4-35¢)
(4-35d)
(4-35e)

(4-35f£)
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24,2 -
®y » D> = Chy(udtvd> (4-35g)
Py » P1> = —(agl2)<o 1 ><T*%uy> (4-35h)

-1 L2

<P, + B> = (Bthag/2)<o ><v T
+ (2KHag/H)<o'1><il(il-iz)> (4-351)

-1 b2

<Py » By> = (Bthag/2)<o >V

+ (2cy08/H)<o™ I O<TL (T17T2)> - (4-353)

Here (4-35a) represents the energy transfer rate from the
surface wind to the upper layer of the ocean. Egs. (4-35b) and
(4-35c) represent the work done by buoyancy forces in the upper
and lower layers, respectively. Eq. (4~-35d) represents the work
done by pressure forces at the interface in transferring energy
downward. The terms (4-35e) and (4-35f) are the rates of energy
dissipation by Laplacian momentum diffusion in the upper and
lower layers, respectively. The term (4-35g) is the rate of
energy dissipation by bottom friction in the lower layer. The
term (4-35h) represents the work done by buoyancy forces at the
interface in transferring energy downward. The terms (4-35i)
and (4-35j) are the rates of energy dissipation by biharmonic
heat diffusion and vertical heat diffusion for the upper and
lower layers, respectively. The energy transfer rates and
energy levels are summarized by means of the energy box diagram

shown in Fig. 4.1.
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Fig. 4.1 The global energetics diagram for the PE model

showing the energy levels and energy transfer
rates defined by Eq. (4-35).
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Energy comparisons

There are several forms of energy equations which can be
used in the PE-QG comparison. From Eq. (4-2), we see that the
total kinetic energy is the sum of the rotational and divergent

components, i.e.,

(Kl)t (KIR)t + (KlD)t (4-36)

and

1t

(Kp), = (Kpp)p + (Kop), - (4-37)

We note that for the QG, LB and FB systems of equations, Egs.

(4-36) and (4-37) reduce'to

(K1), = (Kyp), (4-38)

and
(Kz)t = (KZR)t . (4-39)

As a result, the divergent kinetic energy equations (4-11) and
(4-12) will not be used in the comparisons. Instead, the total
and rotational kinetic energy equations will be used, with the
divergent component computed as the difference between total and
rotational kinetic energy.

The form of the available potential energy to be used in
conjunction with the rotational component of the kinetic energy
is chosen to be consistent with the definition of Lorenz

(1955). From Eq. (3-80), we can derive the following equation:
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1 26 _ 02
7 <T*%> = (B°/(8hyhyp)) g <THuy>

1 ‘+~*2 ~*~ -
7 BV TR + <TRDLL> (4-40)

We note that in order to have consistent conversions of
available potential energy into kinetic energy, some manipula-
tion of the rotational kinetic energy equations (4-3)-(4-10) is

necessary. Using the thermal wind relationship (3-69) we can

obtain

£, <wa (91 = 92)> = (agh/2)<waT*> (4-41a)
and

(f = £ )<wa(y1 = ¥2)> = (agh/2)<waT*> (4=41Db)

for the QG and LB approximations, respectively. Similarly,
using the divergence equations (3-57) and (3-58) we can obtain

~ o~ 1 ~ ~

fo<w2¢*> = P4 <wop*> (4-42a)

and

~ o~ ~ o~

(£ = £ )<wzy*> = p_ " <wpp*> (4-42b)

for the QG and LB approximations, respectively. If we now

substitute the thermal wind relationship (3-69) into Eq. (4-40),

and multiply the resulting equation by (f2/g') we can obtain

(p + (P (4-43)

Rt = Predde RLB)t °
where

(PRQG)t = (foz/Zg')<(w1 - wz)g >
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= -t <wa(yr - 92)?

~BH<V“PRQG> , (4-43a)
(B ), = ((£%- £ 2)/28")<y = 4P
= —(£2- foz) <wp(¥1 = ¥2)?
~B <V Py B>
+((£2- £ 2)gan/2g" )<(¥1 - ¥2)Dgpp> (4-43b)
and
g' = ~(agh’)/(L6hihy)o, (4-4b)

where, for the sake of simplifying notation, we drop the tilde
symbol.

The system of equations (4-43a) and (4-43b), and the
relationships (4-41) and (4-42), will be used in conjunction
with the QG and LB rotational kinetic energy equations (4-5),
(4-6), (4-8) and (4-9). Terms of higher order than LB will be
treated as a residual. As in the PE system, we can make use of
energy box diagrams to examine the global energy transfers for
the rotational components of energy. In the next section, we

will present such a diagram for the statistically steady state.
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4.1.2 Time-mean and eddy energy equations

When the flow is examined over a period of time in the
statistically steady state, the time-dependent variables can be
divided into a time-mean part (denoted by an overbar) and an
eddy part (denoted by a prime), which is the deviation from the

time-mean. Thus, for the rotational component of kinetic energy

~
n

g = (h1/2) <D

(h2/2) (V) ®>

J
i

L = (£2/280<G - WP

R = (h1/2) <(WyP>
Ryp = (h2/2) <(Wy3)°>

PL = (£2/2g)<(31 - 9,0

are the kinetic energies and available potential energy of the
mean flow and the eddies, respectively. The energy relations
between the mean and the eddies over the period of time
averaging can then be summarized by means of the energy diagram

shown in Fig. 4.2, where the energy transfer terms are

{T > KIQG}R = -<$1 curlz ‘I’(y)>, (4-453)



Res.

ReS . * {‘! »> E].QG}R
{K1g6 * Kigelr .
-— KIR X e KlR o
{Kio6 * D lr L ' - {Kioe * Dk
{KIQG‘ PQG}R {PQG KIQG R A
{Kyp * Praly Res. Res. {Pig * Kipplr
{Kjqc * Kaqelr {Poe * Bugelr FRQG {Poe * Paclr PEIQG {Pge * Bighr (K306 * Kigelr
- . : -
(K1 * Kpplp {Prg * Bypplp RLB Py~ Pigly PRLB {erpp* Byshe {18 * Kiwsle
! {Ky0e * Poclr {Pye * Kigelr
. = (Kop * Prake {rlp » Khalr
{Kyqe * Du2lr {K3oe * Dinlg

{Koqe * KZQG}R

+ [Ryoc * Pylg (K306 * D3)r ‘ Res.

Res.

Fig. 4.2 The global energetics diagram for the final
statistically steady state showing the energy
levels and energy transfer rates defined by
Eq. (4-45).
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{Klqc+ PQG}R

{KZQG ” PQG}R

{K 06 * ¥2qa!
{EiQG
{Ezqc » Doty
{EéQG
(K8
{Kypp * Prply
{Kypp > Kyp)

{Pgc * Byoe IR

{PLp * BHLB}R
> K! }

{Kyqe * ¥iqe

{quc > KéQG}

~(£_12)@,(p = v2)>s

= -(fo/2)<;2(—4;1 - ¥2)>,

R

R

R

R

= -f_GupP*>

Amh1<$1vw$1>,

A hy<pov >
"CBh2<EéV2$é>,

(£ - £ /DG Gn - )
~((E = £,)/2)<2(91 = ¥2)2,
= =(f ~f )<way*>,

B (£2/28")<V" (0 - ¥2) >,

-8, ((£2-£2)/2g")<v" () = )
= h1<$13255;1j;135:

— 2
= hp<y2J(V wz,w2)>,
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(4-45b)

(4-45¢)

(4-45d)

(4-45e)

(4-45£)

(4-45g)

(4-45h)

(4-451)

C(4-4573)

(4=45k)

(4-451)

(4-45m)

(4-45n)
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{P('X; > K]'.QG}R = (fo/2)<G{('¢_1‘_——¢2’7>, (4-450)
(Pl * K3aela = £/ DT = 9> (imt5p)
{plg > Kplg = (£ - fo)/2)<55?$fffiﬁg)>, (4-45q)
L S R (CRR RE N T (4-451)
{KiQG > Dite = Amh1<¢iv“¢i> , (4-458)
{Kyqe * Phztr = A hp<p3v 05>, (4-45t)
{Kyoe * Palr ~Cha<ysv2vy> (4=45u)
{Pyg * Phlr = ~(£o/8"<(01 = ¥2)IC]293)>, (4=45v)
[P, » Plglg = ~((E2£2)/8M)<Cn = w)IC 990>, (645w)
{KéQG > KiQG}R = fo<G§$¥T> , (4-45%)
{Kyp * Kipglg = (£ = £<wp¥*™>, (4-45y)
(Poc * Bigclr = -8, (£2/28")<v* (v] — ¥ *>, (4-452)
(B> By lp = Bp((E2-£2)/2g)< (v — 4>+ (4mh5aa)
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Terms of higher order than LB will be treated as a residual,
indicated by the symbol “"Res.” in Fig. 4.2. Note that "Res.”
should be identically zero for the QG model, except for time
averaging (i.e., our time series for the eddy/mean breakdown may
not be quite long enough). However, "Res.” for PE may also
represent real eﬁergy fluxes from the divergent component of
flow to the rotational part (or vice versa). We will make use
of this energy box diagram to examine the global energy trans-
fers. 1In addition, in order to examine the local energy trans-—
fers, we will obtain plots of the spatial distributions of some

of the integrands on the right hand side of Eq. (4-45).

4.2 Time-mean relative vorticity equations

Averaging the vorticity equations (3-45) and (3-46) in

time, we can obtain

2~ .7 = = = -

(W 91)y = Apgg * Aie t Are T ArpE (4-46)
and

= . _ T — " " -

(V2 = Ayqe * A t Aors Yt Azer (4=47)
where

KlQG B —J(Ei’zi) - BElx - (fo/hl);é

-1 _
+hy "leurl t(y) + A VY -TO,50) (4-48)
A = ~((f = £)/h)wy = Bxp g (4-49)
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Alpg = —VX1+V21 - (2/h))Tiwe

+hy "ozt - by T, vpY)
b1~ (Ty1)w2 - 5;17525
-(2/hy)g]wy + by T

by (TR ) - T CTRW) (4-50)

- — — -1 _— —
= hl IJ(WZ,X*) - hl J(XI,WZ)

> |

1PE
-1 ' *x 1 - -1 [] ]
+h1 J(WZ,X ) hl J(Xl,wz), (4_51)
AZQG = -J(y2,22) - SEQX + (£ _/h2)w

+A V%2 - 72 ~3(¥3.43) (4-52)

P
]

- wo - BY. 4-53
2LB ((f fo)/hZ)wz szy ’ ( )
Aypp = ~Vx2+Ve2 + (2/h1)gaw2

gk -lvw, vgt
—hy” war* + hy T (VwyVy¥)
+hy ™1 (Ty)wy = VxjeVe)

-1

+(2/hy)ghwh - byt whek!
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-1 -1
and +h, (Vw'sz*') + hz (Vlj)z)Wz s (4-54)

-1., = e
A2PE = -hy "J(wy,x*) + hy "J(x2,w2)
~hy T I, %) + T Iy, (4-55)

We note that for the statistically steady state, (Vziﬁ)t and
(Vz'qu)t are zero and a balance will exist for the various

terms on the right-hand side of Eq. (4-46) and Eq. (4-47). For
each layer we will examine the geographical distributions of

these terms as well as the mean relative vorticity itself.
4.3 Potential vorticity

In the present experiments, two sets of potential vorticity
equations are used. The first set is written in terms of time-
dependent potential vorticity, and the second in terms of time-

averaged motions.
4.3.1 Time-dependent potential vorticity equations

The potential vorticity equation for the upper layer is
obtained by: 1) substituting Eq. (3-69) into Eq. (3-80);
2) multiplying the resulting equation by (—fZ/g'hl), and 3) add-
ing the resulting equation to the relative vorticity equation

(3-45);

DO Dgg) | D)

Dt " Dt Dt (4-56)




where

D(QIQG) = hl_l curlzr(y) + Aqu¢1

Dt
2, 14
+(£,7/8"h1)BV (v1 — ¥2)

_rg2 '
(fo/g LR

D(Qy;p) - ((fz‘fi)/g'h1)BHVq(¢l - 2)
Dt

- 2_ 22 '
((f fo)/g hl)FPE

+A1LB + A1FB + AIPE’

Q1QG z vzwl + f - (foz/g'hl)(wl = ¥2) >
- 2_.2 '
QILB = ((f _fo)/g h1)(¢1 - ‘PZ) ’
Q = Vg + £ =(£2/g"h) (w1 - 2)
D(Q)q¢)
Dt = (QIQG)t + J(¢1’ QIQG) ’
and
D(Qyp)
Dt = (QILB)t + J(v, QILB) .

The potential vorticity for the lower layer is obtained by:
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(4-57)

(4-58)

(4-59)

(4-60)

(4-61)

(4-62)

(4-63)

1) substituting Eq. (3-69) into Eq. (3-80), 2) multiplying the

resulting equation by (fz/g’hz), and 3) adding the resulting

equation to the relative vorticity equation (3-46);

Dt ~ Dt Dt ’

where

D(Qy0¢)
QT _ 4 2
Dt S AT V2 T e

(4-64)
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~(£ 2/8"hp)Bv" (1 = ¥2)

+(f02/g'h2)FPE s (4_65)
D(Qy; p)
s =~ £2) /' h B (p - )

H((£2- £2)/8" h))Fpg

o * Azrp t Azpk o (4-66)
qe = Vi + £+ (fﬁlg'hz)(w1 - ¥2) (4=67)
Qg = ((E3= £2)/8'h2) (w1 = ¥2) (4-68)
Q = Vg2 + £+ (£2/g'hp) (01 = ¥2) (4-69)
D(Qpg)
_ 72067 )
Dt (QZQG)t + J(wz’QZQG) 3 (4 70)

and

Dt = (QZLB)t + J(V2 ’QZLB) . (4-71)

4.3.2 Time-mean potential vorticity equations

Averaging the potential vorticity equations (4-56) and

(4-64) in time, we can obtain

DQ1  D(Qyqq) D(Q 15 )
1 _DQqe) |, Qg

Dt Dt Dt (4-72)
and

Dt Dt Dt ’
where
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]—)—t—lg—(i = 0] curl 1(y) + A V'V

(£ 2/g"h DB (1~ ¥p)

~(£,%/8"h))Fpg (4-74)
DDf““B = (£2£2) /8B (4 - )

~((£2~£2)/g"h))Fpyg

*App * App t Appg o (4-75)
61QG = v+ f - (foz/g'hl)(_d;l - $2) (4-76)
Q5 = (E2-ED)/g'h ) (0 -~ ¥2) (4-77)
Q=+ £ - (E2/g'h)D @1 - v2) (4-78)
?ﬁi) = (@qe), *+ (V1,000

O (4-79)

DDEEILB) = Qugde + 01,0 p)



and

D(Q,..)
2q6 - T
T R A K LA
—(fozlg'hz)BHV”($i - ¥2)
+(f 2/g'hy)F.
° g hyp PE °
D(Qp;,5) - v
s = ((£2-£2) /g h DB (1 - ¥2)

2_2 ] byl
+((£2-£2)/g"h))F

thyp t Agpp T Aopg o

Qqg = Towe *+ £+ (£2/8"h) (0 - W)
— 2 .20, - =

QZLB = ((f _fo)/g hz)(¢1 - Wz) ’

— 2 2, , - -

Q2 =V + £ H(E7/g"h)) (4 — w2)

D — _ —_ -
SE (QZQG) = (QZQG)t + J(wZ,QZQG)
+J(wé’QiQG) >

D - —_ - —
BE (QZLB) = (QZLB)t + J(¢2,Q2LB)

+(¥3,Qp)
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(4-81)

(4-82)

(4-83)

(4-84)

(4-85)

(4-86)

(4-87)
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We note that for the statistically steady state (6i)t,
(Quqede» @updes Qaq)e» (Qarp)e are zero and
a balance exists for the various terms of Eqs. (4-74), (4-75),
(4-81), and (4-82). For each layer we will examine the geogra-

phical distributions of the mean potential vorticity.
4.4 Summary

We have now obtained from the PE and QG model equations a
set of basic comparison quantities that will be used extensively
in the following chapters. For the convenience of the reader,
we present in Table 4.1 a summary of these basic quantities,
including text references. Some of the quantities listed need
additional explanation, which we now present.

For the PE model, we obtain ¢ and y as follows: From Egs.
(3-33a) and (3-33b) we can obtain

Vzw =v_~-u

and

which in semi-discrete form is

Ve = vyt oy (4-88a)

X y

vy = v, - Uy (4-88b)

V2X1 =u *+ Viy (4-89a)
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2 = -
Vixz = Uy T Yy (4-89Db)

Eqs. (4-88a) and (4-88b) are solved with ¥; = 0 and yp = 0,
respectively, on the lateral boundaries; Egs. (4-89a) and
(4-89b) are solved with x1, = 0 and yo, = 0 on the lateral
boundaries, where n is the derivative of y perpendicular to the
boundary.

For the QG model, the quantity (¥} — V) changes in time
along the lateral boundary (see Holland, 1978). In order to
compare with the PE model, we need to subtract this changing

boundary value, so we use y* in place of {y as follows:

IJ}1* =¥ T boundary (4-30a)

-and

(4-90b)

* -
&) Y2 T ¥ boundary °

The vector velocity fields ¥, ¥1p» Vir» V2» Vop» and

GZR are obtained by combining the x and y components:

vy = (u1,v)) (4-91a)
v ), (4-91b)

b = (igXyy

YR = (~¥1y0¥1,) > (4-91c)
Vo = (ug,vy) , (4-914d)
v (4-91e)

ap = (xaxrXay) o

and

32R = (U ¥p) - (4-91f)
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The vertical velocity field wy in the QG model is obtained

diagnostically from the semi-discrete form of Eq. (3-8):

wp = =(£ /8"y - v2,o*) =y —w2) ) - (4-92)

Finally, the horizontal pressure variants 51 and 52 are obtained
by 1) horizontally averaging Eqs. (A-19) and (A-20), and 2) sub-

tracting the horizontal average of p; and pj.
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Table 4.1 Basic comparison quantities

PE MODEL QG MODEL
QUANTITY TEXT REF. QUANTITY TEXT REF.
No. Symbol Eq. No. No. Symbol Eq. No.
la 12} (4-88a) 1b 1% (4-90a)
2a ¥y (4-88b) 2b  Po* (4-90b)
3a X1 (4-89a)
3b x2 (4-89b)
ba u] (4-21)
bb X, (3-33a)
he Ty (3-33a) b vy (3-34a)
5a uy (4-22)
5b 0 Yoy (3-33a)

S5¢ Uy, (3-33a) 54 =y, (3-34a)
6a vy (4-23)

6b X (3-33b)

6c Y1x (3-33b) 6d Y, (3-34b)
7a vy (4-24)

7o xpy (3-33b)

7e Vo (3-33b) 7d Yy (3-34Db)
8a v, (4-91a)

8b $1D (4-91b)

8¢ le (4-91¢) 8d le (4-91¢)
9a v, (4-91d)

9 v (4-91e)
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Table 4.1 (continued)

PE MODEL QG MODEL
QUANTITY TEXT REF. QUANTITY TEXT REF.
No. Symbol Eq. No. No. Symbol Eq. No.

> >
9% Vo (4-91f) 94 Voo (4-91f)
10a wy (3-74) 10b  wp (4-92)
1lla p, (A-19)
11b £ ¥ (3-59)
e py-f ¥ 11d  £_p (3-59)
12a  p, (A-20)
12b £ ¥2 (3-64)
12¢  pp-f ¥2 124 £ ¥2 (3-64)
13a T, (4-29a)
13b T, (4-29Db)
14 T* (3-68)
15a o (3-77)
15b o (3-87) 15¢ o (3-87)
15d o' (3-83)
16a V2T* (3-69)
16b  (2f_/agH) 16c (2fo/agH)

%92 (y1-92) (3-70) %92 (1-92) (3-70)
17a K4 (4-34a)
17b Ky (4-11)
17c  Kpp (4-3) 17d  Kip (4~3)



86

Table 4.1 (continued)

PE MODEL QG MODEL
QUANTITY TEXT REF. QUANTITY TEXT REF.
No. Symbol Eq. No. No. Symbol Eq. No.
18a K, (4-34Db)
18b K, (4-12)
18c  Kyp (4-4) 184 Kyp (4-4)
19a Py (4-43)
19b Prae (4-43a) 19c  Ppoc (4-43a)
19d  Ppo (4-43b)

2 2 '
20a VY (3-45) 21a Vo (3-45)
200 V2, (3-46) 216 vy, (3-46)
22a Q) (4-61)
22b QIQG (4-59) 22¢ QIQG (4-59)
22d Qg (4-60)
23a  Qp (4-69)
23b Qqc (4-67) 23 Qg (4-67)
23d (4-68)

g



87

CHAPTER 5. RESULTS OF THE SINGLE-GYRE EXPERIMENT

Two-layer versions of the QG and PE models were spun—up
with fine-grid horizontal resolution (20 km) using a single—-gyre
wind-forcing in a 1000 x 1000 km basin. Both models used
lateral Laplacian diffusion and no bottom friction. Biharmonic
heat diffusion was used in the PE model. A summary of the para-
meters used in the experiment is given in Table 5.1. 1In this

table, Ry is the internal radius of deformation, which,

following Holland (1978), is defined as

R, = ((hihyg'/cae P2 (5-1)

The initial state of the experiment consisted of a horizon-—

tally uniform temperature stratification with no motion. Eq.
(4-44) provided the basis for making the stratifications consis-

tent in the two models. Using the Holland (1978) choice of g'
and the standard values g and a (given in Table 5.1), we find

that the initial temperatures in the PE system are constrained
by:

(T, - Tp), = 13.06°C . (5-2)

We chose an initial temperature of 16.06°C for the upper layer

and 3°C for the lower layer.
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Table 5.1 Summary of parameters used in the single-gyre

experiment

PARAMETER VALUE MODEL
Symbol Units
h, m 1000 Both
hy m 4000 Both
A km 20 Both
L km 1000 Both
D km 1000 Both
AM mzs‘l 330 Both
B, 10710p4g71 1.0 PE
By 107007t 0.0 QG
Cy 107771 0.0 Both
T, 10 %27} 1.0 Both
g' 107 2ps™2 2.0 QG
g ms ™2 9.8 PE
a 10" °c! 2.0 PE
£ 1075A71 8.365 Both
B, 107 Hats™! 1.875 Both
R, " km 48 Both

K 10" *m?s™} 1.0 PE




89

5.1 Spin-up and statistical equilibrium

Figs. 5.1 and 5.2 show the time-dependent behavior of the
energetics for the QG and PE models, respectively. Figs. 5.1A-C
and 5.2A-C show the energetics for the total model simulation
time, while Figs. 5.1D-F and 5.2D-F show the energetics for the
final 1000 days. In Figs. 5.1A,D and 5.2A,D the kinetic ener=—
gies in the two layers are shown as a function of time. Figs.
5.1B,E and 5.2B,E show the rates of energy transfer in the upper
layer, and Figs. 5.1C,F and 5.2C,F the rates of energy transfer
in the lower layer.

At time zero the wind stress is applied to the surface
layer and the ocean begins to spin up. Because an impulsive
start of the full wind stress excited high—amplitude Kelvin
waves in the PE model, the wind stress was slowly increased in
both models to its full amplitude over the first 30 days. This
resulted in smaller—amplitude Kelvin waves in the PE model.

During the first 600 days the spin—up process is character-
ized by an increase in both the upper layer kinetic energy and
the available potential energy (not shown). The lower layer
remains nearly motionless. At about 600 days the available
potential energy and the upper layer circulation have built up
sufficiently for the flow to become baroclinically unstable.
After ~600 days the release of available potential energy
gives rise to eddy motions. As in Experiment 1 of Holland

(1978), the eddies generate deep mean flows in the lower layer
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via energy transfers from the upper to the lower layer. After
~1500 days the system has come into statistical equilibrium in
which eddies and the mean flow are in mutual balance.

The time scale for the energetic oscillations can be read-
ily estimated from the expanded horizontal scale shown in Fig.
5.1D-F. Using the cyclic behavior of the wind energy input
{T+K1}, we estimate a period of oscillation of about 62 days.
This is close to the 64-day period both Holland and Lin (1975a)
and Holland (1978) (Experiment 1) obtained, using eddy energy
spectra.

A comparison of Figs. 5.1 and 5.2 shows similar energies
and energy transfer rates. The main differences are: 1) the
upper and lower layer kinetic energies are higher by about 35%
for the PE model, and 2) the PE model has high frequency oscil-
lations, due to the presence of Kelvin waves. Using the
expanded horizontal scale in Fig. 5.2D-F, we estimate the
periods of these oscillations to be 1.9 days. The low frequency
oscillation of 62 days can also be seen in these figures. These
results will be further analyzed in Section 5.4.

It should be noted that there are two time scales in the PE
model, a fast-time and a long-term scale. The statistical equi-
l1ibrium shown in Fig. 5.2 is for the fast-time scale ad justment
process, i.e., at ~1500 days, the level of PE kinetic energy
has reached a state of statistical equilibrium. On the long-
term time scale, however, the PE experiment is not in equili-

brium. The horizontally-averaged temperatures in each layer are
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changing at constant rates throughout the experiment, i.e.,
0.014°C per year for the upper layer and -0.003°C per year for
the lower layer. The calculations of Bryan and Lewis (1979)
have indicated that the ocean's diffusive relaxation scale is of
the order of 1000 years, which is considerably longer than this

experiment's time integration of 20 years.

5.2 Basic comparison quantities

The basic time-averaged PE and QG quantities are compared
with each other in order to assess similarities and differ;
ences. The mean has been calculated as an average over the last
five years using two-day sampling intervals. For the counven-~
ience of the reader, the quantities are presented in the order
listed in Table 4.1, which also cites text references. Notes on
the processing and plotting of the data can be found in Appendix
B.

Fig. 5.3 shows the time-averaged upper layer streamfunc~-
tions. In both models the circulation patterns are quite
similar. The subtropical anticyclonic gyre shows up as expected
from the imposed surface wind stress pattern. Comparable non-
linear circulations near the northern wall are obtained. Over
most of the basin interior, comparable, linear Sverdrup circula-
tions are also obtained. The basic difference in the plots is
the greater intensity of the subtropical high in the PE model.

Fig. 5.4 shows the time-averaged lower layer stream-
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functions. Again, the circulation patterns are quite similar.
As Holland (1978) has pointed out, since neither external stress
nor interfacial friction acts on the lower layer, the deep mean
circulation is driven entirely by the eddies. According to
Holland and Rhines (1980), the lower layer is driven from above
by inviscid pressure forcing at the interface; this is accomr
panied by downgradient potential vorticity flux everywhere in
the lower layer.

The dominant feature in Figs. 5.4a and b is the presence of
two gyres with alternating northward and southward flowing boun—
dary layers. This feature of abyssal gyres is seen in many of
Holland's (1978) experiments. Holland and Rhines (1980) have
noted that the point on the western boundary dividing the north-
ward and southward flowing boundary currents corresponds to
where K.vaé (here ¢ is the Lagrangian diffusivity and 6é is the
time-mean potential vorticity for the lower layer) takes its
maxima, and assert that the presence of the two gyres arises
from this maxima.

Fig. 5.5 shows the time-averaged velocity potential for the
upper and lower layers of the PE model. Except for sign and
scaling,'xl and y, are really just the same quantity, and do not
give independent information. Maximum values of the velocity
potential are seen on the lateral boundaries. These are associ-
ated with counterclockwise-traveling Kelvin waves which 1)
propagate along the boundaries with the phase speed of inertia-

gravity waves, i.e., c = (g'hlhz/u)l/z =4 ms ' ~ 400
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km/day, and 2) decay exponentially away from the coast. A com-
parison of Fig. 5.5 with Figs. 5.3 and 5.4 shows that the velo-
city potential is much smaller in magnitude than either the
upper or lower layer streamfunction.

It is not clear whether the patterns in Fig. 5.5 are the
residual after time averaging or reflect aliasing due to the
two-day sampling of 1.9-day period Kelvin waves. A longer time
series and more frequent sampling may show that this divergence
pattern will become even smaller upon time averaging.

Figs. 5.6 and 5.7 show the time-averaged zonal velocity for
the upper and lower layer, respectively. Again, virtually all
the same patterns are present in both models and only a slight
difference (i.e., a few percent) in amplitude occurs. This
difference is not due to an important divergent component of
flow in the PE case.

Figs. 5.8 and 5.9 show the time-averaged meridional velo-
city for the upper and lower layers, respectively. In both
layers there is comparable northward flow along the western
boundary, and in the upper layer southward flow, indicative of a
linear Sverdrup circulation, over most of the rest of the
basin. In the lower layer there is also a comparable southward
flow along the western boundary, indicative of deep western
boundary currents that close the eddy-driven gyres. The diver-
gent flow is still less than 1% of the total PE flow, and for
all practical purposes is unimportant.

Figs. 5.10 and 5.11 show the time-averaged horizontal
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vector velocity fields for the upper and lower layers, respec-—
tively. In both layers, the same features discernible in the
streamfunction plots are shown in vector form.

The vertical velocity is shown in Fig. 5.12. The strong
upwelling on the southern edge of the recirculation region
agrees with the results of McWilliams (1983), who analyzed the
time-mean vertical velocity field on the southern edge of the
Gulf Stream Recirculation Zone from data taken in the POLYMODE
Local Dynamics Experiment. The upwelling and downwelling
patterns seen in the westward recirculation region are consis-
tent with baroclinic instability (Holland, 1978). The alter-
nation of upwelling and downwelling near the western boundary
could be related to offshore meanderings of the time-averaged
flow (Han, 1975). The presence of alternating upwelling and
downwelling areas on the southern and eastern boundaries in the
PE model (Fig. 5.12a) could be due to either the time-averaged
effects of the Kelvin waves of to strong aliasing with a two-day
frequency.

The upper and lower layer pressure fields are shown in
Figs. 5.13 and 5.14, respectively. Most of the upper and lower
layer PE pressure fields are explained by the geostrophic
streamfunction, shown in Figs. 5.13b and 5.14b. 1In the recircu-
" lation region, Figs. 5.13c and 5.14c suggest that other terms
could become significant. In particular, terms with variable f
could become important. Due to the small north—-south extent of

the basin, however, this is only a small effect here. A
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comparison of Figs. 5.13 and 5.14 with Figs. 5.10 and 5.11,
respectively, confirm the expected high degree of geostrophy.

The upper and lower layer time—averaged PE temperature
fields are shown in Fig. 5.15, along with the average PE temper-
ature and the per cent time change of PE static stability since
the beginning of the experiment. In general, the temperature
distribution in each layer corresponds to the streamfunction
pattern (see Figs. 5.3 and 5.4). Notable exceptions to the
dynamically-induced temperature distribution are seen in the
areas of changing static stability (see Fig. 5.15d). The areas
of changing static stability are simply a reflection of the fact
that a long-term temperature adjustment is occurring, as discus-—
sed previously.

Lastly, the time-averaged thermal wind relationship is
shown in Fig. 5.16. To a good approximation the thermal wind
relationship is explained by the QG contribution {(compare

Figs. 5.16a and 5.16b).
5.3 Instantaneous, time mean and eddy fields

Fig. 5.17 shows the QG instanteous, time mean, and eddy
fields for fov1» fov2s ;IR and ;ZR at a particular
instant in time. The mean has been calculated as an average
over the last five years. A comparison of the upper layer mean
and eddy quantities shows that the eddies and mean flow have

about the same amplitude. A comparison of the lower layer



i1l

DAYS 5402.0 YO 7200.0 BY 2.0

. 7200.0 BY 2.
MEAN T1 (PE) DAYS 5402.0 TO 7200.0 B8Y 2.0

MEAN T2 (PE)

T T T T T T T T Py Py TV T Y T Iy TP Ty T I T v v v rvery

L0050 00 20 O 0 ¢

At d il il Ll i i dd it it d i ididiigy

LRG58 RELEE AN A RRERAAANERBRE

—

1080880388 00a0adeaaataenaeaeeaanianangaiaioneeney

\

e

\ABARSARARAARSARSARERASRARRARSEARASARRNARRASRRARARAS

7

L .5 0 0 0 0 0 R

e

T s T e e e v FTTT cawews L orw EPFww TS

4048880084

L0t A A Al aaal et aasatuaaarannany

CONTOUR INTERVAL 1S 0.50000E-01 TOUR INTERVA .10000E-01
LABELS ARE UNSCALED e OULAéELg ARIE llJ'sﬁgALEg =

a b

DAYS 5402.0 TO 7200.0 BY 2.0 DAYS 5402.0 TO 7200.0 BY 2.0
MEAN TSTAR (PE) MEAN SIGMA PER CENT TIME CHANGE (PE)

L S B B R U R U AR G L L R

Listrbitdd gttt il red Ll et bbb LAl LA Ll L)

IAARASRARARSAAAESRRRERRS ARG UARRS SRR E RN R TTTTTTITT TITTIVY Ty
5 L 4 PRI LANILLECE T ASARRAR L

p i tas i pta g te g aaanteareaaeaariegs

LAl it et bt ettt

(O R ¢

P W0 0 o 0 0 00 U O o W 7 W 0 o 1 O U Vo0 B 0 U0 0 O 1 0 5 W O o O 3 0 9

CONTOUR INTERVAL IS 0.30000E-01 CONTOUR INTERVAL 1S ©.20000
LABELS ARE UNSCALED LABELS ARE UNSCALED

s d

Fig. 5.15 Time-mean of entry 13 in Table 4.1: a) T;, b) Ty,
¢) T* (entry 14 in Table 3.1), d) o (entry 15 in Table
4.1).




DAYS 5402.0 TO 7200.0 By 2.0
MEAN LAP TSTAR (PE)

DAYS 5402.0 TO 7200.0 BY 2.0
MEAN LAP THERMAL WIND (TILDE) (PE)

112

L S0, D B

L I LA L L LB L LR

L OO UL I R 0 G TYTTI TV I IYTTIrTITI Y

SR

000,58 8 L AL §

NSNS NS ENNENNENEENE NN NENT
IBRRARSRARR

A

LR R S R RS A BRI
L, o

. 3 ]

& -

- : —,,//f/////’//‘ ]

- E -

. - N —

s I o s

by - L L

. C -2 “¥

- L -

d [El —"""-—-.\\ 7

e 4] C //————a 7 i " %
AN NSNS NS N EEEE W N RS S A I o O U O O U v o Iy A 0 O O 00 W 0 0 O M O O W S O 3

—

grisaeteppgariaattaeeaaay

CONTOUR INTERVAL 1S 0.30000E-10
DIVIDE LABELS BY 0.10000E+13

a

DAYS 5402.0 TO 7200.0 BY 2.0
MEAN LAP THERMAL WIND (QG)

LI B3 7 7 0L 9 O L7 0 L S

S W /
d:‘ b . = " /

TITYITTTIT I I T I Id

SO 2 LALIALIRY

-

G g d it gttt d il

g R U

NSNS RIS E NN N SA NG NN NS NN NS

CONTOUR INTERVAL 1S 0.10000E-10
DIVIDE LABELS BY 0.10000E+13

Cc

b

CONTOUR INTERVAL IS 0.90000E-11
DIVIDE LABELS BY 0.10000E+13

Fig. 5.16 Time-mean gf entry 16 in Table 4.1: a) VZT*, b)

(2f,/agH)V

QG model.

(¢1-¥2) (PE), c) same as b) but for the




DAY 5482.0
FO = INST PSIV (TILDE) (QG)

\ASAAREASRARRRR" "> RANANNASIOANN

UUSSEEEENEL USRI UUR SN L RN T YUV NN IR AN U R RO

L el i sl Ll Ll

113

DAY 5482.0
FO s INST PSI2 (TILDE) (QG)

TTTTTITTTY

L ; ¢ e

LB I LR S TIrIXrryrTrrisd

llllllllllllllllllllllllllllllIll‘!jlljljllllll

) 0 e 2 0 20 00 T T T T T T T T T LIy rrrrrrrryvrrey

p gt tdatargaaiaaaaginartaanatraeny

w

Aiiiigaaiiaiy

CONTOUR INTERVAL IS 0.10000
LABELS ARE UNSCALED

DAY 5482.0

CONTOUR INTERVAL IS 0.50000E-01
LABELS ARE UNSCALED

DAY 5482.0
INST ROTATIONAL VELOCITY 1 (QG) INST ROTATIONAL VELOCITY 2 (QG)

>rll/’;1ﬁ‘fll'lllllTTYT!lll'Yll!IIV'1TIIlllll|llllll< 0P8 P e i 0 38 e 42 5 28 2 7 PR B 5 of 5 A U A O 6 AR O IR (LIS LR GLALURL A 2
v — et i 18 4 Ff e et N+ ¢ * * = e - - -
H t’/--—————___..~‘\\\\ 1 i & . e N ’ /,-_.\\\|, - v '
H 1 v % = = Ve 3 - oe & ol /_.\ l'\ /—'\\\l’ . \:
s S I st A X R ] BN ooy o
@ = ~ N N 4 \ =
s o v G e p ~ L T
o o =R R Tt o '\\\ / g A Vi J
F oy . . S e I R e gy A B 7 \ -~ = .l J’ L
F g m SRR e s ; v % B 7 N\ ~7, {/ ’ \ %5 } T
o & IR VY I I ] K \R\\\//l/ / £ / A O T
= 5 R - Lo ] ! & I\\//K_./f Lo Zdid - 5]
2 . J AP . ] \\._/1\,11\_.//‘ \,;//f,.py:
r : 0 . . @ & v p _-——- o~ ’/l‘\’/ffl rorrd
i, - ... E B o v & Il\~,/// o e 0l
H E T o G 3 Sy R R L R o v
H : P ] T ETEEE \llq-’///, v i rr el
SEEES ' Rt e AR
= ! ¥ 2 R ]
Floy : LR S CHLET 10w o3
oy ] ha L LS § Y 3
<IN 3 TRIRM IR T Y RN B 3 N
:1 . 3 e % B Fa Cpoy 1! I o .
Ll v & o i N = # P ¥ a

H 4 LI LA T
5 [EE 11! 1]
4 E i g 40 w @ ® ¢ b \\‘/ "o 1
; ] F R SR TN 2L 0N 5 E
r - j :u VoG A w e B . \\\_‘/I/r . b
o ¢ & @ B - e L SN NN mmemm Sl b
I e L L 0 W N T WO W L W W VW T G B e e T SR T v T L EW e BN OB PR S R N TR e L R R R T

——
MAXIMUM VECTOR LENGTH IS 0.50837

—
MAXIMUM VECTOR LENGTH IS 0.85152E-01

a

Fig. 5.17 The fo¥1, fo¥2, ViR, VvoRr fields for the QG
model: a) instantaneous, b) time mean, and c) eddy.




DAYS 5402.0 TO 7200.0 BY 2.0

114

DAYS 5402.0 TO 7200.0 BY 2.0
FO = MEAN PSI2 (TILDE) (QG)

FO = MEAN PSI1 (TILDE) (QG)

RO A AR R R R R R

= £

LI TTTT.

by e k)

0.

mannmyee

CONTOUR INTERVAL 1S 0.10000
LABELS ARE UNSCALED

DAYS 5402.0 TO 7200.0 BY 2.0
MEAN ROTATIONAL VELOCITY 1 (QG)

T

LAt aesataaaataeatteaaaaeygaaeaeaeaaanaeneeresy

R G REEERASEEE BT
.

{30 O R R B O R I S R A (AL OB ) 36 1S 77 DGR )

L
-.018 i
-.026.
B ON O B 0 I WD U A UE I N0 00 O U IO 27 OV A N 0 2 N G U5 U B O A O I 0 U 9 00 I 0N U5 Do o0 3 1 08 O 0 68

(NSNS NN E NSNS SN NN E SN NN NS

CONTOUR INTERVAL 1S 0.20000E-01
LABELS ARE UNSCALED

DAYS 5402.0 TO 7200.0 BY 2.0
MEAN ROTATIOMAL VELOCITY 2 (QG)

L0 G B 7 R 5 IR R R AR R R RS
—~— - & B P I ST
7 ] - :
tz_..__.__._-—_~\\\\\ v o . -\ ~,NNN NSNS N NS S s s s s s e e =
Voeowow o o omw R R 8 R - R R T -
1 = ~ 1
N w8 R M S S e B g g g - - R T T S S S B B R -
Vaweasss I A Y A - :\\‘\N—.—.—.—._——.—..'.-fa, . . .
B p
I

ls-.cans oyl 1 B~ 200 4
4 4
Voo o o o0 o i wisd o 8 & 3 o :J’— Y L N 2
L B @ B B o = P e p e NS B RN S § B o
U o W G o - p p o~ o @ P Bl e e e Zl
' o G @ e e o = Ve e o - 3
- -
e : B i S8 gy o o o 1 3
L [ 3 & & e @ e 4 Fl « # 7 e mo e e aw 4
' L d B mcicncescacmnnsmos ;
V. n e @ e & -
g L 3
1. 4 Lo . =
- - 3
Yo > of - g 4
v b B = 3 L. & i @ % -
Y ] L. 3
Veom o owowo oB ] L. ]
Ve o o o o @ - - . —
G o s e " 4 - -
- - L 4
B! & w5 s st wm s w5 omow B 4 - -
T - - -
- < L m
R P B 4 L. g s W 4
- 4 L -
Eor o0 s e e ne gy e g e i B Bt L Al o R ey e e | A o 5 B mm i SR s e e el TS L LS £ 6 .

Pt ra el e tedideribid et s ik ciadaci ol Adadaisiatetaiateigisisipizigiateiiiiivisisici

e
MAXIMUM VECTOR LENGTH IS 0.50670

——a
MAXIMUM VECTOR LENGTH IS 0.53664E-01

Fig. 5.17 (cont.)



115

DAY 5482.0
FO = £O0Y PSI2 (TILDE} (RG)

LN A B BN G S B g0 0 S5 R I O I R I B O O S

DAY $482.0

FO = EODY PSIT (TILDE) (QG)

TTTTTTTITTITT

Losdipal E-tpgg;qn\nﬁndﬁ i1

n

Al LUt Ll Lt ad 33 aa2 b i d it istiaday

TYTTYTTITIvTY

[
o
o
o
a
s

AAA i gt aga o dadssasia i aididladiotidialiliagl

IAAARR AR AARRASAREASARARRARAARARERRARRRNARSRALE)

dedod bt a A )0 b A KA QA LAt AR 4 i aa i aadty

1k

CONTOUR INTERVAL IS 0,.50000E-01
LABELS ARE UNSCALED

CONTOUR INTERVAL 1S 0.60000E-01
LABELS ARE UNSCALED

DAY 5482.0

EDDY ROTAYIONAL VELOCITY 2 (QG!
T T T T T T T T T T Y T T T Y T T T Ty T T T T T Ty T vy T rry

DAY 5482.0

EDDY ROTATIONAL VELOCITY 1

184G

L I SRy

L T N

P e

N e b R T
L e NN N N T

', /.

P, TTSSNNNNNNN

LI}

NN Sl NANNSST T

P T A N

LAY
- s !

LAV AVNNNNST

PRSI A
\

SRS NREE RN AN SR EE RN AR RS RRR R REN]

- =

P .

\
\
\ !
[

P )

P

Nttt o 4} A NN~ s

10‘1*&’*"’10!
\\\h\f\\la/n/.v/,,

MO

[

VoA e e

NN Rt - - - e~ - -~ =

:
:

[
- AT )
N N T |
—pttlln\\.\w._
[ iiiiill
L i
| 4 4 et e e e =
A ~
s s . Co e
L L R - e .

14919t iada i

» -d.-#jﬂd\—--4-41-‘--4*.4-—‘-q-q—-unjﬂﬂ-*qq-—.ﬂl
L T . . >
C
L s s e e e e e e e e e~ s . ]
C o . e e e e e e e e s - ~ e~ s v s
F ULl Il Il
ﬂn - e g e ™ S oy oy oy NN 1 P . T T N | A 14
b -
- ’ L e S T L S T A
o vV
n“ ’ . B s N NN N . _m
F \ ' .1“ /W T NNANN NN N vt 1
Fvs- \.lﬂ/uf/fM N R ] .u
1'1\\\ Y~ v /AN e s P .n
L o \\.\0/1/4/‘/'!.\ P L L
E.. . AN e .
r I e/t p
F . R - 1
. - HNII&IL!IVI, P .u
C e —. - a s e e e . o]
. TR t ) 3
FL 2N\ e e o]
F . R ~ \ w N . RN
ﬁ. 1’&/’[\\ . - - N~
- jd NI
I N LR 3
o \ /. . - I
f v e T AR - ]
L. N ﬁ/ /t/l\\\\\\\ . T I 4
- -
L. A P PO .4
[ TN N = .
W. D o
F oLl o 3
i isipiaiadr 033239000 0 GO0 00013913151 =

—

MAXIMUM VECTOR LENGTH IS 0.7B837t

—

MAXIMUM VECTOR LENGTH IS 0.11690

-01

.)

Fig. 5.17 (cont



116
quantities show that the eddies are dominant. As stated
previously and as Holland (1978) and Holland and Lin (1975a)
have noted, since there is no direct mean driving of the lower
layer, the lower layer mean circulation is driven by the eddies.

Fig. 5.18 shows the PE instantaneous, time mean, and eddy
fields for p1, P2, %1 and ¥, at a particular instant in time. A
comparison of Figs. 5.17 and 5.18 shows similar patterns, except
that the boundary-trapped Kelvin waves in the PE experiment are
absent in the QG experiment. The mean horizontal velocities
show no hint of a divergent component. This is to be expected
since the mean dynamical velocity is much smaller than the mean
rotational velocity. In the eddy velocity fields, however, the
Kelvin waQes are comparable to the mesoscale eddies.

Fig. 5.19 shows eddy maps of foU)» fo¥2s ViR, and
¥or at 8-day intervals for the QG model. The mesoscale eddies
propagate westward at ~5.5 km per day. In the northern half
of the basin, the eddies have a basic wavelength of ~450 km
(eddy diameter ~225 km), while in the southern half of the
basin, the eddies have a larger wavelength. If Figs. 5.19a and
5.19b are overlaid, it is seen that 1) in the northern half of
the basin, there is a tilt in the vertical, consistent with
baroclinic instability, with the upper layer eddies lagging the
lower layer eddies, and 2) in the southern half, there is
little, if any, tilt, so that the eddies are very nearly baro-
tropic. This basic eddy structure agrees well with that of

Holland (1978) and Holland and Lin (1975a).
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DAY 5482.0
EDDY P2 (PE)

DAY 5482.0
EDDY P1 (PE)
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Fig. 5.20 shows maps of p;, p2, V1, and V, at the same time
intervals, but for the PE model. The mesoscale eddies in these
plots have basically the same properties as the QG eddies.

These plots also show the Kelvin waves traveling counterclock-
wise around the lateral boundaries of the basin. (Note that
this 8-day sampling frequency severely aliases these waves which

travel completely around the basin in about 10 days.)

5.4 Energetics

Table 5.2 lists the horizontally-averaged, time-mean and
eddy kinetic energies for both models. In the PE model, the
total kinetic energy is listed, along with the breakdown into
the rotational and divergent components. The PE total and
rotational kinetic energy components are consistently higher
than the QG kinetic energy components. The divergent component
of K;', contributes almost 507% to the total. Instead of being a
few percent of the total kinetic energy, as the mean stream~
function and velocity potential (Figs. 5.3-5.5) would suggest,
the mean divergent component for each layer contributes ~137%.
This can be explained by the large areal extent: since the
Kelvin waves are confined to within the Rossby radius of defor-
mation, which is ~50 km in this experiment, the areal extent
of the Kelvin waves covers ~10% of the total in this small
basin.

The geographical distribution of the time-mean and eddy
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Table 5.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

K K, Ky Kp'
No. Energy Quantitg %4 of PE Quantitg % of PE Quantitg % of PE Quantitg % of PE
(k J m“) total (k J m“) total (k Jm“) total (k J m™“) total

1) Total PE 8.70 100% 2.27 100% 2.29 100% 1.93 100%
la) Rotational

component 7.57 877% 2.00 887 1.16 51% 1.64 857
1b) Divergent

component 1.13 13% 0.27 12% 1.13 497% 0.28 15%
2) QG 5.82 67% 1.52 677% 0.43 19% 1.26 657%

621
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kinetic energy for each layer is shown in Figs. 5.21-5.24. As
in Fig. 12 of Holland and Lin (1975a), large local values of the
mean kinetic energy are present. The PE eddy kinetic energy
maps (Figs. 5.23a and 5.24a) suggest two regions of active tran-
sience: 1) the boundary, where Kelvin waves are present, and

2) the recirculation region, where the mesoscale eddies are
driven by baroclinic instability processes. In the QG model
only the latter region is present.

The geographical distribution of the time-mean and eddy
rotational available potential energy for each model is shown in
Figs. 5.25 and 5.26. Most of the mean and eddy rotational
available potential energies in both models is produced in the
recirculation region. The PE mean available potential energy is
greater than the QG, but the patterns are Very similar. Again,
much of the eddy energy in the PE model occurs in the boundary
regions, due to the presence of Kelvin waves. The linear
balance component (Figs. 5.25d and 5.26d) contributes ~10% to
the PE mean rotational available potential energy. This term
would probably play a more important role if a larger basin size
were used. The small basin size used here tends to diminish omne
of the important differences between PE and QG models, namely,
the variation of the Coriolis parameter in some terms.

The energetic properties of the mean and eddy motions for
the final, statistically steady state for the QG and PE models
are shown in Figs. 5.27 and 5.28, respectively. These diagrams

show the energy (units k J nfz) and the rates of energy transfer
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DAYS 5402.0 TO 7200.0 BY 2.0
MEAN DIVERGENT EDDY KE2 (PE)
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(units 10 k J w2 s_l) for the rotational mean and eddy avail-
able potential and kinetic energies, as shown in Eq. (4-45).

Fig. 5.27 shows that the wind puts on the average
1.58 x 10° k J m 2 s~! into the upper layer mean kinetic
energy. About 75% of this is dissipated by lateral friction,
primarily in the western and northern boundary layers. The
other 25% of the energy put in by the wind participates in the
eddy generation process. Work done by the pressure forces tran-—
sfers 0.25 x 105 k J w2 7! from the upper layer to the lower
layer. Work done by buoyancy forces transfers 0.16 x 106 k J
m 2 s”! from each layer to maintain the mean available potential
energy of the system, which is continually releasing energy to
supply to the eddies. Buoyancy forces transform eddy potential
energy into eddy kinetic energy in order to maintain the eddy
field, which would otherwise be dissipated by lateral friction.
A very small amount of energy goes directly from mean to eddy
kinetic energy. Thus the eddy field receives its energy mainly
as a result of baroclinic instability processes. This transfer
of energy occurs almost entirely in the recirculation region.
These results are similar to those in Experiment 1 of Holland
(1978).

A comparison of Fig. 5.28 with Fig. 5.27 shows that 1) the
QG energy transfer rates are similar, but in general, higher for
the PE model, 2) little energy is dissipated by biharmonic heat
diffusions, 3) the work done by pressure forces in transferring

eddy energy from the lower to upper layer is of opposite sign,



140

and 4) the LB transfer rates are generally small, due to the
small basin size.

The small residuals shown for the QG eddy energy terms in
Fig. 5.27 would be identically zero if longer time averaging
were used. The large residuals shown for the PE eddy energy
terms in Fig. 5.28 imply important FB and PE energy transfers
(which were not explicitly computed in this study). These terms
presumably represent transfers between rotational and divergent
components. A more complete analysis of the total PE energe-
tics, necessary to explain the underlying dynamics, has not been

done here.

5.5 Vorticity

5.5.1 Relative vorticity

The geographical distributions of the time—averaged
relative vorticity (i.e., VZE) for both the PE and QG models are
shown in Figs. 5.29 and 5.30, respectively. The vorticity
patterns are similar, but the QG model has, in general, larger
values of both clockwise and counterclockwise vorticity.

In order to examine the local vorticity transfers, plots of
the geographical distribution of various terms on the right—hand
side of Eqs. (4-46) and (4-47) are shown in Figs. (5-31)-

(5-36). We first examine the spatial distribution of the KiQG
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DAYS 5402.0 TO 7200.0 BY 2.0
MEAN RV1 QUASIGEQS PLV (QG)
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a) =J(¥1, Z1), b) -Byix, c) —(fo/hy)wa,
d) hyjcurl,t(y), e) ARV ¢1, £f) -J(y1',21") -
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Fig. 5.31 (cont.)
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Fig. 5.32 Same as Fig. 5.31,

CONTOUR INTERVAL IS 0.10000E-13
DIVIDE LABELS BY 0.10000E+16

d

but for the PE model.
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Fig. 5.32 (cont.)
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Fig. 5.33 PE spatial distribution of the time-averages of the
AjLp terms in Eq. (4-46): a) -(f-f,)/h;)wy,
b) -Bxly-
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CONTOUR INTERVAL 1S 0.80000£-13
DIVIDE LABELS BY 0.10000E+16

d

Fig. 5.34 QG spatial distribution of the time-averages of the
time-averages of the Ajqg terms on the right-hand

side of Eq. (4-47):

a) ‘J(wZ’CZ)’ b) _szx’

c) (fo/hg)wz, d) A¥'yy, e) ~J(¥2',z2").
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c

Fig. 5.35 Same as Fig. 5.34, but

CONTOUR INTERVAL 15 0.BOOOOE-13
DIVIDE LABELS BY 0.10000E+16

d

for the PE model.
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Fig. 5.35 (cont.)
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Fig. 5.36 PE spatial distributions of the time-average of the
Ap1p terms in Eq. (4-47): a) ((f - £5)/hy),
b) "8X2y°
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terms in Eq. (4-46) for the QG model (Fig. 5.31). 1In the
western boundary region, the Laplacian friction (Fig. 5.31e) and
horizontal advection (Fig. 5.31a) terms tend to increase the
counterclockwise vorticity (see Fig. 5.29a), while the planetary
vorticity (Fig. 5.31b) tends to decrease it. The stretching
term (Fig. 5.31c) is ~15-20% of the other terms, and tends to
decrease the vorticity in the northern portion of the western
boundary region, and increase it in the southern portion.

In the northern boundary region, the main balances are as
follows: 1) in the western portion of the northern boundary,
Laplacian friction and the stretching tendency combine to
increase the counterclockwise vorticity, while the horizontal
advection tends to decrease it, 2) in the central portion of the
northern boundary region (near the vicinity of the recirculation
region) the planetary vorticity tends to increase the counter-
clockwise vorticity, while the horizontal advection tends to
decrease it.

In the interior and southern portions of the basin, a
Sverdrup balance exists, i.e., the planetary vorticity is
balanced by the wind stress curl (Fig. 5.31d).

The change of vorticity due to the eddies (Fig. 5.31f) is
concentrated in the recirculation region. In this area, the
eddies both increase and decrease the vorticity, with the result
that the net contribution to the vorticity is small. The maxi-
mum amplitudes are an order of magnitude smaller than amplitudes

of other terms in the boundary currents, but are of comparable
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amplitude in the middle of the recirculation region, where all
terms are important (note the contour intervals in Fig. 5.31).
These vorticity balances are similar to the vertically—-averaged
balances obtained by Holland and Lin (1975a), and in some
respects to the steady-state cases with strong inertial effects
in Veronis (1966).

Fig. 5.32 shows the spatial distribution of the KiQG
terms in Eq. (4-46) in the PE model. A comparison of Fig. 5.32
with Fig. 5.31 shows similar "mean vorticity tendencies”, except
for Kelvin wave effects in the boundary regions of the PE model.

Fig. 5.33 shows the geographical distribution of the time-
averaged linear balance terms in Eq. (4-46). Except in the
recirculation region, both of the linear balance terms are
smaller than any of the KiQG terms discussed previously. Much
of the structure of these patterns is apparently determined by
the Kelvin wave behavior, and severe aliasing may be a problem.

The terms KiFB and KiPE in Eq. (4-46) were calculated
as a residual, and shown to be significant. Further analysis is
necessary to determine what terms in particular are important.
Such analysis also may help to explain why the PE vorticity
pattern has generally smaller values of vorticity than the QG
model.

The time average of the time rate of change of relative
vorticity, i.e., Vzait, was also calculated. This term was
close to zero, which is to be expected in a statistically steady

state.
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Fig. 5.34 shows the geographical distribution of the KéQG
terms in Eq. (4-47) in the QG model. In the northwestern area
of the basin, the main balance is between the Laplacian friction
(Fig. 5.34d), horizontal advection (Fig. 5.34a), planetary
vorticity (Fig. 5.34b), and the stretching term (Fig. 5.34c).
The Laplacian friction term tends to increase the counterclock~-
wise vorticity (see Fig. 5.31b), while the other terms tend to
decrease it. In the western boundary region, the clockwise
vorticity in general tends to be increased by the stretching
term, planetary vorticity, and the mean advection terms, and
decreased by the Laplacian friction. The clockwise vorticity in
the recirculation area tends to be increased by the stretching
tendency and eddies (Fig. 5.34e), and decreased by the planetary
vorticity and Laplacian friction.

The change of vorticity due to the eddies (Fig. 5.34e) 1is
concentrated in the vicinity of the recirculation region. Along
the southeastern, southern and southwestern regions, smaller
contributions are discernible. Like the upper layer, the eddies
both increase and decrease the vorticity, with the result that
the net contribution to the vorticity is small.

Fig. 5.35 shows the geographical distribution of the KéQG
terms in Eq. (4-47) in the PE model. Again a comparison of
Fig. 5.35 with Fig. 5.34 shows similar mean vorticity tenden-
cies, except for Kelvin wave effects in the PE model.

Fig. 5.36 shows the geographical distribution of the time-
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averaged linear balance terms in Eq. (4~47). The linear balance
planetary vorticity tendency (Fig. 5.36b) increases the vorti-
city primarily in the recirculation region. The linear balance
Coriolis divergence (Fig. 5.36a) increases the vorticity in the
northern boundary regions, and decreases it in the recirculation
region. Both terms play a minor role in the net balance how-
ever.

The terms KéFB and ZéPE in Eq. (4-47) were calculated
as a residual. The time average of the time rate of change of
relative vorticity for the lower layer, i.e., Vzﬁét, was also
calculated. As in the upper layer, the residual terms were

significant, whereas the latter term was small.

5.5.2 Potential vorticity

The geographical distributions of the QG and PE time-
averaged quasigeostrophic potential vorticity for the upper and
lower layers are shown in Figs. 5.37 and 5.38, respectively. In
the upper layer the following features are discernible: 1)
sharp gradients or "tongues” of potential vorticity near the
western boundary and northeastern regions, 2) uniform regions of
potential vorticity in the recirculation region, and 3) a
gradual northward increase of potential vorticity in the
eastern, interior, and southern portions of the basin. In the
lower layer the following features can be seen: 1) a gradual

northward increase of potential vorticity throughout most of the
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basin, 2) a uniform region of potential vorticity in the north-
ern boundary region, and 3) a southward extending tongue of
potential vorticity in the northern portion of the western boun-
dary region. It should be noted that the reason that the poten-
tial vorticity patterns are so similar is that only the lowest
order component (i.e., the quasigeostrophic) component has been
calculated for the PE model. Analysis of the higher order com-
ponents in the PE model is necessary in order to address differ-

€nces.

5.6 Eddy momentum transports

The zonally—-averaged off-diagonal component of the eddy
momentum transports in each layer for both models are shown in
Figs. 5.39 and 5.40. The main contribution in the PE model is
by the rotational component, which is generally larger than the
QG. In some areas the u'v' correlations tend to retard the mean
flow, whereas in other areas they tend to drive it. Such cor-
relations, as a result, may be unimportant as momentum trans-
ports, compared to other terms, but they are signatures of the

instability.

5.7 PE heat transports

5.7.1 Meridional heat transports
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The spatial distribution of the time-mean and eddy, meri-
dional heat transports in each layer and for both layers is
shown in Figs. 5.41-5.46. 1In general, the eddies act against
the mean transport of heat. Eddy heat transport occurs in the
recirculation regions, and along the western and eastern boun-
daries. For each layer, both divergent and rotational compo-
nents are significant in local eddy heat transports.

The main contribution for eddy heat transport by the rota-
tional component is in the recirculation region, an area noted
by Gill (1983) to be of possible importance for eddy-equatorward
transports of heat. Fig. 5.47, which shows the vertically-
integrated and zonally-averaged, time—mean and eddy, meridional
heat transports (obtained from vertically integrating and
zonally averaging the PE temperature equations (4-29)) empha-
sizes the mean-poleward and eddy-equatorward transports of heat
in this region. The slight imbalances seen in Fig. 5.47 are due
to the transport of heat by biharmonic heat diffusion processes.

The main contribution for eddy meridional heat transport by
the divergent component is along the western and eastern boun-
daries, and is due to the Kelvin waves. Since there would also
be eddy zonal heat transports along the northern and southern
boundaries by the Kelvin waves, these divergent components
represent a "circular” flux around the basin perimeter and may
play little role in the actual eddy heat transports. A more
detailed discussion of these waves and their transports is given

in Chapter 7.
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dional heat transport summed for both layers:
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5.7.2 Vertical heat transports

The vertically-integrated, time-mean vertical heat trans—
port is shown in Fig. 5.48. The presence of positive vertical
heat transport in the recirculation region is associated with
baroclinic instability. The concentration of vertical heat
transport in the northeastern portion of the basin is likely a
reflection of the long-term adjustment process, in which the
ocean temperature field is responding to long-time scale, verti-

cal diffusion processes.
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CHAPTER 6. RESULTS OF THE DOUBLE-GYRE EXPERIMENT

We now show some results from the double-gyre PE and QG
experiments. These experiments differ from the previous experi-
ments in the following respects: 1) a double-gyre wind forcing
is used, with the result that the northern boundary of the
single-gyre experiment is replaced by a free jet at mid-
latitudes, 2) the north-south extent of the basin is increased
from 1000 to 2000 kilometers, and 3) bottom friction is incor-
porated. A summary of the parameters used in the experiment is
given in Table 6.1.

As in the single-gyre experiment, the initial state of the
experiment consisted of a horizontally uniform temperature
stratification with no motion. The same initial temperatures as
in the single-gyre experiment were used, i.e., 16.06°C for the

upper layer and 3°C for the lower layer.

6.1 Spin-up and statistical equilibrium

Figs. 6.1 and 6.2 show the time-dependent behavior of the
energetics for the QG and PE models, respectively. As shown in
Fig. 6.1, during the first 1300 days the spin-up process is
characterized by an increase in both the upper layer kinetic
energy and available potential energy (not shown). The lower

layer remains nearly motionless. After ~1300 days available
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Table 6.1 Summary of parameters used in the double-gyre
experiment
PARAMETER VALUE MODEL

Symbol Units

h, m 1000 Both

hy m 4000 Both

A km 20 Both

L km 1000 Both

D km 2000 Both
m2s™! 330 Both

m

B, 10710471 1.0 PE

B, 10”1 0pts™! 0.0 QG

CB 1077g71 1.0 Both

T, 10" n%s™? 1.0 Both

g' 10" %ms ™2 2.0 QG

g ms™2 9.8 PE

a 107 °c! 2.0 PE

£ 1075571 9.374 Both

By 107 g ts™! 1.754 Both

Rd km 13 Both

K 10 ¥m2s™! 1.0 PE
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Fig. 6.1 The time-dependent energetics for the QG double-gyre

experiment. A) Energy per unit area showing: upper
layer kinetic energy (a), lower layer kinetic energy

(b). B) Energy fluxes into the upper layer:
(a) {k»K1}, (b) {t*K1}, (e) {Ki*Dg1}, (d) {P+Ky}.
C) Energy fluxes into the lower layer: (a) K1+K2},

(b) {R2+Dy,}, (c) {Kz*Dg}, (d) {P+Ky}.
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potential energy begins to be released and gives rise to eddy
motions, which generate deep mean flows in the lower layer via
energy transfers from the upper to the lower layer. After
~5000 days the system has come into a quasi~statistically
steady state.

As in the single-gyre experiment, only the fast-time scale
is in statistical equilibrium for the PE model. The long-term
scale is not in equilibrium: there is a very slow continuing
ad justment as the static stability changes on a long time scale.

A comparison of Figs. 6.1 and 6.2 shows similar energies
and energy transfer rates. The main differences are: 1) the
spin-up time for the PE model is shorter (~900 days compared
to ~1300 days), 2) kinetic energies for both layers are
slightly higher for the PE model, and 3) the PE model has high
frequency oscillations.

A comparison of the QG single-gyre (Fig. 5.1) and double-
gyre (Fig. 6.1) time-dependent energetics, which are
horizontally-averaged over the respective basin, shows the
following: 1) a much larger available potential energy level
and a smaller lower layer kinetic energy level in the double-
gyre, and 2) more irregular oscillations in the double-gyre
energies and energy transfer rates. The irregularity in the
equilibrium oscillations can be accounted for since Holland
(1978) has shown that the free jet contributes an additional
source of instability in double gyres; the eddy field is no

longer so simple.
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A comparison of the PE single-gyre (Fig. 5.2) and double-
gyre (Fig. 6.2), time-dependent energetics shows similar ener-
gies and energy transfer rates. The main differences are :

1) much smaller amplitude in the variability of {P+K;} and
{P+Ky} transfer rates in the double gyre (note that the
ordinates for both experiments have the same scales), and

2) smaller lower layer kinetic energy in the double gyre. These
smaller values could be due to the additional dissipation
mechanism, i.e., bottom friction, in the double-gyre experiment.

These results will be further analyzed in Section 6.4.

6.2 Basic comparison quantities

In order to assess similarities and differences, in both
models and experiments, the basic time—averaged PE and QG quan-—
tities are compared with each other, and with the corresponding
single-gyre quantities. Again the period of time averaging is
for five years, using two—day sampling intervals.

Fig. 6.3 shows the time-averaged upper layer stream-
functions. Both subtropical anticyclonic and subpolar cyclonic
gyres show up as expected from the imposed surface wind stress
pattern. A comparable free jet exists at mid-latitudes, which
draws off more boundary-current fluid to the south than to the
north. As Holland (1978) has pointed out, barotropic insta-
bilities are likely to occur in this free jet region, resulting

in a different stability problem than in the single—~gyre
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experiment. Comparable linear, Sverdrup circulations are
obtained in the interior and eastern portions of the basin. The
basic difference in the plots is the slightly greater intensity
of the subpolar low and subtropical high in the PE model. A
comparison of Figs. 5.3 and 6.3 for both models shows a similar
anticyclonic gyre, which is more intense in the double-gyre
case.

Fig. 6.4 shows the time-averaged lower layer streamfunc-
tions. Again, the circulation patterns are quite similar.

There is a pair of inertial gyres with non-linear circulations
near the free jet region with counter-rotating cells adjacent to
each gyre. Holland and Rhines (1980) have explained that the
presence of the four gyres arises from the minimum of the lower
layer eddy potential vorticity flux at mid-basin, which separ-—
ates two broad maxima. This minimum is directly attributable to
the "flat" region in the lower layer mean potential vorticity
(see Fig. 6.29).

Fig. 6.5 shows the time—-averaged velocity potential for the
upper and lower layers of the PE model. Again it is important
to note that y; and yp are really just the same except for sign
and scaling. The largest values are in the western boundary
current as it approaches separation. This same feature is
discernible in the single-gyre velocity potential (Fig. 5.5),
which is twice as intense as the double-gyre. As in the
single-gyre case, the velocity potential is much smaller in

magnitude than either the upper or lower layer streamfunction.
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Again it is not clear whether the velocity potential pattern is
statistically well-determined. A longer time series and more
frequent sampling may show that this divergence pattern will
become even smaller upon time averaging.

The time-averaged horizontal vector velocity fields are
shown in Figs. 6.6 and 6.7 for the upper and lower layers,
respectively. Only every other point is plotted. In the PE
model, the rotational component dominates the divergent by a
factor of 50. Both the PE and QG models show similar horizontal
velocity patterns. In both layers, the following features can
be seen: 1) strong eastward flow in the area of the free jet,
with strong recirculation regions to the north and south, 2)
strong western boundary currents which flow northward (south-
ward) in the southern (northern) half of the basin, 3) weak
Sverdrup flow over most of the basin, and 4) very weak divergent
flow which is strongest in the vicinity of the free jet and
recirculation regions. In the lower layer, deep countercurrents
near the western wall are evident. The basic difference in the
PE and QG plots is the greater intensity of the PE subpolar low
and anticyclonic high in the recirculating portions of the
basin. Figs. 6.6 and 6.7 are similar to their single-gyre
counterparts, i.e., Figs. 5.10 and 5.11.

The vertical velocity is shown in Fig. 6.8. The QG verti-
cal velocity field shows the same areas of upwelling and down-
welling in the southern half of the basin as in the single-gyre

(compare Figs. 6.8b and 5.12b), and a mirror-image in the
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northern half of the basin.

One would expect the PE mean vertical velocity field to
resemble the QG, as in the single-gyre experiments. The
presence of high frequency activity in the PE vertical velocity
suggests that more time averaging may be necessary to average
out these gravity waves in this experiment. A closer inspection
of the PE time-dependent energetics for the double-gyre experi-
ment (Fig. 6.2) suggests that trends could still be present,
which could be affecting the results. In the PE upper layer
kinetic energy there is a 32-day oscillation superimposed on a
longer (~300-day) oscillation, neither of which is evident in
the QG energetics.

The upper layer pressure field is shown in Fig. 6.9. The
basic circulation patterns are similar, with the PE high pres-
sure cell more intense than the QG geostrophic streamfunction.
Fig. 6.9c shows that terms in addition to the PE geostrophic
streamfunction are significant, but only at the 10%Z level.

Fig. 6.9 cannot be readily compared with Fig. 5.13 because 1)
these fields are deviations from their respective horizontal
means, which are considerably different in the single-and
double-gyre experiments, and 2) the choice of f, is different
in the two gyres.

Fig. 6.10 shows the lower layer pressures. Again the PE
pressure cells are more intense than the QG geostrophic stream-
function cells. Fig. 6.10c shows that terms in addition to the

PE geostrophic streamfunction can become important at the 10%
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DAYS 6302.0 TO 8100.0 BY 2.0 DAYS 6302.0 T0 8100.0 BY 2.0
MEAN P2 (PE) FO s MEAN PSI2 (TILDE) (PE)

ALALREU R R R RRAL

CONTOUR INTERVAL IS 0.40000E-01 CONTOUR INTERVAL 1S 0.40000FE-01

LABELS ARE UNSCALED LABELS ARE UNSCALED
a b
DAYS 6302.0 TO 8100.0 BY 2.0 DAYS 6302.0 T0 8100.0 BY 2.0
MEAN P2 - FO = PSI2 (TILDE) (PE) FO = MEAN PSI2 (TILDE) (&G)

g

i

%0

Ty

ALLOLS LA R AR RRRRR

"" ’U"

CONTOUR INTERVAL

o

1S 0.10000F-02 CONTOUR INTERVAL 1S 0.30000E-01

DIVIDE LABELS BY 10000. LABELS ARE UNSCALED
c d

Fig. 6.10 Time-mean of entry 12 in Table 4.1: a) Py, b) f,9»
(PE), c) p2-fov2, d) fo¥2 (QG).




187

level. As in the single-gyre experiment, there is a high degree
of geostrophy.

Lastly, the upper and lower layer time~averaged temperature
fields are shown in Fig. 6.11, along with the average PE tem
perature and the per cent time change of PE static stability
since the beginning of the experiment. Evidence of the two time
scales in the PE model can be seen. The temperature fields
reflect the fast-time scale, i.e., baroclinic adjustments, while
the slow continuing adjustment of the static stability (seen in

Fig. 6.11d) reflects the long-time scale.

6.3 Instantaneous, time mean and eddy fields

Fig. 6.12 shows the QG instantaneous, time mean, and eddy
fields for fop1, fop2, ¥R and ¥pp at a particular
instant in time. As in the single-gyre experiment, a comparison
of the upper layer mean and eddy quantities shows that the
eddies and mean flow have about the same amplitude. A compari-
son of the lower layer quantities shows that the eddies are
dominant. Since there is no direct mean forcing of the lower
layer, the lower layer mean circulation is again driven by the
eddies.

Fig. 6.13 shows the PE instantaneous, time mean, and eddy
fields for pj, pp, ¥ and ¥, at a particular instant in time. A
comparison of Fig. 6.13 with Fig. 6.12 shows similar patterns,

except that the boundary-trapped Kelvin waves in the PE
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experiment are absent in the QG experiment.

Fig. 6.14 shows eddy maps of fo¥s £2y25 ViR, and
voRp at 8-day intervals for the QG model. The eddies propagate
westward at ~4 to 7 km per day. In the central portions of
the basin, the eddies have a basic wavelength of ~450 km,
while in the northern and southern areas of the basin, the
eddies have a larger wavelength. If Figs. 6.l4a and b are over-
laid, it is seen, as in the single-gyre experiment, that 1) in
the central portions of the basin, there is a tilt in the verti-
cal, consistent with baroclinic instability, with the upper
layer eddies lagging the lower layer eddies, and 2) in the
northern and southern areas of the basin, there is little, if
any, tilt, so that the eddies are very nearly equivalent baro-
tropic.

Finally, Fig. 6.15 shows eddy maps of pj, P2, Vi, and v, at
8-day intervals for the PE model. In the interior, the PE and
QG mesoscale eddies look similar and tend to be quite baro-
tropic. The main difference between the PE and QG eddy fields
is the additional eddy field propagating counterclockwise around
the basin. This field, which is due to the Kelvin waves, is,
unlike the interior, entirely baroclinic. A comparison with the
single~gyre experiment shows the Kelvin waves to have the same
wavelengths (~675 km). Further discussion of these Kelvin

waves will be given in the following chapter.

6.4 Energetics
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Table 6.2 lists the horizontally-averaged, time-mean and
eddy kinetic energies for both models. As in the single—gyre
experiment, the PE total and rotational kinetic energy compo~
nents are always higher than the QG kinetic energy components,
and 2) the divergent component of the PE kinetic energy is
small, except for Kl" where the divergent component contributes
~33% to the total. A comparison of Table 6.2 with Table 5.2
shows that the PE energies for the single—gyre experiment are
higher. This is probably due to the added dissipation process,
i.e, the bottom friction, in the double-gyre experiment. The
divergent component in the double—gyre experiment is also
smaller by about 30-50% than that in the single-gyre. This is
likely due to the smaller ratio of radius of deformation size
(the “"trapping” scale for the Kelvin waves) to the horizontal
domain.

The geographical distribution of the time-mean and eddy
kinetic energy for each layer is shown in Figs. 6.16-6.19.
Again very large local values of the mean kinetic energy are
noted. The PE eddy kinetic energy maps (Figs. 6.18a and 6.19a)
suggest three regions of active transience: 1) the boundary,
where Kelvin waves are present, 2) the recirculation region,
where the mesoscale eddies are driven by baroclinic instability
processes, and 3) the area of the free jet, where the mesoscale
eddies are driven by barotropic processes. In the QG model only

the latter two regions are present.



Table 6.2 Horizontally-averaged time-mean and eddy kinetic energy
for the single-gyre experiment

Ky Ky' Ky'
No. Energy Quantigg % of PE Quantitg % of PE Quantitg 7% of PE Quantitg % of PE
(k Jm*“) total (k J m“) total (k I m“) total (k Jm*) total
1) Total PE 7.20 100% 1.10 100% 1.3 100% 0.77 100%
la) Rotational
component 6.77 947 0.95 907% 0.86 67% 0.66 867%
1b) Divergent
component 0.43 67 0.11 10% 0.43 33% 0.11 147
2) QG 6.08 907 0.77 70% 0.60 467 0.59 77%

S0¢
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Fig. 6.16 Time-mean of entry 17 in Table 4.1: a) K;, b) Kip,
¢) Kir (PE), d) Kjg (Q6)-
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Fig. 6.17 Time-mean of entry 18 in Table 4.1: a) Ko, b) Kyp,
c) Kor (PE), d) Kor (QG).
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Fig. 6.18 Time-deviation of entry 17 in Table 4.1: a) K;, b)
Kip, ¢) Kjr (PE), d) Kjgp (QG).
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Fig. 6.19 Time-deviation of entry 18 in Table 4.1: a) K,,
b)KzD, c) KZR (PE), d) Kor (QG) .
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A comparison of Figs. 6.18 and 6.19 with Figs. 5.23 and
5.24 shows that the maximum eddy kinetic energy has shifted from
the recirculation regions and northwestern corner of the
single-gyre experiment to the axis of the free jet. The pre-
sence of the eastward free jet can be conducive to the produc-
tion of eddies by instability processes, whereas the presence of
the northern boundary can inhibit eddy production (Holland,
1978).

The eddy divergent kinetic energy of the upper layer has
also decreased considerably in the double-gyre case. This
decrease could be due to several factors related to the Kelvin
waves, which are the main reason for significant eddy divergent
kinetic energy in these experiments. Since the Kelvin waves
always travel counterclockwise (in the northern hemisphere)
along the basin boundaries the change from single-gyre to
double-gyre wind forcing could be affecting their propagation.
These waves travel in the same direction as the wind in the
northern half of the basin, but in the opposite direction in the
southern half. Since the generation mechanism for the Kelvin
waves is not known, it is possible that the mechanisms in#olved
in their generation may have changed too. Other possible
factors are the increased basin size and the incorporation of
bottom friction in the double-gyre case. The latter could be

acting to dissipate the Kelvin waves along the continental

boundaries.
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The geographical distributions of the time-mean and eddy
rotational available potential energy for each model are shown
in Figs. 6.20 and 6.21. Again most of the mean and eddy rota-
tional available potential energy in both models is produced in
the recirculation regions, where baroclinic instability occurs.
The linear balance component still plays a lesser role than if a
much larger basin size were used. Due to the dependence on
symmetry about the mid-point of the basin, the linear balance
terms in the single-gyre and double~gyre experiment are not
readily comparable.

The energetic properties of the mean and eddy motions for
the final, statistically steady state for the QG and PE models
are shown in Figs. 6.22 and 6.23, respectively. Fig. 6.22 shows
that the wind puts on the average 1.62 x 10° k J 2 s~! into
the upper layer mean kinetic energy. About 65% of this is
dissipated by lateral friction, primarily along the axis of the
free jet and in the western boundary regions. The other 35% of
the energy put in by the wind participates in the eddy genera-
tion process. Work done by the presure forces transfers

0.32 x 10° k J a2 7!

from the upper to the lower layer. Work
done by buoyancy forces transfer 0.16 x 106 k J w2 57! from
each layer to maintain the mean available potential energy,
which is continually supplying energy to the eddies. Buoyancy
forces transform eddy potential energy into eddy kinetic energy

in order to maintain the eddy field, which would otherwise be

dissipated by both lateral and bottom friction. Thus the eddy
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field receives its energy mainly as a result of baroclinic
instability processes. The incorporation of bottom friction
results in nearly equal amounts of lower layer kinetic energy
being dissipated by lateral and bottom friction.

A comparison of Fig. 6.23 with Fig. 6.22 shows that 1) the
QG energy transfer rates are similar, but generally higher for
the PE model, 2) little energy is dissipated by biharmonic heat
diffusion, 3) the work done by pressure forces in transferring
eddy energy from the lower to upper layer is a significant path-
way in the PE model, 4) a significant amount of energy goes
directly from eddy to mean kinetic energy in the upper layer of
the PE model, and 5) due to the small basin size, the LB terms
are small.

The residuals for the QG model shown in Fig. 6.22 are
small, implying that the five-year time-averaging is long enough
to examine the eddy/mean breakdown in this model. Fig. 6.23
shows large residuals for the PE eddy energy, which could imply
important FB and PE energy transfers, which were not explictly
computed in this study. These residuals may represent real
energy fluxes from the divergent component of flow to the
rotational part (or vice versa). A more complete analysis of
the total PE energy itself, necessary to explain the underlying
dynamics, has not been done here.

A comparison of Figs. 5.27 and 5.28 with Figs. 6.22 and
6.23 shows that 65 to 75% of the upper layer mean kinetic energy

input by the wind is dissipated by Laplacian friction, leaving
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only 25 to 35% of the energy to participate in the eddy genera-
tion process. Thus the generally similar results between the
single-gyre and double-gyre experiments can be most likely
explained by the use of a rather large Laplacian friction coef-
ficient. This suggests that in both experiments Laplacian
friction dominates over eddy processes, with the result that
rather weak instabilities and nonlinearities are observed. If
the friction were reduced, the eddy processes could play a
greater role, and stronger instabilities might be observed (see
Holland, 1978). In particular, as stated previously, barotropic
instabilities would be more likely to occur in the free jet of
the double-gyre case, resulting in a different stability process

than the single-gyre.

6.5 Vorticity

6.5.1 Relative vorticity

The geographical distributions of the time-averaged rela-
tive vorticity for both the QG and PE models are shown in Figs.
6.24 and 6.25, respectively. The vorticity patterns are simi-
lar. The QG model has slightly larger values of vorticity in
the southern half of the basin, whereas the PE model has
slightly larger values of vorticity in the northern half of the

basin. The vertically-averaged vorticity, as in the single-gyre

experiment, to a large extent resembles the upper layer vorti-
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city, due to the generally larger values of vorticity in the
upper layer.

In order to examine the local vorticity transfers, plots of
the geographical distribution of the vertically—averaged
relative vorticity are shown in Figs. (6.26)-(6.27). We first
examine the spatial distribution of the vertical averages of the
KiQG and KéQG terms in Eqs.v(4—46) and (4-47), respectively,
for the QG model (Fig. 6.26). 1In the western boundary regions,
the main balance is between the Laplacian friction (Fig. 6.26d),
planetary vorticity (Fig. 6.26b), and the horizontal advection
(Fig. 6.26a). In the southern (northern) half of the basin, the
Laplacian friction and horizontal advection terms tend to
increase the counterclockwise (clockwise) vorticity, while the
planetary vorticity tends to decrease it.

In the recircﬁlation regions, the main balances are between
the horizontal advection, the planetary vorticity, and to a
lesser extent, the Laplacian friction. In the southern (north-
ern) half of the basin, the planetary vorticity tends to
increase the counterclockwise (clockwise) vorticity, while the
horizontal advection and Laplacian terms tend to increase it.

To the south and north of the axis of the free jet, the
main balance is between the horizontal advection and Laplacian
friction. To the south (north) of the axis of the free jet, the
horizontal advection tends to increase the counterclockwise
(clockwise) vorticity, while the Laplacian friction tends to

decrease it.
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In the interior and southern portions of the basin, a
Sverdrup balance exists, i.e., the planetary vorticity is
balanced by the wind stress curl (Fig. 6.26c).

The change of vorticity due to the eddies (Fig. 6.26e) is
concentrated 1) along the axis of the free jet, and 2) to the
north and south of the axis of the free jet. In these areas,
the eddies both increase and decrease the vorticity, with the
result that the net contribution to the vorticity is small.

The change of vorticity due to the bottom friction is shown
in Fig. 6.26f. Alternate areas of clockwise and counterclock-
wise vorticity are seen along the western boundary, and to the
north and south of the axis of the free jet. The bottom fric—
tion term is in general small compared to the other terms.

Fig. 6.27 shows the spatial distribution of the vertical
averages of the KiQG and KéQG terms in Eqs. (4—46) and
(4-47), respectively, for the PE model. A comparison of Fig.
6.27 with Fig. 6.26 shows similar "mean vorticity tendencies”,
except for Kelvin wave effects in the boundary regions of the PE
model.

The vertical averages of the KiLB and KéLB terms in
Eqs. (4-46) and (4-47) were calculated, and shown to be much
smaller than any of the vertically-averaged KiQG and KéQG
terms discussed previously. The vertical averages of the terms
KiFB and KiPE in Eq. (4-46), and KQFB and KéPE in Eq.

(4=47) were calculated as a residual, and shown to be signifi-

cant, as in the single-gyre experiment. The time rate of change
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of the horizontally-averaged vorticity, i.e., ((h1V2w1t+
hzvzwzt)/ﬁ), was also calculated. This term was close to
zero, which is to be expected in a statistically steady state.

The geographical distributions of the PE and QG vertically-
averaged relative vorticity for the southern half of the
double-gyre basin (the lower half of Figs. 6.26 and 6.27) are
similar to those for the single-gyre basin (not shown). The
main difference is that the change of vorticity due to the
eddies is coﬂcentrated in the vicinity of the recirculation
region in the single-gyre case, and near the axis of the free

jet in the double-gyre experiment.
6.5.2 Potential vorticity

The geographical distributions of the QG and PE time-
averaged potential vorticity for the upper and lower layers are
shown in Figs. 6.28 and 6.29, respectively. In the upper layer
(Fig. 6.28), the following features are discernible in both
models, which are similar to the single-gyre results: 1) sharp
gradients or "tongues” of potential vorticity in the western
boundary regions, 2) in the southern (northern) half of the
basin, a southwestward (northwestward) tongue of potential vor-
ticity near the eastern side of the basin, 3) sharp gradients of
potential vorticity along the axis of the free jet, and 4) a
gradual northward increase of potential vorticity in the rest of

the basin. In the lower layer, the following features, also
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similar to the single-gyre results, can be seen in both models:
1) a gradual northward increase of potential vorticity through—
out most of the basin, 2) a uniform region of potential vorti-
city in the central portion of the basin, and 3) in the southern
(northern) half of the basin, a southward {northward) extending
tongue of potential vorticity in the western boundary region.
Again, only the lowest order component has been calculated
for the PE model, which explains why the QG and PE patterns are
so similar. Analysis of the higher order components in the PE

model is necessary to address the differences.

6.6 Eddy momentum transports

The zonally-averaged, off-diagonal components of the eddy
momentum transports in each layer for both models are shown in
Figs. 6.30 and 6.31. As in the single-gyre case, the main
contribution to the eddy momentum transports or stresses in the
PE model is by the rotational component, which is generally
larger than the QG. The geographical distribution (not shown)
of the off-diagonal components shows 1) adjacent regions of
positive and negative eddy momentum transports along the axis of
the free jet, and to the north and south.of the free jet and 2)
in the recirculation regions, positive (negative) transports in
the southern (northern) half of the basin. A comparison of the
southern half of Figs. 6.30 and 6.31 with Figs. 5.39 and 5.40

shows similar eddy transport patterns.
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Again, as in the single-gyre experiment, the u'v' corre-
lations, although retarding the mean flow in some areas and

driving it in others, are probably unimportant as momentum

transports. Instead they are just signatures of the instability

processes.

6.7 PE heat transports

6.7.1 Meridional heat transports

The spatial distribution of the time-mean and eddy, meri-
dional heat transports in each layer and for both layers is
shown in Figs. 6.32-6.37. As in the single-gyre case, the
eddies generally act against the mean transport of heat. Eddy
heat transport occurs in the recirculation regions, in the area
of the free jet, and along the western and eastern boundaries.
For each layer, both divergent and rotational eddy heat trans-
ports are significant. The main contribution for eddy heat
transport by the rotational component occurs in the recircula-
tion region and in the vicinity of the free jet. Fig. 6.38
emphasizes the mean-poleward and eddy-equatorward transports of
heat in these regions. The slight imbalances seen are due to
the transport of heat by biharmonic heat diffusion processes.
Again the main contribution for eddy meridional heat transport
by the divergent component occurs along the western and eastern

boundaries. Presumably the main contribution for eddy zonal
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Fig. 6.32 Spatial distribution of the time-averaged, meridional
heat transport in the upper layer: a) h,v,T;,
b) hyx1yTi, ¢) hy¥14T).
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Fig. 6.33 Spatial distribution of the eddy meridional heat
transport in the upper layer: a) hyv T;,
b) hixiyTi, ¢) hyy14Ty.
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Fig. 6.34 Spatial distribution of the time-averaged meridional
heat transport in the lower layer: a) hyvyT,,
b) hax2yT2, ¢) haypgT2.
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heat transport by the divergent component occurs along the
northern and southern boundaries, so that overall the divergent
component may not play much of a role in actual eddy heat
transports. These divergent transports are due to Kelvin waves,
whose properties will be discussed further in the following

chapter.

6.7.2 Vertical heat transports

The vertically-integrated, time-mean vertical heat trans-—
port is shown in Fig. 6.39. The presence of alternate regions
of positive and negative heat transport throughout most of the
basin looks very much like the signature of gravity waves. This
suggests that a longer time averaging is needed in the

double-gyre experiment to average out these waves.
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CHAPTER 7. DISCUSSION OF RESULIS

Based on the results of the two QG and PE numerical experi-
ments, it is obvious that the two models can be configured to
give nearly similar results. Extensive analyses have shown that
similar results for both models can be obtained for 1) basic
qﬁantities, such as horizontal velocities and streamfunctions,
2) energetics, 3) relative and potential vorticity, and 4)
momentum transports.

Although overall the results are fairly similar between the
two models, a closer examination does reveal some significant
differences. In both experiments, consistently higher PE
energies and energy transfer rates are obtained. An examination
of the geographical distributions of these energy quantities
shows that most of the differences between the models occur
along the lateral boundaries of the basin. This appears to be
the result of Kelvin waves traveling along these boundaries in
the PE model. Instead of being dissipated, these waves travel
counterclockwise around the basin and perhaps even interact with
the eddies and mean general circulation. Although these experi-
ments were not designed with the Kelvin waves in mind, the
results can be used to deduce some of the basic properties of
these waves.

From the instantaneous plots of p; in Figs. 5.18a and

6.13a, we determine that the basic wavelength is ~666 km for
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both experiments. For two layers, the propagation speed of
Kelvin waves is given by c¢ = (g'hlhz/H)ll2 =4 m s-'1 (same for
both experiments). Using the wavelength and propagation speed,
we calculate a period of 1.9 days. Fig. 7.1 is a time series of
the vertical velocity at a single grid-point near the southern
boundary of the basin for the last 1000 days of the single-gyre
experiment. (The point plotted here has coordinates (26,1),
where point (1,1) is the center of the southwest—corner grid box
and point (50,50) is the center of the northeast—corner grid
box). The sampling frequency for this time series is 0.5 days.
The dominant feature of this time series is a very regular wave
with a period of 1.9 days, which exactly matches the period
calculated for the Kelvin waves.

Kelvin waves also have the "pecularity” that they can
travel along lateral boundaries in one direction only, i.e.,
counterclockwise in the Northern Hemisphere. A time sequence of
the vertical velocity field at four—hour intervals {not shown)
establishes that this is the direction of propagation of the
observed waves near the boundaries.

Finally, Kelvin waves have the characteristic that the
amplitudes decay rapidly with distance from the boundary, and
become insignificant beyond a distance on the order of the
Rossby radius of deformation. Fig. 7.2 shows ten—day time
series of p; and p, at half-day intervals for five separate grid

points in the single-gyre basin. The five points form a line
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moving northward from the center of the southern boundary.
These time series clearly show the decay in amplitudes away from
the boundaries. The 1.9 day period of the waves is also
evident. Note that Fig. 7.2 also shows that p, and p; are 180°
out of phase.

We next show that the Kelvin waves are the likely mechanism
for the meridional eddy heat transport by the divergent compo-
nent shown in Figs. 5.42b, 5.44b, 6.33b, and 6.35b. Fig. 7.3
shows ten-day time series plots of the total meridional eddy
heat transport (i.e., hyvy'Ty' + hyvy'Tp') at the midpoint of
each lateral boundary. Along the northern (Fig. 7.3c) and
southern (Fig. 7.3a) boundaries, there is no net meridional
transport. Along the western boundary (Fig. 7.3b) there is net
equatorward transport, while along the eastern boundary (Fig.
7.3d) there is net poleward transport. Figs. 7.4 and 7.5 shows
how these transports are accomplished in layers 1 and 2,
respectively. Along the northern (Figs. 7.4c and 7.5¢) and
southern (Figs. 7.4a and 7.5a) boundaries, the kinematic boun-
dary condition (v = 0) results in insignificant meridional eddy
heat transports. Along the western boundary in the upper layer
(Fig. 7.4b) and along the eastern boundary in the lower layer
(Fig. 7.4d), the v' and T' waves are 180° out of phase, with the
result that the meridional eddy heat transports are equatorward
in these regions. Along the eastern boundary in the upper layer

(Fig. 7.4d), and along the western boundary in the lower layer
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(Fig. 7.5b), the v' and T' waves are in phase, with the result
that the meridional eddy heat transports are poleward in these
regions. Because the upper layer transports are so much larger
than the lower layer, the total meridional eddy heat transports
shown in Fig. 7.4 reflect the upper layer values. In all of
these figures, the 1.9 day period signature of the Kelvin waves
is clearly seen. As stated previously, there would also be
divergent components of zonal eddy heat transports along the
northern and southern boundaries to close the circuit. Thus the
Kelvin waves just rotate heat around the basin. As a result,
the divergent heat flux probably plays no important role but is
just the "signature” of the Kelvin waves.

Finally, Fig. 7.6 shows strong evidence that the Kelvin
waves are also the likely cause of the maximum in the divergent
component of the eddy kinetic energy near the lateral boun-
daries. Both the 1.9 day period and the decrease in'amplitude
away from the lateral boundaries are clear signatures of these
waves. Lastly, Fig. 7.7 suggests the interesting possibility
that these waves can also contribute to the rotational component
of the eddy kinetic energy near the lateral boundaries.

In all of the figures presented so far in this chapter, we
have used half-day time intervals. In the five-year analyses
presented in Chapters 5 and 6, two-day time intervals were
used. Because the Kelvin waves have a period of 1.9 days, it is
likely that the two-day sampling interval introduced aliasing

into the five-year statistics. Fig. 7.8 is a comparison of the
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(bottom) at half-day

intervals for five grid points“near the southern boun-
dary of the single-gyre basin. The grid points plotted

are: a) (26,1), b (26,2), c) (26,3), d) (26,4),

e) (26,5).
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| time series of the horizontally-averaged kinetic energy compo-
nents for each layer at two—day and half-day intervals.
Although the time averages for these energy statistics are pro-
bably not affected by the aliasing, it certainly seems possible
that other, higher-order statistics could be.

Whether the presence of these Kelvin waves is due to
numerics or to physics remains uncertain. The questions of how
Kelvin waves are generated, maintained and dissipated, and how
they interact with eddies and the ocean general circulation need
to be better understood not just in this type of PE model, but
in real oceans as well. Kelvin waves are known to be sensitive
to wind forcing, but a steady wind forcing, as used here, cannot
give rise to transient waves. It is worth noting, however, that
during the model spin-up, when wind forcing is first introduced,
it is not steady. It is possible that, in the absence of a
suitable dissipative mechanism, the waves introduced during
spin-up could remain, even after 20 years. A comparison of
Kelvin wave amplitudes at 15 and 20 years into the single-gyre
integration showed no change in amplitude. This implies either
1) dissipation is very small for these waves, or 2) the waves
are being continuously forced. Another possibility is that they
are generated by nonlinear interactions of the mesoscale eddy
field or by physical or numerical instability processes.

Recent theoretical studies by Davey et al. (1983) have
shown that the use of lateral and vertical viscosity can

influence free Kelvin waves. Lateral viscosity can signifi-

-
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cantly affect baroclinic Kelvin waves, whereas vertical viscous
effects can affect barotropic Kelvin waves. Hsieh et al. (1983)
have shown that in addition to viscosity, horizontal grid reso~
lution, the type of grid, and the choice of boundary conditions
can significantly influence the behavior of free Kelvin waves.
Based on their results, each of our PE model choices, i.e., the
use of a fine-grid horizontal resolution with a C-grid scheme
and free-slip boundary conditions, should have the least effect
on the behavior of these waves. As a result, our model seems to
be ideal for their study.

More extensive analysis of the PE model results is clearly
needed in order to gain a deeper understanding of the underlying
physics. This comparison study highlights similarities in the
PE and QG models, but further investigations of the results
should highlight differences. The possible interaction of
Kelvin waves with mesoscale eddies and the ocean general circu-
lation is a new and important problem which deserves further

investigation.
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CHAPTER 8. SUMMARY

The present study provides a foundation for the first quan-
titative intercomparison of QG and PE models, which have both
been modified in order to make the numerics as similar as possi-
ble so that the differences in PE and QG physics can be under-
stood. In order to give nearly similar results, we had to
overcome differences 1) in model equations and prognostic vari-
ables, and 2) in the basic model configurations. We started
with the PE system of equations and derived a set of equations
which had the same form and prognostic variables as the QC
system. We then made the QG approximation to this set. As a
result we obtained a consistent set of PE and QG comparison
equations and prognostic variables, which could be used to make
systematic comparisons between the PE and QG systems. We
obtained a consistent model configuration by choosing the same
parameters for both models, and by using the same vertical and
horizontal distribution of variables.

Using this set of analysis equations, we developed analysis
procedures in the following areas: 1) energy, 2) relative and
potential vorticity, and 3) eddy momentum and heat transports.
The results of two QG and PE numerical experiments were then
analyzed in each of these areas.

In the first experiment, two—layer versions of the QG and

PE models were spun up with fine-grid horizontal resolution (20
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km) using a single-gyre wind forcing in a 1000 x 1000 km
rectangular basin centered at midlatitudes. It is important to
note that the small basin size tended to diminish one of the
important differences between PE and QG models, the variation in
the Coriolis parameter in some terms. Both models used lateral
Laplacian friction and no bottom friction. Biharmonic heat
diffusion was used in the PE model. The choice of parameters
was made on the basis of making the models as similar as
possible.

The second experiment was similar to the first, but dif-
fered in the following respects: 1) a double-gyre wind forcing
was used, with the result that the northern boundary of the
single-gyre experiment was replaced by a free jet at mid-
latitudes, 2) the north-south extent of the basin was increased
from 1000 to 2000 kilometers, and 3) bottom friction was incor-
porated. The model parameters used in this experiment were
chosen in order to explore the roles of a free jet and bottom
friction in the ocean general circulation for both models, while
still allowing some comparisons to be made between the single-
gyre and double-gyre results. Another difference between the
two experiments is the value of the constant Coriolis parameter
fo3 this alone would cause such processes as baroclinic
instability to change.

The results of the single-gyre and double-gyre experiments

were quite similar. The reason for this is most likely due to
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the use of a rather large Laplacian friction coefficient. In
both experiments, 65 to 75% of the upper layer mean kinetic
energy input by the wind was dissipated by Laplacian friction,
leaving only 25 to 35% of the energy to participate in the eddy
generation process. This suggests that in both experiments
Laplacian friction dominated over eddy processes, with the
result that rather weak instabilities and nonlinearities were
observed. If the friction were reduced, the eddy processes
could play a greater role, and stronger instabilities might be
observed (see Holland, 1978). In particular, barotropic insta~
bilities would be more likely to occur in the free jet of the
double-gyre case, resulting in a different stability problem
than the single-gyre.

In both experiments and models, the spin-up process was
characterized by an increase in both upper layer kinetic energy
and available potential energy, with the lower layer remaining
nearly motionless until some critical shears were reached.
Between ~2 and 4 years, the available potential energy and the
upper layer circulation had built up sufficiently for the flow
to become baroclinically unstable. The release of available
potential energy then gave rise to eddy motions, which generated
deep mean flows in the lower layer via energy transfers from the
upper layer. Between ~1500 and 5000 days, the system came
into a statistical equilibrium in which eddies and the mean flow

were in mutual balance.
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A comparison of the PE and QG time—dependent energetics
showed similar energetics and energy transfer rates for both
experiments. The main differences were: 1) the upper and lower
layer kinetic energies were higher by about 35% for the PE
model, and 2) the PE model had high frequency oscillations,
which corresponded to the frequency of Kelvin waves.

The basic time-averaged PE and QG quantities were compared
with each other in both experiments in order to assess similari-
ties and differences. Most quantities were quite similaf.

The main difference in the models was due to the presence of
Kelvin waves along the lateral boundaries of the PE model.
These waves propagated counterclockwise along the boundaries
with the phase speed of inertia-gravity waves, i.e., "4 m s‘l.

An examination of instantaneous, time mean and eddy fields
for both models showed that in the upper layer, the eddies and
mean flow had about the same amplitude, while in the lower
layer, the eddies were dominant and were the main driving
mechanism for the lower layer mean circulation. The eddies
propagated westward at ~5.5 km per day. In the single-gyre
experiment, the eddies were baroclinic in the northern half
of the basin, and barotropic in the southern half. In the
double-gyre experiment, the eddies tended to be quite barotropic

in the interior. The main difference between the PE and QG eddy

fields in both experiments was the additional eddy field
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propagating counterclockwise around the basin in the PE model.
This field was due to the Kelvin waves and was entirely baro-
clinic.

An examination of the horizontally-averaged, time-mean
energetics showed consistently higher PE total and rotational
kinetic energy components than QG, and small but significant
divergent components of PE kinetic energy. Geographical distri-
butions of PE eddy kinetic energy suggested the following
regions of active transience: 1) the boundary, where Kelvin
waves are present, 2) the recirculation region, where the meso-
scale eddies are driven by baroclinic instability processes, and
3) in the double-gyre experiment, the area of the free jet,
where the mesoscale eddies are driven by barotropic instability
processes. In the QG model only the latter two regions were
present.

The results of the relative vorticity analysis showed simi-
lar QG and PE vorticity patterns, but generally larger QG values
of both clockwise and counterclockwise vorticity. The change of
vorticity due to the eddies was concentrated in the recircula-
tion region for the single-gyre experiment, and in the vicinity
of the free jet region for the double-gyre experiment. Analysis
of relative vorticity terms showed similar PE and QG "mean
vorticity tendencies", except for Kelvin wave effects in the
boundary regions of the PE model. Except in the recirculation
region, the LB terms were smaller than any other vorticity

terms. The small basin sizes used in these experiments
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tended to diminish the importance of these LB terms. The FB and
PE terms were calculated as a residual, and shown to be signifi-
cant. Further analysis would be necessary to determine what
terms in particular, were important.

An examination of the geographical distributions of the
time-averaged quasigeostrophic potential vorticity showed that
the PE and QG potential vorticity patterns were very similar in
both layers. The reason for this similarity was that only the
lowest order (i.e., the quasigeostrophic) component had been
calculated for the PE model. Again further analysis of the
higher order PE components would be necessary to address differ—
ences.

The zonally-averaged off-diagonal component of the eddy
momentum transports showed that the PE rotational component was
dominant over the divergent, and was generally larger than the
QG. 1In some areas the u'v' correlations tended to retard the
mean flow, whereas in others they tended to drive it.

Both eddy and mean meridional heat transports were calcu~
lated for the PE model. In general the eddies acted against the
mean transport of heat. Both divergent and rotational compo-
nents were significant in transporting eddy meridional heat
transports. The main contributions for eddy heat transport by
the rotational component was in the recirculation area, an area
shown by Holland and Lin (1975a) and Holland (1978) to be of

possible importance for eddy transports of heat equatorward.
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The main contribution for eddy meridional heat transport by the
divergent component was along the western and eastern boun-
daries, and was shown to be due to the Kelvin waves. Presumably
the main contribution for eddy zonal heat transport by the
divergent component would be along the northern and southern
boundaries to close the circuit. As a result, the divergent
heat flux probably plays no role but is just the "signature” of
the Kelvin waves.

Thus most of the differences in the PE and QG models were
due to the presence of Kelvin waves along the lateral boundaries
of the PE model. Whether the presence of these waves is due to
numerics or to physics remains uncertain and awaits further

investigation.



263
CHAPTER 9. BIBLIOGRAPHY

Arakawa, A., 1966. Computational design for long term numerical
integration of the equations of fluid motion: Two-
dimensional incompressible flow. Part I. J. Comput . Phys.,
1, 119-143.

Arakawa, A., 1972. Design of the UCLA general circulation
model. Tech. Rep. No. 7, Dept. Meteor., Univ. of Calif.,

Los Angeles, 116 pp.

Arakawa, A. and V. R. Lamb, 1977. Computational design of the
basic dynamical processes of the UCLA general circulation
model. In Methods of Computational Physics, 17, Academic
Press, New York, 173-265.

Baker, D. J., Jr., W. D. Nowlin, Jr., R D. Pillsbury and H.
Bryden, 1977. Antarctic circumpolar current: Space and
time fluctuations in the Drake Passage. Nature, 268, 696-
699.

Batteen, M. L. and Y.-J. Han, 1981. On the computational noise
of finite-difference schemes used in ocean models, Tellus,
33, 387-396.

Bennett, A. J., 1983. The South Pacific including the East
Australian Current. In: Eddies in Marine Science, (A. R.
Robinson, Ed.), Springer-Verlag, New York, 219-244.

Bernstein, R. L., 1983. Eddy structure of the North Pacific
Ocean. In: Eddies in Marine Science (A. R. Robinson,
Ed.), Springer-Verlag, New York, 158-166.

Bernstein, R. L., and W. B. White, 1974. Time and length scales
of baroclinic eddies in the central North Pacific Ocean.
J. Phys. Oceanogr., 4, 613-624.

Blandford, R. R., 1971. Boundary conditions in homogeneous
models. Deep-Sea Res., 18, 739-751.

Bourne, D. E. and P. C. Kendall, 1968. Vector analysis. Allyn
and Bacon, Boston, Masachusetts.

Bretherton, F. P., 1975. Recent developments in dynamical
oceanography. Quart. J. Roy. Meteor. Soc., 101, 705-721.

Bretherton, F. P. and D. B. Haidvogel, 1976. Two-dimensional
turbulence above topography. J. Fluid Mech., 78, 129-154.




264

Bretherton, F. P., and M. Karweit, 1975. Mid-ocean mesoscale
modeling. In: Numerical Models of Ocean Circulation,
U.S. NAS, Washington, D.C., 237-249.

Bryan, K., 1969. A numerical method for the study of the circu-
lation of the world ocean. J. Comp. Physics, 4, 347-376.

Bryan, K. and L. J. Lewis, 1979. A water mass model of the
world ocean. J. Geophys. Res., 84, 2503-2517.

Bryden, H. L., 1983. The Southern Ocean. In: Eddies in Marine
Science, (A. R. Robinson, Ed.), Springer-Verlag, New York,
265-277.

Charney, J., 1947. The dynamics of long waves in a baroclinic
westerly current. J. Meteor., 4, 135-162.

Crease, J., 1962. Velocity measurement in the deep water of the
Western North Atlantic. J. Geophys. Res., 67, 3173-3176.

Cushman-Roisin, B., 1983. Analytical, linear stability criteria
for the leap-frog, Dufort-Frankel method. Submitted to J.
Comp. Phys.

Dantzler, H. L., 1976. Geographical variations in intensity of
the North Atlantic and North Pacific oceanic eddy fields.
Deep-Sea Res., 23, 783-794.

Dantzler, H. L., 1977. Potential energy maxima in the tropical
and subtropical North Atlantic. J. Phys. Oceanogr., 7,
512-519.

Davey, M. K., W. W. Hsieh, and R. C. Wajsowicz, 1983. The free
Kelvin wave with lateral and vertical viscosity. J. Phys.
Oceanogr., 13, 2182-2191.

Dickson, R. R., 1983. Global summaries and intercomparisons—-
Long-term current meter moorings. In: Eddies in Marine
Science, (A. R. Robinson, Ed.), Springer-Verlag, New York,
278-353.

Eady, E. J., 1949. Long waves and cyclone waves. Tellus, 1,
33-52.

Emery, W., 1983. Global summary: Review of eddy phenomena as
expressed in temperature measurements. In: Eddies in
Marine Science, (A. R. Robinson, Ed.), Springer—Verlag, New
York, 354-403.




265

Frankignoul, C., and P. Muller, 1979. Quasi-geostrophic
response of an infinite B~plane ocean to stochastic forcing
by the atmosphere. J. Phys. Oceanogr., 9, 104-127,

Gill, A. E., 1983, Eddies in relation to climate. 1In: Eddies
in Marine Science, (A.R. Robinson, Ed.), Springer—Verlag,

New York, 441-445.

Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974. Energy
partition in the large—scale ocean circulation and the pro-
duction of mid-ocean eddies. Deep Sea Res., 21, 499-528.

Gould, W. J., 1983. The Northeast Atlantic Ocean. In: Eddies
in Marine Science, (A. R. Robinson, Ed.), Springer-Verlag,
New York, 145-157.

Grindlingh, M. L., 1983. Eddies in the Southern Indian Ocean
and Agulhaus Current. In: Eddies in Marine Science,
(A. R. Robinson, Ed.), Springer-Verlag, New York, 245-264.

Haidvogel, D. B., 1979. A discussion of certain modeling
factors which influence the results of eddy-resolving ocean
circulation studies. Dyn. of Atmos. and Oceans, 3, 181-
190.

Haidvogel, D. B., 1983. Periodic and regional models. In:
Eddies in Marine Science, (A. R. Robinson, Ed.), Springer-
Verlag, New York, 404-437.

Haidvogel, D. B., and W. R. Holland, 1978. The stability of
ocean currents in eddy-resolving general circulation
models. J. Phys. Oceanogr., 8, 393-413.

Haltiner, G. J., 1971. Numerical weather prediction. John
Wiley and Sons, Inc., 317 pp.

Haltiner, G. J. and R. T. Williams, 1980. Numerical prediction
and dynamic meteorology. John Wiley and Sons, Inc., 477

pp-

Han, Y.-J., 1975. Numerical simulation of mesoscale ocean
eddies, Ph.D. thesis, Univ. of Calif., Los Angeles, 153 pp.

Han, Y.-J., and W. L. Gates, 1982. Preliminary analysis of the
performance of the 0OSU six-level oceanic general circula-
ation model. Part 1. Basic design and barotropic experi-
ment. Rep. No. 30, Climatic Research Institute, Oregon
State University, Corvallis, 53 pp.

Haney, R. L., 1974. A numerical study of the response of an
idealized ocean to large-scale surface heat and momentum
flux. J. Phys. Oceanogr., 4, 145-167.




266

Harrison, D. E., 1979. Eddies and the general circulation of

numerical model gyres: An energetic perspective. Rev.
Geophys. Space Phys., 17, 969-979.

Harrison, D. E. and W. R. Holland, 1981. Regional eddy vorti-
city transport and the equilibrium vorticity budgets of a
numerical model ocean circulation. J. Phys. Oceanogr., 11,
190-208.

Harrison, D. E. and A. R. Robinson, 1978. Energy analysis of
open regions of turbulent flows--mean eddy energetics of a
numerical ocean circulation experiment. Dyn. Atmos and
Oceans, 2, 185-211.

Heinmiller, R. H., 1983. Instruments and methods. 1In: Eddies
in Marine Science, (A. R. Robinson, Ed.), Springer-Verlag,

Inc., New York, 542-567.

Holland, W. R., 1967. On the wind-driven circulation in an
ocean with bottom topography. Tellus, 19, 582-599.

Holland, W. R., 1978. The role of mesoscale eddies in the
general circulation of the ocean —— Numerical experiments
using a wind-driven quasi-geostrophic model. J. Phys.
Oceanogr., 8, 363-392.

Holland, W. R., 1983. Mesoscale eddy activity as part of the
large-scale ocean circulation. In: Large-scale oceano-
graphic experiments in the WCRP, Report of the Jsc/ccco
Study Conference in Tokyo, 10-22 May 1982, WCPP Publication
Series No. 1, 135-146.

Holland, W. R. and D. B. Haidvogel, 1980. A parameter study of
the mixed instability of idealized ocean currents. Dyn.
Atmos. Oceans, 4, 185-215.

Holland, W. R., D. E. Harrison, and A. J. Semtner, Jr., 1983.
Eddy-resolving numerical models of large-scale ocean
circulation. In: Eddies in Marine Science (A.R. Robinson,
Ed.), Springer-Verlag, N.Y., pp. 379-403.

Holland, W. R. and L. B. Lin, 1975a. On the generation of meso-~
scale eddies and their contribution to the oceanic general
circulation. I. A preliminary numerical experiment. J.
Phys. Oceanogr., 3, 642-657.

Holland, W. R. and L. B. Lin, 1975b. On the generation of meso~
scale eddies and their contribution to the oceanic general

circulation. II. A parameter study. J. Phys. Oceanogr.,
3, 658-669.




267

Holland, W. R. and P. B. Rhines, 1980. An example of eddy-
induced ocean circulation. J. Phys. Oceanogr., 10, 1010-
1031.

Hsieh, W. W., M. K. Davey, and R. C. Wajsowicz, 1983. The free
Kelvin wave in finite-difference numerical models. J.

Phys. Oceanogr., 13, 1383-1397.

Kim, J.-W., 1979. Design and preliminary performance of the OSU
four-level oceanic general circulation model. Rep. No. 6,
Climatic Research Institute, Oregon State University,
Corvallis, 49 pp.

Kitano, K., 1974. Note on the Kuroshio anticyclonic eddy. J.
Phys. Oceanogr., 4, 670-672.

Kitano, K., 1975. Some properties of the warm eddies generated
in the confluence zone of the Kuroshio and Oyashio
currents. J. Phys. Oceanogr., 5, 245-252.

Koshlyakov, M. N. and Y. M. Grachev, 1973. Mesoscale currents
of a hydrophysical polygon in the tropical Atlantic.
Deep-Sea Res., 20, 507-526.

Leetma, A., P. Niiler, and H. Stommel, 1977. Does the Sverdrup
relation account for the mid-Atlantic circulation? J.
Maro ReS. > 15_’ l-lOc

Lilly, D. K., 1965. On the computational stability of numerical
solutions of time-dependent non-linear geophysical fluid
dynamics problems. Mon. Wea. Rev. 93, 11-26.

Lorenz, E. N., 1955. Available potential energy and the mainte-
nance of the general circulation. Tellus, 7, 157-167.

Lorenz, E. N., 1960. Energy and numerical weather prediction.
Tellus, 12, 364-373.

Lorenz, E. N., 1962. Simplified dynamic equations applied to
the rotating-basin experiments. J. Atmos. Sci., 19, 39-51.

MacLeish, W. H., Ed., 1976. Ocean Eddies. Oceanus, 19, The
Woods Hole Oceanographic Institution, Woods Hole, MA.

Manabe, S., 1983. Oceanic influence on climate——Studies with
mathematical models of the joint ocean-atmosphere system.
In: Large-scale oceanographic experiments in the WCRP,
Report of the JSC/CCCO Study Conference in Tokyo, 10-22
May 1982, WCPP Publication Series No. 1, 1-27.

S



268

Matsuno, T., 1966. Numerical integrations of the primitive
equations by a simulated backward difference method. J.
Met. Soc. Japan, Ser. 2, 44, 76-84.

McWilliams, J. C., 1979. A review of research on mesoscale
ocean currents. Rev. Geophys. and Space Phys., 17,

1548-1558.

'McWilliams, J. C., 1983. On the mean dynamical balances of the

Gulf Stream recirculation zone. J. Mar. Res., 41, 427-460.

McWilliams, J. C., et al., 1983: The local dynamics of eddies
in the Western North Atlantic. In: Eddies in Marine
Science, (A. R. Robinson, Ed.), Springer-Verlag, New York,
92-113.

McWilliams, J. C., W. R. Holland, and J. H. S. Chow, 1978. A
description of numerical Antarctic Circumpolar Currents.

Dyn. Atmos. and Oceans, 2, 213-291.

Mintz, Y., 1979. On the simulation of the oceanic general
circulation. Report of the JOC Study Conf. on Climate
Models: Performance Intercomparison and Sensitivity
Studies (Washington, D.C., April 1978), GARP Publ. Series
22, WMO, Geneva, 607-687 (Vol. 2).

Needler, G. T., 1983. Subpolar gyres and the Arctic Ocean. In:
Eddies in Marine Science, (A. R. Robinson, Ed.),
Springer-Verlag, New York, 167-180.

Orlanski, I. and M. D. Cox, 1973. Baroclinic instability in
ocean currents. Geophys. Fluid Dyn., 4, 297-332.

Owens, W. B., and F. P. Bretherton, 1978. A numerical study of
mid-ocean mesoscale eddies. Deep-Sea Res., 23, 1-14.

Phillips, N. A., 1956. The general circulation of the
atmosphere: A numerical experiment. Quart. J. Roy.
Meteor. Soc., 82, 123-164.

Phillips, N. A., 1966. The equations of motion for a shallow
rotating atmosphere and the “"traditional approximation”.
J. Atm. Sci., 23, 626-628.

Phillips, N. A., 1973. Principles of large scale numerical
weather prediction. In: Dynamic Meteorology (Morel, Ed.),
D. Reidel Publishing Co., Holland, 1-97.

Phillips, O. M., 1969. The dynamics of the upper ocean.
Cambridge University Press, 216 pp-



269

Rhines, P., 1975. Waves and turbulence on a beta-plane. J.
Fluid Mech., 69, 417-443.

Rhines, P., 1977. The dynamics of unsteady currents. In The
Sea, Vol. 6, J. Wiley and Sons, New York, 189-318.

Rhines, P. B. and W. R. Holland, 1979. A theoretical discussion
of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289-325.

Richardson, P. L., 1983. Eddy kinetic energy in the North
Atlantic from surface drifters. J. Geophys. Res., 88,
4355-4367.

Richman, J. G., C. Wunsch, and N. G. Hogg, 1977. Space and time
scales of mesoscale motion in the western North Atlantic.
Rev. Geophys, and Space Phys., 15, 385-420.

Richtmeyer, R. D. and K. W. Morton, 1967. Difference methods
for initial-value problems. Wiley-Interscience, 399 pp.

Robinson, A. R., 1983. Overview and summary of eddy science,
In: Eddies in Marine Science, (A. R. Robinson, Ed.),
Springer-Verlag, Inc., New York, 1-15.

Robinson, A. R., D. E. Harrison, and D. B. Haidvogel, 1979.
Mesoscale eddies and general ocean circulation models.
Dyn. Atmos. and Oceans, 3, 143-180.

Robinson, A. R., D. E. Harrison, Y. Mintz, and A. J. Semtner,
1977. Eddies and the general circulation of an idealized
ocean gyre: A wind and thermally driven primitive equation
numerical experiment. J. Phys. Oceanogr., 4, 182-207.

Robinson, A. R., and J. C. McWilliams, 1974. The baroclinic
instability of the open ocean. J. Phys. Oceanogr., 7,
281-294.

Rossby, H. T., S. C. Riser, and A. J. Mariano, 1983. The
Western North Atlantic - A Lagrangian viewpoint. In:
Eddies in Marine Science, (A. R. Robinson, Ed.), Springer-
Verlag, Inc., New York, 66-91.

Schmitz, W. J., 1977. On the deep general circulation in the
western North Atlantic. J. Mar. Res., 33, 21-28.

Schmitz, W. J., 1978. Observations of the vertical distribution
of low frequency kinetic energy in the western North
Atlantic. J. Mar. Res., 36, 295-310.




270

Schmitz, W. J. and W. R. Holland, 1982. Numerical eddy
resolving general circulation experiments: preliminary
comparison with observation. J. Mar. Res., 40, 75-117.

Schmitz, W. J., W. R. Holland and J. F. Price, 1983, Mid-
latitude mesoscale variability. Rev. Geophys. and Space

Physics, 21, 1109-1119.

Schoenstadt, A. L., 1978. A transfer function analysis of
numerical schemes used to simulate geostrophic adjustment.
Report NPS-53-79-001. Naval Postgraduate School, Monterey,
Calif., 44 pp.

Schulman, E. E., 1967. The baroclinic instability of a mid-
ocean circulation. Tellus, 19, 292-305.

Semtner, A. J., 1974. An oceanic general circulation model with
bottom topography. Technical Report. No. 9, Numerical
Simulation of Weather and Climate. Dept. of Meteorology,
Univ. of Calif., Los Angeles, 37 pp.

Semtner, A. J. and W. R. Holland, 1978. Intercomparison of
quasigeostrophic simulations of the western North Atlantic
circulation with primitive equation results. J. Phys.

Oceanogr., 8, 735-754.

Semtner, A. J. and Y. Mintz, 1977. Numerical simulation of the
Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr., 7,
208-230.

Siedler, G., 1983. Tropical equatorial regions. In: Eddies in
Marine Science (A. R. Robinson, Ed.), Springer-Verlag,
Inc., New York, 181-199.

Swallow, J. C., 1983. Eddies in the Indian Ocean. In: Eddies
in Marine Science (A. R. Robinson, Ed.), Springer-Verlag,
Inc., New York, 200-218.

Swallow, J. C., and B. V. Hamon, 1960. Some measurements of
deep currents in the eastern North Atlantic. Deep-Sea
Res., 6, 155-168.

Takano, K., 1974. A general circulation model for the world
ocean. Tech. Rep. No. 8, Dept. of Meteorology, Univ. of
California, Los Angeles, 46 pp.

Tang, C. M., 1975. Baroclinic instability of stratified shear
flows in the ocean and atmosphere. J. Geophys. Res., 80,
1168.




271

Thompson, P. D., 1961. Numerical weather analysis and predic-
tion. The Macmillan Co., 170 pp.

Veronis, G., 1966. Wind-driven ocean circulation. Part 2.
Numerical solution of the non-linear problem. Deep-Sea
Res., 13, 31-55.

Warren, B. A., 1963. Topographic influences on the path of the
Gulf Stream. Tellus, 15, 167-183.

Winninghoff, F., 1968. On the adjustment toward a geostrophic
balance in a simple primitive equation model with applica-
tion to the problem of initialization and objective analy-
sis. Ph.D. dissertation., Univ. of Calif., Los Angeles,
161 pp.

Wunsch, C., 1983. Western North Atlantic Interior. 1In: Eddies
in Marine Science (A. R. Robinson, Ed.), Springer-Verlag,
Inc., New York, 46-65.

Wyrtki, K., L. Magaard, and J. Hager, 1976. Eddy energy in the
oceans. J. Geophys. Res., 8l, 2641-2646.




APPENDICES



272

Appendix A. Numerical details of the PE model

The PE model used in this study is a new one. It has much
of the same basic model structure (e.g., C-grid horizontal
distribution of variables) as the adiabatic PE model of Holland
and Lin (1975a,b), yet has complete thermodynamics. Essentially
the prognostic layer depth equations of the Holland and Lin
model (see the Appendix in Holland and Lin, 1975a) are replaced
by prognostic thermodynamic energy equations and constant layer
depths. In this section, we describe numerical details of the
PE model not presented in previous sections of the thesis,
namely, vertical differencing (Section A.l), horizontal and time
differencing (Section A.2), method of solution (Section A.3),
and some integral properties of the PE finite-difference

equations (Section A.4).

A.1 Vertical differencing

The vertical structure of the model, shown as a two-layer
version in Fig. 3.1, has multi-layers. Here we use the
subscripts k + 1 and k - 1 to denote the layers above and below,
respectively, the layer k the vertical differencing is applied
to. As in Fig. 3.1, the layers are numbered from top to bottom

with the layer thickness given by h,. The vertical coordinate
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is the height z, which is positive upwards with z = 0 at the
surface. The horizontal velocities, temperature and pressure
are all defined at layer mid-points. The vertical velocity is
defined at layer interfaces.

The thermodynamic energy equation (Eq. 3-3) in vertical

difference form is

T+t L (T) + 5

Kt [w T +wT T

2h 1 Tem1 ~ Wil Tk T Vi Tk )

ZKH ZKH
Gy T 7RG AL T
2
+AHV Tk
{ or . . (A-1)
—BHV Tk

In Eq. (A-1), (Tk+Tk_1)/2 and (Tk+Tk+1)/2 have been
chosen for the vertical differencing of (wT), in order to
satisfy the conservation of the first and second moments of
temperature, as far as vertical advection is concerned (Lorenz,
1960). A demonstration of this conservation principle for the
PE model is given in Section A.4.

The vertical-difference form of the hydrostatic equation

Eq. (3-3) is chosen to be

PPl g KPRl

- ( (A-2)
2,72 po 2
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in order to be consistent with the vertical advection differen-
cing of temperature. This form of the hydrostatic equation,
under adiabatic,inviscid conditions, guarantees total energy
conservation (Bryan, 1969; Semtner, 1974; Han, 1975).

The equation of state (3-6) in vertical difference form is

pk = pO(l_a(Tk_TO)) (A-3a)

for k layers and

Petr = Po1malTy7To)) (A-3b)
for k+l layers. If we differentiate Eqs. (A-2), (A-3a) and
(A-3b) with respect to X, and subsequently substitute the

differentiated forms of Eqs. (A-3a) and (A-3b) into Eq. (A-2),

we obtain

-
4 k

Pex ~ Pix (A-ba)

i o~ 2

. (hye + ) (T + Ty o

where N denotes the bottom layer. Similarly, differentiating
Eqs. (A-2), (A-3a), and (A-3b) with respect to y and subse-
quently substituting the differentiated forms of Eqs. (A-3a) and
(A-3b) into Eq. (A-2) results in

= - &
pky p1y 4

&~ 2

4 (hk + hk+1) (Tky + T(k+1)y). (A-4Db)

Using Eq. (A-4a), the zonal momentum equation (3-1) in

vertical difference form is



275

(A-5)

1
+ - -
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where the following notation has been used:

P
p1X = Slﬁ-, as in Holland and Lin (1975a,b);
o
X 1
= E——-T(y) for k=1; and
1
x ga N
T <% kél (hk + hk+1) (Tkx + T(k+1)x) for k > 1.

Similarly, using Eq. (A-4), the meridional momentum equation

(3-2) in vertical difference form is

1 _
Ve T LV Th, Ve ¥ieVie-1 ™ ¥kt Vk T Vit Vil ]

2
y +AmV Vi
kT TPy Sploor o
-B qu
m k

where the following notation has been used:

(A-6)

P
ply = Elz-, as in Holland and Lin (1975a,b);
o
o =t =0 for kel; and
h
1
y ga N
T T4 k£1 (hk + hk+1) (Tky + T(k+1)y) for k > 1 .
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The continuity equation Eq. (3-4) in vertical difference

form, is

u, + v, + 1 w, - 1 w =0 . (A-7)

A.2 Horizontal and time differencing

To keep the finite-difference analogues of the equations

relatively compact, the operators §, and ()* are defined

such that

s.n(x) = = [n(x +%) = n(x - ]
and

RO 2y in(x+ P Fax- Pl

where n(x) is any function of x. The finite-difference Lapla-
cian Vz( ) is defined as

V) = s+ 8.

Using this notation, the finite-difference analogue of the
governing equations (A-1), (A-5), (A-6) and (A-7) can be written
as

n+tl _ .n-1 _ =X =y
T, = T, 28t {8 (T, w) + 8, (Ty v,)

+ T

1 -
* e v (T + Temp) ™ W T + T
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-1 ¥C_v or _ -2At8_p, » -
k Bk +Bqun1 y©1l
m k
Vierl = Ml RSV T - (A-11)

In Eq. (A-9), for k =1,

~
]

wW(y)

B Lyt ) (T Thanye)
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In Eq. (A-10), for k=1,

y _
Tl =0 ;
for k > 1,
N
y . 82 v
T <% k£1 (b + ) (Tky + T(k+1)y) .

In both Eqs. (A-9) and (A-10), p;4 and ply are the x and y
derivatives of the upper layer pressure divided by pg» the
mean density.

Eq. (A-8) is written with reference to a T point, Eq.
(A-9) with reference to a u point, Eq. (A-10) with reference to
a v point and Eq. (A-10) with reference to a w point. As in
Holland and Lin (1975a), the horizontal differencing scheme is
similar to that of Lilly (1965) for homogeneous problems. The
scheme conserves both total energy and mass (See Section A.4).

The superscripts n-1 and ntl in the equations denote the
time level. Denoting the present time level as n, n-1 is one
time step in the past and ntl is one time step in the future.
All terms which are not superscripted are at time level n. The
friction terms are lagged a time step in order to avoid linear
numerical instability (Thompson, 1961; Richtmyer and Morton,
1967; Haltiner, 1971; Phillips, 1973; Haltiner and Williams,

1980).
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The principal time differencing scheme used in the model is
the leap-frog scheme. Periodically, we use Euler's backward
scheme (Matsuno, 1966) to suppress "time splitting”, which is
inherent in the leap-frog scheme. At the beginning of the inte-
gration the backward scheme is used for ten consecutive time
steps. The leap—frog scheme is then used to continue the inte-
gration. Every 47 time steps the backward scheme is used
again. According to Haltiner (1971), gravity waves of wave-
length comparable to two grid intervals should be damped by
periodic use of the backward scheme.

As a reference value for what the time step At should be in
the model, the classical stability criterion, i.e., the CFL con-
dition, can be used. Since the rigid lid condition excludes
external gravity waves, the highest frequency motions are inter-
nal, inertial gravity waves. The propagation speed c of these

waves is

g'hihy, 1/2

where g' is reduced gravity, h; and hy are layer thicknesses and
H is the total depth. Using the model choices of Holland
(1978), i.e., a grid inverval A of 20 km, g' = 0.02 mzs‘l,

h; = 1000 m, and h, = 4000 m, the CFL condition for the time

step At is
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at < %-= 5 x 1033,

when one-dimensional criteria are used, and

A

e <. = 3.5 % 103s,

when two—dimensional criteria are used (Haltiner and Williams,
1980).

It should be noted, as in Holland and Lin (1975a), that
since the CFL condition is deduced from simple linear theory,
this criterion should only be used as a reference value for the
choice of At. Indeed, a trial-and-error process showed that a
time step of 1200 s led to an unstable integration.

Another stability criterion for the time step comes from a
consideration of the Laplacian lateral momentum diffusion.
Using a viscosity coefficient Ay of 330 mzs_l, we can obtain

2

at < %— %~ <3 x10° S,

which is a less stringent criterion than the CFL condition.

The above criteria are obtained from either diffusive or
advective considerations. Cushman-Roisin (1983) has shown that
consideration of both advective and diffusive criteria can lead
to more restrictive stability conditions. This consideration

could lead to a criterion closer to our trial-and-error

instability value of ~1200 s.
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To be on the safe side, we use a time interval of 600 s for

all PE experiments.

A.3 Method of solution

The rigid-1id assumption, w = O at the surface of the
ocean, puts a constraint on solving the system of equations
(A-8) - (A-11). Because of this assumption, the vertically-
integrated horizontal velocity must satisfy a non-divergent

condition, i.e.,

—_— Joudz + —%— Jovdz =0, (A-12)

obtained by integrating Eq. (3-4) and applying both the rigid-
1id and flat-bottom assumptions. This condition then requires
that the vertically integrated pressure satisfy a balance equa-
tion that can be obtained from Eqs. (3-1) and (3-2) using Eq.
(A-12). Because of this condition, the pressure cannot be
obtained by integrating the hydrostatic equation from the free
surface. Instead, the pressure must be determined such that
Eq. (A-12) is satisfied. This leads to a rather special solu-
tion procedure, developed by Bryan (1969) and used extensively
by ocean modelers (e.g., Semtner, 1974; Haney, 1974; Takano,
1974; Holland and Lin, 1975a; Han, 1975; Kim, 1979; Han and

Gates, 1982). The solution procedure described below closely
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follows the method discussed in Holland and Lin (1975a).
We first derive the vorticity equation for the vertically
integrated flow. This eliminates the upper layer pressure
py- The resulting vorticity equation is then solved for the
transport streamfunction ¥ at time step mtl. The vertical velo-
cities w, at time step mtl can be calculated directly from the

continuity equation (A-11) using the boundary conditions

n+l

K can be calculated

wy = wy42 = 0. The temperature T
calculated directly from the thermodynamic energy equation
(A-8).

As in Holland and Lin (1975a), we use the continuity equa-~

tion (A-11) and vertical averaging to obtain

) (h 8 u) + X(hkéyvk) =0,

which, since hy is constant, can be rewritten as

5, (Ihyew) + 6, (Uhw) =0 .

This equation enables us to define a finite-difference transport

streamfunction such that

8 ¥ = Yhyuy (A-13a)

and
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8, = LY (A-13b)

To eliminate the upper-layer pressure, we first write the
finite-difference forms of Eqs. (A-9) and (A-10) in shorthanded

forms. Thus, multiplying Eqs. (A-9) and (A-10) each by hy, we

can write
n+l _ n-1 _ _ _
hkuk = hkuk hk2At Uk 2At hkékp1 (A-14)
and
n+l n-1
= - - -15
By Vi BV h 20t V, -2At B S Py (A-15)

where, Up, for instance, i{s the abbreviation for the bracketed

terms in Eq. (A-9), which are not shown explicitly in Eq.

(A-14), and is a number evaluated at every u point.
Substituting Eqs. (A-13a) and (A-13b) into Egs. (A-14) and

(A-15), respectively, we obtain

_ n-1 _ : _ _
§.Y = -8y 2atYh U, - 2AtHS p) (A-16)

and

ntl n-1 : _
8.Y -2At)h V. 20tHS py - (A-17)

(o]
E=]
[}

Next, we operate Gy on Eq. (A-16) and §, on Eq. (A-17) and

then subtract Eq. (A-16) from Eq. (A-17) to obtain

2 n+l 2 n-1 .
= +
vy vy sy(ZAt)hkUk)

—Gy(ZAtthVk) . (A-18)
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If the values of u, and vy are given at every point for time
levels n-1 and n and if the values of w, are given for time
level n, the right hand side of Eq. (A-18) is a known function
of space and is a finite-difference Poisson equation in yotl
with Dirichlet boundary conditions.
Once the solution for the Poisson equation is obtained,

(A-16) and (A-17) can be used to evaluate -2At6xp1 and

—2At6yP1:
-1 . ot n-1 : -
28t8 py = ¢ 8, ¥ HS Y +28t)h U, ) (A-19)
and
1 n+l n-1 :
- =z - . -20
2868 p) = g (8 ¥ -8 ¥ +25t)h V) (A-20)

Substituting the right hand side of Eq. (A-19) into Eq. (A-9)
and Eq. (A-20) into Eq. (A-10), Egs. (A-9) and (A-10) can be
used to solve for “kn+1 and an+1° Explictly, these

equations become

ntl _ n-1 _ X —=X = -y
= u o -2at{s (u w) + 8, (¥ u)
T th CHCH N EARLCHR WD)
X -A Vzu n-1
— m k
- f—;y T + CBu { or 1
+B v‘+ u H
1 ntl n-1 : _
+ 5 [Gy\v + Gy\v + 2At2hkUk] (A-21)
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and

n+l _ n-1_ -y X
Ve =V 2at {Gx(uk Vk) + Gy(;Z;Z)
1 =y =y
+ 2 o (Ve + v g) "Wy (Vg + Vi)l
2 n—1
-A V%v
— y n-1 m k
+ fuk - T + Cka { orq n—1
+BmV M }}
1 n+1 n—-1 .
L N 2at)h v, ] . (A-22)

The equations of motion can be integrated indefinitely.

The method used for solving the Poisson equation (A-153) gives

the exact solution to the finite-difference Poisson equation in

a rectangular domain with zero boundary conditions. An

efficient Fast Fourier Transform is used for this purpose.

A.4 Some integral properties of the PE finite-difference

equations

1. Conservation of the first and second moments of temperature

We first show that the differential form of the temperature
equation conserves the first and second moments of temperature.

First, we horizontally average Eq. (3-3) to obtain
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JJTt dxdy + JJ(uT)x dxdy + JJ(vT)ydxdy

+ JJ(wT)zdxdy = |]Q dxdy, (A-23)
where
+A,9%T
Q=k, T [or , (A-24)
i zz -B,v*T

and |[( )dxdy denotes the horizontal integration. We note that
the second and third terms in Eq. (A-23) integrate to zero.
Next, we vertically average Eq. (A-23) and apply the boundary
conditions of a rigid lid at the surface and a flat bottom.
Then

J])(wT), dxdydz = 0,

so that Eq. (A-23) reduces to
JJJTtdxdydz = ||]Q dxdydz, (A-25)

which, under adiabatic conditons, proves that the first moment
of temperature is conserved.
Next, we multiply Eq. (3-5) through by the temperature to

obtain

1/2(T2) + T(uT) + T(VT) + T(wT)_ = TQ, (A-26)
t X y z

where Q is given by Eq. (A-24). We note that

T(uT) 1/2(uT2)x + Tu_ (A-27)

and

T(vT) 1/2(vi%) + v . (A-28)
y y y
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If we add Eqs. (A-27) and (A-28), use the continuity equation

and substitute the resulting equation into Eq. (A-26), we obtain

12y 21, 12 leoor2y - = -
zﬂ)t z@T%{*ﬂ”)y T%+TWDZ TQ. (A-29)
We note that
= Lewr2 ~30
T(wT)z 5(WI2) + T . (A-30)

If we substitute Eq. (A-30) into (A-29), globally integrate the
resulting equation and apply the boundary conditions of a rigid

1id at the surface and a flat bottom, then Eq. (A-29) reduces to
2
1/2[]J(T%) dxdydz = []]TQ dxdydz, (A-31)

which, under adiabatic conditions, proves that the second moment
of temperature is conserved.

We next show that the finite-difference form of the
temperature equation preserves the first and second moments of
temperature. First, if we take a summation of Eq. (A-8) for all
i,j and apply the kinematic boundary conditions, we find that

b (Tru) + ) 5y(TZ v) =0, (A-32)
i,3 i,

where ) denotes a summation taken over the horizontal ocean
1,3

domain. Next it we multiply Eq. (A-8), through by hy, take a

summation of Eq. (A-8) for all k and apply the boundary condi-

tions w; = wp4) = 0, we find that

%((wk(rk + T ) = W (T + Te41)) = O- (A-33)



.288
Using (A-32) and (A-33) in the global average of Eq. (A-8),

under adiabatic conditions, we obtain

or
8 { h, T =0 (A-34)
at k i,j,k ’
>3
which is the finite-difference form of the conservation of the
first moment of temperature.
To obtain the second moment of temperature, we multiply
(A-8) through by h,T, and note that

2
hXG (Tk uk)

N+

—X —X
T8y (Tu) = 5 b (T )8 u (A-35)

and

h T 8, (T v,) = %— hksy((r Yu) - 7 hk(T )26,v.  (a-36)

If we add Eqs. (A-35) and (A-36), use the continuity equation
for the last terms in Eqs. (A-35) and (A-36), substitute the
equations into Eq. (A-8) and take a summation of Eq. (A-8) for
all i,j, we find that the first terms on the right hand sides of
(A-35) and (A-36) = 0. If we take a summation of Eq. (A-8)
for all k and apply the boundary conditions wj = wp4] = 0, we

find that the last terms in Eqs. (A-35) and (A-36) and the
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vertical advection of temperature terms in Eq. (A-8) sum to

zero. Hence, under adiabatic conditions, we obtain

Cathr - afh?
k. hk( 4at =0

i,j,k

or

(T. . )2
3y 1,3,k _
I L a-37)

i,j,k
which is the finite-difference form of the conservation of the

second moment of temperature.

Conservation of mass

We first show that the differential form of the continuity
equation conserves mass. First, we horizontally integrate Eq.
(3-4):

JJug dxdy + ijy dxdy = -||w, dxdy . (A-38)

We note that the left hand side of Eq. (A-38) integrates to
zero. Next, we vertically integrate Eq. (A-38). Applying the
boundary conditions of a rigid lid at the surface and a flat
bottom, we find that the right hand side of Eq. (A-38) inte-
grates to zero. This proves, for the differential form, that
mass for the total ocean is conserved.

Next, we show that the finite-difference form preserves
mass. First, we take a summation of Eq. (A-11) for all i,j to

obtain
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yow - Yw, ., = (h /DY [u, .
+
i) i,j,k+l i35 i3,k k i3 i+l,j,k

- + - -3
Y15,k ¢ Vi, 34,k vi,j,k] ’ (A-39)

We note that all terms on the right hand side of Eq. (A-39)
cancel out, except those at lateral boundaries, which are set to
zero as kinematic boundary conditions. Consequently, the right
hand side of Eq. (A-39) = 0. If we take a summation of Eq.
(A-39) for all k and use the boundary conditions wj = wp4l = 0,
we find that the left hand side of equation = 0. This proves,

for the finite-difference form, that mass for the total ocean is

conserved.
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Appendix B. Notes on the processing and plotting of the data

The processing and plotting of the data is complicated by
the fact that the PE model has a staggered grid, and some QG
variables (such as vertical velocity) are not defined on the
same grid points as the PE. The following notes describe how
these problems are handled and clarify the relationship between

the plots and the model grid.

1) For both models, the physical basin grid size is

51 x 51 for the single gyre, and 51 x 101 for the double gyre
(This leaves 50 x 50 or 50 x 100 grid spaces). The stream

function is defined on the basin boundaries.

2) One- or two~dimensional linear interpolation is used to

get variables on the same grid for computations.

3) All horizontal averages are area averages over the

basin (Data points located on the basin boundaries are half-

weighted).

4) The boundary of the physical basin is located one grid

point inside of the perimeter of all horizontal slab-plots. The

latitude and longitude axes in these plots are linear with

respect to the model grid. The interior tick marks along these
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axes locate the points at which the streamfunction is defined
(both models). When data are defined on grid points other than
the streamfunction points, they are plotted midway between the

tick marks.

5) The vector plots combine scalar components to form
velocity vectors. For clarity, only every other vector is plot-
ted, starting at the lower left. The arrow length is scaled to
the velocity magnitude as specified by the key (the longest

arrow always spans four—-grid spaces).

6) On the zonal average plots, the interior tick marks

locate the model streamfunction grid points, in the same manner
as the horizontal slab plots. The exterior tick marks locate

latitudes in a manner consistent with the g~plane assumption

(the latitude scale is therefore nonlinear).





